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Constant-Depth Circuits for Dynamic Simulations of Materials on Quantum
Computers

Lindsay Bassman,1 Roel Van Beeumen,1 Ed Younis,1 Ethan Smith,2 Costin Iancu,1 and Wibe A. de Jong1

1Lawrence Berkeley National Lab, Berkeley, CA 94720
2University of California Berkeley, Berkeley, CA 94720

Dynamic simulation of materials is a promising application for near-term quantum computers.
Current algorithms for Hamiltonian simulation, however, produce circuits that grow in depth with
increasing simulation time, limiting feasible simulations to short-time dynamics. Here, we present
a method for generating circuits that are constant in depth with increasing simulation time for a
subset of one-dimensional materials Hamiltonians, thereby enabling simulations out to arbitrarily
long times. Furthermore, by removing the effective limit on the number of feasibly simulatable
time-steps, the constant-depth circuits enable Trotter error to be made negligibly small by allowing
simulations to be broken into arbitrarily many time-steps. Composed of two-qubit matchgates
on nearest-neighbor qubits, these constant-depth circuits are constructed based on a set of multi-
matchgate identity relationships. For an N -spin system, the constant-depth circuit contains only
O(N2) CNOT gates. When compared to standard Hamiltonian simulation algorithms, our method
generates circuits with order-of-magnitude fewer gates, which allows us to successfully simulate the
long-time dynamics of systems with up to 5 spins on available quantum hardware. This paves the
way for simulations of long-time dynamics for scientifically and technologically relevant quantum
materials, enabling the observation of interesting and important atomic-level physics.

I. INTRODUCTION

While a quantum advantage was recently achieved with
random circuits [1], it remains a challenge to demonstrate
a quantum advantage for an application of interest within
the physical sciences, a feat which has been dubbed
“physical quantum advantage”. This is because current
and near-term quantum computers, otherwise known as
noisy intermediate-scale quantum (NISQ) computers [2],
have low qubit counts and suffer from short qubit deco-
herence times and high gate error rates, making it diffi-
cult to perform relevant, large-scale computations. Given
such constraints, long-anticipated applications like num-
ber factorization [3] and unordered database search [4]
are still far out of reach for NISQ computers. Quantum
computers, however, are intrinsically fit for efficiently
simulating quantum systems [5–8], making the dynamic
simulation of quantum materials a leading “killer appli-
cation” for NISQ computers. Rapid progress in both
quantum hardware and software may soon allow for such
simulations to not only demonstrate a physical quantum
advantage, but to advance such fields as condensed mat-
ter physics, quantum chemistry, and materials science.

One of the major challenges with performing dynamic
simulations on NISQ devices is keeping the quantum cir-
cuits small enough to produce high-fidelity results. Dy-
namic simulations require the execution of one circuit
per time-step, where each circuit implements the time-
evolution operator from the initial time to the given time-
step [9]. Current algorithms for dynamic materials simu-
lations produce quantum circuits whose depths grow with
increasing simulation time-steps [10, 11]. Thus, an essen-
tial part of the workflow for simulating the dynamics of
materials on NISQ computers is quantum circuit opti-
mization, which can minimize the depth of the circuits
produced by current algorithms. Already, a great deal of

research has focused on general circuit optimization (i.e.
minimization) [12–19], and domain-specific circuit opti-
mizers, which focus on optimizing certain types of cir-
cuits for specific applications, have been suggested [20]
as a method to reduce to complexity of the optimization
problem, which in general is NP-hard [21, 22].

According to the “no-fast-forwarding theorem”, simu-
lating the dynamics of a system under a generic Hamilto-
nian H for a time t requires Ω(t) gates [23, 24], implying
that circuit depths grow at least linearly with the number
of time-steps. It has been shown, however, that quadratic
Hamiltonians can be fast forwarded, meaning the evo-
lution of the systems under such Hamiltonians can be
simulated with circuits whose depths do not grow signifi-
cantly with the simulation time [25]. A recent work took
advantage of this to variationally compile approximate
circuits with a hybrid classical-quantum algorithm for
fast-forwarded simulations [26]. The circuits, however,
are approximate, with error that grows with increasing
fast-forwarding time.

Here, we present an algorithm for producing quan-
tum circuits that are constant in depth with increasing
time-step count for simulations of materials governed by
special models derived from the Heisenberg Hamiltonian,
which we denote by HCD and define in Section II. The
constant-depth circuits have a fixed structure, with only
the single-qubit rotation angles changing with the addi-
tion of more time-steps. The structure has a regular pat-
tern which can be easily extrapolated to build circuits for
any system size; for an N -spin system, the circuit struc-
ture contains only N(N − 1) CNOT gates. Furthermore,
the circuits are exact up to Trotter error, which we argue,
can be practically eliminated. This is because Trotter er-
ror scales with the size of the simulation time-step, and
the constant-depth nature of the circuits allows for a sim-
ulation to be feasibly broken into arbitrarily many (i.e.,
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arbitrarily small) time-steps.
The circuits are comprised of two-qubit gates, known

as matchgates [27]. While generic matchgates decompose
into native-gate circuits with three CNOT gates [28], the
matchgates for Hamiltonians in HCD, have the special
property that they only require two CNOT gates in their
decomposition. This special property allows us to in-
troduce a set of conjectured matchgate identities, which
enable the downfolding of our circuits for dynamic simu-
lations into constant-depth for any number of time-steps.
For a given system size, if the fixed circuit structure is
small enough to achieve high-fidelity results on a NISQ
computer, the dynamics of that system can be success-
fully simulated out to arbitrarily long times. By remov-
ing the limit on the number of simulation time-steps that
can feasibly be simulated, these constant-depth circuits
allow for long-time dynamic simulations, with minimized
Trotter error, that can give insights into complex molec-
ular reactions, transformations, and equilibration.

II. THEORETICAL BACKGROUND

The quantum circuits for dynamic simulations of quan-
tum materials must implement the time-evolution opera-
tor between the initial time (which we set to 0) and some
final time t, given by

U(0, t) ≡ U(t) = T exp(−i
∫ t

0

H(t)dt) (1)

where T indicates a time-ordered exponential and H(t) is
the time-dependent Hamiltonian of the material. In gen-
eral, this operator is challenging to compute exactly due
to the time-dependence of the Hamiltonian and the ex-
ponentiation the Hamiltonian. First, an approximation
must be made which transforms H(t) into a piece-wise
function by discretizing time into small time-steps over
which H(t) is constant [29]. For small system sizes, it is
then possible to compute U(t) by exact diagonalization
of the Hamiltonian, however, this task becomes exponen-
tially harder with increasing system size. Thus for larger
system sizes, a second approximation must be made to
exponentiate the Hamiltonian. Typically, the Trotter de-
composition [30] is used, which splits the Hamiltonian
into components that are each easy to diagonalize. With
these two approximations, the time-evolution operator
becomes

U(n∆t) =

n∏
τ=1

∏
l

e−iHl(tτ )∆t +O(∆t) (2)

where τ multiplies over the number of discretized time-
steps ∆t and l multiplies over the components into with
H(t) was divided.

The error generated from the Trotter decomposition,
known as Trotter error, can be a significant source of
error, scaling with the size of the simulation time-step

∆t. Dynamic simulations based on standard Hamilto-
nian simulation algorithms must strike a balance when
selecting the size of ∆t. This is because standard al-
gorithms produce circuits which grow in depth with in-
creasing numbers of time-steps, which in turn limits the
number of time-steps that are feasible to simulate to just
a handful [31]. While decreasing ∆t will lower Trotter er-
ror, making ∆t too small will not allow for a long enough
total simulation time, since the number of time-steps is
limited. Our constant-depth circuits, however, remove
the limitation on the number of time-steps that can be
feasibly simulated, since the circuits do not get deeper
with higher time-step count. This allows for the time-
step ∆t to be made arbitrarily small, which in turn al-
lows one to decrease the Trotter error to negligible values.
Such practical elimination of Trotter error with constant-
depth circuits can enable far more accurate simulation
results for long-time dynamic simulations.

The constant-depth circuits we introduce here simulate
the dynamical evolution of a quantum material whose
Hamiltonian is a simplified version of the one-dimensional
(1D) Heisenberg model, as explained below. The Heisen-
berg Hamiltonian is defined as

H(t) = −
∑
α

{Jα
N−1∑
i=1

σαi σ
α
i+1} − hβ(t)

N∑
i=1

σβi (3)

where α sums over {x, y, z}, the coupling parameters
Jα denote the exchange interaction between nearest-
neighbor spins along the α-direction, σαi is the α-Pauli
matrix acting on qubit i, and hβ(t) is the time-dependent
amplitude of an external magnetic field along the β-
direction, where β ∈ {x, y, z}. This Hamiltonian is thus
defined by the set of its parameters {Jx, Jy, Jz, hβ(t)}.
We denote the set of all parameter sets as H. The full
Heisenberg model is obtained when all parameters in the
set are non-zero, however a number of ubiquitous models
can be derived by setting various parameters to zero.

Table I shows all subsets HCD of H for which we find
that our constant-depth circuits work. The rows of the
table denote either the direction of the external magnetic
field hβ or a lack of field, while the columns label which
of the coupling parameters are non-zero. The first three
columns denote parameter sets where one coupling term
is non-zero, the next three columns denote sets where two
coupling terms are non-zero, while the final column de-
notes the sets where all three coupling parameters are
non-zero. An × appears in table entries for parame-
ter sets that define Hamiltonians in HCD, which can be
simulated with our constant-depth circuits. Note that
Jx · Jy · Jz = 0 is a necessary but not sufficient con-
dition for constant-depth. As all HCD Hamiltonians of
Table I are quadratic, it is possible to fast-forward simu-
lations under their time-evolution [25]. In Section IV, we
demonstrate simulations with our constant-depth circuits
for two important models in HCD: (i) the XY model,
where Jz = 0 and hβ = 0, and (ii) the transverse field
Ising model (TFIM), where Jy = Jz = 0. Dynamics of
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Jx Jy Jz Jx + Jy Jx + Jz Jy + Jz Jx + Jy + Jz
x × × × ×
y × × × ×
z × × × ×
∅ × × × × × ×

TABLE I. Subsets of Heisenberg parameters HCD for which
circuits are constant-depth. The rows denote the direction of
the external field or a lack of a field. The columns denote
the non-zero coupling parameters. Table entries marked with
an × denote parameter sets that represent Hamiltonians for
which our constant-depth circuits work.

these models have recently been simulated on quantum
computers, but lack of constant-depth circuits either lim-
ited the number of time-steps that could be successfully
simulated [31].

III. CONSTRUCTION OF CONSTANT-DEPTH
CIRCUITS

To arrive at the circuit structure for the constant-depth
circuits, we begin by laying down the gates that imple-
ment evolution of the system by one time-step, U(∆t).
Due to the quadratic nature of HCD Hamiltonians, which
only contain coupling interactions between nearest neigh-
bor spins, the circuit for evolution of one time-step can
be constructed by a set of two-qubit gates which act on
each of the pairs of nearest neighbor qubits. For example,
for six qubits, this circuit is given by

U(∆t) =

G(Θ1)

G(Θ2)

G(Θ3)

G(Θ4)

G(Θ5)

(4)

where each gate labeled G(Θi) is a two-qubit gate de-
fined by some set of parameters Θi. For ease of notation,
the parameter set Θi is dropped in subsequent labeling of
these gates, which will simply be labeled with a G. How-
ever, it must be emphasized that each two-qubit gate has
its own unique parameter set. Each additional time-step
requires one additional repetition of the circuit for one
time-step. In this manner, it is possible to construct cir-
cuits for dynamic simulations that grow with increasing
numbers of time-steps. We refer to these circuits has
the “naive circuits” for dynamic simulations. The naive
circuit for n time-steps for six qubits is thus given by

U(n∆t) =

G
· · ·

G

G
· · ·

G

G
· · ·

G

G
· · ·

G

G
· · ·

G· · ·

(5)

where there are 2n columns of G gates for n time-
steps. We now show that it is possible to reduce the
naive circuits for higher numbers of time-steps down to a
constant-depth circuit which is comprised of N columns
of G gates for an N -spin system, where each column al-
ternates placing the top of the first G gate on the first
or second qubit. The ability to “downfold” longer cir-
cuits into constant-depth circuits is derived from special
properties of these G gates.

In fact, the G gates belong to a special group of two-
qubit gates known as matchgates [27].

Definition 1. Let the matrices A and B be in SU(2)

A =

[
p q
r s

]
, B =

[
w x
y z

]
, (6)

with det(A) = det(B). Then the two-qubit matchgate
G(A,B) is defined as follows

G(A,B) =

p q
w x
y z

r s

 . (7)

Matchgates have the important property that the
product of two matchgates is again a matchgate and will
be a key feature to arrive at constant-depth circuits.

Lemma 2. Let G(A1, B1) and G(A2, B2) be matchgates,
then the matrix

G(A3, B3) = G(A1, B1)G(A2, B2), (8)

is again a matchgate with A3 = A1A2 and B3 = B1B2.

Proof. The proof directly follows from carrying out the
matrix-matrix multiplication.

A graphical representation of Lemma 2 is given by

G G ≡ G (9)

The decomposition of a general matchgate into a
native-gate circuit, which can be executed on NISQ de-
vices, requires three CNOT gates [28]. However, all the
matchgates for HCD have a special structure which al-
lows them to be decomposed into native-gate circuits
with only two CNOT gates. In HCD cases with an exter-
nal magnetic field along the x- or y-directions, the gates
G in (4) do not have the matchgate structure but are
spectrally equivalent with a matchgate and are in fact
matchgates up to some π/2 rotations. Matchgates and
their corresponding decomposition into native-gate cir-
cuits with two-CNOTs are given in Appendix A.

The ability to contract the circuits to constant depth
relies on an identity that we conjecture for these special
HCD matchgates.
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mirror_identities.png

FIG. 1. Conjectured HCD matchgate mirroring identities for
four qubits (a) and for five qubits (b).

Conjecture 3. Let G1, G2, G3 be matchgates of a cer-
tain type in HCD, then there exist three corresponding
matchgates G4, G5, G6 of the same type so that

(G1⊗I)(I⊗G2)(G3⊗I) = (I⊗G4)(G4⊗I)(I⊗G6). (10)

A graphical representation of Conjecture 3 is given by

G G

G
≡

G

G G
(11)

Using numerical optimization to identify circuit param-
eters on either side of the equality, we empirically find
this conjecture to be true for all trials where the cir-
cuits are comprised of HCD matchgates. It has, however,
proven challenging to analytically compute the parame-
ters of the circuit on the right-hand side given the pa-
rameterized circuit on the left-hand side and vice versa.
As a result, compilation of our constant-depth circuits
requires numerical optimization to obtain circuit param-
eters. We emphasize that the equivalence (11) only holds
for HCD matchgates, whereas the equivalence (9) holds
for all matchgates.

Based on Eqs. (9) and (11) we can derive identities
for higher numbers of qubits, where a set of N columns
of matchgates across N qubits can be replaced by its
mirror image, albeit with altered parameter sets for all
the constituent matchgates. A demonstration of deriving
the identity for 4-qubits is shown in Appendix B. We refer
to these identities as the matchgate mirroring identities.
These conjectured identities are depicted in Fig. 1 for four
and five qubits. Note that for even numbers of qubits the
mirroring is about a vertical axis (Fig. 1a), while for odd
numbers of qubits the mirroring is about a horizontal axis
(Fig. 1b). We emphasize that the matchgate parameters
are different on either side of the equality signs.

To understand how these mirroring identities allow
for the construction of constant depth circuits, we no-
tice that for an N -qubit naive circuit (e.g., Eq. (5)) we
can apply the matchgate mirroring identity to the last
N columns of matchgates in the circuit. We empha-
size that applying this identity will change the parame-
ters defining each matchgate within the mirroring group.
Application of this identity will result in pairs of adja-
cent matchgates on the same qubit pairs that can be
combined into one matchgate, thus reducing the num-
ber of columns of matchgates in the circuit by one. This
can be repeated until only N columns of matchgates in
the circuit remain. This process is demonstrated for six
qubits in Fig. 2. Fig. 2a shows the naive circuit for six

6-qubit_downfolding.png

FIG. 2. Downfolding a 6-qubit circuit for n time-steps down
to a constant-depth circuit. (a) The 6-qubit circuit for evolv-
ing the system by n time-steps with the time-evolution op-
erator U(n∆t). A box highlights the last six columns of
matchgates to which the matchgate mirroring identity will
be applied. (b) The 6-qubit circuit after application of the
HCD matchgate mirroring identity. Pairs of adjacent match-
gates on the same qubit pairs which can be combined into one
matchgate with new parameters are highlighted with an out-
line. (c) The final constant-depth circuit for a 6-qubit circuit,
which has six columns of matchgates.

qubits simulating n time-steps with the last six columns
of matchgates in the circuit highlighted with an outline.
Fig. 2b shows one application of the matchgate mirroring
identity for six qubits to these last six columns of match-
gates. Note how after applying the identity, two pairs of
matchgates emerge adjacent to one another on the same
pair of qubits, highlighted with an outline. These pairs
can each be merged into one matchgate with new param-
eters, thus reducing the number of columns of matchgates
in the circuit by one. This process is repeated until only
six columns of matchgates remain, as shown in Fig. 2c.

The downfolding approach presented in Fig. 2 shows
how to methodically obtain constant-depth circuits for
each time-step in the dynamic simulation. In practice,
however, we directly use numerical optimization to find
the parameters for the constant-depth circuit of Fig. 2c.
We begin by computing the operator in Eq. (2) (either by
exact diagonalization or Trotter decomposition), which
defines our target matrix (i.e., the matrix our circuit
aims to carry out). Given a system size, we then con-
struct the constant-depth circuit structure, which has N
columns of matchgates for an N -qubit system. Next, we
compute the matrix equivalent of the circuit, which will
be compared to our target matrix. Using numerical opti-
mization, we then solve for the parameters of the circuit
that minimize the distance between the circuit matrix
and the target matrix.

The number of circuit parameters grows quadratically
with system size. This makes scaling to larger sys-
tem sizes challenging as the circuit optimization for each
time-step will take longer to compute. This could be
ameliorated by finding a way to map the coefficients of
the Hamiltonian directly to the rotation angles in the
constant-depth circuit, whether through analytical tech-
niques or machine learning methods. This would enable
one to skip computation of the time-evolution opera-
tor and numerical optimization altogether. It should be
noted, however, that the inability to remove this clas-
sical optimization step may not completely inhibit this
method because the constant-depth circuit generation is
embarrassingly parallel. In other words, the circuits for
each time-step may all be computed in parallel, as nu-
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merical optimization for one circuit does not depend on
information from any other circuit. In this way, the nu-
merical optimization of circuits for all time-steps for large
system simulations could be executed simultaneously on
a classical supercomputer, which are regularly used for
similar computations.

The volume of the constant-depth circuits grows
quadratically with system size N , while the depth grows
only linearly with N . We emphasize, however, that un-
like previous circuit generation techniques, our circuits do
not grow in size with increasing numbers of time-steps,
but rather remain fixed for a given system size N . This
remarkable feature is what enables simulation out to ar-
bitrarily large numbers of time-steps and thus permits
long-time dynamic simulations. Most other methods for
circuit generation will produce circuits that grow linearly
with increasing numbers of time-steps [10, 31]. This pro-
hibits dynamic simulations beyond a certain number of
time-steps due to the quantum computer encountering
circuits that are too large, and thus accumulate too much
error due to gate errors and qubit decoherence.

IV. RESULTS

To demonstrate the power of our constant-depth cir-
cuits, we simulate quantum quenches of 3-, 4-, and 5-spin
systems defined by the TFIM and XY model on the IBM
quantum processor “ibmq athens”. A quantum quench is
simulated by initializing the system in the ground state of
an initial Hamiltonian, Hi, and then evolving the system
through time under a final Hamiltonian, Hf . Quenches
can simulate a sudden change in a system’s environment
and provide insights into the non-equilibrium dynamics
of various quantum materials.

To obtain the TFIM, we set Jy = Jz = 0 and β = z in
the Hamiltonian in Eq. (3). To perform the quench, we
assume the external magnetic field is initially turned off,
and the qubits are initialized in the ground state of an
initial Hamiltonian Hi(t < 0) =

∑
i−Jx σxi σxi+1, which is

a ferromagnetic state oriented along the x-axis. At time
t = 0, a time-dependent magnetic field is instantaneously
turned on, and the system evolves under the final Hamil-
tonian Hi(t ≥ 0) = −

∑
i{Jxσxi σxi+1 + hz(t)σ

z
i }. We use

parameters from Ref [32], setting Jx = 11.83898 meV and
hz(t) = 2Jx cos(ωt) with ω = 0.0048 fs−1, which sim-
ulates a simplified model of a Re-doped mono-layer of
MoSe2 under laser excitation. A time-step of 3 fs is used
in the simulations. Our observable of interest is the aver-
age magnetization of the system along the x-axis, given
by mx(t) = 1

N

∑
i〈σxi (t)〉.

To obtain the XY model, we set Jz = hβ = 0 in
the Hamiltonian in Eq. (3). To perform the quench, we
assume Jx = Jy = −1.0 eV and let Jz → ∞, result-
ing in an initial Hamiltonian Hi(t < 0) = C

∑
σzi σ

z
i+1,

where C is an arbitrarily large constant. The ground
state of this Hamiltonian is the Néel state, defined as
|ψ0〉 = |↑↓↑ · · · ↓〉. At time t = 0, we instantaneously

set Jz = 0, giving a final Hamiltonian of Hf (t ≥ 0) =∑
i{σxi σxi+1 + σyi σ

y
i+1}. A time-step of 0.025 fs is used

in the simulations. Our observable of interest is the
staggered magnetization of the system, which is related
to the antiferromagnetic order parameter and given by
ms(t) = 1

N

∑
i(−1)i〈σzi (t)〉.

To generate the constant-depth circuits for our simu-
lations, we rely on circuit optimization software provided
by the circuit synthesis toolkit BQSKit [33]. This suite
of software provides several packages which can be used
to generate the constant-depth circuits. The user must
provide the matrix representation for the time-evolution
operator to be implemented along with the parameter-
dependent constant-depth circuit structure. The circuit
synthesis software then proceeds to use numerical op-
timization to find the optimal parameters for the cir-
cuit. Tutorials including the full code for generating our
constant-depth circuits using the BQSKit toolkit are in-
cluded in the Supplemental Material [34].

Fig. 3 shows the simulation results for quenches of the
TFIM (top row) and XY model (bottom row) for vari-
ous system sizes. In the first three columns, the results
from our constant-depth circuits (red) and IBM-compiled
circuits (green) are compared to the expected results
computed with a noise-free quantum computer simula-
tor (blue). The x-axis gives the number of simulation
time-steps, while the y-axis gives the time-dependent ob-
servable. Circuits from the IBM compiler, as well as other
state-of-the-art general purpose compilers, grow in depth
with increasing numbers of time-steps. For this reason,
the IBM-compiled circuits produce qualitatively consis-
tent results for the first few time-steps, but thereafter
the circuits are too large, accumulating too much error,
to produce reliable results. A recent benchmark study
of dynamic simulations of similar systems on quantum
computers found analogous behavior, with high-fidelity
results limited to only a handful of time-steps [31]. In
contrast, the results from our constant-depth circuits re-
main accurate for all time-step counts, and in principle,
will remain so out to arbitrarily many time-steps. These
results thus show the power of constant-depth circuits to
enable long-time dynamic simulations.

Fig. 3d and 3h compare the number of CNOT gates
for each time-step in the constant-depth (red) and IBM-
compiled (green) circuits for 3- (dotted line), 4- (dashed
lined), and 5-spin (solid line) systems. Clearly the num-
ber of CNOT gates remains the same for all time-steps
for our constant-depth circuits, but the number grows lin-
early with increasing numbers of time-steps for the IBM-
compiled circuits. Notice how the number of CNOT gates
per time-step for the XY model circuits (3h) are approx-
imately double the number for the TFIM circuits (3d),
while our constant-depth circuits have the same CNOT
count for both models.
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FIG. 3. Comparison of simulation results and CNOT gate count for the TFIM and XY model using the constant-depth circuits
versus the IBM-compiled circuits. The top row shows simulation results for a TFIM with 3- (a), 4- (b), and 5-qubits (c). A
noise-free simulator provides the ground truth, shown in blue, with which to compare results from the constant-depth circuits
(red) and IBM-compiled circuits (green). The bottom row shows the analogous simulation results for the XY model with 3- (e),
4- (f), and 5-qubits (g). (d) and (h) show the number of CNOT gates in the constant-depth (red) and IBM-compiled (green)
circuits for each time-step for 3- (dotted line), 4- (dashed line), and 5-qubit (solid line) systems for the TFIM and XY models,
respectively.

V. CONCLUSIONS

We have presented a method for generating circuits
that are constant in depth with increasing numbers of
time-steps for dynamic simulations of quantum materi-
als. Standard Hamiltonian simulation algorithms pro-
duce circuits that grow in depth with increasing time-
step count, which limits the number of time-steps that
are feasible to simulate on near-term devices. The
constant-depth nature of our circuits removes this limit,
thereby allowing for simulations to be broken into arbi-
trarily many time-steps. This allows for Trotter error to
be made negligible by making the time-step arbitrarily
small. Furthermore, the constant-depth circuits enable
long-time dynamics to be simulated since simulations can
be executed out to arbitrarily long times.

The constant-depth circuits have a regular structure,
which allows for simple construction of the circuits for
each system size; for a system of N -spins the circuit
structure contains only N(N − 1) CNOT gates. These
constant-depth circuits are currently applicable to one-
dimensional spin models with nearest-neighbor interac-
tions along two or fewer axes, which we denote by HCD.
They are comprised of two-qubit matchgates acting on
nearest neighbor pairs of qubits. We find that the match-
gates for the HCD Hamiltonians are special in that they
can be decomposed into native-gate circuits requiring
only two CNOT gates, as opposed to generic match-
gates that require three. The ability to downfold cir-
cuits for dynamic simulation under HCD Hamiltonians to

constant-depth relies on a set of conjectured identities for
these special matchgates that we introduce in this paper.
We demonstrate the power of the constant-depth circuits
with dynamic simulations of the TFIM and XY models
with 3-, 4-, and 5-spins carried out on IBM’s quantum
processors. Our results illustrate how the constant-depth
circuits enable successful long-time dynamic simulations
of quantum materials.

There are numerous directions for future investigations
to explore whether constant-depth circuits can be created
for various extensions including two-dimensional models,
models with next-nearest neighbor or even longer-range
interactions, or full Heisenberg interactions (i.e., inter-
actions along three axes). Indeed, matchgates have pre-
viously been studied for various two-dimensional qubit
topologies and for longer-range interactions [35, 36].
Paired with incremental improvements in quantum hard-
ware, the ability to extend our constant-depth circuits to
more complex systems would pave the way to new discov-
eries in the behavior of quantum materials by enabling
long-time dynamic simulations of systems relevant to sci-
entific and technological problems.
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Appendix A: Quantum circuits for HCD matchgates

Hamiltonian parameter subsets with: JxJy = JxJz = JyJz = 0 and hβ = 0

Matchgates used in constant-depth circuits for simulating H = Jx
∑
i σ

x
i σ

x
i+1

G :=

 cos θ1
2

−i sin θ1
2

cos θ1
2

−i sin θ1
2

−i sin θ1
2

cos θ1
2

−i sin θ1
2

cos θ1
2

 • Rx(θ1) •
(A1)

Matchgates used in constant-depth circuits for simulating H = Jy
∑
i σ

y
i σ

y
i+1

G :=

 cos θ1
2

i sin θ1
2

cos θ1
2

−i sin θ1
2

−i sin θ1
2

cos θ1
2

i sin θ1
2

cos θ1
2

 Rz(π/2) • Rx(θ1) • Rz(−π/2)

Rz(π/2) Rz(−π/2)
(A2)

Matchgates used in constant-depth circuits for simulating H = Jz
∑
i σ

z
i σ

z
i+1

G :=


e−

iθ2
2

e
iθ2
2

e
iθ2
2

e−
iθ2
2


• •

Rz(θ2)
(A3)

Hamiltonian parameter subsets with: JxJy = JxJz = JyJz = 0 and hβ 6= 0

G gates used in constant-depth circuits for simulating H = Jx
∑
i σ

x
i σ

x
i+1 + hx

∑
i σ

x
i

G :=

a c c b
c a b c
c b a c
b c c a

 a =
[
cos θ02

]2
cos θ12 + i

[
sin θ0

2

]2
sin θ1

2

b = −
[
sin θ0

2

]2
cos θ12 − i

[
cos θ02

]2
sin θ1

2

c = − 1
2ie
− iθ1

2 sin θ0

Rx(θ0) • Rx(θ1) •

Rx(θ0)
(A4)

G gates used in constant-depth circuits for simulating H = Jy
∑
i σ

y
i σ

y
i+1 + hy

∑
i σ

y
i

G :=


a d d −b
−d a b d
−d b a d
−b −d −d a

 d = −ic
Ry(θ0) Rz(π/2) • Rx(θ1) • Rz(−π/2)

Ry(θ0) Rz(π/2) Rz(−π/2)
(A5)

Matchgates used in constant-depth circuits for simulating H = Jz
∑
i σ

z
i σ

z
i+1 + hz

∑
i σ

z
i

G :=


e−

iθ2
2
−iθ0

e
iθ2
2

e
iθ2
2

e−
iθ2
2

+iθ0

 Rz(θ0) • •

Rz(θ0) Rz(θ2)
(A6)
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Hamiltonian parameter subsets with: JxJyJz = 0 and hβ = 0

Matchgates used in constant-depth circuits for simulating H =
∑
i Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1

G :=

 cos θ1−θ2
2

−i sin θ1−θ2
2

cos θ1+θ2
2

−i sin θ1+θ2
2

−i sin θ1+θ2
2

cos θ1+θ2
2

−i sin θ1−θ2
2

cos θ1−θ2
2

 Rx(π/2) • Rx(θ1) • Rx(−π/2)

Rx(π/2) Rz(θ2) Rx(−π/2)
(A7)

Matchgates used in constant-depth circuits for simulating H =
∑
i Jxσ

x
i σ

x
i+1 + Jzσ

z
i σ

z
i+1

G :=


e−

iθ2
2 cos θ1

2
−ie−

iθ2
2 sin θ1

2

e
iθ2
2 cos θ1

2
−ie

iθ2
2 sin θ1

2

−ie
iθ2
2 sin θ1

2
e

iθ2
2 cos θ1

2

−ie−
iθ2
2 sin θ1

2
e−

iθ2
2 cos θ1

2


• Rx(θ1) •

Rz(θ2)
(A8)

Matchgates used in constant-depth circuits for simulating H =
∑
i Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1

G :=


e−

iθ2
2 cos θ1

2
ie−

iθ2
2 sin θ1

2

e
iθ2
2 cos θ1

2
−ie

iθ2
2 sin θ1

2

−ie
iθ2
2 sin θ1

2
e

iθ2
2 cos θ1

2

ie−
iθ2
2 sin θ1

2
e−

iθ2
2 cos θ1

2


Rz(π/2) • Rx(θ1) • Rz(−π/2)

Rz(π/2) Rz(θ2) Rz(−π/2)
(A9)

Hamiltonian parameter subsets with: JxJyJz = 0 and hβ 6= 0

Matchgates used in constant-depth circuits for simulating H = Jx
∑
i σ

x
i σ

x
i+1 + hz

∑
i σ

z
i or H = Jy

∑
i σ

y
i σ

y
i+1 + hz

∑
i σ

z
i or

H =
∑
i{Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1}+ hz

∑
i σ

z
i

G :=

 e−i(θ0+θ3) cos θ1−θ2
2

−iei(θ0−θ3) sin θ1−θ2
2

cos θ1+θ2
2

−i sin θ1+θ2
2

−i sin θ1+θ2
2

cos θ1+θ2
2

−ie−i(θ0−θ3) sin θ1−θ2
2

ei(θ0+θ3) cos θ1−θ2
2

 (A10a)

Rz(θ0) Rx(π/2) • Rx(θ1) • Rx(−π/2) Rz(θ3)

Rz(θ0) Rx(π/2) Rz(θ2) Rx(−π/2) Rz(θ3)
(A10b)

G gates used in constant-depth circuits for simulating H = Jx
∑
i σ

x
i σ

x
i+1 + hy

∑
i σ

y
i or H = Jz

∑
i σ

z
i σ

z
i+1 + hy

∑
i σ

y
i or

H =
∑
i{Jxσ

x
i σ

x
i+1 + Jzσ

z
i σ

z
i+1}+ hy

∑
i σ

y
i

G :=


e g g f
−g e −f g
−g −f e g
f −g −g e

 Ry(θ0) • Rx(θ1) • Ry(θ3)

Ry(θ0) Rz(θ2) Ry(θ3)
(A11a)

e = 1
2

[
cos θ1+θ2

2 + cos θ1−θ22 cos(θ0 + θ3)
]
− 1

2i
[
sin θ1+θ2

2 − sin θ1−θ2
2 cos(θ0 − θ3)

]
f = 1

2

[
cos θ1+θ2

2 − cos θ1−θ22 cos(θ0 + θ3)
]
− 1

2i
[
sin θ1+θ2

2 + sin θ1−θ2
2 cos(θ0 − θ3)

]
(A11b)

g = − 1
2 cos θ1−θ22 sin(θ0 + θ3)− 1

2i sin θ1−θ2
2 sin(θ0 − θ3)



10

G gates used in constant-depth circuits for simulating H = Jy
∑
i σ

y
i σ

y
i+1 + hx

∑
i σ

x
i or H = Jz

∑
i σ

z
i σ

z
i+1 + hx

∑
i σ

x
i or

H =
∑
i{Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1}+ hx

∑
i σ

x
i

G :=


e h h −f
−h e −f −h
−h −f e −h
−f h h e

 h = ig
Rx(θ0) Rz(π/2) • Rx(θ1) • Rz(−π/2) Rx(θ3)

Rx(θ0) Rz(π/2) Rz(θ2) Rz(−π/2) Rx(θ3)
(A12)

Appendix B: Proof of Fig. 1a

Proof. Using (11) recursively, yields

G G

G G

G G

=

G G

G G

G G

(B1)

=

G

G G G

G G

(B2)

=

G

G G

G G G

(B3)

=

G

G G

G G G

(B4)

=

G

G G G

G G

(B5)

=

G G

G G

G G

(B6)
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