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Every electron crystallography experiment is fundamentally limited by radiation damage. Immediately as 

a molecular crystal is illuminated within a transmission electron microscope, it undergoes sustained 

bombardment with extremely damaging levels of ionizing radiation [1]. Electrons accelerated to 

relativistic speeds typically deposit quantities of energy per unit mass in the range of megagrays (MGy; 

106 J kg-1) [2] several orders of magnitude greater than the lethal Gy-scale doses (10 J kg-1) associated 

with nuclear disasters [3]. Thus, electron beam-induced radiolytic damage has long been heralded as the 

“fundamental limit” [4] constraining fields such as single-particle analysis [5], cryo-electron tomography 

[6], and electron crystallography [7]. 

 

Despite its crucial impact, little is known about the onset and progression of radiolysis in beam-sensitive 

molecular crystals. In electron crystallography, the primary metric used for assessing the extent of 

degradation induced by radiolysis is the disappearance of Bragg reflections in electron diffraction patterns 

[8]. Several previous studies have analyzed the radiolytic decay of Bragg reflections in organic and 

biomolecular crystals [9-12]. Critically, however, the scope of these analyses has mostly been limited to 

indirect observation via the back focal plane, and little is known about the concomitant changes in real 

space which drive the deterioration of Bragg peaks. Since accurate measurement of Bragg peak intensities 

is a key prerequisite to ab initio structure determination, a deeper understanding of radiolytic decay in 

molecular crystals is desired. Nevertheless, a simultaneous visualization of the effects of electron beam-

induced radiolysis—in both real space and reciprocal space—remains elusive. 

 

Here we apply low-dose scanning nanobeam electron diffraction [13, 14] to record simultaneous dual-

space snapshots of organic and organometallic nanocrystals at sequential stages of beam-induced 

radiolytic decay. We show that the underlying mosaic of coherently diffracting zones (CDZs) 

continuously undergoes spatial reorientation as a function of accumulating electron exposure, causing the 

intensities of many Bragg reflections to fade nonmonotonically (Figure 1). Furthermore, we demonstrate 

that repeated irradiation at a single probe position leads to the concentric propagation of radiolytic damage 

well beyond the initial point of impact. These results sharpen our understanding of molecular crystals as 

conglomerates of CDZs whose complex lattice structure deteriorates through a series of dynamic internal 

changes during illumination. [15] 
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Figure 1. Migration of coherently diffracting zones in biotin. (A) Maximum diffraction pattern across all 

scans in the time series. (B, C) Decay profiles of Bragg reflections undergoing (B) nonmonotonic (type 

2) decay and (C) monotonic (type 1) decay, corresponding to the peaks encircled in (B) red and (C) green 

in (A). (D-H) Horizontal montages of VDF images reconstructed by placing reciprocal-space virtual 

apertures around (D) all 68 Bragg reflections identified in (A), (E) 38 Bragg reflections undergoing 

nonmonotonic decay, (F) 30 Bragg reflections undergoing monotonic decay, (G) a single Bragg reflection 

undergoing nonmonotonic decay which is present in the first scan and transiently grows stronger, and (H) 

a single Bragg reflection undergoing nonmonotonic decay which first appears in the third scan. Each VDF 

image represents a consecutive 4D-STEM experiment. 
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