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Abstract. The torus T of projective space also acts on the Hilbert scheme of subschemes
of projective space. The T -graph of the Hilbert scheme has vertices the fixed points of this
action, and edges connecting pairs of fixed points in the closure of a one-dimensional orbit.
In general this graph depends on the underlying field. We construct a subgraph, which we
call the spine, of the T -graph of Hilbm(A2) that is independent of the choice of infinite
field. For certain edges in the spine we also give a description of the tropical ideal, in the
sense of tropical scheme theory, of a general ideal in the edge. This gives a more refined
understanding of these edges, and of the tropical stratification of the Hilbert scheme.
Keywords. Hilbert scheme, T -graph, tropical ideal
Mathematics Subject Classifications. 14C05, 14T10, 14L30

1. Introduction

The torus T ∼= (K∗)n of Pn acts on the Hilbert scheme HilbP (Pn) of subschemes of Pn. There
are finitely many fixed points of this action, but infinitely many one-dimensional orbits. The
T -graph of the Hilbert scheme has vertices the fixed points of the T -action. There is an edge
between two vertices if there is a one-dimensional T -orbit containing a K-rational point whose
closure contains these two vertices. TheT -graph provides a combinatorial skeleton of the Hilbert
scheme; for example, the proof that HilbP (Pn) is connected given by Peeva and Stillman [PS05]
proceeds by showing the Borel-fixed subgraph of this graph is connected (the original proof by
Hartshorne [Har66] has some moves which, while combinatorial, leave this graph). The T -graph
of the Hilbert scheme was first systematically studied by Altmann–Sturmfels [AS05], who gave

∗Supported by EPSRC grants EP/R02300X/1 and EP/X02752X/1.
†Supported by NSF grant DMS-1645877 and a Zelevinsky postdoctoral fellowship at Northeastern University.
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Figure 1.1: The T -graph and its spine when N = 4. The gray curves illustrate the fact that
the edge from ⟨x3, xy, y2⟩ to ⟨x2, xy, y3⟩ corresponds to a one-dimensional family of T -orbits;
taking a limit, the T -orbits degenerate into the union of two orbits, corresponding to the edges
from ⟨x3, xy, y2⟩ to ⟨x2, y2⟩ and from ⟨x2, y2⟩ to ⟨x2, xy, y3⟩.

an algorithm to compute it using Gröbner bases, and was studied combinatorially by Hering–
Maclagan [HM12]. More generally, T -graphs arise in GKM theory [GKM97], where they are
used to give a presentation of the equivariant cohomology ring of a variety with T -action.

The T -graph of the Hilbert scheme Hilb4(A2) of 4 points in A2 is shown on the left of
Figure 1.1. Note that a single edge may correspond to multiple one-dimensional T -orbits, or
even to a positive-dimensional family of them.

An additional complexity is given by the fact that the graph depends on the underlying field;
the T -graph ofHilb10(A2) differs forK = Q andK = R; see [HM12, Example 2.11] and [Sil22,
Theorem 5.11].

The first result of this paper is the construction of a subgraph of the T -graph of the Hilbert
scheme HilbN(A2) that does not depend on the underlying field K, provided K is infinite.

A K-rational point of HilbN(A2) is a subscheme of A2 of length N , given by an
ideal I ⊆ S := K[x, y] with dimK S/I = N . Such an ideal I is a fixed point of the
T -action if and only if it is a monomial ideal; these ideals are in bijection with Young di-
agrams with N boxes, with boxes corresponding to monomials not in I . A non-monomial
ideal I lies on a one-dimensional orbit if and only if I is homogeneous with respect to a grad-
ing by deg(x) = a and deg(y) = b; the subscheme of A2 defined by I is stabilized by the
subtorus {((ta, tb) : t ∈ K∗} ⊆ T . There are two T -fixed points in the closure of the orbit, so I
corresponds to an edge of the T -graph, if and only if ab > 0.

In this latter case, denote byh : Z⩾0 → Z⩾0 the Hilbert function of I with respect to this grad-
ing: h(d) := dimK(S/I)d. Then I lies on the multigraded Hilbert scheme Hilbh

S ⊆ HilbN(A2)
parametrizing homogeneous ideals in S with Hilbert function h [HS04]. This multigraded
Hilbert scheme is a T -invariant closed subscheme of HilbN(A2), is smooth and irreducible
[Eva04, Theorem 1] [MS10, Theorem 1.1], and has two distinguished T -fixed points: the “lex-
most” and “lex-least” monomial ideals. See Section 2 and in particular Figure 2.1 for more
details.

Definition 1.1. The spine G∗
N of the T -graph of HilbN(A2) is the graph with vertices the T -

fixed points of HilbN(A2), and an edge between two monomial ideals if they are the lex-most
and lex-least ideals of Hilbh

S with respect to some grading and Hilbert function.
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Studying the spine was suggested in Remark 4.7 of [HM12]. Every one-dimensional T -orbit
corresponding to an edge of the T -graph is in the closure of the set of T -orbits corresponding
to edges in the spine. The spine for Hilb4(A2) is shown on the right in Figure 1.1. Let GN(K)
denote the T -graph of HilbN(A2) over a field K. Our first theorem is the following.

Theorem 1.2. For any infinite field K, G∗
N is a subgraph of GN(K); that is, if M− and M+ are

the lex-least and lex-most monomial ideals with respect to some grading and Hilbert function,
then there exists an ideal I ⊆ K[x, y], homogeneous with respect to this grading and Hilbert
function, such that the closure of the T -orbit of I contains M− and M+.

Our second result, Theorem 1.3 below, refines Theorem 1.2 for some edges by describing
matroidal aspects ofHilbh

S coming from tropical scheme theory. We now describe what we mean
by this; for precise definitions, see Section 3.1.

The tropicalization trop(I) of an ideal I ⊆ K[x, y] is the ideal in the semiring of tropical
polynomials obtained by tropicalizing every polynomial in the ideal. This is an example of a
tropical ideal in the sense of tropical scheme theory [GG16, MR18, MR20, MR22]. When I is
homogeneous, each degree-d part of trop(I) determines a matroid M(Id) on the set Mond of
degree-d monomials.

This construction induces a tropical stratification ofHilbh
S; two ideals are in the same stratum

if and only if their tropicalizations coincide. This can be thought of as a generalization of the
matroid stratification of the Grassmannian [GGMS87]. Very little is known about the tropical
stratification; see [Sil22, FGG24].

When n = 2, and the grading is the standard one deg(x) = deg(y) = 1, the Hilbert
scheme Hilbh

S is irreducible [Eva04, MS10], and hence has a unique open (largest) stratum. Our
second main theorem, Theorem 1.3 below, describes this stratum; in other words, it describes
the tropicalization of a general ideal I in Hilbh

S .

Theorem 1.3. Let S = K[x, y] be graded by deg(x) = deg(y) = 1. For any d ⩾ 0, the degree-d
matroid M(Id) of a general ideal I in Hilbh

S is the uniform matroid Uh(d),d+1. Furthermore, I
can be taken to be a K-rational point of Hilbh

S , provided K is infinite.

Theorem 1.3 fails in the nonstandard grading; see Section 3.5.
There are comparatively few explicit examples of tropical ideals; see [Zaj18, AR22]. One

important aspect of Theorem 1.3 is thus that it provides a large class of new examples for which
all matroids are understood.

Theorem 1.3 refines Theorem 1.2 as follows. For a fixed grading and Hilbert function, the
ideals I ⊆ K[x, y] whose orbit contains M− and M+ comprise an open set U1 ⊆ Hilbh

S , which
is nonempty by Theorem 1.2. Meanwhile, the ideals I ⊆ K[x, y] such that the conclusion of
Theorem 1.3 holds for all d ⩾ 0 also comprise a nonempty open set U2 ⊆ Hilbh

S , and we have
the containment U2 ⊆ U1; see Remark 3.23.

The structure of this paper is as follows. In Section 2 we give more precise definitions of the
main objects of study, and prove Theorem 1.2. Theorem 1.3 is proved in Section 3.
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2. The spine of the T -graph

In this section we recall previous work on the T -graph, and prove Theorem 1.2.
Let K be an infinite field. Recall that a K-rational point of HilbN(A2) is given by an

ideal I ⊆ S := K[x, y] with dimK(S/I) = N . The T ∼= (K∗)2 action on A2 induces a
T -action on HilbN(A2). Such an ideal is a fixed point of the T ∼= (K∗)2 action on HilbN(A2)
if and only if it is a monomial ideal, and lies on a one-dimensional T -orbit if and only if it is
homogeneous with respect to a Z-grading by deg(x) = a and deg(y) = b. The closure of a
one-dimensional T -orbit has either one or two T -fixed points; if there are two T -fixed points in
the closure we have ab > 0.

Notation 2.1. We set S = K[x, y]. We grade S by deg(x) = a, deg(y) = b, for posi-
tive integers a, b, and denote this as an (a, b)-grading. From now on we restrict to a, b > 0
and gcd(a, b) = 1; this makes no material difference, and will simplify our notation.

Let I∈HilbN(A2) be an ideal that is homogeneous with respect to the grading by (a, b)∈Z2
>0.

The Hilbert function h : Z⩾0 → Z⩾0 of I is defined by h(d) = dimK(S/I)d. Note
that

∑
d⩾0 h(d) = N. The point I ∈ HilbN(A2) is contained in the closed subscheme Hilbh

S

parametrizing ideals in S that are homogeneous with respect to the (a, b)-grading and have
Hilbert function h. This subscheme is a multigraded Hilbert scheme in the sense of [HS04].
Furthermore, for any grading (a, b) ∈ Z2

>0 and for any Hilbert function h : Z⩾0 → Z⩾0

with
∑

d⩾0 h(d) = N, if the scheme Hilbh
S is nonempty, it is a smooth irreducible T -invariant

subvariety of HilbN(A2) [Eva04, MS10]. The union of the subvarieties Hilbh
S , as (a, b) and h

vary, is precisely the set of ideals corresponding to vertices and edges of the T -graph, and any
intersection of two different Hilbh

S is either empty, or consists of a single point corresponding to
a monomial ideal.

Each multigraded Hilbert scheme Hilbh
S inherits a T -action from HilbN(A2). We may define

the T -graph Gh(K) of Hilbh
S in exact analogy with that of HilbN(A2): the vertices of Gh(K)

are zero-dimensional T -orbits, which are monomial ideals whose Hilbert function with respect
to (a, b) is h, and two vertices are connected by an edge if there is a one-dimensional T -orbit
in Hilbh

S containing a K-rational point whose closure contains those vertices. Note that Gh(K)
is naturally a subgraph of GN(K). Moreover, we have the following decomposition:

Proposition 2.2 ([HM12], Corollary 2.6). The T -graph GN(K) is the union of the sub-
graphs Gh(K) as (a, b) and h vary, and these subgraphs have disjoint edge sets.

In light of Proposition 2.2, in order to determine GN(K) it is sufficient to study the
graded Hilbert schemes Hilbh

S separately. Thus from now on, fix a grading (a, b) ∈ Z2
>0

with gcd(a, b) = 1, and a Hilbert function h : Z⩾0 → Z⩾0 with
∑

d⩾0 h(d) < ∞.

Note that the 1-parameter subtorus Ta,b := {(ta, tb) | t ∈ K∗} ⊆ T acts trivially on Hilbh
S ,

so we need only consider the action of the one-dimensional torus T/Ta,b. Since Hilbh
S is smooth

and projective, the Białynicki-Birula decomposition of Hilbh
S with respect to T/Ta,b decom-

poses Hilbh
S as a union of affine spaces, each consisting of points whose limit under the subtorus

action is a given fixed point. We describe these affine spaces algebraically as follows. Set ≺ to
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be the lexicographic order with x ≺ y. A T -fixed point corresponds to a monomial ideal M .
The Białynicki-Birula cell associated to M is

C≺(M) = {I ∈ Hilbh
S | in≺(I) = M},

where in≺(I) is the initial ideal in the sense of Gröbner bases; see [CLO15]. An explicit pa-
rameterization of C≺(M) was given by Evain [Eva04]; we recall this in Section 3.2. For two
monomial ideals M,M ′ ∈ Hilbh

S , the edge-scheme between M and M ′ is the scheme-theoretic
intersection

E(M,M ′) = C≺(M) ∩ C≺opp(M ′),

where ≺opp is the lexicographic order with x ≻ y. This was first studied computationally by
Altmann and Sturmfels [AS05]. There is an edge between M and M ′ in the T -graph if and only
if one of E(M,M ′) and E(M ′,M) has a K-rational point.

The vertices ofGN(K) are purely combinatorial: colength-N monomial ideals inS=K[x, y]
correspond to partitions of N , and requiring that the Hilbert function with respect to (a, b) is h
is a combinatorial condition on partitions of N =

∑
d⩾0 h(d). The edges, however, depend on

the field K, as the following examples show.

Example 2.3. There is an edge between the two monomial idealsM=⟨x5, y2⟩ andM ′=⟨x2, y5⟩
when viewed as ideals in R[x, y], but not when viewed as ideals in Q[x, y], so the T -graph
of Hilb10(A2) differs over R and Q. This is the case because every ideal in E(M,M ′) has the
form I = ⟨y2+αxy+βx2, x5⟩, with α4−3α2β+β2 = 0, by [HM12, Example 2.11]. This is the
union of two one-dimensional T -orbits, which have R-rational points, but no Q-rational points.
Note that the edge scheme E(M,M ′) is a subscheme of Hilbh

S , where the grading is (1, 1),
and h = (1, 2, 2, 2, 2, 1, 0, 0, . . .).

This example is generalized in [Sil22, Theorem 5.11], which shows that if m > k > 0, and
we define M = ⟨xm, yk⟩ and M ′ = ⟨xk, ym⟩ in Hilbmk(A2), then the edge-scheme E(M,M ′)
is one dimensional and reducible over C, with the number of irreducible components equal to
the number of binary necklaces with k black and m− k white beads. The proof actually shows
that these edges have K-rational points whenever there exists c ∈ K such that xm + cym has a
degree-k factor with coefficients in K.

By contrast, the definition of the spine of the T -graph, given in Definition 1.1, is purely
combinatorial.

Definition 2.4. LetM,M ′ be monomial ideals inHilbh
S . We defineM ⪯ M ′ if for each degree d

there is a degree-preserving bijection f from the monomials in M to the monomials in M ′

with m ⪰ f(m) for all monomials m ∈ M , where ≺ is the lexicographic order with x ≺ y.
This defines a partial ordering on the monomial ideals in Hilbh

S .

Remark 2.5. The partial order of Definition 2.4 may be regarded as a graded version of the
dominance order for partitions. Recall that the monomial ideals M,M ′ correspond to partitions,
or alternatively, to Young diagrams. Under this correspondence, M ⪯ M ′ if and only if M ′ can
be obtained from M by moving boxes of the Young diagram up and to the left, along lines of
slope −a/b. See Figure 2.1. Compare this to the usual dominance order for partitions, which is
identical after removing the slope restriction.
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⟨x5, xy, y2⟩

⟨x4, xy, y3⟩

⟨x3, y2⟩

⟨x3, x2y, xy2, y3⟩

≺

≺

≺

≺

Figure 2.1: The poset of monomial ideals inHilbh
S , where h = (1, 1, 2, 1, 1, 0, 0, . . .)with respect

to the (1, 2)-grading. The leftmost ideal is the lex-least, and the rightmost ideal is the lex-most.
Note that M1 ≺ M2 if and only if M2 can be obtained from M1 by moving boxes of the Young
diagram up-and-left along lines of slope −1/2.

A necessary, but not sufficient, condition for E(M,M ′) to be nonempty is that M ⪯ M ′

with respect to this partial order; this is a straightforward special case of [HM12, Thm. 1.3].
In particular, if M ̸= M ′, then at most one of E(M,M ′) and E(M ′,M) is nonempty. We
may therefore regard GN(K) as a directed graph, with an edge from M to M ′ if E(M,M ′) is
nonempty; the necessary condition above implies that the resulting directed graph is acyclic.

It was first noted by Evain [Eva04, Theorem 19] that this poset has a unique maximal ele-
ment, which we denote by M+, and a unique minimal element, which we denote by M−; see
also [MS10, Proposition 3.12]. We call M+ the lex-most ideal with Hilbert function h, and M−

the lex-least such ideal.
As defined in Definition 1.1, the spine G∗

N of the T -graph of HilbN(A2) is the graph with
vertices monomial ideals M in S with dimK(S/M) = N , and an edge joining two ideals M,M ′

if M = M−, and M ′ = M+ for some grading (a, b) and Hilbert function. Figure 2.2
shows G6(C) and G∗

6.

Theorem 2.6. Let K be an infinite field. If there is an edge connecting two monomial ide-
als M,M ′ in G∗

N , then there is an edge in the T -graph GN(K) connecting M,M ′.

Proof. Suppose M and M ′ are connected by an edge in G∗
N . By definition, there exists a grad-

ing (a, b) with respect to which the Hilbert functions of M and M ′ agree, and after possibly
renaming M and M ′, we have M = M+ and M ′ = M−.

By [Eva04, Thm. 1], [MS10, Thm. 1.1], Hilbh
S is smooth, projective, and irreducible.

Since M+ is a source, and M− is a sink, of the T/Ta,b action, the Białynicki–Birula
cellsC≺opp(M+) andC≺(M

−) are Zariski open and isomorphic to affine spaces ([BB73][Eva04,
Thm. 11]). Note that this follows from [BB73] only when the field K is algebraically closed,
but this assumption is unnecessary — for a discussion see [Bro05, §3]. Also, while [Eva04] as-
sumes K is algebraically closed, this is never used in the proofs. Thus C≺opp(M+)∩C≺(M

−) is
isomorphic to an open subset of an affine space over K; since K is infinite, it follows
that C≺opp(M+) ∩ C≺(M

−) contains a K-rational point.
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Figure 2.2: The T -graph G6(C), where the edges of G∗
6 are solid.

3. The tropical ideal of an edge of the spine

In this section we prove Theorem 1.3.

3.1. Tropicalizations of ideals

We first recall the concept of tropicalization of ideals, and the tropical stratification of the Hilbert
scheme.

Let B = ({0,∞},⊕, ◦· ) be the Boolean semiring, with the operations of tropical addition
(minimum) and tropical multiplication (addition). The tropicalization of f=

∑
cijx

iyj∈K[x, y]
is trop(f) =⊕cij ̸=0 x

iyj ∈ B[x, y]. The tropicalization of an ideal I ⊆ K[x, y] is

trop(I) = ⟨trop(f) : f ∈ I⟩ ⊆ B[x, y].

This is the trivial valuation case of tropicalizing ideals in the sense of tropical scheme the-
ory [GG16, MR18, MR20, MR22].

Note that a polynomial in the semiringB[x, y] can be identified with its support. When I ⊆ S
is graded, the polynomials in trop(I) of degree d of minimal support are the circuits of a ma-
troid M(Id) on the ground set Mond of degree-d monomials. We call this the degree-d matroid
of I . See, for example, [Oxl11] for more on matroids.

We will primarily focus on the basis characterization of matroids. When I ⊆ S is homoge-
neous with Hilbert function h, a collectionE of h(d)monomials of degree d is a basis forM(Id)
if there is no polynomial in I with support in E. The matroid M(Id) is uniform if every col-
lection of h(d) monomials of degree d is a basis. In this case we write M(Id) = Uh(d),mond ,
where mond = |Mond|.
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m0

m1

m2

m3

m4

Figure 3.1: The ideal M = ⟨x11, x8y, x4y2, xy3, y7⟩ has T+(M) =
{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2)} with respect to the grading (1, 2).

The assignment I 7→ trop(I) defines a stratification of Hilbh
S , called the matroid stratifica-

tion or tropical stratification. A stratum of this stratification consists of all ideals with a fixed
tropicalization. If

∑
d h(d) < ∞ (as will always be true in this paper), then there are finitely

many strata, and they are Zariski-locally closed. In general, there may be countably many strata;
see [Sil22].

3.2. Evain’s parameterization of the Białynicki-Birula cells

In this section we recall Evain’s parameterization of the Białynicki-Birula cells. This relies on
the combinatorial decomposition of the tangent space to the Hilbert scheme at a monomial ideal
given by significant arrows.

Notation 3.1. Let ≺ denote the lexicographic order on monomials in S = K[x, y] with x ≺ y.
We set r to be the Laurent monomial xb/ya. When (a, b) = (1, 1), we have r = x/y.

Definition 3.2. Let M ⊆ S be a finite-colength monomial ideal. Write the minimal generators
for M as m0 ≺ m1 ≺ · · · ≺ me, so m0 is a power of x, and me is a power of y. For 1 ⩽ i ⩽ e
set wi = lcm(mi,mi−1).

The set T+(M) is

T+(M) = {(i, ℓ) : 1 ⩽ i ⩽ e, ℓ ∈ Z⩾1,mir
ℓ ∈ S \M,wir

ℓ ∈ M}.

Elements of T+(M) are often drawn as arrows from mi to mir
ℓ, and are called positive signifi-

cant arrows. This is illustrated in Figure 3.1.
The set T−(M) of negative significant arrows has arrows pointing in the other direction:

T−(M) = {(i, ℓ) : 0 ⩽ i ⩽ e− 1, ℓ ∈ Z⩽−1,mir
ℓ ∈ S \M,wi+1r

ℓ ∈ M}.

Remark 3.3. The use of arrows as a combinatorial basis for the tangent space of the Hilbert
scheme of points at a monomial ideal was introduced by Haiman in [Hai98]. In Haiman’s for-
mulation there is an equivalence class of arrows; we follow the convention introduced in [Eva04]
to choose a particular representative of this class that starts at a minimal generator of the ideal,
and use the notation from [MS10].
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The lex-most and lex-least ideals M+ and M− defined in Section 2 can be characterized
as the unique ideals with T+(M+) = T−(M−) = ∅. This was first shown in [Eva04], and
generalized in [MS10].

We next recall the construction of the universal ideal over C≺(M).

Definition 3.4. For a monomial m ∈ M, we define

j+(m) = max{i | mi divides m}, and
j−(m) = min{i | mi divides m}.

Note j+ is denoted by j in [HM12]. We form the polynomial ring K[{cℓi | (i, ℓ) ∈ T+(M)}]
with variables indexed by T+(M), and recursively define polynomials

f0, . . . , fe ∈ K[{cℓi | (i, ℓ) ∈ T+(M)}][x, y]

by f0 = m0 and

fi =
mi

mi−1

fi−1 +
∑

(i,ℓ)∈T+(M)

cℓi
mir

ℓ

mj+(wirℓ)

fj+(wirℓ).

Note that the initial (leading) term of fi with respect to ≺ is mi.

Theorem 3.5 ([Eva04], Theorem 11). The set {f0, . . . , fe} is a Gröbner basis for the universal
ideal I over C≺(M). The induced map A|T+(M)| → Hh

S is injective with image C≺(M).

We will work directly with the coefficients of fi. To do so, we will use a combinatorial
non-recursive description of these coefficients given in [HM12], which we now describe.

Definition 3.6 ([HM12, Definition 4.10]). A path from a generator mi ∈ M is a sequence of
positive significant arrows P = ((i1, ℓ1), (i2, ℓ2), . . . , (id, ℓd)), such that:

(a) i1 ⩽ i, and

(b) if d ⩾ 2, then ((i2, ℓ2), . . . , (id, ℓd)) is a path from mj+(wi1
rℓ1 ).

The length of P is l(P ) = ℓ1 + · · · + ℓd. We also associate to P the monomial cP = cℓ1i1 · · · c
ℓd
id

in K[C≺(M)] = K[cℓi : (i, ℓ) ∈ T+(M)]. If the sequence is empty, P is the empty path, which
has length 0, and cP = 1.

Example 3.7. In Figure 3.1, the paths from m3 are as follows:

Length Paths
1 ((3,1)), ((2,1)), ((1,1))
2 ((3,2)), ((3,1),(2,1)), ((3,1),(1,1)), ((2,2)), ((2,1),(1,1))
3 ((3,2),(1,1)), ((3,1),(2,2)), ((3,1),(2,1),(1,1))

The boldfaced paths are the direct paths, defined in Definition 3.10.
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Theorem 3.8 ([HM12], Lemma 4.12). We have the following alternate characterization of fi:

fi =
∑

P a path
from mi

cPmir
l(P ).

Note that the term in this sum corresponding to the empty path is mi.

Example 3.9. Continuing Example 3.7, we have f0 = m0 = x11, f1 = x8y + c11x
10,

f2 = x4y2 + (c11 + c12)x
6y + (c12c

1
1 + c22)x

8, and f3 = xy3 + (c11 + c12 + c13)x
3y2 + (c12c

1
1 +

c22+ c13c
1
1+ c13c

1
2+ c23)x

5y+(c13c
1
2c

1
1+ c13c

2
2+ c23c

1
1)x

7. The boldfaced monomials cP correspond
to direct paths, defined in Definition 3.10.

We will focus on one monomial cP in each term of fi, as follows.

Definition 3.10. Fix k ⩾ 1. For all j ⩽ k, let ℓj be the longest length of a significant
arrow (j, ℓ′) ∈ T+(M−). We construct a sequence (z1, z2, . . . ) of variables cℓ

′
i as follows.

Set m = mk, and l = 1. If ℓk > 0, set z1 = cℓkk , i = j+(wkr
ℓk), and l = 2. Otherwise

set i = k− 1. We now iterate. Given m, l, i, if ℓi > 0, set zl = cℓii , i = j+(wir
ℓi), and l = l+1.

Otherwise set i = i− 1. This procedure stops when i ⩽ 0.
A path P is called a direct path from mk if it is of one of the two forms (z1, z2, . . . , zs),

with s > 0, or (z1, z2, . . . , zs, cℓ
′

i′ ), with s ⩾ 0, where the index i′ agrees with the index of zs+1,
and ℓ′ < ℓi′ .

Remark 3.11. Note the following properties:

1. There is at most one direct path from mk of a given length ℓ. This is because a choice of
path is determined by s and ℓ′, and the corresponding path has length ℓ =

∑s
i=1 ℓi + ℓ′ <∑s+1

i=1 ℓi. We refer to this path, when it exists, as pk,ℓ.

2. For a fixed k, and a fixed positive significant arrow cℓ
′
i , there is at most one ℓ such that cℓ′i

is the last step in a direct path pk,ℓ, in the sense that for any other positive significant
arrow cℓ

′′

i′ in pk,ℓ, we have i′ > i.

3. If P is a direct path from mk of length ℓ > ℓk, then the path P ′ obtained by deleting the
first step of P is a direct path of length ℓ− ℓk from mj+(wkr

ℓk ).

When S has the standard grading, we next show that direct paths of all possible lengths exist
from certain monomials mk. This uses the following properties of the lex-most and lex-least
ideals.
Remark 3.12. In the standard grading deg(x) = deg(y) = 1, the lex-most ideal M+ is the lexi-
cographic ideal, also known as the lexsegment ideal, with respect to the order x ≻ y; see [BH93,
Chapter 4]. This is the monomial ideal whose degree d part is the span of the (d+ 1)− h(d)
largest monomials in lexicographic order. The lex-least ideal M− is the lexicographic ideal for
the opposite order of the variables x ≺ y. A monomial ideal is lex-least with respect to the stan-
dard grading if and only if the rows of its Young diagram are strictly decreasing in length, and
similarly is lex-most if and only if the columns of its Young diagram are strictly decreasing in
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length. This means that for M− we have mk = xiyk for some i, so mkr
ℓ ∈ S for 0 ⩽ ℓ ⩽ k. We

also have by symmetry that if M− and M+ are the lex-least and lex-most monomial ideals with
a given Hilbert function h respectively, then the Young diagrams of M− and M+ are transposes
of each other.

Another standard-graded fact about M− that we need, which is not true for nonstandard
gradings, is that wk/mk−1 = y for all k ⩾ 1.

Proposition 3.13. Fix the standard (1, 1)-grading for S. Fix k ⩾ 0 with mkr ∈ S \M−. If for
some 0 < ℓ ⩽ k we have that mkr

ℓ ∈ S \M−, then there is a direct path of length ℓ from mk.

Proof. The proof is by induction on k. When k = 0, there is no such ℓ, so the claim holds. Now
assume that the claim is true for all k′ < k. Let ℓ′ be maximal such that (k, ℓ′) ∈ T+(M−).
If ℓ′ ⩾ ℓ, then we claim that (k, ℓ) ∈ T+(M−). This follows from the fact that wkr

ℓ′ ∈ M−, so
since wkr

ℓ′ ⪯ wkr
ℓ, we have wkr

ℓ ∈ M−. In this case cℓk is the required direct path. Otherwise,
(k, ℓ) ̸∈ T+(M−), so wkr

ℓ ∈ S \M−. Let k′ = j+(wkr
ℓ′) = k− ℓ′. We have wkr

ℓ′ = ximk′ for
some i ⩾ 0. Thus mk′r

ℓ−ℓ′xi = wkr
ℓ, so since wkr

ℓ ∈ S \M−, the same is true for mk′r
ℓ−ℓ′ ,

and ℓ− ℓ′ ⩽ k′. Since ℓ′ < ℓ ⩽ k, we have k′ > 1 and ℓ′+1 ⩽ k. This means that wkr
ℓ′+1 ∈ S,

and mk′r ∈ S \M−, as otherwise we would have mk′x
ir = wkr

ℓ′+1 ∈ M−, so (k, ℓ′+1) would
be in T+(M−). By induction there is a direct path cP from mk′ of length ℓ − ℓ′, so cℓ

′

k cP is a
direct path of length ℓ from mk.

3.3. The structure of the Macaulay matrix

For the rest of this section, we fix the standard (1, 1) grading on S = K[x, y], and a Hilbert
function h : Z⩾0 → Z⩾0. Let I ⊆ K[cℓi : (i, ℓ) ∈ T+(M−)][x, y] be the ideal of the universal
family over C≺(M

−) as in Theorem 3.5. Note that there are mond = d + 1 monomials of
degree d in S.

For any d ⩾ 0, and for any basis of Id, we may write the coefficients of the basis as the
columns of a matrix R with entries in K[C≺(M

−)]; such a matrix is called a degree-d Macaulay
matrix for I , and has size (d+ 1)× (d+ 1− h(d)). For any collection E of h(d) monomials of
degree d, there is a polynomial in I with support in E if and only if the minor indexed by rows
corresponding to monomials not in E is zero. The matroid M(Id) is thus exactly characterized
by which maximal minors of R vanish.

We begin by choosing a basis for Id via the combinatorial set-up given in Section 3.2. For
each of the d + 1 − h(d) monomials m ∈ M−

d , the polynomial gm := m
mj−(m)

fj−(m) ∈ Id has
initial term m with respect to x ≺ y.

As the polynomials {gm}m∈M−
d

have distinct initial terms, they are all linearly independent.
Since dim(Id) = d+ 1− h(d) =

∣∣M−
d

∣∣ , we conclude that {gm}m∈M−
d

is a basis for Id.
Let R be the matrix with columns the coefficient vectors of the polynomials gm. This is a

degree-d Macaulay matrix for I . We index the rows by Mond in increasing order with respect
to x ≺ y, and index the columns by the monomials in M−

d in increasing order with respect
to x ≺ y, so Rm′,m is the coefficient of m′ in gm.

We now make a series of observations about the matrix R.
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

∗ × · · · × ×
∗ ∗ · · · × ×
... ... . . . ... ...
∗ ∗ · · · ∗ ×
1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
... ... . . . ... ...
0 0 · · · 1 ∗
0 0 · · · 0 1


m∗ →

Figure 3.2: The structure of the Macaulay matrix R. In the base-change R̄ to the
ring K[C≺(M

−)]/⟨Y ⟩, the × entries are zero.

Property 3.14. The matrix R is upper triangular in the following sense. If m′ ≻ m,
then Rm′,m = 0 as gm has initial term m. Since M− is the lexicographic ideal with respect
to x ≺ y when (a, b) = (1, 1), the monomials m ∈ M−

d are ≺-consecutive; this means that the
entries Rm,m comprise a diagonal of R. We conclude that all entries below this diagonal are
zero. The entries along this diagonal are all 1, corresponding to the fact that mk has coefficient 1
in fk. See Figure 3.2.

Property 3.15. Theorem 3.8 gives a combinatorial description of the entry Rm′,m. Namely, let ℓ
be such that m′ = mrℓ. Then

Rmrℓ,m =
∑

P a path from
mj−(m) of length ℓ

cP .

Property 3.16. Let m∗ be the smallest monomial in M−
d with respect to x ≺ y. It will be

convenient to consider the entries of R in a quotient of K[C≺(M
−)] where some variables have

been set to zero. Let Y = {cℓi : (i, ℓ) ∈ T+(M−), i > j−(m∗)}. Let R̄ be the base-change of
the matrix R to K[C≺(M

−)]/⟨Y ⟩. That is, R̄ is a Macaulay matrix for the universal ideal over
the coordinate subspace defined by ⟨Y ⟩ in C≺(M

−) ∼= A|T+(M−)|.
The reason for using this quotient is as follows. Suppose m ∈ M−

d , so m ⪰ m∗.
Then j−(m) ⩾ j−(m∗). By Definition 3.6, a nonempty path P from mj−(m) either (1) con-
tains an element of Y , in which case cP = 0 ∈ K[C≺(M

−)]/⟨Y ⟩, or (2) is a path from mj−(m∗).
It follows that R̄ has entries

R̄mrℓ,m =
∑

P a path from
mj−(m∗) of length ℓ

cP .

In particular, R̄ is lower triangular in the following sense. Note that for ℓ0 = j−(m∗) we have
that mj−(m∗)r

ℓ0 is a power of x. Then for ℓ′ > ℓ0, we have R̄mrℓ′ ,m = 0. This implies the
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vanishing of all entries of R̄ that lie above the main diagonal; see Figure 3.2. Furthermore,
it follows from Proposition 3.13 and Property 3.15 that all entries on the main diagonal are
nonzero.

Property 3.17. Define a grading on K[C≺(M
−)] by deg(cℓi) = ℓ. Then Rmrℓ,m is homoge-

neous of degree ℓ. In particular, the degree is constant along diagonals of R, and satisfies
deg(Rmr,m′) = deg(Rm,m′r−1) = deg(Rm,m′) + 1. This also implies that for every square sub-
matrix R′ of R, the minor det(R′) is a homogeneous polynomial. Additionally, for any maximal
square submatrix R′ the degrees of the diagonal entries of R′ are a nonincreasing sequence (read
starting at the top left as usual); this follows from the fact that R′ is obtained by deleting only
rows (and no columns) from R. The same holds for R̄.

Example 3.18. Consider the monomial ideal M− = ⟨x6, x4y, x2y2, xy3, y4⟩. We have
T−(M−) = ∅. The chosen degree-4 Macaulay matrix for C≺(M

−) is

R =



x2y2 xy3 y4

x4 c11c
1
2 + c22 c11c

2
3 c11c

3
4

x3y c11 + c12 c11c
1
2 + c22 + c23 c11c

2
3 + c34

x2y2 1 c11 + c12 c11c
1
2 + c22 + c23

xy3 0 1 c11 + c12
y4 0 0 1

.

The base-change to K[C≺(M
−)]/⟨Y ⟩ is

R̄ =



x2y2 xy3 y4

x4 c11c
1
2 + c22 0 0

x3y c11 + c12 c11c
1
2 + c22 0

x2y2 1 c11 + c12 c11c
1
2 + c22

xy3 0 1 c11 + c12
y4 0 0 1

.

Observe how the various properties above apply to these matrices:

• Both are upper triangular in the sense of Property 3.14: there are zeros below the diagonal
m = m′.

• The matrix R̄ is lower triangular in the sense of Property 3.16.

• The homogeneity of Property 3.17 is satisfied with deg(c11) = deg(c12) = 1, deg(c22) =
deg(c23) = 2, and deg(c34) = 3.

3.4. Proof of Theorem 1.3

We now prove:

Theorem 3.19. Fix the standard (1, 1)-grading on S, and a Hilbert function h, and fix d ⩾ 0
such that h(d) < d + 1. Then every (d + 1 − h(d)) × (d + 1 − h(d)) minor of R is a nonzero
polynomial in K[C≺(M

−)].
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Proof. For convenience, in this proof let n0 = d + 1 − h(d) > 0. As in Property 3.16, we
definem∗ to be the smallest monomial (with respect to x ≺ y) inM−

d . Again as in Property 3.16,
we work with the Macaulay matrix R̄ over K[C≺(M

−)]/⟨Y ⟩; if a minor is nonzero in this ring,
it is also nonzero in K[C≺(M

−)].
Fix an n0 × n0 submatrix R′ of R̄. By Property 3.16, the (i, j)th entry R′

i,j of R′ is of the
form ∑

P a path from
mj−(m∗) of length ℓi,j

cP

for some {ℓi,j}1⩽i,j⩽n0 . Note that the sum is zero if ℓi,j < 0. We have ℓj,j ⩾ 0 for all 1 ⩽ j ⩽ n0

by Property 3.14.
The chosen minor is then

det(R′) =
∑
σ∈Sn0

(−1)sgn(σ)
n0∏
j=1

∑
P a path from

mj−(m∗) of length ℓj,σ(j)

cP . (3.1)

By Proposition 3.13, the path pj−(m∗),ℓj,j exists for all 1 ⩽ j ⩽ n0. Hence we may define:

Q =

n0∏
j=1

cpj−(m∗),ℓj,j
.

Then Q is a monomial in K[C≺(M
−)]/⟨Y ⟩, and Q appears as a term of the right side of (3.1)

when σ = id. We will show that in fact, Q appears with coefficient 1 in det(R′), with the only
contribution coming from that term.

Claim 3.20. Suppose C =
∏s

j=1 cpk,ℓi , with ℓ1 ⩾ ℓ2 ⩾ . . . ⩾ ℓs ⩾ 0, and we also
have C =

∏s
i=1 cPi

, where each Pi is a path from mk, and l(P1) ⩾ l(P2) ⩾ . . . l(Ps) ⩾ 0.
Then we have the following inequality with respect to the lexicographic order on Zs:

(ℓ1, . . . , ℓs) ⪰ (l(P1), . . . , l(Ps)).

Proof of Claim 3.20. If C = 1 then all paths have length zero, and the claim follows. We now
assume that C ̸= 1. The proof is by induction on s. The base case is s = 1, in which case we
must have P1 = pk,ℓ1 , so the inequality is an equality. Suppose now that s > 1, and the result
is true for smaller values of s. Recall from Definition 3.10 that every variable cℓi dividing C
has i occurring in some zn as defined there. Let cℓ′i be the variable with i minimal dividing cP1 .
Since cP1 divides C, we have cℓ

′
i dividing cpk,ℓj for some 1 ⩽ j ⩽ s. We claim that the length

of the part of pk,ℓj before the step cℓ
′
i is at least as long as the part of the path P1 before cℓ

′
i ,

so ℓj ⩾ l(P1), with equality only if pk,ℓj = P1. To see this, note that the part of P1 before cℓ
′
i

contains only variables cℓi′ where i′ < i is the index of some zn, while the part of pk,ℓj before cℓ′i
contains every zn with i′ < i. Since the length ℓ of cℓi′ is at most the length of the associated zn,
we have ℓj ⩾ l(P1), and so ℓ1 ⩾ l(P1), with equality only if j = 1 and pk,ℓ1 = P1. When the
inequality is strict we have the strict inequality (ℓ1, . . . , ℓs) ≻ (l(P1), . . . , l(Ps)), while otherwise
the induction hypothesis applied to C/cpk,ℓ1 yields the desired inequality.
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Claim 3.21. For σ ∈ Sn0 , let Π(σ) denote the integer partition ℓ1,σ(1) + ℓ2,σ(2) + · · ·+ ℓn0,σ(n0).
We treatΠ(σ) as a nonincreasing list of integers, whose sum is the degree of det(R′)with respect
to the grading in Property 3.17. Then for all σ ∈ Sn0 , we have Π(σ) ⪰ Π(id) with respect to
the lexicographic order on Zn0

⩾0, with equality only if σ = id.

Proof of Claim 3.21. Suppose σ ̸= id and Π(σ) ⪯ Π(id). Let i ∈ {1, . . . , n0} be minimal
such that σ(i) > i. Then ℓ1,1, . . . , ℓi−1,i−1 are parts of both Π(σ) and Π(id). By Property 3.17,
ℓj,j is nonincreasing as j increases, so ℓ1,1, . . . , ℓi−1,i−1 are the i − 1 largest parts of Π(id).
Since Π(σ) ⪯ Π(id), we must have that ℓ1,1, . . . , ℓi−1,i−1 are the i − 1 largest parts of Π(σ).
The next largest part of Π(id) is ℓi,i, but we know that ℓi,σ(i) > ℓi,i, since σ(i) > i and, by
Property 3.17, ℓi,j strictly increases as j increases. This contradicts Π(σ) ⪯ Π(id).

Claims 3.20 and 3.21 together show that in the sum (3.1), the monomial Q appears only in
the term σ = id, which is the product

n0∏
j=1

R′
j,j =

n0∏
j=1

∑
P a path from

mj−(m∗) of length ℓj,j

cP (3.2)

Finally, we argue that the coefficient of Q in (3.2) is 1. Order the variables cℓi so that cℓi ≻ cℓ
′
j

if i > j or i = j and ℓ > ℓ′. Then cpj−(m∗),ℓj,j
is the largest monomial cP in the resulting

lexicographic order, when P varies over all paths from mj−(m∗) of length ℓj,j . The initial term
of R′

j,j is thus cpj−(m∗),ℓj,j
with coefficient 1. The initial term of the product (3.2) is the product

of the initial terms, namely Q. Thus Q appears in det(R′) with coefficient 1, so we conclude
that det(R′) is a nonzero element of K[C≺(M

−)], for any field K.

Theorem 3.19 is the key to proving Theorem 1.3.

Proof of Theorem 1.3. For an ideal I ∈ Hilbh
S , we have M(Id) = Uh(d),d+1 for all d ⩾ 0 if and

only all maximal minors of all Macaulay matrices for I are nonzero in degrees where h(d) > 0.
By Theorem 3.19, these minors are nonzero polynomials in K[C≺(M)], so M(Id) = Uh(d),d+1

for all d ⩾ 0 if and only if I is in the complement of the vanishing sets of these finitely many
polynomials. The set of such I forms a nonempty open subset of C≺(M

−), and hence of Hilbh
S .

This implies the main claim of Theorem 1.3; the second claim in Theorem 1.3 follows from
the standard fact that if K is an infinite field, then any nonempty open subset of An

K contains a
K-point.

Remark 3.22. The proofs of Theorems 1.2 and 1.3 rely on K being infinite, but we do not know
of a counterexample to either one with K finite.
Remark 3.23. If I∈Hilbh

S satisfies the conclusion of Theorem 1.3, then necessarily in≺(I)=M−

and in≺opp(I) = M+; that is, I ∈ E(M−,M+). Indeed, for I ∈ C≺(M
−), in≺(I)d is the span of

the monomials corresponding to leading ones in the reduced column-echelon form of R. Thus
the condition in≺opp(I) = M+ is equivalent to the nonvanishing of a single maximal minor of R.
This is a strictly weaker condition than the nonvanishing of all maximal minors, as guaranteed
by Theorem 1.3.
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Remark 3.24. Theorem 1.3 determines M(Id) when I is a general element of E(M−,M+). It is
natural to ask if the theorem can be generalized to determine the matroid of a general element of
an arbitrary edge-scheme E(M,M ′), at least when E(M,M ′) is irreducible. In small examples,
even when E(M,M ′) is irreducible, M(Id) is often non-uniform. For example, this occurs
in N = 6, in the edge in Figure 2.2 connecting (4, 1, 1) and (3, 1, 1, 1), where M(I2) has xy as
a loop.

3.5. Discussion of other gradings

In this section we show that Theorem 1.3 does not hold for all edges in the spine, so the standard-
graded hypothesis is necessary.

We first note that the degree-d matroid can have loops and coloops in degrees where the
entire matroid is not trivial.

Example 3.25. Let (a, b) = (2, 3). Then the two monomial ideals M− = (x7, xy, y4)
andM+ = (x6, xy, y5) share a Hilbert function h. (HereN = 10.) The idealM− has the unique
positive significant arrow (2, 2), and the universal ideal I over C≺(M

−) is
thus ⟨x7, xy, y4 + c22x

6⟩.
The degree-12 Macaulay matrix is


x3y2 y4

x6 0 c22
x3y2 1 0
y4 0 1

.

The matroid M(I12) on ground set {x6, x3y2, y4} has circuits {{x3y2}, {x6, y4}}. In particular,
M(I12) is not a uniform matroid, due to the existence of the loop x3y2. This loop is forced to
exist since h(5) = 0, so xy ∈ I , and thus x3y2 ∈ I , for any ideal I with Hilbert function h.

Furthermore, the degree-8 Macaulay matrix is

( xy2

x4 0
xy2 1

)
,

so the matroid M(I8) on ground set {x4, xy2} has the unique circuit {xy2}. Again, M(I8) is
not a uniform matroid. In addition to the loop xy2, there is also the coloop x4, which is forced to
exist by the structure of h. To see this, note that since xy ∈ I as noted above, we have xy2 ∈ I .
As h(8) = 1, we must have x4 ̸∈ I for any ideal I with Hilbert function h, so the matroid M(I8)
has a coloop.

We now see, however, that loops and coloops do not entirely account for the failure of The-
orem 1.3.

Example 3.26. Let (a, b) = (2, 3). Let h be the Hilbert function of the monomial ideal
M− = ⟨x10, x7y, x2y3, xy5, y6⟩. Then M+ = ⟨x9, x5y, x4y3, xy5, y7⟩. (Here N = 29.) The
ideal M− has the positive significant arrows

T+(M−) = {(2, 1), (4, 2), (4, 3)}.
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Thus the universal ideal I over C≺(M
−) is

⟨x10, x7y, x2y3 + c12x
5y, xy5 + c12x

4y3, y6 + c12x
3y4 + c24x

6y2 + c34x
9⟩.

The degree-18 Macaulay matrix is


x3y4 y6

x9 0 c34
x6y2 c12 c24
x3y4 1 c12
y6 0 1

.

The degree-18 matroid of I thus has rank 2 on the ground set {x9, x6y2, x3y4, y6}, with circuits

{{x3y4, x6y2}, {x9, x3y4, y6}, {x9, x6y2, y6}}.

This is not the uniform matroid, and does not have any loops or coloops. This is the smallest
example we know in which a matroid appears that is not the direct sum of a uniform matroid
with a collection of loops and coloops.

Remark 3.27. In Example 3.26, trop(I) is “maximally general”, in the following sense.
Let J ⊆ B[x, y] be any tropical ideal with Hilbert function h, in the sense of [MR18]. Then
for all d ⩾ 0, the matroid M(Jd) is a weak image of trop(I)d.
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