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Abstract

This study examines evidence of structural breaks in models of pre-
dictable components in stock returns related to state variables such as the
lagged dividend yield, Treasury bill rate, term spread and default premium.
We examine a large set of size- and industry-sorted portfolios of US stocks as
well as 18 international stock market portfolios and find systematic evidence
of breaks in the vast majority of portfolios. The breakpoints most frequently
identified in the US data are 1966, 1974, 1983 and 1990. The 1966 and 1974
breaks appear to have been driven by the T-bill rate and the default pre-
mium coefficients, while the 1983 break reflects changes in the coefficient on
the T-bill rate and the term spread and the 1990 break was driven by the
dividend yield and default premium coefficients. Our evidence also suggests
that, while the size of the predictable component in stock returns has come
down after the most recent break, many predictors continue to be significant.
Although in-sample predictability of returns was lower in the 1990s than in

some previous decades, it does not seem to have disappeared.



I. Introduction

Evidence of predictability in stock returns is well documented in empirical finance.!
Variables commonly used to predict stock returns in US and international data
include the dividend yield, the short term interest rate, and term and default
premia. Most studies assume a stable prediction model in which the coefficients on
the state variables do not change over time.

Recent empirical studies cast doubt upon the assumed stability in return fore-
casting models. In a forecasting model based on the dividend yield and earnings
yield, Lettau and Ludvigson (2001) find some evidence of instability in the second
half of the 1990s. Likewise, Goyal and Welch (2002) uncover instability in return
models based on the dividend yield when data from the 1990s is added to the
sample. Ang and Bekaert (2001) find that “the predictability patterns formerly
found in US data appear not to be robust to the addition of the last few years of
the 1990s”. While these papers thus identify a shift that appears to have occurred
some time during the 1990s, they do not determine the exact time of the break,
nor do they consider the possibility of earlier breaks or the time of their occur-
rence. However, if financial prediction models are subject to structural breaks,
the economic significance of return predictability can only be assessed provided we
determine how widespread breaks are both over time and across portfolios and the
extent to which such breaks affect the predictability of stock returns.

In this study we provide a systematic analysis of the stability of forecasting
models using a large data set of monthly stock returns, including both size-sorted
and industry-sorted portfolios of US stocks as well as 18 international portfolios.
We test for the presence of structural breaks in stock returns and characterize the
timing and nature of the breaks. We find evidence of breaks in the vast majority
of these portfolios. Further, our results indicate that the relationship between
particular state variables and stock returns may change substantially following a
break.

Our empirical experiments examine the predictive strength of models with and

1An incomplete list includes Ait-Sahalia and Brandt (2001), Bekaert and Hodrick (1992),
Brandt (1999), Campbell (1987), Campbell and Shiller (1988), Cochrane (1991), Fama and Schw-
ert (1977), Fama and French (1988), Ferson and Harvey (1991), French, Schwert and Stambaugh
(1987), Harvey (1989), Keim and Stambaugh (1986), Lamont (1998), Lettau and Ludvigson
(2001), Lewellen (2001), Pesaran and Timmermann (1995), Whitelaw (1994).



without breaks over different sub-samples. In general, our findings suggest that
predictability is very much a time-varying phenomenon. Empirical evidence of
predictability is not uniform over time and appears to be concentrated in certain
periods. The predictability suggested by R2-values based on long samples of returns
should be viewed as an historical average for predictability. In particular, we find
that (ex post) predictability was relatively high in the 1970s and 1980s and relatively
low in the 1960s and 1990s.

Although the evidence of breaks varies across the size- and industry-sorted
portfolios and across countries, we also find strong common components in the US
breaks. For the US portfolios, most breaks cluster around four periods, namely
1966, 1974, 1983 and 1990. Addressing each regressor separately yields additional
insights into the nature of the breaks identified in the full regression model and
suggests that the 1966 and 1974 breaks were driven by the T-bill rate and default
premium, while the 1983 break was driven by the T-bill rate and the term spread
and the 1990 break was driven by the dividend yield and default premium. There
does not appear to be the same commonality in the breaks identified in the inter-
national data, suggesting perhaps that the breaks occur in a local return factor.

Breaks or jumps in the parameters that relate security returns to state variables
could arise from a number of factors, such as major changes in market sentiments
or regime switches in monetary policies (e.g., from money supply targeting to
inflation targeting). Institutional changes or large macroeconomic shocks that give
rise to changes in economic growth or affect risk premia may also cause a break
in the financial return models. Similarly, if predictability of returns partly reflects
market inefficiencies and not just time-varying risk premia, then such predictive
relationships should disappear once discovered provided that sufficient capital is
allocated towards exploiting them. For example, Dimson and Marsh (1999) argue
that the small-cap premium disappeared in the UK stock market after it became
publicly known. These possibilities are important both because they introduce new
sources of risk and because they fundamentally affect the extent to which returns
are predictable.

Structural breaks, particularly when studied across a large set of portfolios,
therefore offer important clues to the sources of predictability in stock returns.
Several explanations have been proposed for this predictability, including inefficient

markets (Cutler, Poterba and Summers (1990)), time-varying risk premia (Kandel



and Stambaugh (1990), Campbell and Cochrane (1999)), data-snooping (Lo and
MacKinlay (1990)), small sample biases (Ang and Bekaert (2001), Goetzmann and
Jorion (1993), Hodrick (1992), Nelson and Kim (1993)) and incomplete learning
(Timmermann (1993)).

Predictability, though weaker during the 1990s, does not seem to have disap-
peared and many predictors remain statistically significant even after the most
recent break. This suggests that data-snooping or inefficient markets are unlikely
to fully explain predictability. In addition our evidence on the size and frequency
of breaks is sufficiently systematic to rule out small-sample noise as the explana-
tion. Given the empirical results, we address the concern of whether our tests are
likely to detect spurious breaks by conducting a simulation experiment using data
generating processes that exhibit time-varying conditional variance, persistent re-
gressors and relatively noisy errors. We find that the tests do not necessarily result
in over-sized tests and poor model selection even in the presence of time-varying
volatility and with highly persistent regressors. In contrast, time-varying risk pre-
mium models do not appear to be ruled out by our findings. If a break affects
the ability of the state-variables to predict the conditional covariance between in-
vestors’ intertemporal marginal rate of substitution and stock returns, then the
coefficients in a linear regression model for returns should also exhibit a break.
Likewise, incomplete learning stories are not ruled out by our findings since large
shifts in the parameters of the fundamentals process would require investors to re-
estimate their return forecasting models and could lead to breaks in the forecasting
model.

The remainder of the paper is organized as follows. Section II introduces the
breakpoint methodology applied in this study. Section III describes the US returns
data and presents empirical results of tests for breakpoints and structural stability
in size-sorted and industry-sorted portfolios of US stocks. Section IV describes the
international returns data and presents results of tests for breakpoints and struc-
tural stability in international data. Section V addresses the question of variation
in the predictive relationships documented in the literature and Section VI presents
the results of a Monte Carlo simulation experiment designed to investigate the sta-
tistical properties of our tests for structural instability. Section VII summarizes

our findings and outlines opportunities for additional study in this area.



II. Breaks in Financial Prediction Models

In the context of linear regression models many empirical studies have documented
the ability of a variety of economic variables to predict returns, at least within
sample.? For examples, see the references in footnote 1. To apply models of this
type in practice, parameters must be estimated using historic data of returns and
predictor variables. Besides determining which variables to include, a key decision
when estimating return forecasting models is how much data to use.

Determining the sample size for the return prediction model can be very im-
portant if the coefficients are not constant over time and including pre-break data
will lead to biased forecasts. For example, Brandt (1999, p. 1611) points out the
importance of stability in the relation between state variables and stock returns:
“Returns and forecasting variables must have a time-invariant Markov structure.
If the relation between returns and forecasting variables is time-varying... condi-
tional expectations cannot be estimated with conditional sample averages.” There
are good empirical and theoretical reasons for suspecting instability. In a very
thorough study of a large set of financial and macroeconomic time series, Stock
and Watson (1996) find breaks in the regression models for the majority of the

variables they consider.

A. Methodology

Some recent studies have considered breaks in the equity premium. Using a
Bayesian framework, Pastor and Stambaugh (2001) examine a long history of an-
nual returns on US stocks and find evidence of structural breaks in the equity
premium in the form of high posterior probabilities that breaks occurred during
certain months of the sample. As pointed out by Pastor and Stambaugh, detection
of breaks in the mean of stock returns is made extremely difficult by the very noisy
nature of stock market returns. Without conditioning (state) variables, tests for
structural breaks are therefore unlikely to have sufficient power to identify breaks

in the equity premium of an economically interesting size even if they truly oc-

2Brandt (1999) uses non-parametric kernel estimation methods to deal with functional form
misspecification in the context of return forecasting models. The sensitivity of these methods to
the presence of instability in the relation between state variables and stock returns has not yet
been studied.



curred. Pastor and Stambaugh deal with this problem in an ingenious way by
assuming that there is a concurrent relationship between the level of volatility and
the equity premium. Since it is easier to identify shifts in the volatility of returns,
this provides an instrument to identify the timing of the breaks. While the com-
bination of a Bayesian setup and this identifying assumption provides a way to
identify breaks, the drawback is of course that the number and timing of breaks in
the equity premium may be sensitive to the nature of prior beliefs.?

The approach and focus in this paper are very different from those in earlier
studies. First, as we are interested in breaks in the return forecasting models that
are now so widely used throughout finance, we test for breaks in the conditional
equity premium as a function of a set of commonly used state variables. Further-
more, we use the estimation framework for linear models with multiple structural
breaks developed by Bai and Perron (1998). This allows us to determine the num-
ber of breaks, confidence intervals for the time of their occurrence as well as the
value of the coefficients around the time of the breaks. By considering instruments
whose correlation with the equity premium is sufficiently strong to identify breaks
we therefore do not need to impose any identifying restrictions on our model. Of
course, this approach is also not without disadvantages and some of our results will
be quite noisy given the low predictive power typical of return prediction models.

Early breakpoint tests such as Chow (1960) proceeded under the assumption
that the time of the break was known and did not consider the possibility of mul-
tiple breaks. Tests were obtained under fairly strict assumptions such as indepen-
dent regressors and normally distributed and homoskedastic regression errors. In
the context of a model for stock returns these assumptions are very restrictive.
Predictor variables such as the lagged interest rate and dividend yield are highly
persistent. The regressors may themselves exhibit structural change over the his-
torical period examined and this may lead to false inference regarding a change in

the coefficients of the linear regression. The error terms of the regression may not

3Kim, Morley and Nelson (2000) also apply a Bayesian framework and test for a structural
break in a model of excess returns in which the equity premium responds to recurrent changes
in volatility. They find evidence of a structural break in the Markov switching variance process
in the early 1940s, but do not find evidence of breaks in the equity premium given the level of
volatility.

4Computations in this paper related to the Bai and Perron (1998, 2000) methodology were
carried out using Gauss programs made available by Pierre Perron.



be independent of the predictors, and it is well known that returns data exhibit
time-varying conditional variance.

Fortunately, recent advances in methods for estimating and testing models with
multiple structural breaks permit sufficiently flexible assumptions for our purpose.®
Suppose that (excess) returns at time ¢ + 1, Ret;,1, depend linearly on a set of
state variables, x;, but that the model is subject to K breaks occurring at times
(11, Ty, ..., Tk). This gives the model

B\xi+ep1, t=1,.,T

Box; + ey, t=T1+1,..,T5

R€tt+1 = (1)
BiXe + et t=Tx1+1,... Tk

| Broxe+ew1, t=Tx+1,..T

In many respects this is a simplified representation of the return generating
model and breaks may well occur over more than one period. Nevertheless, it can
be viewed as a useful approximation to more complicated representations of time-
variation in the parameters linking the state variables to stock returns. In fact,
some of the potential sources of breaks such as shifts in economic policy regimes,
large macroeconomic shocks or publication of predictable patterns are likely to lead
to rather sudden shifts in the parameters of the return forecasting model.

The key question is of course to determine the number of breaks, K, the time
of their occurrence, (11,75, ...,Tk), as well as estimating the parameters around
the time of the breaks, (87, B3, ..., Bxi1)".

Bai and Perron (1998) provide a least-squares method for optimally determin-
ing the unknown breakpoints as well as the resulting size of shifts in the param-

eter values. The basic principle involves searching over the possible K-partitions

®Andrews (1993) derives the distributions for tests of a single break with unknown timing.
These tests apply to a wide class of nonlinear models and permit temporally dependent data.
Andrews and Ploberger (1994) derive asymptotically optimal tests that apply to tests of a one-
time structural break in linear models as well as to tests of multiple breaks. Bai (1997a,b) develops
the asymptotic theory for a linear model with a single change point. The model allows for lagged
dependent variables and trending regressors and the regression errors may be dependent and
heteroskedastic.

6We adopt the convention that Tp = 1 and Tx 11 = T, where T is the total number of available
observations.



(11, Ty, ...,Tk) of the data to compute the minimizer of the sum of squared resid-
uals. For a set of K breakpoints, (11,75, ...,Tx) = {1}}, the coefficient estimates

Br,(1,y are chosen to minimize the sum of squared residuals

K+1 Tk

ST =3 > (Ret— By 1) - 2

k=1 t=Tr_1+1

The estimated break dates (Tl, TQ, - TK) are selected so as to satisfy

(Tl,TQ,...,TK) = arg min ST(Tla---;TK)a (3)

T1,13,...,Tk

where the minimization is over all partitions such that Ty — T,_; > @T. The
trimming percentage parameter m imposes a minimum length for the time between
breaks, 77T'. Choosing 7 in practice involves a trade-off between the ability to
detect regimes of relatively short length and the desire to avoid overfitting the
data and simply identifying ‘outliers’. While 77" in principle may take any value
greater than or equal to the number of regressors, in practice it is best to use
values significantly larger than this.” Given the estimated break dates {T]}, the

estimated regression coeflicients 3, are the least squares coefficients associated with

the partition comprised of the estimated break dates, i.e., Bk = Bk ()

B. Determining the number of breaks

Several types of hypothesis tests may be of interest when multiple breaks are consid-
ered. For the purposes of establishing whether breaks are present, we are interested
in testing the hypothesis of no breaks versus an alternative of K breaks, where K
could be any number greater than or equal to one. Once the presence of breaks has
been established, we are furthermore interested in establishing the exact number of
breaks. We consider both types of tests. For the first case Bai and Perron (1998)
propose a so-called sup F' test that considers the null hypothesis of no breaks versus
the alternative hypothesis that there are K breaks. To determine the number of
breaks we adopt the sequential SupF'(k + 1|k) test procedure proposed by Bai and
Perron which selects a model based on sequential tests of the null hypothesis of k&

breaks versus the alternative of k 4+ 1 breaks.

"Bai and Perron (2000) discuss computational and practical aspects of determining these

design parameters.



C. Breaks in the regressors

Hansen (2000) derives the large sample distributions of several test statistics for
structural breaks allowing for structural change in the marginal distribution of
the regressors. Hansen suggests a ‘fixed regressor bootstrap’ for determining the
critical values under the null hypothesis. This test therefore permits the most
general assumptions regarding the regressors and the distribution of the regression
errors. However, it does not permit multiple structural breaks in the regression
coefficients.®

The Bai and Perron (1998) methodology permits multiple breaks, and allows
quite general assumptions regarding the regressors and error terms. However, this
method does not permit arbitrary structural change in the regressors. Since we wish
to entertain the possibility of multiple breaks, we adopt the following methodology
in this study. We apply the method of Bai and Perron (1998) to determine the
number of breaks and their timing. We then apply the Hansen (2000) tests for a
single break as a robustness check on the results obtained using the Bai and Perron
(1998) method.?

In a recent paper that also tests for breaks in US stock returns, Rapach and
Wohar (2002) use the Hansen (2000) method sequentially to identify breaks, i.e.
they first test for a single break and then, if a break is identified, test for additional
breaks in the sub-samples identified by the first break. There are several differences
between this study and ours. Most importantly, we focus on documenting evidence
of breaks across a large set of size-, industry- and international portfolios, while
Rapach and Wohar’s study is limited to the S&P500 and the equal-weighted CRSP
portfolios. Furthermore, they use quarterly data while we use monthly data and
also focus on a very different set of regressors. These differences could be important
since relatively large data sets are required to identify breaks in financial return
predictions. Even so, consistent with our findings, Rapach and Wohar find evidence

of breaks in their return regressions.

8Computations related to the Hansen (2000) methodology were carried out using Gauss pro-

grams made available by Bruce Hansen.
9We find that results regarding the presence of at least one structural break are quite robust.

That is, in cases where a break is identified by the method of Hansen (2000) we tend to find at
least one break when the method of Bai and Perron (1998) is applied.



ITI. Breaks in US Stock Returns

We first consider returns on a variety of US stock market portfolios, focusing on
small and large firms as well as firms in different industries. Firms divided by size
and industry are likely to have different exposures to the sources that generate
breaks (e.g. large oil price shocks affecting economic growth or shifts in monetary
policy). A more complete picture of the frequency and sources of breaks can there-

fore be obtained by considering a large cross-section of stock market portfolios.

A. Data

Monthly value-weighted index returns for size-sorted decile portfolios of US equities
were obtained from the Center for Research in Security Prices (CRSP). Returns
are inclusive of dividends. Size-sorted decile portfolios are formed based on an
annual ranking of all New York Stock Exchange (NYSE) companies by market
capitalization. The decile portfolios are in increasing order of capitalization, so
that Decile 1 represents the smallest-cap stocks and Decile 10 the largest. The
study also examines value-weighted and equal-weighted index returns on the entire
CRSP universe. Monthly equal-weighted returns for 12 industry-sorted portfolios
were obtained from Kenneth French’s Data Library.!? The industry portfolios are
rebalanced annually based on primary SIC code classification. All returns are
calculated in excess of a one-month risk-free rate taken from the CRSP Risk Free
Rates File and based on average prices.

We focus on four predictor variables that are prevalent in the empirical liter-
ature on predictability of returns. These variables are the lagged dividend yield
(used, e.g., by Campbell and Shiller (1988), Fama and French (1988), Ferson and
Harvey (1991)); nominal interest rate (Fama and French (1988), Fama and Schw-
ert (1977), Ferson and Harvey (1991)); term spread (Campbell (1987), Fama and
French (1988), Ferson and Harvey (1991)) and default spread (Fama and French
(1988), Ferson and Harvey (1991), Keim and Stambaugh (1986)).

The first instrument considered is the lagged dividend yield for the CRSP value-

10 Available at http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html.
We use equal-weighted industry portfolio returns in order not to replicate the size effects from
the decile portfolios. However, the breakpoint results are robust to using value-weighted industry
portfolios instead.



weighted index calculated as dividends paid over the preceding 12-month period
scaled by the current value of the stock price index. As our second instrument we
use the lagged one-month Treasury bill rate. The third instrument is the difference
between the yield on a five-year discount bond and the yield on the one-month
Treasury bill. Five-year discount bond yields were obtained from the CRSP Fama-
Bliss Discount Bond Yield file. The final instrument considered is the default
premium or quality spread, defined as the difference in yields between Moody’s Baa
and Aaa rated bonds. The data sample ranges from July, 1952 through December,
1999, for a total of 570 observations.

Table 1 presents summary statistics for excess returns on US size-sorted and
industry-sorted portfolios as well as summary statistics for the instruments included
in the model. Small cap stocks and the telecommunications, business equipment
and healthcare industries had the highest mean excess returns in the sample.

To confirm that our data displays properties similar to those found in earlier
studies on return predictability, Table 2 reports full sample coefficient estimates. A
constant is always included in the regressions but is not reported to preserve space.
In the ‘all’ model that includes all four regressors the dividend yield and the term
spread are almost never statistically significant, while conversely the T-bill rate
and default premium have significant coefficients for all portfolios. Interpretation
of the statistical significance and even the sign of individual coefficients is of course
made difficult in these regressions by the correlation between regressors. To deal
with this we also report single-variable regression results. These suggest that the
full-sample evidence of predictability from the dividend yield is rather weak and
that only a third of the portfolios generate significant coefficients on the default
premium. Interestingly, the term spread is now significant for the vast majority of

portfolios and the T-bill rate continues to be significant for most portfolios.

B. Model with All Instruments

In our implementation we allow all coefficients to change at each break since there
is no strong reason to believe that the coefficient on any of the regressors should

be immune from shifts. The model is therefore

10



Rett = ﬁ()k + ﬁlkDiUt—l + ﬁQkaZ'llt—l + ﬁngpTeadt_l + ﬁ4kD€ft—1 + &¢
t o= Toy+1,. T k=1, K+1, (4)

where Ret, represents the return on the portfolio in question during month ¢, Div, 4
is the lagged dividend yield , T'bill;_; is the lagged one month Treasury Bill rate,
Spread;_; is the lagged term spread and Def; ; is the lagged default premium.

Table 3 presents results of tests for the number of structural breaks when all
instruments are included in the basic model set forth in equation (4). These results
set the trimming percentage, 7, to 15 percent of the total sample. This corresponds
to a minimum window of 85 months (7 years and one month) between breaks.
There is strong overall evidence of structural breaks in the models for US returns.
The SupF' (k) tests reject the null hypothesis in nearly every case for k = 1,2,3.!1
Exceptions include the value-weighted CRSP portfolio, decile 9, and the utility and
shops industries. The sequential test statistics tend to be significant for at least the
SupF'(2|1) and SupF(3|2) tests and the sequential method selects a model with
two or three breaks in many cases and at least one break in all but the above-
mentioned four portfolios. For these four portfolios, the SupF'(2|1) test favors two
breaks over one except for the utilities industry. These results suggest that for
those portfolios where there is not strong evidence of a single break, there is some
evidence of two breaks, with a structure that perhaps makes a single break difficult
to detect.!? Finally, the Hansen (2000) tests, robust to arbitrary structural change
in the marginal distribution of the regressors, identify a break in nearly all of the
portfolios.

For each portfolio the estimated break dates and 90 percent confidence intervals
are shown in Figure 1. The most commonly identified break dates in the ‘all’ model
occur during the years 1962, 1966, 1974, and 1990 respectively. The confidence

intervals for the break dates are often very tight, particularly for the break occurring

HHere and in the following discussion, rejection of null hypotheses is considered at the 10
percent significance level unless otherwise indicated. This critical level, rather than the more

customary 5%, is appropriate here given the weak power of tests for structural breaks.
2For intuition on this case, consider a regression with only a constant as a regressor and

suppose that the sample is divided into three equally long parts. If the mean of the variable
changes in the second sample but is the same in the first and third sample, a model with a single

break may not pick up the change, whereas a model allowing for two breaks would identify it.

11



in 1962 or 1966. The industry portfolio results suggest that some breaks occur fairly
broadly across sectors (the 1962/66 break) while others appear to be concentrated
in specific industries (the 1974 and 1990 breaks). Interestingly, the 1966 break
shows up nearly uniformly in the decile portfolios but does not appear for a single
industry. Decile 10 is the only cap-based portfolio to exhibit a break in 1962, a
year in which many of the industry-based portfolios show a break. While this may
seem to suggest that the industry-based portfolios are dominated by large firms,
the industry-based portfolios are in fact equal-weighted.

Table 4 presents coefficient estimates for the models selected by the sequential
method. The standard errors that we report are corrected for heteroskedastic-
ity and serial correlation using the method suggested by Newey and West (1987).
There are several interesting results. The dividend yield is only significant after
the most recent break for 8 of the 20 portfolios that experience at least one break.
Interestingly, the coefficient on the T-bill rate after the most recent break is in-
significant for many size-sorted portfolios but significant at standard levels for most
of the industry sorted portfolios. Overall, the T-bill rate generates a significant co-
efficient after the most recent break for 11 out of 20 portfolios. The term spread
variable is significant for only 5 out of 20 portfolios following the most recent break.
Finally, the coefficient on the default premium is statistically significant for nearly
all of the portfolios (16 out of 20) following the most recent break.

With four coefficients (and a constant) in each interval, characterizing the evo-
lution in the coefficients is more difficult than in models with a single instrument.
To facilitate further interpretation of the results, we therefore next examine uni-
variate regressions on each instrument separately. That is, we restrict the model
of equation (4) so that the coefficients on all instruments, save the instrument of
interest, are set equal to zero. A constant term is included in each model. This is
done in turn for all instruments.

For each of these restricted models, we investigate the existence and timing
of structural breaks using the sequential method. Further, we examine whether
the existence and timing of breaks appears to vary significantly according to cap
size or industry. While these univariate models are probably of limited interest to
investors given their extremely low R?-values, we find that examining the univariate
case provides interesting insights into the source of the breaks identified for the full

model. They are also likely to have better power to detect breaks in the event of

12



a partial break occurring only in a subset of the regressors in the ‘all’ model.

C. Dividend Yield

Breakpoint dates for the return prediction model based on the dividend yield are
presented in Figure 2. Of the 24 cap and industry based portfolios examined,
at least one break was selected for 8 portfolios. For those portfolios that exhibit
breaks, Figure 2 shows that 1990 is identified as a break point in almost every case.
For four of the portfolios an additional change point is identified. Cap size appears
to be important in considering structural change in the returns model. The three
cap-based portfolios that exhibit a break are the portfolios with the largest stocks.
Thus, any changepoint identified in the relationship between the dividend yield
and returns appears to be limited to large cap stocks.

The estimated coefficients and standard errors for the dividend yield instrument
are presented in Table 5. As always, caution should be exercised when interpreting
the coefficient estimates on the dividend yield because of lagged endogenous vari-
able bias, see, e.g., Ang and Bekaert (2001), Stambaugh (1999).1% Typically, the
coefficient is positive and statistically significant prior to 1990. For those portfolios
exhibiting a break in 1990, the coefficient tends to become insignificant over the
subsequent decade and only one of the post-break coefficients is statistically signifi-
cant. In the energy industry, however, the coefficient on the dividend yield becomes
negative although this estimate is not significant at the 5% significance level.'* For
seven out of eight portfolios with a break in the dividend yield coefficient, the R?
declines after the most recent break.!'®> Although the evidence of predictability
from the dividend yield is rather weak at the monthly horizon, it is interesting to
note that allowing for breaks does uncover some cases of predictability that were
concealed by the full-sample results in Table 2. For example, our results suggest

that the dividend yield was statistically significant prior to 1990 for the portfolios

13 Ang and Bekaert (2001) find strong size distortions on the dividend yield coefficient for long
return horizons while the distortions are relatively small at a short horizon of 1 month such as

the one used in our paper.

14This represents the clearest example of a break in the dividend yield regressions. Of course,
it is also consistent with a situation in which returns in these sectors were unrelated to the
fundamentals as reflected in dividends.

15To conserve space, we do not report separately these R? values but merely summarize the

number of cases where the value declines after the most recent break.
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dominated by large firms (deciles 8-10 and the value-weighted portfolio), but that

predictability from this regressor has broken down subsequently.

D. Treasury Bill rate

There is very strong evidence of one or two breaks in the univariate returns model
based on the T-bill rate. Figure 3 shows that the sequential method identifies a
break around 1974-1975 in nearly all of the cap-sorted portfolios and for many of
these portfolios an additional break is identified around 1983. Breaks are identi-
fied for over half of the industry portfolios. The break points for this model are
reasonably precisely estimated and most confidence intervals are quite narrow.
Table 6 shows that the estimated coefficients for the T-bill rate model are
nearly always negative and significant at the 5% level as previous findings suggest.
The energy industry again exhibits unusual behavior since for this industry the
estimated coefficient for the T-bill rate is positive, but this estimate is not signifi-
cantly different from zero. For portfolios dominated by large stocks (decile 10 and
the value-weighted CRSP portfolio) the Treasury bill rate becomes insignificant at
the 10 percent level following the break in 1974. In 18 of 19 regressions with a
break in the T-bill coefficient the R? declines after the most recent break. Even
so, 11 of 19 coefficients remain statistically significant at the five percent critical
level.'® Once again, the evidence varies across firm size. The statistical significance
of the T-bill rate disappears post-1974 for the large cap portfolios (D6-D10), while
it continues for the small cap portfolios (D1-D5) and for a number of industry

portfolios.

E. Term Spread

Sequential tests for breaks based on the term spread identify a single break for most
of the decile portfolios and half of the industry portfolios, c.f. Figure 4. In no case
is more than one break selected. The break dates are rather imprecisely estimated
as evidenced by the wide confidence intervals. These confidence intervals tend
to center around 1983, but the 90 percent confidence interval often spans over 10

years, suggesting that the time of the break is ill-defined even though its presence is

16T his is consistent with the finding in Ang and Bekaert (2001) that the coefficient on the T-bill
rate is statistically significant across a range of sample periods.
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statistically significant. Interestingly, the confidence interval includes the period of
the change in monetary policy (1981) which may well have affected the relationship
between the term premium and stock returns. Evidence of breaks appears to
be concentrated in the small to mid-cap portfolios. Deciles 8 and 9, which are
composed of relatively large stocks, do not exhibit a break over the sample period
examined. Decile 10, composed of the largest stocks, is an important exception to
this observation as this portfolio exhibits a break in 1983.

Coefficient estimates for each sub-period as well as standard errors for these
estimates are presented in Table 7. Prior to 1983, the coefficient on the term
spread tends to be positive and highly significant. Following the estimated break
in 1983, the coefficient tends to fall in value and in some cases becomes negative.
In nearly every case, the coefficient after 1983 is no longer significantly different
from zero even at a 5 percent confidence level and in 14 of 15 cases the R? value

declines after the most recent break.

F. Default Premium

The returns model with the default premium regressor exhibits the most frequent
breaks among the models with a single instrument. Figure 5 plots the estimated
break dates along with confidence intervals for these estimates. The breaks are
quite precisely estimated and the most commonly identified break dates occur dur-
ing the years 1968, 1976 and 1990. These results are consistent with the findings
for the ‘all’ model since 90% confidence intervals for the breaks centered on 1968
mostly included 1966 and the confidence intervals centered on 1976 included 1974.
Evidence of breaks is distinctly concentrated among very small and very large
stocks. In fact, while deciles 1 to 4 (the smallest stocks) and decile 10 (the largest
stocks) exhibit two breaks, deciles 5-9 exhibit no breaks at all. The value-weighted
portfolio exhibits 2 breaks, while no breaks are found for the equal-weighted port-
folio. Most of the industry portfolios (9 of 12) exhibit at least one break and often
more. The tests only fail to detect breaks in the manufacturing, chemicals and
healthcare industries.

The estimated coefficients for the default premium and their standard errors
are presented in Table 8. As expected, nearly all of the estimated coefficients for

the default premium are positive.!” Prior to 1968, the coefficients on the default

17 Again, the energy industry is an exception, as the estimated coefficient on the default premium
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premium tend to be insignificant or barely significant at the 10 percent level. For
those portfolios with an estimated break in 1968, the coefficient tends to become
highly significant during the next sub-period, which typically lasts until 1976. For
many of these portfolios (particularly the small cap portfolios), the period follow-
ing 1976 is quite similar to the period before 1968, with estimates that are only
borderline significant. Finally, for those portfolios that exhibit a break in 1990, the
coefficient once again becomes highly significant. Thus, the default premium, more
than the other individual regressor considered in this study, appears to remain sig-
nificant in the 1990s. Nevertheless, in 11 of 15 models with a break the R? value

declines after the most recent break.

IV. International Evidence

When exploring patterns of predictability in stock market returns it is important
to consider international data. The US data has been extensively researched and
hence earlier evidence of predictability could be a result of data mining. Though
still a factor, this is likely to be less of a concern for the international return data.
Another advantage of considering international returns is that these are not directly
affected by some of the institutional shifts observed in the US such as the change
in monetary policy during 1979-1981. This is helpful when identifying the sources
of breaks.

We therefore considered international returns on stock indices from 18 coun-
tries, including the US. Table 9 provides a list of the countries examined in the
study. Monthly value-weighted returns were obtained from Morgan Stanley Cap-
ital International (MSCI). Returns include dividends and assume reinvestment of
gross dividends. All returns are denominated in local currencies.

The predictors considered were a local dividend yield, a short term local inter-
est rate, a local term spread measure, and the US default premium. Local country
dividend yields were obtained from MSCI. The MSCI dividend yields for coun-
try portfolios are value-weighted averages of the dividend yields for the equities
underlying the index.

Local country short term interest rates were collected from the International

Financial Statistics (IF'S) database. The particular instrument varies over the

is less than zero during the second interval and this estimate is significant at the 5% level.
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countries considered. The instrument is typically either a local country Treasury
Bill rate or a money market rate. If a longer term interest rate, such as a yield
on government bonds, was available, then this was used along with the short term
rate to construct a measure of the term spread.'®

The final instrument considered was the US default premium. US data were
used for all countries since comparable local country data were typically unavail-
able.!® The US default premium may be thought of as a proxy for the US business
cycle. The earliest available MSCI monthly returns and dividend yield data is from
December, 1969. The exact sample period for the data varies by country. Typically
over 350 months of data are available but for some countries the sample period is
significantly shorter. Table 9 presents the sample period by country as well as a
range of summary statistics for each of the 18 countries considered.

Once again we start by reporting full-sample regression results which serve as
a benchmark for our breakpoint regressions (see Table 10). The R?-values tend
to be somewhat lower than those found in the US regressions, ranging as they do
from 0.00 to 0.08 with most countries generating values of 0.03 or below. The
weakness of predictability in these international return regressions is confirmed by
the statistical insignificance of most of the regression coefficients. The dividend
yield is only significant in a couple of countries and the T-bill rate, term spread
and default premium regressors are never significant for more than 8 of the 18
countries in the ‘all’ model or for more than 3 of 18 countries in the univariate

regression models.

A. Euxistence and Characterization of Breaks

Table 11 summarizes the results of various tests for breakpoints in the regression
of international returns on the full set of predictor variables, namely the local
dividend yield, short interest rate, term spread, and the US default premium. To
preserve space we do not report results from univariate regressions on the individual

state variables. For certain countries not all variables were included due to a lack

8The variable definitions are available from the authors on request.
19But see also Ang and Bekaert (2001) who find that US instruments have strong predictive

power over foreign equity returns.
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of available data.?"

Qualitatively, the results in Table 11 are similar to those
reported for US returns in Table 3. The SupF'(k) tests reject the null hypothesis
in many cases for k = 1,2, 3. The models selected by the sequential method for the
international data tend to exhibit fewer breaks across portfolios, but this is in part
due to the shorter sample size for the international data. The sequential method
identifies at least one break for 13 of the 18 international indices examined. The
exceptions include Austria, Hong Kong, Japan, Switzerland and the UK. Two or
more breaks are identified for Italy and Sweden. The Hansen (2000) tests again
tend to corroborate the results obtained using the method of Bai and Perron (1998).

Figure 6 shows the timing of breaks for the models selected by the sequential
method. The most common break dates occur during the 1976-1978 period, and
during the 1991-1992 period. The break dates are in general precisely estimated
although the confidence intervals tend to be wider than those observed in the US
data. There is no general clustering in the estimated times of the breaks across
countries. Perhaps this suggests that the source of the identified breaks is more
likely to be country-specific than global.

Table 12 presents the estimated coefficients for the selected models. The coeffi-
cients on the dividend yield are typically positive and are not statistically significant
at the 10 percent level for those cases with a negative point estimate. The coef-
ficients on the Treasury bill instrument tend to be negative and are often highly
significant for at least one of the sub-intervals.

The behavior of the coefficient on the term spread varies the most among the
four instruments. The coefficient on the term spread generally tends to be negative,
especially when the estimate is significant at the 10 percent level. An exception
to this general observation is Italy, which has a positive and significant coefficient
on the term spread during the first interval. All other positive estimates are not
significant at the 10 percent level. Finally, the coefficient on the default premium
tends to be positive and is never significant in cases where the estimate is negative.
In a number of countries (Australia, Belgium, Denmark, Italy, Norway, Spain) the
coefficient on the default premium is never significantly different from zero.

Two factors are likely to explain the relatively weaker evidence of breaks in the

international data as compared to the US data. First, the power to detect multiple

208pecifically, the term spread is missing in the regression for Denmark and Sweden, and both
the term spread and T-bill rate are missing for the Hong Kong regression.
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breaks, even if they exist, is likely to be weaker in the international data since
some of the instruments we use rely on US data rather than local data and since
the predictive R*—values tend to be somewhat lower in the international data.
Secondly, the shorter sample means that it is more difficult to detect breaks in the
international data. It is very difficult to detect breaks at the beginning or at the
end of the sample period. When we set the ‘trimming’ distance required between
breaks (as a proportion of the total sample) to 0.15 rather than 0.20, a break
was identified in 1974 in many of the international regressions. With a trimming
percentage of 0.20, this break point could not be identified because of the minimum
window length requirement.?!’ While this may suggest that 0.15 is preferable, we
found that with the shorter international data sets trimming percentages lower
than 0.20 sometimes resulted in fitting outliers, particularly for the countries with
the shortest span of sample data.

Even though it is generally more difficult to detect breaks in the international
data, it is interesting to note that for those countries where a break is identified,
the statistical significance of the regressors tends to be stronger for at least some
subsamples than in the full sample. For example, the dividend yield is significant
in all countries with a break in the ‘all’ regression model in at least one subsample,

while it is only significant for two countries in the full sample.

V. How much does in-sample Predictability vary over Time?

Breaks in the regression coefficients of our prediction models do not provide a
direct measure of the economic significance of breaks. To assess the extent to
which in-sample predictability varies over time and across portfolios, we compared
the in-sample R?—values of the returns regression over each calendar decade in the
sample.?? For the ith calendar decade the R? is given by

2IMany of the international samples start in 1970 and comprise 30 years of data. A trimming

percentage of 20 therefore means that the earliest detectable breakpoint is 1976.
22 Although it seems natural to study the RZ—values corresponding to the segments between

breaks, we elected not to do this for the following reasons. Even for a given portfolio the length
of a break segment (T}, — T},_1) varies substantially so the R? values are not directly comparable
across segments as they are not estimated with the same precision. Some of the break segments
are quite short and their R%-values will be estimated with considerable uncertainty. Furthermore,

as the break segments vary across portfolios, they cannot be compared cross-sectionally.
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B =1 , (5)
> ()
J=N;_1+1

where ¢ indexes each decade beginning with the 1950’s and /V; indicates the final
observation for the ith decade. We note that the US results reported for the 1950’s
include only data from 1952:7 to 1959:12. The reason that £; appears in equation
(5) is that over any particular decade we cannot expect that &; = 0. Of course, over
the full sample & = 0 and the familiar analogue of equation (5) may be applied.

It should be noted that there is a sense in which the issue of variation in
predictive R?—values is quite separate from the question of breaks. Even in the
absence of breaks, the R? will vary if the variance of the regressors changes over
time relative to the variance of the residual term, €. For example, if the 1-month
T-bill rate is the only predictor and its variance goes down while the variance of the
residual term remains unchanged, then the R? would decline. Conversely breaks,
if present, will lead to changes in R*—values even if the variance of the regressors
and residuals never change.

To establish a benchmark for predictability, first consider the full sample R?
values. For the US data Table 2 shows that the R?-values for the model with
all instruments and no breaks vary in size across the portfolios from a minimum
value of 0.03 (energy) to a maximum of 0.09 (nondurables). The average R*-value
over the 22 portfolios is 0.064. These R*- values accord with earlier studies in the
literature. Single variable models do not have strong predictive power over the
full sample. The range of full-sample R*-values lies between 0.001 and 0.016 for
the dividend yield model, between 0.003 and 0.018 for the T-bill model, between
0.000 and 0.023 for the spread model and between 0.001 and 0.026 for the default
premium model.?

Turning next to the subsample results, Figure 7 shows systematic variation
in the R*-measure over the calendar decades. When interpreting these figures, it
should be recalled that even with 120 monthly observations for each decade, there

is bound to be some unrealistically large in-sample R*—values as a reflection of

23These results are not reported separately in the tables to conserve space.
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random sampling variation across a large number of portfolio-decades. Further-
more, since the reported R?—values are based on minimizing the sum of squared
residuals in-sample, they are by construction higher than what can be achieved in
an out-of-sample experiment. Bearing this in mind, the return forecasting model
produces relatively high R?—values in the 1950s, 1970s and 1980s and relatively
low values in the 1960s and 1990s. Interestingly, the sorting of decades into peri-
ods with high and low return predictability is robust to whether or not breaks are
allowed (see Figure 7 Panel B). In the 1980s the average in-sample R? is 17.2%
without a break versus 19.8% when breaks are included. This compares with R*-
values of 6.0% in the 1990s without breaks versus 7.4% when breaks are included.
Our findings suggest that although predictability certainly seems much lower in
the 1990s compared to the 1980s, viewed from a longer perspective there has been
no uniform decline in the predictability of stock returns.

Turning next to the international data, since the samples are not the same for
each country (c.f. Table 9) we elected to split the total sample for each market two
ways, into thirds and into halves. Figure 8 shows R*-values calculated for various
sub-samples for each of the international market indices. In Panel A of Figure
8 no breaks are included in the model while in Panel B breaks are permitted.
The results are similar in spirit to those obtained for US portfolios. Typically
the R?-values for the latter portion of the sample are significantly lower than the
corresponding values over the full sample. There are some exceptions to this general
observation, notably Italy, Japan, Singapore and Switzerland, where the R? is
higher in the second half of the sample relative to the first half. Denmark exhibits
the most notable decline in R? over the sample, falling from 9.9% to 1.4% when
the sample is split into thirds. Although not reported separately in the tables and
figures, we also computed R?-values over the same sample fractions for the model
with breaks. For 7 of the 13 countries where at least one break was detected,
the R? goes down after the most recent break. An examination of the statistical
significance of the individual regression coefficients in Table 12 shows that some
predictability nevertheless remains after the most recent break: 11 of 13 dividend
yield coefficients, 7 of 13 T-bill rate coefficients, 5 of 11 spread coefficients and 4
of 13 default premium coefficients remain significant at the 5% level after the most
recent break. Furthermore, in the breakpoint model the average R*-value remains
at 7.6% in the last third or 6.4% in the last half of the sample. This figure is very
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similar to the average R*—values found in the US data during the 1990s.

VI. Robustness of Results: Monte Carlo Simulations

In applying the method of Bai and Perron (1998) to our setting, a primary concern
is the potential of ‘over-fitting’, i.e. spuriously finding breaks when truly none
exist. The results underlying the test statistics discussed above rely on asymptotic
theory. For any specific data generating process, the adequacy of the tests in
small samples must be assessed via Monte Carlo simulation experiments. Given
the evidence presented above of structural instability in predictive regressions for
(excess) returns, our concern is primarily with the size properties of the tests for
breaks. Bai and Perron (2001) perform a series of simulation experiments and
assess the size and power of the various tests for breaks under a variety of data
generating processes. These range from an independent Gaussian noise process to
linear processes subject to two breaks where both the regressor and the error term
are distributed heterogeneously across regimes. Also considered are cases with
serially dependent errors, although in these cases only intercept shifts are included.
Bai and Perron (2001) find that serial correlation and/or heterogeneity in the
data or errors across segments can induce significant size distortions when low val-
ues of the trimming value 7 are used. Thus, if these features are present in the
data, m values of 15% or higher are recommended, depending on the sample size
and the particular features of the data. Bai and Perron find that the sequential
procedure performs better than statistical information criteria, particularly if het-
erogeneity across segments is present. For the processes considered by Bai and
Perron (2001), the tests have reasonable power and corrections for heterogeneity
and serial correlation in the residuals (when these truly exist) improve power.
While these results provide support for application of the tests in our setting,
the data considered in this study exhibit characteristics that differ significantly from
all of the data generating mechanisms considered by Bai and Perron (2001). Specif-
ically, returns are inherently very noisy, and the instruments we consider explain
only a small fraction of the variation in returns. Furthermore, heteroskedasticity
and time varying conditional variance are the rule rather than the exception for
returns data. Finally, at least two of the regressors in our study, the dividend yield
and the one month T-bill rate, are known to be highly persistent. The first of these

features may dilute the power of tests to detect breaks while the latter two features
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may lead to spurious rejections. Since we find ample evidence of breaks in our anal-
ysis, we focus on potential size distortions and conduct a Monte Carlo experiment
with data generating processes that capture some of the important features of our
data.

A. Design of the Simulation Experiment

If the tests are over-sized, then a true null hypothesis of no breaks will be rejected
more frequently than the asymptotic theory suggests. In examining the finite-
sample size properties of the breakpoint tests, we consider several different types
of data generating processes, as follows:
.y =~z +e; e~ N(0,1)

Ty = 91 + vy; vy ~ N(0,1) with p(e, vy) = 0;

2. Yy =m+ ey e~ N(0,02)
Ty = pxy_1 + vy vy ~ N(0,02) with p(e, vy) # 0;

3.y = &y; where g, ~ N(0,h?), where h? = w + Sh? | + ag? |

Our first experiment generates y; as a linear function of z; with a Gaussian
white noise error term added. The variable x; follows a first order autoregressive
process with ¢ governing the persistency of the process. We simulate data under
four different values for the parameter ¢, including ¢ = 0 (which corresponds to
the case of a Gaussian white noise process for z;), ¢ = 0.3, ¢ = 0.9, and finally
@ = 0.98.2 Given the value of the persistency parameter ¢, the parameter v on
the regressor is tuned so that the population R? for the process is 0.07, which
is roughly consistent with the R2-values typically encountered in regressions of
returns on predictor variables.

An important consideration in predictive regressions such as those considered
here is the potential of bias toward finding predictability. It is well known that
the OLS coefficients on lagged endogenous regressors are biased. When financial
ratios such as the dividend yield or functions of interest rates are used to predict
returns the resulting least squares coefficients are biased although asymptotically
consistent. Many recent studies examine inference in this setting and the extent

to which returns are truly predictable is still an ongoing debate. Ang and Bekaert

24The assumptions of Bai and Perron (1998) do not permit unit root regressors so we only

consider highly persistent processes and not an actual unit root process.
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(2001), however, consider a model that includes both the dividend and earnings
yields as well as the short interest rate and find that the only statistically significant
regressor is the short rate and its significance is limited to short horizons.?® Our
model includes both the lagged dividend yield and short rate, as well as lagged
term and default premia.

Our second experiment accounts for these concerns by relaxing the assumption
that the regressor is strictly exogenous. Specifically, the innovations in the equa-
tions for 3; and x; are assumed to have a correlation of —0.93. The parameter
choices for the system are based on in-sample estimates obtained by regressing re-
turns for the equal-weighted CRSP portfolio on a constant and the lagged dividend
yield and separately regressing the dividend yield on a constant and its own lagged
value over the sample period 1952:7 to 1999:12. The sample correlation between
the two sets of regression errors was —0.93, the value chosen for the correlation of
the regression innovations.

Lastly, we conduct simulations where y; follows a GARCH(1,1) process. This
process, of course, features the time varying conditional volatility observed in stock
returns. The specific parameters for the process were selected based on the results
obtained by fitting GARCH(1,1) models to excess returns for several of the CRSP
portfolios analyzed in this study. As is commonly the case for GARCH(1,1) models
of stock returns, the sum of the parameters a+ (3 is close to one. We consider sample
sizes of 100 and 200 and the following combinations of values for the trimming
percentage m and the maximum number of breaks K: m = 15% and K = 5, 7 = 20%
and K = 3, 7 = 25% and K = 2. Each experiment consists of 1,000 simulations.
Finally, we allow for serial correlation in the errors and for heterogeneity in the

errors across breaks.

B. Summary of Simulation Results

Table 13 (Panels A-C) summarizes the results of the simulation experiments. All
tests are evaluated at the ten percent significance level, and Table 13 reports the
percentage of cases in which the null hypothesis of no breaks is rejected when there

is in fact no break in the process. We evaluate the size distortions of the tests

25Examples of other studies that examine small sample inference with lagged endogenous regres-
sors in the context of predicting returns include Goetzmann and Jorion (1993), Hodrick (1992),
Nelson and Kim (1993), Lamont (1998), Stambaugh (1999) and Lewellen (2001).
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and the adequacy of model selection techniques by comparing the results in Table
13 with those predicted by the asymptotic theory. For instance, the SupF'(1) test
applied at a 10 percent significance level rejects the null of no breaks 10 percent of
the time asymptotically. We can compare this theoretical value to that obtained in
the simulation analysis. Values substantially higher than 10 percent suggest that
the test is over-sized and values substantially lower than 10 percent suggest that
the test is under-sized.

For the process with a strictly exogenous, serially uncorrelated Gaussian re-
gressor (the columns of Panel A with the persistence parameter set at 0), the tests
appear to be mildly over-sized when the sample size is 100 and the trimming per-
centage is 15 since the rejection frequency is between 13 and 18 percent rather
than ten percent as suggested by the asymptotic theory. The size distortion for the
SupF(k) tests appears to be increasing in k. The size distortion becomes milder
when the trimming percentage is increased and nearly disappears when the sample
size is increased to 200. For the strictly exogenous regressor in Panel A, adding
persistency appears to actually reduce the size distortion relative to the serially
uncorrelated Gaussian case. In fact, for a sample size of 200 and the case of a
highly persistent regressor (¢ = 0.98) the tests appear to be slightly under-sized.

When we consider the system with correlated disturbances (Panel B of Table
13) the distortions are much larger. The SupF (k) tests are clearly over-sized and
the size distortion increases with k. Fortunately, while the SupF'(4) and SupF'(5)
tests have very poor size properties with rejection rates of over 35 percent, the
sequential method for selecting the number of breaks still performs relatively well
and selects the correct model 84.5 percent of the time. The reason is of course
that the sequential method begins by considering the SupF'(1) test, which is only
slightly over-sized. Increasing the sample size from 100 to 200 drastically reduces
the size distortion, as does increasing the trimming percentage from 15 to 25.
With a sample size of 200 and a trimming percentage of 15 the sequential method
correctly selects a model of no breaks 90.8% of the time, almost exactly as the
asymptotic theory suggests.

Panel C reports results for the GARCH(1,1) process. The results obtained
here are roughly similar to those obtained for the Gaussian white noise process.
If anything, the size distortion appears slightly less than in the benchmark white

noise case. Of course, the simulation uses only one particular set of parameters for
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the process, but these parameters are consistent with the features of our data.
While these experiments are limited in scope, they suggest that the presence

of features of financial return models such as persistent regressors, low R?—values

and time-varying conditional volatility do not lead to spurious findings of breaks

in sample sizes comparable to ours.

VII. Conclusion

This study presents systematic empirical evidence of structural breaks in models
of predictable components in stock returns based on the lagged dividend yield,
Treasury bill rate, term spread and default premium. We find evidence of breaks
in most of the size and industry-sorted portfolios of US stocks examined. The
break points most frequently identified are 1966, 1974, 1983 and 1990. Turning
to data from 18 international markets, we find additional evidence of breaks in
regressions of returns on predictor variables, although there does not seem to be a
similar clustering in the timing of breaks across countries.

The 1974 breaks in many US return forecasting models is likely related to the
large macroeconomic shocks reflecting large oil price increases and the resulting
break in the trend of US GDP found to have occurred around this time by Perron
(1989). Perhaps this suggests that breaks in the underlying fundamentals can
explain breaks in financial return models. There is no reason to expect financial
return models to be immune to breaks in economic growth since these are likely to
affect investors’ intertemporal marginal rates of substitution and hence the process
driving risk premia. The break around 1983 in the coefficients on the T-bill rate
and the term spread could well be related to the earlier change in monetary policy
regime which occurred in 1981. Indeed, this period is included in many of the
confidence intervals for the 1983 breakpoint. Alternatively, the break could be
related to the low inflation regime that followed 1983. We think it is reasonable
to expect that the relationship between stock returns and nominal interest rates
could well differ across low and high inflation states. This may also have bearing
on the break identified for 1966. This was the start of a period with higher inflation
following the early stages of the Vietnam war.

It is perhaps less easy to explain the factors driving the break around 1990,
but certainly the ability of the dividend yield to act as a ‘fundamentals’ proxy

appears to have broken down after 1990 as witnessed by the simultaneously high
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stock returns and low dividend yield that occurred in this decade.

Accounting for breaks in the prediction models does not necessarily weaken the
evidence of predictability. In many cases we found individual coefficients that were
insignificant in the full sample but were significant in sub-samples. Considering
only full sample results may thus in some cases conceal predictability.

To be sure, predictability in the US stock market appears to have declined in the
1990s. However, in-sample predictability does not seem to have disappeared. In the
US data the T-bill rate and particularly the term premium remain significant after
the most recent break. Of the 20 US portfolios for which we identified a break in the
‘all’ model, only two did not have at least one coefficient that remained statistically
significant at the 5% level after the most recent break. In the international data we
found that the dividend yield and T-bill rate continue to be statistically significant
after the most recent break.

We therefore think that data-snooping and inefficient markets are unlikely to
fully explain the findings of predictability of stock returns. Predictor variables such
as the nominal interest rate and the dividend yield were known by the early eighties
and continued to have predictive power after this period.

Ang and Bekaert (2001) suggest that “it is conceivable that the lack of predictive
power is simply a small sample phenomenon, due to the very special nature of the
last decade for the US stock market data.” Similarly, Lettau and Ludvigson (2001)
write that “It is clear, for example, that the last five years have been marked
by highly unusual stock market behavior...” Our study suggests that the weaker
evidence of predictability in the 1990s is not unique and is similar to what was
found for the 1960s. There were earlier breaks in the return forecasting model and
the ability of various regressors to predict stock returns appears to vary significantly
over time.

While this paper concentrated on examining in-sample evidence of breaks in
standard return forecasting models, there are several questions that need to be
addressed in future research. Our results suggest that past data must be used judi-
ciously in forecasting future returns, since the return process may have undergone
several breaks over the historical period examined. This point is partially addressed
by Pesaran and Timmermann (2002) who consider forecasting the returns on an
equal-weighted portfolio of US stocks that is subject to breaks. They consider

using data after the most recent break to forecast future stock returns. Their re-
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sults indicate that out-of-sample predictability can be improved by accounting for
breaks.

Another direction for future research is to study the impact of breaks on optimal
asset allocation. In recent contributions, Barberis (2000), Brandt (1999), Campbell
and Viceira (1998) and Kandel and Stambaugh (1996) examine the asset allocation
decision when returns are predictable. Our findings suggest that there was evidence
of two or three breaks in most of the US portfolios considered over a 45 year
period. While structural breaks therefore may not matter much to short-term
asset allocation it has the potential to affect long-term asset allocation decisions.
Accounting for such breaks requires putting forth a model for the frequency and size
of the breaks. While doing this extends beyond the present paper, our empirical

results is a first step in this direction.
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Table 1: Summary Statistics for US Stock Returns and Instrumental Variables

This table reports summary statistics for the US excess returns data and predictive instruments. The value-weighted, equal-
weighted and decile portfolios (sorted by market capitalization) were obtained from CRSP while the industry portfolios were
obtained from Kenneth French's website. The sample kurtosis is reported in excess of three, the value for the normal
distribution. The sample period is 1952:7 - 1999:12 and returns are observed monthly and computed in excess of a 1-month
T-bill rate. The dividend yield is the dividend over the previous 12 months divided by the current stock price. The T-bill rate is
for 30-day instruments, the term spread is the difference between the yield on a 5-year Government bond and the yield on a
1-month Treasury bill and the default premium is the difference between Moody's AAA and BAA rates.

Equity Returns

Portfolio Mean Std. Dev. Skew Kurtosis
Value-weghted 0.6685 4.2550 -0.4993 2.1270
Equal-weighted 0.8187 5.2885 -0.2598 3.4947
Decile 1 (Smallest Cap) 1.2623 7.1561 0.8334 4.4947
Decile 2 0.9400 6.3874 0.2174 3.3140
Decile 3 0.8579 6.1173 -0.0172 3.3132
Decile 4 0.8034 5.8394 -0.0390 3.9319
Decile 5 0.7643 5.6821 -0.3167 3.7745
Decile 6 0.7449 5.5257 -0.3630 3.4268
Decile 7 0.7327 5.3215 -0.5209 3.6471
Decile 8 0.7546 5.0998 -0.5639 3.2605
Decile 9 0.7381 4.7899 -0.5789 3.3440
Decile 10 (Largest Cap) 0.6408 4.1706 -0.3748 1.8309
Nondurables 0.6617 4.9826 -0.2238 4.2058
Durables 0.7392 6.0258 -0.0560 3.9032
Manufacturing 0.8287 5.5362 -0.2808 3.0868
Energy 0.8092 6.3887 -0.0976 1.8775
Chemicals 0.8058 5.2181 -0.5005 3.4196
Business Equipment 1.0647 7.4897 0.1131 1.9601
Telecommunications 1.3141 6.2499 0.0074 2.2342
Utility 0.6406 3.3784 0.2805 3.0230
Shops 0.7067 5.5861 -0.2507 3.8306
Healthcare 1.0782 6.3710 -0.2702 2.3883
Money 0.8049 4.9864 0.0331 3.4540
Other 0.8188 5.8652 -0.2339 2.9062

Instrumental Variables

Instrument Mean Std. Dev. Skew Kurtosis
US Dividend Yield 3.4458 3.5752 -1.7868 -0.4006
US T-Bill Rate 0.4896 0.5445 -1.3789 -0.8998
US Spread 0.0441 0.0771 -0.5064 -1.0183

US Default Premium 0.0782 0.0860 -1.3923 -0.8060



Table 2: US Full Sample Predictability Regressions (No Breaks)

This table presents the results of least squares regressions of portfolio returns upon the full set of predictor variables and upon each predictor variable
separately. Results are presented for returns in excess of the one-month T-bill rate for size and industry-sorted portfolios of US stocks. The instruments include
a constant, the lagged dividend yield (YLD), T-bill rate (TBL), term spread (SPD) and default premium (DEF). Coefficients on the constant term are suppressed
to conserve space. The dividend yield is the dividend over the previous 12 months divided by the current price. The T-bill rate is for 30-day instruments, the
term spread is the difference between the yield on a 5-year Government bond and the yield on a 1-month Treasury bill and the default premium is the difference
between Moody's AAA and BAA rates. Heteroskedasticity and autocorrelation consistent standard errors for coefficient estimates based on the method
suggested by Newey and West (1987) are also provided. The sample period is monthly 1952:7 - 1999:12. Bold face type indicates statistical significance at the
5% level.

[ Model With All Regressors | [ Univariate Models |

R? YLD TBL SPD DEF YLD TBL SPD DEF

VW 0.05 0.12 -4.85 0.20 28.13 0.22 -1.92 8.04 8.00
0.20 117 3.10 8.25 0.20 073 2.86 6.02

EW 0.07 0.17 -7.59 -2.51 47.70 0.40 -2.44 10.19 15.08
0.27 1.56 412 11.59 0.25 0.90 391 8.23

D1 0.06 -0.23 -10.36 -8.30 71.47 0.23 -2.77 10.55 20.87
037 215 6.07 16.98 0.35 1.24 561 11.58

D2 0.07 -0.05 -9.62 -5.98 60.34 0.27 -3.15 10.62 15.46
0.36 191 5.27 15.07 0.32 1.09 5.01 10.53

D3 0.06 0.01 -8.92 -6.46 56.21 0.32 -2.77 8.84 14.92
033 1.82 4.86 13.70 0.29 1.07 an 9.42

D4 0.07 0.14 -8.60 -4.76 52.39 0.40 -2.83 9.54 14.39
031 173 465 13.10 0.29 0.98 4.43 9.18

D5 0.07 0.22 -7.90 -2.62 47.62 0.44 -2.69 10.29 14.17
0.30 1.69 454 12.56 0.28 0.94 412 8.79

D6 0.06 0.28 -7.49 -2.59 46.03 0.50 -2.38 9.60 15.01
0.29 162 424 12.05 0.27 0.92 4.00 8.26

D7 0.06 0.27 -6.96 -2.26 42.91 0.48 -2.19 9.05 14.29
0.26 152 3.96 11.20 0.24 0.88 377 7.64

D8 0.06 0.29 -6.47 -1.10 41.36 0.49 -1.94 9.49 15.38
0.26 145 3.81 10.73 0.25 0.88 3.60 7.48

D9 0.06 0.24 -6.15 -1.16 38.53 0.43 -1.94 8.89 13.50
0.24 132 3.41 9.68 0.23 0.82 3.25 6.98

D10 0.04 0.10 -4.31 0.88 24.34 0.17 -1.83 7.81 6.58
0.20 113 3.06 7.88 0.19 071 273 5.75

Nondur. 0.09 0.31 -7.52 -3.28 49.36 0.63 -2.13 10.89 22.04
0.24 1.40 3.96 9.76 0.22 0.82 3.69 7.08

Durab. 0.08 0.11 -9.16 -2.83 55.00 0.40 -3.48 14.49 19.24
0.28 175 495 11.91 0.26 1.03 436 8.78

Manuf. 0.07 0.30 -7.48 -1.39 39.83 0.46 -3.21 11.82 13.11
0.28 161 447 11.12 0.26 0.95 3.96 8.43

Energy 0.03 0.29 -6.62 -8.69 19.73 0.27 -3.57 1.40 -5.93
0.42 2.00 6.51 1451 0.40 163 5.93 11.01

Chem. 0.06 0.27 -6.74 -2.83 41.26 0.51 -2.22 9.61 16.69
0.25 1.46 4.06 10.00 0.23 0.87 358 7.63

Bus. Equip. 0.06 -0.06 -10.91 -10.66 65.10 0.35 -3.64 10.29 18.40
0.45 232 6.52 16.94 0.41 1.26 556 11.86

Telecom 0.06 0.07 -8.58 -5.49 50.01 0.35 -3.14 10.63 15.40
0.39 1.99 6.18 13.66 0.36 1.07 4.66 8.67

Utility 0.05 0.36 -3.08 1.17 18.06 0.43 -1.10 6.31 9.97
0.16 0.93 272 5.87 0.15 058 235 3.86

Shops 0.08 0.15 -8.78 -6.51 56.93 0.53 -2.50 10.40 22.05
0.27 165 479 11.48 0.26 0.95 4.16 8.26

Healthcare 0.07 0.38 -9.23 -10.24 55.29 0.74 -2.52 6.66 19.80
033 1.97 6.03 13.80 031 115 495 9.75

Money 0.07 0.25 -6.24 0.66 35.58 0.41 -2.62 11.89 13.89
027 153 461 10.39 0.24 0.88 373 6.97

Other 0.07 0.19 -8.78 -5.92 50.71 0.47 -3.12 10.29 16.40

0.30 181 5.20 12.62 0.28 1.07 4.43 9.61



Table 3: Selection of the Number of Breaks: U.S. Data

The table presents the statistics (except for the Hansen test, for which p-values ate available) for various hypothesis tests regarding the occurrence and number of breaks in the
regression model for size and industry-sorted portfolios of U.S. stocks. For each portfolio, the regression model is excess returns on a constant and the lagged dividend yield,
Treasury bill rate, term spread and default premium. Critical values for the test statistics appear at the bottom of the table. The trimming percentage for the Sy F tests is set at
15. Bold-faced numbers indicate statistical significance at the 10% critical level.

Null of Zero Breaks Versus Alternative of k Null of Zero Breaks Versus Alternative of Number of Breaks by
Breaks Sequential Tests of & versus k+7 breaks One Break (Columns Contain P-values) Sequential Method
Sup F(k) Sup F(k+1/k) Hansen Seq. Method

Portfolio 1 2 3 2wl EX 53 | Susd Sup F Exp F Ave F 10% 5%
Value-weighted 13.59 21.02 24.69 28.29 21.77 18.02 0.00 0.10 0.08 0.02 0 0
Equal-weighted 19.54 25.70 23.93 22.87 20.03 13.42 13.67 0.02 0.03 0.00 3 3
Decile 1 31.54 24.84 26.24 26.56 25.05 12.22 2.57 0.04 0.03 0.01 3 3
Decile 2 20.73 24.94 21.83 23.20 15.63 8.89 8.89 0.03 0.03 0.02 2 2
Decile 3 22.35 26.87 23.44 25.10 13.09 7.66 7.96 0.02 0.03 0.01 2 2
Decile 4 20.40 24.74 23.12 24.33 20.56 10.37 9.43 0.02 0.03 0.01 3 3
Decile 5 17.01 22.81 23.72 25.77 20.19 10.22 10.22 0.04 0.05 0.01 3 0
Decile 6 18.45 26.50 25.02 2241 19.37 11.25 11.25 0.03 0.05 0.01 3 3
Decile 7 16.51 21.63 31.98 21.68 16.18 19.23 14.75 0.05 0.07 0.01 3 0
Decile 8 17.48 22.04 32.94 29.21 17.25 20.15 16.36 0.08 0.08 0.02 4 0
Decile 9 13.73 23.27 31.54 26.94 23.34 13.45 0.00 0.13 0.13 0.02 0 0
Decile 10 22.40 20.21 25.53 27.07 21.51 16.57 0.00 0.10 0.04 0.01 3 3
Nondurables 16.77 20.96 25.56 21.99 16.08 21.14 21.14 0.13 0.13 0.05 2 0
Durables 26.03 16.79 21.96 13.10 13.93 13.93 13.93 0.09 0.08 0.05 1 1
Manufacturing 34.27 25.33 25.59 13.90 8.38 12.54 0.00 0.02 0.02 0.01 1 1
Energy 18.05 32.45 25.29 40.19 14.07 6.26 0.00 0.01 0.01 0.00 2 0
Chemicals 32.77 24.30 20.67 44.42 27.93 34.28 0.00 0.05 0.05 0.02 2 2
Business Equip. 24.30 26.30 21.90 26.95 14.00 5.95 0.00 0.01 0.01 0.00 2 2
Telecomm. 21.81 27.12 24.76 37.38 9.69 4.95 0.00 0.01 0.00 0.00 2 2
Utility 14.70 22.79 18.49 17.31 10.37 10.37 0.00 0.08 0.06 0.01 0 0
Shops 15.76 20.87 28.11 21.83 17.55 10.47 15.32 0.14 0.14 0.03 0 0
Healthcare 45.66 37.73 34.64 36.54 8.74 19.23 0.00 0.00 0.00 0.01 2 2
Money 17.67 20.12 20.04 24.22 17.13 7.35 0.00 0.08 0.07 0.01 2 0
Other 39.79 30.61 30.47 19.04 10.99 13.20 0.00 0.01 0.01 0.01 2 1
Critical Values-10% 16.14 14.37 12.90 18.14 19.10 19.84 20.50

Critical Values-5% 18.23 15.62 13.93 19.91 20.99 21.71 22.37




Table 4: Coefficient Estimates from Breakpoint Regressions (All Regressors)

This table presents the estimated coefficients and standard error for the dividend yield, Treasury bill, term spread and default premium during
each subinterval identified using the sequential breakpoint method of Bai and Perron (1998). Confidence intervals for the break dates for this
model may be found in Figure 1. The following portfolios are omitted since no breaks were identified: Value-weighted CRSP, decile 9, utility
and shops. Standard errors are heteroskedasticity and autocorrelation consistent.

Interval 1 Interval 2 Interval 3 Interval 4
Portfolio Beta S.E. Beta S.E. Beta S.E. Beta S.E.
Equal-weighted CRSP
Div. Yield -1.347 0.541 3.027 1.444 3.788 0.925 1.915 1.327
T-Bill Rate -25.440 8.477 -46.566 9.899 -14.564 3.203 -9.820 6.419
Spread -31.490 22.682 -52.217 24.957 -5.576 6.464 -25.843 13.583
Def. Prem. 19.793 23.731 48.550 67.025 38.787 13.439 97.404 34.034
Decile 1
Div. Yield -1.484 0.723 3.194 1.401 3.699 1.051 2.125 1.816
T-Bill Rate -38.763 12.032 -55.508 9.682 -19.253 4.193 -17.479 8.654
Spread -48.401 32.583 -66.332 20.560 -14.037 8.131 -35.985 19.508
Def. Prem. 88.697 47.157 125.546 33.372 61.632 19.936 197.172 45.473
Decile 2
Div. Yield -1.809 0.643 3.350 1.552 1.498 0.670
T-Bill Rate -28.934 10.764 -61.477 12.756 -18.228 3.724
Spread -37.694 28.509 -72.947 29.227 -18.749 7.038
Def. Prem. 15.662 33.274 52.202 83.735 56.804 16.374
Decile 3
Div. Yield -1.630 0.605 3.315 1.481 1.438 0.616
T-Bill Rate -27.085 9.342 -56.942 11.271 -17.073 3.477
Spread -28.997 25.306 -67.740 28.126 -20.464 6.658
Def. Prem. 21.750 28.323 56.288 78.089 50.442 14.790
Decile 4
Div. Yield -1.431 0.553 3.112 1.383 4.303 1.034 1.519 1.835
T-Bill Rate -24.877 8.752 -51.543 10.204 -16.369 3.657 -6.956 8.342
Spread -26.830 23.312 -61.211 25.278 -7.400 7.648 -23.091 18.212
Def. Prem. 16.483 25.636 53.949 67.709 43.283 15.200 104.963 41.110
Decile 5
Div. Yield -1.150 0.640 3.549 1.472 4.329 0.990 1.569 1.626
T-Bill Rate -23.004 10.091 -51.507 10.449 -15.248 3.389 -4.894 7.503
Spread -23.039 27.060 -63.682 25.861 -4.221 7.425 -20.756 16.141
Def. Prem. 11.064 31.509 59.672 67.729 39.606 14.257 96.535 40.048
Decile 6
Div. Yield -1.316 0.588 3.282 1.521 4.367 0.941 1.723 1.612
T-Bill Rate -25.725 9.361 -47.623 9.861 -14.348 3.251 -7.508 7.516
Spread -32.617 25.761 -56.447 26.137 -3.348 6.756 -24.495 15.393
Def. Prem. 24.842 29.138 55.987 68.033 34.986 13.648 92.066 41.463
Decile 7
Div. Yield -1.225 0.505 2.929 1.487 3.978 0.961 1.880 1.344
T-Bill Rate -24.837 7.798 -42.574 9.167 -12.795 3.241 -8.648 7.441
Spread -34.084 20.961 -47.854 24.655 -1.676 6.812 -27.444 13.572
Def. Prem. 28.317 19.786 54.548 64.509 32.212 13.519 54.022 38.241
Decile 8*
Div. Yield -0.570 0.565 2.764 1.770 7.710 1.691 6.851 2.433
T-Bill Rate -20.784 8.788 -40.135 6.963 -4.506 5.763 -24.707 6.658
Spread -13.880 21.995 -58.478 19.816 24.244 14.464 -0.152 9.064
Def. Prem. 53.070 24.991 130.015 31.789 43.577 25.282 1.254 23.958
Decile 10
Div. Yield -0.657 0.567 1.648 0.667 2.632 0.792 2.165 1.259
T-Bill Rate -22.525 8.600 -21.518 3.760 -10.535 2.901 1.639 6.166
Spread -22.516 22.185 -23.365 8.416 0.061 5.660 -25.947 13.116
Def. Prem. 32.631 22.694 53.479 17.237 17.004 11.440 84.930 51.215




Table 4 (Continued)

Interval 1 Interval 2 Interval 3
Portfolio Beta S.E. Beta S.E. Beta S.E.
Nondurables
Div. Yield -0.820 0.389 1.229 1.213 1.219 0.403
T-Bill Rate -36.306 9.771 -28.812 8.034 -11.822 2.627
Spread -41.599 21.827 -40.639 21.647 -11.306 5.656
Def. Prem. 73.843 26.454 75.251 42.056 41.807 10.535
Durables
Div. Yield -1.311 0.528 1.128 0.471
T-Bill Rate -43.257 11.840 -14.742 2.413
Spread -39.795 28.163 -9.280 5.393
Def. Prem. 50.863 39.785 53.418 12.309
Manufacturing
Div. Yield -0.741 0.528 1.165 0.466
T-Bill Rate -44.101 11.104 -12.910 2.139
Spread -38.951 27.057 -8.307 4.761
Def. Prem. 33.662 41.633 40.236 11.478
Energy
Div. Yield -1.059 0.545 3.369 0.938 0.659 1.038
T-Bill Rate -41.553 11.344 -22.549 7.259 -10.542 3.560
Spread -32.960 25.453 -46.445 16.064 -6.106 9.625
Def. Prem. 23.025 23.405 70.821 26.719 -0.247 21.048
Chemicals
Div. Yield -1.090 0.522 2.350 0.559 2.483 1.050
T-Bill Rate -47.382 11.873 -13.395 2.182 -6.767 6.914
Spread -53.910 26.412 -11.724 6.106 -23.752 13.567
Def. Prem. 59.396 33.688 38.991 11.937 73.478 28.531
Business Equipment
Div. Yield -0.731 0.514 4,932 1.168 1.201 2.364
T-Bill Rate -19.295 6.562 -20.130 3.813 -18.129 11.900
Spread -29.155 22.751 -18.903 9.322 -43.652 23.141
Def. Prem. 54.168 34.339 49.361 18.362 184.326 64.882
Telecommunications
Div. Yield -0.737 0.508 3.408 0.674 -1.595 1.850
T-Bill Rate -53.032 13.624 -15.003 2.865 -33.261 14.501
Spread -68.454 28.887 -10.416 7.378 -29.632 20.576
Def. Prem. 84.201 27.910 33.356 14.180 164.549 50.065
Healthcare
Div. Yield -0.781 0.467 3.372 0.640 4.875 1.764
T-Bill Rate -43.345 13.060 -17.231 2.776 -10.337 10.697
Spread -65.595 29.223 -18.144 7.545 -60.750 21.207
Def. Prem. 90.620 27.063 46.430 15.210 152.247 51.258
Money
Div. Yield -0.657 0.414 0.855 1.289 0.993 0.410
T-Bill Rate -44.638 11.031 -35.924 8.969 -9.377 2.692
Spread -56.052 23.099 -66.528 24.870 -5.771 5.881
Def. Prem. 68.704 21.386 116.931 43.236 23.320 11.287
Other
Div. Yield -0.738 0.549 4.283 0.843 0.598 0.719
T-Bill Rate -41.194 11.352 -33.600 6.370 -14.693 2.738
Spread -26.165 26.848 -44.013 15.425 -18.249 7.924
Def. Prem. 47.830 44.001 59.342 24.780 59.753 15.602

* A fourth break was identified for decile 8. For the final (fifth) subinterval, the coefficients (standard errors in parentheses) were as follows:
Div. Yield: 1.448 (1.544); T-bill Rate: -4.354 (7.681); Spread -19.094 (14.768); Def. Prem. 69.110 (39.107)



Table 5: Breakpoint Coefficient Estimates (Dividend Yield Regressor)

This table presents the estimated coefficients and associated heteroskedasticity and autocorrelation consistent standard error from a
regression of excess stock returns on a constant and the lagged dividend yield during each subinterval identified using the sequential
breakpoints method of Bai and Perron (1998). We only display results for the portfolios where at least one breakpoint was identified.
Confidence intervals for the estimated break dates for this model may be found in Figure 2.

Interval 1 Interval 2 Interval 3

Portfolio Beta S.E. Beta S.E. Beta S.E.
Value-weighted 0.772 0.266 0.280 0.624 - -
Decile 8 1.077 0.339 0.964 0.941 - -
Decile 9 1.002 0.313 0.817 0.891 - -
Decile 10 0.727 0.256 0.169 0.593 - -
Energy -0.228 0.374 3.076 0.809 -1.022 0.535
Business Equipment 1.371 0.501 0.306 1.632 - -
Utility 0.673 0.226 2.333 0.596 0.390 0.411
Money 0.217 0.417 1.920 0.523 1.700 0.840



Table 6: Breakpoint Coefficient Estimates (Treasury Bill Regressor)

This table presents the estimated coefficients and associated heteroskedasticity and autocorrelation consistent standard error from a regression
of excess stock returns on a constant and the lagged T-bill rate during each subinterval identified using the sequential breakpoints method of
Bai and Perron (1998). We only display results for the portfolios where at least one breakpoint was identified. Confidence intervals for the
estimated break dates for this model may be found in Figure 3.

Interval 1 Interval 2 Interval 3 Interval 4

Portfolio Beta S.E. Beta S.E. Beta S.E. Beta S.E.
Value-weighted -10.854 2.147 -17.082 4174 -1.879 1.175 - -
Equal-weighted -8.406 1.980 -2.873 1.229 - - - -
Decile 1 -16.819 3.726 -25.313 5.223 -7.392 3.128 -8.971 2.519
Decile 3 -9.384 2.158 -7.020 2.871 -6.460 2.106 - -
Decile 4 -9.004 2.014 -7.085 2.851 -6.027 1.897 - -
Decile 5 -8.812 2.064 -3.084 1.291 - - - -
Decile 6 -8.777 2.102 -2.530 1.308 - - - -
Decile 7 -8.605 2.007 -2.165 1.299 - - - -
Decile 8 -8.432 2.056 -1.945 1.334 - - - -
Decile 9 -8.048 2.012 -1.972 1.282 - - - -
Decile 10 -11.203 2.345 -15.994 3.974 -1.805 1.130 - -
Nondurables -8.391 2.030 -5.872 1.949 -4.548 3.794 - -
Manufacturing -27.095 4.694 -4.217 1.174 - - - -
Energy 1.910 2.727 -7.513 1.465 - - - -
Business Equipmer -10.659 3.067 -8.841 3.157 -11.171 2.981 - -
Telecommunication -26.063 5.392 -15.977 3.695 -4.177 1.578 - -
Utility -6.580 1.526 -0.489 0.966 - - - -
Money -8.904 2.199 -2.851 0.994 - - - -
Other -28.961 5.187 -16.728 3.927 -7.091 2.213 -6.361 2.274



Table 7: Breakpoint Coefficient Estimates (Term Spread Regressor)

This table presents the estimated coefficients and associated heteroskedasticity and autocorrelation consistent standard
error from a regression of excess stock returns on a constant and the lagged term spread during each subinterval
identified using the sequential breakpoints method of Bai and Perron (1998). We only display results for the portfolios
where at least one breakpoint was identified. Confidence intervals for the estimated break dates for this model may be
found in Figure 4.

Interval 1 Interval 2

Portfolio Beta S.E. Beta S.E.
Value-weighted 15.777 3.984 -5.775 4.846
Equal-weighted 20.684 5.263 0.846 6.417
Decile 2 24.236 6.842 1.380 8.240
Decile 3 22.900 6.378 -5.379 7.745
Decile 4 21.769 6.070 0.320 7.238
Decile 5 21.211 5.621 1.367 7.170
Decile 6 20.247 5.586 0.401 6.705
Decile 7 19.430 5.208 -1.967 6.260
Decile 10 15.027 4.169 -6.637 4,739
Nondurables 21.332 5.059 4.258 6.076
Durables 26.955 5.894 7.067 7.214
Energy 2.339 9.055 13.421 6.714
Shops 22.470 5.574 1.507 7.360
Healthcare 20.559 5.693 -8.250 9.310
Other 23.165 5.891 0.396 7.082




Table 8: Breakpoint Coefficient Estimates (Default Premium Regressor)

This table presents the estimated coefficients and associated heteroskedasticity and autocorrelation consistent standard error from a regression of excess stock returns on a constant
and the lagged default premium during each subinterval identified using the sequential breakpoints method of Bai and Perron (1998). We only display results for the portfolios where at
least one breakpoint was identified. Confidence intervals for the estimated break dates for this model may be found in Figure 5.

Interval 1 Interval 2 Interval 3 Interval 4

Portfolio Beta S.E. Beta S.E. Beta S.E. Beta S.E.
Value-weighted 24.691 13.646 26.462 8.531 37.177 20.158 - -
Decile 1 34.722 34.335 54.730 16.132 188.562 46.287 - -
Decile 2 36.494 27.567 121.198 32.704 11.621 14.189 - -
Decile 3 43.904 24.059 115.452 30.092 9.226 12.746 - -
Decile 4 34.422 22.987 111.230 30.252 10.222 12.330 - -
Decile 10 20.680 13.908 23.444 7.880 30.508 19.010 - -
Nondurables 54.768 18.075 115.710 24.991 19.594 8.627 - -
Durables 28.221 27.990 123.540 31.315 28.925 14.525 125.957 34.651
Energy 37.855 12.883 -26.930 12.925 - - - -
Business Equipment 28.288 28.251 52.854 17.138 148.182 50.061 - -
Telecommunications 47.603 22.260 40.454 12.316 272.500 88.743 - -
Utility 40.801 13.644 13.162 4.321 - - - -
Shops 50.690 19.603 122.460 27.247 19.567 10.600 - -
Money 70.398 19.335 89.006 26.702 7.923 9.672 - -
Other 24.599 26.438 109.170 27.831 15.663 12.420 - -



Table 9: Summary Statistics for MSCI International Stock Returns

This table reports summary statistics for the MSCI international returns data and the endpoints of the sample range for each
country. The sample kurtosis is reported in excess of three, the value for the normal distribution. Returns are observed
monthly and are denominated in the local currency. The dividend yield is the dividend over the previous 12 months divided by
the current stock price. The T-bill rate is on a short term debt instrument from the local country. The specific choice of
instrument varies by country. The term spread is the difference between the yields on a Government bond and the yield on a
Government T-bill. The default premium is the US default premium defined as the difference between Moody's AAA and
BAA rates.

Equity Returns Sample Range
Country Mean Std. Dev. Skew Kurtosis Start End
Australia 0.862 6.422 -1.692 13.607 1970:1 2000:6
Austria 0.614 5.599 0.059 4.840 1971:1 1998:12
Belgium 1.111 4.920 -0.232 3.791 1970:1 2000:6
Canada 0.987 5.099 -0.719 2.792 1970:1 2000:6
Denmark 1.237 5.220 -0.140 0.121 1972:1 2000:5
France 0.542 6.616 -0.379 1.642 1970:1 2000:5
Germany 0.828 5.415 -0.608 2.294 1970:1 2000:6
Hong Kong 1.120 10.938 -0.711 5.444 1973:1 2000:9
Italy 1.050 7.219 0.197 0.478 1971:1 2000:6
Japan 0.746 5.447 -0.306 1.274 1970:1 2000:5
Netherlands 1.125 5.105 -0.475 2.383 1970:1 1998:12
Norway 0.850 7.607 -0.571 1.922 1971:8 2000:4
Singapore 0.778 7.805 -1.476 8.912 1978:1 2000:5
Spain 1.556 6.517 -0.516 2.459 1978:3 2000:5
Sweden 1.530 6.458 -0.066 1.492 1970:1 2000:6
Switzerland 1.131 5.114 -1.168 3.996 1980:1 2000:6
United Kingdom 1.154 6.124 0.281 7.787 1970:1 2000:6

United States 1.025 4.540 -0.580 2423 1970:1 2000:6



Table 10: International Full Sample Predictability Regressions (No Breaks)

This table presents the results of least squares regressions of international portfolio returns upon the full set of predictor variables and upon each of the
predictor variables separately. Results are presented for monthly returns on MSCI international portfolio for 18 countries. The instruments include a constant,
the lagged (local) dividend yield, (local) T-bill rate, (local) term spread and (US) default premium. Coefficients on the constant term are suppressed to
conserve space. The dividend yield is the dividend over the previous 12 months divided by the current price. Heteroskedasticity and autocorrelation consistent
standard errors for coefficient estimates based on the method suggested by Newey and West (1987) are also provided. The sample period varies from
country to country and is shown explicitly in Table 9. Bold face type indicates statistical significance at the 5% level. The symbol *-' indicates that the
corresponding regressor was not available for that particular country.

[ Model With All Regressors | [ Univariate Models |

R? YLD TBL SPD DEF YLD TBL SPD DEF

Australia 0.02 0.91 -1.62 -2.63 10.36 0.88 1.22 -1.66 13.23
0.49 214 3.62 10.12 036 0.88 197 8.24

Austria 0.02 0.63 -7.54 -10.44 8.67 0.12 -0.83 -1.13 0.56
0.47 427 513 6.69 035 1.75 245 6.32

Belgium 0.02 0.14 -5.16 -4.38 20.84 0.07 0.01 0.07 11.17
011 2.38 3.43 9.33 0.08 1.26 2.50 7.72

Canada 0.03 0.14 -6.39 -6.89 27.80 -0.01 -1.31 1.28 7.04
0.39 2.07 350 10.25 035 0.99 187 9.05

Denmark 0.03 0.17 -2.19 - 19.46 0.11 -0.86 - 13.09
0.21 0.90 - 8.27 018 0.84 - 7.48

France 0.02 0.42 -4.94 -1.75 18.40 0.13 -1.21 4.71 7.92
037 3.44 5.79 13.79 0.20 112 3.03 8.08

Germany 0.02 0.25 -5.83 -3.85 13.91 0.04 -2.43 2.78 9.25
034 241 201 8.42 022 131 1.94 6.74

Hong Kong 0.03 1.41 - - 8.28 1.50 - - 23.68
0.65 - - 20.27 0.62 - - 18.63

Italy 0.00 0.28 -0.29 -1.84 5.23 0.26 0.53 -1.62 5.47
053 151 3.03 14.47 050 1.10 2.73 11.70

Japan 0.05 0.64 -1.50 6.09 30.01 0.42 -0.29 2.92 18.75
0.34 271 512 9.32 0.30 1.06 245 6.60

Netherlands 0.05 0.47 -11.66 -11.31 23.86 0.12 -1.88 1.86 15.11
0.25 3.02 355 8.57 0.20 1.04 122 7.0

Norway 0.01 0.46 0.82 0.04 -10.70 0.35 0.82 -1.06 1.90
0.42 227 3.28 13.55 033 1.24 197 1059

Singapore 0.03 2.18 -5.68 1.12 19.11 1.66 -1.44 5.02 10.18
1.30 5.12 7.56 19.13 0.97 251 439 12.47

Spain 0.02 0.21 -2.94 -0.70 5.59 0.05 -1.38 2.18 5.84
0.18 2.25 213 14.26 0.09 0.69 059 9.98

Sweden 0.03 -0.37 -1.09 - 33.95 -0.02 0.72 - 22.89
027 1.48 - 15.21 0.22 141 - 11.97

Switzerland 0.01 1.44 -3.67 0.35 -17.53 -0.06 -1.97 3.44 -2.81
0.93 6.81 9.75 12.73 0.49 1.74 2.58 6.96

United Kingdom 0.08 2.18 -12.61 -10.96 32.11 0.75 0.85 0.61 25.89
0.99 455 381 13.71 050 1.02 214 8.60

United States 0.03 0.09 -3.68 -1.50 23.03 0.07 -0.81 2.38 12.74

0.29 176 2.81 7.22 0.17 0.73 2.16 6.44



Table 11: Selection of the Number of Breaks: International Data

The table presents the statistics (except for the Hansen test, for which p-values are available) for various hypothesis tests regarding the occurrence and number of breaks in the
regression model for stock indices from 18 international countries. For each portfolio, the regression model is excess returns on a constant and the lagged (local) dividend yield,
(local) T-bill rate, (local) term spread and (US) default premium. Critical values for the test statistics appear at the bottom of the table. The trimming percentage for the Sy F tests
is set at 20. Bold-faced numbers indicate statistical significance at the 10% critical level.

Sequential Tests of £ versus k+17 Null of Zero Breaks Versus Alternative of One Break Number of Breaks by Sequential

Null of Zero Breaks Versus Alternative of k Breaks Breaks (Columns Contain P-values) Method
Sup F(k) Sup F(k+1/k) Hansen Seq. Method
Portfolio 1 | 2| 3 21 I 32 Sup F Exp F Ave F 10% 5%

Australia 23.90 18.27 19.78 10.25 6.01 0.13 0.09 0.05 1 1
Austria 9.33 10.77 10.61 15.39 9.32 0.11 0.13 0.15 0 0
Belgium 34.37 27.85 21.37 10.71 8.80 0.00 0.00 0.00 1 1
Canada 26.58 20.17 15.43 8.75 0.00 0.08 0.07 0.19 1 1
Denmark* 16.91 10.50 10.34 7.10 12.02 0.19 0.25 0.36 1 1
France 35.84 23.57 17.06 8.98 5.73 0.01 0.00 0.01 1 1
Germany 23.62 17.711 20.39 13.72 13.40 0.09 0.08 0.03 1 1
Hong Kong* 11.35 8.41 5.89 4.75 2.17 0.23 0.28 0.39 0 0
Italy 24.09 19.39 20.79 21.85 19.32 0.12 0.11 0.06 2 2
Japan 15.17 16.38 13.40 6.01 5.38 0.09 0.09 0.15 0 0
Netherlands 56.10 38.71 31.68 15.97 14.84 0.00 0.01 0.00 1 1
Norway 19.37 17.45 14.55 13.23 1.40 0.07 0.08 0.43 1 1
Singapore 20.90 19.76 13.37 8.19 8.15 0.07 0.11 0.10 1 1
Spain 17.08 19.02 23.22 15.98 0.00 0.03 0.03 0.02 1 0
Sweden* 14.91 21.83 23.75 29.42 22.73 0.02 0.03 0.02 3 0
Switzerland 9.66 17.17 26.46 10.41 19.79 0.69 0.68 0.55 0 0
United Kingdom 14.42 10.96 10.01 6.40 9.29 0.12 0.17 0.74 0 0
United States 47.38 24.63 19.62 15.74 14.94 0.13 0.08 0.00 1 1
Critical Values-10% 16.14 14.37 12.90 18.14 19.10

Critical Values-5% 18.23 15.62 13.93 19.91 20.99

* For these countries, not all regressors were available and the critical values above do not apply. For all other countries, significance may be assessed by
reference to the critical values in the table.



Table 12: Coefficient Estimates from Breakpoint Regressions (International Data, All Regressors)

This table presents the estimated coefficients and standard error for all regressors during each subinterval identified using the sequential breakpoint
method of Bai and Perron (1998). The model is estimated for returns on MSCI index portfolios from 18 countries. Confidence intervals for the break
dates for this model may be found in Figure 6. No Breaks were found for Austria, Hong Kong, Japan, Switzerland and the United Kingdom.

Interval 1 Interval 2 Interval 3
Portfolio Beta S.E. Beta S.E. Beta S.E.
Australia
Div. Yield 4.105 1.326 0.996 0.785
T-Bill Rate -38.127 11.758 -4.340 3.238
Spread 10.113 12.170 -7.240 4.315
Def. Prem. -8.520 33.600 16.862 13.879
Belgium
Div. Yield 0.951 0.283 1.533 0.375
T-Bill Rate -21.717 6.225 -16.631 4.067
Spread 9.187 12.971 -21.543 4.909
Def. Prem. 12.176 14.446 -28.924 18.910
Canada
Div. Yield 2.207 1.212 2.036 0.641
T-Bill Rate -22.736 13.468 -14.134 3.625
Spread -15.211 19.825 -13.373 4.217
Def. Prem. 37.983 18.270 31.891 11.295
Denmark
Div. Yield 0.684 0.508 1.192 0.377
T-Bill Rate -3.895 1.238 -1.241 1.349
Spread - - - -
Def. Prem. 4,775 12.582 -6.859 13.597
France
Div. Yield 1.985 0.564 2.756 1.038
T-Bill Rate -13.712 4.556 -15.521 6.221
Spread -12.684 8.071 -13.974 8.663
Def. Prem. 28.177 15.753 55.407 23.846
Germany
Div. Yield 0.496 0.395 4.935 1.508
T-Bill Rate -2.504 2.656 -22.822 7.132
Spread 2.270 3.769 -10.364 7.715
Def. Prem. 21.690 8.149 0.451 37.853
Italy
Div. Yield -1.217 0.937 1.930 1.013 4.302 1.785
T-Bill Rate 5.531 2.453 1.654 3.112 -2.948 3.186
Spread 11.595 4.247 -17.572 5.212 -12.251 8.132
Def. Prem. 16.796 19.336 33.504 27.128 15.819 76.944
Netherlands
Div. Yield 1.174 0.355 4.098 1.469
T-Bill Rate -15.585 3.786 -33.246 8.531
Spread -15.469 4.310 -20.545 8.751
Def. Prem. 31.936 8.892 123.916 23.345
Norway
Div. Yield 1.921 1.004 1.344 0.550
T-Bill Rate -85.532 28.101 -0.694 3.095
Spread -94.467 29.747 -3.780 3.600
Def. Prem. 41.551 27.433 -27.739 20.281
Singapore
Div. Yield 5.024 1.950 7.209 2.736
T-Bill Rate 9.770 8.315 -30.344 10.888
Spread 1.855 10.041 -18.172 12.181
Def. Prem. 2.554 21.930 56.059 43.363
Spain
Div. Yield 0.262 0.318 3.142 0.927
T-Bill Rate 2.091 4.839 -15.034 4.058
Spread 4.415 4.559 -15.305 5.673
Def. Prem. -13.882 15.823 50.163 27.764
Sweden*
Div. Yield 8.293 1.726 1.049 0.640 1.546 1.405
T-Bill Rate -16.175 3.502 8.088 3.328 -3.644 5.006
Spread - - - - - -
Def. Prem. 3.615 18.081 -12.657 17.261 78.920 20.192
United States
Div. Yield 1.040 0.502 1.435 0.658
T-Bill Rate -5.495 2.233 0.029 5.168
Spread -0.519 3.215 -15.043 7.330
Def. Prem. 26.195 8.739 11.525 17.288

* A third break was identified for Sweden. For the final subinterval, the coefficients (standard errors in parentheses) were as follows:
Div. Yield: 3.809 (2.267); T-Bill Rate: -0.156 (3.999); Def. Prem. 92.840 (84.387)



Table 13: Size of Breakpoint Tests - Monte Carlo Simulations

This table reports the results of 1,000 simulation experiments. The table reports the percentage of cases in which the null hypothesis of no
break is rejected at the ten percent significance level when there is no break in the data generating process. To generate random samples in
Panel A, we first generated an AR(1) process 'the regressor' and the sample values were then computed as the lagged value of the regressor
plus a normally distributed error term. We obtain results for AR coefficients ranging from 0 to 0.98. Given the AR coefficient, the other

parameters were chosen so that the R?2 is 7%. The disturbance innovations are uncorrelated in Panel A and consequently the regressor is
strictly exogenous. We drop this assumption in Panel B and consider a process similar to that in Panel A except that the innovations are now
correlated. Parameters for the process were determined based on the estimation of a system where both returns on the equal-weighted CRSP
portfolio and the dividend yield are linear functions of the lagged dividend yield. The in-sample correlation of the errors is -0.93.

In Panel C the process is a Garch (1,1) where the parameter values are tuned to accord with in-sample values for returns on the equal-
weighted CRSP portfolio over the sample period 1952:7 - 1999:12. We obtain results for trimming percentage values of 15, 20 and 25 and we
allow for serial correlation in the residuals and heteroskedasticity of error terms across breaks (see Bai and Perron (1998)). Results for sample
sizes of 100 and 200 are reported in each case. The symbol '-' indicates that the test is not applicable because the trimming percentage times
the hypothesized number of breaks exceeds the sample size.

| Panel A: Regressor follows AR(1) process with Uncorrelated Disturbances |
Sample Size = 100

Persistence 0 0 0 0.3 0.3 0.3 0.9 0.9 0.9 0.98 0.98 0.98
Trimming Percentage 15 20 25 15 20 25 15 20 25 15 20 25
SupF(1) 13.4 12.8 11.1 13.2 9.7 9.9 9.1 11.4 10.2 9.7 9.6 8.0
SupF(2) 13.9 14.4 12.5 13.8 10.0 9.8 11.5 12.9 12.8 10.5 11.0 8.7
SupF(3) 16.0 14.8 - 16.3 10.8 - 15.5 13.6 - 11.4 11.0 -
SupF(4) 17.8 - - 17.3 - - 15.2 - - 12.7 - -
SupF(5) 17.9 - - 17.0 - - 14.8 - - 12.6 - -
Seq(2|1) 6.2 4.4 2.2 5.3 2.9 2.1 5.2 4.7 31 2.8 2.8 1.8
Seq(3|2) 0.7 0.3 - 1.2 0.0 - 1.2 0.5 - 0.4 0.2 -
Seq(4]3) 0.2 - - 0.2 - - 0.1 - - 0.0 - -
Seq(5]4) 0.0 - - 0.1 - - 0.0 - - 0.0 - -
P(SQM =0) 86.6 87.2 88.9 86.8 90.3 90.1 90.9 88.6 89.8 90.3 90.4 92.0
P(SQM =1) 12.2 12.1 10.9 12.3 9.3 9.6 9.0 10.6 9.7 9.7 9.4 7.6
P(SQM = 2) 11 0.7 0.2 0.8 0.4 0.3 0.1 0.8 0.5 0.0 0.2 0.4

Sample Size = 200

Persistence 0 0 0 0.3 0.3 0.3 0.9 0.9 0.9 0.98 0.98 0.98
Trimming Percentage 15 20 25 15 20 25 15 20 25 15 20 25
SupF(1) 11.0 11.6 10.0 11.7 10.3 8.5 10.0 7.3 7.1 8.4 8.0 7.7
SupF(2) 104 125 9.6 11.9 10.3 10.0 10.2 7.9 8.4 8.1 8.2 7.9
SupF(3) 11.1 12.7 - 14.5 9.9 - 11.5 9.6 - 7.8 9.0 -
SupF(4) 121 - - 13.8 - - 11.3 - - 8.1 - -
SupF(5) 11.1 - - 14.3 - - 10.9 - - 8.9 - -
Seq(2|1) 3.2 3.3 1.7 3.3 25 18 5.1 19 2.0 2.4 2.0 1.1
Seq(3|2) 0.2 0.3 - 0.4 0.3 - 0.3 0.1 - 0.6 0.1 -
Seq(4/3) 0.0 - - 0.0 - - 0.0 - - 0.0 - -
Seq(5/4) 0.0 - - 0.0 - - 0.0 - - 0.0 - -
P(SQM =0) 89.0 88.4 90.0 88.3 89.7 91.5 90.0 92.7 92.9 91.6 92.0 92.3
P(SQM =1) 10.5 11.2 9.7 10.9 10.1 8.1 9.4 7.0 6.8 8.2 7.6 7.6
P(SQM =2) 0.5 0.4 0.3 0.8 0.2 0.4 0.6 0.3 0.3 0.1 0.4 0.1
[ Panel B: AR(L) with Correlated Disturbances | Panel C: Garch(1,1) Process |
Sample Size 100 200 100 200
Trimming Percentage 15 20 25 15 20 25 15 20 25 15 20 25
SupF(1) 15.5 15.5 12.6 9.2 7.5 10.0 10.9 13.4 11.5 11.7 10.3 11.3
SupF(2) 23.9 215 16.4 125 10.9 10.7 11.7 13.8 12.9 12.9 11.6 11.2
SupF(3) 29.7 27.6 - 14.9 14.2 - 14.6 13.8 - 13.6 10.1 -
SupF(4) 36.2 - - 20.1 - - 13.8 - - 12.9 - -
SupF(5) 43.0 - - 24.8 - - 11.7 - - 11.4 - -
Seq(2|1) 10.1 6.3 1.9 4.0 2.4 1.6 5.8 3.0 2.2 6.5 3.7 1.9
Seq(3|2) 3.5 0.9 - 1.4 0.4 - 0.9 0.0 - 0.7 0.2 -
Seq(4/3) 0.9 - - 0.6 - - 0.1 - - 0.3 - -
Seq(5/4) 0.2 - - 0.0 - - 0.0 - - 0.2 - -
P(SQM =0) 84.5 84.5 87.4 90.8 92.5 90.0 89.1 86.6 88.5 88.3 89.7 88.7
P(SQM =1) 14.9 15.1 12.5 9.0 7.1 10.0 10.1 13.0 11.0 10.5 9.7 10.9
P(SQM =2) 0.6 0.4 0.1 0.2 0.3 0.0 0.8 0.4 0.5 1.2 0.6 0.4




Figure 1: Breakpoint Dates - All Regressors

This figure presents the estimated breakpoints (marked by an X’) and 90% confidence intervals using the sequential breakpoint
method of Bai and Perton (1998). The model is estimated for excess teturns on value-weighted (VW) and equal-weighted (EW)
CRSP pottfolios and for cap-based (D1-D10) and industty-based pottfolios. The instruments ate a constant, the US dividend yield,
the Treasury Bill rate, the term spread and the default premium lagged one month. The sample is monthly 1952:7 through 1999:12.
Panel A presents results for size-sorted portfolios and Panel B presents results for industry-sorted portfolios.
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Figure 2: Breakpoint Dates — Dividend Yield Regressor

This figure presents the estimated breakpoints (marked by an X’) and 90% confidence intervals using the sequential breakpoint
method of Bai and Perton (1998). The model is estimated for excess teturns on value-weighted (VW) and equal-weighted (EW)
CRSP portfolios and for cap-based (D1-D10) and industry-based portfolios. The instruments are a constant and the US dividend
yield. The sample is monthly 1952:7 through 1999:12. Panel A presents tresults for size-sorted portfolios and Panel B presents
results for industry-sorted portfolios.
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Figure 3: Breakpoint — Treasury Bill Regressor

This figure presents the estimated breakpoints (marked by an X’) and 90% confidence intervals using the sequential breakpoint
method of Bai and Perton (1998). The model is estimated for excess teturns on value-weighted (VW) and equal-weighted (EW)
CRSP pottfolios and for cap-based (D1-D10) and industry-based pottfolios. The insttuments ate a constant and the US Tteasuty
Bill rate. The sample is monthly 1952:7 through 1999:12. Panel A ptesents results for size-sotrted portfolios and Panel B presents
results for industry-sorted portfolios.
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Figure 4: Breakpoint Dates — Term Spread Regressor

This figure presents the estimated breakpoints (marked by an X’) and 90% confidence intervals using the sequential breakpoint
method of Bai and Perton (1998). The model is estimated for excess teturns on value-weighted (VW) and equal-weighted (EW)
CRSP portfolios and for cap-based (D1-D10) and industry-based portfolios. The instruments are a constant and the US term
spread. The sample is monthly 1952:7 through 1999:12. Panel A presents tesults for size-sorted portfolios and Panel B presents
results for industry-sorted portfolios.
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Figure 5: Breakpoint Dates— Default Premium Regressor

This figure presents the estimated breakpoints (marked by an X’) and 90% confidence intervals using the sequential breakpoint
method of Bai and Perton (1998). The model is estimated for excess teturns on value-weighted (VW) and equal-weighted (EW)
CRSP portfolios and for cap-based (D1-D10) and industty-based porttfolios. The instruments are a constant and the US default
prtemium. The sample is monthly 1952:7 through 1999:12. Panel A presents tesults for size-sorted portfolios and Panel B presents
results for industry-sorted portfolios.
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Figure 6: Breakpoint Dates — International Portfolios (All Regressors)

This figure presents the estimated breakpoints (marked with an °X’) and 90% confidence intetvals applying the sequential
breakpoint method of Bai and Petron (1998) to MSCI pottfolios for 18 countties. The model is estimated for returns on the MSCI
index for the country and the instruments are a constant, the local dividend yield, a local short term interest rate, the local term
spread and the US default premium, all lagged one petiod. Neither the term spread nor the short term interest rate was available for
Hong Kong. The term spread was unavailable for Denmark and Sweden.
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Figure 7: R’ values by Decade for US Portfolios
Panel A: Model without Breaks

This figute presents R’ values over each decade from the 1950’s to the 1990’s based on tegtessions of US pottfolio retutns on the
full set of predictor variables. The US pottfolios include the value-weighted (VW) and equal-weighted (EW) CRSP pottfolios as well
as size-sorted (ID1-ID10) and industry-sotted pottfolios. See Table 2 for the estimated (full-sample) regression coefficients for each
portfolio. The left side of the figure presents these values for US size-sorted portfolios while the right side of the figute presents
results for US industry-sotrted pottfolios. Data for the 1950’s begins in 1952:7.
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Figure 7: R’ values by Decade for US Portfolios
Panel B: Model with Breaks

This figute presents R’ values over each decade from the 1950’s to the 1990’s for US pottfolio teturns based on the model selected
by the sequential method of Bai and Petron (1998). The US pottfolios include the value-weighted (VW) and equal-weighted (EW)
CRSP pottfolios as well as size-sorted (ID1-1D10) and industry-sorted pottfolios. The estimated breakpoints and confidence interval
for each pottfolio ate presented in Figure 2. The left side of the figute presents these values for US size-sorted portfolios while the
right side of the figutre presents results for US industry-sorted portfolios. Data for the 1950’s begins in 1952:7.
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Figure 8: R values by Sample Period for International Portfolios
Panel A: Model without Breaks

This figute presents R’ values over vatious sub-intetvals based on a regtession of international pottfolio retutns on the full set of
predictor vatiables. See Table 10 for the estimated regtession coefficients for each countty. The left side of the figure divides the
total sample petiod into thirds. The ‘Tast’ third tepresents the most tecent third of data for each countty, while ‘fitst’ represents the
eatliest third of data. Note that these petiods ate country-specific in the sense that the sample period vaties slightly over the
different countties (see Table 9). The right side of the figute breaks the total sample petiod into halves.
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Figure 8: R values by Sample Period for International Portfolios
Panel B: Model with Breaks

This figure presents R’ values for international portfolios based on the model selected by the sequential method of Bai and Perron
(1998). The estimated breakpoints and confidence intetval for each countty ate presented in Figure 6. The left side of the figure
divides the total sample petiod into thirds. The ‘last’ thitd reptesents the most recent third of data fot each country, while “first’
tepresents the eatliest third of data. Note that these petiods are countty-specific in the sense that the sample petiod vaties slightly
over the different countties (see Table 9). The right side of the figute breaks the total sample petiod into halves.
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