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Improvements for the In Vitro to In Vivo Extrapolation of Hepatic Clearance 

Christine Bowman 

 

ABSTRACT 

 Clearance, or a measure of the body’s ability to remove drug, is a crucial 

pharmacokinetic parameter.  Since clearance is linked to a drug’s dosing regimen as well as its 

efficacy and toxicity, accurately predicting the parameter early in the drug discovery process is 

important to reduce the time and cost associated with drug development.  To predict hepatic 

clearance, in vitro to in vivo extrapolation (IVIVE) is commonly used where an in vitro 

clearance measure generated in hepatocytes or microsomes is scaled to an in vivo prediction 

using biological scaling factors and a model of hepatic disposition. 

 The goal of this work was to evaluate the current state of IVIVE and examine ways to 

improve hepatic clearance predictions.  After a literature search, we found that in human 

microsomes and hepatocytes, on average, 66.5% of drugs were predicted inaccurately (or fell 

outside two-fold of their in vivo clearance value).  We also found that ≤ 25% of high extraction 

ratio compounds were predicted to have high extraction ratios.  Examining the Biopharmaceutics 

Drug Disposition Classification System found that class 2 drugs have poorer predictions than 

class 1 drugs (81.9% vs. 62.3% inaccuracy), however these percentages of inaccuracy were still 

high in both cases.  We conclude that the IVIVE of hepatic clearance needs to be improved 

through a better understanding of mechanisms. 

 We go on to propose a new hypothesis called a transporter induced protein binding shift 

(TIPBS) that is a new explanation for protein-facilitated uptake and can help mitigate current 

IVIVE error.  When reviewing previous explanations for protein facilitated uptake, we noted that 
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the hypotheses did not include the potential role of hepatic uptake transporters, and the poorest 

IVIVE predictions often occur for compounds that have high protein binding and are substrates 

of transporters.  We hypothesized that for highly protein bound drugs with high affinity to 

transporters, protein-binding may not actually be restricting the drug’s access to the hepatocyte, 

which would lead to greater uptake and clearance values than currently predicted.  We found 

support for our new TIPBS hypothesis by measuring the uptake of compounds in protein-free 

buffer vs. 100% plasma using rat hepatocytes as well as human embryonic kidney (HEK)293 

cells overexpressing uptake transporters. 

 Finally we examined trends in clearance prediction accuracy with physiochemical and 

pharmacokinetic parameters.  After noting high interlaboratory variability, we found that less 

lipophilic, lower intrinsic clearance, and lower protein binding compounds may yield more 

accurate predictions.  These findings highlight the current errors associated with IVIVE and 

provide suggestions to improve predictions moving forward. 
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CHAPTER 1:  Challenges with Hepatic Clearance Prediction 

Since the current drug discovery and development process is lengthy and costly (1, 2), it 

is important to identify compound failures as early in the pipeline as possible to reduce 

inefficiency.  When deciding which compounds to move forward, one of the most important 

pharmacokinetic parameters to estimate and consider is clearance (CL), or the measure of the 

body’s ability to eliminate drugs, as the parameter is linked to drug exposure, half-life, and 

dosing interval (3).  Most drugs are cleared hepatically and/or renally, and given that clearance is 

an additive process, predictions of all routes of clearance must be considered together to have an 

accurate estimate of total clearance.  

 

Prediction Methods 

Allometric scaling is one approach that can be taken for predicting human clearance 

using animal data.  Using this method, the parameter of interest, clearance, is correlated with 

body size (Y = aWb, where Y is clearance, W is body weight, and a and b are the allometric 

coefficient and exponent, respectively).  While this approach has been shown to be useful in 

clearance predictions for drugs that are primarily cleared renally and is commonly used for such 

drugs, it is less useful for compounds cleared hepatically (4) as there can be species differences 

in the expression levels, substrate selectivity and activities of enzymes and transporters involved 

in hepatic drug clearance.  Instead, in vitro - in vivo extrapolation (IVIVE) is commonly used to 

predict the hepatic clearance of compounds. 

 The typical IVIVE process involves determining the intrinsic clearance (CLint) of a 

compound in vitro using rat or human microsomes or hepatocytes, which is then scaled to an in 
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vivo prediction for the corresponding species using physiologically based scaling factors as well 

as a model of hepatic disposition such as the well-stirred model shown below: 

𝐶𝐿! =
𝑄! ∙ 𝑓!,! ∙ 𝐶𝐿!"#,!"  !"!#
𝑄! + 𝑓!,! ∙ 𝐶𝐿!"#,!"  !"!#

 

where  𝐶𝐿! is hepatic clearance, 𝑄! is hepatic blood flow and 𝑓!,! is the fraction unbound in 

blood (the fraction of drug not bound to proteins which is commonly measured with equilibrium 

dialysis).  This process will be described in more detail in Chapter 2.  Despite the common use of 

IVIVE, there is often underprediction that could be due to liver preparation process issues, 

cofactor depletion, ignoring the possibility of extra-hepatic metabolism, or errors in the 

measurement and/or understanding of protein binding (5).  The overall IVIVE process and its 

current inaccuracy is depicted in Figure 1.1. 

 

 

Figure 1.1:  The traditional scale-up using IVIVE; however hepatic clearance is often not 
predicted accurately. 
 
 
Understanding Plasma Protein Binding 

Pharmaceutical scientists have long recognized the importance of plasma protein binding 

in pharmacokinetics and pharmacodynamics and the fraction unbound (fu) term appears in 

equations for several fundamental parameters including clearance and volume of distribution (6).  

According to the traditional free drug theory, the unbound fraction of drug drives the efficacy of 

the molecule and is the portion that can undergo hepatic uptake followed by elimination.  

Background, IVIVE

In vitro CLint

Scaling factors

CLint whole liver

Liver model

Well-stirred model

Predicted CLhepatic
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According to the theory, protein binding is a rapid equilbirum process and drug concentration is 

the same on both sides of a membrane at steady state.  However, after the transporter field 

emergered, it became clear that the assumption of instant equilbirum between the blood and an 

intracellular compartment is not valid for actively transported drugs where the intracellular free 

concentration would be higher than the free blood concentration.  Other violations to the free 

drug theory have been suggested as well and it has been proposed that hepatic uptake may occur 

not only from the free drug, but also directly from the protein-drug complex.  Studies found that 

highly protein bound ligands had more efficient hepatic uptake than could be accounted for by 

just their unbound concentrations, a phenomenon known as protein-facilitated uptake.  The lack 

of recognition of protein-facilitated uptake could be leading to the underprediction seen with 

IVIVE. 

 

Thesis Aims 

 This thesis aims to explore the current state of IVIVE and the underprediction commonly 

seen, to examine previous explanations of protein-facilitated uptake, and to propose a new 

hypothesis called a transporter-induced protein binding shift to mitigate IVIVE underprediction 

and reevaluate the role of protein binding. 

 The second chapter of this thesis reviews plasma protein binding and IVIVE in more 

detail and provides a balanced assessment of previous explanations of protein-facilitated uptake.  

Background and the current state of hypotheses including the possibility of a specific albumin 

receptor, rate-limiting dissociation of ligand from the albumin-ligand complex, rate-limiting 

diffusion of ligand through the unstirred water layer, and interactions with the hepatocyte cell 

surface are discussed.  
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 The third chapter explores the accuracy of published in vitro intrinsic clearance values for 

the prediction of in vivo clearance.  A literature search was conducted to assess IVIVE accuracy 

across several laboratories.  The results of this search were further used to examine trends related 

to the Biopharmaceutics Drug Disposition Classification System (BDDCS) (7), which helps 

categorize transporter effects on drug disposition.  BDDCS class 1 drugs, those that are 

extensively metabolized and highly soluble, are able to overwhelm transporters, while class 2 

drugs, also extensively metabolized but poorly soluble, can be affected by efflux transporters in 

the gut, and both uptake and efflux transporters in the liver.  Since in a previous study the poorest 

IVIVE predictions were found for drugs that have high plasma protein binding and are substrates 

of hepatic uptake transporters (8) examining BDDCS classification may help determine whether 

a drug’s predicted in vitro hepatic clearance will be accurate or not. 

  Groups have also noticed poorer IVIVE predictions for compounds with high CLint (9-

11).  The fourth chapter of this thesis examines if the trend also holds for compounds with high 

CLH, as hepatic clearance, not CLint alone, is the parameter used for first-in-human dose 

predictions. 

The fifth and sixth chapters focus on our innovative hypothesis called a transporter-

induced protein binding shift (TIPBS), which is a new explanation for protein-facilitated uptake 

and may help mitigate IVIVE underprediction.  To evaluate the idea, we measured the uptake of 

high affinity transporter substrates with high and low protein binding in incubations with protein-

free buffer vs. 100% plasma.  Chapter 5 supports the hypothesis with rat hepatocyte data and 

chapter 6 supports it with human embryonic kidney (HEK)293 cell data. 

Finally the seventh chapter aims to find physiochemical determinants of accurate IVIVE.  

It is expected that new hypotheses such as TIPBS that are being developed and implemented will 
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reduce the current IVIVE underprediction, but in the meantime, it is important to know which 

new compounds will yield accurate clearance predictions and which will not.  By categorizing 

compounds based on physicochemical properties, the process of determining the data needed for 

a specific compound may be simplified. 
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CHAPTER 2:  An Examination of Protein Binding and Protein-Facilitated Uptake 

Relating to In Vitro-In Vivo Extrapolation* 

 

Abstract 

As explained by the free drug theory, the unbound fraction of drug has long been thought 

to drive the efficacy of a molecule.  Thus, the fraction unbound term, or fu, appears in equations 

for fundamental pharmacokinetic parameters such as clearance, and is used when attempting in 

vitro to in vivo extrapolation (IVIVE).  In recent years though, it has been noted that IVIVE does 

not always yield accurate predictions, and that some highly protein bound ligands have more 

efficient uptake than can be explained by their unbound fractions.  This review explores the 

evolution of fu terms included when implementing IVIVE, the concept of protein-facilitated 

uptake, and the mechanisms that have been proposed to account for facilitated uptake. 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*	
  Modified from the publication:  Bowman CM and Benet LZ (2018) An examination of protein 
binding and protein-facilitated uptake relating to in vitro - in vivo extrapolation. Eur J Pharm Sci 
123:502-514.	
  
*Modified from the publication:  Bowman CM and Benet LZ (2016) Hepatic clearance 
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Introduction 

Beginning as early as 1949 with Goldstein’s review of the interactions between drugs and 

proteins (1), pharmaceutical scientists have recognized the importance of plasma protein binding 

(PPB) in pharmacokinetics and pharmacodynamics.  Appearing in equations for several 

parameters including clearance and volume of distribution, it is one of the most fundamental 

properties in the field (2).  The widely accepted free drug theory (FDT) (Fig. 2.1) explains that 

plasma protein binding is a rapid equilibrium process allowing a constant concentration of free 

drug, and in the absence of energy-dependent processes, this free drug concentration is the same 

on both sides of a membrane at steady state (3).  The other main principle of FDT is that only 

free drug can reach the site of action (or metabolism), and therefore the free drug concentration 

is what drives the pharmacological effect of a molecule (4).   

 

Figure 2.1:  Free drug theory.  According to free drug theory only free drug can reach the site 
of action or metabolism, and at steady state, the unbound drug concentration is the same on both 
sides of the membrane. 
 

While PPB is one of the most fundamental properties, it is often misinterpreted and 

compounds are wrongfully “optimized” based on protein binding measurements (4, 5).   

Hueberger et al. (6) nicely summarize the answer to the question they pose in their paper entitled, 

“When Is Protein Binding Important?”.  In the final section they discuss the use of fu, the 
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unbound fraction of drug, in the in vitro-in vitro extrapolation (IVIVE) of hepatic clearance.  

This review expands upon the questions surrounding protein binding, protein-facilitated uptake, 

and IVIVE.  

 

Plasma Protein Binding 

Major Drug Binding Proteins 

While there are several drug-binding components in plasma including lipoproteins and 

globulins, human serum albumin (HSA) and α-1-acid glycoprotein (AAG) have been the most 

extensively studied and are present in large enough amounts to have an effect on drug action.   

HSA, a 66 kDa globular protein containing 585 amino acids including a large amount of 

charged residues, is present in the body at a relatively constant concentration of 600 µM (7).  It is 

the most abundant protein in human plasma and accounts for 50% of total plasma protein content 

(8).  Physiologically HSA maintains colloid osmotic pressure, and is capable of binding both 

endogenous ligands (such as fatty acids and bilirubin) as well as xenobiotics (7).  Composed of 3 

homologous domains (I-III) each with two sub-domains (A and B) (7), HSA has several low 

affinity binding sites and at least two high affinity drug binding sites (Sudlow site I and Sudlow 

site II) with a bias for binding acidic drugs (9).  The protein undergoes different transitions 

depending on pH:  the neutral-fast (N-F) transition between pH 5.0-3.5 that causes elongation, 

the fast-elongated (F-E) or acid expansion transition below pH 3.5 that causes further expansion, 

and the neutral-base (N-B) transition between pH 7.0-9.0 that causes enhanced binding at  

site I (10, 11). 

 AAG, a 38-48 kDa acidic protein containing 204 amino acids, can have more variable 

concentrations in the body.  In healthy subjects it is typically present at 12-31 µM, however as an 
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acute-phase protein synthesized in the liver, it can be as high as 60 µM in some disease states (3).  

In other disease states, while levels of AAG are unchanged, its binding capacity is reduced (12).  

AAG binding has also been shown to be dependent on age, gender, ethnicity, obesity, pregnancy, 

and diurnal changes (13).  While multiple binding sites have been reported, only one appears to 

be important for drug binding, and it has a preference for basic and neutral drugs (12).  The 

lower baseline levels of AAG as well as its possibility to fluctuate can readily cause drug-

binding effects. 

 The association and dissociation of the drug-protein complex is rapid (2) and at 

equilibrium can be described as: 

 

𝐷 + 𝑃
𝑘!"
⇌
𝑘!""

[𝐷𝑃] 

 

where 𝑘!" and 𝑘!"" are the association and dissociation rate constants, and the affinity of the 

drug for binding to the protein can be described by the association constant, 𝐾!, or its inverse, 

the dissociation constant, 𝐾!: 

 

𝐾! =
[𝐷𝑃]
𝐷 ∙ [𝑃] =   

1
𝐾!

 

 

Methods to Measure Plasma Protein Binding 

While there are several methods used to measure protein binding and in depth reviews 

comparing them (13, 14) the three most widespread methods measuring equilibrium binding in 

vitro will be briefly summarized here (Fig. 2.2). 
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Figure 2.2: In vitro methods for measuring fu.  The fraction unbound can be determined with 
A) equilibrium dialysis B) ultrafiltration or C) ultracentrifugation. 

 

The most commonly used technique to measure protein binding in the pharmaceutical 

industry is equilibrium dialysis (Fig. 2.2A).  Using a device with two chambers separated by a 

semipermeable membrane, the protein-drug solution is added on one side, while buffer is added 

on the opposing side.  When equilibrium is reached, the free fraction can be determined by 

measuring the total drug concentration in the protein chamber and the free drug concentration in 

the buffer chamber.  Despite its ease of use, equilibrium dialysis still has disadvantages that must 

be considered including nonspecific binding to the membrane and the apparatus, volume shifts 

due to colloidal osmotic pressure, Gibbs-Donnan effects where charged particles near the 

membrane do not distribute evenly on both sides of the membrane, protein leakage across the 

membrane if the integrity of the membrane is compromised, and the need to determine the time 

required to reach equilibrium (14). 

Other commonly used methods are ultrafiltration and ultracentrifugation.  Ultrafiltration 

uses centrifugal force and a semipermeable membrane to separate a protein-free phase from a 

drug-protein solution (Fig. 2.2B).  With this method the drug-protein solution is placed in the 

upper chamber of the two-chambered device and centrifugation (~2,000g) is used to move the 

unbound drug into the lower chamber (13).  Here the total drug concentration is measured before 
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centrifugation, and the free drug concentration is measured in the lower chamber at the end of 

the process.  Similar to equilibrium dialysis, nonspecific binding to the membrane and the 

apparatus, Gibbs-Donnan effects, and protein leakage must be considered.  In addition, more 

rigorous temperature and pH control are needed, and molecular sieving, where plasma water 

passes though the membrane faster than drug molecules, must be recognized (14). 

Ultracentrifugation separates a drug-protein solution into several phases by using a high 

centrifugal force (~500,000g) for a long period of time (10-24hr) (13) (Fig. 2.2C).  While this 

method avoids the membrane issues encountered with equilibrium dialysis and ultrafiltration, it 

has its own challenges.  After centrifugation, three distinct layers are formed:  a top layer 

containing very low-density lipoproteins and chylomicrons, a middle layer of free drug, and a 

bottom layer containing high-density molecules including albumin, AAG, and lipoproteins.  To 

determine the free fraction, total drug concentration is measured before centrifugation and free 

drug concentration is measured from the middle layer at the end of the process.  By having 

distinct layers, binding to specific proteins such as low-density lipoproteins vs. albumin can be 

determined (15).  The three layers can lead to the experimental difficulties since the top lipid 

layer must not be disrupted during sampling, and it is necessary to use the correct centrifugation 

parameters to ensure a truly protein-free middle layer (16).  Additionally, free drug can sediment 

depending on its shape, size, and the run temperature, while back diffusion of drugs from the 

protein-free layer is possible (13). 

 While these three methods are among the most commonly used, reviews summarize 

additional methods including gel filtration, chromatography, capillary electrophoresis, 

erythrocyte partitioning, surface plasmon resonance, and microdialysis (13, 14).  Despite 

advances in technology, there is still uncertainty in the fu values generated using these standard 
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methodologies for highly bound drugs.  Recent DDI guidelines reflect the low confidence in 

measured fu values as regulatory agencies decided that the lower limit should be 0.01, regardless 

of the actual measured value, to avoid false negative DDI predictions (17).  However, 

approximately one third of experimental drugs have high protein binding (≥ 99%), and using 

warfarin and itraconazole as examples, Di et al. (17) show that fu ≤ 0.01 may be accurately 

measured using appropriate methods. 

 

IVIVE and Protein Binding 

Given that the current drug development process is expensive and time-consuming (18), 

it is important to identify failures as early in the pipeline as possible to reduce inefficiency.  

When deciding which new chemical entities (NCE) to move forward, one of the most important 

pharmacokinetic parameters to consider is clearance as it is linked to drug exposure, half life, 

and dosing interval (19).  In vitro - in vivo extrapolation is commonly used to predict the hepatic 

clearance of compounds and accurately understanding fu is crucial for these predictions. 

 The typical IVIVE process involves determining the intrinsic clearance (CLint) of a 

compound in vitro using microsomes or hepatocytes, which can then be scaled to an in vivo 

prediction using physiologically based scaling factors as well as a model of hepatic disposition 

such as the well-stirred model.  CLint is a measure of the body’s ability to remove drug in the 

absence of protein binding or blood flow limitations (20, 21), and in vitro CLint is commonly 

measured by either uptake or substrate depletion assays (22, 23).  
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Rane et al. (24) first suggested the use of in vitro uptake assays for hepatic clearance 

prediction and determined CLint under low substrate concentrations ([S] <<Km) using the 

following: 

 

𝐶𝐿!"#,!"  !"#$% =
𝑉!"#
𝐾!

 

 

where 𝑉!"# represents the maximum velocity of metabolism and the Michaelis-Menten constant, 

𝐾!, is the concentration of drug at half 𝑉!"# (24).  For substrate depletion assays, the metabolic 

rate parameter, 𝑘, can be determined from the slope of the linear regression of the log percentage 

of drug remaining versus time, and CLint can then be determined using: 

 

𝐶𝐿!"#,!"  !"#$% = 𝑘   ∙ 𝑉!"# 

 

where 𝑉!"# is the volume of the in vitro incubation (25, 26).   

 

𝐶𝐿!"#,!"  !"#$! can then be scaled to 𝐶𝐿!"#,!"  !"!# using scaling factors (𝑆𝐹) that typically include 

40 mg microsomal protein/g liver (27) or 120 million hepatocytes/g liver (28) as well as 21.4 g 

liver/kg bodyweight (28):   

 

𝐶𝐿!"#,!"  !"!! = 𝑆𝐹 ∙ 𝐶𝐿!"#,!"  !"#$% 
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Following this scale-up, a model of hepatic disposition such as the well-stirred model (20, 21) 

shown below: 

 

𝐶𝐿! =
𝑄! ∙ 𝑓!,! ∙ 𝐶𝐿!"#,!"  !"!#
𝑄! + 𝑓!,! ∙ 𝐶𝐿!"#,!"  !"!#

 

 

(where 𝑄! is hepatic blood flow and 𝑓!,! is the fraction unbound in blood), the parallel tube 

model (29), or the dispersion model (30) is commonly applied.  It has been shown that clearance 

predictions are similar among the three models except for high clearance drugs, where the well-

stirred model will cause underprediction (31).  However, our lab recently derived the theoretical 

basis for the extraction ratio and found that when organ clearance is calculated as the product of 

the extraction ratio (𝐸𝑅) and blood flow (𝑄) to the organ, it is only consistent with the well-

stirred model (32).  The paper goes on to explain why comparisons of the different models are 

not possible and IVIVE can only potentially work for the well-stirred model.  Within the well-

stirred model, it is important to note that total drug concentrations must be measured in blood 

and the fraction unbound is in reference to blood since the liver is capable of removing drug 

from both plasma and blood cells (33). 

 Despite the common use of IVIVE, underprediction has been noted and proposed 

explanations include preparation process issues, cofactor depletion, and the possibility of extra-

hepatic metabolism (31).  Heuberger et al. (6) discuss that one of the other major questions 

regarding IVIVE scale-up is which fu terms to include, which we elaborate on here. 
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Nonspecific Binding & fu,inc 

As mentioned earlier, the widely accepted free drug theory says that only unbound drug 

can exert pharmacological effects, and thus when doing IVIVE the unbound drug concentrations 

in plasma, tissue, and assays should be considered (34).  It has been well recognized that when 

inputting data into the well-stirred model, the fraction unbound in blood (fu,B) must be used, or 

the fraction unbound in plasma (fu,p) divided by the blood to plasma ratio (RB) (Yang et al., 

2007).  More recently the idea that the fraction unbound in the in vitro assay may need to be 

incorporated as well has begun to be implemented (35-38). 

Since nonspecific binding may occur in the in vitro system if drug binds to the incubation 

plate, to proteins in the assay media, or to proteins and lipids of microsomes or cells, another 

binding term, fu,inc, or the fraction of drug unbound in the incubation, can be included as shown 

in the equation below.  As Obach (35) explained, “Thus, most Km and Ki values reported in the 

literature that use impure in vitro systems are artifactual overestimates, because they are based 

on total substrate or inhibitor concentration added to the incubation (i.e., the nominal 

concentration) and not the free substrate or inhibitor available to bind to the enzyme.” 

 

𝐶𝐿! =
𝑄! ∙

𝑓!,!
𝑓!,!"#

∙ 𝐶𝐿!"#,!"  !"!#

𝑄! +
𝑓!,!
𝑓!,!"#

∙ 𝐶𝐿!"#,!"  !"!#
 

 

fu,inc Measured In Vitro 

The same assays for measuring PPB as mentioned previously can also be used for 

measuring fu,mic, the fraction unbound in a microsomal incubation, and fu,hep, the fraction 

unbound in a hepatocyte incubation.  Equilibrium dialysis is again commonly used and to 
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measure binding to microsomes, drug and microsomes without cofactors (NADPH/UDPGA) are 

added to one chamber, and buffer is added to the other (25).  The value of fu,mic can be 

determined as the ratio of the concentration on the buffer side to the concentration on the 

microsome plus drug side.  Unlike PPB measurements, volume shifts due to osmotic forces are 

not observed (25). 

Measuring fu,hep is not quite as simple as excluding cofactors.  Hepatocytes that have been 

deactivated at room temperature and subject to freeze/thaw cycles are commonly used to 

minimize the complication of simultaneous metabolism (39).  An alternative method is to use 

live hepatocytes preincubated with metabolic inhibitors such as 1-amino-benzotriazole and 

salicylamide for the assay, however equilibrium dialysis time vs. half-life of metabolism of the 

compounds must be considered (40).  Furthermore, although the presence of specific, saturable 

binding sites did not appear to fit microsomal binding data (41), the test compound binding to 

hepatocytes could potentially be displaced by the inhibitors.  Using only metabolic inhibitors 

also does not provide direct information about whether the measured binding is truly binding to 

the cell wall, or is actually intracellular accumulation from uptake.  Despite the potential 

disadvantages, when comparing the use of live hepatocytes with inhibitors vs. dead hepatocytes 

for fu,hep measurements, overall there was no statistically significant difference for a dataset of 17 

compounds (40).   

When running assays for both fu,inc and CLint determinations, it is important to note that 

nonspecific binding increases as phospholipid concentration, microsomal protein concentration, 

or cell density increases (39, 42, 43).  This is particularly relevant as microsomal protein 

concentrations can vary as much as 200-fold among laboratories (42).  To try to avoid 

nonspecific binding, very low microsomal concentrations can be used; however under certain 
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conditions such as investigating phase II metabolic reactions or intestinal metabolism, higher 

concentrations are needed (44). 

After proposing the incorporation of a fu,inc term for IVIVE (35), Obach (26) tested the 

idea on data collected from 29 drugs in human microsomes.  IVIVE prediction accuracy was 

examined when when only fu,B was included in the scale up (Fig. 2.3A), when both fu,B and fu,inc 

terms were used (Fig. 2.3B), and when no binding terms were used (under the assumption the 

values of fu,B and fu,inc would cancel) (Fig. 2.3C).  However, as Kalvass et al. (42) mention, 

“Since the free fraction in microsomes is determined, in part, by the choice of microsomal 

concentration in the incubation, equivalent free fractions between plasma and microsomes should 

be considered coincidental.”  Obach (26) reports that predictions were best for acidic compounds 

when both the fu,B and fu,inc binding terms were included and basic compounds when no fu terms 

were included, with which we agree.  Obach (26) also states that for neutral compounds, no 

binding terms gave better predictions, but we believe both methods were comparable in accuracy 

although no binding terms overpredicts and both binding terms underpredicts.  Note in Figure 2.3 

that since AFE values on the y-axis are represented on a log scale, visual comparisons must be 

validated with numerical values.  Riley et al. (45) also saw similar trends with hepatocytes.  

Overall, predictions were best when both binding terms were included for acidic, basic, and 

neutral compounds.  The worst accuracy occurred if no fu terms were included and in this 

scenario, predictions were very poor for acidic drugs and better for basic and neutral drugs where 

fu,inc may be large and cancel with fu,B. 
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Figure 2.3:  Accuracy of predictions from Obach (26) using the well-stirred model.   
 The accuracy is examined using: A) the traditional model with fu,B only; B) both fu,B and fu,inc; 
and C) no binding terms assuming fu,B and fu,inc cancel.  The shaded area highlights predictions 
falling within two fold of observed values. 
 

fu,inc Estimated In Silico 

Given that the experimental methods for measuring fu,inc are not high-throughput, in silico 

models for predicting the value have been proposed (46).  Since it is believed that the 

phospholipid component is the primary contributor to nonspecific binding (43), the extent of 

binding would increase with increasing lipophilicy as proposed by Austin et al. (41).   

Noting that basic compounds have enhanced binding over neutral and acidic compounds 

of similar lipophilicity (thought to be due to favorable electrostatic interactions between the 

protonated base and the phosphate groups), Austin et al. (41) suggested using logP for basic 

compounds and logD7.4 for acidic and neutral compounds.  Based on data from 37 compounds 

with fu,mic values of <0.9, the following equation was developed to predict fu,inc based only on 

ionization and lipophilicy (r2 = 0.82): 

 

𝑓!,!"# =
1

1+ 𝐶 ∙ 10!.!"!"#$/!!!.!"   

 

where  𝐶 is the microsomal protein concentration in mg/mL. 
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The equation was created based on both rat and human in vitro microsome binding data, but as 

Austin et al. (41) mention, it has been shown that fu,mic is usually independent of species (25, 47). 

Other groups have built on this relationship and Hallifax and Houston (48) proposed a 

quadratic equation (n=92, r2 = 0.75) for determining fu,mic: 

 

𝑓!,!"# =
1

1+ 𝐶 ∙ 10!.!"#!!"#/!!!!.!"#!"#$/!!!.!"#  
 

 

Using an expanded dataset of 127 compounds, no major differences were seen between 

the two equations for fu,mic predictions for low and high lipophilicity drugs.  However, for 

intermediate drugs (logP/D values between 2.5 – 5.0) the Hallifax and Houston equation was 

more accurate (44).  For compounds with logP/D <0, where there is expected to be negligible 

interaction with microsomal protein, predictions from the Austin et al. (41) equation are expected 

to be accurate, and it would be inappropriate to use the Hallifax and Houston (48) equation due 

to the nonlinear nature (44).  

While these in silico predictions can be useful, Gertz et al. (44) saw that minor variation 

in logP predictions could lead to high variations in fu,mic predictions, and in certain cases fu,mic 

should still be determined experimentally.  However, they did find good agreement between 

using predicted logP values from software packages and experimental determinations. 
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A similar equation was later proposed for fu,hep prediction (40, 49): 

 

𝑓!,!!" =
1

1+ 125 ∙ 𝑉! ∙ 10!.!"#!!"#/!
!!!.!"#!"#$/!!!.!"#   

 

where 𝑉! is the ratio of cell volume to incubation volume and is 0.005 at a cell concentration of 

106 cells/mL. 

Groups continue to try to improve fu,inc predictions (50) and there are reviews that discuss 

the nuances of the methods more in detail (46, 50-52).  However, while many studies support the 

incorporation of fu,inc, there are still some that question its utility (53).  Even when both fu,inc and 

fu,B terms are incorporated in IVIVE, there are still inconsistencies that need to be solved. 

 

pH Difference and F1 

Berezhkovskiy (54) proposed adding an ionization factor, F1, to account for the 

difference in pH of extra- and intracellular water in hepatocytes (pH 7.4 vs. 7.0).  F1 is defined 

as the ratio of the unbound, unionized (neutral) drug fractions in plasma and intracellular tissue 

water, and is added into the well-stirred model as a product of CLint as shown below: 

 

𝐶𝐿! =
𝑄! ∙ 𝑓!,! ∙ 𝑅! ∙ 𝐶𝐿!"# ∙ 𝐹1
𝑄! + 𝑓!,! ∙ 𝑅! ∙ 𝐶𝐿!"# ∙ 𝐹1

 

 

where 𝐹1 = !!!

!!"
!   
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and 𝑓!! is the neutral drug fraction in plasma (or the concentration of unbound neutral drug in 

plasma divided by the concentration of unbound drug in plasma) and 𝑓!"!  is the neutral drug 

fraction in intracellular water.  These ratios can be calculated as: 

 

𝑓! = 1 for neutral compounds 

 

𝑓! = 1/[1+(10pH-pKa)] for monoprotic acids 

 

𝑓! = 1/[1+(10 pKa-pH)] for monoprotic bases 

 

  If the pH were the same or if the compound were neutral then F1 equals 1.  For basic 

drugs where F1 >1, CL predictions will be higher (up to 6.3 fold for diprotic bases, 15 fold for 

triprotic bases) helping with IVIVE underprediction, and conversely for acidic drugs where F1 

<1, CL predictions will be lower, helping with IVIVE overprediction.  The largest difference in 

predictions is expected for low extraction ratio drugs where the prediction is directly 

proportional to F1. 

When measuring CLint with hepatocytes, if buffer with a pH of 7.4 is utilized, and 

assuming the intracellular pH is maintained at 7.0, there would be no need to account for F1 in 

doing IVIVE.  However, the pH gradient appears to be disrupted as the fraction of buffer in the 

incubation is larger than the fraction of extracellular water in the liver (55).  When measuring 

CLint with microsomes, it would always be necessary to account for F1 since the cellular 

integrity does not exist.  A preliminary test of the method with microsomal data from 25 highly 

bound drugs did not completely cancel the underprediction seen, but showed improvement (56). 
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Protein Facilitated Uptake 

 Baker and Bradley (57) were first to suggest violations of the free drug theory and that 

hepatic uptake may occur directly from the albumin-drug complex, not just from free drug.  

Later studies also noted that highly protein bound ligands had more efficient hepatic uptake than 

could be accounted for by just their unbound concentrations.  This phenomenon became known 

as albumin-mediated uptake.  The idea gained traction in the 1980’s when single-pass liver 

perfusion studies with various ligands including taurocholate (58), rose bengal (59), oleate (60), 

and warfarin (61) demonstrated the facilitated uptake.  More recently it has been noted that as fu,p 

decreases, underprediction with traditional IVIVE increases (62).  This trend may also be seen 

with data from human hepatocytes compiled by Wood et al. (63) (Fig. 2.4).  While only 9 drugs 

with fu,p values ranging from 0.001-0.01 were included, the AFE may be higher in this range.   

 

Figure 2.4:  IVIVE prediction error and fu,p.  Examining the accuracy of predictions from 
human hepatocytes taken from Wood et al. (63), as fu,p decreases to the 0.001-0.01 range, 
average fold error (AFE) may increase.  If AFE <1, the reciprocal is plotted. 
 

Accordingly, some have tried using total rather than free drug concentrations in clearance 

equations to eliminate the underprediction (26, 45), which conceptually supports the idea of 

albumin-mediated uptake.  When conducting in vitro studies, groups have also found that adding 

HSA or plasma to microsome and hepatocyte incubations can cause decreases in Km values and 
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improved IVIVE results (62, 64-74).  Poulin et al. (75) have nicely summarized several of these 

studies.  When proteins are added to the incubations, the drug uptake rates decrease less than 

would be expected with the decrease in unbound drug concentrations. 

While there are now several examples suggesting that perhaps total drug, not unbound 

drug, can drive hepatic uptake and clearance and should be considered when doing IVIVE, the 

mechanism explaining why has not yet been agreed upon.  We review here the state of past and 

present hypotheses (Fig. 2.5). 

 

 

 
Figure 2.5:  Hypotheses to explain albumin-facilitated uptake.  A) Presence of an albumin 
receptor where uptake can occur due to direct uptake of unbound ligand or after specific 
interaction of the albumin-ligand complex with its receptor; B) Rate-limiting dissociation where 
free ligand uptake is faster than ligand dissociation from albumin; C) Rate-limiting diffusion of 
ligand through the UWL where the slow diffusion of unbound ligand is supplemented with the 
diffusion of more soluble bound ligand; D) Conformational change where uptake occurs from 
the direct uptake of unbound ligand in plasma or after a conformational change of the albumin-
ligand complex due to cell membrane binding catalyzing the release of drug; E) Ionic 
interactions with the cell membrane where the diffusional distance for unbound ligand is 
decreased; and F) Transporter-induced protein binding shift where a high affinity transporter 
may strip ligand from the ligand-drug complex. 
 

Specific Albumin Receptor on Hepatocyte Surface           

The earliest hypothesis to explain albumin-mediated uptake was that there is an albumin-

receptor on the hepatocyte cell surface (Fig. 2.5A).  Oleate was one of the first ligands used to 

suggest this (76).  When increasing [14C]oleate concentration but keeping bovine albumin 

concentration constant, oleate uptake increased linearly relative to concentration in the perfused 
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rat liver.  However, when increasing both oleate and albumin concentration (1:1 so the unbound 

oleate concentration is constant), there was a saturable process, where albumin appeared to be 

acting as a competitive inhibitor resulting in a plot similar to Fig. 2.6. 

 

 

Figure 2.6:  Saturation vs. linear results.  An example of a saturation curve (solid line) that is 
seen in several studies when the concentrations of albumin and ligand are varied (at a fixed 1:1 
ratio).  This is in contrast to when the concentration of ligand is varied at a fixed albumin 
concentration and uptake is linear (dashed line).  Saturation is suggested to occur for instance 
when free albumin is competing with the ligand-albumin complex for receptors, or when the rate 
limiting transport step shifts from ligand dissociation to influx or metabolism. 
 

125I-albumin was then used to evaluate the possibility of albumin binding to hepatocytes and 

there appeared to be a single high-affinity binding site specific for albumin.  Of the wide variety 

of potential displacement proteins tested, including several known to have hepatocyte surface 

receptors, only other albumin molecules (human and rat) significantly displaced the bovine 

albumin (77).  It was later shown that there appears to be no species specificity for the potential 

hepatocyte-albumin interaction (78).  Based on the Stokes radius of albumin and assuming that 

all sites are occupied, it was estimated that somewhere between 1 to 8% of the total hepatocyte 

surface is occupied by the albumin-receptor complex (77), and a dissociation constant of albumin 

binding to hepatocytes was estimated (Table 2.1).  Weisiger et al. (76) justified their hepatocyte 

receptor hypothesis by explaining that if only the 0.1% of free oleate accounted for uptake, the 
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dissociation from the oleate-albumin complex would need to be extremely rapid to explain the 

higher extraction, but the half-time for the dissociation of oleate from albumin is actually 

significantly longer than the time required for blood to pass through the liver. 

 An even earlier paper also suggested the potential role of an albumin receptor on the 

hepatocyte cell surface, but through a different mechanism.  Bloomer et al. (79) saw that when 

the IgG fraction of goat anti-human albumin was added to a solution of [14C]bilirubin and human 

albumin, [14C]bilirubin was completely recovered in the supernatant.  This suggested that 

bilirubin can be easily separated from albumin if albumin reacts with another macromolecule, 

and led to their hypothesis that if albumin receptors in the membrane interact with albumin at 

bilirubin binding sites, more bilirubin could be separated from albumin as it passes the 

hepatocyte surface, leading to higher unbound bilirubin diffusion. 

While early studies suggested the possibility of a membrane protein with high affinity for 

albumin, others collected data that were not consistent with the hypothesis.  Stremmel et al. (80) 

examined the binding of 125I-labeled rat albumin to rat liver plasma membranes attempting to 

characterize the proposed hepatocyte albumin receptor.  Running incubations for 30 minutes at 

various temperatures and various plasma membrane and albumin concentrations, there was no 

evidence of specific binding to the membrane.  For instance, using 5 pmol of albumin and 10 mg 

of membrane protein, only 2.3% of the incubated albumin was recovered in the membrane pellet, 

and after two washes, only 0.09% remained, indicating that most of the albumin was trapped 

within the pellet, or loosely associated as it was easily removed with washing.  Adding excess 

unlabeled albumin did not cause inhibition of binding, heat denaturation of the membranes 

caused no binding changes, and the amount of albumin binding to rat erythrocyte ghosts was the 

same as to the liver plasma membrane.  These investigators employed additional methodologies 
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and used ultraviolet irradiation to prove that the failure to observe binding was not due to a rapid 

dissociation rate, and ran affinity chromatography with solubilized membrane proteins over 

albumin-agarose gels and did not find one with high albumin affinity.  Stremmel et al. (80) went 

on to suggest that perhaps there are less specific interactions between the liver cell surface and 

albumin-ligand complex instead of a specific hepatocytic albumin receptor. 

Similar to Stremmel et al. (80), Stollman et al. (81) did not find evidence for the 

interaction of albumin with a hepatocyte receptor.  Perfusing rat livers with a protein-free 

fluorocarbon medium, Stollman et al. (81) measured the uptake of [3H]bilirubin with either 125I-

albumin, 125I-ligandin (an intracellular protein known to bind bilirubin with high affinity), or free 

with a [14C]sucrose reference and found the same uptake across the three conditions.  

Furthermore, after injecting [3H]bilirubin with 125I-albumin and with [14C]sucrose and seeing no 

delay in 125I-albumin transit compared to that of [14C]sucrose, they concluded that the off-rate of 

albumin from a receptor would have to be very rapid, which would be unusual.  

 The specific albumin receptor theory would also not be able to account for the enhanced 

clearance seen for ligands bound to other proteins such as β-lactoglobulin, (82, 83).  Finally, 

Reed and Burrington (78) examined the interactions of two fragments of albumin with rat 

hepatocytes, and calculating similar dissociation constants in both cases, they concluded that 

since there does not seem to be a specific site on albumin that interacts with hepatocytes, 

receptor recognition seems unlikely. 
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Table 2.1:  Estimated dissociation constants (Kd) for albumin binding to hepatocyte cell 
surface. 
 
 

Kd (µM) # Sites/Cell Methodology Source 

25 ± 7 10 (± 3) x 106 125I-labeled bovine 
albumin binding to rat 

hepatocytes (ligand free), 
20oC, 30 min. 

 (76) 

53 ± 13 10.4 (± 1.9) x 106 131I-labeled rose bengal in 
perfused rats, various 

concentrations of BSA, fit 
to their kinetic model 

 (59) 

157 ± 47  Warfarin in perfused rats, 
37oC, fit to facilitated 

dissociation kinetic model 

(61) 

2.5 ± 1.7 2.2 (± 1.3) x 106 125I-labeled monomeric 
albumin binding to rat 

hepatocytes, 4oC, 30 min. 

(131) 

4.4 ± 1.8 7.4 (± 2.3) x 106 125I-labeled monomeric 
albumin binding to rat 

hepatocytes, 37oC, 30 min 

(131) 

1.9 ± 1.0 3.9 (± 3.0) x 106 125I-bovine albumin 
binding to rat hepatocytes, 

20oC 

(78) 

1.1 ± 0.5 2.0 (± 1.1) x 106 125I-rat albumin binding to 
rat hepatocytes, 20oC 

(78) 
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Rate-Limiting Dissociation of Ligand from the Albumin-Ligand Complex 

To further explore the determinants of hepatic uptake and the possibility of an albumin 

receptor, Weisiger et al. (84) evaluated the role of bovine albumin on sulfobromophthalein (BSP) 

uptake in skates.  Believing that since skates naturally lack albumin they would not have evolved 

an albumin receptor, the goal was to see if a different kinetic behavior occurred.  Using a single-

pass perfused liver model, two different steps in the uptake process were determined.  For fixed 

albumin concentrations, as total BSP concentration increased, linear saturation kinetics were 

present suggesting that the rate-limiting step in these situations does not involve albumin.  This 

was called the “intrinsic” uptake step.  When the concentration of albumin and BSP were varied 

at a fixed molar ratio, the uptake rates did not correlate with the estimated equilibrium 

concentrations in the perfusate, and the saturation kinetics seen occurred at uptake velocities too 

small to saturate the intrinsic uptake step.  The data collected from skates were similar to that 

from rats with oleate (76), however since skates have no reason to have an albumin receptor, an 

alternate explanation for the results was needed.  In this case, the rate-limiting step was 

hypothesized to be the spontaneous dissociation of BSP from albumin, going back to the 

traditional assumption that clearance only occurs for free ligand (Fig. 2.5B).  If free BSP 

clearance is faster than BSP can be replenished by dissociation from albumin, equilibrium would 

not actually be present in the sinusoid, and the dependence of clearance on the bound ligand 

concentration is explained.  As the albumin concentration increases, reassociation of free BSP to 

albumin can start to occur instead of only BSP clearance, and when binding equilibrium is 

established the uptake then becomes limited by the intrinsic uptake step. 

Weisiger et al. (84) explain that although similar kinetics were seen in rats, this 

dissociation limited model would not explain the findings since the BSP uptake rate is more 
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rapid in rats and exceeds the rate of spontaneous dissociation.  Weisiger and Ma (60) saw that the 

removal rate for oleate in perfused rat liver with dilute albumin solutions is similar to the 

spontaneous dissociation rate measured in vitro, supporting the dissociation-limited model in rats 

for this ligand.  If the albumin receptor model were to hold true, the removal rate could be much 

higher since it is not limited by the rate of spontaneous dissociation.  

 To further explore this, van der Sluijs et al. (85) measured dibromosulfophthalein (DBSP) 

uptake in rat liver perfused with native albumin vs. lactosylated albumin.  After demonstrating 

that DBSP had similar protein binding to the lactosylated albumin as to native albumin, a 40% 

decrease in the hepatic uptake rate constant for the lactosylated albumin was found.  These 

investigators also conducted rapid filtration experiments and saw that the dissociation rate 

constant of DBSP from lactosylated albumin was half that from albumin and concluded that the 

decreased off-rate could explain the decreased hepatic uptake, providing further evidence for the 

idea of dissociation-limited uptake. 

It should be noted that these early in vitro measures of the dissociation rate constant have 

limitations (86).  If a solid-phase acceptor is used, where it is assumed that the free ligand is 

diffusing and binding to the acceptor, there could be direct collisional exchange between albumin 

and the acceptor causing ligand transfer as well, overestimating the spontaneous dissociation rate 

constant.  If stop-flow fluorescence is used, where the conformation change in albumin is 

measured, if the change is slower than the dissociation rate, the rate constant could be 

underestimated.  
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Rate-Limiting Diffusion of Ligand Through the Unstirred Water Layer 

Another explanation for albumin-facilitated uptake is related to the idea of an unstirred 

water layer (UWL) in the space of Disse, or the space that separates sinusoidal lining cells from 

hepatocytes.  The idea of an UWL is common with intestinal absorption where rates of highly 

permeable compounds are known to have an upper limit (87).  Given that the space of Disse 

contains a matrix of fibrillar material and hepatocytes have microvilli and adherent water film 

(88), groups began exploring the potential role that an UWL may play in the liver. 

Bass and Pond (89) created a “pseudofacilitation” model, returning to the idea that uptake 

occurs only from the unbound fraction of ligand.  This model is reviewed in detail by Burczynski 

and Luxon (86).  The hypothesis is that ligands undergoing cellular uptake can be rate limited by 

the UWL adjacent to the cell surface or can be rate limited by permeability through the 

membrane itself (90).  For ligands with high membrane permeability that are rate limited by the 

UWL, a concentration gradient will develop within the UWL in the absence of protein 

(86).  With the addition of protein, traditionally binding causes a decrease in the diffusion rate of 

the protein-ligand complex as compared to free ligand (90, 91).  However, for highly lipophilic 

ligands, which have limited diffusional flux across aqueous barriers, the presence of protein 

promotes aqueous solubility (86, 90).  The slow diffusion of unbound ligand is therefore 

supplemented with the diffusion of more soluble bound ligand.  The albumin-ligand complex 

will try to replenish the depleted unbound ligand near the cell surface and restore 

equilibrium.  As a result there is decreased diffusional distance for the unbound ligand and the 

unbound concentration driving uptake is increased (86).  When the bound ligand concentration is 

much higher than that of the free ligand, the average diffusional flux of the bound ligand can be 
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greater than that of the free, making the flux appear to only depend on the bound concentration 

(90) (Fig. 2.5C). 

Ichikawa et al. (88) explored the uptake of ligands with various permeabilites in perfused 

rat liver and isolated rat hepatocytes.  Using highly-permeable diazepam and taurocholate in the 

perfusion study, as BSA concentrations increased and free fraction decreased, the extraction ratio 

did not greatly change, showing albumin-mediated transport of the compounds.  Tolbutamide 

and salicylate, intermediate permeability compounds, also exhibited some albumin-mediated 

transport as their extraction ratios decreased to one-third when the free fractions were decreased 

to one-tenth.  With cefodizime, a compound with low permeability, the extraction ratio decreased 

as the free fraction decreased, leading to the conclusion that albumin-mediated transport was not 

observed, and supporting the hypothesis. 

Ichikawa et al. (88) point out that it is possible that slow dissociation from albumin could 

also play a role.  However when investigating perfused livers vs. hepatocytes, the highly 

permeable compounds had a lower influx clearance in the perfused livers.  It is argued that if the 

dissociation-limited transport were to play a large role, the influx clearances should be similar, 

since koff should be the same in both systems.  The rate-limiting diffusion theory can explain the 

saturation kinetics seen in earlier studies (76) as the increase in unbound clearance reaches a 

maximum, which is determined by the product of the effective membrane permeability and total 

surface area (92). 

 However, others believe that the UWL cannot fully explain albumin-facilitated uptake.  

Although the use of polyethylene sheeting has been questioned (93), Burczynski et al. (94) found 

that while palmitate clearance with hepatocytes was about 7 fold faster than with polyethylene, 

the codiffusion of bound and free palmitate to the cell surface could only account for about 20% 
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of the facilitated clearance observed.  Furthermore, Pond et al. (92) tested the pseudofacilitation 

model (89) on [3H]palmitic acid uptake data generated in hepatocytes finding a high dependence 

on parameter estimate selection.  Their experimental results agree with the theoretical model 

predictions if a reported low equilibrium association constant was used (15 µM-1); however if 

higher values also reported were used (62 and 94 µM-1), the measured unbound clearance 

exceeded the model predictions. 

Comparing the uptake of oleate and BSP with albumin in isolated perfused rat liver vs. 

hepatocyte suspensions, Nunes et al. (82) measured the same kinetics in both experiments, 

concluding that the facilitated uptake observed was not dependent on the intact lobule 

characteristics or diffusion barrier in the space of Disse present only in the perfused livers.  

Similarly, Blitzer and Lyons (64) still saw taurocholate facilitated uptake in rat basolateral liver 

plasma membrane vesicles, which were vigorously mixed during the experiments and for which 

the UWL effects were expected to be minimal. 

 

Interactions with the Hepatocyte Cell Surface (not albumin receptor) 

As these alternative hypotheses continued arising, more work was simultaneously 

conducted concerning the putative hepatocyte receptor hypothesis.  As Stremmel et al. (80) 

suggested, instead of looking for a specific albumin receptor, the focus shifted to more general 

interactions that could be occurring at the liver cell surface with the albumin-ligand complex 

catalyzing ligand dissociation. 
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Conformational Change 

Using rose bengal, Forker and Luxon (59) explained that while the albumin-ligand 

complex may interact with the cell surface, since albumin itself is not removed (95), free ligand 

must ultimately be what is interacting with the transport carrier, and must interact without 

mixing with the pool of free ligand in the extracellular fluid.  They suggested that the binding of 

the complex to the cell surface may lead to a conformational change in albumin reducing its 

binding affinity for the ligand and/or presenting the ligand in a favorable location for uptake 

(Fig. 2.5D) (96).  They also added an important corollary that the sites on the cell surface would 

have a similar affinity for albumin whether or not ligand is bound.  This then suggests that the 

interaction at the cell surface is not ligand specific, and the affinity of albumin for the surface is 

independent of ligand concentration.  Creating a kinetic model where the total rate of ligand 

removal is proportional to the mass of free ligand plus the mass that is bound to the cell surface 

as albumin-ligand complexes, they fit their perfusion data and compared the calculated values to 

those obtained by Weisiger et al. (76) with ligand-free albumin and hepatocytes (Table 2.1).  The 

similar results supported their kinetic model and Forker and Luxon concluded that albumin 

binding to the cell surface explained how bound ligand, in this case rose bengal, in another 

perfusion study, taurocholate (58), and in a study using rat liver cell monolayers, palmitate (97) 

is available for hepatic uptake. 

 

Facilitated-Dissociation Model 

Tsao et al. (61) also suggested this hypothesis with warfarin where the interaction 

between the cell surface and warfarin-BSA complex (Kd = 157 µM, Table 2.1), would induce a 

conformational change in albumin and decrease the binding affinity of warfarin.  Having 
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previously run perfusion studies in normal rats and analbuminemic rats and seeing albumin-

mediated uptake of warfarin in both cases led to the conclusion that a specific albumin receptor 

on the cell surface may not be necessary for the uptake (98).  A “facilitated-dissociation” kinetic 

model was developed to include both the uptake of unbound drug and the uptake of drug from 

the albumin-drug complex after a conformational change.  Assuming that the dissociation of 

warfarin from albumin is much faster than the perfusion or hepatic uptake rate and thus, warfarin 

binding to albumin is at equilibrium, and assuming that the uptake of unbound warfarin is linear 

compared to warfarin concentration, the equation for the uptake rate (𝑣) of drug is: 

 

𝑣 =   𝑃! ∙ 𝑓! ∙ 𝑐! + 𝑃!,!"#$%& ∙ λ ∙ (1− 𝑓!) ∙ 𝑐! 

 

where 𝑐! is the total concentration of ligand, 𝑃! and 𝑃!,!"#$%& are the permeability clearances for 

unbound ligand and unbound ligand dissociated from the drug-ligand complex respectively, 

while 𝑓! is the fraction of unbound ligand in the extracellular fluid expressed as: 

 

𝑓! =
1

1+ 𝑛[𝐴𝑙𝑏]𝐾!

 

 

where 𝑛 is the number of binding sites on albumin, 𝐾! is the dissociation constant of ligand and 

λ is the fraction of albumin bound to the surface of hepatocytes (assuming both unbound albumin 

and ligand-bound albumin compete for the same binding sites on the surface). 
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λ is expressed as: 

 

  λ   =
𝐵!"#

𝐾!,! + [𝐴𝑙𝑏] 

 

where 𝐵!"# is the capacity of albumin binding sites on the surface of hepatocytes and 𝐾!,! is the 

dissociation constant of bound albumin from the hepatocyte surface (61, 99). 

 

Based on their model, Tsao et al. (61) simulated the contributions of the unbound and 

bound drug.  At low albumin concentrations, the increase in albumin increases the albumin-

bound warfarin, which facilitates the uptake of bound warfarin, but at high albumin 

concentrations, the increase in albumin leads to competition of free albumin and albumin-bound 

warfarin for the liver cell surface binding sites, and warfarin uptake is inhibited. 

Twenty years later Miyauchi et al. (99) revisited the facilitated dissociation model finding 

it could accurately predict the uptake of two organic anion transporting polypeptide substrates, 1-

anilino-8-napthalene sulfonate (ANS) in primary cultured rat hepatocytes, and pitavastatin in 

isolated human hepatocytes.  They performed a curve-fitting exercise based on their 

experimental data escalating the albumin concentration in the incubation medium and upon 

finding the calculated line fit well, the authors concluded that the enhancement of clearance can 

be accurately predicted by the facilitated-dissociation model. 
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Acidic Microenvironment 

Burczynski et al. (100) and others point out that the acidic microenvironment of the 

hepatocyte may also play a role since it has been shown to decrease the albumin binding of 

anthracyclines and long-chain fatty acids. 

At physiological pH, the negatively charged groups on the hepatocyte cell surface attract 

positively charged ions to try to maintain electroneutrality (86).  The presence of H+ ions then 

lowers the pH of the environment near the hepatocyte that can modulate albumin conformation 

changes through the Neutral-Base and Neutral-Fast transitions where ligands can be released 

from the proteins.   

Using absorption and electron spin resonance spectroscopy, Horie et al. (101) showed 

albumin undergoes conformational changes through interaction with hepatocellular membranes, 

as well as other membrane types, similar to those seen in the Neutral-Base and Neutral-Fast 

transitions of albumin.  However, Foker and Ghiron (102) point out that that the nitroxide spin 

label used could react with the 59 free amino groups or the single available SH group of albumin, 

so the labeling may not be site specific and the results cannot be considered definitive.    

 

Ionic Interactions Between the Cell Surface and Albumin-Ligand Complex 

An alternative theory for the role that the hepatocyte cell surface plays in facilitated 

uptake is that ionic interactions can occur between the hepatocyte plasma membrane and the 

protein-ligand complex.  This would then decrease the diffusional distance for the unbound 

ligand and provide more unbound ligand to the cell surface for uptake (100) (Fig. 2.5E).  When 

this hypothesis was suggested, most studies in the field had used albumin as a binding protein 
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and although β-lactoglobulin was tested (83), it has a similar isoelectric point (pI) to albumin, 

and no difference in uptake would be expected between the two. 

 Burczynski et al. (100) investigated the potential of the ionic interaction first by 

measuring [3H]-palmitate clearance for binding proteins with different pIs:  AAG (pI=2.7), 

albumin (pI=4.9), and lysozyme (pI=11.0).  The clearance with the basic lysozyme was 6.3 fold 

greater than with the acidic AAG and 3.2 fold greater than with albumin.  This agrees with the 

hypothesis that the net positive charge of lysozyme would be expected to be attracted to the 

negatively charged groups on the membrane surface.  Burczynski et al. (100) also examined the 

uptake with 0.23 µM albumin vs. 2.1 mM lysozyme plus 0.23 µM albumin where the unbound 

palmitate fraction would be expected to be lower, and found that the clearance was statistically 

higher with the lysozyme plus albumin, further supporting the hypothesis.  In a subsequent paper 

they went on to chemically modify albumin (though maleylation, succinylation, and 

cationization) to have pIs between 2.0-8.6 to exclude the possibility of conformational and 

binding site differences between proteins (103).   After showing that the dissociation rate 

constants were not statistically significant from each other, and finding that [3H]-palmitate 

clearance significantly increased by 0.27 units with a unit increase in pI, they concluded that the 

ionic interactions hypothesis holds true. 

 

fu,p-adjusted 

Specifically citing the ionic interactions hypothesis, Poulin et al. (56) hypothesized that 

the whole-liver fu may be larger than fu,p in vivo and an adjusted fu term, fu,p-adjusted should be 

utilized.  The authors proposed using a plasma-to-whole-liver-concentration ratio (PLR) of 

plasma binding proteins to correct for the difference between extracellular protein binding and 
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liver protein binding and also built in the ionization factor, F1, mentioned previously to create 

the following equation: 

 

𝑓!,!!!"#$%&'" =
𝑃𝐿𝑅   ∙   𝑓!,! ∙ 𝐹1

1+ 𝑃𝐿𝑅 − 1 ∙   𝑓!,! ∙ 𝐹!
 

 

Poulin et al. (56) reported this equation is applicable for HSA-bound drugs.  For drugs bound to 

AAG, fu,p-adjusted is not used and only the F1 correction is employed since AAG levels are lower 

than HSA in plasma, and previous studies suggested that facilitated uptake is greater with HSA 

than with AAG (104, 105). 

To estimate the PLR value for HSA, they note that the levels of HSA in the intracellular 

liver are negligible compared to the levels in the interstitial space and plasma, so the PLR is 

really a concentration ratio of the proteins in the plasma vs. interstitial space, and they assumed a 

homogenized distribution of HSA in accordance with the well-stirred model assumptions.  For 

humans the PLR was estimated to be 13.3.  The same value can be used for rat and monkey, but 

for dog, a value of 8.5 is used due to the greater volume of interstitial fluid (106).   

 

𝐶𝐿! =
𝑄! ∙ 𝐶𝐿!"# ∙ 𝑅! ∙ 𝑓!,!!!"#$%&'"/𝑓!,!"#
𝑄! +∙ 𝐶𝐿!"# ∙ 𝑅! ∙ 𝑓!,!!!"#$%&'"/𝑓!,!"#

 

 

Adding the new term to the well-stirred model shown above and applying it to data generated in 

plasma-free microsomal incubations for 25 highly bound compounds, Poulin et al. (56) found no 

systematic over- or underprediction, an AFE close to unity, and the best predictions for bases. 



	
   41	
  

Hallifax and Houston (107) conducted a similar evaluation of methods using a larger 

dataset of 107 drugs, finding that the Poulin fu,p-adjusted method was the least biased (AFE for 

hepatocytes =1.3, for microsomes = 1.7) compared to the Berezhokovkiy F1 method or the 

conventional method with fu,B.  They raise some concerns about the method though, showing that 

if a hepatocytosolic pH of 7.2 instead of 7.0 had been used (given the range of 7.0-7.4 reported in 

the literature), or if a PLR of 133 instead of 13.3 were used, there would be overprediction for 

acids.  Hallifax and Houston (107) ultimately conclude that the fu,p-adjusted method may not offer 

significant improvement over a simple empirical correction.  However, using a simple empirical 

correction factor based on AFE, or using one based on a regression analysis (108, 109), requires 

analysis of an in vivo dataset and is dependent on compound selection in that dataset.   

 Poulin and coworkers have continued to validate their model showing it performs better 

than using an empirical correction (106) and performs well for hepatocytes  (110, 111), and 

when combining metabolism with transporter and permeability data (112). 

The PLR values mentioned earlier are for protein-free incubations, where it is assumed 

that protein-facilitated uptake is not occurring, and “the CLint determined in vitro should 

represent only a measure of the hepatic uptake of the free drug moiety by contrast to the in vivo 

condition in liver where the bound drug moiety is also assumed to be available for uptake” (113).  

To apply this methodology to different experimental procedures with varied albumin 

concentrations, the PLR value can be changed to the actual concentration ratio of HSA in the 

buffer/plasma/perfusate and the organ material, and if an assay has albumin at a similar level to 

that in vivo, the PLR should be 1 (111).  This has recently been confirmed to improve prediction 

accuracy for naproxen and bisphenol A in isolated perfused rat livers with different albumin 

concentrations (114, 115) and in the HepatoPac® system with 25 compounds (113).   
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Recently, the fu,p-adjusted model was compared to the facilitated dissociation model (116) by 

considering the data for ANS and pitavastatin from Miyauchi et al. (99).  While specific input 

parameters are required for the facilitated-dissociation such as the relative interaction capacity, 

dissociation constant, number of binding sites, and albumin concentration, the Poulin fu,p-adjusted 

model requires less input parameters.  The two models were shown to both improve IVIVE, and 

to be conceptually and mathematically equivalent, particularly for pitavastatin.  However, for 

ANS, which had a lower capacity of interaction with the membrane, the fu,p-adjusted model 

overestimated the unbound CLint in albumin in vivo since the model assumes each interaction 

between the albumin-ligand complex and cell surface would lead to facilitated uptake. 

 

Alternative Explanations, Cells, Proteins 

The theories mentioned above have gained the most traction and are frequently cited 

today.  Over the years other possibilities have been mentioned, but often deemed less likely.  

One early suggestion was that there may be direct transfer of ligand from plasma albumin to 

hepatic intracellular binding proteins (79).  For this to happen, the intracellular proteins would 

need to be in close proximity to the plasma albumin and have a high enough affinity for the 

ligand.  A similar hypothesis is direct transfer where collisional exchanges (random or from ionic 

interactions) between the ligand-protein complex and cell membrane could cause direct transfer 

of the ligand to the cell without dissociation in the extracellular fluid (86, 117, 118).   

 Suggesting an alternative explanation for the putative albumin receptor, Reed and 

Burrington (78) hypothesized that there are two populations of albumin.  One is a “surface” 

population that binds to the container surface and undergoes a conformation change that causes 

the molecules to have higher affinity for the hepatocyte surface, and can then transfer directly 
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between the container wall and cell wall.  The other population is the native population, which 

binds with lower affinity to the cell surface. 

 Another hypothesis is that albumin affects the hepatocyte membrane potential and/or 

fluidity (61, 86).  Using perfused rat livers and a microelectrode, Weisiger et al. (119) showed 

that depolarization of cells decreased oleate uptake, while hyperpolarization increased uptake.  

This could explain the increase in clearance seen in the presence of albumin for the non-protein 

bound antipyrine (120).   Another idea that has been mentioned proposes the endocytosis of the 

protein-drug complex (56, 80). 

 No matter which is ultimately the correct mechanism, it is clear that the unbound 

clearance of many ligands is enhanced as the concentration of plasma protein is increased.  This 

protein-facilitated uptake has been shown to occur in other organs and cell types besides the 

liver/hepatocytes including myocytes (121-125), adipocytes (124), proximal tubules (126), 

perfused kidney (127), brain (128), and human embryonic kidney cells overexpressing 

OATP1B1 and 1B3 (129), as well as inert material including polyethylene (94) and n-decane 

(90).  Facilitated uptake may also be considered for nanoparticles bound to albumin as they are 

used to deliver drugs to tumor cells more effectively, and perhaps the complex also interacts with 

cells (75, 130).  Facilitated uptake has been shown not only for ligands bound to albumin, but 

also to proteins such as β-lactoglobulin (82, 83) and ligandin (81).   

 

Conclusions 

This review explores the use of the fu parameter in IVIVE both in terms of the traditional 

scale up where only unbound drug is believed to undergo uptake, and in terms of protein-

facilitated uptake, where highly protein bound ligands have more efficient uptake than can be 
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accounted for by just their unbound concentrations.  While the addition of fu,inc and/or F1 to the 

well-stirred model has sound reasoning and is commonly being implemented now, the 

mechanisms behind protein-facilitated uptake and how to kinetically describe this process have 

yet to be agreed upon.  Two of the popular models, the fu,p-adjusted model and the FDM were 

recently compared and found to be complementary (116).  Since fu,p and pKa values can be 

estimated in silico, the fu,p-adjusted model is suitable for early stage drug discovery.  (However, 

plasma protein binding assays must still be conducted to determine the major binding protein, 

and how to implement fractional binding has yet to be determined).  While the FDM provides 

more specific results, more experimental data are needed before making it suitable for use in the 

later stages of drug discovery.  Regardless of which mechanism or combination of mechanisms 

is ultimately correct, it is clear that steady state uptake of highly bound ligands is lower in the 

presence of proteins, but higher than predicted by traditional equilibrium binding.  Additional 

studies and understanding of these mechanisms are needed to ultimately improve IVIVE and the 

drug development process.  
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CHAPTER 3:  Hepatic Clearance Predictions from In Vitro-In Vivo Extrapolation and the 

Biopharmaceutics Drug Disposition Classification System* 

 

Abstract 

Predicting in vivo pharmacokinetic parameters such as clearance from in vitro data is a 

crucial part of the drug development process.  There is a commonly cited trend that drugs that are 

highly protein bound and are substrates for hepatic uptake transporters often yield the worst 

predictions.  Given this information, 11 different data sets using human microsomes and 

hepatocytes were evaluated to search for trends in accuracy, extent of protein binding, and drug 

classification based on the Biopharmaceutics Drug Disposition Classification System (BDDCS), 

which makes predictions about transporter effects.  As previously reported, both in vitro systems 

(microsomes and hepatocytes) gave a large number of inaccurate results, defined as predictions 

falling more than 2-fold outside of in vivo values.  The weighted average of the percentage of 

inaccuracy was 66.5%.  BDDCS class 2 drugs, which are subject to transporter effects in vivo 

unlike class 1 compounds, had a higher percentage of inaccurate predictions and often had 

slightly larger bias.  However, since the weighted average of the percent inaccuracy was still 

high in both classes (81.9% for class 2, and 62.3% for class 1), it may be currently hard to use 

BDDCS class to predict potential accuracy.  The results of this study emphasize the need for 

improved IVIVE experimental methods as using physiologically based scaling is still not 

accurate, and BDDCS cannot currently help predict accurate results. 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*Modified from the publication:  Bowman CM and Benet LZ (2016) Hepatic clearance 
predictions from in vitro-in vivo extrapolation and the Biopharmaceutics Drug Disposition 
Classification System. Drug Metab Dispos 44:1731-1735. 
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Introduction 

 The current drug development process is expensive, time-consuming, and inefficient due 

to compound attrition (1).  While failures due to pharmacokinetic parameters have decreased in 

recent years (2), continued improvement in pharmacokinetic predictions is crucial.   

 Metabolic stability studies are some of the earliest in vitro studies conducted during drug 

development to determine the rate and extent to which a molecule is metabolized, and can be 

useful for rank ordering candidates.  After measuring in vitro metabolic turnover, or intrinsic 

clearance (CLint), in vivo hepatic clearance can be predicted using in vitro-in vivo extrapolation 

(IVIVE) methods.  A common approach is to apply physiologically based scaling factors to the 

raw in vitro data, such as hepatocellularity for studies using hepatocytes or a factor to account for 

incomplete microsomal recovery for microsomes, and to then apply a model of hepatic 

disposition such as the well-stirred model (3).  While the results are often used in the drug 

development process, there is perhaps an overemphasis placed on their reliability.   

  The first part of this study examined the overall accuracy of hepatic clearance predictions 

in the field at this time.  Many groups have attempted IVIVE, tried to create new models to 

improve predictions from old in vitro values, or investigated different experimental setups.  A 

study published 10 years ago collected and examined results from 85 compounds, concluding 

there was a paucity of literature data (4), however much work has been done since then. 

When examining the accuracy of these values, a prediction bias has been found that is 

unresolved from human variability and experimental uncertainty (5).  There is also a commonly 

cited trend that substrates for hepatic uptake transporters and highly protein bound compounds 

yield the poorest predictions (6).  The Biopharmaceutics Drug Disposition Classification System 

(BDDCS), which categorizes transporter effects on drug disposition, says class 1 compounds 
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exhibit minimal clinically relevant transporter effects, while class 2 compounds may be governed 

by transporter effects in the gut and liver (7).  BDDCS has become an important part of early 

drug discovery for predicting routes of elimination, food effects, and potential drug interactions 

(7).  Given this trend, the main objective of this study was to determine if BDDCS classification 

could be a determinant of accurate IVIVE results. 

 

Materials and Methods 

A literature search was conducted for compounds previously described for which both in 

vitro and in vivo clearance data were available.  Studies using human microsomes as well as 

human hepatocytes were considered, as both systems are routinely used in the pharmaceutical 

industry.  The terms used as keywords to help in the search included “in vitro-in vivo 

extrapolation”, “intrinsic clearance”, “microsomes”, “hepatocytes”, or a combination of these. 

All the studies considered here used the well-stirred model in their predictions, and 

predictions were made using physiologically based scaling factors, not empirical or regression-

based factors.  The data sets were examined separately, excluding re-examination of previously 

published data, as different experimental setups (such as the inclusion of serum in incubations) 

and scaling (such as the inclusion of fu,B and fu,inc vs. no binding terms) were used in each.  

Similarly, repeated drugs were not removed due to value differences among data sets.  Overall 

evaluations were also tabulated.  The data evaluated can be found in Appendix Table 1. 

The accuracy of predictions was determined based on whether or not the predictions fell 

within 2-fold of the true in vivo values, as has been a standard cutoff in previous studies (8-10).  
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To measure bias, the average fold error (AFE) was calculated using the following equation (11): 

 

AFE=10
!
!∑!"#  (

!"#$%&$'
!"#$%&'#$) 

 

AFE was recorded as the whole number reciprocal if less than 1. 

 

The precision was also calculated with the root mean squared error (RMSE) using the following 

equation (12):   

 

RMSE= !
!
∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ! 

 

 To divide the compounds based on their BDDCS classification, two publications 

categorizing over 900 drugs and over 175 drugs were consulted (13, 14).  Five compounds were 

also classified here for the first time (class 1:  amobarbital, bufuralol, levoprotiline, and 

triprolidine; class 2:  tenidap).  Trends in the accuracy of predictions compared to class 1 and 

class 2 drugs, where metabolism is the main route of elimination, were examined.  Protein 

binding was also considered if the values used in the prediction calculations were available, as 

the interplay between protein binding, transporters, and enzymes is known to be important (15).  

Drugs with high protein binding were defined as having a free fraction less than or equal to 0.05. 

 

Results 

Seven different papers were examined that fit the criteria mentioned above (16-22).  

Hallifax et al. (17) compiled a large database of predictions from many of the papers also 
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examined here, however not all drugs from the original papers were included and often different 

values of CLin vivo were compared, leading the same drugs to be accurately or inaccurately 

predicted based on the value choices.  Furthermore, while it could be argued that the more recent 

Hallifax et al. paper provides refined values from the original papers, looking at the percentage 

inaccuracy and AFE both overall and for class 1 and class 2 drugs reveals that the Hallifax et al. 

data often actually have comparable or higher percentage inaccuracy and AFE values compared 

to the original papers.  All papers were therefore examined to try to obtain a fuller picture of the 

relationship to BDDCS.  Five human microsome data sets, some with multiple scaling options, 

were included in this evaluation for a total of 332 values, and six human hepatocyte data sets 

were included also for a total of 332 values.  The percentage of inaccurate predictions (more than 

2-fold difference) for each data set and the AFE and RMSE are shown in Table 3.1.  Every data 

set examined has 41.0% or greater inaccuracy and AFE values are as high as 21.7.  The paper by 

Sohlenius-Sternbeck et al. (22) only provided individual prediction values using a regression 

model so further analysis could not be conducted.  However, since it is the most recent paper 

examined, the summary statistics using the well-stirred model with protein binding that were 

given were still included in the table for comparison.  The weighted average for the percentage 

of inaccurate results for microsomes is 66.8%, for hepatocytes is 66.2%, and overall is 66.5%.  

The same papers and data sets were used to examine BDDCS trends.  Class 1 and class 2 

drugs were compiled from each set, and the inaccuracy of the predictions, AFE, and RMSE for 

each class were determined (Table 3.2).  As expected, class 2 drugs have a higher percentage of 

inaccurate predictions than class 1 drugs in every case except one, where all predictions were 

inaccurate.  The AFE was either slightly higher or almost identical for class 2 drugs compared to 

class 1 drugs.  Considering a total of 305 class 1 drug values, the weighted average of the  
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 percentage of inaccurate predictions is 62.3%.  For a total of 155 class 2 drug values, the 

weighted average of the percentage of inaccuracy is 81.9%.  (The total number of class 1 and 2 

drugs is less than 644 since individual drugs are not enumerated in Sohlenius-Sternbeck et al. 

(22) and some unapproved proprietary compounds are included in other data sets.)  For class 1 

drugs, studies done in microsomes have a weighted average of 63.3% inaccuracy, while studies 

in hepatocytes are 66.2% inaccurate.  For class 2 drugs, studies in microsomes have a weighted 

average of prediction inaccuracy of 85.6%, while studies in hepatocytes have a 78.4% average. 

 

 Table 3.1:  Percentage inaccuracy, AFE, RMSE of IVIVE predictions for 11 data sets 

a=CLint data were evaluated; b=CLint, ub, in vivo data were evaluated; c=individual values for predictions with well-
stirred model were not presented, only summary statistics

Author System 
# Compounds 

Evaluated 

# Inaccurate 

Predictions (%) 
AFE RMSE 

Brown et al. (16) hepatocytes 37 26 (70.3%) 4.5 6460.2 

Hallifax et al. (17) 
microsomes 68 53 (77.9%) 5.2 3708.6 

hepatocytes 89 60 (67.4%) 3.9 3137.7 

Ito et al. (18) microsomes 52 45 (86.5%) 7.9 1337.0 

McGinnity et al.a (19) hepatocytes 44 22 (50.0%) 1.4 94.1 

Obach et al. (20) 

microsomes (fu,B and fu,inc) 29 13 (44.8%) 2.3 4.9 

microsomes (fu,B) 29 22 (75.9%) 4.3 6.8 

microsomes (no binding) 29 13 (44.8%) 1.5 4.3 

Riley et al.b  (21) 

microsomes 37 27 (73.0%) 3.3 2314.2 

hepatocytes 56 38 (67.9%) 3.1 1356.5 

hepatocytes (w/ serum) 14 14 (100.0%) 21.7 2124.3 

Sohlenius-Sternbeck et 

al.c (22) 

microsomes (fu,B and fu,inc) 44 70.0% 3.8 5.8 

hepatocytes (fu,B and fu,inc) 46 89.0% 5.9 8.0 

microsomes (no binding) 44 41.0% 0.5 6.1 

hepatocytes (no binding) 46 41.0% 0.8 5.4 
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Finally, given that substrates of transporters and highly bound drugs often have the 

poorest clearance predictions (6), protein-binding differences were examined between the two 

BDDCS classes.  First, the percentage of drugs with inaccurate predictions that are also highly 

protein bound in both classes was determined (Table 3.3).  There are more inaccurate class 2 

drugs that are highly protein bound than class 1 drugs in every case examined.  The weighted 

average of inaccurate class 1 drugs with high protein binding is 19.8%, while the weighted 

average for class 2 is 67.3%.  Since class 2 drugs in general are often highly protein bound (23), 

the numbers of highly bound drugs in both classes that have inaccurate predictions were also 

determined (Table 3.4).  These results agree with several other conclusions that highly protein 

bound compounds are often poorly predicted.  Class 1 highly protein bound drugs were 

inaccurately predicted 81.3% of the time, and class 2 highly bound drugs had an 85.7% average 

inaccuracy rate.  In four data sets, highly bound class 2 drugs had a higher percentage of 

inaccuracy than class 1 drugs, in one data set the opposite was true, and in the last all highly 

bound drugs were inaccurate. 

Looking at the bias between the high and low protein binding drugs in the two classes 

(Table 3.5), it is difficult to see trends between the two classes, however the bias is always higher 

for the high protein binding drugs, except in the case of the data from Obach et al. (20) using fu,B 

and fu,inc, and Brown et al. (16) where there are only two class 1 high protein binding drugs and 4 

class 2 low protein binding drugs perhaps skewing the results. 
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Table 3.3:  Percentage inaccuracy of BDDCS class 1 and class 2 drugs that are highly protein 
bound 

Author System 

# Inaccurate 

Class 1 

Predictions 

# Inaccurate 

Highly Protein 

Bound Class 1 

Predictions (%) 

# Inaccurate 

Class 2 

Predictions 

# Inaccurate 

Highly Protein 

Bound Class 2 

Predictions (%) 

Brown et al. (16) hepatocytes 14 1 (7.1%) 11 7 (63.6%) 

Hallifax et al. (17) 
microsomes 30 6 (20.0%) 20 9 (45.0%) 

hepatocytes 36 9 (25.0%) 22 15 (68.2%) 

Obach et al. (20) 

microsomes 

(fu,B and fu,inc) 
7 1 (14.3%) 6 4 (66.6%) 

microsomes 

(fu,B) 
13 1 (7.7%) 9 4 (44.4%) 

microsomes 

(no binding) 
7 2 (28.6%) 6 4 (66.7%) 

Riley et al. (21) 

hepatocytes 16 4 (25.0%) 18 17 (94.4%) 

hepatocytes 

(serum) 
8 2 (25.0%) 6 6 (100.0%) 
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Table 3.4:  Percentage of highly protein bound BDDCS class 1 and class 2 drugs that are 
inaccurate 
 

Author System 

# Highly 

Protein Bound 

Class 1 Drugs 

# Inaccurate 

Highly Protein 

Bound Class 1 

Predictions (%) 

# Highly 

Protein Bound 

Class 2 Drugs 

# Inaccurate 

Highly Protein 

Bound Class 2 

Predictions (%) 

Brown et al. 

(16) 
hepatocytes 2 1 (50.0%) 8 7 (87.5%) 

Hallifax et al. 

(17) 

microsomes 8 6 (75.0%) 10 9 (90.0%) 

hepatocytes 9 9 (100.0%) 20 15 (75.0%) 

Obach et al. (20) 

microsomes 

(fu,B and fu,inc) 

2 1 (50.0%) 4 4 (100.0%) 

microsomes 

(fu,B) 

2 1 (50.0%) 4 4 (100.0%) 

microsomes 

(no binding) 

2 2 (100.0%) 4 4 (100.0%) 

Riley et al. (21) 

hepatocytes 5 4 (80.0%) 21 17 (81.0%) 

hepatocytes 

(serum) 
2 2 (100.0%) 6 6 (100.0%) 
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Table 3.5:  AFE and RMSE of high and low protein binding BDDCS class 1 and class 2 drugs  

Author System Protein 

Binding 

Class 1 Class 2 

AFE RMSE AFE RMSE 

Brown et al. (16) hepatocytes high 2.0 56.4 6.3 13882.7 

low 3.1 307.1 10.3 229.6 

Hallifax et al. (17) microsomes high 7.8 10335.3 5.3 2671.0 

low 4.8 349.9 4.2 473.3 

hepatocytes high 12.1 9814.8 4.2 479.9 

low 3.3 242.7 2.9 437.0 

Obach et al. (20) microsomes 

(fu,B and fu,inc) 

high 1.7 0.3 4.7 3.1 

low 2.0 4.9 2.3 6.7 

microsomes 

(fu,B) 

high 4.7 0.4 7.3 3.1 

low 3.6 7.3 5.2 8.6 

microsomes 

(no binding) 

high 13.7 1.5 7.7 6.8 

low 1.12 17.7 1.0 2.2 

Riley et al. (21) hepatocytes high 3.1 175.2 3.9 2175.6 

low 2.2 173.3 2.8 136.5 

hepatocytes 

(serum) 

high 17.0 406.3 64.2 3232.0 

low 8.0 170.2 - - 
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Discussion 

Being able to accurately predict pharmacokinetic parameters, especially clearance, early 

in the drug development process is a key part of lead optimization.  However while some studies 

have claimed to find success in predicting in vivo clearance from in vitro data, others have 

questioned the reliability (24).  Underpredicting in vivo clearance may result in inefficiency in 

the drug discovery pipeline or an ineffective therapeutic dosing regimen, while overpredicting in 

vivo clearance may lead to missed opportunities that were rejected early in the development 

process (25). 

 The goal of this study was to compile data to examine the accuracy of the prediction 

methods for in vivo clearance and relate this accuracy to BDDCS classification.  For the 11 data 

sets considered, there is a large percentage of inaccuracy.  To have a true understanding of the 

accuracy of in vitro methods, physiologically scaled in vitro estimations and observed in vivo 

clearance were directly compared, since incorporating established physiological scaling factors 

as well as unbound fractions in the blood and possibly in vitro matrix should in theory, give 

accurate predictions.  This is in contrast to some groups creating linear regression equations from 

reference compound data and then applying an empirical scaling factor to try to further improve 

predictions (26).  The fact that 66.5% of predictions overall are inaccurate emphasizes the idea 

that a mechanistic understanding of this inaccuracy still needs to be determined before IVIVE 

predictions can be completely trusted. 

 BDDCS classification and protein binding were then examined to see if they could 

separate accurate from inaccurate results to help determine whether predictions can be trusted in 

the future or not.  Class 1 drugs, or those that are extensively metabolized and highly soluble, 

appear to overwhelm transporter effects, while class 2 drugs, also extensively metabolized but 
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poorly soluble, can be affected by efflux transporters in the gut, and both uptake and efflux 

transporters in the liver (27).  Given the trend that poorly predicted compounds are often 

substrates for transporters (6), it was expected that class 1 drugs that have no clinically relevant 

transporter effects would yield better predictions than class 2 drugs.  The other part of the trend 

is that poorly predicted compounds are also often highly protein bound, which is why protein 

binding was considered when data were available (28).  Overall, the hypothesis was that class 2 

drugs would be more poorly predicted due to the fact that they are substrates for transporters, and 

these poorly predicted class 2 drugs would also be highly protein bound.   

 As expected, class 2 drugs yielded poorer predictions in every case examined; however, 

there was still large inaccuracy for both class 1 and class 2 drugs.  Class 2 drugs also often had a 

higher AFE, but not different enough (or sometimes at all) to understand bias.  However, AFE 

provides a better measure of bias than RMSE, which is highly influenced by the marked 

differences in CLint values from study to study.  For example, the values reported by Brown et al. 

(16) for predicted and measured CLint for propofol were 2,773 and 5,052 ml/min/kg, 

respectively, while for the same drug McGinnity et al. (19) reported 283 and 24 ml/min/kg.  At 

this point in time with the current methodology, relying on BDDCS class cannot confidently 

provide information about whether predictions will be accurate or not.  This agrees with previous 

findings from Poulin et al. who found that predictivity was similar between classes for a human 

microsome data set of 42 drugs (29).  It is interesting to note that microsomes and hepatocytes 

gave similar prediction accuracies in both class 1 and class 2 drugs.  A bigger difference between 

the two systems would have been expected for class 2 drugs where transporters play a role since 

necessary uptake transporters are not present in microsomes.  This again emphasizes that there 
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are likely major missing determinants when trying to mimic the interplay between protein 

binding, uptake, and metabolism in vitro. 

 Poulin et al. (29) also suggested that an approach involving determination of effective 

fraction unbound in plasma based on albumin-facilitated hepatic uptake of acidic/neutral drugs 

improved the prediction accuracy and precision for 25 high protein binding drugs.  Hallifax and 

Houston (30) examined this approach for 107 drugs studied in hepatocytes and microsomes also 

finding an increase in prediction accuracy, but no change in precision and reported that there was 

no evidence that prediction bias was associated with measured fraction unbound in plasma.  

These latter authors emphasized the need for further “mechanistic elucidation to improve 

prediction methodology rather than empirical correction of bias”. 

 Lastly, protein binding was considered along with BDDCS.  Given current trends, class 2 

drugs with high protein binding would have been expected to yield the poorest results.  There 

were more inaccurate class 2 drugs that had high protein binding than class 1, but this may be 

because class 2 drugs generally have higher protein binding than class 1 (23).  This, coupled to 

the fact that there may be a slight dependency of bias on protein binding both here and as found 

previously with hepatocytes by Hallifax et al. (17), could explain some of the difference seen 

between the inaccuracies in class 1 and 2 drugs.  However, on average, highly bound drugs in 

both classes had similar high percentages of inaccuracy, and there were no clear trends in the 

bias or precision of highly bound drugs between classes.  

This study emphasizes the fact that the in vitro to in vivo extrapolation of hepatic 

clearance needs to be improved through a better understanding of clearance mechanisms as in 

vitro methods on their own are often not accurate, and looking at BDDCS class cannot separate 

out which compounds will have accurate predictions. 
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CHAPTER 4:  In Vitro-In Vivo Extrapolation and Hepatic Clearance Dependent 

Underprediction* 

 

Abstract 

Accurately predicting the hepatic clearance of compounds using in vitro to in vivo 

extrapolation (IVIVE) is crucial within the pharmaceutical industry.  However several groups 

have recently highlighted the large error in the process.  While empirical or regression-based 

scaling factors may be used to mitigate the common underprediction, they provide unsatisfying 

solutions since the reasoning behind the underlying error has yet to be determined.  One 

previously noted trend was intrinsic clearance-dependent underprediction, highlighting the 

limitations of current in vitro systems.  When applying these generated in vitro intrinsic 

clearance values during drug development and making first-in-human dose predictions for new 

chemical entities though, hepatic clearance is the parameter that must be estimated using a model 

of hepatic disposition such as the well-stirred model.  Here we examine error across hepatic 

clearance ranges and find a similar hepatic clearance-dependent trend, with high clearance 

compounds not predicted to be so, demonstrating another gap in the field. 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*Modified from the publication:  Bowman CM and Benet LZ (2019) In vitro-in vivo 
extrapolation and hepatic clearance dependent underprediction. J Pharm Sci doi: 
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Introduction 

Given that many drugs are primarily eliminated by metabolism, the accurate prediction of 

hepatic clearance (CLH) is crucial for both evaluating and optimizing new chemical entities as 

well as estimating first-in-human doses.  Successful predictions could help reduce the high 

attrition (1) associated with the current drug discovery and development process.  While 

allometric scaling may be attempted for prediction, it is more accurate for renally cleared 

compounds (2,3).  Alternatively, in vitro to in vivo extrapolation (IVIVE) is commonly used to 

predict hepatic clearance. 

When implementing IVIVE, microsomes or hepatocytes can be used to determine an in 

vitro intrinsic clearance (CLint).  The in vitro value is then scaled to an in vivo CLint using 

physiologically based parameters such as microsomal protein content/hepatocellularity and liver 

weight.  Ultimately the scaled value is input into a model of hepatic disposition such as the well-

stirred model to estimate hepatic clearance. 

Several publications have examined the accuracy of IVIVE predictions with rat (4-6) and 

human (7-11) data and further comparisons have been made with data generated in microsomes 

vs. hepatocytes (12-14).  One review found that on average, human microsomes underpredict 

clearance by 9 fold, while human hepatocytes underpredict by 3-6 fold (15).  This would be 

expected given that hepatocytes contain transporters, both phase I and II enzymes, and the 

natural localization of organelles and cofactors, unlike microsomes.   However, examining a 

larger quantity of data, groups have recently reported the error between the two systems to be 

more comparable (16,17).  

 Several hypotheses have been proposed to account for the systematic underprediction 

observed.  Concerns with hepatocyte cryopreservation have been expressed, however studies 
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have shown no significant differences between cryopreserved and fresh cells (4,8,13,18).  

Similarly, the impact of donor variability is frequently discussed (18), however both over-and 

underprediction would be expected (15) and many groups now use pooled microsomes and 

hepatocytes.  Other proposed reasons for the inaccuracy have included differences in liver 

sample viability and preparation (19), differences in the use of binding terms (7,20), inaccuracies 

in the measurement of fraction unbound (21,22), the presence of inhibitory long-chain 

unsaturated fatty acids in microsomal incubations (23,24), ignoring extra-hepatic metabolism 

(15,25), and simplifying the complex interplay between uptake, metabolism, biliary secretion, 

and efflux (26). 

 When exploring reasons for error, groups have also considered clearance-dependent 

trends.  While reducing the clearance of compounds is often a goal to facilitate lower dosage 

requirements and longer half-lives, measuring low clearance in vitro is experimentally 

challenging.  Stringer et al. (27) found that of compounds with an in vivo CLint of 1-10 

ml/min/kg, only 8% had a measurable value in microsomes and 13% in hepatocytes.  Given that 

enzyme activity begins declining in microsomes after 1 hour of incubation, and cell viability 

begins decreasing in hepatocytes at 4-6 hours, a low turnover compound can have large 

uncertainty in its clearance and first dose estimations (28).  A study examining predictions in 

hepatocyte preparations from four species found poorer accuracy with low clearance compounds 

(4).  However newer methods such as the hepatocyte relay method (29,30), and hepatocyte 

culture systems containing flow and/or cell coculture (31,32), have been developed to try to 

address the error. 

 At the other extreme, studies have seen an increase in error with increasing in vivo CLint 

in hepatocytes (17,33,34) and microsomes (17) in both human and rat preparations (17).  
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Suggested reasons for this trend include endogenous cofactor depletion, loss of enzymatic 

activity, permeability limitation, and rate limiting diffusion through the unstirred water layer 

(13,33,34,35).   

 While recognizing CLint trends are important for determining the limitations of the cell 

systems currently utilized, ultimately, an accurate scaled CLH is needed for new chemical entities 

and first-in-human dose predictions.  Hepatic clearance is directly related to other 

pharmacokinetic parameters including half-life, bioavailability, and exposure, which drive the 

dosing regimen and efficacy/toxicity profiles of potential compounds.  Here we explore the 

accuracy of hepatic clearance predictions across extraction ratio ranges to determine where the 

most improvement is needed. 

 

Materials and Methods 

 The large database, including human (n=101, hepatocytes; n=83, microsomes) and rat 

(n=128 hepatocytes; n=71 microsomes) values, which was recently compiled by Wood et al. 

(17), was utilized for this analysis.  Hepatic clearance was calculated using the well-stirred 

model as follows: 

  

𝐶𝐿! =
𝑄! ∙

𝑓!,!
𝑓!,!"#

∙ 𝐶𝐿!"#

𝑄! +   
𝑓!,!
𝑓!,!"#

∙ 𝐶𝐿!"#
 

 

where QH is liver blood flow and fu,B and fu,inc are fraction unbound in the blood and incubation, 

respectively.  Physiologically based scaling factors, not empirical or regression-based factors 

were used.  Details on the values and scaling factors can be found in the original source (17). 
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 The coefficient of determination, R2, was used to examine the potential of clearance-

dependent error.  The overall bias in predictions was measured by calculating the average fold 

error (AFE) and precision was measured with the root mean squared error (RMSE) as follows: 

 

AFE=10
!
!∑!"#  (

!"#$%&$'
!"#$%&'#$) 

 

RMSE= !
!
∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ! 

 

Additionally, the accuracy of predictions was determined based on whether the 

predictions fell within 2-fold of the true in vivo values, as has been a standard cutoff in previous 

studies (8,12,36).  As was done by Wood et al. (17), an empirical scaling factor (ESF) was 

calculated to determine the error associated with each prediction: 

 

ESF =  !"#$%&$'  !"!
!"#$%&'#$  !"!

 

 

The data were divided into difference clearance ranges:  low extraction ratio (ER) (<30% 

of liver blood flow (LBF)), intermediate (30-70%), and high (>70%) where LBF was assumed to 

be 20.7 and 100 ml/min/kg for human and rat, respectively (17). 

 

Results and Discussion 

When working with new chemical entities, CLH is the parameter that would be used for 

predicting first-in-human doses and deciding whether to move a compound forward.  Therefore, 
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while a compound may have high CLint, which could imply a likely error based on the CLint trend 

(17,33,34), sizable error may not carry over for CLH predictions.  For instance, considering 

lorcainide and its human microsome data, its predicted CLint is 449 vs. its observed value of 2559 

ml/min/kg leads to a 5.7 fold difference (17).  However, when actually developing this 

compound, its predicted CLH would have been 16.3, a value only 1.2 fold off from its 20.0 

ml/min/kg observed CLH.  Table 4.1 highlights different in vivo CLint ranges and the number of 

these compounds in each in vivo CLH ER range.  Given that not all low CLint compounds have 

low in vivo CLH for instance, it is crucial to examine potential CLH dependent trends too. 

When visually examining in vivo CLH vs. ESF in Figure 4.1, a clearance-dependent trend 

does not strongly appear and the R2 values are very low.  However, this is expected as any 

clearance dependency would be suppressed due to the blood flow limitation at higher CL.  

Despite the potential suppression, the AFE moderately increased from low to high ER in all 

cases, with the largest AFEs for the human and rat hepatocyte data (Table 4.2).  The lower 

number of high ER drugs particularly for rats should be noted though.  The larger RMSE values 

for the rat data could be attributed to the higher CL range for the species, and the larger RMSE 

values noted in every case for the high ER drugs could be due to fewer compounds in this range. 
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Table 4.1:  Observed CLint ranges and the number of compounds with observed 
low/intermediate/high ERs within those ranges. 
 

 Human Hep. Human Mic. Rat Hep. Rat Mic. 

CLint 

(ml/min/kg) 

Low 

ER 

Inter 

ER 

High 

ER 

Low 

ER 

Inter 

ER 

High 

ER 

Low 

ER 

Inter 

ER 

High 

ER 

Low 

ER 

Inter 

ER 

High 

ER 

<10-100 45 7 1 34 3 0 13 2 0 10 1 0 

100-1000 10 19 11 7 16 11 43 23 1 25 8 1 

1000->10,000 0 2 6 0 4 8 13 25 8 5 14 7 

 
 
 
Table 4.2:  The AFE and RMSE for human and rat hepatocytes and microsomes according to 
level of observed CLH. 
 

 Human Hepatocytes 
Human 

Microsomes 
Rat Hepatocytes Rat Microsomes 

CLH 

(ml/min/kg) 
AFE n RMSE AFE n RMSE AFE n RMSE AFE n RMSE 

All 2.7 101 6.6 2.0 83 6.4 3.8 128 28 2.2 71 29 

Low ER 2.1 55 2.9 1.3 41 3.0 3.6 69 8.8 2.0 40 16 

Intermediate 

ER 
3.2 28 6.7 2.7 23 6.6 3.9 50 35 2.2 23 35 

High ER 4.8 18 12 2.9 19 10 5.3 9 61 3.8 8 51 
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Figure 4.1:  The relationship between ESF (ratio of observed to predicted hepatic clearance) and 
observed in vivo CLH for hepatocytes (A and C) and microsomes (B and D) in human (A and B) 
and rat (C and D).   
 

 The percentage of predictions falling within two-fold of observed data was generally 

consistent between ranges (Fig. 4.2) and surprisingly slightly increased across ER ranges in 

every system except human hepatocytes (Table 4.3).  There were more underpredictions than 

overpredictions or accurate predictions in almost every case.  While there appears to be 

consistent percentage accuracy between ER ranges, examining human microsome data for 

promethazine as an example, it has an accurate (within-two fold) in vitro prediction of 9.4 vs. the 

observed 16, but the prediction would be deemed an intermediate, not high ER compound.  
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Correct determination of extraction ratio is crucial to understand if a compound will be sensitive 

to changes in protein binding, blood flow, and/or intrinsic clearance (37). 

When examining the classification accuracy across ER ranges, similar trends were seen 

with both human and rat microsomes and hepatocytes (Table 4.4).  The great majority of low ER 

drugs, >90% in all cases, were accurately predicted to be low ER drugs.  However, the majority 

of intermediate and high ER drugs were also predicted to be low ER drugs.  High ER drugs had 

the poorest accuracy, with ≤25% of high ER drugs predicted to have a high ER. 

The predictions in Table 4.4 were made assuming the well-stirred model.  Since it is 

generally believed that high ER drugs are better described by the dispersion and parallel tube 

models and it is known that for these latter models predicted ER values will always be greater 

than those predicted values from the well-stirred model (15), we also did the calculations for the 

human hepatocyte data using the parallel tube model.  In essence, there is no improvement seen 

in Table 4.4 for human hepatocytes.  One observed low ER drug is now predicted to be high ER; 

one observed intermediate drug is now predicted to be high ER; and two observed high ER drugs 

predicted to be low ER with the well-stirred model are now predicted to be intermediate ER. 

Determining the mechanisms behind the likely multifactorial IVIVE error is crucial for 

moving the field forward and improving the efficiency of the drug discovery and development 

process.  While several reasons have been proposed over the years and new technologies are 

being created to help combat extrinsic issues such cell viability and enzyme activity loss, 

systematic underprediction still remains.  One phenomenon recently focused upon is CLint-

dependent underprediction, highlighting the limitations of current in vitro systems.  When 

applying these generated in vitro values during drug development though, CLH is the parameter 

that must be estimated.  Here we show a similar trend of CLH-dependent underprediction.  This 
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underprediction could be due to the CLint error previously noted, errors in protein binding 

measurements or the understanding of protein binding if protein-facilitated uptake is occurring 

(38), or yet to be discovered mechanisms.  The majority of high ER drugs are not predicted to 

have high or even intermediate ERs, highlighting a need for improved prediction methodologies 

especially in this range. 
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Figure 4.2:  The percentage of in vitro predictions falling within two-fold of observed in vivo 
values grouped by extraction ratio for hepatocytes (A) and microsomes (B). 
 

Table 4.3: The percentage of predictions falling within two-fold, below, and above for the Wood 
et al. (17) datasets grouped by CLH range. 
 

 CLH (ml/min/kg) All Low ER Intermediate ER High ER 

Human 

Hepatocytes 

% within 2-fold (n) 30.7 (31) 34.6 (19) 35.7 (10) 11.1 (2) 

% below (n) 62.4 (63) 52.7 (29) 64.3 (18) 88.9 (16) 

% above (n) 6.90 (7) 12.7 (7) 0.00 (0) 0.00 (0) 

Human 

Microsomes 

% within 2-fold (n) 42.2 (35) 36.6 (15) 47.8 (11) 47.4 (9) 

% below (n) 48.2 (40) 43.9 (18) 52.2 (12) 52.6 (10) 

% above (n) 9.60 (8) 19.5 (8) 0.00 (0) 0.00 (0) 

Rat 

Hepatocytes 

% within 2-fold (n) 25.8 (33) 24.6 (17) 26.0 (13) 33.3 (3) 

% below (n) 69.5 (89) 72.5 (50) 66.0 (33) 66.7 (6) 

% above (n) 4.70 (6) 2.90 (2) 8.00 (4) 0.00 (0) 

Rat 

Microsomes 

% within 2-fold (n) 43.7 (31) 40.0 (16) 43.5 (10) 62.5 (5) 

% below (n) 47.9 (34) 52.5 (21) 43.5 (10) 37.5 (3) 

% above (n) 8.40 (6) 7.50 (3) 13.0 (3) 0.00 (0) 
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Table 4.4:  The number of compounds (%) in each extraction ratio range that have correct 
classifications. 
 

Human 
Hepatocytes 

 Predicted to be 
Low ER 

Predicted to be 
Intermediate ER 

Predicted to 
be High ER 

Well-stirred 
model 

Observed Low ER 53 (96.4%) 2 (3.6%) 0 (0.0%) 
Observed 

Intermediate ER 
18 (64.3%) 10 (35.7%) 0 (0.0%) 

Observed High ER 12 (66.7%) 5 (27.8%) 1 (5.5%) 

Parallel tube 
model 

Observed Low ER 53 (96.4%) 1 (1.8%) 1 (1.8%) 
Observed 

Intermediate ER 
17 (60.7%) 10 (35.7%) 1 (3.6%) 

Observed High ER 10 (55.6%) 7 (38.9%) 1 (5.5%) 
Human 

Microsomes 
    

Well-stirred 
model 

Observed Low ER 37 (90.2%) 4 (9.8%) 0 (0.0%) 
Observed 

Intermediate ER 
14 (60.9%) 9 (39.1%) 0 (0.0%) 

Observed High ER 8 (42.1%) 8 (42.1%) 3 (15.8%) 
Rat Hepatocytes     

Well-stirred 
model 

Observed Low ER 67 (97.1%) 2 (2.9%) 0 (0.0%) 
Observed 

Intermediate ER 
37 (74.0%) 7 (14.0%) 6 (12.0%) 

 
Observed High ER 5 (55.6%) 2 (22.2%) 2 (22.2%) 

Rat Microsomes     

Well-stirred 
model 

Observed Low ER 38 (95.0%) 1 (2.5%) 1 (2.5%) 
Observed 

Intermediate ER 
10 (43.5%) 8 (34.8%) 5 (21.7%) 

Observed High ER 3 (37.5%) 3 (37.5%) 2 (25.0%) 
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CHAPTER 5: The Presence of a Transporter-Induced Protein Binding Shift:  A New 

Explanation for Protein-Facilitated Uptake and Improvement for In Vitro-In Vivo 

Extrapolation* 

 
Abstract 
 
 Accurately predicting hepatic clearance is an integral part of the drug development 

process, and yet current in vitro to in vivo extrapolation methods yield poor predictions, 

particularly for highly protein bound transporter substrates.  Explanations for error include 

inaccuracies in protein binding measurements and the lack of recognition of protein-facilitated 

uptake, where both unbound and bound drug may be cleared, violating the principles of the 

widely accepted free drug theory.  A new explanation for protein-facilitated uptake is proposed 

here, called a transporter-induced protein binding shift.  High affinity binding to cell membrane 

proteins may change the equilibrium of the nonspecific binding between drugs and plasma 

proteins, leading to greater cellular uptake and clearance than currently predicted.  The uptake of 

two lower protein binding OATP substrates (pravastatin and rosuvastatin) and two higher 

binding substrates (atorvastatin and pitavastatin) were measured in rat hepatocytes in incubations 

with protein-free buffer vs. 100% plasma.  Decreased Km,u values and increased CLint values were 

seen in the plasma incubations for the highly bound compounds, supporting the new hypothesis 

and mitigating the IVIVE underprediction previously seen for highly bound transporter 

substrates. 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*Modified from the publication:  Bowman CM, Okochi H and Benet LZ (2019) The presence of 
a transporter-induced protein binding shift:  a new explanation for protein-facilitated uptake and 
improvement for in vitro-in vivo extrapolation. Drug Metab Dispos 47:358-363. 
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Introduction  

Accurately predicting fundamental pharmacokinetic properties such as clearance is 

crucial when trying to improve the lengthy and expensive drug discovery and development 

process (1).  Hepatic clearance, which is associated with hepatic bioavailability after oral dosing, 

and elimination from the systemic circulation, is used both early in discovery for rank ordering 

compounds and later in development for determining first-in-human doses.  While in vitro - in 

vivo extrapolation (IVIVE) for clearance predictions is commonly utilized, large errors have 

been found when using human or rat microsomes or hepatocytes (2, 3).  Furthermore, predictions 

are thought to be poorest for compounds that are highly protein-bound and substrates of 

transporters (4). 

 Traditionally intrinsic clearance (CLint) is measured in protein-free buffer, and after 

applying physiologically based scaling factors, a model of hepatic disposition such as the well-

stirred model is used to predict hepatic clearance (CLH).  In vitro methods such as equilibrium 

dialysis, ultrafiltration, and ultracentrifugation (5) are separately used to determine the 

equilibrium fraction of unbound drug (fu), which according to free drug theory (FDT) is what is 

available for metabolism (6) and a parameter also included in the well-stirred model.  However, 

there is still a lack of confidence in measured fu values as is reflected in recent drug-drug 

interaction guidelines stating that the lower limit should be 0.01 regardless of actual measured 

values (7).  To try to reduce the uncertainty introduced with separately measuring fu, groups 

started using plasma in incubations (8, 9). 

 These investigations with plasma led to decreased Km,u and increased CLint values 

compared to those generated in protein-free buffer (10, 11), supporting the concept of protein-

facilitated uptake, where highly bound ligands have more efficient hepatic uptake than can be 
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accounted for by solely their unbound concentrations (12-15).  The hypotheses proposed to 

explain how bound concentrations may also be involved were recently reviewed (16, 17) and 

include the presence of a specific albumin receptor on the hepatocyte cell surface, the rate-

limiting dissociation of ligand from the protein-ligand complex, the rate-limiting diffusion of 

ligand through the unstirred water layer, and interactions with the hepatocyte cell surface.  Many 

of these previous hypotheses were suggested before hepatic transporters were recognized, and 

here a new hypothesis is proposed called a transporter-induced protein binding shift (TIPBS), a 

term and concept first suggested by Baik and Huang (18). 

 As the transporter field has evolved, exceptions to the FDT have emerged and it is now 

known that uptake transporters such as organic anion transporting polypeptides (OATPs) are able 

to control a drug’s access to hepatocytes and can increase the intracellular free concentration 

significantly above that in plasma (19).  With the TIPBS hypothesis, high affinity binding to 

such transporters may be able to change the equilibrium of the nonspecific binding between a 

drug and plasma protein.  If a highly protein bound drug has a higher affinity for a transporter 

than for the plasma protein, the transporter may be able to strip the drug directly from the protein 

before the drug dissociates itself and is at binding equilibrium (Fig. 5.1B).  In this case, protein 

binding would not be limiting the access of these compounds and utilizing fu values measured at 

equilibrium in vitro would be inaccurate.  Using rat hepatocytes and statins, known OATP1B1 

transporter substrates, we show that there is an increase in measured affinity (decrease in 

unbound Km (Km,u)) for uptake in 100% human plasma vs. protein-free buffer incubations with 

highly bound drugs, and smaller changes in Km,u values for drugs with low binding for which the 

transporter-induced shift would not occur. 
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 The TIPBS hypothesis proposed here and alternate previous hypotheses as we recently 

reviewed (17) have been promulgated in an attempt to explain the observed discordance of 

protein binding effects from the FTD.  These hypotheses are proposed despite the recognition 

that for a simple donor compartment-receiver compartment diffusion model the permeability 

surface product for passive diffusion of unbound drug across the membrane should be 

independent of the presence or absence of plasma protein. 

 

 

Figure 5.1:  Traditional view of protein binding vs. TIPBS.  The traditional view of drug 
dissociating from plasma proteins and being at equilibrium prior to uptake is depicted in (A).  
The concept of a TIPBS is depicted in (B) where high affinity binding to transporters may strip 
the drug directly from the proteins before equilibrium is reached. 
 
 
Materials and Methods 
 

Materials 

Atorvastatin was purchased from TCI America (Portland, OR), pitavastatin was 

purchased from ApexBio (Houston, TX), rosuvastatin was purchased from Toronto Research 

Chemicals (Ontario, Canada), and [3H(G)] pravastatin sodium salt (specific activity, 5 Ci/mmol) 

was purchased from American Radiolabeled Compounds (St. Louis, MO).  Mixed gender pooled 

human plasma was purchased from Biological Specialty Corporation.  Male Sprague-Dawley 

rats (250-270 g) were purchased from Charles River Laboratories (Wilmington, MA). 
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Hepatocyte Isolation 

Rat hepatocytes were isolated using a modified collagenase perfusion method as 

previously described (20, 21).  Briefly, the rats were given an intraperitoneal injection of 1 ml/kg 

ketamine/xylazine (91 mg/ml; 9 mg/ml) before surgery.  The portal vein was cannulated with an 

i.v. catheter (BD Biosciences, San Jose, CA) and perfused with oxygenated liver perfusion 

medium (Gibco/Thermo Fisher, Waltham, MA) for 10 minutes followed by perfusion with 

oxygenated liver perfusion medium supplemented with 1.2 U/ml collagenase (Sigma-Aldrich, St. 

Louis, MO) for 10 min at 20 ml/min.  The digested livers were excised and broken down by 

gentle tapping with a glass stirring rod.  Cells were washed with ice-cold hepatocyte wash 

medium (Gibco/Thermo Fisher), and centrifuged at 50 x g for 3 minutes.  Hepatocytes were 

separated by 44% percoll (Sigma-Aldrich) in hepatocyte wash medium and centrifuged at 250 x 

g for 10 minutes at 4oC.  Cell viability was determined with the trypan blue exclusion method 

and cells with viability >90% were used for uptake studies. 

 

Hepatocyte Uptake Studies 

 Hepatocyte suspensions of either protein-free Krebs-Henseleit buffer (pH 7.4) or 100% 

plasma were pre-incubated at 37oC in 24 well plates for 10 minutes.  Uptake studies were done 

once for each substrate and condition in triplicate and were initiated by adding various 

concentrations of drug solutions (1.0-100 µM for atorvastatin; 0.05-100 µM for pitavastatin; 0.1-

300 µM for pravastatin; and 0.05-100 µM for rosuvastatin) to the hepatocyte suspensions.  After 

1 minute for atorvastatin, pitavastatin, and rosuvastatin, and 2 minutes for pravastatin (based on 

time course results not shown here), reactions were terminated by transferring 0.5 million 

hepatocytes (1 mL of the shaken mixture of 800 µL of 1 million cells/mL and 800 µL of drug 
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solution) into a centrifuge tube containing 300 µL of a mixture of mineral and silicone oil 

(density = 1.015) and centrifuging at 13,000g for 10 seconds.  After removing the drug solutions 

and oil layers by pipetting, the pravastatin cell pellets were resuspended in 200 µL of scintillation 

cocktail and sonicated to ensure complete cell lysis.  Intracellular concentration was measured 

using a scintillation counter (LS6000TA; Beckman Coulter, Fullerton, CA).  For atorvastatin, 

pitavastatin, and rosuvastatin, cell pellets were resuspended in 200 µL of water and sonicated.  

Methanol and acetonitrile (ACN) containing internal standard and 3% formic acid were 

subsequently added to samples (1:1:2; sample:methanol:ACN) to precipitate the protein.  After 

centrifuging at 13,000g for 10 minutes, the supernatants were transferred into HPLC vials for 

LC-MS/MS analysis.  Measuring cold pravastatin uptake with LC-MS/MS was attempted, 

however two inseparable peaks appeared with the methods. 

 

LC-MS/MS Analysis 

 All samples were analyzed with a Shimadzu (Carlsbad, CA) HPLC binary pump system 

coupled to a Sciex (Foster City, CA) API 4000 triple quadrupole tandem mass spectrometer.  

The TurboIonSpray voltage was set at 5500 V and operated in positive ESI mode.  The LC 

separations were done using a Zorbax (Agilent, Santa Clara, CA) C8 column (3.5 µm, 4.6 x 50 

mm) and the mobile phases consisted of water with 10 mM ammonium acetate (mobile phase A) 

and ACN with 10 mM ammonium acetate (mobile phase B).  A gradient elution with a flow rate 

of 0.7 ml/min was used where 35% B increased linearly to 80% at 3 minutes, at which point it 

was increased to 95% until 3.75 minutes, and then decreased to 35% and equilibrated until the 

end of the run at 5 minutes.  The following transitions were measured (Q1>Q3):  atorvastatin 
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(559.0 > 440.2), pitavastatin (422.4 > 290.3), rosuvastatin (482.3 > 258.3), and the internal 

standard tolbutamide (271.1 > 172.1). 

 To test for potential matrix effects with atorvastatin, pitavastatin, and rosuvastatin, 

calibration curves were created using stock solutions spiked into protein-free buffer, and spiked 

into sonicated hepatocytes that had been incubated in protein-free buffer and 100% plasma.  

Process efficiency (comparison between spiked samples vs. neat solutions) were 95.9-107% for 

atorvastatin, 101-111% for pitavastatin, and 88.6-108% for rosuvastatin.  The matrix effect was 

considered to be minimal.  The lower limits of quantitation were 50 nM, 0.5 nM, and 5 nM for 

atorvastatin, pitavastatin, and rosuvastatin, respectively, and the average recoveries were 

102±7%, 100±3%, and 98.2±7.7%, for atorvastatin, pitavastatin, and rosuvastatin, respectively. 

 For the calibration curves utilized, stock solutions (minimum six concentrations) were 

added to protein-free buffer and the same calibration curve was used for the buffer and plasma 

samples of each compound.  The concentration range for atorvastatin was 50-4000 nM (1/x2 

weighting, r2=0.99), for pitavastatin was 0.5-1500 nM (1/x2 weighting, r2=0.99), and for 

rosuvastatin was 5-1500 nM (1/x weighting, r2=0.99).  Inter-day precision (percent coefficient 

variation) were between 5.31% and 10.7% for atorvastatin, between 3.4% and 10.0% for 

pitavastatin and between 2.41% and 15.3% for rosuvastatin, and inter-day accuracies (percent 

relative error) were between -4.00% and 2.00% for atorvastatin, between -2.90% and 2.40% for 

pitavastatin and between -1.20% and 0.67% for rosuvastatin. 

 

Data Analysis 

Data analyses were done using GraphPad Prism version 7 (GraphPad Software, La Jolla, 

CA).  The total drug dosing concentrations were corrected to unbound drug concentrations.  For 
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the protein-free buffer incubations, the fraction unbound (fu,p) was assumed to be 1 so the 

unbound concentration was the same as total dosing concentration.  For the plasma incubations, 

fu,p values in the FDA labels were used that were 0.020 for atorvastatin (22); 0.010 for 

pitavastatin (23); 0.50 for pravastatin (24); 0.12 for rosuvastatin (25). 

The kinetic parameters for uptake were estimated by fitting the intracellular 

concentrations to following equation:  v = (Vmax x S)/(Km + S)  + Pdif x S, where v is the rate of 

uptake (pmol/min/106 cells), Vmax is the maximum uptake rate (pmol/min/106 cells), S is the 

substrate concentration (µM), Km is the Michaelis-Menten constant (µM), and Pdif is the 

nonsaturable diffusion constant (µl/min/106 cells).  The linear portion of the total uptake curve 

represents the passive diffusion, and the difference between the total uptake and passive 

diffusion represents the active transport. 

 

Results 

 The uptake curves for the four known OATP substrates in both incubation conditions are 

shown in Figure 5.2.  As expected, all compounds exhibited both passive diffusion and active 

uptake.  The calculated Km,u, Vmax, Pdif,u , and CLint values are reported in Table 5.1.  The Km,u 

values generated in the protein-free buffer aligned well with previously reported values in the 

literature.  The values generated in the plasma incubations were similar to those in the buffer for 

the lower protein binding compounds (9.66 vs. 16.5 µM for pravastatin and 0.995 vs. 4.00 for 

rosuvastatin).  There were much larger Km,u differences for the highly bound compounds where 

the apparent values were 31.4 and 107 fold lower in the plasma incubations for atorvastatin and 

pitavastatin, respectively (Fig. 5.3A). 
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 The Vmax values showed a similar, but less marked trend (Fig. 5.3B).  Values generated in 

the two incubations were similar for pravastatin (2.12 fold different) and rosuvastatin (0.953 fold 

different), while there were larger decreases in apparent Vmax in the plasma for atorvastatin (6.07 

fold lower) and pitavastatin (15.0 fold lower).  These decreases in Vmax were less than the 

decreases in Km,u, so when CLint (Vmax/Km,u) was examined, there were increases for the higher 

binding compounds.  Figure 3C depicts that as the fraction unbound decreases, the difference in 

CLint (plasma/buffer) increases. 

 

 
 
Figure 5.2:  Uptake curves for pravastatin (A), rosuvastatin (B), atorvastatin (C), and 
pitavastatin (D).  Total uptake is depicted in circles, passive diffusion is depicted in squares, and 
active uptake is depicted in triangles.  The error bars represent the standard deviation of the 
triplicate. 
 

Figure 5.3:  The fold difference in Km,u values (buffer/plasma) (A), Vmax values 
(buffer/plasma) (B), and CLint values (plasma/buffer) (C) between the two incubations. 
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Table 5.1:  Km,u, Vmax, Pdif,u, and CLint values generated for each compound in buffer and plasma 
incubations.   
 
 
 

aNezasa et al. (50); bYamazaki et al. (51); cYabe et al. (52); dShimada et al. (53) 
  

Compound Incubation Km,u (µM) 

Vmax 

(pmol/ min/106 

cells) 

Pdif,u 

(µL/min/106 

cells) 

CLint 

(µL/min/106 

cells) 

Km,u (µM) 

Reported 

in Lit. 

Pravastatin 
Buffer 16.5 ± 4.43 208 ± 14.3 2.59 ± 0.128 12.6 ± 3.50 

16.5a, 

29.1b, 30.5c 

Plasma 9.66 ± 3.27 97.9 ± 8.84 3.94 ± 0.180 10.1 ± 3.55  

 
Fold 

difference 
1.71 2.12 0.657 1.25  

Rosuvastatin 
Buffer 4.00 ± 0.962 323 ± 20.2 13.7 ± 0.620 80.8 ± 20.1 6.05c, 9.17a 

Plasma 0.995 ± 0.148 339 ± 15.6 55.4 ± 6.60 341 ± 53.0  

 
Fold 

difference 
4.02 0.953 0.265 4.22  

Atorvastatin 
Buffer 3.61 ± 1.96 1650 ± 203 76.5 ± 1.99 458 ± 254 4.03c 

Plasma 0.115 ± 0.116 272 ± 65.5 741 ± 37.1 2370 ± 2450  

 
Fold 

difference 
31.4 6.07 0.103 5.16  

Pitavastatin 
Buffer 8.71 ± 2.12 600 ± 47.0 132 ± 0.481 68.9 ± 17.6 6.30c, 26.0d 

Plasma 0.0812 ± 0.0157 39.9 ± 2.45 475 ± 1.53 491 ± 99.7  

 
Fold 

difference 
107 15.0 0.278 7.13  
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Discussion 

 Obtaining accurate in vitro data is crucial for CLH predictions; however there are often 

larger errors for compounds that are substrates of transporters (4).  A previous study examining 

the active uptake of seven OATP substrates with sandwich culture human hepatocytes in protein-

free incubations found that predictions were poorest for highly protein-bound substrates, while 

pravastatin and rosuvastatin, compounds with the lowest protein-binding, gave more accurate 

predictions (26). 

 Considering this trend, we propose the idea of a transporter-induced protein binding shift, 

where high affinity binding to transporters may strip ligands directly from plasma proteins before 

they dissociate.  For OATP substrates with lower protein binding such as pravastatin and 

rosuvastatin, where there is already free drug near the uptake transporters, such a shift may not 

occur, and current methodologies may yield accurate IVIVE predictions.  However for 

transporter substrates with high binding such as pitavastatin and atorvastatin where TIPBS would 

occur, current equilibrium protein binding measurements may be driving the high IVIVE error. 

 Here, the uptake of four statins, known to be OATP substrates (27), were measured in rat 

hepatocytes with protein-free buffer and 100% human plasma.  Given the well-known human fu,p 

values for these compounds, 100% human plasma was utilized.  With the frequent similarity 

between human and rat fu,p values (28, 29), similar results would be expected if 100% rat plasma 

were utilized.  For the low binding compounds, pravastatin and rosuvastatin, Km,u values were 

similar between the two incubations (1.71 and 4.02 fold different respectively), while the 

difference in the values increased with increased protein binding for atorvastatin and pitavastatin 

(31.4 and 107 fold different respectively).  If protein-binding is not limiting the uptake of 

atorvastatin and pitavastatin, a lower apparent Km,u value (or increased affinity) would be 
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expected when adding plasma to hepatocyte incubations as compared to using protein-free 

buffer.  TIPBS can be viewed mechanistically, perhaps considering the competing processes as 

competitive inhibition (Fig. 5.4).  The traditional enzyme, substrate, and inhibitor (Fig. 5.4A) are 

swapped out for drug, transporter, and protein (Fig. 5.4B), where according to FDT, the protein 

would be “inhibiting” the access of the drug to the transporter.  With TIPBS and the non-

inhibitory protein, a larger k1 is expected, resulting in decreased Km,u values. 

 

 
 

Figure 5.4: TIPBS and competitive inhibition.  A traditional schematic of competitive 
inhibition with enzyme (E), inhibitor (I), substrate (S), and product (P) is shown in (A).  A 
modified version where protein (P) is acting as an inhibitor for drug (D) to access the transporter 
(T) is shown in (B).  With a TIPBS, the transporter will strip the drug from the DP complex, 
leading to a larger k1 and lower Km. 
 

 This study also noted greater decreases in Vmax values for the highly bound compounds.  

Pravastatin and rosuvastatin had 2.12 and 0.953 fold differences in plasma compared to buffer, 

while atorvastatin and pitavastatin had 6.07 and 15.0 differences.  Despite these larger decreases, 

Km,u decreases were larger, leading to increased CLint values for atorvastatin and pitavastatin.  

The TIPBS hypothesis and these larger generated CLint values can explain and mitigate the 

IVIVE underprediction seen for highly bound transporter substrates.  A larger CLint increase 

would have been expected for atorvastatin given that the 5.16 fold increase is only marginally 
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larger than the 4.22 fold increase seen with the lower binding rosuvastatin.  However, since 

atorvastatin is the most lipophilic of the four compounds, perhaps the active uptake process is not 

as crucial and TIPBS should have less of an impact. 

 Similar protein-facilitated uptake has been previously noted, however alternative 

hypotheses are frequently cited.  The potential role of the hepatocyte cell surface is often 

considered, in contrast to the role of high affinity transporters described here.  One such previous 

proposal was that ionic interactions between the albumin-drug complex and the hepatocyte 

plasma membrane may decrease the diffusional distance for unbound ligand (30), while another 

proposal stated that binding of the albumin-drug complex to the cell surface may lead to a 

conformational change in albumin enhancing the dissociation of drug (15).  However despite 

citing these alternative hypotheses, recent data in the literature agree with the idea of TIPBS. 

Miyauchi et al. (31) examined the uptake of 1-anilino-8-naphthalene sufonate (ANS) in 

rat hepatocytes with bovine serum albumin and the uptake of pitavastatin in human hepatocytes 

with HSA.  While the addition of protein led to increases in unbound uptake clearances for both 

compounds, the difference was greater for pitavastatin, which is known to have high affinity for 

OATP, while ANS has a relatively lower affinity for Oatp.  Kim et al. (32) examined the uptake 

of 11 OATP substrates with varying concentrations of HSA.  Similar to the results presented 

here, there was no change in pravastatin uptake with the addition of HSA, and using their 

previously proposed facilitated-dissociation kinetic model, the uptake of rosuvastatin with 5% 

HSA was estimated to increase 2.48 fold.  The uptake of the remaining compounds, all with high 

protein binding, was estimated to increase to a greater extent, up to 63.8 fold with valsartan, with 

the exception of pitavastatin (a 2.44 fold increase was predicted).  Their model predicts the 
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contribution of albumin-mediated uptake to be similar for both pitavastatin and rosuvastatin 

(56.9 and 54.4% respectively). 

Both papers stated, “the higher the affinity for the transporter, the more effective is the 

albumin-mediated enhancement,” agreeing with the concept of TIPBS.  Additional previous 

support for TIPBS was seen when measuring the uptake of a highly bound new chemical entity, 

shown to be an OATP1B3 substrate.  The CLint increased with increased HSA concentration in 

transfected HEK293 cells where the mechanisms hypothesized with the hepatocyte cell surface 

may not be present, but overexpression of the OATP transporter is present (33). 

Examining the pitavastatin data, Miyauchi et al. (31) calculated the dissociation constant 

(Kd) of bound albumin from the hepatocyte cell surface to be 199 ± 61 µM with the facilitated-

dissociation model (15) and 275 ± 131 µM with a kinetic model proposed by Forker and Luxon 

(13).  Simultaneously fitting data from 10 OATP substrates including pitavastatin, Kim et al. 

(32) calculated the value to be 45.2 ± 13.0 µM.  Using fluorescence quenching, Shi et al. (34) 

measured the binding constant of pitavastatin to bovine serum albumin as 0.56 x104 M-1 at 310K 

and inverting this, the dissociation constant would be 179 µM.  Although not directly comparable 

as Kd is a thermodynamic constant while Km is a kinetic constant, in this study the measured Km.u 

values for the interaction between pitavastatin and active uptake transporters were 17.3 µM in 

buffer and 0.0688 µM in plasma, which are significantly lower than the Kd values for binding to 

the hepatocyte surface or to protein.   

The yet to be explained decrease in Vmax values in plasma incubations for highly bound 

compounds has been previously noted.  Based on the idea of competitive inhibition with TIPBS 

(Fig. 5.4B), the Vmax values were expected to remain the same across incubations and across fu 

ranges.  As described by Poulin et al. (35) and Bounakta et al. (36), the clearance of bisphenol A 
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and naproxen were measured using isolated perfused rat livers with and without albumin.  

Bisphenol A, the higher binding compound had an 83.8 fold decrease in its apparent Km,u value 

with the albumin addition (compared to the 4.73 fold decrease for the lower binding naproxen) 

and the Vmax value of bisphenol A decreased 6.2 fold with albumin (while decreasing 1.3 fold for 

naproxen) (Table 5.2).  A potential explanation could be that a weaker attraction mentioned 

earlier between the protein-drug complex and the hepatocyte cell surface brings more bound 

drug near the cell, and once the complex is oriented correctly, the transporter with higher affinity 

can strip the drug directly from the protein.  The additional larger protein-drug complexes near 

the surface may limit access of both bound and free drug to transporters, decreasing the 

maximum velocity of substrate transport compared to protein-free incubations. 

 

Table 5.2:  Data from Poulin et al. (35) and Bounakta et al. (36) also supporting the trends seen 
with a TIPBS. 
 

Compound fu,p 

Km 
(µM) 

[ALB]
= 

0 g/L 

Km 
(µM) 

[ALB]
= 

30 g/L 

Km,u = 
Km · fu,p 
[ALB]= 
30 g/L 

Km,u 
Fold 
Dif 

 

Vmax 
(nmol/min/mg) 

[ALB]= 
0 g/L 

Vmax 
(nmol/min/mg) 

[ALB]= 
30 g/L 

Vmax 
Fold Dif 

Bisphenol A 0.045 13.4 3.5 0.16 83.8 8.0 1.3 6.2 

Naproxen 0.12 98.9 174.4 20.9 4.73 2.9 2.2 1.3 

 
 
 

In summary, the Km,u decrease and CLint,increase for the highly protein bound statins 

support the idea of a transporter-induced protein binding shift and suggest that plasma should be 

used in hepatocyte incubations for highly bound transporter substrates. TIPBS can also explain 

some of the large IVIVE error seen for highly bound compounds.  If protein binding is not 

restricting the access of highly bound transporter substrates, perhaps total concentration, not 

unbound concentration should be used in clearance predictions, an idea previously applied for 
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alternate reasons (37, 38).  To further support this hypothesis, additional studies are needed to 

determine the off rate of drug dissociating from plasma protein vs. the on rate of drug associating 

with the membrane transporters under the two incubation conditions, and studies to differentiate 

transporter-mediated uptake vs. transporter binding are necessary. 

It is important to note that the proposed shift may occur with any type of plasma protein, 

and may occur anywhere in the body where there is interplay between plasma proteins, cells, and 

transporters including the intestine and brain.  That is, the shift is not specific to only albumin 

and only hepatocytes.  Previous studies have found facilitated uptake with β-lactoglobulin (39, 

40) and ligandin (41), as well as with myocytes (42-46), adipocytes (45), proximal tubules (47), 

perfused kidney (48), and brain (49).   
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CHAPTER 6:  Organic Anion Transporting Polypeptide (OATP) Uptake Predictions in 

HEK293 Overexpressing Cells In the Presence and Absence of Human Plasma* 

 

Abstract 

Generating accurate in vitro data is crucial for in vitro to in vivo extrapolation and 

pharmacokinetic predictions.  The use of HEK293 cells overexpressing OATP1B1 and 

OATP1B3 in protein-free buffer and 100% human plasma incubations was explored for the 

uptake of four OATP substrates, pravastatin, rosuvastatin, repaglinide and pitavastatin. 

Differences were observed for each parameter (Km,u, Vmax, CLint, and Pdif,u) obtained from the 

buffer and human plasma incubations in both cells, and in general, the fold differences increased 

as plasma protein binding increased.  The fold change in Km,u values ranged from 2.03-1020, 

while the fold change in Vmax values ranged from 1.22-97.4.  As a result, the CLint values 

generated in the plasma incubations were 1.66-51.9 fold higher than the values generated in 

protein-free buffer in both cells.  The unbound passive diffusion was also consistently higher in 

the human plasma incubations for all four compounds, with a fold difference range of 2.06-38.4. 

These shifts in the presence and absence of human plasma suggest that plasma proteins may play 

a role in both the active uptake and passive diffusion processes.  The results also support the idea 

of a transporter-induced protein binding shift, where high protein binding may not limit the 

uptake of compounds that have high affinity for transporters.  The addition of plasma to 

incubations leading to higher CLint values for transporter substrates helps mitigate the 

underprediction commonly noted with in vitro to in vivo extrapolation. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* Modified from:  Bowman CM, Chen E, Chen L, Liang X, Wright M, Chen Y and Mao J. 
Organic anion transporting polypeptide (OATP) uptake predictions in HEK293 overexpressing 
cells in the presence and absence of human plasma. Manuscript in preparation. 
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Introduction 

 Membrane transporters are known to play a key role in the absorption, distribution, and 

elimination of drugs as well as be determinants of their safety and efficacy profiles (1).  Two 

such transporters, Organic Anion Transporting Polypeptide (OATP) 1B1 and OATP1B3, are 

expressed on the sinusoidal membrane of hepatocytes and mediate the uptake of both 

endogenous substrates as well as numerous drugs, including statins (2).  

 During the drug discovery and development process, accurate in vitro kinetic 

characterization of compounds is crucial for predictions of pharmacokinetic behavior using the 

physiologically based pharmacokinetic (PBPK) approach (3).  However, limited understanding 

of in vitro to in vivo extrapolation (IVIVE) has brought challenges for such predictions with 

uptake transporter substrates.  There are gaps in the field including:  1) how to incorporate the in 

vitro data generated in various systems (hepatocytes vs. cell lines), 2) how to incorporate 

different types of in vitro data generated (intrinsic clearance (CLint) from substrate depletion 

studies (where the loss of compound from the incubation media into microsomes/hepatocytes is 

measured) vs. Vmax/Km from more robust uptake experiments), 3) how to incorporate the 

transporter expression levels measured in various in vitro systems, and 4) determination if the in 

vitro systems used are physiologically relevant. 

 While traditional uptake experiments are conducted in protein-free buffer and there is the 

assumption that only free drug is available for uptake, in the 1980’s several single-pass liver 

perfusion studies found that highly bound ligands had more efficient hepatic uptake than could 

be accounted for by just their unbound concentrations (4-7).  The hypotheses proposed to explain 

this protein-facilitated uptake phenomenon were recently reviewed (8, 9) and include the rate-

limiting dissociation of ligand from the protein-ligand complex, rate-limiting diffusion of ligand 
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through the unstirred water layer, interactions with the hepatocyte cell surface, and a transporter-

induced protein binding shift.  In vitro investigations have also found more accurate predictions 

when using plasma in incubations to account for protein-facilitated uptake (10-12).  In a recent 

study, incorporating kinetic uptake data generated using plateable human hepatocytes with 

human plasma for the OATP substrate pravastatin enabled the PBPK model to simulate the 

intravenous and oral pharmacokinetic (PK) profiles of the drug successfully without 

incorporating a scaling factor (12).  This demonstrated an approach to translate in vitro OATP 

uptake transporter data to in vivo, with a hope of utilizing future in vitro data for accurate human 

PK predictions. 

 As a continuing effort to understand the translation of in vitro data to in vivo and the 

plasma effect with uptake transporters, the use of human embryonic kidney (HEK) 293 cells 

transfected with OATP1B1 and OATP1B3 was explored in the current investigation.  These cells 

were chosen for two reasons: 1) While HEK293 cells are the typical cell lines used in the drug 

discovery stage serving as an economical option to qualitatively address if a new chemical entity 

is a substrate for OATPs, there is an IVIVE gap for quantitative translation.  2) Given that any 

protein-facilitated uptake noted with HEK293 cells could not be due to interactions with the 

hepatocyte cell surface, the system serves a tool to assess the various hypotheses mentioned 

above.  The objective of this study was to evaluate the uptake of known OATP substrates, with 

both low and high protein binding, in HEK293 cells transfected with OATP1B1 and OATP1B3 

in buffer and human plasma incubations. 
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Materials and Methods 

Materials 

Pitavastatin calcium and repaglinide were purchased from Abcam (Cambridge, UK); 

pravastatin sodium was purchased from TCI America (Portland, OR); and rosuvastatin was 

purchased from BioVision Inc. (Milpitas, CA).  Corning TransportoCellsTM Cryopreserved SLC 

Transporter Cells (human OATP1B1*1a (lot 6034125), OATP1B3 (lot 5278015), and control 

cells (lot 6075312) were purchased (Corning, NY) and used for uptake studies.  Human Plasma 

Medium-A (100% human plasma) (HPZ-ATM) and Hepatocyte Rinse Medium (HRMTM) were 

purchased from In Vitro ADMET Laboratories, Inc. (IVAL, Columbia, MD).  Poly-D-lysine 

coated 96 well plates were purchased from Greiner Bio-One (Monroe, NC).  Fetal bovine serum 

was purchased from VWR (Radnor, PA) and all other cell culture reagents were purchased from 

Thermo Fisher Scientific (Waltham, MA).   

 

Uptake in OATP1B1-and OATP1B3-Overexpressing Cells 

Uptake studies were performed in triplicate following the TransportoCellsTM manual.  

Briefly, after thawing, cells were seeded onto poly-D-lysine coated 96-well plates with a seeding 

density of 100,000 cells per well in plating media consisting of DMEM (high glucose) with 

MEM non-essential amino acid solution (100X) and fetal bovine serum.  After incubation in a 

humidified atmosphere with 5% CO2 at 37oC for 3 hours, the cells were re-fed with plating 

media supplemented with 2mM sodium butyrate.  Uptake experiments were initiated 24 hours 

after plating. 

To begin uptake experiments, plating media was removed from the cells, and cells were 

washed once with either HBSS buffer (with 10 mM HEPES, pH 7.4) or human plasma.  Drug 
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solutions of either protein-free HBSS buffer or human plasma were added for one minute. The 

incubation time of one minute was selected based on time course experiment results for both 

medium conditions (results not shown).  For studies in buffer, uptake was terminated by 

removing the dosing solution and washing cells twice with ice-cold PBS.  For studies in plasma, 

uptake was terminated similarly, but by washing three times with ice-cold Hepatocyte Rinse 

Medium.  The following concentrations were tested in both cells with buffer and plasma: 200, 

100, 50, 25, 12.5, 6.25, 3.13 µM for pravastatin; 1.25, 0.625, 0.3125, 0.156, 0.0781, 0.0391 µM 

for repaglinide; and 50, 25, 12.5, 6.25, 3.13, 1.56, 0.781 for rosuvastatin.  For pitavastatin, 10, 5, 

2.5, 1.25, 0.625, 0.313, 0.156, 0.0781 µM concentrations were tested under both conditions, 

however biphasic kinetics were seen after 2.5 µM in plasma, so calculations were based on 2.5, 

1.25, 0.625, 0.313, 0.156, 0.0781 µM concentrations for the plasma incubations. 

The viability of the cells in buffer and human plasma was determined with a Nexcelom 

GigaCyte Cellometer Hepatometer.  The amount of protein in each well was determined using 

the PierceTM BCA® Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA).   

 

Bioanalyical Method 

To measure the analyte concentrations, incubation samples were mixed with 80:20 

acetonitrile:water containing propranolol as an internal standard, sonicated and then centrifuged.  

The supernatant was mixed with 50% water and bioanalytical assays were developed to obtain 

analyte concentrations. 

 All samples were analyzed with a Shimadzu Nexera X2 (LC-30AD) (Kyoto, Japan) 

coupled to a Sciex 6500 QTRAP mass spectrometer (Foster City, CA).  Pitavastatin, repaglinide, 

and rosuvastatin were analyzed in positive ion mode with propranolol (260.0/116.1) as an 
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internal standard, and pravastatin was analyzed in negative ion mode with probenecid 

(284.0/139.0) as an internal standard.  The LC separations were performed using a Kinetex C18 

column (2.6 µm, 30 x 2.1mm) (Phenomenex, Torrance, CA).   The mobile phases consisted of 

water with 0.1% formic acid (mobile phase A) and acetonitrile with 0.1% formic acid (mobile 

phase B).  Additional details about the methods can be found in Table 6.1. 

 

Table 6.1:  LC-MS/MS methods for the four OATP substrates and the internal standards used 
 

Analyte ESI 

Q1/Q3 

Transition 

(m/z ratio) 

Gradient Profile 

(min[%B]) 

Flow Rate (1.0 

mL/min) 

Declustering 

Potential 

Collision 

Energy 

Collision 

Cell Exit 

Potential 

Lower 

and Upper 

Limits of 

Quantifica

tion 

Pitavastatin + 
422.2 / 

274.2 

Gradient: 0.10[5%]-

0.40[5%]-1.30[85%]-

1.60[85%]-1.61[5%]-

2.00[5%] 

88.0 65.0 12.0 
0.376nM, 

114 nM 

Repaglinide + 
453.2 / 

230.2 

Gradient:  0.10[5%]-

0.40[5%]-1.30[85%]-

1.60[85%]-1.61[5%]-

2.00[5%] 

66.0 35.0 18.0 
0.0610nM, 

250nM 

Rosuvastatin + 
482.3 / 

258.3 

Gradient: 0.40[10%]-

1.19[90%]-1.60[90%]-

1.61[10%]-2.00[10%] 

125 45.0 10.0 
0.977nM, 

1000nM 

        

Pravastatin - 
423.1 / 

303.0 

Gradient: 0.10[10%]-

1.00[80%]-1.40[80%]-

1.41[10%]-1.80[10%] 

-175 -22.0 -17.0 
1.95nM, 

1000nM 
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Modeling of the Active Hepatic Uptake Transporter Kinetic Parameters and Passive 

Diffusion  

Data analysis was done using GraphPad Prism version 7 (GraphPad Software, La Jolla, 

CA).  Nominal concentrations were used for the plots.  Uptake curves from the control cells, 

representing passive diffusion only, were fit linearly to determine the unbound passive diffusion 

(Pdif,u = Pdif, � fu,p).  The difference between uptake in the transfected cells (active + passive 

uptake) and uptake the control cells (passive uptake) was plotted, representing the active uptake 

alone and this curve was used to obtain the unbound Km (Km,u = Km � fu,p) and Vmax values 

assuming Michaelis-Menten kinetics.  For the protein-free buffer incubations, the fraction 

unbound (fu,p) was assumed to be 1 and for the plasma incubations, fu,p values in the literature 

were used which were 0.485 for pravastatin (Simcyp V17 compound profile, 3, 13, 14), 0.107 for 

rosuvastatin (Simcyp V17 compound profile, 15, 16), 0.0188 for repaglinide (Simcyp V17 

compound profile, 16-18), and 0.00450 for pitavastatin (19).  While there can be variability in 

reported literature fu,p values, leading to shifts in the exact fold differences between buffer vs. 

plasma incubation values, the overall trends still hold. 

 

Results 

 First the morphology and viability of the cells were tested in 100% human plasma vs. 

protein-free buffer.  While cellular clumping visually appeared to occur during the plasma 

incubations (Fig. 6.1), the viability of both OATP1B1 and 1B3 cells were high and comparable 

between the two incubations (Table 6.2). 
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Figure 6.1:  The morphology of OATP1B1 overexpressing cells in plating media 24 hours after 
plating (A, D); after 1 minute in buffer (B) and plasma (E); and after 2 minutes in buffer (C) and 
plasma (F) 
 

Table 6.2:  The viability of the OATP1B1 and OATP1B3 cells in protein-free buffer and 100% 
human plasma 
 

Time in 

Buffer (min) 

OATP1B1 

Viability 

OATP1B3 

Viability 

Time in 

Plasma (min) 

OATP1B1 

Viability 

OATP1B3 

Viability 

1 81.3% 90.4% 1 91.1% 85.9% 

2 85.2% 90.1% 2 88.6% 88.2% 

3 89.6% 88.0% 3 89.3% 82.2% 

  

A B C 

D E 
	
  

F 
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The uptake curves for four known OATP substrates in both incubation conditions are 

shown in Figure 6.2.  Active uptake was observed for pitavastatin, pravastatin and rosuvastatin in 

both OATP1B1 and OATP1B3 cells in the buffer and plasma incubations.  For repaglinide, 

active uptake was observed in the OATP1B1 cells, and the uptake in the OATP1B3 cells 

overlapped with the uptake in control cells, demonstrating that the drug is not an OATP1B3 

substrate in the concentration range tested. 

 The calculated Km,u, Vmax, and Pdif,u values are shown in Table 6.3.  The Km,u values 

generated in the buffer aligned well with reported values in the literature.  When examining the 

difference in Km,u values generated in buffer vs. plasma incubations, there were large differences 

for the highly protein bound compounds.  For instance, examining the OATP1B1 cell data, 

pravastatin with the lowest protein binding (fu,p=0.485) had a Km,u fold difference of 2.03 

between the two incubations (84.9 vs. 41.9 µM) while rosuvastatin (fu,p=0.107) had 16.1 (22.2 

vs. 1.38 µM), repaglinide (fu,p=0.0188) had 127 (1.07 vs. 0.00840 µM), and pitavastatin 

(fu,p=0.00450) had 1120 (5.29 vs. 0.00520 µM) fold differences.  For the OATP1B3 cell data, a 

similar trend was observed.  The Km,u values were 2.15, 7.56, and 923 fold different for the 

pravastatin, rosuvastatin, and pitavastatin incubations respectively.  The Vmax also decreased for 

the highly bound compounds.  Focusing on OATP1B1, the difference was 1.22 fold for 

pravastatin compared to 2.64, 21.7, 19.5 fold for rosuvastatin, repaglinide, and pitavastatin, 

respectively.  Similar trends were seen with the OATP1B3 cells with 1.23, 4.20, and 97.4 fold 

differences with pravastatin, rosuvastatin, and pitavastatin. 

 The CLint (Vmax/Km,u) was determined for each compound and the fold differences 

between the values in plasma and buffer were calculated (Fig. 6.3).  Again, the difference in 

CLint became greater as the free fraction decreased.  For the lowest binding pravastatin, the 
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differences in CLint values were 1.66 fold in OATP1B1 cells and 1.74 fold in OATP1B3, while 

for the highest binding pitavastatin, the fold differences were 51.9 and 9.46 respectively.  The 

percentage of active uptake (CLint/(CLint + Pdif,u)) was examined between the incubations as well 

(Table 6.4).  The values are similar for pravastatin, rosuvastatin and pitavastatin between the two 

incubation conditions for OATP1B1 cells.  Repaglinide, the compound with the highest passive 

diffusion, had the largest increase in percentage of active uptake with the use of plasma (45.2 vs. 

70.2%) in the OATP1B1 cells. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 6.2:  The rate of the uptake vs. the concentration of pravastatin (A), rosuvastatin (B), 
repaglinide (C), and pitavastatin (D) in OATP1B1- and OATP1B3-overexpressing cells in buffer 
and human plasma.  Total uptake (overexpressed cells) is depicted in circles, passive diffusion 
(control cells) is depicted in squares, and active uptake (the difference) is depicted in triangles. 
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Table 6.3:  Km,u, Vmax, and Pdif,u values generated for pravastatin, rosuvastatin, repaglinide, and 
pitavastatin in OATP1B1 and OATP1B3 overexpressing cells in buffer and human plasma.  
 

Drug Transporter Incubation Km,u (µM) 

Vmax 

(pmol/ 

min/mg) 

Pdif,u 

(µL/ min/mg) 

Km,u (µM) 

Reported in 

Lit. 

Pravastatin 

OATP1B1 

Buffer 84.9 ± 19.8 274 ± 29.1 0.159 ± 0.0143 
85.7a, 104b, 

109c 

Plasma 41.9 ± 6.54 224 ± 16.1 0.652 ± 0.0445  

Fold difference 

(Buffer/Plasma) 
2.03 1.22 0.244  

OATP1B3 

Buffer 57.5 ± 11.5 179 ± 14.5 0.159 ± 0.0143 228b 

Plasma 26.8 ± 3.58 145 ± 7.71 0.652 ± 0.0445  

Fold difference 

(Buffer/Plasma) 
2.15 1.23 0.244  

Rosuvastatin 

OATP1B1 

Buffer 22.2 ± 5.25 132 ± 14.5 0.667 ± 0.0407 
9.31d, 13.0e, 

13.1f 

Plasma 1.38 ± 0.324 
50.0 ± 

4.59 
6.24 ± 0.273  

Fold difference 

(Buffer/Plasma) 
16.1 2.64 0.107  

OATP1B3 

Buffer 18.0 ± 1.74 156 ± 6.57 0.667 ± 0.0407 14.2g, 16.5e 

Plasma 2.38 ± 0.269 
37.1 ± 

1.95 
6.24 ± 0.273  

Fold difference 

(Buffer/Plasma) 
7.56 4.20 0.107 
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Drug Transporter Incubation Km,u (µM) 

Vmax 

(pmol/ 

min/mg) 

Pdif,u 

(µL/ min/mg) 

Km,u (µM) 

Reported in 

Lit. 

Repaglinide 

OATP1B1 

Buffer 1.07 ± 0.414 
42.9 ± 

9.50 
48.6 ± 1.78 1.36d 

Plasma 
0.00840 ± 

0.00263 

1.98 ± 

0.268 
100 ± 3.21  

Fold difference 

(Buffer/Plasma) 
127 21.7 0.486  

OATP1B3 

Buffer N/A N/A 48.6 ± 1.78 N/A 

Plasma N/A N/A 100 ± 3.21  

Fold difference 

(Buffer/Plasma) 
  0.486  

Pitavastatin 

OATP1B1 

Buffer 5.29 ± 0.984 111 ± 10.1 6.33 ± 0.109 
1.30h, 2.48d, 

3.00i 

Plasma 
0.00520 ± 

0.00134 

5.69 ± 

0.689 
243 ± 31.1  

Fold difference 

(Buffer/Plasma) 
1020 19.5 0.0260  

OATP1B3 

Buffer 8.80 ± 2.77 152 ± 27.7 6.33 ± 0.109 2.60j, 3.25i 

Plasma 
0.00953 ± 

0.00877 

1.56 ± 

0.822 
243 ± 31.1  

Fold difference 

(Buffer/Plasma) 
923 97.4 0.0260  

 
aKameyama et al. (39); bKindla et al. (40); cFurihata et al. (41);  dIzumi et al. (42); eBosgra et al. 
(43); fvan de Steeg et al. (44); gKitamura et al. (45); hSharma et al. (46); iHirano et al. (47); 
jVildhede et al. (48) 
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Figure 6.3:  The plasma protein binding vs. the fold difference in CLint of pravastatin, 
rosuvastatin, repaglinide, and pitavastatin generated in buffer and human plasma for OATP1B1 
and OATP1B3. 
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Table 6.4:  The intrinsic clearance and percentage of active uptake of pravastatin, rosuvastatin, 
repaglinide, and pitavastatin in OATP1B1 and OATP1B3-overexpressing cells in buffer and 
human plasma. 
 

OATP

1B1 

 

Pravastatin 

(fu,p=0.485) 

Rosuvastatin 

(fu,p=0.107) 

Repaglinide 

(fu,p=0.0188) 

Pitavastatin 

(fu,p=0.00450) 

 Buffer Plasma Buffer Plasma Buffer Plasma Buffer Plasma 

CLint,(µL/min/mg) 3.22 ± 

0.827 

5.34 ± 

0.919 

5.94 ± 

1.55 

36.2 ± 

9.13 

40.1 ± 

17.9 

236 ± 

80.4 

21.0 ± 

4.35 

1090 ± 

312 

Fold dif. 

(Plasma/Buffer) 1.66 6.09 5.89 51.9 

Pdif,u 

(µL/min/mg) 

0.159 

± 

0.0143 

0.652 ± 

0.0445 

0.667 ± 

0.0407 

6.24 ± 

0.273 

48.6 ± 

1.78 

100 ± 

3.21 

6.33 ± 

0.109 
243 ± 31.1 

Fold dif. 

(Plasma/Buffer) 4.10 9.36 2.06 38.4 

% Active 95.3 89.1 89.8 85.3 45.2 70.2 76.8 81.8 

OATP

1B3 

CLint (µL/min/mg) 
3.11 ± 

0.672 

5.41 ± 

0.778 

8.67 ± 

0.914 

15.6 ± 

1.94 
N/A N/A 

17.3 ± 

6.28 
164 ± 173 

Fold dif. 

(Plasma/Buffer) 
1.74 1.80 N/A 9.46 

Pdif,u 

(µL/min/mg) 

0.159 

± 

0.0143 

0.652 ± 

0.0445 

0.667  ± 

0.0407 

6.24 ± 

0.273 

48.6 ± 

1.78 

100 ± 

3.21 

6.33 ± 

0.109 
243 ± 31.1 

Fold dif. 

(Plasma/Buffer) 
4.10 9.36 2.06 38.4 

% Active 95.1 89.2 92.9 71.4 N/A N/A 73.2 40.3 

CLint =Vmax/Km,u 
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Discussion 

 Obtaining accurate in vitro data is crucial for predicting pharmacokinetic parameters such 

as clearance with IVIVE, as well as for generating reliable concentration profiles with PBPK 

modeling.  There is often a disconnect with current IVIVE methods particularly for compounds 

that are substrates of transporters (20).  In vivo clearance for seven OATP substrates was 

previously underpredicted using human hepatocytes in protein-free incubations, and predictions 

were poorest for those substrates that were highly protein-bound (16). 

 Here we evaluated HEK293 cells overexpressing OATP1B1 and OATP1B3 in protein-

free buffer and 100% plasma incubations as an alternative system.  Groups have recently begun 

adding protein to incubations with overexpressing cell lines using 2% human serum albumin 

(HSA) (21) or 10% fetal bovine serum (22) for instance.  In this investigation, using 100% 

human plasma with HEK293 cells was also demonstrated to be a reasonable option as the cells 

maintained high viability throughout the study. 

 Four known substrates of OATP with a range of protein binding values were chosen to 

evaluate.  Pravastatin, pitavastatin, and rosuvastatin were all substrates of OATP1B1 and 

OATP1B3 agreeing with previously reported in vitro studies (Table 6.3) and in vivo studies (23-

25).  Repaglinide was found to be a substrate of OATP1B1 in the concentration range tested 

agreeing with previous in vitro and in vivo studies (26).  While in vitro studies have found 

repaglinide to be an inhibitor of OATP1B3 (27), it was not demonstrated to be a substrate here.  

However, a recent study found repaglinide to be an OATP1B3 substrate using longer incubation 

times (28). 

 Differences were observed with each parameter (Km,u , Vmax, CLint, and Pdif,u) obtained 

from the buffer and human plasma incubations in both cells.  As has been previously noted with 
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the use of plasma in hepatocyte incubations (29), the Km,u values decreased in the plasma as 

protein binding increased (with fold changes ranging from 2.03-1020).  The Vmax also decreased 

in the plasma for the higher binding compounds in particular (the fold changes ranged from 1.22-

97.4).  It is interesting to note the decreases in both Km,u and Vmax, and the more dramatic 

differences in Km,u values led to consistently higher CLint (Vmax/Km,u) values in the human plasma 

incubations for all four compounds.  The fold difference (plasma/buffer) was largest for the 

highest protein bound pitavastatin (51.9 and 9.46 for OATP1B1 and OATP1B3, respectively) 

compared to the differences with the other three compounds (1.66-6.09 and 1.74-1.80 for 

OATP1B1 and OATP1B3, respectively) (Figure 6.3).  This suggests that plasma proteins may 

play a role in the active uptake process.  The unbound passive diffusion was also consistently 

higher in the human plasma incubations for all four compounds.  The fold difference again was 

higher for pitavastatin (38.4) compared to the other three compounds (2.06-9.36), suggesting that 

plasma proteins may play a role in the passive diffusion process too.  This was previously seen, 

but to a lesser extent with hepatocytes (29), and the mechanism remains unknown.  However, 

since there was also an increase in CLint, when examining the percentage of active uptake shifts, 

generally for the three statin compounds the differences did not have an effect.  For compounds 

with high plasma protein binding that are not substrates for active uptake (but predominately 

metabolized, for example), the results from protein-free incubations may be underestimated due 

to the inaccurate intracellular concentrations.  

These Km,u/Vmax/CLint values shifted in the same way as those for a highly protein bound 

new chemical entity in HEK293 overexpressing cells with HSA (21) where Km,u decreased, Vmax 

decreased, and CLint increased with increasing concentrations of HSA.  Many groups have also 

seen decreased Km,u and higher CLint values when using plasma in hepatocyte incubations (11, 
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30)  An early idea of including plasma was to eliminate the uncertainty in prediction introduced 

with separately measuring plasma protein binding, which improved clearance predictions (10, 

31).  Having plasma or proteins present also can account for potential protein-facilitated uptake 

(32, 33).  For pravastatin, the Km,u measured in the OATP1B1 and OATP1B3 overexpressed cell 

lines in plasma were 41.9 and 26.8 µM, which were quite comparable to the reported Km,u  of 37 

uM generated with plated human hepatocytes in plasma (12). 

 According to the free drug theory, hepatic uptake of drug is solely dependent on the 

unbound concentration available at the hepatocyte surface; however, several studies have 

unexpectedly found uptake to be greater than the unbound concentration (8, 9).  While the 

presence of a specific albumin receptor on the hepatocyte cell surface was originally proposed, 

numerous studies and negative results from affinity chromatography have deemed the hypothesis 

less likely (34).  The idea of more general interactions of the albumin-drug complex with the 

hepatocyte cell surface are discussed frequently instead (35).  For instance, binding of the 

albumin-drug complex to the cell surface may lead to a conformational change in albumin 

reducing its binding affinity for the drug (7) or ionic interactions between the protein-drug 

complex and the hepatocyte plasma membrane may decrease the diffusional distance for 

unbound ligand (36).  These hypotheses focus on hepatocytes specifically though and protein-

facilitated uptake has been shown to occur in other cell types including myocytes (36), 

adipocytes (37), and here, in HEK293 cells overexpressing transporters. 

 These data support a recent hypothesis called a transporter-induced protein binding shift 

(TIPBS) (9, 29).  The idea is that if a highly protein bound drug has a higher affinity for a 

transporter than for albumin (or the suggested hepatocyte cell surface), the transporter may be 

able to strip the drug from the protein before the drug dissociates itself and is at binding 
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equilibrium.  In these cases, protein binding would not be restricting the access of the 

compounds.  While the alternative hypotheses may have been able to explain the trends seen in 

hepatocytes in the past, the TIPBS explanation agrees with data from hepatocytes as well as from 

HEK293 cells, where overexpressed transporters, not a hepatocyte cell surface, would be driving 

the Km,u and CLint shifts seen.  Interesting results were found for repaglinide.  Although it has the 

second highest protein binding of the four compounds evaluated (fu,p=0.0188), compared to 

rosuvastatin with lower binding (fu,p=0.107), repaglinide did not have as large of a CLint shift.  

One simple explanation could be that the other compounds examined were statins and they can 

be more directly compared to each other than to repaglinide.  In addition, an explanation related 

to a TIPBS could also explain the difference.  Repaglinde had the largest percentage of passive 

diffusion of the four compounds in the overexpressed OATP1B1 cell line (Table 6.4).  Given the 

lesser involvement of transporters and active uptake, a transporter-induced protein binding shift 

would also be expected to be less.  The addition of plasma did increase the percentage of active 

uptake for repaglinide, but it was still less than that of the other three compounds. 

 In summary, this work demonstrates that using HEK293 cells overexpressing transporters 

in plasma incubations is a viable option for assessing the kinetic uptake of OATP1B1 and 

OATP1B3 substrates.  Overall, the CLint values generated in the plasma incubations were higher 

than the values generated in protein-free buffer in both cells, addressing the underprediction 

related to OATP substrates reported previously.  The results also support the recent hypothesis of 

a transporter-induced protein binding shift for compounds with high protein binding and high 

affinity for transporters.  PBPK modeling work is on-going to provide a systematic 

understanding of the in vitro to in vivo translation of data from overexpressed cell lines in the 

presence and absence of human plasma. 
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CHAPTER 7:  Interlaboratory Variability in Human Hepatocyte Intrinsic Clearance 

Values and Trends with Physicochemical Properties* 

 
Abstract 
 
Purpose:  To examine the interlaboratory variability in CLint values generated with human 

hepatocytes and determine trends in variability and clearance prediction accuracy using 

physicochemical and pharmacokinetic parameters. 

Methods:  Data for 50 compounds from 14 papers were compiled with physicochemical and 

pharmacokinetic parameter values taken from various sources. 

Results:  Coefficients of variation were as high as 99.8% for individual compounds and variation 

was not dependent on the number of prediction values included in the analysis.  When examining 

median values, it appeared that compounds with a lower number of rotatable bonds had more 

variability.  When examining prediction uniformity, those compounds with uniform in vivo 

underpredictions had higher CLint, in vivo values, while those with non-uniform predictions 

typically had lower CLint, in vivo values.  Of the compounds with uniform predictions, only a small 

number were uniformly predicted accurately.  Based on this limited dataset, less lipophilic, lower 

intrinsic clearance, and lower protein binding compounds yield more accurate clearance 

predictions. 

Conclusions:  Caution should be taken when compiling in vitro CLint values from different 

laboratories as variations in experimental procedures (such as extent of shaking during 

incubation) may yield different predictions for the same compound.  The majority of compounds 

with uniform in vitro values had predictions that were inaccurate, emphasizing the need for a 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*Modified from the publication:  Bowman CM and Benet LZ (2019) Interlaboratory variability in 
human hepatocyte intrinsic clearance values and trends with physicochemical properties. Pharm 
Res 31:113. 



	
   150	
  

better mechanistic understanding of IVIVE.  The non-uniform predictions, often with low 

turnover compounds, reaffirmed the experimental challenges for drugs in this clearance range.  

Separating new chemical entities by lipophilicity, intrinsic clearance, and protein binding may 

help instill more confidence in IVIVE predictions. 
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Introduction	
  

 Clearance is one of the most fundamental pharmacokinetic parameters, and its accurate in 

vivo prediction is necessary for compound prioritization and first-in-human estimates.  However, 

the surprising inaccuracy in predictions from in vitro to in vivo extrapolation (IVIVE) has 

recently been reviewed (1, 2).   

 The typical IVIVE process involves measuring an intrinsic clearance (CLint) in 

microsomes or hepatocytes and applying biological scaling factors and a model of hepatic 

disposition to estimate an in vivo hepatic clearance (CLH).  In an attempt to eliminate the 

systematic error with IVIVE, groups have begun applying regression or empirical based scaling 

factors (3). 

 When examining the widespread IVIVE error, significant interlaboratory in vitro 

variability has been noted (1, 4, 5).  While variability may result from interdonor differences, 

pooled lots are now commonly used to reduce lot-to-lot variation, or may result from differences 

in the biological scaling factors applied, efforts have been directed toward reaching a consensus 

(6, 7).  There could also be variation due to the use of fresh vs. cryopreserved hepatocytes, 

however previous studies have not found significant differences (8, 9). 

When collating in vivo hepatic clearance values from intravenous studies, Stringer et al. 

(5) found low variability; however, upon examining in vitro hepatocyte CLint values, the authors 

found large coefficients of variation (CVs), which increased with increasing CLint.  Nagilla et al. 

(4) noted the paucity and variability of in vitro literature data, explaining that CLint values should 

be taken from a consistent assay rather than arbitrarily chosen from different literature sources.  

Now that more data have been generated, we reexamine the interlaboratory variability, and 
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search for trends with variability and physicochemical and pharmacokinetic parameters.  We also 

examine trends in prediction accuracy for compounds with uniform in vitro values. 

 

Methods 

 A total of 14 papers were examined (Table 7.1) and overlapping values were found for 50 

compounds with data generated in human hepatocytes (Table 7.2).  All in vitro CLint values were 

scaled to a predicted CLint,in vivo  using consistent scaling factors of 120 x 106 hepatocytes/g liver 

and 21.4 g liver/kg body weight, and the fraction unbound in the hepatocyte incubation (fu,hep) 

values taken from the Wood et al. (2) database: 

 

Predicted CLint,in vivo = !"!"!,!"  !"#$%
!"!!"

   ∙ 120   ∙ 21.4 

 

Coefficients of variation (CV) were determined as standard deviation divided by the average. 

 

Values for hepatic clearance (CLH,in vivo) (ml/min/kg), fraction unbound in the blood and plasma 

(fu,B, fu,p), and intrinsic clearance (CLint, in vivo) (ml/min/kg) were taken from Wood et al. (2).  

CLint, in vivo values were calculated using the well-stirred model (since the difference in bias 

between the well-stirred and parallel tube model, the two extremes for models of hepatic 

disposition, was determined to be minimal) (2). 

 

The ChEMBL database (https://www.ebi.ac.uk/chembl) (10) was used to obtain values for 

molecular weight (MW), logP, logD, polar surface area (PSA), number of hydrogen bond donors 
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(HBD), number of hydrogen bond acceptors (HBA), number of rotatable bonds, and number of 

aromatic rings. 

 

Values for the steady state volume of distribution (VDss) (l/kg) and mean residence time (MRT) 

(hr) were found for 45 compounds in Obach et al. (11). 

 

Classification within the Biopharmaceuticals Drug Disposition Classification System (BDDCS) 

was determined using Benet et al. (12) and Hosey et al. (13). 

 

Main metabolizing enzyme information was found for 33 compounds in El-Kattan et al. (14) 

 

The relationship between variability and the properties was evaluated by examining the 

coefficient of correlation R2. 

 

The accuracy of predictions was determined based on whether the predicted CLint values fell 

within two fold of the observed CLint values: 

 

0.5 ≤  !"#$%&$'  !"!"#
!"#$%&'#$  !"!"#

  ≤ 2 
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Table 7.1:  Human hepatocyte data examined for this evaluation 

Source Human Hepatocytes Donors 

Akabane et al. (26) Cryopreserved Individual, 9-11 donors 

Blanchard et al. (27) Cryopreserved Individual, 2 donors 

Floby et al. (9) Fresh Individual, 7 donors 

Hallifax et al. (8) Fresh Individual, 5 donors 

Hallifax et al. (28) Cryopreserved Individual, 5 donors 

Jacobson et al. (29) Cryopreserved Pooled, 2 donors 

Lau et al. (30) Cryopreserved Pooled, 5+ donors 

Lu et al. (31) Cryopreserved Pooled, 4 donors 

McGinnity et al. (17) Fresh Individual, 1-90 donors 

Naritomi et al. (32) Cryopreserved Individual, 5-7 donors 

Riley et al. (33) Not Reported Individual, 3+ donors 

Soars et al. (34) Cryopreserved Individual, 3 donors 

Sohlenius-Sternbeck et al. (35) Cryopreserved Pooled, 2-5 donors 

Sohlenius-Sternbeck et al. (3) Cryopreserved Pooled, 5 donors 
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Table 7.2:  The variability of reported CLint values generated in human hepatocytes 

 
Drug CLint 

values 
References CV (%) n Largest fold 

difference 
 

Acetaminophen 3.59; 2.14; 
2.76 

3; 32; 35 25.7 3 1.68 

Alprazolam 0.263; 
1.82 

8; 28  2 6.92 

Caffeine 3.21; 8.83; 
3.75 

3; 17; 30 58.9 3 2.75 

Carvedilol 297; 237; 
196; 

3; 17; 35 21.0 3 1.52 

Chlorpheniramine 10.9; 3.89 17; 35  2 2.80 
Chlorpromazine 684; 415; 

642 
3; 30; 35 24.9 3 1.65 

Cimetidine 3.24; 35.1 17; 35  2 10.8 
Clozapine 28.2; 

22.0; 11.0; 
27.9 

3; 17; 29; 35 36.1 4 2.57 

Codeine 63.5; 33.1 17; 34  2 1.92 
Desipramine 62.6; 48.2; 

177; 53.0 
3; 17; 30; 35 72.0 4 3.67 

Diazepam 5.71; 3.02; 
24.3;  
1.43; 

9.57; 6.66; 
6.38; 7.13 

3; 8; 9; 17; 
28; 30; 32; 35 

87.6 8 17.0 

Diclofenac 89.3; 49.2; 
128; 296; 
410; 51.9 

3; 9; 17; 26; 
33; 35 

86.9 6 8.33 

Diltiazem 52.8; 64.2; 
34.2; 

33.5; 167; 
64.2; 48.5 

3; 17; 29; 30; 
32; 33; 35 

69.7 7 4.99 

Diphenhydramine 22.3; 7.44 17; 35  2 3.00 
Fenoprofen 19.5; 11.4 3; 35  2 1.71 

Flunitrazepam 1.05; 4.80 8; 28  2 4.55 
Gemfibrozil 84.8; 66.3; 

177; 3.50; 
44.2 

3; 17; 26; 34; 
35 

85.9 5 50.7 
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Drug CLint 
values 

References CV (%) n Largest fold 
difference 

 
Glipizide 2.41; 2.68 3; 35  2 1.11 

Granisetron 7.38; 26.6; 
8.56 

3; 17; 35 75.9 3 3.60 

Ibuprofen 21.9; 11.5; 
65.8; 18.3 

3; 30; 33; 35 84.1 4 5.74 

Imipramine 104; 114; 
104; 117; 

94.2 

3; 17; 29; 30; 
35 

8.53 5 1.24 

Irbesartan 39.1; 17.5; 
22.7 

3; 29; 35 42.7 3 2.23 

Ketoprofen 6.15; 10.7; 
9.90 

3; 17; 35 27.2 3 1.74 

Lorazepam 3.02; 
0.816 

17; 30  2 3.70 

Methylprednisolone 5.61; 28.6; 
6.50 

3; 30; 35 96.1 3 5.11 

Metoprolol 17.7; 20.0; 
12.3; 20.0; 

3.99 

3; 17; 29; 33; 
35 

46.0 5 5.00 

Midazolam 44.7; 11.1; 
27.4; 
39.1; 
35.3; 
153; 

19.5; 16.9; 
39.1 

3; 8; 9; 17; 
27; 28; 30; 

31; 35 

99.8 9 13.8 

Naloxone 105; 
596; 
167; 

220; 77.3; 
589; 69.0 

3; 17; 26; 27; 
30; 34; 35 

89.5 7 8.64 

Naproxen 14.1; 5.64 17; 35  2 2.50 
Nifedipine 18.2; 25.0; 

42.3 
17; 30; 35 43.5 3 2.32 

Omeprazole 11.2; 5.02; 
8.86 

3; 17; 35 37.4 3 2.24 

Ondansetron 5.25; 4.09; 
2.92 

3; 17; 35 28.6 3 1.80 

Oxaprozin 4.37; 5.74 3; 35  2 1.31 
Oxazepam 9.74; 5.90; 

9.45 
 

3; 30; 35 25.5 3 1.65 
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Drug CLint 
values 

References CV (%) n Largest fold 
difference 

 
Phenacetin 13.8; 26.2; 

5.75; 17.8 
9; 29, 31; 35 53.6 4 4.57 

Pindolol 5.93; 7.90; 
5.64 

3; 17; 35 19.0 3 1.40 

Prazosin 13.4; 6.28; 
8.20; 11.7 

3; 17; 29; 35 32.7 4 2.13 

Prednisolone 4.75; 27.1; 
13.7 

3; 30; 35 74.1 3 5.71 

Propranolol 81.1; 
40.8; 
44.8; 

40.8; 15.9; 
40.8; 31.8 

3; 17; 29; 30; 
31; 33; 35 

46.6 7 5.12 

Quinidine 12.8; 18.1 3; 35  2 1.41 
Ranitidine 3.78; 2.70; 

4.33 
3; 17; 35 22.9 3 1.60 

Ritonavir 21.1; 13.8 3; 17  2 1.52 
Sildenafil 37.4; 14.5; 

22.6 
3; 30; 35 46.7 3 2.58 

Tenoxicam 6.96; 2.68 30; 35  2 2.60 
Theophylline 2.68; 1.39 3; 30  2 1.92 

Timolol 7.99; 11.7 3; 35  2 1.46 
Tolbutamide 2.17; 4.95; 

7.42; 3.40 
3; 30; 33; 35 50.5 4 3.43 

Triazolam 1.34; 2.82; 
10.3 

8; 17; 27 99.4 3 7.64 

Verapamil 114; 
88.9; 
54.3; 
79.0; 

237; 64.2 

3; 17; 29; 30; 
33; 35 

66.4 6 4.36 

Zolpidem 9.85; 8.36 3; 35  2 1.18 
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Results   

Coefficients of Variation and Physicochemical Parameters 

Data for 50 compounds were evaluated and each compound had values from 2-9 sources.  

Of the 50 compounds, 17 had n=2, preventing a statistically relevant CV from being calculated.  

For the remaining 33 compounds, the CVs ranged from 8.53-99.8%.  The potential for CV 

dependence on the number of values (n) was examined first.  Pindolol with the second lowest 

CV of 19.0% had data from three sources, and triazolam with the second highest CV of 99.4% 

similarly had data from three sources.  Imipramine, with n=5 had the lowest CV of 8.53%.  

Therefore, a high value of n did not necessarily cause high CV values as shown in Figure 7.1A.  

The fold difference between the highest and lowest predictions for each compound was also 

examined and there did not appear to be a dependence on n (Fig. 7.1B). 

 Sixteen physiochemical and pharmacokinetic properties were examined in relation to CV 

(Fig. 7.2) and there were no direct correlations here as the highest R2 value was only 0.071.  The 

5 largest correlations are reported in Table 7.3.  The data were then divided into a lower CV 

group (CV<50%) and higher CV group (CV≥50%) and median parameter values were examined 

(Table 7.3).  The largest relative difference was seen with fu,B and fu,p values, followed by the 

number of rotatable bonds.  In the lower CV half, 29% of compounds had ≥ 7 rotatable bonds 

compared to 6.3% of compounds with higher CV.  

 

A)      B)  

   

 

 

Figure 7.1:  The dependence of CV (A) and the largest fold difference (B) on n 
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Figure 7.2:  Trends between various physicochemical and pharmacokinetic properties and 
CV. 
 

 

Table 7.3:  Highest correlations, R2, of CV with parameters. 
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BDDCS class, molecular species, and main metabolizing enzymes were also examined.  

BDDCS Class 1 drugs appeared to have a wider range of CV values than Class 2 drugs (Fig. 

7.3A).  When examining molecular species, neutral drugs had the highest CV values (Fig. 7.3B).  

Looking at main metabolizing enzymes, compounds metabolized by CYP3A4 appeared to have 

the highest CV values (Fig. 7.3C).  For CYP3A4 substrates, 38% had a CV > 90%, while no 

CYP2D6, CYP1A2, CYP2C, and UGT substrates had CVs > 90%. 

Given the difference seen between BDDCS classes, the data were also split by class 1 and 

class 2 compounds (n=21 and 11 respectively).  Examining the same physiochemical properties 

with CV for both classes, there were no correlations for BDDCS class 1 compounds (every R2 

value was less than 0.10).  For BDDCS class 2 though, there were potential trends (Fig. 7.4A).  

The number of HBA and HBD and number of aromatic rings had the largest correlations, 

however the smaller number of compounds should be noted.  The lack of correlation with 

BDDCS class 1 compounds is shown in Fig. 7.4B for comparison. 

 

    A)    B)        C) 
	
  

	
   	
  
	
  

	
  
	
  

	
  

	
  
	
  
	
  
Figure 7.3:  Trends between CV and BDDCS class (A), molecular species (B), and main 
metabolizing enzyme (C). 
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Figure 7.4:  The highest correlations of CV with physicochemical properties for BDDCS 
class 2 compounds (A) and the lack of correlation for BDDCS class 1 compounds (B). 
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   Uniformity of Predictions and Physicochemical Parameters	
  

Next the variability relating to the accuracy of predictions was examined.  Accurate 

predictions are typically defined as predictions that fall within two fold of observed values (15, 

16, 17).  Here, if a compound had predictions all falling either within two-fold or outside two-

fold, it was categorized as “uniform”.  If a compound had some predictions falling within two-

fold, and some falling outside two-fold, it was categorized as “non-uniform”.  The same 

properties were then examined to determine if any drive the difference between the two 

categories.  

Returning to the 50 compiled compounds, there were 31 uniform compounds and 19 non-

uniform compounds.  Of the uniform predictions, 6 (19%) were accurate predictions, and 25 

(81%) were inaccurate underpredictions.  The most distinct difference between the uniform and 

non-uniform categories was seen with CLint, in vivo.  Compounds with uniform predictions 

typically had higher CLint,in vivo values (Fig. 7.5).  Furthermore, 37% of non-uniform predictions 

had CLint, in vivo values <10 ml/min/kg compared to 10% of uniform predictions. 

 

Accuracy of predictions and physicochemical parameters 

Finally, all 31 compounds with uniform predictions were further examined.  It is 

expected that new understandings of mechanisms will help reduce the current IVIVE 

underprediction, but for now, it is important to know which new compounds may yield results 

that will be accurate, and which may not.  Here only 6 compounds had accurate predictions, 

limiting the power of the evaluation.  Despite this, there were accuracy distinctions when 

considering logD, CLint, in vivo, and fu,p (Table 7.4).  Of the accurate predictions, 83% had a logD 

of <1.0 compared to 28% of inaccurate predictions.  42% of compounds with logD of <1.0 had 
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accurate predictions and 5.0% of compounds with logD ≥1.0 had accurate predictions.  For CLint, 

in vivo, 31% of compounds with CLint, in vivo <100 ml/min/kg had accurate predictions compared to 

6.7% with CLint, in vivo ≥ 100.  Finally, for fu,p, 11% of predictions with fu,p < 0.1 were accurate 

compared to 33% of predictions with fu,p ≥ 0.1.   

	
  
Table 7.5:  Properties of compounds with accurate, uniform predictions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5:  Relationship between compounds with uniform vs. non-uniform predictions 
and CLint, in vivo  
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Discussion 

 Variability in the in vitro data generated and used for IVIVE can significantly affect 

clearance predictions.  This compilation found varying reported data for 50 compounds.  Of 

these, 33 had n ≥ 3, and CV values for the same compound were as high as 99.8%.  Trends were 

sought in hopes of determining in the future which new compounds may yield more reliable 

predictions than others.  However, after confirming that variability was not dependent on n, no 

direct trends appeared with the physicochemical properties examined. 

Upon more generally splitting the compounds into low and high CV groups though there 

appeared to be marked relative differences in the median values for fu,B and fu,p and the average 

number of rotatable bonds.  After further examining the binding values though, an obvious trend 

did not appear.  For fu,B, 35% of the low CV group had high protein binding (fu ≤ 0.05) and 31% 

of the high CV group also had high binding.  A similar result was seen with fu,p where 47% of the 

low CV group had high protein binding and 38% of the high CV group did also.  A difference 

did hold for rotatable bonds where in the lower CV half, 29% of compounds had ≥ 7 rotatable 

bonds compared to 6.3% of compounds with higher CV.  It has previously been shown that 

decreasing rotatable bond count is paralleled by increasing permeation rate (18), and here this 

may lead to larger variability.  Wood et al. (19) previously examined the importance of the 

unstirred water layer (UWL) on clearance predictions with hepatocytes.  Given that the UWL has 

been shown to reduce the apparent permeability of highly permeable compounds, the authors 

showed that shaking of incubations can lead to 3 to 5-fold higher CLint values (19).  Perhaps the 

increase in variability noted with lower rotatable bond counts (and thus higher permeability) 

could be related to experimental differences for incubation shaking among laboratories and 

moving forward, this factor should be considered for new chemical entities.  
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 Interestingly BDDCS class 1 drugs had a larger CV range than BDDCS class 2 drugs and 

neutral drugs had more variation than acidic or basic.  Although the number of drugs with main 

metabolizing enzyme information was more limited, CYP3A4 substrates had higher CV values, 

perhaps due to the potential of extrahepatic metabolism.  When examining R2 values with class 2 

drugs and different properties, the number of HBA and HBD stood out, which has also been 

shown to be related to permeation rate (18, 20).  As more data are generated and shared, it would 

be useful to reevaluate these potential trends and their statistical significance with a larger 

sample size. 

 Some compounds had large CV values, however upon further examination, no matter 

which value was used, the predictions would have fallen outside of two-fold of the observed 

value and been considered inaccurate.  For instance for triazolam that had a CV of 99.9%, data 

from three sources underpredicted by 3.8, 14, and 29 fold.  For these cases, the compounds were 

deemed to have “uniform” predictions.  The main difference noted between uniform and non-

uniform compounds was that uniform compounds had higher CLint, in vivo values.  The majority of 

the uniform compounds were uniformly inaccurate (80%), and all of these inaccurate compounds 

were underpredicted.  This is not unexpected given the high inaccuracy previously reported (1, 2) 

and emphasizes the need to find a mechanistic reason for the underprediction.  It has been noted 

that compounds with high CLint,in vivo commonly have large error (2, 21, 22), which explains why 

these compounds would have uniform inaccurate predictions.  More low clearance (CLint, in 

vivo<10 ml/min/kg) compounds fell in the non-uniform category, confirming the experimental 

challenges for low turnover compounds (5, 23).  

 Finally, trends in accuracy for the 31 compounds with uniform predictions were 

examined.  More or less confidence could theoretically be placed in a new compound’s 
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extrapolation results if any trends exist and accordingly more or less experiments may be needed.  

Of the 50 drugs examined, only 6 compounds had uniform accurate predictions, limiting the 

power of the evaluation.  Of the accurate compounds, there were 5 accurate BDDCS class 1 and 

0 accurate class 2 compounds (the 6th accurate compound was class 3) supporting the hypothesis 

that class 1 drugs would have more accurate predictions (1).  Based on this dataset it appears that 

less lipophilic, lower intrinsic clearance, and lower protein binding compounds have more 

accurate predictions.  The intrinsic clearance finding agrees with the idea of CLint dependent 

underprediction mentioned earlier, and the protein binding finding agrees with previous studies 

concluding that highly bound compounds have more inaccuracy (24, 25).  It will be useful to 

reevaluate these trends as more uniform, accurate data are generated for compounds.  

 

Conclusions 

 This investigation highlights the interlaboratory variability in generated CLint values and 

the need for consistent and improved methodologies.  Compounds with lower rotatable bond 

counts and therefore higher permeability had more variability, perhaps due to experimental 

differences in incubation shaking and the role of the unstirred water layer.  Compounds with 

uniform predictions typically had higher CLint, in vivo values and uniform underpredictions, 

confirming a lack of mechanistic understanding with IVIVE; while compounds with non-

uniform predictions typically had lower CLint, in vivo values, reaffirming the current experimental 

challenges for compounds falling within this clearance range.  While only a limited number of 

uniform predictions were accurate, lipophilicity, intrinsic clearance, and protein binding may be 

determinants of accurate IVIVE. 
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CHAPTER 8:  Conclusions 

 Clearance is a crucial pharmacokinetic parameter that is further linked to drug exposure, 

half life, and dosing regimen.  Accurately predicting the hepatic clearance of compounds is 

necessary to reduce the cost and time associated with the current drug discovery and 

development process, and is commonly done using IVIVE.  However as discovered in this 

dissertation research, there is high error surrounding these IVIVE predictions and new 

mechanisms are needed to more fully understand the clearance process. 

In Chapter 3 we found high percentages of prediction inaccuracies (based on whether 

predictions fell more than two fold outside of their observed clearance values), with human 

microsome data having 66.8% inaccuracy and human hepatocyte data having 66.5% inaccuracy.  

Since compounds with poor IVIVE are typically substrates for transporters, we hypothesized that 

BDDCS class 1 drugs that appear to overwhelm transporter effects, would have more accurate 

predictions than BDDCS class 2 drugs.  While this was true with class 1 drugs being 62.3% 

inaccurate and class 2 drugs being 81.9% inaccurate, there was still high inaccuracy in both 

cases.  We also found that highly protein bound drugs in both classes had high inaccuracy 

(81.3% of highly protein bound class 1 drugs and 85.7% of highly protein bound class 2 drugs 

were inaccurate).  These results highlighted that IVIVE must be improved through a better 

understanding of clearance mechanisms since traditional in vitro methods often yield inaccurate 

predictions and utilizing BDDCS class currently cannot distinguish between accurate and 

inaccurate predictions.   

As discussed in Chapter 4, groups have also suggested that IVIVE error increases with 

increasing in vivo CLint due to endogenous cofactor depletion or permeability limitation for 

example.  While this trend is important for understanding the limitations of in vitro systems, CLH 
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is the parameter that must be estimated for first-in-human dose predictions and we found a 

similar trend of CLH-dependent underprediction.  The majority of high extraction ratio drugs 

were not predicted to have high or even intermediate extraction ratios.  This study again 

highlighted a need for improved prediction methodologies as the underprediction could be due to 

CLint error, errors in protein binding measurements or the understanding of protein-facilitated 

uptake, or yet to be determined mechanisms. 

In Chapter 5 we propose an innovative hypothesis called a transporter-induced protein-

binding shift to help mitigate IVIVE error and provide a new explanation for protein-facilitated 

uptake.  In Chapter 2 we discussed previous explanations of protein-facilitated uptake that 

included a specific albumin receptor on the hepatocyte surface, the rate-limiting dissociation of 

ligand from the albumin-ligand complex, the rate-limiting diffusion of ligand through the 

unstirred water layer, and more general interactions with the hepatocyte cell surface.  None of 

these hypotheses considered the role of hepatic uptake transporters.  With the TIPBS hypothesis, 

high affinity binding to these transporters, such as OATPs, may change the equilibrium of the 

nonspecific binding between drugs and plasma proteins, leading to higher clearance than 

currently predicted as depicted in Figure 8.1.  Using rat hepatocytes in incubations with protein-

free buffer and 100% plasma, the uptake of two lower protein binding OATP substrates, 

pravastatin and rosuvastatin, and two higher protein binding OATP substrates, atorvastatin and 

pitavastatin was measured.  Decreased Km,u values and increased CLint values were seen in the 

plasma incubations for the highly bound compounds, while more similar values were found 

between incubations for the lower binding compounds.  These results supported our new 

hypothesis and help mitigate the IVIVE underprediction previously seen for highly bound 

transporter substrates. 
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Figure 8.1:  A transporter-induced protein-binding shift may lead to greater uptake, and 
therefore greater clearance, than currently predicted. 
 

We hypothesize that a TIPBS can occur with any type of plasma protein and anywhere in 

the body where there is interplay between proteins, cells, and transporters.  In Chapter 6 we used 

HEK293 cells overexpressing OATP1B1 and OATP1B3 in protein-free buffer and 100% human 

plasma incubations to explore the uptake of four OATP substrates (pravastatin, rosuvastatin, 

repaglinide and pitavastatin).  Here any shifts that occur would be due to the overexpression of 

transporters, not the hepatocyte cell surface.  We again saw decreased Km,u values and increased 

CLint values as plasma protein binding increased, also supporting the idea of a transporter-

induced protein binding shift, where high protein binding may not limit the uptake of compounds 

that have high affinity for transporters. 

Finally, in Chapter 7 we examined trends in clearance prediction accuracy using 

physiochemical and pharmacokinetic parameters.  When trying to determine which drugs have 

accurate IVIVE results and which do not, it was noted that there can be large variability in the 

predictions for the same drug.  Data for 50 compounds were compiled and coefficients of 

variation were as high as 99.8% for individual compounds.  Examining median values, 

compounds with a lower number of rotatable bonds had more variability, suggesting that perhaps 

differences in experimental procedures (such as the amount of shaking during incubation) could 

yield different results.  Prediction uniformity was also examined and compounds with uniform 

underpredictions had higher CLint, in vivo values, while those with non-uniform predictions 
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typically had lower CLint, in vivo values, highlighting the experimental challenges with low 

turnover compounds.  Finally, based on the small number of compounds that were uniformly 

predicted accurately, less lipophilic, lower intrinsic clearance, and lower protein binding 

compounds yielded more accurate clearance predictions (Figure 8.2), which may provide 

confidence in IVIVE predictions for new compounds with these characteristics. 

 

Figure 8.2:  Compounds with lower lipophilicity (logD <1.0), lower intrinsic clearance (CLint, in 

vivo <100), and lower protein binding (fu,p  ≥ 0.1) have more accurate predictions. 
 
 This thesis sheds light on the current errors seen with IVIVE.  Highly protein-bound 

drugs and those with high extraction ratios in particular were found to have high prediction 

errors.  There was also often high inter-laboratory variability in the predictions for the same 

drug.  We propose the concept of a transporter-induced protein binding shift, which reevaluates 

the role of protein-binding in IVIVE.  Based on our findings, we suggest that when evaluating 

highly protein bound substrates of transporters, assays should be conducted with 100% plasma to 

more accurately capture the true in vivo clearance.  We also found that compounds with higher 

lipophilicty, higher intrinsic clearance, or higher protein binding may need additional 

experiements beyond the traditional IVIVE to accurately estimate clearance.  These ideas as well 

as additional novel hypotheses are needed to continue to improve hepatic clearance predictions. 
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Appendix Table 1:  Compiled IVIVE predictions and BDDCS classifications 
 

Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

Brown et al. 
(16) 

      

(Hepatocytes)       
 Furosemide 0.91 162 178.02 4 0.022 
 Ketoprofen 4.7 129 27.45 2 0.018 
 Mephenytoin 3.6 64 17.78 2 0.714 
 Timolol 4.4 77 17.50 1 0.476 
 Metoprolol 4.3 75 17.44 1 0.788 
 Lorazepam 0.95 14 14.74 1 0.090 
 Tolbutamide 0.38 4.9 12.89 2 0.067 
 Gemfibrozil 5.5 67 12.18 2 0.055 
 Propranolol 39 454 11.64 1 0.157 
 Terfenadine 4136 43333 10.48 2 0.030 
 Dextromethorphan 172 1482 8.62 1 0.284 
 Naproxen 1.4 11 7.86 2 0.018 
 Imipramine 49 380 7.76 1 0.094 
 Lidocaine 21 157 7.48 1 0.337 
 Ibuprofen 12 80 6.67 2 0.018 
 Diltiazem 19 125 6.58 1 0.220 
 Triazolam 11 66 6.00 1 0.132 
 Diclofenac 98 561 5.72 2 0.018 
 Oxazepam 6.9 34 4.93 2 0.045 
 Flunitrazepam 4.5 20 4.44 1 0.282 
 Nifedipine 146 597 4.09 2 0.068 
 Quinidine 18 61 3.39 1 0.149 
 S-Warfarin 1.9 6.1 3.21 2 0.018 
 Diazepam 6.6 18 2.73 1 0.040 
 Desipramine 74 167 2.26 1 0.188 
 Bufuralol 45 99 2.20 1 0.238 
 Propofol 2773 5052 1.82 2 0.016 
 Alprazolam 2.1 3.7 1.76 1 1.000 
 Midazolam 200 314 1.57 1 0.076 
 Chlorpromazine 188 267 1.42 1 0.043 
 Methylprednisolone 33 45 1.36 1 0.220 
 Antipyrine 0.67 0.69 1.03 1 0.970 
 Caffeine 2.1 2 0.95 1 0.651 
 Prednisolone 30 27 0.90 1 0.100 
 Theophylline 2.6 2.1 0.81 1 0.530 
 Naloxone 284 200 0.70 1 0.459 
 Codeine 35 19 0.54 1 0.930 
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

Hallifax et al. 
(17) 

      

(Microsomes)       
 Prochlorperazine 199 29240 146.93 1 0.003 
 Theophylline 0.03 2.61 87.00 1 0.53 
 Felodipine 98 4300 43.88 2 0.003 
 Mianserin 34.6 1463 42.28 1 0.14 
 FK1052 40 1600 40.00 - 0.021 
 Amitriptyline 13 490 37.69 1 0.058 
 Clozapine 4.4 160 36.36 2 0.051 
 Propranolol 7.8 267 34.23 1 0.14 
 Mexiletine 0.77 26 33.77 1 0.39 
 Lidocaine 3.1 82.1 26.48 1 0.33 
 Methoxsalen 38 1000 26.32 2 0.13 
 Promazine 62.8 1595 25.40 1 0.029 
 Phenytoin 0.16 4 25.00 2 0.12 
 Labetalol 18.4 450 24.46 1 0.32 
 Ondansetron 1.7 31.8 18.71 1 0.27 
 Imipramine 18 318 17.67 1 0.13 
 Promethazine 76.3 1318 17.27 1 0.023 
 Lorcainide 48 710 14.79 1 0.30 
 Phenacetin 42.3 615 14.54 2 0.60 
 Dofetilide 0.4 4.5 11.25 3 0.36 
 Quinidine 3.2 34.2 10.69 1 0.15 
 Warfarin 0.49 4.5 9.18 2 0.005 
 Indinavir 16 130 8.13 2 0.39 
 Prednisone 2.6 21 8.08 2 0.10 
 Omeprazole 67 520 7.76 1 0.068 
 Desipramine 16 118 7.38 1 0.25 
 Ibuprofen 8.2 59.1 7.21 2 0.015 
 Nilvadipine 1200 8400 7.00 2 0.016 
 FK480 51 340 6.67 - 0.008 
 Glyburide 57.9 385 6.65 2 0.004 
 Caffeine 0.43 2.82 6.56 1 0.65 
 Trimipramine 205 1344 6.56 2 0.051 
 Buprenorphine 449 2938 6.54 1 0.040 
 Clomipramine 192 1047 5.45 1 0.022 
 Fluphenazine 302 1581 5.24 2 0.012 
 Dexamethasone 2.9 14 4.83 1 0.34 
 Ketamine 28.6 138 4.83 1 0.59 
 Antipyrine 0.14 0.6 4.29 1 0.97 
 Diclofenac 108 418 3.87 2 0.014 
 Methohexital 47 180 3.83 1 0.39 
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

 Diltiazem 40.6 143 3.52 1 0.20 
 Metoprolol 18 62.2 3.46 1 0.80 
 Fenoprofen 13.5 34.3 2.54 2 0.018 
 Flunitrazepam 5 12.7 2.54 1 0.28 
 Propafenone 133 328 2.47 2 0.059 
 Alprenolol 48.5 117 2.41 1 0.27 
 Tolbutamide 1.2 2.82 2.35 2 0.16 
 Chlorpheniramine 2 4.62 2.31 1 0.30 
 Gemfibrosil 30.1 68.4 2.27 2 0.036 
 Tenoxicam 1.6 3.33 2.08 1 0.013 
 Verapamil 193 310 1.61 1 0.12 
 Bepridil 992 1583 1.60 1 0.005 
 Nicardipine 1200 1900 1.58 1 0.068 
 Amobarbital 0.89 1.4 1.57 1 0.26 
 Diazepam 10 15.3 1.53 1 0.036 
 Zolpidem 23.1 31.9 1.38 1 0.17 
 Chlorpromazine 208 287 1.38 1 0.053 
 Bupivacaine 83 110 1.33 1 0.068 
 Tenidap 7.9 8.3 1.05 2 0.001 
 Alprazolam 2 2.08 1.04 1 0.64 
 Risperidone 43.3 43 0.99 1 0.17 
 YW796 15 14 0.93 - 0.63 
 Sildenafil 121 89.8 0.74 1 0.094 
 Triazolam 43.5 30.6 0.70 1 0.17 
 Domperidone 520 275 0.53 2 0.060 
 Trazodone 65.4 32.3 0.49 2 0.061 
 Midazolam 708 134 0.19 1 0.072 
 Glimepiride 35.4 5.1 0.14 2 0.14 
       

Hallifax et al. 
(17) 

      

(Hepatocytes)       
 Prochlorperazine 45.6 29240 641.23 1 0.003 
 Furosemide 0.91 84.9 93.30 4 0.022 
 Buprenorphine 40 2938 73.45 1 0.040 
 Mianserin 22.3 1463 65.61 1 0.14 
 Fluoxetine 5.3 228 43.02 1 0.060 
 Levoprotiline 8.1 261 32.22 1 0.19 
 Labetalol 16.4 450 27.44 1 0.32 
 Promazine 64.6 1595 24.69 1 0.029 
 Fluphenazine 69.9 1581 22.62 2 0.012 
 Glyburide 17.2 385 22.38 2 0.004 
 Phenacetin 36.2 615 16.99 2 0.60 
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

 Montelukast 96.3 1503 15.61 2 0.001 
 Lorazepam 1 14.2 14.20 1 0.090 
 Promethazine 101 1318 13.05 1 0.023 
 Metoprolol 5.3 62.2 11.74 1 0.80 
 Cyclosporin A 13.5 152 11.26 2 0.040 
 Flumazenil 16.3 183 11.23 1 0.52 
 Timolol 4.4 49.3 11.20 1 0.48 
 Trimipramine 138 1344 9.74 2 0.051 
 Clomipramine 109 1047 9.61 1 0.022 
 Verapamil 33.4 310 9.28 1 0.12 
 Propranolol 29.2 267 9.14 1 0.14 
 Temazepam 5.7 51.4 9.02 1 0.027 
 Diltiazem 16 143 8.94 1 0.20 
 Ondansetron 3.9 31.8 8.15 1 0.27 
 Clozapine 20.8 160 7.69 2 0.051 
 Imipramine 42.8 318 7.43 1 0.13 
 Tolbutamide 0.38 2.82 7.42 2 0.16 
 Glipizide 7.1 50.3 7.08 2 0.020 
 Ketoprofen 11 77.5 7.05 2 0.017 
 Prazosin 6.2 39.7 6.40 1 0.085 
 Diphenhydramine 16 94.2 5.89 1 0.19 
 Oxazepam 6.9 38.5 5.58 2 0.045 
 Lidocaine 15.3 82.1 5.37 1 0.33 
 Diclofenac 86.8 418 4.82 2 0.014 
 Bepridil 337 1583 4.70 1 0.005 
 Indomethacin 27.1 126 4.65 2 0.020 
 Propafenone 76.4 328 4.29 2 0.059 
 Naproxen 1.4 5.86 4.19 2 0.018 
 Oxaprozin 24.4 100 4.10 2 0.001 
 Zolpidem 8 31.9 3.99 1 0.17 
 Sildenafil 24.4 89.8 3.68 1 0.094 
 Diflunisal 9.9 34.3 3.46 2 0.005 
 Ketamine 40.5 138 3.41 1 0.59 
 Bupivacaine 32.6 110 3.37 1 0.068 
 Triprolidine 39.6 130 3.28 1 0.10 
 Domperidone 88.1 275 3.12 2 0.060 
 Ritonavir 30.5 86.1 2.82 2 0.015 
 Flunitrazepam 4.5 12.7 2.82 1 0.28 
 Morphine 64.6 179 2.77 1 0.77 
 Gemfibrosil 24.9 68.4 2.75 2 0.036 
 Desipramine 45.3 118 2.60 1 0.25 
 Acetaminophen 2.5 6.28 2.51 1 0.79 
 Triazolam 12.3 30.6 2.49 1 0.17 
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

 Diazepam 6.6 15.3 2.32 1 0.036 
 Irbesartan 58.8 118 2.01 2 0.040 
 Quinidine 18 34.2 1.90 1 0.15 
 Trazodone 17.4 32.3 1.86 2 0.061 
 Alprenolol 64.5 117 1.81 1 0.27 
 Ibuprofen 32.6 59.1 1.81 2 0.015 
 Carvedilol 282 500 1.77 2 0.030 
 Oxprenolol 14.9 26.2 1.76 1 0.30 
 S-Warfarin 1.9 3.31 1.74 2 0.018 
 Chlorpromazine 182 287 1.58 1 0.053 
 Ranitidine 3 4.38 1.46 3 0.77 
 Bufuralol 45 64.5 1.43 1 0.24 
 Methylprednisolone 33 45 1.36 1 0.22 
 Scopolamine 19.6 26.7 1.36 1 0.88 
 Caffeine 2.1 2.82 1.34 1 0.65 
 Nifedipine 146 196 1.34 2 0.068 
 Fenoprofen 27.4 34.3 1.25 2 0.018 
 Cimetidine 3.4 4.21 1.24 3 0.90 
 Pindolol 7.8 9.58 1.23 1 0.55 
 Metoclopramide 10 11.6 1.16 1 0.76 
 Betaxolol 7.4 8.58 1.16 1 0.56 
 Granisetron 29.7 33.5 1.13 1 0.70 
 Acebutolol 5.1 5.33 1.05 1 0.96 
 Theophylline 2.6 2.61 1.00 1 0.53 
 Alprazolam 2.1 2.08 0.99 1 0.64 
 Midazolam 138 134 0.97 1 0.072 
 Prednisolone 30 27.1 0.90 1 0.10 
 Antipyrine 0.67 0.6 0.90 1 0.97 
 Etodolac 81.2 69.9 0.86 2 0.020 
 Glimepiride 9.4 5.1 0.54 2 0.14 
 Codeine 35 18.9 0.54 1 0.93 
 Chlorpheniramine 9.4 4.62 0.49 1 0.30 
 Nadolol 7.7 3.48 0.45 3 0.97 
 Tenoxicam 8.8 3.33 0.38 1 0.013 
 Carbamazepine 5.9 1.32 0.22 2 0.31 
       

Ito et al. (18)       
(Microsomes)       

 Theophylline 0.033 3.5 106.06 1  
 Felodipine 98 4300 43.88 2  
 FK1052 40 1600 40.00 -  
 Amitriptyline 13 490 37.69 1  
 r-Warfarin 0.15 5.4 36.00 2  
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

 Mexiletine 0.77 26 33.77 1  
 Methoxsalen 38 1000 26.32 2  
 Diphenhydramine 2 52 26.00 1  
 Phenytoin 0.16 4 25.00 2  
 Propafenone 160 4000 25.00 2  
 Ketamine 26 550 21.15 1  
 Ondansetron 1.7 33 19.41 1  
 Diclofenac 35 630 18.00 2  
 Lidocaine 3.1 55 17.74 1  
 Imipramine 18 310 17.22 1  
 Chlorpromazine 24 370 15.42 1  
 Verapamil 120 1800 15.00 1  
 Lorcainide 48 710 14.79 1  
 Clozapine 4.4 59 13.41 2  
 Dofetilide 0.4 4.5 11.25 3  
 Tenidap 7.9 80 10.13 2  
 Ibuprofen 8.2 83 10.12 2  
 Desipramine 16 150 9.38 1  
 Warfarin 0.49 4.5 9.18 2  
 Caffeine 0.43 3.5 8.14 1  
 Indinavir 16 130 8.13 2  
 Prednisone 2.6 21 8.08 2  
 Zolpidem 20 160 8.00 1  
 Omeprazole 67 520 7.76 1  
 Nilvadipine 1200 8400 7.00 2  
 Quinidine 3.2 22 6.88 1  
 FK480 51 340 6.67 -  
 Midazolam 44 270 6.14 1  
 s-Warfarin 1 5.7 5.70 2  
 Dexamethasone 2.9 14 4.83 1  
 Methohexital 47 180 3.83 1  
 Propranolol 90 340 3.78 1  
 Hexobarbital 2.2 8.2 3.73 1  
 Diltiazem 81 300 3.70 1  
 Antipyrine 0.14 0.51 3.64 1  
 Diazepam 4.1 13 3.17 1  
 Triazolam 13 38 2.92 1  
 Phenacetin 19 46 2.42 2  
 Flunitrazepam 5 11 2.20 1  
 Diazepam 10 21 2.10 1  
 Tolbutamide 1.2 2 1.67 2  
 Nicardipine 1200 1900 1.58 1  
 Amobarbital 0.89 1.4 1.57 1  
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

 Alprazolam 2 3.1 1.55 1  
 Metoprolol 18 26 1.44 1  
 Tenoxicam 1.6 2.2 1.38 1  
 YW796 15 14 0.93 -  
       

McGinnity et 
al. (19) 

      

(Hepatocytes)       
 Imipramine 21 113 5.38 1  
 Fluoxetine 2.6 13 5.00 1  
 Desipramine 7.9 30 3.80 1  
 Propranolol 26 80 3.08 1  
 Morphine 63 180 2.86 1  
 Omeprazole 4.5 12 2.67 1  
 Ondansetron 3.7 8.4 2.27 1  
 Metoprolol 19 37 1.95 1  
 Zileuton 5.5 8.6 1.56 2  
 Doxepin 34 47 1.38 1  
 Bepridil 5.3 7.2 1.36 1  
 Ranitidine 2.6 3.4 1.31 3  
 Verapamil 46 60 1.30 1  
 Scopolamine 19 24 1.26 1  
 Diltiazem 24 30 1.25 1  
 Diphenhydramine 16 19 1.19 1  
 Cimetidine 3.2 3.8 1.19 3  
 Triprolidine 11 13 1.18 1  
 Triazolam 2.6 2.9 1.12 1  
 Acebutolol 4.8 5.2 1.08 1  
 Granisetron 24 24 1.00 1  
 Nifedipine 15 15 1.00 2  
 Clozapine 16 12 0.75 2  
 Betaxolol 6.6 4.8 0.73 1  
 Pindolol 7.4 5.3 0.72 1  
 Cyclosporin A 9.2 6.1 0.66 2  
 Bromocriptine 98 60 0.61 1  
 Prazosin 6.1 3.1 0.51 1  
 Diazepam 0.8 0.4 0.50 1  
 Dextromethorphan 20 8.6 0.43 1  
 Lorazepam 2.6 1.1 0.42 1  
 Ethinylestradiol 19 7.4 0.39 1  
 Bisoprolol 4.2 1.4 0.33 3  
 Isradipine 47 13 0.28 2  
 Midazolam 37 9.9 0.27 1  
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

 Caffeine 8.7 2.3 0.26 1  
 Temazepam 5.3 1.4 0.26 1  
 Ritonavir 5.5 1.3 0.24 2  
 Codeine 61 12 0.20 1  
 Chlorpheniramine 7.4 1.4 0.19 1  
 Carvedilol 93 15 0.16 2  
 Propofol 283 24 0.08 2  
 Carbamazepine 5.3 0.4 0.08 2  
 Naloxone 570 37 0.06 1  
       

Obach et al. 
(20) 

      

(Microsomes)       
(fu,B and fu,inc)       

 Zolpidem 0.5 5.7 11.40 1 0.105 
 Ibuprofen 0.2 1.5 7.50 2 0.018 
 Tolbutamide 0.07 0.36 5.14 2 0.073 
 Diclofenac 1.6 7.6 4.75 2 0.009 
 Diphenhydramine 2.2 9.5 4.32 1 0.338 
 Warfarin 0.02 0.08 4.00 2 0.018 
 Methoxsalen 4.5 18 4.00 2 0.134 
 Dexamethasone 1 3.8 3.80 1 0.344 
 Tenidap 0.03 0.1 3.33 2 0.001 
 Diltiazem 3.6 12 3.33 1 0.220 
 Diazepam 0.2 0.6 3.00 1 0.018 
 Amitriptyline 4.2 12 2.86 1 0.058 
 Hexobarbital 1.4 3.6 2.57 1 0.530 
 Quinidine 1.4 2.7 1.93 1 0.141 
 Imipramine 6.6 12 1.82 1 0.091 
 Lorcainide 9.9 18 1.82 1 0.195 
 Clozapine 1.9 2.9 1.53 2 0.057 
 Propafenone 13 19 1.46 2 0.057 
 Verapamil 13 19 1.46 1 0.130 
 Methohexital 11 16 1.45 1 0.386 
 Prednisone 3.4 4.9 1.44 2 0.301 
 Triazolam 3.3 4.7 1.42 1 0.161 
 Desipramine 8.8 12 1.36 1 0.188 
 Ketamine 15 20 1.33 1 1.073 
 Chlorpromazine 8.6 11 1.28 1 0.064 
 Amobarbital 0.32 0.35 1.09 1 0.260 
 Tenoxicam 0.03 0.03 1.00 1 0.013 
 Midazolam 9.4 8.7 0.93 1 0.094 
 Alprazolam 0.95 0.76 0.80 1 0.410 
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

Obach et al. 
(20) 

      

(Microsomes)       
(fu,B)       

 Zolpidem 0.3 5.7 19.00 1 0.105 
 Amitriptyline 0.8 12 15.00 1 0.058 
 Diazepam 0.04 0.6 15.00 1 0.018 
 Diphenhydramine 0.7 9.5 13.57 1 0.338 
 Tenidap 0.01 0.1 10.00 2 0.001 
 Clozapine 0.3 2.9 9.67 2 0.057 
 Warfarin 0.01 0.08 8.00 2 0.018 
 Ibuprofen 0.2 1.5 7.50 2 0.018 
 Imipramine 1.6 12 7.50 1 0.091 
 Chlorpromazine 1.5 11 7.33 1 0.064 
 Prednisone 0.8 4.9 6.13 2 0.301 
 Quinidine 0.5 2.7 5.40 1 0.141 
 Tolbutamide 0.07 0.36 5.14 2 0.073 
 Diclofenac 1.6 7.6 4.75 2 0.009 
 Desipramine 2.8 12 4.29 1 0.188 
 Methoxsalen 4.3 18 4.19 2 0.134 
 Diltiazem 2.9 12 4.14 1 0.220 
 Dexamethasone 1 3.8 3.80 1 0.344 
 Hexobarbital 1.2 3.6 3.00 1 0.530 
 Propafenone 6.5 19 2.92 2 0.057 
 Lorcainide 6.7 18 2.69 1 0.195 
 Verapamil 9 19 2.11 1 0.130 
 Triazolam 2.7 4.7 1.74 1 0.161 
 Ketamine 12 20 1.67 1 1.073 
 Methohexital 9.9 16 1.62 1 0.386 
 Tenoxicam 0.02 0.03 1.50 1 0.013 
 Amobarbital 0.24 0.35 1.46 1 0.260 
 Alprazolam 0.64 0.76 1.19 1 0.410 
 Midazolam 8.8 8.7 0.99 1 0.094 
       

Obach et al. 
(20) 

      

(Microsomes)       
(no binding)       

 Diphenhydramine 1.9 9.5 5.00 1 0.338 
 Zolpidem 2.5 5.7 2.28 1 0.105 
 Prednisone 2.4 4.9 2.04 2 0.301 
 Hexobarbital 2.1 3.6 1.71 1 0.530 
 Ketamine 12 20 1.67 1 1.073 
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Author 
(System) 

Drug CL 
Predicted 

CL 
Observed 

Fold Dif BDDCS 
Class 

fu,B 

 Amitriptyline 8.2 12 1.46 1 0.058 
 Dexamethasone 2.6 3.8 1.46 1 0.344 
 Diltiazem 8.7 12 1.38 1 0.220 
 Methoxsalen 14 18 1.29 2 0.134 
 Desipramine 9.4 12 1.28 1 0.188 
 Imipramine 10 12 1.20 1 0.091 
 Lorcainide 15 18 1.20 1 0.195 
 Methohexital 15 16 1.07 1 0.386 
 Verapamil 18 19 1.06 1 0.130 
 Propafenone 19 19 1.00 2 0.057 
 Chlorpromazine 11 11 1.00 1 0.064 
 Quinidine 2.9 2.7 0.93 1 0.141 
 Clozapine 3.8 2.9 0.76 2 0.057 
 Alprazolam 1.5 0.76 0.51 1 0.410 
 Triazolam 10 4.7 0.47 1 0.161 
 Midazolam 19 8.7 0.46 1 0.094 
 Tolbutamide 0.86 0.36 0.42 2 0.073 
 Diclofenac 19 7.6 0.40 2 0.009 
 Amobarbital 0.9 0.35 0.39 1 0.260 
 Diazepam 2.1 0.6 0.29 1 0.018 
 Ibuprofen 6.2 1.5 0.24 2 0.018 
 Warfarin 0.46 0.08 0.17 2 0.018 
 Tenidap 5.9 0.1 0.02 2 0.001 
 Tenoxicam 1.6 0.03 0.02 1 0.013 
       

Riley et al. 
(21) 

      

(Microsomes)       
 Methoxsalen 43 1340 31.16 2  
 Phenacetin 9.9 212.5 21.46 2  
 Propranolol 16.3 284.5 17.45 1  
 Fluvastatin 75.4 1052 13.95 1  
 Propafenone 644.9 6650 10.31 2  
 Lorcainide 97.1 924 9.52 1  
 Diclofenac 183.8 1667.3 9.07 2  
 FK1052 182 1525 8.38 -  
 Ibuprofen 12.3 102.4 8.33 2  
 Phenytoin 0.5 4 8.00 2  
 Diphenhydramine 7.3 53.5 7.33 1  
 Zolpidem 17.9 115.5 6.45 1  
 Amitriptyline 94.3 516 5.47 1  
 Omeprazole 101 502.7 4.98 1  
 Tolbutamide 1.3 6.4 4.92 2  
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 Dexamethasone 3 13.6 4.53 1  
 Methohexital 57.6 207.4 3.60 1  
 Imipramine 106.6 330 3.10 1  
 Tenidap 26.2 80.4 3.07 2  
 Diltiazem 77.7 232.6 2.99 1  
 Metoprolol 6.8 20.2 2.97 1  
 Hexobarbital 2.9 8.3 2.86 1  
 Diazepam 11.8 28 2.37 1  
 Nilvadipine 3867 8123.4 2.10 2  
 Quinidine 10.7 22.1 2.07 1  
 Desipramine 81.8 160 1.96 1  
 Verapamil 553.6 935.3 1.69 1  
 Chlorpromazine 229.6 381.3 1.66 1  
 Clozapine 35.7 59 1.65 2  
 Prednisone 13.6 21.5 1.58 2  
 Triazolam 24.6 38.1 1.55 1  
 Amobarbital 1.2 1.4 1.17 1  
 Tenoxicam 2.2 2.2 1.00 1  
 Midazolam 183.7 163.2 0.89 1  
 Alprazolam 2.4 1.9 0.79 1  
 FK480 662 327.3 0.49 -  
 Nicardipine 13460 1806.7 0.13 1  
       

Riley et al. 
(21) 

      

(Hepatocytes)       
 FK1052 32.38 1570 48.49 - 0.021 
 Troglitazone 306.36 10000 32.64 2 0.0017 
 Montelukast 96.27 1495.15 15.53 2 0.0009 
 Cyclosporin A 13.46 155.27 11.54 2 0.04 
 FK079 56.38 636 11.28 - 0.0288 
 Lorazepam 1.16 12.38 10.67 1 0.094 
 Sildenafil 24.35 214.29 8.80 1 0.04 
 Glipizide 7.13 60.52 8.49 2 0.02 
 Nifedipine 32.6 253.7 7.78 2 0.05 
 Prazosin 6.16 42.23 6.86 1 0.07 
 FK480 49.41 336 6.80 - 0.008 
 Naloxone 150.28 924.35 6.15 1 0.56 
 Midazolam 40.08 246.27 6.14 1 0.04 
 Indomethacin 27.13 145.77 5.37 2 0.02 
 Propranolol 59.2 291.87 4.93 1 0.12 
 Diazepam 6.41 31.29 4.88 1 0.012 
 Oxazepam 8.23 38.8 4.71 2 0.03 
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 Ketoprofen 22.44 103.95 4.63 2 0.02 
 Zidovudine 9.87 42.1 4.27 1 0.8 
 Oxaprozin 24.4 100.36 4.11 2 0.0007 
 Lidocaine 24.61 100.68 4.09 1 0.3 
 Furosemide 5.95 22.85 3.84 4 0.029 
 Fenoprofen 56.52 216.15 3.82 2 0.01 
 Quinidine 12.95 48.63 3.76 1 0.15 
 Diflunisal 9.86 34.8 3.53 2 0.0053 
 Timolol 6.55 22.75 3.47 1 0.4 
 Diclofenac 618.36 2083.46 3.37 2 0.0055 
 Triprolidine 39.61 133.33 3.37 - 0.1 
 Metoprolol 13.87 40.62 2.93 1 0.747 
 Ritonavir 30.51 86.26 2.83 2 0.0148 
 Phenacetin 76.01 212.5 2.80 2 0.594 
 Acetaminophen 2.53 6.71 2.65 1 0.79 
 Buspirone 613.8 1582 2.58 2 0.05 
 Gemfibrozil 325.82 773.37 2.37 2 0.005 
 Ondansetron 5.23 12.4 2.37 1 0.68 
 Irbesartan 58.75 131.31 2.24 2 0.04 
 Warfarin 3.69 8.22 2.23 2 0.018 
 Chlorpromazine 230.33 502.92 2.18 1 0.03 
 Carvedilol 281.58 521.97 1.85 2 0.03 
 Diltiazem 77.81 143.61 1.85 1 0.22 
 Prednisolone 35.54 59.22 1.67 1 0.26 
 Ranitidine 3 4.4 1.47 3 0.77 
 Methylprednisolone 37.08 52.17 1.41 1 0.23 
 Verapamil 278.92 388.33 1.39 1 0.115 
 Imipramine 92.57 125.59 1.36 1 0.1 
 Tolbutamide 6.91 8.99 1.30 2 0.04 
 Cimetidine 3.35 4.23 1.26 3 0.9 
 Granisetron 29.72 35.14 1.18 1 0.7 
 Ibuprofen 71.34 82.7 1.16 2 0.0182 
 Etodolac 81.2 82.84 1.02 2 0.02 
 Theophylline 1.67 1.68 1.01 1 0.4 
 Desipramine 127.16 124.92 0.98 1 0.17 
 Antipyrine 0.82 0.69 0.84 1 0.94 
 Caffeine 2.89 2.25 0.78 1 0.685 
 Pindolol 9.28 5.91 0.64 1 0.9 
 Tenoxicam 8.77 4.46 0.51 1 0.0164 
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(Hepatocytes)       
(serum)       

 Tolcapone 6.41 1650.32 257.46 2 0.0018 
 Mibefradil 41.3 4888.9 118.38 2 0.005 
 Felodipine 72.08 6111.11 84.78 2 0.004 
 Bosentan 0.67 42.1 62.84 2 0.02 
 Diltiazem 8.45 205.44 24.31 1 0.22 
 Oxazepam 1.52 36.94 24.30 2 0.03 
 Midazolam 25.74 599.04 23.27 1 0.04 
 Propranolol 21.67 388.75 17.94 1 0.1 
 Warfarin 0.34 6.02 17.71 2 0.018 
 Lorazepam 1.24 16.71 13.48 1 0.094 
 Diazepam 3.44 42.78 12.44 1 0.012 
 Theophylline 0.35 1.55 4.43 1 0.4 
 Caffeine 0.37 1.4 3.78 1 0.83 
 Antipyrine 0.23 0.6 2.61 1 0.94 
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