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ABSTRACT OF THE DISSERTATION

Multiple-Fault Detection and Isolation

Based on Disturbance Attenuation Theory

by

Emmanuell Murray

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2012

Professor Jason L. Speyer, Chair

In this dissertation, a linear estimator for fault detection and isolation called the Game

Theoretic Multiple-Fault Detection Filter is derived for both continuous and discrete systems.

The detection filter uses a disturbance attenuation formulation to bound the transmission

of disturbances to the output, approximately blocking all but one fault from each of a set of

projected residuals. However, different from previous approximate methods for single-fault

detection filters, the multiple-fault detection filter utilizes a secondary optimization problem

to generate a solution for the estimator gain that achieves more advanced detection filter

goals. Specifically, the current work examines an optimization that increases sensitivity of

each projected residual to its target fault. For the continuous case, it is proven that the new

detection filter approximates previous detection filters obtained from geometric and spectral

theories and extends them to finite time-varying systems. Further, the detection filter is

demonstrated via numerical examples.
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Chapter 1

Introduction

Control of distributed vehicle systems is a technology that will enhance much of our cur-

rently overburdened transportation infrastructure by revolutionizing air traffic control and

automated highways. Further, such systems enable autonomous aircraft to fly in formation

for drag reduction and arrays of satellites to form large aperture observatories. Unfortu-

nately, many vehicles are subject to possible degradation and failure of relative sensors and

control actuators. There are many examples every day in which human controllers are able

to overcome vehicle failures, such as blown car tires or jet engine failures. However, au-

tonomous vehicle systems, especially those grouped in tight formations or clusters, suffer

from dramatically increased sensitivity to such failures. Not only must the vehicle detect

that a failure has occurred, but it must also do so quickly before the failure affects other

parts of the distributed system. For the safety of the distributed system, vehicles must be

able to maintain accurate relative control at all times, even in the presence of sensor and

actuator failures. Therefore, complex distributed vehicle systems require the development

of extremely reliable automated control technology. An enabling element of this technology

is a distributed health management system that detects, isolates, and determines the time

history of faults and then reconfigures the affected vehicles for continuous performance.

The proposed approach to the first step of a distributed health management system is

the fault detection and isolation (FDI) system. FDI has received a great deal of attention
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over the last few decades. The earlier history of the field has been codified by several surveys

[1, 2, 3, 4, 5, 6, 7], as well as the books [8, 9, 10]. FDI survey papers of the current century

were written by Venkatasubramanian et. al. [11], Hwang et. al. [12] and Meskin and

Khorasani [13]. Recently, two books have been published on model-based FDI methods by

Isermann [14] and Ding [15]. The literature has produced several definitions of the terms fault

detection and fault isolation. To clarify, in this work, fault detection refers to announcing

the occurrence of a fault, while fault isolation refers to identifying the source of said fault.

In general, an FDI system utilizes redundant measures of the same quantity, then gen-

erates and analyzes an error residual composed by differencing pairs of redundant quantities.

There are two types of redundancy: hardware redundancy and analytical redundancy. Hard-

ware redundancy utilizes algebraic combinations of two or more redundant hardware signals

(e.g. - two sensors that measure the same quantity) to detect faults. The signals are usu-

ally from identical sources so that dissimilar noise values do not affect the ability to detect

changes in the mean residual. However, to enable fault isolation, multiple redundant pairs

must be utilized since each is sensitive to more than one fault source. Analytical redundancy,

on the other hand, uses mathematical models either to compare dissimilar hardware signals

(e.g. - comparing the desired control signal with a sensor output measuring thrust, combin-

ing two sensor measurements to compare to a third) or to make predictions on the sensor

outputs based on the assumed system dynamics and control signals. These mathematical

predictions are then compared with sensor data, even sensors with different noise charac-

teristics. If there is a variation between the measurement prediction and the sensor data

(i.e. - the error residual has a nonzero mean), a fault is declared. To enable fault isolation,

multiple error residuals are generated where each is made sensitive to only one fault. The

overall FDI system may contain both hardware and analytical redundancy methods. The

current approach utilizes analytical redundancy in what is know as a fault detection filter (a

term that, in this work, is used interchangeably with detection filter and FDI filter).
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1.1 Fault Detection Filters

A fault detection filter is a special class of linear observer. The observer produces an estimate

of the system’s output, which is then compared to the actual output to generate an error

residual. Detection filters may be classified into two types: the single-fault detection filter

whose residual is made sensitive to a single fault or subset of faults, and the multiple-fault

detection filter whose residual is forced to take on specific directional properties depending

on the fault source. By analyzing the residual direction, multiple, simultaneously occurring

faults may be detected and isolated via a (single) multiple-fault detection filter. Both types

have their own advantages with respect to each other. In general, asymptotically stable

single-fault detection filters may be obtained for more general specifications of the dynamic

system. On the other hand, a collection of single-fault detection filters are required to detect

multiple faults. Thus, multiple-fault detection filters are more computationally efficient,

requiring fewer states overall to detect and isolate the same number of faults as a bank of

single-fault filters. This is true even when reduced-order detection filters may be obtained.

For both the single-fault and multiple-fault detection filters, the raw residual is projected onto

a specific residual subspace known a priori to be sensitive to only one fault. The multiple-

fault filter uses multiple residual projectors to aid in the detection of different faults. In this

section, a brief examination of previous fault detection filters is given for continuous and

discrete systems.

1.1.1 Geometric and Spectral Theory-Based Methods

The detection filter using analytical redundancy for fault detection and isolation was first

introduced by Beard [16] and Jones [17], now called the Beard-Jones Detection Filter (BJDF).

The idea of the BJDF is to place the reachable subspace of each fault into non-overlapping

invariant subspaces called detection spaces. Then, when a fault occurs, the resulting nonzero

residual can be projected onto different residual subspaces associated with each fault so that

3



the fault source can be identified. Each detection space includes both the reachable subspace

of the associated fault and the directions associated with the transmission zeros (or invariant

zeros) of the fault’s transfer function. Constraints on the locations of the invariant zeros are

imposed to guarantee the desired properties of the detection filter. Geometric and spectral

analyses were given in [18] and [19], respectively. In [20], Chen re-examined the spectral

analysis and showed that the structures of the detection filters generated from the spectral

and geometric theories are equivalent. In [21], Chen generalized the BJDF to detect faults

of arbitrary dimension. Design algorithms using right-eigenvectors were developed based on

spectral theory in [19, 22, 23]. However, while the algorithm of [23] is simpler than White’s

algorithm in [19], an asymptotically stable detection filter can be obtained only for a more

restricted class of faults. A closed-form version of White’s algorithm was obtained in [20].

In [18], Massoumnia derived a slight generalization of the BJDF, called the Restricted-

Diagonal Detection Filter (RDDF), using geometric theory. Instead of placing a particular

fault into an invariant subspace like the BJDF, the RDDF places all but one fault into the

unobservable subspace of a projected residual. When every fault is detected, the RDDF

is equivalent to the BJDF. However, certain faults may not need to be detected, simply

blocked from the residual output. The constraints on these faults are relaxed in the RDDF,

making it potentially more robust than the BJDF [24]. The RDDF is restricted because

it is a full-order observer and diagonal because the transfer function from the faults to the

projected residuals is diagonal [18]. The RDDF was reformulated using spectral theory in

[25]. Simple design algorithms using left-eigenstructure assignment were developed based on

geometric theory in [24] and spectral theory in [25].

The Unknown Input Observer (UIO), originally used for fault-tolerant estimation, was

applied to the detection filter problem for a single fault in [26]. The UIO simplifies the

detection filter problem by requiring that all but one fault, the fault to be detected, be

placed in an unobservable detection space that can be annihilated via model reduction. It

was shown that constraints on the fault directions and on the location of invariant zeros are

4



relaxed compared to the previous detection filters. A bank of UIOs can be used to detect

multiple faults, trading relaxed constraints for possibly increased computational complexity.

Banks of detection filter UIOs were applied to multi-vehicle actuator fault detection in [27]

and to fault detection of Markovian jump linear systems in [28].

1.1.2 Robust Approximate Methods

The main drawback of the spectral and geometric methods is the rigidity of their structure

and sensitivity to noise. In order to increase the flexibility of the detection filter problem, it

has been approximated by relaxing the requirement of strict blocking of undesirable faults

and noises. Recently, much attention has been devoted to approximating UIOs for fault

detection using methods based on H∞ estimation, which seeks to minimize the H∞ norm

of the disturbances’ transfer functions. Enhanced sensitivity to the detected faults was

examined in [29, 30, 31] and extended to time-varying systems [32] and detection filters for

multiple faults [33, 34], though the latter is limited to certain special classes of faults. H∞

methods were recently applied to fault detection for linear time-varying discrete systems in

[35, 36]. The references cited therein discuss the results for time-invariant systems, with

particular attention to linear matrix inequality methods.

Another robust approximation method is based on disturbance attenuation. This method

generally applies to more complex systems and disturbances than the H∞-based methods.

In [37], a finite time-varying approximation of the UIO called the Game Theoretic Fault De-

tection Filter (GTFDF) was derived by applying a disturbance attenuation problem (DAP)

for fault-tolerant estimation [38] to fault detection. The DAP was optimized with respect

to the estimate and the disturbance inputs, including nuisance faults (or faults that must

be blocked from the projected residual), noises, and initial condition error, via a differential

game. The resulting detection filter gain is a function of the estimation error covariance,

whose optimal value is the solution to a Riccati differential equation similar to those used

in H∞ control. As the disturbance attenuation bound goes to zero, methods from singular
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optimal control are used to derive the asymptotic detection filter. The geometric structure

of the UIO is largely recovered in the limit. However, the invariant zero directions are not

automatically included in the detection spaces created by the optimization, though they can

be included artificially by modifying the fault directions [39]. The GTFDF was applied to

the decentralized fault detection problem in [40]. A similar Riccati-based detection filter

with enhanced sensitivity to the detected fault was derived in [41, 42].

The GTFDF was rederived for finite time-invariant, discrete systems in [43], resulting in

the Discrete Game Theoretic Fault Detection Filter (DGTFDF). Similar to the GTFDF, the

detection filter problem was modeled as a DAP and optimized with respect to the estimate

and disturbances via a differential game. Further, the resulting filter gain is constrained by

a discrete Riccati differential equation. However, unlike the continuous case, the curvature

of the Riccati equation with respect to the fault directions is not lost as the disturbance

attenuation bound goes to zero. Thus, the asymptotic detection filter is evaluated without

requiring singular optimal control. Instead, it is shown that the Riccati equation develops

constant directions, which behave similarly to an invariant subspace in the continuous case,

along the observable subspace of the nuisance fault.

A stochastic robust approximation method called the Optimal Stochastic Fault Detec-

tion Filter (OSFDF) was introduced by in [39, 41, 44] and extended to the multiple-fault case

in [41, 45]. The OSFDF uses a stochastic description of the estimation error covariance to

construct a cost function. Specifically, the optimization chooses the filter gain to minimize

the “transmissions”, defined by the individual covariances, of the disturbance inputs and

maximize transmission of the target fault (or fault to be detected) to the projected output

error. In the multiple-fault case, multiple error covariances are constructed so that the de-

tected faults can be isolated by their respective projected residuals. An example showed that

the multiple-fault OSFDF automatically included the faults’ invariant zero directions in their

proper detection spaces. Thus, in the limit as the weight on the nuisance fault transmission

goes to infinity, the structure of the RDDF is recovered. However, this approach assumes
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that all fault magnitudes are white noise processes and very little could be stated about the

optimality of solutions in the general or limiting multiple-fault cases.

1.2 Contribution of the Dissertation

The focus of the dissertation is to develop an approximation of the multiple-fault detection

filter that is robust to nuisance faults and to sensor noise. Because a disturbance attenuation-

based formulation lends itself immediately to use in fault detection, it is the basis for the novel

detection filter, called the Game Theoretic Multiple-Fault Detection Filter (GTMFDF). The

proposed fault detection filter is derived for both continuous and discrete systems.

The GTMFDF has a solution similar to that of the single-fault GTFDF of the previous

work. Both detection filters are obtained from disturbance attenuation and have Riccati-

based solutions. Thus, both detection filters have reduced sensitivity to noise, parameter

variations, and modeling errors compared to detection filters based on spectral and geometric

theories. However, whereas the GTFDF gain is associated with a single DAP and constrained

by a single Riccati equation, the GTMFDF uses multiple Riccati inequalities, one for each

DAP, as the constraints on a secondary optimization to find the actual filter gain. The

Riccati inequalities are very similar to the GTFDF Riccati equations, except for a new term

that weights the difference between the filter gain and its optimal single-fault solution for

each DAP. This added term is the key to blending multiple Riccati constraints to find a

single filter gain via a secondary optimization. The added term also allows us to obtain

alternative solutions to the single-fault problem, which may be used to account for system

limitations or to tradeoff target fault sensitivity for nuisance fault insensitivity. The same

occurs in the discrete case as well. In the limit as the disturbance attenuation bound goes

to zero, both detection filters may satisfy identical constraints on the filter gain and Riccati

variable. However, the GTMFDF satisfies these constraints over multiple DAPs.
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To the best of knowledge of the author, the only comparable fault detection filter to

date (for continuous-time systems) is the multiple-fault OSFDF by Chen and Speyer [41, 45].

However, the GTMFDF improves upon this previous work. While the cost function of the

multiple-fault OSFDF is effective for penalizing nuisance fault and noise transmissions to

the residual while promoting target fault transmission, the physical meaning of the sum of

covariances is unclear. The disturbance attenuation problem, on the other hand, is very easily

understood. Further, whereas target fault sensitivity was achieved through the constraint

equations of the OSFDF, the GTMFDF achieves the same using the filter gain optimization

itself. Also, the stochastic derivation of the multiple-fault OSFDF assumes that the fault

magnitudes are white noise processes. The GTMFDF requires no such assumption.

1.2.1 Overview of the Dissertation

Chapter 2 revisits fault modeling and fault detection filters based on spectral and geometric

theories for both continuous-time and discrete-time systems. Specifically for the continuous-

time case, the RDDF problem is reviewed and used to rederive the state space structure.

For discrete-time systems, a discrete detection filter analogous to the RDDF is presented.

Chapter 3 presents the GTMFDF. The RDDF is approximated by a set of DAPs, one

associated with each projected residual, coupled by a single filter gain. The detection filter

problem is to find constraints on the filter gain such that the disturbance attenuation bound

is met under worst-case disturbance and fault conditions. The problem’s solution poses a set

of matrix Riccati differential inequalities on the estimation error covariances for each DAP

and the filter gain. These Riccati inequalities become constraints on a secondary problem

to optimize the covariances and filter gain with respect to a new, arbitrary cost function.

Optimal solutions are generated either numerically or using calculus of variations. The latter

implies a two-point boundary value problem that must be solved to obtain the filter gain.

The chapter concludes with some results on the existence of solutions in the steady state

case and a comparison to the previous Riccati-based approximate detection filter methods.
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Chapter 4 examines the continuous detection filter in the limit as the disturbance atten-

uation bound goes to zero and the cost becomes singular with respect to the complementary

fault. In this case, the detection filter problem generates Riccati inequality constraints (sim-

ilar to those of the general case) along with a set of equality constraints that force the

geometric structure of the detection filter to restrict faults to strict detection spaces. Thus,

for most fault scenarios, the behavior of the asymptotic detection filter mirrors a finite time-

varying version of the RDDF. However, unlike the RDDF, the asymptotic detection filter

may not exist in general when subject to identical assumptions. A special case of the so-

lution, for which sufficient conditions for existence are derived, has constraints identical to

those of the single-fault problem for each DAP, with the difference that the filter gain must

satisfy the constraints over multiple DAPs. Finally, by using the geometric structure, a

method of obtaining a reduced-order detection filter is discussed.

Chapter 5 presents a parallel analysis of the GTMFDF for discrete-time systems, called

the Discrete Game Theoretic Multiple-Fault Detection Filter (DGTMFDF). The detection

filter problems and solutions for the continuous and discrete cases are extremely similar when

the disturbance attenuation bound is nonzero. Similar Riccati inequality constraints are

derived using calculus of variations and these inequalities become constraints on a secondary

filter gain optimization. It is shown that the discrete detection filter generalizes the solution

of the DGTFDF and extends it to the finite time-invariant multiple-fault case.

Finally, the GTMFDF is demonstrated via numerical examples in Chapter 6. In the

second example, particular attention is paid to the eigenstructure of the detection filter. The

example shows that the eigenstructure of the GTMFDF approximates that of the BJDF and

RDDF. When each of the system’s invariant zero directions can be included in the detection

space of an individual fault, the detection filter eigenvalues are not tied to the invariant

zeros. This is an improvement over the single-fault approximate detection filters, for which

(nonpositive) eigenvalues are located at the system’s invariant zeros or their mirror images.
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Chapter 2

Fault Detection Filter Background

In this chapter, the fault detection filters used as a basis for the current research are discussed.

In Section 2.1, fault modeling and the multiple-fault detection filter for continuous systems

are reviewed. The GTMFDF in Chapter 3 approximates the geometric structure of the

multiple-fault detection filter. In the limit as the disturbance attenuation bound goes to

zero, the asymptotic solution to the GTMFDF in Chapter 4 emulates this same geometric

structure. In Section 2.2, fault modeling and detection filtering for discrete systems are

reviewed. Likewise, the DGTMFDF of Chapter 5 approximates the geometric structure of

the discrete multiple-fault detection filter.

2.1 Continuous Multiple-Fault Detection Filtering

In this section, the continuous-time detection filters relevant to the current research are

discussed in detail. First, the system and fault modeling techniques are discussed for the

continuous-time case in Section 2.1.1. It is shown that actuator, sensor, and plant faults may

all be treated as additive inputs to the system dynamics. Then, an overview of the RDDF

is given in Section 2.1.2 to examine the invariant subspace structure of the detection filter.
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2.1.1 Plant and Fault Modeling

In this section, models of the plant, sensor faults, and actuator faults are given [16, 19, 37, 41].

Consider a linear time-varying system:

ẋ(t) = A(t)x(t) +B(t)u(t) (2.1a)

y(t) = C(t)x(t) +D(t)u(t), (2.1b)

where x(t) ∈ Rn is the state, u(t) ∈ Rl is the control input, and y(t) ∈ Rm is the measure-

ment.

The ith actuator fault is modeled as an additive input to the state dynamics (2.1a)

[16, 19] and to the measurement (2.1b) (when D(t) is nonzero):

ẋ(t) = A(t)x(t) +B(t)u(t) + Fa,i(t)µa,i(t)

y(t) = C(t)x(t) +D(t)u(t) + Ea,i(t)µa,i(t)

where Fa,i(t) and Ea,i(t) are the a priori known actuator fault directions in the dynamics

and measurement, respectively, and µa,i(t) is the actuator fault magnitude, which is an

unknown, arbitrary function of time. For example, a stuck off ith actuator has a fault

direction of Fa,i(t) = Bi(t), where Bi(t) is the ith column of B(t), and a fault magnitude of

µa,i(t) = −ūi(t). Note that µa,i(t) is nonzero only when a fault is present.

The ith sensor fault is modeled as an additive input to the measurement (2.1b) [16, 19]:

y(t) = C(t)x(t) +D(t)u(t) + Fs,i(t)µs,i(t) (2.2)

where Fs,i(t) is the a priori known sensor fault direction, and µs,i(t) is the unknown, arbitrary

sensor fault magnitude. Sensor faults are assumed to affect one sensor at a time. Thus, the

fault direction Fs,i(t) is a column vector of zeros except for a one in the ith row. For example,
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a constant sensor bias in the ith sensor has a fault magnitude of µs,i(t) = cs, where cs is a

constant.

To design an FDI filter, faults must be modeled as inputs to the system dynamics.

Therefore, an input that drives the dynamics similarly to µs,i(t) in (2.2) is required. One

method transforms the state so that it incorporates the sensor faults [37]. Define fs,i(t) and

ea,i(t) to satisfy

Fs,i(t) = C(t)fs,i(t)

Ea,i(t) = C(t)ea,i(t).

In general, fs,i(t) and ea,i(t) are not unique. One solution satisfying the above conditions is

fs,i(t) = C(t)T (C(t)C(t)T )−1 Fs,i(t)

ea,i(t) = C(t)T (C(t)C(t)T )−1 Ea,i(t)

Then, a new state x̄(t) may be obtained where

x̄(t) = x(t) + fs,i(t)µs,i(t) + ea,i(t)µa,i(t).

Therefore, (2.2) is rewritten

y(t) = C(t)x̄(t)

and the dynamic equation of x̄(t) is

˙̄x(t) = A(t)x̄(t) +B(t)u(t) +

[
ḟs,i(t)−A(t)fs,i(t) fs,i(t)

] µs,i(t)

µ̇s,i(t)


+

[
ėa,i(t)− A(t)ea,i(t) + Fa,i(t) ea,i(t)

] µa,i(t)

µ̇a,i(t)

 . (2.3)
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In (2.3), the faults magnitudes and system matrices are assumed differentiable. Thus, the

sensor fault is modeled as a two-component additive term to (2.3), where ḟs,i(t)−A(t)fs,i(t)

is the sensor fault magnitude direction and fs,i(t) is the sensor fault rate direction. When the

measurement contains a direct feedthrough term, the actuator fault is modeled as a similar

two-component term. Therefore, any fault may be treated as an additive term to the state

dynamics, and for the remainder of the dissertation, it is assumed that all faults are modeled

as such.

Remark 2.1: Plant faults can be modeled similarly by choosing fault directions along the

changes in the system matrices ∆A, ∆B, ∆C, and ∆D. Then, these faults are repre-

sented as additive inputs to the dynamics using the same procedures as discussed above.

♢

2.1.2 Restricted-Diagonal Detection Filter (RDDF) Background

In this section, the geometric structure of the RDDF is derived as in [18, 24, 41, 25]. Consider

a linear time-invariant system with q faults and m measurements

ẋ(t) = Ax(t) +Bu(t) +

q∑
i=1

Fiµi(t) (2.4a)

y(t) = Cx(t) +Du(t), (2.4b)

where x(t) ∈ Rn is the state, u(t) ∈ Rl is the control input, y(t) ∈ Rm is the measurement,

µi(t) ∈ R is an unknown, arbitrary scalar fault magnitude, and Fi ∈ Rn represents the

a priori known fault direction of µi(t). It is assumed that the measurements are linearly

independent, and so C ∈ Rm×n is full row rank (with m ≤ n). The detection filter is a linear

13



observer of the form

˙̂x(t) = Ax̂(t) +Bu(t) + L (y(t)− Cx̂(t)−Du(t)) (2.5a)

r(t) = y(t)− Cx̂(t)−Du(t), (2.5b)

where x̂(t) ∈ Rn is the state estimate, L ∈ Rn×m is the filter gain, and r(t) ∈ Rm is the

residual. Using (2.4) and (2.5), the state estimation error e(t) , x(t)− x̂(t) is subject to the

dynamic system

ė(t) = (A− LC)e(t) +

q∑
i=1

Fiµi(t) (2.6a)

r(t) = Ce(t). (2.6b)

In general, a detection filter is required to detect one or more target faults. However,

some faults, called nuisance faults [24, 25], are disturbances that may not need to be detected

explicitly, simply blocked from the residuals. Without loss of generality, assume that the

first s ≤ q faults are target faults and the remaining q − s faults are nuisance faults. The

nuisance faults can be grouped into a single vector µ̂(t) = [ µs+1(t) . . . µq(t) ]
T . Several

residuals can be generated, each sensitive to only one target fault, by multiplying r(t) by

a residual projector Ĥi. Therefore, the dynamic model of the estimation error in (2.6) is

rewritten as

ė(t) = (A− LC)e(t) +
s∑

i=1

Fiµi(t) + F̂ µ̂(t) (2.7a)

ri(t) = ĤiCe(t). (2.7b)

where F̂ = [ Fs+1 . . . Fq ] is the nuisance fault direction and ri(t) is the projected residual

associated with fault µi(t).
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Remark 2.2: For the remainder of the dissertation, the subscript i will be used to denote

the target fault index where i ∈ {1, . . . , s}. ♢

The RDDF problem is to choose L so that the detection filter satisfies the following

objectives [18, 24, 41, 25]:

• When the target fault µi occurs, the residual r(t) lies in a fixed subspace that is linearly

independent from the subspace associated with the remaining faults.

• The projected residual ri(t) is nonzero if the target fault µi(t) occurs.

• The eigenvalues of the detection filter can be chosen arbitrarily.

• The steady-state residual response to a constant bias fault is nonzero.

These objectives lead to a description of the state space geometry that clarifies the structure

of the RDDF problem. The remainder of this section is focused on deriving this geometry.

The invariant subspace structure of the RDDF is formulated around the occurrence of

the complementary fault

µ̂i(t) =

[
µ1(t) . . . µi−1(t) µi+1(t) . . . µq(t)

]

with direction

F̂i =

[
F1 . . . Fi−1 Fi+1 . . . Fq

]
.

When it occurs, the estimation error lies in

Ŵi = W1 + . . .+Wi−1 +Wi+1 + . . .+Wq (2.8)

and the residual lies along CŴi where for j = 1, . . . , q

Wj = Im

[
Fj (A− LC)Fj . . . (A− LC)n−1Fj

]
.
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Let δi be the smallest non-negative integer such that C(A−LC)δiFi ̸= 0. Therefore, for

k = 0, . . . , δi−1, C(A−LC)kFi = 0, which implies CAkFi = 0 and C(A−LC)δiFi = CAδiFi.

So, when fault µ̂i occurs, the estimation error will lie in (2.8) where

Wi = Im

[
Fi AFi . . . AδiFi (A− LC)AδiFi . . . (A− LC)n−δi−1AδiFi

]
.

If the filter gain L is chosen such that δi + 1 of the eigenvectors of A− LC span

W∗
i = Im

[
Fi AFi . . . AδiFi

]
, (2.9)

then W∗
i is the smallest reachable, observable subspace associated with Fi [18, 19] that

satisfies

(A− LC)W∗
i ⊆ W∗

i (2.10a)

Im Fi ⊆ W∗
i . (2.10b)

By (2.10), each W∗
i is invariant under A − LC. Hence, it is known as the minimal (C,A)-

invariant subspace of Fi. Further, when the target fault µi occurs the residual lies along

CW∗
i .

For the RDDF, instead of choosing L so that a subset of the eigenvectors of A − LC

span W∗
i , let a larger subset of the eigenvectors of A−LC span the minimal (C,A)-invariant

subspace Ŵ∗
i of the multi-dimensional complementary fault F̂i.

1 Note that the algorithm is

designed so that Ŵ∗
i satisfies (2.10) for F̂i. Then, when the complementary fault µ̂i occurs,

the residual lies along CŴ∗
i . To satisfy the first objective, CW∗

i and CŴ∗
i must be linearly

independent, i.e. the target faults must be (C,A) output separable from their complementary

faults. Note that output separability implies that m ≥ q.

1An equation to calculate Ŵ∗
i and the algorithm from which it is derived are discussed in detail in

Section 3.1.1 and Chapter 4, respectively.
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To satisfy the second objective, the RDDF must generate a residual vector that is

insensitive to the nuisance faults and can be used to uniquely identify any of the target

faults when one occurs [18]. First, it is necessary to assume that the target fault directions

are monic, i.e. µi(t) ̸= 0 implies Fiµi(t) ̸= 0 [37]. Otherwise, it would be impossible to

observe the fault when it occurs. Then, to isolate a target fault, the detection filter is

designed so that the associated complementary fault is placed in the unobservable subspace

of the residual. For a given target fault, the associated residual projector Ĥi is defined as

[41]

Ĥi = I − CŴ∗
i

[(
CŴ∗

i

)T

CŴ∗
i

]−1 (
CŴ∗

i

)T

. (2.11)

Thus, Ker Ĥi = CŴ∗
i and so the associated complementary fault is unobservable. Further,

when the faults are output separable, ĤiCW∗
i ̸= 0 and so the target fault remains observable,

satisfying the second objective. Since Ĥi is an orthogonal projector, it also satisfies Ĥi =

ĤT
i = Ĥ2

i .

While some of the eigenvalues can be chosen arbitrarily by letting the eigenvectors span

W∗
1 , . . . ,W∗

s , Ŵ∗, it is proven in [18] that the eigenvectors must also span the invariant zero

directions associated with (C,A, Fi) and (C,A, F̂ ). The following defines an invariant zero

and its associated direction for a target fault direction Fi, though the definition is similar

for the nuisance fault direction F̂ . The invariant zero directions νi,j, j = 1, . . . , pi, satisfy

 A− zi,jI Fi

C 0


 νi,j

ηi,j

 = 0, (2.12)

where zi,j is the invariant zero and ηi,j is a scalar coefficient. For scaling purposes, it can be

assumed that ∥ηi,j∥ = 1. If the detection filter eigenvectors associated with Fi do not span

Im νi,j, one of the eigenvalues of A− LC will be located at zi,j [18].

Define the invariant zero subspace Vi such that ν ∈ Vi, ξ ∈ W∗
1 ⊕· · ·⊕W∗

s ⊕Ŵ∗ ⇒ ν⊥ξ.

Similarly, invariant zeros ẑj and directions ν̂j are calculated for (C,A, F̂ ) where η̂j is a vector
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coefficient. Note that the invariant zero subspace associated with the nuisance faults satisfies

Vs+1 + . . . + Vq ⊆ V̂ since there may exist extra invariant zeros that cannot be associated

with an individual nuisance fault direction. To satisfy the third objective, choose the filter

gain such that ni of the eigenvectors of A− LC span

Ti = W∗
i ⊕ Vi (2.13)

and T̂ = Ŵ∗ ⊕ V̂ . Thus, Ti, called the minimal (C,A)-unobservability subspace of Fi [18] or

the detection space of Fi [17], contains all and only the directions that satisfy (2.10) where

by (2.13) and the second row of (2.12) CTi = CW∗
i [18].

Basic linear systems theory dictates that, if there exists an invariant zero at the origin,

the steady state residual due to a constant input from the associated fault is zero [46].

Therefore, in order to satisfy the fourth objective, there can be no invariant zeros at the

origin that are associated with (C,A, Fi).

Invariant zeros of (C,A, [F1 . . . Fs F̂ ]) that are not associated with (C,A, Fi), or

(C,A, F̂ ) become eigenvalues of the detection filter. However, since these extra invariant

zeros cannot be associated with a single fault, the resulting eigenvalues cannot be moved

without altering the state space (one method of increasing the size of the state space to

change the fault associations of the extra invariant zeros is discussed in [19]). Define the

subspace of extra invariant zeros Vext such that ν ∈ Vext, ξ ∈ T1 ⊕ · · · ⊕ Ts ⊕ T̂ ⇒ ν⊥ξ. If

(C,A, [F1 . . . Fs F̂ ]) contains no more invariant zeros than (C,A, Fi) and (C,A, F̂ ), then

every eigenvalue of the detection filter can be specified arbitrarily and the faults are said to

be mutually detectable.

With the detection spaces T1, . . . , Ts, T̂ and the subspace of extra invariant zeros Vext

defined, let the remainder of the state space be denoted as the complementary subspace C.

Define C so that it is orthogonal to T1⊕· · ·⊕Ts⊕T̂ ⊕Vext. Thus, the state space composition
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is determined as

T1 ⊕ . . .⊕ Ts ⊕ T̂ ⊕ Vext ⊕ C = Rn. (2.14)

Several system assumptions have been derived along with this state space description. To

summarize, in order to generate an arbitrarily stable RDDF, the following must be satisfied:

Assumption 2.1: The system is detectable. ♣

Assumption 2.2: The target fault directions are monic and observable. ♣

Assumption 2.3: Each target fault is output separable from its complementary fault. ♣

Assumption 2.4: No target fault is associated with an invariant zero at the origin. ♣

Assumption 2.5: The faults are mutually detectable or else the extra invariant zeros are

sufficiently stable so as not to destabilize the detection filter. ♣

Remark 2.3: Unobservable directions of (C,A) are eigenvectors of A that are also in the

nullspace of C. Thus, they are solutions to (2.12) where ηi,j = 0. Since the directions

are independent of the faults, the detection spaces overlap on the unobservable subspace

of (C,A). To prevent this overlap, the system should be (C,A) observable. However,

the detection filter can be obtained even when this condition is not satisfied. ♢

Remark 2.4: Mutual detectability is constraint necessary for finding an arbitrarily stable

detection filter only in for the single-fault problem [26]. In this case, a detection space is

formed only for the nuisance fault and not for the target fault. Since only one detection

space is formed, the question of an invariant zero being associated with multiple detec-

tion spaces is moot. Thus, single-fault detection filters like the UIO may be applied to

more systems than the multiple-fault filters. ♢
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2.2 Discrete Multiple-Fault Detection Filtering

2.2.1 Plant and Fault Modeling

In this section, models of the plant, sensor faults, and actuator faults are given [43]. Consider

a discrete linear time-varying system:

x(k + 1) = Φ(k + 1|k)x(k) + B(k)u(k) (2.15a)

y(k) = C(k)x(k) +D(k)u(k), (2.15b)

where k is the time step, x(k) ∈ Rn is the state, Φ(k + 1|k) ∈ Rn×n is the transition matrix

from the kth to the (k + 1)th time step, u(k) ∈ Rl is the control input, y(k) ∈ Rm is the

sensor measurement.

The ith actuator fault is modeled as an additive input to the state dynamics (2.15a) and

to the measurement (2.15b) (when D(k) is nonzero):

x(k + 1) = Φ(k + 1|k)x(k) +B(k)u(k) + Fa,i(k)µa,i(k)

y(k) = C(k)x(k) +D(k)u(k) + Ea,i(k)µa,i(k)

where Fa,i(k) and Ea,i(k) are the a priori known actuator fault directions in the dynamics and

measurement, respectively, and µa,i(k) is the actuator fault magnitude, which is an unknown,

arbitrary function of time. Note that µa,i(k) is nonzero only when a fault is present.

The ith sensor fault is modeled as an additive input to the measurement (2.15b):

y(k) = C(k)x(k) +D(k)u(k) + Fs,i(k)µs,i(k) (2.16)

where Fs,i(k) is the a priori known sensor fault direction, and µs,i(k) is the unknown, ar-

bitrary sensor fault magnitude. Sensor faults are assumed to affect one sensor at a time.

Thus, the fault direction Fs,i(k) is a column vector of zeros except for a one in the ith row.

20



As in the continuous case, an input that drives the dynamics similarly to µs,i(k) in (2.16)

is required. Define fs,i(k) and ea,i(k) to satisfy

Fs,i(k) = C(t)fs,i(k)

Ea,i(k) = C(t)ea,i(k).

In general, fs,i(k) and ea,i(k) are not unique. One solution satisfying the above conditions is

fs,i(k) = C(k)T (C(k)C(k)T )−1 Fs,i(k)

ea,i(k) = C(k)T (C(k)C(k)T )−1 Ea,i(k)

Then, a new state x̄(k) may be obtained where

x̄(k) = x(k) + fs,i(k)µs,i(k) + ea,i(k)µa,i(k).

Therefore, (2.16) is rewritten

y(k) = C(k)x̄(k)

and the dynamic equation of x̄(k) is

x̄(k + 1) = Φ(k + 1|k)x̄(k) + B(k)u(k) +

[
−Φ(k + 1|k)fs,i(k) fs,i(k + 1)

] µs,i(k)

µs,i(k + 1)


+

[
Fa,i(k)−Φ(k + 1|k)ea,i(k) ea,i(k + 1)

] µa,i(k)

µa,i(k + 1)

 . (2.17)

Thus, the sensor fault is modeled as a two-component additive term to (2.17), where −Φ(k+

1|k)fs,i(k) is the direction associated with the current sensor fault magnitude and fs,i(k+1)

is the direction associated with the future sensor fault magnitude. When the measurement

contains a direct feedthrough term from a faulty actuator, the fault is modeled as a similar
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two-component additive term to the dynamics.

2.2.2 Discrete Multiple-Fault Detection Filter

In this section, the fault detection filter is derived for discrete systems [43]. Consider a

discrete linear time-invariant system with q faults, s of which are target faults, and m

measurements

x(k + 1) = Φx(k) + Bu(k) +

q∑
i=1

Fiµi(k) + F̂ µ̂(k) (2.18a)

y(k) = Cx(k) +Du(k), (2.18b)

where x(k) ∈ Rn is the state, Φ ∈ Rn×n is the state transition matrix, u(k) ∈ Rl is the control

input, y(k) ∈ Rm is the measurement, µi(k) ∈ R is the target fault magnitude associated

with fault direction Fi ∈ Rn, µ̂(k) ∈ Rq−s is the nuisance fault magnitude vector associated

with fault direction F̂ ∈ Rn×(q−s), and C ∈ Rm×n is the full row rank measurement matrix.

The detection filter is a Luenberger observer of the form

x̄(k + 1) = Φx̂(k) +Bu(k) (2.19a)

x̂(k) = x̄(k) + L (y(k)− Cx̄(k)−Du(k)) (2.19b)

r(k) = y(k)− Cx̂(k)−Du(k), (2.19c)

where x̄(k) ∈ Rn is the a priori state estimate, x̂(k) ∈ Rn is the a posteriori state estimate,

L ∈ Rn×m is the filter gain, and r(k) ∈ Rm is the residual. Using (2.18) and (2.19), the a

priori and a posteriori state estimation errors e(k) , x(k) − x(k) and ê(k) , x(k) − x̂(k),
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respectively, are subject to the dynamic system

e(k + 1) = Φê(k) +

q∑
i=1

Fiµi(k) + F̂ µ̂(k) (2.20a)

ê(k) = (I − LC)e(k) (2.20b)

ri(k) = ĤiCe(k). (2.20c)

where ri(k) is the projected residual associated with the complementary fault µi(k).

To draw a clear parallel between the discrete and continuous detection filters, let the

objectives be the same as for the RDDF in Section 2.1.2. The remainder of this section is

focused on deriving the state space geometry with the goal of reaching a similar invariant

subspace structure in the discrete case. The invariant subspace structure is formulated

around the occurrence of the complementary fault

µ̂i(k) =

[
µ1(k) . . . µi−1(k) µi+1(k) . . . µq(k)

]

with direction

F̂i =

[
F1 . . . Fi−1 Fi+1 . . . Fq

]
.

When it occurs, the estimation error lies in Ŵi as defined in (2.8) and the residual lies along

CŴi.

Let δi be the smallest non-negative integer such that C[Φ(I − LC)]δiFi ̸= 0. Therefore,

for k = 0, . . . , δi−1, C[Φ(I−LC)]kFi = 0, which implies CΦkFi = 0 and C[Φ(I−LC)]δiFi =

CΦδiFi. So, when fault µ̂i occurs, the estimation error will lie in (2.8) where

Wi = Im

[
Fi ΦFi . . . ΦδiFi Φ(I − LC)ΦδiFi . . . [Φ(I − LC)]n−δi−1ΦδiFi

]
.
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If the filter gain L is chosen such that δi + 1 of the eigenvectors of Φ(I − LC) span

W∗
i = Im

[
Fi ΦFi . . . ΦδiFi

]
, (2.21)

then W∗
i is the smallest reachable, observable subspace associated with Fi that satisfies

Φ(I − LC)W∗
i ⊆ W∗

i (2.22a)

Im Fi ⊆ W∗
i . (2.22b)

By (2.22),W∗
i is invariant under Φ(I−LC), and so it is the minimal (C,Φ)-invariant subspace

of Fi. Further, when the target fault µi occurs the residual lies along CW∗
i .

Similar to the continuous case, instead of choosing L so that some of the eigenvectors

of Φ(I −LC) span W∗
i , let some of the eigenvectors of Φ(I −LC) span the minimal (C,Φ)-

invariant subspace Ŵ∗
i of the multi-dimensional complementary fault F̂i, which satisfies

(2.10) for F̂i. Then, when the complementary fault µ̂i occurs, the residual lies along CŴ∗
i .

To satisfy the first objective, CW∗
i and CŴ∗

i must be linearly independent, which is identical

to the output separability condition of the continuous case. Then, to satisfy the second

objective, Ŵ∗
i is placed in the unobservable subspace of the projected residual ri(k) using

the residual projector Ĥi as defined in (2.11).

Finally, to examine the third and fourth objectives of the detection filter problem, the

concept of invariant zeros is revisited. For discrete systems, the invariant zero directions νi,j,

j = 1, . . . , pi, satisfy  Φ(I − LC)− zi,jI Fi

C 0


 νi,j

ηi,j

 = 0, (2.23)

where zi,j is the invariant zero and ηi,j is a scalar coefficient. For scaling purposes, it can be

assumed that ∥ηi,j∥ = 1.

In order to satisfy the fourth objective, there can be no invariant zeros at the origin

that are associated with (C,Φ, Fi). Otherwise, the transfer function from the target fault
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to the residual will be equal to zero [43]. Next, the third objective is explored. Note that

the definition of an invariant zero for the nuisance fault direction F̂ is similar to (2.23). To

satisfy this objective, there are two requirements for the detection filter:

• The eigenvectors of Φ(I−LC) must span W∗
1 , . . . ,W∗

s , Ŵ∗ as well as the invariant zero

directions associated with (C,Φ, Fi) and (C,Φ, F̂ )

• There can be no invariant zeros associated with (C,Φ, [F1 . . . Fs F̂ ]) that are not

associated with (C,Φ, Fi), or (C,Φ, F̂ ).

If either of the above requirements is not satisfied, then there will be an eigenvalue of the

detection filter dynamics located at an invariant zero [43]. The proofs for both of these re-

quirements are identical to their continuous counterparts. Note that the second requirement

is clearly the mutual detectability constraint for discrete systems.

From the above analysis, the state space description for the discrete detection filter

is identical to that of the continuous detection filter in (2.14). Further, the requirements

discussed above are identical to Assumptions 2.1 - 2.5.
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Chapter 3

The Game Theoretic
Multiple-Fault Detection Filter

In this chapter, the Game Theoretic Multiple-Fault Detection Filter (GTMFDF) is derived.

The GTMFDF extends the GTFDF to the multiple-fault case by modeling the detection

filter problem as a set of DAPs to be optimized via a single differential game. However, since

the globally optimal solution for the filter gain is difficult to obtain, sufficient conditions

for satisfying the DAPs are derived instead. The resulting detection filter is similar to

the multiple-fault OSFDF with a more general description of the fault magnitudes and

simpler solution requirements. Thus, the flexibility, simplicity, and robustness of the GTFDF

problem for single-fault detection is combined with the generality of the OSFDF, resulting

in a multiple-fault detection filter with relatively few assumptions on the system and fault

structure compared to the current literature.

This chapter is organized as follows. First, the RDDF structure is approximated by a

set of DAPs Section 3.1. Then, the implied differential game problem is simplified into a

feasibility problem to find the constraints on the filter gain such that the DAPs are satisfied

given the worst case disturbances and faults. Sufficient conditions for satisfying the DAPs

are obtained in Section 3.2. It is shown that these conditions require Riccati differential

inequalities on the estimation error covariance to have nonnegative solutions. These inequal-

ities become the constraints of a user-defined optimization function, which may be used to
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achieve desired secondary characteristics of the detection filter. Finally, the GTMFDF is

compared directly to the previous Riccati-based robust detection filters (the GTFDF and

the OSFDF) in Section 3.3.

3.1 Differential Game Problem Formulation

In this section, the detection filter problem for a given target fault input is formulated as

a set of DAPs that can be optimized via a differential game problem. First, the RDDF

problem is extended to the finite time-varying case and approximated by a set of DAPs in

Section 3.1.1. Then, the DAPs are converted into a differential game feasibility problem

and the required assumptions are discussed in Section 3.1.2. To simplify the derivation, this

chapter considers only scalar target faults, though the results also apply to vector fault case.

3.1.1 Extension of the RDDF to the Finite Time-Varying and Ap-

proximate Cases

To approximate a multiple-fault detection filter for linear finite time-varying systems, a

set of DAPs are formulated by requiring that the target faults be observable and relaxing

the requirement on strict blocking implied by the first and second objectives of the RDDF

problem. Instead, the transmissions of the complementary fault, sensor noise, and initial

condition error are bounded above by a preset level. However, the target fault must remain

observable to its projected residual. Further, the third RDDF objective is relaxed to requiring

only that the detection filter dynamics be stable.

Define the time-varying dynamic system with s target faults, q − s nuisance faults, m
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measurements, and sensor noise v(t) as

ẋ(t) = A(t)x(t) +B(t)u(t) +
s∑

i=1

Fi(t)µi(t) + F̂ (t)µ̂(t) (3.1a)

y(t) = C(t)x(t) +D(t)u(t) + v(t) (3.1b)

is defined from initial time t0 to final time t1 < ∞. Recall from Section 2.1.1 that any fault

in the plant, actuator, or sensor can be modeled as an additive input to (3.1a).

The time-varying extension of the minimal (C,A)-invariant subspace of Fi, denoted as

W∗
i (t), is obtained by applying the RDDF objectives over the time interval from t0 to t1.

Define

W∗
i (t) = Im

[
B0

i (t) B1
i (t) . . . Bβi

i (t)
]

(3.2)

where the columns of W∗
i (t) are constructed by [37]

B0
i (t) = Fi(t)

Bj
i (t) = A(t)Bj−1

i (t)− Ḃj−1
i (t).

(3.3)

and βi is the smallest nonnegative integer such that C(t)Bβi

i (t) ̸= 0 ∀ t ∈ [t0, t1]. When L(t)

is chosen such that βi+1 of the eigenvectors of A(t)−L(t)C(t) span W∗
i , W∗

i is the minimal

(C(t), A(t))-invariant subspace of Fi(t) [18, 19, 37] and satisfies

(A(t)− L(t)C(t))W∗
i (t)−

d

dt
W∗

i (t) ⊆ W∗
i (t) (3.4a)

Im Fi(t) ⊆ W∗
i (t). (3.4b)

Further, Lemma 3.3 in Section 3.4.3 proves that when output separability is satisfied, Ŵ∗
i (t)

can be obtained as

Ŵ∗
i (t) = W∗

1 (t)⊕ . . .⊕W∗
i−1(t)⊕W∗

i+1(t)⊕ . . .⊕W∗
s (t)⊕ Ŵ∗(t). (3.5)
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For the ith DAP, the transmissions of µ̂i, vi, and ei(t0), henceforth collectively referred

to as the disturbance parameters, are separated from the transmission of the target fault into

their own state xi(t) where

ẋi(t) = A(t)xi(t) + B(t)u(t) + F̂i(t)µ̂i(t) (3.6a)

yi(t) = C(t)xi(t) +D(t)u(t) + vi(t). (3.6b)

Since blocking the transmissions of the disturbance parameters is of primary interest, xi is

the most useful state vector. The conditions so that the target fault is not blocked along with

the complementary fault are discussed later in this section. Note that each measurement yi(t)

contains its own noise vi(t) in (3.6b), even though v1(t), . . . , vs(t) are physically identical.

However, in the next section they will be considered as independent quantities in order to

simplify the formulation of the GTMFDF problem. Further, in the absence of the target

fault, yi(t) is identical to y(t) in (3.1). Thus, let the detection filter be modeled as

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + L(t) (yi(t)− C(t)x̂(t)−D(t)u(t)) (3.7a)

ri(t) = yi(t)− C(t)x̂(t)−D(t)u(t). (3.7b)

Using (3.6), the dynamics of the state estimation error ei(t) , xi(t)− x̂(t) and the estimation

error residual ri(t) are

ėi(t) = (A(t)− L(t)C(t)) ei(t) + F̂i(t)µ̂i(t)− L(t)vi(t) (3.8a)

ri(t) = C(t)ei(t) + vi(t). (3.8b)

Further, by multiplying ri(t) by the residual projector Ĥi(t), the projected residual is

r̄i(t) = Ĥi(t)C(t)ei(t) + Ĥi(t)vi(t). (3.9)
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where

Ĥi(t) = I − C(t)Ŵ∗
i (t)

[(
C(t)Ŵ∗

i (t)
)T

C(t)Ŵ∗
i (t)

]−1 (
C(t)Ŵ∗

i (t)
)T

. (3.10)

Since the projected residual contains a direct feedthrough term from the sensor noise,

the projected output error Ĥi(t)C(t)ei(t) is used instead of r̄i(t) to represent the transmission

of the disturbance parameters to the output. Thus, the ith DAP is written as1

∫ t1
t0

∥Ĥi(t)C(t)ei(t)∥2Qi
dt∫ t1

t0

[
∥µ̂i(t)∥2M−1

i

+ ∥vi(t)∥2V̄−1

]
dt+ ∥ei(t0)∥2P−1

0

≤ γ, (3.11)

subject to the dynamic system (3.8) for any µ̂i(t), vi(t), and ei(t0) that satisfy
∫ t1
t0

∥µ̂i(t)∥2dt <

∞ and
∫ t1
t0

∥vi(t)∥2dt < ∞. The initial and final times are t0 and t1, respectively. γ > 0 is the

arbitrary disturbance attenuation bound. Qi > 0, Mi > 0, V̄ > 0, and P0 > 0 are arbitrary

symmetric design weighting matrices. However, V̄ is typically chosen as the covariance of

the measurement noise. Further, when the design weightings Mi, V̄ , and P0 are chosen to

be larger, the projected residual becomes less sensitive to the complementary fault, sensor

noise, and initial condition error, respectively, which also can be achieved simultaneously by

choosing Qi to be larger.

Finally, in order to ensure that a stable detection filter exists that achieves the objectives

of the approximate fault detection filter problem, assume the following:

Assumption 3.1: (C(t), A(t)) is uniformly observable over the interval [t0, t1]. ♣

Assumption 3.2: Fi(t) is monic and (C(t), A(t)) output separable from F̂i(t) ∀ i ∈ {1, . . . , s}

over the interval [t0, t1]. ♣

At first, Assumption 3.1 seems somewhat limiting. However, this assumption is nec-

essary to formulate an asymptotically stable detection filter for time-varying systems that

1The notation of norms in this work is defined by ∥Y (t)∥2Z(t) , Y T (t)Z(t)Y (t) where Y (t) is a vector and

Z(t) is a matrix of appropriate size. Note that Z(t) is not required to have any particular sign-definiteness
in general.
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achieves the desired fault detection properties [45]. For infinite time-invariant systems, the

unobservable subspace may be truncated from the detection filter state space at the begin-

ning of the problem so that this assumption can be made without loss of generality. As-

sumption 3.2 guarantees that each target fault will remain observable in (Ĥi(t)C(t), A(t)−

L(t)C(t)) when the complementary fault is placed in the unobservable subspace of the pro-

jected residual. Since invariant zeros are not defined in the finite time-varying case, there is

no assumption stated on their location or directional structure.

3.1.2 Problem Formulation

By multiplying both sides of (3.11) by the denominator of the left-hand side, subtracting

the right-hand side, and setting the left-hand side equal to Ji, (3.11) is converted into the

nonconvex cost function

Ji =

∫ t1

t0

[∥∥∥Ĥi(t)C(t)ei(t)
∥∥∥2
Qi

− ∥µ̂i(t)∥2γM−1
i

− ∥vi(t)∥2V−1

]
dt− ∥ei(t0)∥2Π0

, (3.12)

where Π0 , γP−1

0 and V , γ−1V̄ . The detection filter problem is modeled as a differential

game optimization by summing (3.12) over i, minimizing the sum with respect to the filter

gain, and maximizing the sum with respect to the disturbance parameters. Therefore, the

differential game problem is

min
L(t)

max
v1(t),...,vs(t)

max
µ̂1(t),...,µ̂s(t)

max
e1(t0),...,es(t0)

s∑
i=1

Ji(L(t), vi(t), µ̂i(t), ei(t0)) (3.13)

subject to (3.8a). Recall from their definitions that µ̂1(t), . . . , µ̂s(t) are co-dependent since

they share common elements (e.g. - µ̂1 and µ̂2 both contain µ3, . . . , µq).

Since the detection filter gain L(t) does not appear in the game cost (3.12) and enters

linearly into the constraint (3.8a), (3.13) is singular with respect to L(t) [47]. This makes

the process of finding a globally optimal solution for L(t) that will generate the desired fault

detection properties very complex. However, in order to satisfy the DAPs (3.11), it is only
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required that (3.12) be nonpositive for any value of µ̂i(t), vi(t), and ei(t0) ∀ t ∈ [t0, t1]. Thus,

it is required only to solve a feasibility problem to find L(t) such that (3.12) is nonpositive.

To further simplify the problem statement, assume that all of the disturbance parameters

are independent. This assumption only affects the problem statement, not the equations to

eventually solve for the filter gain. Therefore, to determine a filter gain sufficient to satisfy

(3.11), the following simplified problem is solved:

Problem 3.1: Find L(t) such that

max
vi(t)

max
µ̂i(t)

max
ei(t0)

Ji ≤ 0

subject to (3.8a) and (3.12) ∀ i ∈ {1, . . . , s}. ♡

3.2 Detection Filter Problem Solution

In this section, solutions for the GTMFDF gain L(t) in Problem 3.1 are determined for the

general case where γ > 0. First, the necessary and sufficient conditions for optimality of

(3.12) are determined in Section 3.2.1. To this end, a set of Riccati differential inequalities

are derived for the estimation error covariances, each of which must have a nonnegative

solution. The Riccati inequalities, which are functions of the filter gain, become constraints

for a secondary filter gain optimization problem. This new problem is solved in general

and for an example cost function in Section 3.2.2. Next, some results for the existence of

solutions in the infinite-time case are discussed in Section 3.2.3. Finally, it is shown that

this derivation generalizes and clarifies the GTFDF [37] and OSFDF [45] in Section 3.3.

3.2.1 Conditions for Nonpositivity of the Game Cost

In this section, the necessary and sufficient conditions for optimality of the game cost are

considered. By appending the estimation error dynamics to the cost function and completing
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the squares, obvious optimality conditions are determined with respect to the disturbances

parameters. The sufficient conditions for optimality are derived as Riccati inequality con-

straints on the estimation error covariance associated with each DAP. A valid solution for

the filter gain in Problem 3.1 is any for which the Riccati inequalities are nonpositive and

the estimation error covariances are nonnegative-definite, implying that the DAPs are also

satisfied. For compactness, the matrices’ and variables’ time dependence will no longer be

shown.

First, the estimation error dynamics (3.8a) are appended to the cost function (3.12)

using the LaGrange multiplier eTiΠi, which yields

Ji =

∫ t1

t0

[∥∥∥ĤiCei

∥∥∥2
Qi

− ∥µ̂i∥2γM−1
i

− ∥vi∥2V−1 + eTiΠi

(
(A− LC)ei + F̂iµ̂i − Lvi − ėi

)]
dt

− ∥ei(t0)∥2Π0
.

By integrating
∫ t1
t0

eTiΠiėi dt by parts, substituting (3.8a), and collecting terms,

Ji =

∫ t1

t0

[
∥ei∥2Π̇i+Πi(A−LC)+(A−LC)TΠi+CT ĤiQiĤiC

+ eTiΠi

(
F̂iµ̂i − Lvi

)
+
(
F̂iµ̂i − Lvi

)T

Πiei

−∥µ̂i∥2γM−1
i

− ∥vi∥2V−1

]
dt− ∥ei(t0)∥2Π0−Πi(t0)

− ∥ei(t1)∥2Πi(t1)
.

Finally, by adding and subtracting
∫ t1
t0

∥ei∥2Πi( 1
γ
F̂iMiF̂T

i +LV LT )Πi
dt and collecting terms again,

Ji =

∫ t1

t0

[
∥ei∥2Ψi(Πi,L,t)

−
∥∥∥∥µ̂i −

1

γ
MiF̂

T

i Πiei

∥∥∥∥2
γM−1

i

− ∥vi + V LTΠiei∥2V−1

]
dt

− ∥ei(t0)∥2Π0−Πi(t0)
− ∥ei(t1)∥2Πi(t1)

(3.14)

where

Ψi(Πi, L, t) = Π̇i +Πi(A−LC) + (A−LC)TΠi +Πi

(
1

γ
F̂iMiF̂

T

i + LV LT

)
Πi +CT ĤiQiĤiC.

(3.15)
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Clearly, if there exist L and Πi, ∀ i ∈ {1, . . . , s}, such that

0 ≥ Ψi(Πi, L, t) (3.16)

0 ≤ Π0 − Πi(t0) (3.17)

0 ≤ Πi(t1), (3.18)

then the game cost is nonpositive for all possible (real) values of the disturbance parameters,

implying that the faults are placed in approximate detection spaces so that they can be

isolated by each projected residual. Further, the constraints above imply that Πi ≥ 0

over the entire time interval when A − LC is asymptotically stable (see Proposition 3.4 in

Section 3.4.3).

Therefore, Problem 3.1 requires a solution to the coupled Riccati inequalities (3.16) given

(3.15) with boundary conditions (3.17) and (3.18). Since the degree of complementary fault

blocking can be changed by adjusting γ, the structure of the GTMFDF is less constrained

than the detection filters based on spectral [19, 24] and geometric [18, 26] theories.

3.2.2 Filter Gain Optimization

In this section, the filter gain L is optimized with respect to a new cost function. Since any

solutions L and Πi ≥ 0 to (3.16) and (3.17) automatically implies that (3.12) is nonpositive,

the specific cost function used at this stage is arbitrary. Therefore, let the optimal filter gain

minimize the cost function J̄ , defined as

min
L

J̄ = min
L

s∑
i=1

∫ t1

t0

tr Ωi dt (3.19)

where the integrand Ωi ∈ Rn×n is a symmetric, differentiable function chosen by the user.

For convenience, assume that Ωi is a function of Πi, L, and t only. At the end of the section,
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suggestions on choosing Ωi such that (3.19) has a non-trivial solution are discussed and an

example is presented.

To determine the first-order necessary conditions for optimality of (3.19), use the La-

grange multiplier ∆i to append Ψi(Πi, L, t) = 0 to J̄ to obtain2

J̄ =
s∑

i=1

∫ t1

t0

tr {∆iΨi(Πi, L, t) + Ωi (Πi, L, t)} dt.

Substituting (3.15) and integrating
∑s

i=1

∫ t1
t0

tr(∆iΠ̇i) dt by parts,

J̄ =
s∑

i=1

∫ t1

t0

tr

{
∆i

[
Πi(A− LC)+(A− LC)TΠi+Πi

(
1

γ
F̂iMiF̂

T

i + LV LT

)
Πi + CT ĤiQiĤiC

]
−∆̇iΠi + Ωi (Πi, L, t)

}
dt+ tr {∆i(t1)Πi(t1)−∆i(t0)Πi(t0)} .

Taking the first-order variation with respect to L and Πi,

δJ̄ =
s∑

i=1

∫ t1

t0

{[
−∆̇i +

(
δ [tr Ωi (Πi, L, t)]

δΠi

)T

+

(
A+

1

γ
F̂iMiF̂

T

i Πi + L (V LTΠi − C)

)
∆i

+ ∆i

(
A+

1

γ
F̂iMiF̂

T

i Πi + L (V LTΠi − C)

)T]
δΠi

+

[
2 (V LTΠi−C)∆iΠi+

(
δ [tr Ωi (Πi, L, t)]

δL

)T]
δL

}
dt+∆i(t1)δΠi(t1)−∆i(t0)δΠi(t0).

Thus, the first-order necessary conditions for optimality of (3.19) are

0 =
s∑

i=1

[
2 (V L∗TΠ∗

i − C)∆iΠ
∗
i +

(
δ [tr Ωi (Π

∗
i , L

∗, t)]

δL∗

)T]
(3.20)

∆̇i =

(
A+

1

γ
F̂iMiF̂

T

i Π
∗
i +L∗(V L∗TΠ∗

i − C)

)
∆i+∆i

(
A+

1

γ
F̂iMiF̂

T

i Π
∗
i +L∗(V L∗TΠ∗

i − C)

)T

+

(
δ [tr Ωi (Π

∗
i , L

∗, t)]

δΠ∗
i

)T

(3.21)

0 = ∆i(t1) (3.22)

2If the inequality form of the dynamics constraint (3.16) is desired, simply add a nonnegative term Gi to
Ψi such that 0 = Ψi +Gi and append to the cost function.
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where L∗ is the optimal strategy for the filter gain and Π∗
i is the Riccati variable using

L∗. Therefore, since Ωi is symmetric by assumption, ∆i is the solution of a Lyapunov

differential equation. The optimal filter gain is determined by solving a two-point boundary

value problem which includes a set of Riccati equations (3.15) equal to zero and Lyapunov

equations (3.21) coupled by (3.20) with boundary conditions (3.17) equal to zero and (3.22).

Certain choices for Ωi may lead to trivial solutions for the detection filter problem.

Every term in (3.21) is dependent on ∆i except for δΩi

δΠi
. If δΩi

δΠi
= 0, then the solution to

(3.21) is ∆i = 0 because of the terminal constraint (3.22). Also, (3.20) is satisfied trivially

in this case, providing no information on how to choose L∗. Therefore, Ωi must be chosen

such that δΩi

δΠi
̸= 0. Further, it is generally unnecessary and undesirable to choose δΩi

δL
̸= 0, as

very simple solutions for L∗ may be obtained when δΩi

δL
= 0. In general, most enhancements

to the detection filter problem may be achieved by choosing δΩi

δΠi
̸= 0 and δΩi

δL
= 0.

Finally, an example cost function is minimized with respect to L. It was proven in [37]

that as γ → 0, Πi obtains a nullspace that contains Ŵi, signifying that the nuisance fault will

be blocked from the projected residual. Thus, the optimization should attempt to minimize

the transmission of each complementary fault by placing F̂i approximately in the nullspace

of Πi. Further, the target fault direction Fi should remain in the range space of Πi so that

it is not blocked along with the complementary fault. Thus, choose Ωi as

tr Ωi = tr
1

γ
KiF̂

T

i ΠiF̂i − tr NiF
T

i ΠiFi (3.23)

where Ki and Ni are design weightings on the complementary fault and target fault trans-

missions, respectively. Thus, the optimization problem (3.19) attempts to choose L such

that Πi has the aforementioned desired structure. When Ki is large, the transmission from

F̂i to the projected residual r̄i is smaller. When Ni is large, the transmission from Fi to the

residual is larger. By differentiating Ωi with respect to Πi and substituting into (3.21), ∆i
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is subject to the matrix differential equation

∆̇i=

(
A+

1

γ
F̂iMiF̂

T

i Π
∗
i +L∗(V L∗TΠ∗

i − C)

)
∆i+∆i

(
A+

1

γ
F̂iMiF̂

T

i Π
∗
i +L∗(V L∗TΠ∗

i − C)

)T

+
1

γ
F̂iKiF̂

T

i − FiNiF
T

i , (3.24)

with boundary condition (3.22). From (3.20), the optimal filter gain is

L∗ =

(
s∑

i=1

Π∗
i∆iΠ

∗
i

)−1 [ s∑
i=1

Π∗
i∆iC

TV −1

]
. (3.25)

Remark 3.1: During the derivation of the GTMFDF constraints and optimal filter gain,

it has not been necessary to assume that the Riccati solutions are invertible. For the

example filter gain optimization cost function above, the solution exists as long as the

nullspaces of Π∗
i∆iΠ

∗
i do not overlap over all DAPs. However, there is an exception in

the single-fault case, in which Πi must be invertible to obtain a solution. ♢

3.2.3 Steady-State Detection Filter

In this section, the steady-state (infinite time-invariant) results for the GTMFDF are dis-

cussed. First, two theorems useful for generating numerical solutions to the filter optimiza-

tion problem are derived. In the previous sections, it was assumed that the design parameters

Qi, Mi, V̄ , and Π0 are chosen so that there exists a real, symmetric, nonnegative-definite

solution to (3.15) over the time interval [t0, t1]. In steady-state, conditions on the existence

of real, symmetric, nonnegative-definite solutions are linked to the stability of A − LC.

Then, steady-state equations to obtain an analytical solution to the example detection filter

problem in Section 3.2.2 are presented.

In the steady-state case, the filter gain optimization problem becomes

lim
t1→∞

min
L

J̄ = min
L

(
s∑

i=1

tr Ωi

)
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subject to

0 ≥ Πi(A−LC)+(A−LC)TΠi+Πi

(
1

γ
F̂iMiF̂

T

i + LV LT

)
Πi+CT ĤiQiĤiC, ∀ i ∈ {1, . . . , s}.

(3.26)

For a numerical optimization, since the detection filter dynamics A − LC are chosen by

the user, assume that the dynamics are asymptotically stable. Then, the following theorem

and corollary prove that there exists a real, symmetric, nonnegative solution to (3.26) ∀ i ∈

{1, . . . , s} when the associated Hamiltonian has no eigenvalues on the imaginary axis. They

also show that Ker Πi is equivalent to either the unobservable subspace of (ĤiC,A − LC)

(when (3.26) equals zero), denoted as Muo(ĤiC,A− LC), or a similar and possibly smaller

unobservable subspace (when (3.26) is nonpositive). When (3.26) satisfies a strict inequality,

Corollary 3.2 implies that Ker Πi is equal to zero.

Theorem 3.1: Assume that (3.26) satisfies equality and the associated Hamiltonian has no

eigenvalues on the imaginary axis. If A−LC is asymptotically stable, then there exists a real,

symmetric, and nonnegative solution for Πi such that A−LC+
(

1
γ
F̂iMiF̂

T
i + LV LT

)
Πi ≤ 0.

Further, Ker Πi is equal to Muo(ĤiC,A− LC).

Proof: See Section 3.4.1. QED

Corollary 3.2: Define G = ḠḠT ≥ 0 where (3.26) equals −G and Ḡ has full column

rank. Also, assume the associated Hamiltonian has no eigenvalues on the imaginary axis.

If A − LC is asymptotically stable, then there exists a real, symmetric, and nonnegative

solution for Πi such that A−LC +
(

1
γ
F̂iMiF̂

T
i + LV LT

)
Πi ≤ 0. Further, Ker Πi is equal to

Muo


 ḠT

ĤiC

 , A− LC

.

Proof: See Section 3.4.2 QED
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For a typical Riccati equation obtained for optimal control problems, where the quadratic

term is nonpositive-definite, the Hamiltonian has no imaginary eigenvalues when the system

satisfies certain stabilizability and detectability conditions found in [48]. However, because

the quadratic term in (3.26) is nonnegative-definite (resembling Riccati equations used for

H∞ control [49]), the Hamiltonian eigenvalues must be verified directly to have nonzero real

parts to satisfy the sufficient conditions for the existence of a real, symmetric, stabilizing

solution.

For the example in Section 3.2.2, the steady-state detection filter problem is to find

min
L

s∑
i=1

tr

[(
1

γ
F̂iKiF̂

T

i − FiNiF
T

i

)
Πi

]
(3.27)

subject to

0 = Πi(A−LC)+(A−LC)TΠi+Πi

(
1

γ
F̂iMiF̂

T

i + LV LT

)
Πi+CT ĤiQiĤiC, ∀ i ∈ {1, . . . , s}.

(3.28)

The numerical examples in Chapter 6 obtain solutions to the above problem. Alternatively,

an analytical solution may be derived as (3.20)

L∗ =

(
s∑

i=1

Π∗
i∆iΠ

∗
i

)−1 [ s∑
i=1

Π∗
i∆iC

TV −1

]

subject to (3.28) and

0 =

(
A+

1

γ
F̂iMiF̂

T

i Π
∗
i +L∗(V L∗TΠ∗

i − C)

)
∆i+∆i

(
A+

1

γ
F̂iMiF̂

T

i Π
∗
i +L∗(V L∗TΠ∗

i − C)

)T

+
1

γ
F̂iKiF̂

T

i − FiNiF
T

i .

Remark 3.2: The theorems above assume that the Hamiltonians have no eigenvalues on

the imaginary axis. Mathematically, however, this condition is not always required in

order to find a real or symmetric solution to a steady-state Riccati equation. However,

39



it is a necessary condition for the existence of a stabilizing solution such that A −

LC +
(
F̂iMiF̂

T
i + LV LT

)
Πi < 0 [48]. Further, when the associated Hamiltonian has

eigenvalues on the imaginary axis, Πi itself becomes complex, implying that the solution

has a finite escape time. Thus, it is meaningless to generalize the results above for

imaginary eigenvalues. ♢

3.3 Comparison to Previous Detection Filters

In this section, the GTMFDF is compared to the previous (Riccati-based) robust approx-

imate detection filter methods. First, it is shown that the GTMFDF problem formulation

generalizes the solution of the single-fault problem examined in [37]. Further, though the

constraint equations of the current problem are similar to those of the mulitple-fault OSFDF

[45], the GTMFDF problem is shown to be clearer and more general.

In [37], it was proven that the single-fault DAP (assumes s = 1) is satisfied when the

Riccati variable Γ is propagated by the differential equation

0 = Γ̇ + ΓA+ ATΓ +
1

γ
ΓF̂MF̂TΓ + CT

(
ĤQĤ − V −1

)
C (3.29)

where Γ(t0) = Γ0 and the solution for the filter gain L is

L = Γ−1CTV −1. (3.30)

To compare to the current work, add and subtract CTV −1C from (3.15) to obtain

Ψi = Π̇i +ΠiA+ ATΠi +
1

γ
ΠiF̂iMiF̂

T

i Πi + CT

(
ĤiQiĤi − V −1

)
C

+ (ΠiL− CTV −1)V (ΠiL− CTV −1)T (3.31)

Clearly, (3.31) is simply (3.29) with an added quadratic term. When L = Π−1

i CTV −1, this
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extra term is zero and (3.31) becomes identical to (3.29). Thus, (3.29) and (3.30) are a

special case of the solution to (3.16) given (3.31).

The advantage of (3.29) and (3.30) is that Γ can be computed independently of L,

thereby simplifying the calculation of the filter gain. However, the GTMFDF problem gen-

eralizes the solution to the single-fault problem in two ways. First, by adding an additional

term to the Riccati constraint as in (3.31), the filter gain can be chosen achieve secondary

objectives. For example, let

L = Π−1

i CTV −1 + Li

where Li ∈ Rm×n is an arbitrary matrix. Then, (3.31) becomes

Ψi = Π̇i +ΠiA+ ATΠi +Πi

[
1

γ
F̂iMiF̂

T

i + LiV LT

i

]
Πi + CT

(
ĤiQiĤi − V −1

)
C,

and it is possible to choose or optimize Li to improve transmission of the target fault (though

at the expense of nuisance fault blocking and/or dynamic stability). Such optimization of

the filter gain was the subject of Section 3.2.2. Second, since the Riccati constraint of the

GTMFDF problem is an inequality constraint, one may determine a range of possible (sub-

optimal and optimal) solutions to the single-fault problem. This is important, for example,

in cases where the optimal solution is physically unattainable (e.g. - due to mechanical

limitations).

Next, to compare the GTMFDF derivation to the multiple-fault OSFDF derivation in

[45], the Riccati differential inequality (3.16) is rewritten in terms of Pi = Π−1

i . Assuming

that (3.15) equals zero, pre- and post-multiplying by Pi, and substituting Pi = Π−1

i ,

Ṗi = (A− LC)Pi + Pi (A− LC)T +
1

γ
F̂iMiF̂

T

i + LV LT + PiC
T ĤiQiĤiCPi, (3.32)

where Pi(t0) = γP0. In [45], the filter gain of the multiple-fault OSFDF is optimized for a
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certain cost function subject to the Lyapunov differential equation3

Ẇi = (A− LC)Wi +Wi (A− LC)T +
1

γ
F̂iMiF̂

T

i + LV LT − FiNiF
T

i , (3.33)

where Ni is a design weighting on the transmission of the target fault to the residual.

The GTMFDF and multiple-fault OSFDF are similar in that, when an analytical so-

lution is obtained, they both require the solution to a two-point boundary value problem

coupled by an equation for the filter gain. Further, the two constraint equations (3.32) and

(3.33) are similar except that (3.32) compares complementary fault to projected residual size

while (3.33) compares complementary fault to target fault size. However, the constraint for

the OSFDF is a Lyapunov equation rather than a Riccati equation, and so solutions exist

more often than for the GTMFDF constraint. This becomes a bigger factor for numerical

algorithms in which the constraints must have solutions to proceed with the optimization.

Though numerical solutions are more easily obtained for the multiple-fault OSFDF,

the GTMFDF improves upon its design in several ways. First, the optimization problem

of the GTMFDF is derived in a more coherent way than that of the OSFDF. The cost

function for the OSFDF is a sum of covariances whose physical meaning is unclear. The

disturbance attenuation problem, on the other hand, is very easily understood and lends

itself immediately to the FDI problem. Second, the OSFDF requires the optimal solution

to a specific cost function. On the other hand, the GTMFDF only requires a solution to a

feasibility problem for the constraints (3.32) and Pi ≥ 0. If desired, a secondary cost function

can be used to achieve other objectives, such as enhancing sensitivity to the target faults,

thereby increasing the flexibility of the detection filter problem. Finally, the multiple-fault

OSFDF derivation assumes that the disturbances are modeled as white noise processes. The

GTMFDF requires no such assumption, proving that constraints like (3.32) and (3.33) are

applicable to more general systems.

3In [45], the optimization is actually subject to two differential equations, one Riccati and one Lyapunov,
for each target fault. For comparison, the two have been summed into a single equation with a single variable
for each target fault in (3.33).
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Remark 3.3: It is possible to introduce target fault sensitivity to the DAPs by adding∫ t1
t0

∥µi∥2N−1
i

dt to the numerator of (3.11) to obtain

∫ t1
t0

[
∥ĤiCēi∥2Qi

+ ∥µi∥2N−1
i

]
dt∫ t1

t0

[
∥µ̂i∥2M−1

i

+ ∥vi∥2V̄−1

]
dt+ ∥ēi(t0)∥2P−1

0

≤ γ,

subject to

˙̄ei = (A− LC) ēi + Fiµi + F̂iµ̂i − Lvi

where µ1, µ̂1, µ2, µ̂2, . . . , µs, µ̂s are assumed independent. The game cost (3.12) becomes

Ji =

∫ t1

t0

[∥∥∥ĤiCēi

∥∥∥2
Qi

+ ∥µi∥2N−1
i

− ∥µ̂i∥2γM−1
i

− ∥vi∥2V−1

]
dt− ∥ēi(t0)∥2Π0

(3.34)

and the resulting differential game problem additionally requires minimization with

respect to µi. In the single-fault case, (3.34) resembles the cost function of the H∞

controller synthesis problem where µi is the control [50]. However, since the user does

not have control over µi(t), H∞ results cannot be guaranteed and it is unclear how

target fault detection is affected. When Qi = 0 (similar to the problems in [42, 45]),

a constraint identical to (3.33) can be obtained without the assumption of white noise

disturbance processes. Thus, using the methods of the current work, it is possible to

generalize the multiple-fault OSFDF problem to arbitrary fault types. ♢

3.4 Proofs of Theorems, Lemmas, and Propositions

3.4.1 Proof of Theorem 3.1

Rewrite (3.26) as

0 = Πi(A− LC) + (A− LC)TΠi +Πi

(
1

γ
F̂iMiF̂

T

i + LV LT

)
Πi + CT ĤiQiĤiC. (3.35)
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The Hamilitonian Hi of (3.35) is defined as [48]

Hi =

 A− LC Ri

−Q̄i −(A− LC)T

 (3.36)

where

Ri =
1

γ
F̂iMiF̂

T

i + LV LT

Q̄i = CT ĤiQiĤiC.

Ri is a nonnegative symmetric matrix and by assumption Hi has no imaginary eigenvalues

and A − LC is asymptotically stable. Therefore, by using Theorems 13.5 and 13.6 of [48],

there exists a real, symmetric, stabilizing solution Πi. Further, by rewriting (3.35) as

Πi(A− LC) + (A− LC)TΠi = −ΠiRiΠi − Q̄i ≤ 0,

it is clear that since A− LC is asymptotically stable, Πi ≥ 0.

Finally, it is proven that Ker Πi ̸= 0 if and only if Muo(ĤiC,A− LC) ̸= 0.

(⇒) Assume that Ker Πi ̸= 0. Then, there exists x ∈ Ker Πi where x ̸= 0. Pre-multiply

(3.35) by xT and post-multiply by x to get

0 = xT Q̄ix

which implies that

ĤiCx = 0. (3.37)

Now post-multiply (3.35) by x to get

Πi(A− LC)x = 0.

44



Thus, Ker Πi is an (A−LC)-invariant subspace, and so there exists a λ such that (A−LC)x =

λx. By combining this with (3.37), x ∈ Muo(ĤiC,A− LC).

(⇐) Assume that x ∈ Muo(ĤiC,A−LC). This implies that ĤiCx = 0 and (A−LC)x =

λx where λ < 0 by assumption. By post-multiplying (3.35) by x,

0 = (A− LC +RiΠi + λI)T Πix.

Thus, x ∈ Ker Πi and/or −λ is an eigenvalue of (A− LC +RiΠi)
T with eigenvector Πix.

However, A− LC +RiΠi ≤ 0, and so Πix = 0.

3.4.2 Proof of Corollary 3.2

Rewrite (3.26) as

0 = Πi(A−LC)+(A−LC)TΠi+Πi

(
1

γ
F̂iMiF̂

T

i + LV LT

)
Πi+CT ĤiQiĤiC+ ḠḠT . (3.38)

From Theorem 3.1, a nonnegative solution for Πi clearly exists for the general problem if Hi

has no eigenvalues on the imaginary axis. Therefore, it is required to show only that Ker

Πi ̸= 0 if and only if Muo


 ḠT

ĤiC

 , A− LC

 ̸= 0.

(⇒) Assume that Ker Πi ̸= 0. Then, there exists x ∈ Ker Πi where x ̸= 0. Pre-multiply

(3.38)by xT and post-multiply by x to get

0 = xT
(
Q̄i + ḠḠT

)
x

which implies that

0 = ĤiCx (3.39a)

0 = ḠTx. (3.39b)
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Now post-multiply (3.38) by x to get

Πi(A− LC)x = 0.

Thus, Ker Πi is an (A−LC)-invariant subspace, and so there exists a λ such that (A−LC)x =

λx. By combining this with (3.39), x is an unobservable mode of


 ḠT

ĤiC

 , A− LC

.

(⇐) Assume that x is an unobservable mode


 ḠT

ĤiC

 , A− LC

. This implies that

ĤiCx = 0, ḠTx = 0, and (A−LC)x = λx where λ < 0 by assumption. Then, the remainder

of the proof is identical to that of Theorem 3.1.

3.4.3 Lemmas and Propositions

Lemma 3.3: If F1, . . . , Fs, F̂ are (C,A)-output separable, then

Ŵ∗
i = W∗

1 ⊕ . . .⊕W∗
i−1 ⊕W∗

i+1 ⊕ . . .⊕W∗
s ⊕ Ŵ∗.

Proof: Let

W̄∗
i , W∗

1 ⊕ . . .⊕W∗
i−1 ⊕W∗

i+1 ⊕ . . .⊕W∗
s ⊕ Ŵ∗. (3.40)

The proof is divided into two parts. First, it is proven that

Ŵ∗
i ⊇ W̄∗

i (3.41)

where Ŵ∗
i is the minimal (C,A)-invariant subspace associated with F̂i as calculated via

Algorithm 4.1 and (4.18) in Chapter 4. Then, W̄∗
i is proven to be a (C,A)-invariant

subspace.
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Contrary to (3.41), assume ∃ x ∈ W∗
j , x /∈ Ŵ∗

i , i ̸= j. From (3.2) and (3.3), x ∈ W∗
j

implies

x =

βj∑
k=0

αkB
k
j (3.42)

where CB0
j = CB1

j = . . . = CB
βj−1
j = 0 and α0, . . . , αβj

are scalar coefficients. Let

Bk
j = B̂k

i ζi,j ∀ k ≤ βj for some vector coefficient ζi,j. Then, from Algorithm 4.1 and

(3.42),

Im

[
B̂0

i . . . B̂β̂i

i

]
⊆ Ŵ∗

i ⇒
βj∑
k=0

αkB̂
k
i ζi,j ∈ Ŵ∗

i ⇒
βj∑
k=0

αkB
k
j ∈ Ŵ∗

i ⇒ x ∈ Ŵ∗
i .

(3.43)

However, (3.43) contradicts the assumption that x /∈ Ŵ∗
i . The same can be shown for

the multi-dimensional nuisance fault F̂ . Therefore, Ŵ∗
i must satisfy (3.41).

Now, W̄∗
i is shown to be a (C,A)-invariant subspace. Since Fj and F̂ satisfy (3.4)

∀ j ∈ {1, . . . , s}, Im Fj ⊆ W̄∗
i and Im F̂ ⊆ W̄∗

i . Also, since the faults directions are

assumed linearly independent, the ranks of Fj and F̂ are equivalent to those of CW∗
j and

CŴ∗, respectively. Further, since F1, . . . , Fs, F̂ are assumed (C,A)-output separable,

CW∗
1 , . . . , CW∗

s , CŴ∗ are linearly independent. Using these along with (3.40),

rank CW̄∗
i = rank C

(
W∗

1 ⊕ . . .⊕W∗
i−1 ⊕W∗

i+1 ⊕ . . .⊕W∗
s ⊕ Ŵ∗

)
= rank

(
CW∗

1 ⊕ . . .⊕ CW∗
i−1 ⊕ CW∗

i+1 ⊕ . . .⊕ CW∗
s ⊕ CŴ∗

)
= rank CW∗

1 + . . .+ rank CW∗
i−1 + rank CW∗

i+1 + . . .+ rank CW∗
s

+ rank CŴ∗

= rank F1 + . . .+ rank Fi−1 + rank Fi+1 + . . .+ rank Fs + rank F̂

= rank
[
F1 . . . Fi−1 Fi+1 . . . Fs F̂

]
= rank F̂i.
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Therefore, W̄∗
i is a (C,A)-invariant subspace. Using this along with (3.41), the minimal

(C,A)-invariant subspace associated with F̂i satisfies

Ŵ∗
i = W̄∗

i .

QED

Proposition 3.4: Assume that A − LC is asymptotically stable and that Πi satisfies the

constraints (3.16) given (3.15). Then, Πi ≥ 0 over the time interval [t0, t1].

Proof: Substituting (3.15) into (3.16), the inequality may be rewritten as

Π̇i +Πi(A− LC) + (A− LC)TΠi ≤ −
[
Πi

(
1

γ
F̂iMiF̂

T

i + LV LT

)
Πi + CT ĤiQiĤiC

]
≤ 0

Since A− LC is asymptotically stable by assumption, the Lyapunov stability criterion

for finite time-varying systems implies that Π ≥ 0. QED
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Chapter 4

The Asymptotic Game Theoretic
Multiple-Fault Detection Filter

The GTMFDF problem was motivated as a finite time-varying approximation of detection

filters based on the spectral and geometric theories (like the RDDF). Thus, to truly generalize

these detection filters, the GTMFDF must recover their detection space structure in the

limit as the disturbance attenuation bound goes to zero. In this chapter, the problem of

obtaining the asymptotic solution to the GTMFDF problem is examined. It is shown that

the sufficient conditions for disturbance attenuation subject the filter gain to a set of Riccati

inequalities (similar to those of the general case of the GTMFDF) along with a new set of

equality conditions. The equality conditions enforce the desired detection filter structure

in which faults are completely blocked from the projected residuals. A special case of the

solution is obtained by using the similar constraints to those derived for the single-fault

problem. Sufficient conditions for obtaining this filter gain solution are subject to restrictions

on the geometric properties of the Riccati solutions. Each pair of inequality and equality

constraints specifies a portion of the filter gain solution. However, with nuisance faults

and/or a complementary subspace, the constraints do not completely define the filter gain.

Thus, a reduced-order solution is obtained in which the nuisance faults and complementary

subspace are projected out of the detection filter’s state space.
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This chapter is arranged as follows. The GTMFDF problem is examined in the limit

as the disturbance attenuation bound goes to zero and rewritten using singular optimal

control methods in Section 4.1. Next, the detection filter gain constraints are derived in

Section 4.2. It is shown that the geometric structure of the asymptotic solution extends

that of the RDDF to the finite time-varying case. Sufficient conditions for the existence of

a special case of the filter gain are also derived. Finally, the geometric structure is used to

generate a reduced-order version of the special case filter gain in Section 4.3.

4.1 The Asymptotic Differential Game Problem

The goal of the asymptotic detection filter is to obtain an invariant subspace structure in

which the nuisance fault is blocked from the projected residual. To that end, the presence

of the initial condition error and measurement noise are not important, and so their co-

variances are allowed to go to zero along with γ. Then, from their previous definitions,

V , limγ→0 γ
−1V̄ and Π0 , limγ→0 γP

−1

0 . Therefore, the ith DAP (3.11) becomes

∫ t1
t0

∥ĤiCei∥2Qi
dt∫ t1

t0
∥µ̂i∥2M−1

i

dt
= 0, (4.1)

implying that µ̂i would be blocked completely from the projected residual if there exists a

solution for the asymptotic detection filter. Further, the ith game cost (3.12) becomes

J ′
i = lim

γ→0
Ji =

∫ t1

t0

[
∥ĤiCei∥2Qi

− ∥vi∥2V−1

]
dt− ∥ei(t0)∥2Π0

(4.2)

subject to (3.8a). Examination of (4.2) reveals that in the limit the cost is singular not

only with respect to L, but also with respect to the complementary fault µ̂i. In its singular

form, (4.2) cannot be used to generate a detection filter gain that will block µ̂i from the ith

projected residual. However, the Goh transformation may be used to convert (4.2) into a

non-singular cost function with a new control variable that is related to µ̂i.
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In this section, a new version of Problem 3.1 is obtained as γ → 0 for the singular cost

function (4.2). In order to relate the complementary fault directions F̂i to the new detection

filter, a new state and control obtained via the Goh transformation are used to the convert

the function into a non-singular form in Section 4.1.1. Then, the asymptotic detection filter

problem is formulated in Section 4.1.2 as a feasibility problem to determine a filter gain L

such that the game cost is nonpositive for the worst-case disturbance parameter values.

4.1.1 Conversion to a Non-Singular Problem

In this section, the Goh transformation is applied to the singular cost function (4.2) to

eliminate the singularity with respect to the complementary fault µ̂i. Define the new fault

input and state estimation error

ϕ̂1
i ,

∫ t

t0

µ̂i(τ) dτ (4.3)

ϵ1i , ei − F̂iϕ̂
1
i . (4.4)

Differentiating (4.4) yields

ϵ̇1i = Aϵ1i + B̂1
i ϕ̂

1
i − Lri (4.5)

where

B̂1
i =

[
B1

1 . . . B1
i−1 B1

i+1 . . . B1
q

]
and from (3.3)

B1
j = AFj − Ḟj.

Thus, (4.5) is the new estimation error dynamics constraint for the ith cost function and

(4.3) is the new fault input. Substituting (3.8b), (4.4), and ĤiCF̂i = 0 into the singular
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game cost (4.2) yields

J ′
i =

∫ t1

t0

[∥∥∥ĤiCϵ1i

∥∥∥2
Qi

−
∥∥∥ri − C

(
ϵ1i + F̂iϕ̂

1
i

)∥∥∥2
V−1

]
dt−

∥∥∥ϵ1i (t+0 ) + F̂i(t
+
0 )ϕ̂

1
i (t

+
0 )
∥∥∥2
Π0

. (4.6)

In (4.6), t+0 replaces t0 because there is an impulsive jump in ϕ̂1
i at t = t0 in order to reach the

singular surface [37]. If Im F̂i

∩
Ker C = 0, then (4.6) is non-singular with respect to ϕ̂1

i and

can be optimized with respect to ϕ̂1
i and ϵ1i (t

+
0 ). On the other hand, if Im F̂i

∩
Ker C ̸= 0,

then the problem remains singular with respect to the fault input.

If the problem remains singular after the first application of the Goh transformation,

then it must be applied again, though only to the remaining singular component. Choose

the transformation Ti,1 such that

F̂iT
T

i,1 =
[
F̂i,1 F̂i,2

]
B̂1

i T
T

i,1 =
[
B̂1

i,1 B̂1
i,2

]
=
[
AF̂i,1 − ˙̂

Fi,1 AF̂i,2 − ˙̂
Fi,2

]
Ti,1ϕ̂

1
i =

 ϕ̂1
i,1

ϕ̂1
i,2


where F̂i,2 , Im F̂i

∩
Ker C and Im [ F̂i,1 F̂i,2 ] = Im F̂i. The Goh transformation applied

to the singular component, ϕ̂1
i,2, generates the new fault input and state estimation error

ϕ̄2
i,2 ,

∫ t

t0

ϕ̂1
i,2(τ) dτ

ϵ2i , ϵ1i − B̂1
i,2ϕ̄

2
i,2. (4.7)

Differentiating (4.7) yields

ϵ̇2i = Aϵ2i + B̂2
i ϕ̂

2
i − Lri (4.8)
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where

B̂2
i ϕ̂

2
i =

[
B̂1

i,1 AB̂1
i,2 −

˙̂
B1

i,2

] ϕ̂1
i,1

ϕ̄2
i,2

 .

Further, by substituting (4.7) into (4.6) and using CF̂iϕ̂
1
i = CF̂i,1ϕ̂

1
i,1,

J ′
i =

∫ t1

t0

[∥∥∥ĤiCϵ2i

∥∥∥2
Qi

−
∥∥∥ri − C

(
ϵ2i + B̃1

i ϕ̂
2
i

)∥∥∥2
V−1

]
dt−

∥∥ϵ2i (t+0 ) + B̄1
i (t

+
0 )ϕ̄

2
i (t

+
0 )
∥∥2
Π0

(4.9)

where

B̃1
i =

[
F̂i,1 B̂1

i,2

]
B̄1

i ϕ̄
2
i =

[
F̂i B̂1

i,2

] ϕ̂1
i

ϕ̄2
i,2

 .

If Im B̃1
i

∩
Ker C = 0, then (4.9) is non-singular with respect to ϕ̂2

i and can be optimized

with respect to ri, ϕ̂
2
i , ϕ̄

2
i (t

+
0 ), and ϵ2i (t

+
0 ). On the other hand, if Im B̃1

i

∩
Ker C ̸= 0, then

the problem remains singular with respect to the fault input.

If the problem remains singular after the second application of the Goh transformation,

then the process above can be repeated as necessary to convert it into a non-singular prob-

lem. Assume that converting the ith problem from singular to non-singular requires β̂i + 1

iterations. The cost function at the end of the β̂th
i iteration is

J ′
i=

∫ t1

t0

[∥∥∥ĤiCϵβ̂i

i

∥∥∥2
Qi

−
∥∥∥ri − C

(
ϵβ̂i

i + B̃β̂i−1
i ϕ̂β̂i

i

)∥∥∥2
V−1

]
dt−

∥∥∥ϵβ̂i

i (t
+
0 ) + B̄β̂i−1

i (t+0 )ϕ̄
β̂i

i (t
+
0 )
∥∥∥2
Π0

(4.10)

where Im B̃β̂i−1
i

∩
Ker C ̸= 0. For the (β̂i+1)th and final iteration, choose the transformation

Ti,β̂i
such that

B̃β̂i

i TT

i,β̂i
=
[
B̃β̂i−1

i,1 B̃βi−1

i,2

]
B̂β̂i

i TT

i,β̂i
=
[
B̂βi

i,1 B̂β̂i−1
i,2

]
=
[
AB̃β̂i−1

i,1 − ˙̃Bβ̂i−1
i,1 AB̃β̂i−1

i,2 − ˙̃Bβ̂i−1
i,2

]
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Ti,β̂i
ϕ̂β̂i

i =

 ϕ̂β̂i

i,1

ϕ̂β̂i

i,2


where B̃β̂i−1

i,2 , Im B̃β̂i−1
i

∩
Ker C and Im [ B̃β̂i−1

i,1 B̃β̂i−1
i,2 ] = Im B̃β̂i−1

i . Define

ϕ̄β̂i+1
i,2 ,

∫ t

t0

ϕ̂β̂i

i,2(τ) dτ (4.11)

ϵβ̂i+1
i , ϵβ̂i

i − B̂β̂i

i,2ϕ̄
β̂i+1
i,2 . (4.12)

Differentiating (4.12) yields

ϵ̇β̂i+1
i = Aϵβ̂i+1

i + B̂β̂i+1
i ϕ̂β̂i+1

i − Lri (4.13)

where

B̂β̂i+1
i ϕ̂β̂i+1

i =
[
B̂β̂i

i,1 AB̂β̂i

i,2 −
˙̂
Bβ̂i

i,2

] ϕ̂β̂i

i,1

ϕ̄β̂i+1
i,2

 .

Further, by substituting (4.12) into (4.10) and using CB̃β̂i−1
i ϕ̂β̂i

i = CB̃β̂i−1
i,1 ϕ̂β̂i

i,1,

J ′
i =

∫ t1

t0

[∥∥∥ĤiCϵβ̂i+1
i

∥∥∥2
Qi

−
∥∥∥ri − C

(
ϵβ̂i+1
i + B̃β̂i

i ϕ̂β̂i+1
i

)∥∥∥2
V−1

]
dt

−
∥∥∥ϵβ̂i+1

i (t0) + B̄β̂i

i (t+0 )ϕ̄
β̂i+1
i (t+0 )

∥∥∥2
Π0

(4.14)

where

B̃β̂i

i =
[
B̃β̂i−1

i,1 B̂β̂i

i,2

]
B̄β̂i

i ϕ̄β̂i+1
i =

[
B̄β̂i−1

i B̂β̂i

i,2

] ϕ̄β̂i

i

ϕ̄β̂i+1
i,2


and Im B̃β̂i

i

∩
Ker C = 0. Since (4.14) is non-singular with respect to ϕ̂β̂i+1

i , it can be
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optimized with respect to ri, ϕ̂
β̂i+1
i , ϕ̄β̂i+1

i (t+0 ), and ϵβ̂i+1
i (t0).

4.1.2 Problem Formulation

In this section, the asymptotic detection filter problem is formulated using the asymptotic

cost function (4.14) subject to (4.13). Reaching the (β̂i + 1)th iteration from Section 4.1.1

describes the following iterative algorithm for the detection filter’s system matrices:

Algorithm 4.1:

Step 1: Define the initial conditions B̂0
i = B̃0

i = B̄0
i = F̂i and set k = 0.

Step 2: Calculate B̂1
i = AF̂i − ˙̂

Fi.

Step 3: If Im B̃k
i

∩
Ker C = 0, stop here and set β̂i = k.

Step 4: Set k = k + 1. Determine Tk such that B̃k−1
i Tk =

[
B̃k−1

i,1 B̃k−1
i,2

]
where B̃k−1

i,2 ,

Im B̃k−1
i

∩
Ker C and Im

[
B̃k−1

i,1 B̃k−1
i,2

]
= Im B̃k−1

i .

Step 5: Obtain B̂k
i,1 and B̂k

i,2 from B̂k
i Tk=

[
B̂k

i,1 B̂k
i,2

]
=
[
AB̃k−1

i,1 − ˙̃Bk−1
i,1 AB̃k−1

i,2 − ˙̃Bk−1
i,2

]
.

Step 6: Construct

B̃k
i =

[
B̃k−1

i,1 B̂k
i,2

]
B̄k

i =
[
B̄k−1

i B̂k
i,2

]
.

Step 7: Calculate

B̂k+1
i =

[
B̂k

i,1 AB̂k
i,2 −

˙̂
Bk

i,2

]
= AB̃k

i −
˙̃Bk
i .

Step 8: Go to Step 3.

♡
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To simplify the notation used in the rest of the section, the superscripts are removed from

the system matrices obtained at the end of Algorithm 4.1. Therefore, (4.14) is rewritten as

J ′
i =

∫ t1

t0

[∥∥∥ĤiCϵi

∥∥∥2
Qi

−
∥∥∥ri − C

(
ϵi + B̃iϕ̂i

)∥∥∥2
V−1

]
dt−

∥∥ϵi(t0) + B̄i(t
+
0 )ϕ̄i(t

+
0 )
∥∥2
Π0

(4.15)

subject to the notationally simplified form of (4.13)

ϵ̇i = Aϵi + B̂iϕ̂i − Lri. (4.16)

The new differential game problem is therefore

min
L

max
r1,...,rs

max
ϕ̂1,...,ϕ̂s

max
ϕ̄1(t

+
0 ),...,ϕ̄s(t

+
0 )

max
ϵ1(t

+
0 ),...,ϵs(t

+
0 )

s∑
i=1

J ′
i(L, ri, ϕ̂i, ϕ̄i(t

+
0 ), ϵi(t0)) (4.17)

subject to (4.16). Recall from the general case that µ̂1, . . . , µ̂s are not independent since they

all share elements. Thus, ϕ̂1, . . . , ϕ̂s and ϕ̄1(t
+
0 ), . . . , ϕ̄s(t

+
0 ) are similarly interconnected.

Like the general case, the detection filter gain L does not appear in the modified game

cost (4.15) and enters linearly into the constraint (4.16). Therefore, (4.17) remains singular

with respect to the filter gain. However, in order to satisfy the DAPs (4.1), it is only

required that (4.2) be nonpositive for the maximizing values of ri, ϕ̂i, ϕ̄i(t
+
0 ), and ϵi(t0)

∀t ∈ [t0, t1]. To further simplify the problem statement and obtain sufficient conditions

for fault isolation as in the general case, assume that all of the disturbance parameters are

independent. Therefore, a solution to the following simplified problem is required:

Problem 4.1: Find L(t) such that

max
ri

max
ϕ̂i

max
ϕ̄i(t

+
0 )
max
ϵi(t0)

J ′
i ≤ 0

subject to (4.16) and (4.2) ∀ i = 1, . . . , s. ♡
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Remark 4.1: The solution for B̄i derived in Algorithm 4.1 is identical to the minimal

(C,A)-invariant subspace associated with the multi-dimensional complementary fault

direction F̂i [21]. Therefore, in the remainder of this chapter, let

Ŵ∗
i , Im B̄i (4.18)

where

CŴ∗
i = Im CB̃i. (4.19)

Though each target fault is assumed to be scalar, Algorithm 4.1 can be used to calculate

the minimal (C,A)-invariant subspaces of multi-dimensional target faults as well by

replacing F̂i with Fi in Step 1.

♢

4.2 Asymptotic Detection Filter Problem Solution

In this section, the asymptotic solution to the GTMFDF is derived. The conditions for

the optimality of the asymptotic problem’s cost function are discussed in Section 4.2.1. It

is shown that the sufficient conditions for optimality may be written as a set of Riccati

inequality constraints similar to the general case, along with a set of equality constraints

that force the Riccati solutions to obtain the desired nullspace. The invariant subspace

structure generated by the Riccati solutions is derived in Section 4.2.2. This structure is

an essential component in the detection filter design, giving it the required fault isolation

properties. A special case of the detection filter solution is obtained in Section 4.2.3, in which

the optimal filter gain is constrained by Riccati differential equations that are identical to

those derived for the single-fault GTFDF [37]. However, the asymptotic filter gain may

not exist in general, as it requires a solution to a set of coupled, possibly contradictory

matrix constraints. Conditions for the existence of the asymptotic filter gain are discussed
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in Section 4.2.4. It is shown that the existence of the special case filter gain is subject to a

condition on the state space description.

4.2.1 Conditions for Optimality of the Game Cost

In this section, the necessary and sufficient conditions for optimality of the game cost are

derived. By appending the estimation error dynamics to the cost function and using calculus

of variations, necessary conditions for optimality are determined with respect to the distur-

bances parameters. Then, by examining the second-order variation of each cost function [51],

sufficient conditions for optimality are derived as algebraic Riccati inequality constraints on

the estimation error covariance associated with each DAP, along with a set of equality con-

straints that enforce the desired detection space structure. A valid solution for the filter gain

in Problem 4.1 is any for which the Riccati inequalities are nonpositive, the estimation error

covariances are nonnegative-definite, and the equality constraints are satisfied, implying that

the DAPs are also satisfied.

Necessary Conditions for Optimality

First, the modified estimation error dynamics (4.16) are appended to the cost function (4.15)

using the LaGrange multiplier 2λT
i , which yields

J ′
i =

∫ t1

t0

[∥∥∥ĤiCϵi

∥∥∥2
Qi

−
∥∥∥ri − C

(
ϵi + B̃iϕ̂i

)∥∥∥2
V−1

+ 2λT

i

(
Aϵi + B̂iϕ̂i − Lri − ϵ̇i

)]
dt

−
∥∥ϵi(t0) + B̄i(t

+
0 )ϕ̄i(t

+
0 )
∥∥2
Π0

.

By integrating
∫ t1
t0

2λT
i ϵ̇i dt by parts, substituting (4.16), and collecting terms,

J ′
i =

∫ t1

t0

[∥∥∥ĤiCϵi

∥∥∥2
Qi

+ 2λT

i

(
Aϵi + B̂iϕ̂i − Lri

)
+ 2

(
Aϵi + B̂iϕ̂i − Lri

)T

λi

−
∥∥∥ri − C

(
ϵi + B̃iϕ̂i

)∥∥∥2
V−1

]
dt−

∥∥ϵi(t0) + B̄i(t
+
0 )ϕ̄i(t

+
0 )
∥∥2
Π0

− 2λT

i (τ)ϵi(τ)
∣∣t1
τ=t0

.
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By taking the first-order variation with respect to ri, ϕ̂i, ϕ̄i(t
+
0 ), and ϵi(t0),

δJ ′
i = 2

∫ t1

t0

{
δϵTi

(
CT ĤiQiĤiCϵi + CTV −1

[
ri − C

(
ϵi + B̃iϕ̂i

)]
+ ATλi + λ̇i

)
+ δϕ̂T

i

(
B̂T

i λi + B̃T

i C
TV −1

[
ri − C

(
ϵi + B̃iϕ̂i

)])
−δrTi

(
LTλi + V −1

[
ri − C

(
ϵi + B̃iϕ̂i

)])}
dt

+ 2δϵTi (t0)
{
λi(t0)− Π0

[
ϵi(t0) + B̄i(t

+
0 )ϕ̄i(t

+
0 )
]}

− 2δϵTi (t1)λi(t1)

− 2δϕ̄T

i (t
+
0 )
{
B̄T

i (t
+
0 )Π0

[
ϵi(t0) + B̄i(t

+
0 )ϕ̄i(t

+
0 )
]}

The necessary conditions to maximize (4.15) with respect to ri, ϕ̂i, ϕ̄i(t
+
0 ), and ϵi(t0) are

0 = LTλi + V −1

[
r∗i − C

(
ϵ∗i + B̃iϕ̂

∗
i

)]
(4.20)

0 = B̂T

i λi + B̃T

i C
TV −1

[
r∗i − C

(
ϵ∗i + B̃iϕ̂

∗
i

)]
(4.21)

0 = B̄T

i (t
+
0 )Π0

[
ϵ∗i (t0) + B̄i(t

+
0 )ϕ̄

∗
i (t

+
0 )
]

(4.22)

0 = λ̇i + ATλi + CT ĤiQiĤiCϵ∗i + CTV −1

[
r∗i − C

(
ϵ∗i + B̃iϕ̂

∗
i

)]
(4.23)

0 = λi(t0)− Π0

[
ϵ∗i (t0) + B̄i(t

+
0 )ϕ̄

∗
i (t

+
0 )
]

(4.24)

0 = λi(t1) (4.25)

∀i ∈ {1, . . . , s}, where the * denotes the optimal strategy for the given variable. Note that

ϵ∗i is the state using ϕ̂∗
i and ϕ̄∗

i (t
+
0 ). Upon further examination of (4.22), the optimal strategy

for ϕ̄i(t
+
0 ) is

ϕ̄∗
i (t

+
0 ) = −

[
B̄T

i (t
+
0 )Π0B̄i(t

+
0 )
]−1

B̄T

i (t
+
0 )Π0ϵ

∗
i (t0). (4.26)

Also, by substituting (4.20) into (4.21),

0 =
(
B̂i − LCB̃i

)T

Siϵ
∗
i (4.27)

This constraint will be useful later in the analysis.
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The first-order necessary conditions for optimality are simplified using an assumed form

of the LaGrange multiplier, where

λi = Siϵ
∗
i . (4.28)

The differential equation for Si ∈ Rn×n must be determined so that (4.28) is consistent with

the optimal solution. Substituting (4.28) into (4.21), the optimal strategy for ϕ̂i is

ϕ̂∗
i =

(
B̃T

i C
TV −1CB̃i

)−1 [
B̂T

i Siϵ
∗
i + B̃T

i C
TV −1 (r∗i − Cϵ∗i )

]
(4.29)

Then, by substituting (4.28) and (4.29) into (4.20),

0 =
[
LT − V −1CB̃i

(
B̃T

i C
TV −1CB̃i

)−1

B̂T

i

]
Siϵ

∗
i + H̄T

i V
−1H̄i (r

∗
i − Cϵ∗i ) . (4.30)

where

H̄i = I − CB̃i(B̃
T

i C
TV −1CB̃i)

−1B̃T

i C
TV −1. (4.31)

Note that (4.31) describes a projector H̄i where Ker H̄i = CB̃i (the same nullspace as Ĥi)

and with the properties H̄2
i = H̄i and V −1H̄i = H̄T

i V
−1H̄i [37]. Next, by substituting (4.28)

and (4.29) into (4.23) and using the dynamic constraint (4.16),

0 = Υ̃iϵ
∗
i −

[
SiL− SiB̂i

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1 − CT H̄T

i V
−1H̄i

]
r∗i (4.32)

where

Υ̃i = Ṡi + Si

(
A− B̂i

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1C

)
+ SiB̂i

(
B̃T

i C
TV −1CB̃i

)−1

B̂T

i Si

+
(
A− B̂i

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1C

)T

Si + CT

(
ĤiQiĤi − H̄T

i V
−1H̄i

)
C. (4.33)

The Riccati term (4.33) is identical to that of the asymptotic single-fault problem [37]. The
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necessary conditions (4.30) and (4.32) may be combined and simplified using H̄iCB̃i = 0 as

0 = Υiϵ
∗
i − Si

(
LCB̃i − B̂i

)(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1r∗i . (4.34)

where

Υi(Si, L, t) = Υ̃i + Si (L− L∗
i )V (L− L∗

i )
T Si (4.35)

and

SiL
∗
i = SiB̂i

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1 + CT H̄T

i V
−1H̄i. (4.36)

The filter gain constraint (4.36) is identical to that of the asymptotic single-fault problem

[37]. Finally, the optimal boundary conditions are obtained by substituting (4.28) into (4.24)

and (4.25) and using (4.26), resulting in

Si(t
+
0 )ϵ

∗
i (t0) =

(
Π0 − Π0B̄i(t

+
0 )
[
B̄T

i (t
+
0 )Π0B̄i(t

+
0 )
]−1

B̄T

i (t
+
0 )Π0

)
ϵ∗i (t0) (4.37)

Si(t1)ϵ
∗
i (t1) = 0, (4.38)

where the maximizing value of the initial state estimation error ϵ∗i (t0) is chosen such that

ϵ∗i (t1) ∈ Ker Si(t1) in accordance with (4.38). The boundary constraints (4.37) and (4.38)

are also identical to the boundary constraints of the single-fault problem [37]. Thus, like

the general case, the Riccati term for each DAP of the asymptotic GTMFDF (4.35) is the

Riccati of the single-fault problem with an added term to account for the difference between

the optimal multiple-fault filter gain and the optimal single-fault filter gain.

Next, it is confirmed that the optimal cost is in fact equal to zero. As a preliminary

step, the cost function (4.15) is converted into one that uses the necessary conditions more

efficiently. The dynamic constraint (4.16) is appended to (4.15) using ϵTi Si, which yields

J ′
i =

∫ t1

t0

[∥∥∥ĤiCϵi

∥∥∥2
Qi

−
∥∥∥ri − C

(
ϵi + B̃iϕ̂i

)∥∥∥2
V−1

+ ϵTi Si

(
Aϵi + B̂iϕ̂i − Lri − ϵ̇i

)]
dt

−
∥∥ϵi(t0) + B̄i(t

+
0 )ϕ̄i(t

+
0 )
∥∥2
Π0

.
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By integrating
∫ t1
t0

ϵTi Siϵ̇i dt by parts, substituting (4.16), and collecting terms,

J ′
i =

∫ t1

t0

[
∥ϵi∥2Ṡi+SiA+ATSi+CT ĤiQiĤiC

+ ϵTi Si

(
B̂iϕ̂i − Lri

)
+
(
B̂iϕ̂i − Lri

)T

Siϵi

−
∥∥∥ri − C

(
ϵi + B̃iϕ̂i

)∥∥∥2
V−1

]
dt−

∥∥ϵi(t0) + B̄i(t
+
0 )ϕ̄i(t

+
0 )
∥∥2
Π0

− ∥ϵi(τ)∥2Si(τ)

∣∣t1
τ=t0

.

Then, by adding and subtracting
∫ t1
t0

∥B̂T
i Siϵi + B̃T

i C
TV −1(ri − Cϵi)∥2(B̃T

i CTV−1CB̃i)−1 dt, ex-

panding
∫ t1
t0

∥ri − C(ϵi + B̃iϕ̂i)∥2V−1 dt, and collecting terms

J ′
i=

∫ t1

t0

[
∥ϵi∥2Ṡi+SiA+ATSi+CT (ĤiQiĤi−V−1)C +

∥∥∥B̂T

i Siϵi+B̃T

i C
TV −1(ri − Cϵi)

∥∥∥2
(B̃T

i CTV−1CB̃i)
−1

− ∥ri∥2V−1 −
∥∥∥ϕ̂i −

(
B̃T

i C
TV −1CB̃i

)−1 [
B̂T

i Siϵi + B̃T

i C
TV −1 (ri − Cϵi)

]∥∥∥2
B̃T

i CTV−1CB̃i

−ϵTi (SiL−CV −1) ri−rTi (SiL−CV −1)Tϵi
]
dt−

∥∥ϵi(t0)+B̄i(t
+
0 )ϕ̄i(t

+
0 )
∥∥2
Π0
−∥ϵi(τ)∥2Si(τ)

∣∣t1
τ=t0

.

By expanding
∫ t1
t0

∥B̂T
i Siϵi + B̃T

i C
TV −1(ri − Cϵi)∥2(B̃T

i CTV−1CB̃i)−1 dt, adding and subtracting∫ t1
t0

∥ (L− L∗
i )

T Siϵi∥2V dt, and collecting terms

J ′
i =

∫ t1

t0

[
∥ϵi∥2Υi(Si,L,t)

−
∥∥ri + V (L− L∗

i )
T Siϵi

∥∥2
V−1 + ∥ri∥2V−1−H̄T

i V−1H̄i

−
∥∥∥ϕ̂i −

(
B̃T

i C
TV −1CB̃i

)−1 [
B̂T

i Siϵi + B̃T

i C
TV −1 (ri − Cϵi)

]∥∥∥2
B̃T

i CTV−1CB̃i

]
dt

−
∥∥ϵi(t0) + B̄i(t

+
0 )ϕ̄i(t

+
0 )
∥∥2
Π0
−∥ϵi(τ)∥2Si(τ)

∣∣t1
τ=t0

(4.39)

Finally, we show that the optimal cost is equal to zero. To prove this, substitute (4.29)-(4.31)

into (4.39) to obtain

J ′
i =

∫ t1

t0

[
∥ϵi∥2Υi(Si,L,t)

]
dt−

∥∥ϵi(t0) + B̄i(t
+
0 )ϕ̄i(t

+
0 )
∥∥2
Π0
−∥ϵi(τ)∥2Si(τ)

∣∣t1
τ=t0

Then, substitute (4.27), (4.34), and the boundary conditions (4.26), (4.37), and (4.38) to

obtain J ′
i = 0. Therefore, the optimal value of the cost satisfies Problem 4.1.
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Sufficient Conditions for Optimality

In order to obtain sufficient conditions to satisfy the DAP (4.1), sufficient conditions for

optimality are generated from the second-order variation of the cost (4.39). The second-

order variation of (4.39) may be written as

δ2J ′
i =

∫ t1

t0

[
δϵTi δrTi δϕ̂T

i

]
Υ̂i


δϵi

δri

δϕ̂i

 dt−
[
δϵTi (t0) δϕ̄T

i (t
+
0 ) δϵTi (t1)

]
Ῡi


δϵi(t0)

δϕ̄i(t
+
0 )

δϵi(t1)

 ,

where, so that r∗i , ϕ̂
∗
i , ϕ̄

∗
i (t

+
0 ), and ϵ∗i (t0) maximize the cost (i.e. δ2J ′

i ≤ 0),

Υ̂i =


Ṡi + SiA+ ATSi + CT

(
ĤiQiĤi − V −1

)
C CTV −1 − SiL SiB̂i − CTV −1CB̃i

V −1C − LTSi −V −1 V −1CB̃i

B̂T
i Si − B̃T

i C
TV −1C B̃T

i C
TV −1 −B̃T

i C
TV −1CB̃i

 ≤ 0

(4.40)

Ῡi =


Π0 − Si(t

+
0 ) Π0B̄i(t

+
0 ) 0

B̄T
i (t

+
0 )Π0 B̄T

i (t
+
0 )Π0B̄i(t

+
0 ) 0

0 0 Si(t1)

 ≥ 0. (4.41)

By applying the Schur complement formula for semi-definite matrices

 V11 V12

V21 V22

 ≤ 0, V22 < 0 ⇔ V11 − V12V
−1

22 V21 ≤ 0, V22 < 0 (4.42)

to (4.40) and using (4.33) and (4.36), we obtain

 Υ̃i Si (L
∗
i − L)

(L∗
i − L)T Si −H̄T

i V
−1H̄i

 ≤ 0. (4.43)
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Thus, (4.43) is the matrix inequality form of the sufficient condition for optimality.

Since the bottom-right term of (4.43) is not full rank, the Schur complement formula

(4.42) cannot be used directly to simplify the inequality. However, it can still be rewritten

in a form similar to the Riccati inequality constraint (3.31) by using Theorem 4.1 below.

Theorem 4.1: The sufficient condition for optimality (4.43) for the ith asymptotic DAP is

equivalent to

0 = Si

(
B̂i − LCB̃i

)
(4.44)

0 ≥ Υi(Si, L, t) (4.45)

where Υi is as defined in (4.35).

Proof: See Section 4.4.1. QED

Further, by applying (4.42) twice consecutively to the sufficient conditions for optimality

(4.41) at the boundaries,

Si(t
+
0 ) ≤ Π0 − Π0B̄i(t

+
0 )
[
B̄T

i (t
+
0 )Π0B̄i(t

+
0 )
]−1

B̄T

i (t
+
0 )Π0 (4.46)

Si(t1) ≥ 0. (4.47)

Therefore, the sufficient conditions for optimality, and thus the solution constraints for Prob-

lem 4.1, have two components: an equality condition (4.44) and a matrix Riccati inequality

condition (4.45) with boundary conditions (4.46) and (4.47). The inequality condition is

similar to that of the general case where γ > 0. Any solution satisfying these conditions

∀i ∈ {1, . . . , s} places each complementary fault into its associated detection space so that

it may be blocked from the associated projected residual.
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4.2.2 Asymptotic Detection Filter Structure

In this section, the invariant subspace structure of the asymptotic GTMFDF is discussed.

The main result is that Ker Si forms an invariant subspace that contains the minimal (C,A)-

invariant subspace associated with the complementary fault µ̂i. Therefore, in the absence

of sensor noise and the target fault µi, if the state estimation error starts in Ker Si it

will remain there even when µ̂i occurs. Further, Ker Si is unobservable to the associated

projected residual of the detection filter.

First, given the sufficient conditions for optimality (4.44)-(4.47), Theorem 4.2 proves

that the minimal (C,A)-invariant subspace Ŵ∗
i associated with F̂i is contained in Ker Si.

Next, Theorem 4.3 proves that when the complementary fault occurs, in the absence of the

ith target fault and sensor noise, the ith state estimation error will remain in Ker Si. Since

the theorem also shows CKer Si = Im CB̃i, Ker Si is unobservable to (ĤiC,A− L∗C).

Theorem 4.2: Assume that Si ≥ 0 for the entire interval [t0, t1]. Then, given the sufficient

conditions for optimality (4.44)-(4.47), SiB̄i = 0.

Proof: See Section 4.4.2. QED

Theorem 4.3: When the complementary fault µ̂i occurs, the state error remains in Ker Si

and the residual remains in CKer Si = Im CB̃i in the absence of sensor noise.

Proof: See Section 4.4.3. QED

Together, Theorems 4.2 and 4.3 imply that Ker Si forms a (C,A)-invariant subspace

that contains the complementary fault direction and is unobservable to (ĤiC,A − L∗C).

Therefore, the asymptotic GTMFDF blocks µ̂i from the projected residual r̄i, extending the

behavior of fault detection filters derived via spectral and geometric theories to the finite

time-varying case.
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4.2.3 Analytical Solution

Next, this section focuses on a specific analytical solution to Problem 4.1, for which we are

able to derive sufficient conditions for existence, subject to (4.2), (4.35), and the constraints

(4.44)-(4.47). Assume that there exists L = L∗ such that

SiL
∗ = SiB̂i

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1 + CT H̄T

i V
−1H̄i (4.48)

0 = Υi (Si, L
∗, t) (4.49)

subject to the boundary conditions

Si(t
+
0 ) = Π0 − Π0B̄i(t

+
0 )
[
B̄T

i (t
+
0 )Π0B̄i(t

+
0 )
]−1

B̄T

i (t
+
0 )Π0 (4.50)

Si(t1) ≥ 0 (4.51)

∀i ∈ {1, . . . , s} where Π0 > 0. Note that L∗ is identical to the optimal solution for the single-

fault GTFDF (4.36) for each individual DAP. However, it must now satisfy the constraint

for multiple DAPs simultaneously. Substituting (4.48) into (4.44), we find that L∗ satisfies

the equality constraint of the sufficient conditions for optimality. Further, by substituting

(4.48) into (4.35), the Riccati constraint (4.49) becomes

−Ṡi = Si (A− L∗C) + (A− L∗C)T Si + SiB̂i

(
B̃T

i C
TV −1CB̃i

)−1

B̂T

i Si

+ CT

(
ĤiQiĤi + H̄T

i V
−1H̄i

)
C, (4.52)

which is the Riccati constraint for the GTFDF.

Therefore, if L∗ exists, it is a solution to Problem 4.1. Note, however, that L∗ is not

unique, nor is it guaranteed to exist in general. Sufficient conditions for the existence of the

filter gain are discussed in the next section.
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4.2.4 Filter Gain Existence Conditions

In this section, the existence conditions for the finite time-varying detection filter of Sec-

tion 4.2.3 are discussed. First, an additional assumption for finite time-varying systems is

presented to simplify the asymptotic detection filter problem. Then, the central theorems

of the section are derived. It is shown that the simplest condition requires that there be no

complementary subspace. Finally, the implied problem constraints are discussed.

In order to obtain a simple solution to the time-varying detection filter problem, one

additional assumption (on top of Assumptions 3.1-3.2) is required:

Assumption 4.1: The dimensions of both Ker Si and Ŵ∗
i are fixed over t = (t0, t1] ∀ i ∈

{1, . . . , s}. ♣

In this case, by using (4.50) where Π0 > 0, which implies

Ker Si(t
+
0 ) = Im B̄i(t

+
0 ) = Ŵ∗

i (t
+
0 ),

it may be assumed that

Ker Si = Ŵ∗
i (4.53)

for the entire time interval. Assumption 4.1 is used throughout the remainder of the chapter.

Theorem 4.4 below gives a sufficient condition for the existence of the asymptotic filter

gain constrained by (4.48).

Theorem 4.4: Assume that Si, ∀ i ∈ {1, . . . , s}, is a solution to (4.52) with boundary

conditions (4.50) and (4.51). If

Im Si

∩
Im Sj = 0, i ̸= j, ∀i, j ∈ {1, . . . , s}, (4.54)

then ∃ L∗ subject to (4.48) ∀ i ∈ {1, . . . , s}.
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Proof: See Section 4.4.4. QED

Therefore, to ensure that the asymptotic filter gain solution exists, we must determine if and

when the problem may be converted into one such that (4.54) is satisfied. This requires a

preliminary step as the geometric structure of the detection filter must be discussed further.

Similar to state space geometry of the infinite time-invariant case (2.14), that of the

finite time-varying case is described by

Rn = W∗
1 ⊕ . . .⊕W∗

s ⊕ Ŵ∗ ⊕ C, (4.55)

where the complementary subspace C is defined such that

ζ ∈ C, ξ ∈ W∗
i ⊕ Ŵ∗

i ⇒ ζ⊥ξ. (4.56)

Recall that invariant zeros are not defined for finite time-varying systems, and so they are

not included explicitly in (4.55). However, C may contain directions that satisfy the invariant

zero equation (2.12) in the finite time-varying case during a subinterval of [t0, t1].

Denote the minimal (C,A)-invariant subspace of a new complementary fault direction

F̃i as W̃∗
i and that of a new nuisance fault direction F̃ as W̃∗. Further, define S̃i ≥ 0 as a

solution to (4.52) given the boundary conditions (4.50) and (4.51) for this new set of faults.

Let the faults be chosen such that S̃i satisfies (4.54) ∀ i, j ∈ {1, . . . , s}. Theorem 4.5 reveals

an important implication of (4.54) to the state space geometry.

Theorem 4.5: S̃i and S̃j, i ̸= j, satisfy (4.54) ∀ i, j ∈ {1, . . . , s} if and only if there is no

complementary subspace.

Proof: See Section 4.4.5. QED

By applying Theorem 4.5 to (4.55), the minimal (C,A)-invariant subspaces (equivalent

to the detection spaces for time-varying systems) of the target and nuisance faults span the
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entire state space, such that

Rn = W∗
1 ⊕ . . .⊕W∗

s ⊕ W̃∗. (4.57)

However, in general, the state space may contain a complementary subspace. Then, it is

necessary to augment the set of nuisance fault directions so that (4.54) holds. To this end,

choose F̃ such that W̃∗ includes both the detection space of F̂ as well as C, i.e.

W̃∗ = Ŵ∗ ⊕ C. (4.58)

In this case, (4.55) and (4.57) are clearly equivalent.

In order to prevent target faults from being blocked along with the modified nuisance

fault, F̃ must be (C,A)-output separable from the target faults over the time interval [t0, t1].

Further, Ŵ∗ must be (C,A)-invariant satisfying (3.4) over the time interval. Otherwise,

when W̃∗ is truncated from the detection filter state space, the invariant subspace structure

will be destroyed, leading to incorrect fault isolation.

Therefore, when the nuisance fault subspace and complementary subspace1 combine to

form a single (C,A)-invariant subspace that is linearly independent from the target fault

subspaces, the asymptotic detection filter gain L∗ and Riccati solutions S̃i satisfy (4.48)

∀ i ∈ {1, . . . , s}. Then, since S̃i ≥ 0 over the time interval, these constraint equations may

be summed to generate a single constraint on the asymptotic filter gain

(
s∑

i=1

S̃i

)
L∗ =

s∑
i=1

[
S̃iB̂i

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1 + CT H̄T

i V
−1H̄i

]
. (4.59)

However, it is possible that (4.59) specifies L∗ in only a subspace of the state space since,

from Theorem 4.2, W̃∗ ⊆ Ker
∑s

i=1 S̃i. Thus, the full-order detection filter cannot be

implemented in general without a numerical optimization or pole placement techniques to

1Both subspaces may be obtained by examining the range spaces and nullspaces of the Riccati solutions
Si as discussed in Section 4.3.
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define the undefined eigenstructure. In Section 4.3, a reduced-order state space and detection

filter are obtained for which a simple solution for the filter gain exist.

Remark 4.2: Up to now, the GTMFDF has been discussed in the finite time-varying case.

However, the RDDF was derived only for infinite time-invariant systems. Thus, in

order to compare the GTMFDF directly to the RDDF, it is important to discuss the

steady-state results for the GTMFDF in the limit as γ → 0. Specifically of interest

is whether the invariant zero directions of the system are included in the appropriate

detection spaces generated by the Riccati solutions and if the associated invariant zeros

become eigenvalues of the detection filter. Chung and Speyer proved in [37] that the

directions associated with unstable invariant zeros were included in the detection space

of the GTFDF generated by the Riccati solution. As it turns out, this is not the

case for directions associated with stable invariant zeros (as is shown in the example

in Section 6.2). Further, it was shown in [41] for the OSFDF that the invariant zeros

or their mirror images over the imaginary axis become eigenvalues of the single-fault

detection filter when γ is small. Thus, the existence of stable invariant zeros becomes a

limiting factor in obtaining solutions for the asymptotic Riccati-based detection filters.

However, as discussed in [44], the invariant zero directions may be artificially augmented

onto the associated faults’ directions, eliminating the invariant zeros.

On the other hand, it is also shown in Section 6.2 that neither invariant zeros nor their

mirror images become eigenvalues of the multiple-fault detection filter. Examining the

derivation of the asymptotic GTMFDF, the eigenstructure of the multiple-fault filter

is a combination of the eigenstructures of single-fault filters. It is believed that this

combination moves the eigenvalues away from the invariant zeros. However, the exact

mechanism that produces this result has yet to be determined. ♢
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4.3 The Reduced-Order Asymptotic Detection Filter

So that the detection filter blocks each complementary fault from its associated projected

residual while allowing the target fault to remain observable, the detection filter gain L∗

must be chosen such that it satisfies (4.59). Further, for simplicity, the solution should be

determined analytically. However, when projected residuals contain a common unobservable

subspace, as is the case when there are nuisance faults, (4.48) cannot fully specify L∗. In

[20], the unconstrained dimensions of the filter gain were specified via an arbitrary matrix

chosen using pole-placement techniques. However, these dimensions have no effect on the

detection filter problem other than to ensure dynamic stability. Alternatively, a reduced-

order detection filter may be obtained by truncating the common unobservable subspace from

the state space, similar to the single-fault case [37]. Since the detection filter is an observer,

removing the unobservable subspace minimally affects the behavior of detection filter with

respect to target faults (assuming that the system is modeled approximately correctly).

Further, Theorem 4.3 shows that Ker Si is contained in the unobservable subspace of the

associated projected residual. Therefore, the common nullspace of the Riccati solutions Si

is unobservable to all projected residuals and may be truncated from the state space so that

(4.59) fully specifies a reduced-order filter gain.

In this section, the reduced-order asymptotic detection filter is obtained as follows.

First, the reduced-order problem is formulated in Section 4.3.1 by truncating the minimal

(C,A)-invariant subspace associated with the nuisance fault from the state space. Then, the

reduced-order detection filter gain is obtained in Section 4.3.2.
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4.3.1 Problem Formulation

In this section, the reduced-order asymptotic detection filter problem is derived. Since S̃i ≥ 0

has a nontrivial nullspace, a nonsingular transformation T0 may be chosen such that

S̃i = TT

0

 S̄i 0

0 0

T0 (4.60)

where S̄i ≥ 0. Let T0 be constructed as

T0 =

[
T0,1 T0,2

]−1

(4.61)

where T0,2 is a set of linearly independent vectors such that

Im T0,2 = Ker


S̃1

...

S̃s

 =
s∩

i=1

Ker S̃i (4.62)

and T0,1 is composed of n−dim(T0,2) vectors that are linearly independent from T0,2 so that

T0 is full rank. By applying (3.5) to (4.53) and using S̃i ≥ 0, (4.62) may be rewritten as

Im T0,2 = Ker
s∑

i=1

S̃i = Ŵ∗. (4.63)

Further, by using (4.62),

T−T

0 S̃iT
−1

0 =

 TT
0,1

TT
0,2

 S̃
1/2
i S̃

1/2
i

[
T0,1 T0,2

]
=

 TT
0,1S̃

1/2
i

0

[ S̃
1/2
i T0,1 0

]

=

 TT
0,1S̃iT0,1 0

0 0

 .
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Thus, T0 satisfies (4.60).

Pre-multiplying (4.48) by T−T

0 and using T−1

0 T0 = I,

 S̄i 0

0 0


 L∗

1

L∗
2

 =

 S̄i 0

0 0


 B̂i,1

B̂i,2

(B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1 +

 CT
1

CT
2

 H̄T

i V
−1H̄i

(4.64)

where

T0L
∗ =

 L∗
1

L∗
2

 , T0B̂i =

 B̂i,1

B̂i,2

 , CT−1

0 =

[
C1 C2

]
.

From (4.64), two equations emerge:

S̄iL
∗
1 = S̄iB̂i,1

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1 + CT

1 H̄
T

i V
−1H̄i (4.65)

0 = H̄T

i V
−1H̄iC2. (4.66)

Eqn. (4.65) is the constraint equation for the reduced-order detection filter gain L∗
1, while

(4.66) shows how the transformation isolates the common unobservable subspace Im T0,2.

Therefore, the reduced-order asymptotic detection filter problem is:

Problem 4.2: Find L∗
1 that satisfies (4.65) ∀ i ∈ {1, . . . , s}. ♡

In the next section, a solution to Problem 4.2 is derived.

4.3.2 Reduced-Order Detection Filter Solution

In this section, the reduced-order asymptotic detection filter is obtained. By summing (4.65)

over i = 1, . . . , s,

s∑
i=1

S̄iL
∗
1 =

s∑
i=1

S̄iB̂i,1

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1 + CT

1 H̄
T

i V
−1H̄i. (4.67)
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Note that (4.67) is simply the reduced order form of (4.59). By pre-multiplying (4.67) by(∑s
i=1 S̄i

)−1
(which exists according to Proposition 4.6 in Section 4.4.6), the reduced-order

detection filter gain solution is obtained as

L∗
1 =

(
s∑

i=1

S̄i

)−1( s∑
i=1

S̄iB̂i,1

(
B̃T

i C
TV −1CB̃i

)−1

B̃T

i C
TV −1 + CT

1 H̄
T

i V
−1H̄i

)
. (4.68)

The detection filter itself is obtained using a similar reduced-order structure. First,

a Riccati differential equation is derived for S̄i. By pre-multiplying (4.52) by T−T

0 , post-

multiplying by T−1

0 , and using (4.66),

− ˙̄Si = S̄i (A1,1 − L∗
1C1) + (A1,1 − L∗

1C1)
T S̄i + S̄iB̂i,1

(
B̃T

i C
TV −1CB̃i

)−1

B̂T

i,1S̄i

+ CT

1

(
ĤiQiĤi + H̄T

i V
−1H̄i

)
C1 (4.69)

0 = S̄i (A1,2 − L∗
1C2) (4.70)

where

T0AT
−1

0 =

 A1,1 A1,2

A2,1 A2,2

 .

Eqn. (4.69) is the Riccati differential equation for S̄i, while (4.70) is a constraint so that the

nuisance fault remains unobservable to all projected residuals. The boundary conditions for

(4.69) are obtained by applying the transformation to (4.50) and (4.51), resulting in

S̄i(t
+
0 ) = TT

0,1S̃i(t
+
0 )T0,1 (4.71)

S̄i(t1) ≥ 0. (4.72)

Next, the reduced-order detection filter equations are derived. Pre-multiplying (3.7a) by S̃i
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and summing over i = 1, . . . , s,

s∑
i=1

S̃i
˙̂x =

s∑
i=1

S̃i [(A− LC) x̂+Bu− Ly] . (4.73)

Then, by pre-multiplying by T−T

0 , (4.73) reduces to

s∑
i=1

S̄i
˙̂x1 =

s∑
i=1

S̄i [(A1,1 − L1C1) x̂1 + (A1,2 − L1C2) x̂2 +B1u− L1y] (4.74)

where

T0x̂ =

 x̂1

x̂2

 , T0B =

 B1

B2

 .

Finally, by substituting L1 = L∗
1 into (4.74), using (4.68) and (4.70), and pre-multiplying by(∑s

i=1 S̄i

)−1
,

˙̂x1 = A1,1x̂1 +B1u− L∗
1 (y − C1x̂1) . (4.75)

Thus, (4.75) is the reduced-order asymptotic detection filter subject to (4.69) with boundary

conditions (4.71) and (4.72) where, by using Theorem 4.4, (4.68) is a solution to Problem 4.2.

4.4 Proofs of Theorems and Propositions

4.4.1 Proof of Theorem 4.1

(⇒): First, recall that Ker Ĥi = Ker H̄i = CB̃i. Then,

0 =

[
0 B̃T

i C
T

] Υ̃i Si (L
∗
i − L)

(L∗
i − L)T Si −H̄T

i V
−1H̄i


 0

CB̃i

 ,

which implies

0 =

 Υ̃i Si (L
∗
i − L)

(L∗
i − L)T Si −H̄T

i V
−1H̄i


 0

CB̃i
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since the matrix in (4.43) is nonpositive. Therefore, by using (4.48) we obtain

0 = Si (L
∗
i − L)CB̃i = Si

(
B̂i − LCB̃i

)
. (4.76)

Next, (4.43) also implies

0 ≥

 I Si (L
∗
i − L)V

0 I


 Υ̃i Si (L

∗
i − L)

(L∗
i − L)T Si −H̄T

i V
−1H̄i


 I 0

V (L∗
i − L)T Si I


≥

 Υi Si (L
∗
i − L)

(
I − H̄i

)
(L∗

i − L)T Si −H̄T
i V

−1H̄i


 I 0

V (L∗
i − L)T Si I

 .

By substituting (4.31) and (4.76),

0 ≥

 Υi 0

(L∗
i − L)T Si −H̄T

i V
−1H̄i


 I 0

V (L∗
i − L)T Si I


≥

 Υi 0(
I − H̄i

)T
(L∗

i − L)T Si −H̄T
i V

−1H̄i


≥

 Υi 0

0 −H̄T
i V

−1H̄i

 .

Therefore,

0 ≥ Υi.

(⇐): Sufficiency is proven by performing the steps above in reverse.

4.4.2 Proof of Theorem 4.2

First, by pre-multiplying (4.50) by B̄T
i (t

+
0 ) and post-multiplying by B̄i(t

+
0 ),

0 ≥ B̄T

i (t
+
0 )Si(t

+
0 )B̄i(t

+
0 ).
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Since Si ≥ 0 by assumption, this implies

Si(t
+
0 )B̄i(t

+
0 ) = 0. (4.77)

Next, the sufficient conditions (4.44) and (4.45) are rewritten in a more useful form for

this analysis. By substituting B̂i = AB̃i − ˙̃Bi from Algorithm 4.1 into (4.44),

Si(A− LC)B̃i = Si
˙̃Bi. (4.78)

Then, by substituting (4.35) and (4.44) into (4.45), the Riccati inequality constraint is

simplified to

0 ≥ Ṡi + Si (A− LC) + (A− LC)T Si + SiLV LTSi + CT ĤiQiĤiC. (4.79)

Further, it can be shown by using Algorithm 4.1 that

Im B̄i = Im
[
B̃i B̃β̂i−1

i,2 . . . B̃1
i,2 B̃0

i,2

]
= Im

[
B̂β̂i

i,2 B̂β̂i−1
i,2 . . . B̂1

i,2 F̂i

]

where Im CB̄i = Im CB̃i. By using (4.18), proving the theorem is equivalent to proving

Im B̄i ⊆ Ker Si.

Pre-multiplying (4.79) by B̃T
i and post-multiplying by B̃i, substituting (4.78), and using

ĤiCB̃i = 0 from (3.10),

0 ≥ d

dt

(
B̃T

i SiB̃i

)
+ B̃T

i SiLV LTSiB̃i. (4.80)

Using (4.77), let there exist a vector ν such that LT (τ+)Si(τ
+)B̃i(τ

+)ν ̸= 0 where τ > t0

and Si(t)B̃i(t)ν = 0 ∀t ≤ τ . In this case, (4.80) and V > 0 imply

0 >
d

dt

[
νT B̃T

i (τ
+)Si(τ

+)B̃i(τ
+)ν
]
,
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which implies that νT B̃T
i SiB̃iν < 0 at some time t > τ . This contradicts the assumption

that Si ≥ 0. Therefore, B̃i ∈ Ker Si over the time interval (t0, t1]. Further, note that since

B̃i =
[
B̃β̂i−1

i,1 B̂β̂i

i,2

]
, SiB̂

β̂i

i,2 = 0.

Next, by pre-multiplying (4.79) by
(
B̃β̂i−1

i,2

)T

and post-multiplying by B̃β̂i−1
i,2 , substitut-

ing B̂β̂i

i,2 = AB̃β̂i−1
i,2 − ˙̃Bβ̂i−1

i,2 from Algorithm 4.1, and using SiB̂
β̂i

i,2 = 0 and B̃β̂i−1
i,2 ∈ Ker C

0 ≥ d

dt

[(
B̃β̂i−1

i,2

)T

SiB̃
β̂i−1
i,2

]
+
(
B̃β̂i−1

i,2

)T

SiLV LTSiB̃
β̂i−1
i,2 . (4.81)

Using (4.77), let there exist a vector ν such that LT (τ+)Si(τ
+)B̃β̂i−1

i,2 (τ+)ν ̸= 0 where τ > t0

and Si(t)B̃
β̂i−1
i,2 (t)ν = 0 ∀t ≤ τ . In this case, (4.81) and V > 0 imply

0 >
d

dt

[
νT

(
B̃β̂i−1

i,2 (τ+)
)T

Si(τ
+)B̃β̂i−1

i,2 (τ+)ν
]
,

which implies that νT

(
B̃β̂i−1

i,2

)T

SiB̃
β̂i−1
i,2 ν < 0 at some time t > τ . This contradicts the

assumption that Si ≥ 0. Therefore, by combining SiB̃
β̂i−1
i,2 ν = 0 with SiB̃

β̂i−1
i,1 = 0, we

find that B̃β̂i−1
i ∈ Ker Si over the time interval (t0, t1]. Further, note that since B̃β̂i−1

i =[
B̃β̂i−1

i,1 B̃β̂i−1
i,2

]
=
[
B̃β̂i−2

i,1 B̂β̂i−1
i,2

]
, SiB̂

β̂i−1
i,2 = 0.

Next, by pre-multiplying (4.79) by
(
B̃β̂i−2

i,2

)T

and post-multiplying by B̃β̂i−2
i,2 , substitut-

ing B̂β̂i−1
i,2 = AB̃β̂i−2

i,2 − ˙̃Bβ̂i−2
i,2 from Algorithm 4.1, and using SiB̂

β̂i−1
i,2 = 0 and B̃β̂i−2

i,2 ∈ Ker C

0 ≥ d

dt

[(
B̃β̂i−2

i,2

)T

SiB̃
β̂i−2
i,2

]
+
(
B̃β̂i−2

i,2

)T

SiLV LTSiB̃
β̂i−2
i,2 . (4.82)

Using (4.77), let there exist a vector ν such that LT (τ+)Si(τ
+)B̃β̂i−2

i,2 (τ+)ν ̸= 0 where τ > t0

and Si(t)B̃
β̂i−2
i,2 (t)ν = 0 ∀t ≤ τ . In this case, (4.82) and V > 0 imply

0 >
d

dt

[
νT

(
B̃β̂i−2

i,2 (τ+)
)T

Si(τ
+)B̃β̂i−2

i,2 (τ+)ν
]
,

which implies that νT

(
B̃β̂i−2

i,2

)T

SiB̃
β̂i−2
i,2 ν < 0 at some time t > τ . This contradicts the
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assumption that Si ≥ 0. Therefore, by combining SiB̃
β̂i−2
i,2 ν = 0 with SiB̃

β̂i−2
i,2 = 0, we

find that B̃β̂i−2
i ∈ Ker Si over the time interval (t0, t1]. By repeating this pattern for the

remaining components of B̄i, the claim is proven.

Remark 4.3: Given that the Riccati solution Si obtains a nullspace that includes B̄i, the

asymptotic detection filter’s Riccati inequality constraint (4.79) is actually identical to

the constraint in the general case (3.15) when ΠiF̂i = 0. ♢

4.4.3 Proof of Theorem 4.3

First, it is shown that ĤiCKer Si = 0. Let x ∈ Ker Si over the time interval (t0, t1]. Pre-

multiplying (4.79) by xT , post-multiplying by x, and using Six = 0,

0 ≥ xT Ṡix+ xTCT ĤiQiĤiCx. (4.83)

Let Ĥi(τ
+)C(τ+)x(τ+) ̸= 0 where τ > t0 and Ĥi(t)C(t)x(t) ̸= 0 ∀t ≤ τ . In this case, (4.83)

and Qi > 0 imply

0 > xT (τ+)Ṡi(τ
+)x(τ+).

However, this implies that Six ̸= 0 at some time t > τ , which contradicts the assumption

Six = 0. Therefore, ĤiCx = 0, which implies ĤiCKer Si = 0.

Next, it is shown that CKer Si = Im CB̃i. Let x ∈ Ker Si over the time interval (t0, t1].

Then, using ĤiCx = 0,

ĤiCx =

{
I − CB̃i

[(
CB̃i

)T

CB̃i

]−1 (
CB̃i

)T
}
Cx

⇒ Cx = CB̃i

[(
CB̃i

)T

CB̃i

]−1 (
CB̃i

)T

Cx.

Since
[(

CB̃i

)T

CB̃i

]−1 (
CB̃i

)T

Cx is a column vector, Cx is a linear combination of the

column vectors of CB̃i, which implies CKer Si ⊆ Im CB̃i. However, since Im B̃i ⊆ Ker Si
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from Theorem 4.2, this implies CKer Si = Im CB̃i.

Finally, the claims of the theorem are proven. By taking the time derivative of eTi Siei,

substituting (3.8a) in the absence of sensor noise, and using (4.79) and Theorem 4.2,

0 ≥ d

dt
(eTi Siei) + eTi

(
SiLV LTSi + CT ĤiQiĤiC

)
ei. (4.84)

Assume that Si(t
+
0 )ei(t0) = 0. If eTi

(
SiLV LTSi + CT ĤiQiĤiC

)
ei ̸= 0 at time t = τ+ where

τ > t0, then, since V > 0 and Qi > 0, eTi

(
SiLV LTSi + CT ĤiQiĤiC

)
ei > 0. This implies

0 >
d

dt

(
eTi (τ

+)Si(τ
+)ei(τ

+)
)
.

However, this implies that eTi Siei < 0 at some time t > τ , which contradicts the assumption

Si ≥ 0. Then, LTSiei = 0 and ĤiCei = 0, which when combined with (4.84) and Si ≥ 0 imply

Siei = 0. Hence, (4.84) implies that if the state estimation error starts in Ker Si it will remain

there. Further, the residual ri in (3.8b) will remain in Im CB̃i because CKer Si = Im CB̃i.

4.4.4 Proof of Theorem 4.4

By substituting (4.68) into (4.65), a sufficient condition for (4.68) to be a solution to Prob-

lem 4.2 is

S̄j

(
s∑

i=1

S̄i

)−1

S̄k =

 S̄j, j = k

0, j ̸= k
(4.85)

∀ j, k ∈ {1, . . . , s}. Assume that Si satisfies (4.54) ∀ i ∈ {1, . . . , s}. First, it must be shown

that S̄i also satisfies (4.54) ∀ i ∈ {1, . . . , s}. To the contrary, assume ∃ v ̸= 0 ∋: v ∈ Im S̄j

and v ∈ Im S̄k. Then, ∃ γj, γk ̸= 0 ∋:

v = S̄jγj = S̄kγk.
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This implies

 S̄jγj 0

0 0

 =

 S̄kγk 0

0 0

 ⇒

 S̄j 0

0 0


 γj

0

 =

 S̄k 0

0 0


 γk

0

 ⇒ Sj γ̄j = Skγ̄k.

However, this contradicts (4.54), and so S̄i satisfies (4.54).

Then, for i = 1, there exists an invertible transformation Γ and an invertible matrix Ẑ1

such that

Ker S̄1 = Γ

 0

Ẑ1

 ⇒ S̄1Γ

 0

Ẑ1

 = 0 ⇒ ΓT S̄1Γ

 0

Ẑ1

 = 0

where Ẑ1 = diag(Z2, . . . , Zs) and Zi, i = 1, . . . , s, is an invertible matrix with dimension

equal to dim(Im S̄i). Since Ẑ1 is invertible and ΓT S̄1Γ is symmetric,

ΓT S̄1Γ =

 Š1 0

0 0

 .

This can be shown similarly for S̄2, . . . , S̄s such that

[
S̄1 . . . S̄s

]
= Γ


Š1 0 0

0
. . . 0

0 0 Šs

 .

Therefore,

ΓT S̄jΓ

(
s∑

i=1

ΓT S̄iΓ

)−1

ΓT S̄kΓ =



0 0 0 0 0

0 Šj 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




Š1 0 0

0
. . . 0

0 0 Šs


−1



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 Šk 0

0 0 0 0 0
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=

 ΓT S̄jΓ, j = k

0, j ̸= k.
(4.86)

By pre-multiplying (4.86) by Γ−T and post-multiplying by Γ−1, (4.85) is recovered.

Remark 4.4: This proof is similar to the proofs of Lemmas 4.1 and A.1 in [45]. ♢

4.4.5 Proof of Theorem 4.5

By applying (3.5) and substituting W̃∗ for Ŵ∗, (4.53) implies

Ker S̃i = W∗
1 ⊕ . . .⊕W∗

i−1 ⊕W∗
i+1 ⊕ . . .⊕W∗

s ⊕ W̃∗ = W̃∗
i . (4.87)

(⇒) Substituting S̃i for Si in Proposition 4.7,

C ⊂ Im S̃i, ∀ i ∈ {1, . . . , s}.

However, by assumption S̃i and S̃j, i ̸= j, satisfy (4.54), and so C = 0.

(⇐) Assume that there is no complementary subspace, i.e. C = 0. Define V =

Im S̃i

∩
Im S̃j, i ̸= j. Then, choose the vector coefficients γi and γj such that

ν = S̃iγi = S̃jγj (4.88)

where ν ∈ V . Combining C = 0 with (4.55), any vector may be written as a linear combi-

nation of vectors in W∗
1 , . . . ,W∗

s , and W̃∗. Thus, γi and γj in (4.88) may be rewritten using

vectors that span these subspaces. However, by using (4.87), S̃iW̃∗
i = 0 and S̃iW∗

i is full

rank. Therefore, without loss of generality, let

ν = S̃iB
k
i = S̃jB

k
j (4.89)
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where Bk
i and Bk

j are vectors in W∗
i and W∗

j , respectively (see (3.2)). Then, pre-multiply

(4.89) by (Bk
i )

T and use W∗
i ⊆ Ker S̃j to obtain

(
Bk

i

)T
S̃iB

k
i = 0. (4.90)

Since S̃i ≥ 0 is a square, symmetric matrix, (4.90) implies

S̃iB
k
i = 0 ⇒ ν = 0

Therefore, Im S̃i

∩
Im S̃j = 0.

4.4.6 Propositions

Proposition 4.6:
∑s

i=1 S̄i is full rank.

Proof: Define v ∋: T−1

0 v ∈ Ker
∑s

i=1 Si where by using (4.61) and letting v = [vT
1 vT

2 ]
T

T−1

0 v = T0,1v1 + T0,2v2.

By summing (4.60) over i = 1, . . . , s,

T−T

0

(
s∑

i=1

Si

)
T−1

0 =

 ∑s
i=1 S̄i 0

0 0

 . (4.91)

Post-multiply (4.91) by v to obtain

TT

0

(
s∑

i=1

Si

)
T0v =

 ∑s
i=1 S̄i 0

0 0

 v = 0. (4.92)
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Applying (4.62) to (4.92),

T−T

0

(
s∑

i=1

Si

)
(T0,1v1 + T0,2v2) =

s∑
i=1

S̄iv1 = 0. (4.93)

Recall that, from (4.62), the columns of T0,2 form a basis for Ker
∑s

i=1 Si and T0 is full

rank. Therefore,

T−T

0

(
s∑

i=1

Si

)
T0,1v1 =

s∑
i=1

S̄iv1 = 0.

Since T0,1 is full column rank and its columns are linearly independent from those of

T0,2, v1 ̸= 0 implies that (
∑s

i=1 Si)T0,1v1 ̸= 0. Therefore,
∑s

i=1 S̄iv1 = 0 implies v1 = 0,

and so
∑s

i=1 S̄i is full rank. QED

Proposition 4.7:
∩s

i=1 Im Si = C.

Proof: First, it must be shown that
∩s

i=1 Im Si ⊆ C, or equivalently, νTC = 0 ⇒ ν ∈∪s
i=1Ker Si. From (4.56), νTC = 0 implies ν ∈ W∗

j ⊕ Ŵ∗
j , j ∈ {1, . . . , s}. By using

Theorem 4.2 with (3.5) and (4.53), this implies ν ∈
∪s

i=1Ker Si.

Next, it must be shown that
∩s

i=1 Im Si ⊇ C, or equivalently, ν ∈ Ker Si ⇒ νTC =

0, ∀ i ∈ {1, . . . , s}. By using (4.53), ν ∈ Ker Si ⇒ ν ∈ Ŵ∗
i . Then, (4.56) implies

νTC = 0. QED
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Chapter 5

The Discrete Game Theoretic
Multiple-Fault Detection Filter

In this chapter, the Discrete Game Theoretic Multiple-Fault Detection Filter (DGTMFDF)

is derived. The DGTMFDF extends the DGTFDF to the multiple-fault case by modeling the

detection filter problem as a set of algebraic DAPs to be optimized via a single differential

game. However, like the continuous case, the globally optimal solution for the filter gain is

difficult to obtain and so sufficient conditions for satisfying the DAPs are derived instead.

Then, these conditions are treated as constraints on a secondary optimization to determine

the filter gain. Given the similarities between the continuous and discrete problems, this

chapter is presented as a parallel to Chapter 3. However, because time-varying results for

singular optimal control have been difficult to obtain, the DGTMFDF is currently limited

to the time-invariant case.

This chapter is organized as follows. First, the structure of the discrete detection filter of

Section 2.2.2 is approximated by a set of DAPs in Section 5.1. Then, the implied differential

game problem is simplified into a feasibility problem to find a filter gain that satisfies the

DAPs given the worst case disturbances and faults. Sufficient conditions for satisfying the

DAPs are obtained in Section 5.2 as a set of Riccati differential inequalities with nonnegative

solutions. These inequalities become constraints of a user-defined optimization function,
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which may be used to achieve desired secondary characteristics of the detection filter. Finally,

the DGTMFDF is compared directly to the DGTFDF in Section 5.3.

5.1 Differential Game Problem Formulation

In this section, the detection filter problem for a given target fault input is formulated as

a set of DAPs that can be optimized via a differential game problem. First, the discrete

detection filter problem is approximated by a set of DAPs in Section 5.1.1. Then, the DAPs

are converted into a differential game feasibility problem and the required assumptions are

discussed in Section 5.1.2. To simplify the derivation, this chapter considers only scalar

target faults, though the results apply to vector fault case as well.

5.1.1 Approximation of the Discrete Detection Filter

To approximate a multiple-fault detection filter for linear time-invariant systems, a set of

DAPs are formulated by requiring that the target faults be observable and relaxing the

requirement on strict blocking implied by the first and second objectives of the detection

filter problem. Instead, the transmissions of the disturbance parameters are bounded above

by a preset level. However, the target fault must remain observable to its projected residual.

Further, the third detection filter objective is relaxed to requiring only that the detection

filter dynamics be stable.

Define the time-invariant dynamic system with s target faults, q − s nuisance faults, m

measurements, and sensor noise v(k) as

x(k + 1) = Φx(k) + Bu(k) +
s∑

i=1

Fiµi(k) + F̂ µ̂(k) (5.1a)

y(k) = Cx(k) +Du(k) + v(k) (5.1b)
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is defined from initial time step k0 to final time step k1 < ∞. Let the time step size be

represented by ∆t. Recall from Section 2.2.1 that any fault in the plant, actuator, or sensor

can be modeled as an additive input to (5.1a).

For the ith DAP, the transmissions of the disturbance parameters are separated from

the transmission of the target fault into their own state xi(k) where

xi(k + 1) = Φx(k) + Bu(k) + F̂iµ̂i(k) (5.2a)

yi(k) = Cxi(k) +Du(k) + vi(k). (5.2b)

Since blocking the transmissions of the disturbance parameters is of primary interest, xi is the

most useful state vector. The conditions so that the target fault is not blocked along with the

complementary fault are discussed later in this section. Note that each measurement yi(k)

contains its own noise vi(k) in (5.2b), even though v1(k), . . . , vs(k) are physically identical.

However, in the next section they will be considered as independent quantities in order to

simplify the formulation of the DGTMFDF problem. Further, in the absence of the target

fault, yi(k) is identical to y(k) in (5.1). Thus, let the detection filter be modeled as

x̄(k + 1) = Φx̂(k) +Bu(k) (5.3a)

x̂(k) = x̄(k) + L (yi(k)− Cx̄(k)−Du(k)) (5.3b)

ri(k) = yi(k)− Cx̄(k)−Du(k). (5.3c)

Using (5.2), the a priori and a posteriori state estimation errors ei(k) , xi(k) − x(k) and

êi(k) , xi(k)− x̂(k), respectively, and the estimation error residual ri(k) satisfy

e(k + 1) = Φêi(k) + F̂iµ̂i(k) (5.4a)

êi(k) = (I − LC) ei(k)− Lvi(k) (5.4b)

ri(k) = Cei(k) + vi(k). (5.4c)
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Combining (5.4a) and (5.4b), ei(k) is propagated by

ei(k + 1) = Φ [(I − LC) ei(k)− Lvi(k)] + F̂iµ̂i(k). (5.5)

It is assumed that Φ and I − LC in (5.5) are both invertible. This assumption is in general

true for Φ given sufficiently small values of ∆t. Later, L will simply be chosen such that

I − LC is also invertible. Further, by multiplying ri(k) by the residual projector Ĥi, the

projected residual is

r̄i(k) = ĤiCei(k) + Ĥivi(k). (5.6)

where Ĥi is the residual projector as defined in (2.11). Further, Lemma 5.1 in Section 5.4

proves that when output separability is satisfied, Ŵ∗
i can be obtained as

Ŵ∗
i = W∗

1 ⊕ . . .⊕W∗
i−1 ⊕W∗

i+1 ⊕ . . .⊕W∗
s ⊕ Ŵ∗(k). (5.7)

Since the projected residual contains a direct feedthrough term from the sensor noise,

the projected output error ĤiCei(k) is used instead of r̄i(k) to represent the transmission of

the disturbance parameters to the output. Thus, the ith DAP is written as [43]

∑k1−1
k=k0

∥ĤiCei(k)∥2Qi

∥êi(k0)∥2P−1
0

+
∑k1−1

k=k0

[
∥µ̂i(k)∥2M−1

i

+ ∥vi(k)∥2V̄ −1

] ≤ γ, (5.8)

subject to the dynamic system (5.4) for any µ̂i(k), vi(k), and êi(k0) that satisfy

k1−1∑
k=k0

∥µ̂i(k)∥2 < ∞

and
k1−1∑
k=k0

∥vi(k)∥2 < ∞.

γ > 0 is the arbitrary disturbance attenuation bound. Qi ≥ 0, Mi > 0, V̄ > 0, and P0 > 0
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are arbitrary symmetric design weighting matrices. However, V̄ is typically chosen as the

covariance of the measurement noise. Further, when the design weightings Mi, V̄ , and P0

are chosen to be larger, the projected residual becomes less sensitive to the complemen-

tary fault, sensor noise, and initial condition error, respectively, which also can be achieved

simultaneously by choosing Qi to be larger.

Finally, in order to ensure that a stable detection filter exists that achieves the objectives

of the approximate fault detection filter problem, assume the following:

Assumption 5.1: (C,Φ) is detectable. ♣

Assumption 5.2: Fi is monic and (C,Φ)-observable ∀ i ∈ {1, . . . , s}. ♣

Assumption 5.3: Fi is (C,Φ) output separable from F̂i ∀ i ∈ {1, . . . , s}. ♣

Assumption 5.4: (C,Φ, Fi) has no invariant zeros at the origin. ♣

Assumption 5.5: F1, . . . , Fq are mutually detectable or else the extra invariant zeros are

stable. ♣

Assumptions 5.1 and 5.5 are necessary to formulate an asymptotically stable detection filter

for time-invariant systems that achieves the desired fault detection properties. The unstable,

unobservable subspace may be truncated from the detection filter state space at the beginning

of the problem so that this assumption can be made without loss of generality. Assumptions

5.2 and 5.3 guarantee that each target fault will remain observable in (ĤiC,Φ(I−LC)) when

the complementary fault is placed in the unobservable subspace of the projected residual.

Finally, Assumption 5.4 ensures that the induced steady state residuals will be non-zero.
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5.1.2 Problem Formulation

By multiplying both sides of (5.8) by the denominator, subtracting the right-hand side, and

setting the left-hand side equal to Ji, (5.8) is converted into the nonconvex cost function

Ji = −∥êi(k0)∥2Π0
+

k1−1∑
k=k0

[∥∥∥ĤiCei(k)
∥∥∥2
Qi

− ∥µ̂i(k)∥2γM−1
i

− ∥vi(k)∥2V−1

]
, (5.9)

where Π0 , γP−1

0 and V , γ−1V̄ . The detection filter problem is modeled as a differential

game optimization by summing (5.9) over i, minimizing the sum with respect to the filter

gain, and maximizing the sum with respect to the disturbance parameters. Therefore, the

differential game problem is

min
L

max
v1(k),...,vs(k)

max
µ̂1(k),...,µ̂s(k)

max
ê1(k0),...,ês(k0)

s∑
i=1

Ji(L, vi(k), µ̂i(k), êi(k0)) (5.10)

subject to (5.5). Recall from their definitions that µ̂1(k), . . . , µ̂s(k) are not independent since

they share some common elements.

Since the detection filter gain L does not appear in the game cost (5.9) and enters

linearly into the constraint (5.5), (5.10) is singular with respect to L [47]. This makes

the process of finding a globally optimal solution for L that will generate the desired fault

detection properties very complex. However, in order to satisfy the DAPs (5.8), it is only

required that (5.9) be nonpositive for any value of µ̂i(k), vi(k), and êi(k0) ∀ k ∈ {k0, . . . , k1}.

Thus, only a solution to a feasibility problem in L such that (5.9) is nonpositive is required.

To further simplify the problem statement, assume that all of the disturbance parameters

are independent. This assumption only affects the problem statement, not the equations to

eventually solve for the filter gain. Therefore, to determine a filter gain sufficient to satisfy

(5.8), the following simplified problem is solved:
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Problem 5.1: Find L such that

max
vi(k)

max
µ̂i(k)

max
êi(k0)

Ji ≤ 0

subject to (5.5) and (5.9) for all i = 1, . . . , s. ♡

5.2 Detection Filter Problem Solution

In this section, solutions for the DGTMFDF gain L in Problem 5.1 are determined for

the general case where γ > 0. First, the conditions under which (5.9) is nonpositive are

determined in Section 5.2.1. To this end, a set of discrete Riccati differential inequalities

are derived for the estimation error covariances, each of which must have a nonnegative

solution. The Riccati inequalities, which are functions of the filter gain, become constraints

for a secondary filter gain optimization problem. This new problem is solved in general and

for an example cost function in Section 5.2.2.

5.2.1 Conditions for Optimality of the Game Cost

In this section, the necessary and sufficient conditions for optimality of the game cost are

derived. By appending the estimation error dynamics to the cost function and using calculus

of variations, necessary conditions for optimality are determined with respect to the distur-

bances parameters. Then, by examining the second-order variation of each cost function

[51], sufficient conditions for optimality are derived as discrete algebraic Riccati inequality

(DARI) constraints on the estimation error covariance associated with each DAP. A valid

solution for the filter gain in Problem 5.1 is any for which the Riccati inequalities are nonpos-

itive and the estimation error covariances are nonnegative-definite, implying that the DAPs

are also satisfied. For compactness, the matrices’ and variables’ time dependence will no

longer be shown. Further, a tilde above a variable will refer to the (k+1)th time step of the
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variable. For example,

ei = ei(k)

ẽi = ei(k + 1).

Necessary Conditions for Optimality

First, the estimation error dynamics (5.5) are appended to the cost function (5.9) using the

LaGrange multiplier 2λ̃T
i , which yields

Ji=

k1−1∑
k=k0

[∥∥∥ĤiCei

∥∥∥2
Qi

−∥µ̂i∥2γM−1
i

−∥vi∥2V−1+2λ̃T

i

(
Φ [(I−LC) ei−Lvi]+F̂iµ̂i−ẽi

)]
−∥êi(k0)∥2Π0

.

The factor of 2 is included with the LaGrange multiplier to simplify the optimality conditions

later. By changing the upper and lower indices of the term
∑k1−1

k=k0
2λ̃T

i ẽi,

Ji =

k1−1∑
k=k0

[∥∥∥ĤiCei

∥∥∥2
Qi

− ∥µ̂i∥2γM−1
i

− ∥vi∥2V−1 + 2λ̃T

i

(
Φ [(I − LC) ei − Lvi] + F̂iµ̂i

)
− 2λT

i ei

]
− ∥êi(k0)∥2Π0

+ 2λT

i (k0)ei(k0)− 2λT

i (k1)ei(k1).

Next, assume that ei(k0) = êi(k0).
1 By taking the first-order variation with respect to the

disturbance parameters êi(k0), µ̂i, and vi,

δJi = 2

k1−1∑
k=k0

{[
eTiC

T ĤiQiĤiC − λT

i + λ̃T

iΦ(I − LC)
]
δei −

[
γµ̂T

iM
−1

i − λ̃T

i F̂i

]
δµ̂i

−
[
vT

i V
−1 + λ̃T

iΦL
]
δvi

}
+ 2 [λT

i (k0)− êTi (k0)Π0] δêi(k0)− 2λT

i (k1)δei(k1).

1The a posteriori estimation error values are usually generated by updating the a priori error with the
measurement. However, at k = k0, the detection filter is started only after the first measurement is received.
Therefore, the initial a priori error is arbitrary and may be set equal to the initial a posteriori error.
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Therefore, the first-order necessary conditions for optimality are

µ̂∗
i =

1

γ
MiF̂

T

i λi (5.11)

v∗i = −V LTΦTλi (5.12)

λ̃i = Φ−T (I − LC)−T

(
λi − CT ĤiQiĤiCe∗i

)
(5.13)

λi(k0) = Π0ê
∗
i (k0) (5.14)

λi(k1) = 0, (5.15)

∀ i ∈ {1, . . . , s}, where the asterisks denote the optimal strategies for the given variables.

The necessary conditions for optimality are rewritten using an assumed form of the

LaGrange multiplier, where

λi = Πie
∗
i . (5.16)

Then, propagation and update equations for Πi must be determined so that (5.16) is consis-

tent with the optimal solution. To simplify the ensuing analysis, define

Γi = Πi − CT ĤiQiĤiC (5.17)

Φ̂ = Φ(I − LC)

Γ̂i = Φ̂−TΓiΦ̂
−1

Gi =
1

γ
F̂iMiF̂

T

i + ΦLV LTΦT .

Substituting (5.16) into (5.13),

Π̃iẽ
∗
i = Φ−T (I − LC)−TΓie

∗
i .

Applying the backward discrete dynamics

ei = Φ̂−1

(
ẽi − F̂iµi + ΦLvi

)
, (5.18)
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we obtain

Π̃iẽ
∗
i = Γ̂i

(
ẽ∗i − F̂iµ

∗
i + ΦLv∗i

)
.

Finally, by substituting the optimal strategies for µ̂∗
i and v∗i from (5.11) and (5.12), respec-

tively, and subtracting the right-hand side,

0 = Ψiẽ
∗
i (5.19)

where we choose

Ψi(Πi, L, k) = Π̃i − Γ̂i

(
I −GiΠ̃i

)
. (5.20)

It will be shown that the primary Riccati constraint for the DGTMFDF problem is directly

related to (5.20).

Next, it is confirmed that the optimal value of the cost is in fact equal to zero. As

a preliminary step, the cost function (5.9) is converted into one that uses the necessary

conditions more efficiently. By adding the identically zero term

0 = ∥ei(k0)∥2Πi(k0)
− ∥ei(k1)∥2Πi(k1)

+

k1−1∑
k=k0

[
∥ẽi∥2Π̃i

− ∥ei∥2Πi

]

to (5.9) assuming êi(k0) = ei(k0),

Ji = −∥êi(k0)∥2Π0−Πi(k0)
− ∥ei(k1)∥2Πi(k1)

+

k1−1∑
k=k0

[
∥ẽi∥2Π̃i

− ∥ei∥2Γi
− ∥µ̂i∥2γM−1

i
− ∥vi∥2V−1

]
.

Then, by applying (5.18),

Ji =− ∥êi(k0)∥2Π0−Πi(k0)
− ∥ei(k1)∥2Πi(k1)

+

k1−1∑
k=k0

[
∥ẽi∥2Π̃i

−
∥∥∥ẽi − F̂iµ̂i + ΦLvi

∥∥∥2
Γ̂i

− ∥µ̂∗
i ∥

2
γM−1

i
− ∥vi∥2V−1

]
. (5.21)

Now, the necessary constraints may be used to confirm the optimal value of the cost. By
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substituting (5.11) and (5.12) into (5.21), the cost function is defined entirely in terms of

the optimal estimation error e∗i . Collecting terms,

J∗
i = ∥ê∗i (k0)∥2Πi(k0)−Π0

− ∥e∗i (k1)∥2Πi(k1)
+

k1−1∑
k=k0

∥ẽ∗i ∥2ΨT
i (I−GiΠ̃i)

. (5.22)

Assuming (5.24), (5.25), and (5.30), it is easily verified that the remaining terms in (5.22)

are nonpositive. Further, by substituting (5.14)-(5.16) and (5.19) into (5.22), the maximum

value of the cost is zero.

Sufficient Conditions for Optimality

In order to obtain sufficient conditions to satisfy the DAP (5.8), sufficient conditions for

optimality are generated from the second-order variation of the cost (5.21). So that µ̂∗
i , v

∗
i ,

and ê∗i (k0) maximize the cost, the second derivative with respect to the associated variables

must be nonpositive. The second variation of (5.21) is

δ 2Ji = δêTi (k0) [Πi(k0)−Π0] δêi(k0)−δeTi (k1)Πi(k1)δei(k1)+

k1−1∑
k=k0

[
δẽTi δµ̂T

i δvT
i

]
Ψ̂i


δẽi

δµ̂i

δvi

 .

where

Ψ̂i =


Π̃i − Γ̂i Γ̂iF̂i −Γ̂iΦL

F̂T
i Γ̂i −

(
γM−1

i + F̂T
i Γ̂iF̂i

)
F̂iΓ̂iΦL

−LTΦT Γ̂i LTΦT Γ̂iF̂i −
(
V −1 + LTΦT Γ̂iΦL

)


Note that the factor of 2 in the second-order variation has been removed for brevity. Clearly,

if there exist L and Πi, ∀ i ∈ {1, . . . , s}, such that

0 ≥ Ψ̂i (5.23)

0 ≤ Π0 − Πi(k0) (5.24)
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0 ≤ Πi(k1), (5.25)

then the second-order variation is nonpositive. Since the optimal value of the cost is zero, the

game cost (5.9) is nonpositive when the above inequality constraints are satisfied, implying

that the faults are placed in approximate detection spaces so that they can be isolated by

each projected residual.

The coefficient matrix Ψ̂i is not very useful by itself. However, by using the Schur

complement formula, (5.23) implies

0 <

 γM−1

i + F̂T
i Γ̂iF̂i −F̂iΓ̂iΦL

−LTΦT Γ̂iF̂i V −1 + LTΦT Γ̂iΦL

 (5.26)

0 ≥ Π̃i − Γ̂i + Γ̂i

[
F̂i −ΦL

] γM−1

i + F̂T
i Γ̂iF̂i −F̂iΓ̂iΦL

−LTΦT Γ̂iF̂i V −1 + LTΦT Γ̂iΦL


−1  F̂T

i

−LTΦT

 Γ̂i.

(5.27)

Eqns. (5.26) and (5.27) become constraints on L and Πi that are equivalent to (5.23). The

estimation error covariance propagation function is (5.27) and the update equation is (5.17).

Further, when combined with (5.17), (5.27) is a DARI. Also, (5.27) implies that Πi ≥ 0 and

Γi ≥ 0 over the entire time interval (see Proposition 5.2 in Section 5.4).

To further simplify the propagation equation (5.27), apply the matrix inversion lemma

(V11 + V12V
−1

22 V21)
−1 = V −1

11 − V −1

11 V12 (V22 + V21V
−1

11 V12)
−1 V21V

−1

11 (5.28)

where

V11 = I

V12 = Γ̂i

[
F̂i −ΦL

]
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V21 =

[
F̂i −ΦL

]T

V22 =

 1
γ
Mi 0

0 V


to obtain

0 ≥ Π̃i −
(
I + Γ̂iGi

)−1

Γ̂i. (5.29)

Note that I + Γ̂iGi is invertible since Γ̂iGi ≥ 0. By casting (5.27) in the form on the right-

hand side of (5.28), it is apparent that (5.26) is automatically satisfied since it involves a

sum of positive-definite and nonnegative-definite matrices. Next, by pre-multiplying (5.29)

by I + Γ̂iGi and using (5.20) from the first-order necessary conditions for optimality,

0 ≥
(
I + Γ̂iGi

)
Π̃i − Γ̂i = Ψi (5.30)

Thus, three equivalent forms of the DARI constraint for the DGTMFDF problem have been

generated in this section: a matrix inequality (5.23), a block matrix differential inequality

(5.27), and a simple matrix inequality related to the first-order necessary conditions (5.30).

Eqn. (5.30) will be the most useful for the filter gain optimization in the next section.

Therefore, Problem 5.1 requires a solution to the DARIs (5.30) with measurement up-

date (5.17), coupled by the filter gain L, with boundary conditions (5.24) and (5.25). Since

the degree of complementary fault blocking can be changed by adjusting γ, the structure of

the DGTMFDF is less constrained than the detection filters based on spectral and geometric

theories. Further, the DGTMFDF extends the DGTFDF to the multiple-fault case.

Remark 5.1: An analysis of the steady-state case of the DGTMFDF was attempted by ex-

amining the discrete Riccati equation implied by the necessary conditions for optimality

where (5.20) is set equal to zero. Defining Q̄i = −CT ĤiQiĤiC ≤ 0, substituting into
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(5.17) and (5.20), and setting (5.20) equal to zero,

0 = Πi −
(
I + Γ̂iGi

)−1

Γ̂i

= Γi − Q̄i − Φ̂−T

(
I + ΓiΦ̂

−1GiΦ̂
−T

)−1

ΓiΦ̂
−1.

Note that in steady-state, Π̃i = Πi. The current literature discusses solutions to discrete

Riccati equations of this form only when Gi ≥ 0 and Q̄i ≥ 0 [48]. However, the

DGTMFDF constraints do not meet the latter condition. Thus, there are currently no

existence conditions for steady-state solutions to the current problem. ♢

5.2.2 Filter Gain Optimization

In this section, the filter gain L is optimized with respect to a new cost function. Since any

solutions L and Πi ≥ 0 to (5.27) and (5.24) automatically imply that (5.9) is nonpositive,

the specific cost function used at this stage is arbitrary. Therefore, let the optimal filter gain

minimize the cost function J̄ , defined as

min
L

J̄ = min
L

s∑
i=1

k1−1∑
k=k0

tr Ωi (5.31)

where Ωi ∈ Rn×n is a symmetric function chosen by the user. For convenience, assume that

Ωi is a function of Πi, L, and k only. At the end of the section, suggestions on choosing Ωi

such that (5.31) has a non-trivial solution are discussed and an example is presented.

To determine the first-order necessary conditions for optimality of (5.31), use the La-

grange multiplier ∆̃i to append the dynamic constraint

0 = Ψi = Π̃i −
(
I + Γ̂iGi

)−1

Γ̂i (5.32)
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to J̄ to obtain2

J̄ =
s∑

i=1

k1−1∑
k=k0

tr
{
Ωi (Πi, L, k) + ∆̃i

[
Π̃i −

(
I + Γ̂iGi

)−1

Γ̂i

]}
.

Changing the upper and lower indices of
∑k1−1

k=k0
tr ∆̃iΠ̃i,

J̄ =
s∑

i=1

tr

{
∆i(k1)Πi(k1)−∆i(k0)Πi(k0) +

k1−1∑
k=k0

[
Ωi(Πi, L, t) + ∆iΠi − ∆̃i

(
I + Γ̂iGi

)−1

Γ̂i

]}
.

Taking the first-order variation with respect to L and Πi,

δJ̄ =
s∑

i=1

∆i(k1)Πi(k1)−∆i(k0)Πi(k0) +

k1−1∑
k=k0

{(
δ [tr Ωi (Πi, L, k)]

δL

)T

δL

+ 2
[([

V LTΦT + CΦ̂−1Gi

] (
I + Γ̂iGi

)−1

Γ̂i − CΦ̂−1

)
∆̃i

(
I + Γ̂iGi

)−1

Γ̂iΦ
]
δL

+

[
∆i−Φ̂−1

(
I−Gi

(
I+Γ̂iGi

)−1

Γ̂i

)
∆̃i

(
I+Γ̂iGi

)−1

Φ̂−T+

(
δ [tr Ωi (Πi, L, k)]

δΠi

)T]
δΠi

}
.

Thus, by using two variants of (5.28)

(I + V12V21)
−1 = I − V12 (I + V21V12)

−1 V21 (5.33a)

(I + V12V21)
−1 V12 = V12 (I + V21V12)

−1 (5.33b)

and substituting (5.32), the first-order necessary conditions for optimality of (5.31) are

0 =
s∑

i=1

[
2

(
V L∗TΦT Π̃∗

i − CΦ̂∗−1

(
I + Γ̂∗

iG
∗
i

)−T
)
∆̃iΠ̃

∗
iΦ +

(
δ [tr Ωi (Π

∗
i , L

∗, k)]

δL∗

)T]
(5.34)

0 = ∆i − Φ̂∗−1

(
I + Γ̂∗

iG
∗
i

)−T

∆̃i

(
I + Γ̂∗

iG
∗
i

)−1

Φ̂∗−T +

(
δ [tr Ωi (Π

∗
i , L

∗, k)]

δΠ∗
i

)T

(5.35)

0 = ∆i(k1) (5.36)

2If the inequality form of the dynamic constraint (5.30) is desired, simply add a nonnegative term to Ψi

such that the sum is equal to zero and append to the cost function.
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where L∗ is the optimal strategy for the filter gain and Π∗
i is the Riccati variable using L∗.

Note that Gi, Γ̂i, and Φ̂ are all functions of L, and so they also use L∗ in the necessary

conditions above. Therefore, since Ωi is symmetric by assumption, ∆i is the solution of a

discrete Lyapunov differential equation (5.35) [48]. The optimal filter gain is then determined

by solving a two-point boundary value problem which includes a set of discrete Riccati

equations (5.32) and Lyapunov equations (5.35) coupled by (5.34) with initial condition

(5.24) set equal to zero and final condition (5.36).

Some choices for Ωi may lead to trivial solutions for the detection filter problem. To

explore this concept, rewrite the Lyapunov equation (5.35) as

Λi = ∆i +

(
δ [tr Ωi (Π

∗
i , L

∗, k)]

δΠ∗
i

)T

(5.37)

∆̃i =
(
I + Γ̂∗

iG
∗
i

)
Φ̂∗TΛiΦ̂

∗
(
I + Γ̂∗

iG
∗
i

)T

(5.38)

where ∆i is the a priori (propagation) solution and Λi is the a posteriori (update) solution.

The update stage (5.37) is based entirely on δΩi

δΠi
. If δΩi

δΠi
= 0, then the update is trivial and

the solution for ∆i is based on the propagation alone. However, because of the terminal

constraint (5.36), the solution to (5.38) is ∆i = 0. Also, (5.34) is satisfied trivially in this

case, providing no information on how to choose L∗. Therefore, Ωi must be chosen such that

δΩi

δΠi
̸= 0. Further, it is generally unnecessary and undesirable to choose δΩi

δL
̸= 0, as very

simple solutions for L∗ may be obtained when δΩi

δL
= 0. In general, most enhancements to

the detection filter problem may be achieved by choosing δΩi

δΠi
̸= 0.

Finally, an example cost function is minimized with respect to L. It was proven in [43]

that as γ → 0, Πi obtains a nullspace that contains Ŵi, signifying that the nuisance fault will

be blocked from the projected residual. Thus, the optimization should attempt to minimize

the transmission of each complementary fault by placing F̂i approximately in the nullspace

of Πi. Further, the target fault direction Fi should remain in the range space of Πi so that
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it is not blocked along with the complementary fault. Thus, choose Ωi as

tr Ωi = tr
1

γ
KiF̂

T

i ΠiF̂i − tr NiF
T

i ΠiFi (5.39)

where Ki and Ni are design weightings on the complementary fault and target fault trans-

missions, respectively. Thus, the optimization problem (5.31) attempts to choose L such

that Πi has the aforementioned desired structure. When Ki is large, the transmission from

F̂i to the projected residual r̄i is smaller. When Ni is large, the transmission from Fi to the

residual is larger. By differentiating Ωi with respect to Πi and substituting into (5.37), ∆i

is subject to the update equation

Λi = ∆i +
1

γ
F̂iKiF̂

T

i − FiNiF
T

i , (5.40)

with propagation equation (5.38) and boundary condition (5.36). By substituting (5.32) and

(5.38) into (5.34) and using the variants of the matrix inversion lemma (5.33),

0 =
s∑

i=1

[
V L∗TΦT Π̃∗

i − CΦ̂∗−1

(
I + Γ̂∗

iG
∗
i

)−T
]
∆̃iΠ̃

∗
iΦ

=
s∑

i=1

[
V L∗TΦT Γ̂iΦ̂

∗ − C
]
Φ̂∗−1

(
I + Γ̂∗

iG
∗
i

)−T

∆̃iΠ̃
∗
iΦ

=
s∑

i=1

[
V L∗T (I − L∗C)−T Γ∗

i − C
]
ΛiΓ

∗
i

=
s∑

i=1

[
V (I − CL∗)−T L∗TΓ∗

i − C
]
ΛiΓ

∗
i

=
s∑

i=1

[
L∗TΓ∗

i − (I − CL∗)T V −1C
]
ΛiΓ

∗
i

=
s∑

i=1

[L∗T (Γ∗
i + CTV −1C)− V −1C] ΛiΓ

∗
i
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Thus, the optimal filter gain is

L∗ =

[
s∑

i=1

Γ∗
iΛi (Γ

∗
i + CTV −1C)

]−1 [ s∑
i=1

Γ∗
iΛiC

TV −1

]
. (5.41)

Remark 5.2: In order to numerically solve for the detection filter gain and error covariance,

it is desirable to use linear matrix inequalities. However, (5.23) is nonlinear in Πi and

L. Further, it cannot be expanded into an LMI since Π̃i and Γi are both positive or

nonnegative-definite quantities. Thus, a gradient descent algorithm is the best option

to obtain a numerical solution. ♢

Remark 5.3: During the derivation of the DGTMFDF constraints and optimal filter gain,

it has not been necessary to assume that the Riccati solutions are invertible. For the

example filter gain optimization cost function above, the solution exists as long as the

nullspaces of Γ∗
iΛi (Γ

∗
i + CTV −1C) do not overlap over all DAPs. However, the single-

fault case is the exception in which Γi must be invertible to obtain the optimal solution.

♢

5.3 Comparison to the Single-Fault Detection Filter

In this section, the DGTMFDF is compared to the only previous discrete Riccati-based

robust fault detection method, the (single-fault) DGTFDF [43]. It is shown that the

DGTMFDF problem formulation generalizes that of the single-fault detection filter.

In [43], it was proven that the single-fault DAP (assumes s = 1) is satisfied when the

Riccati variable Θ is propagated by the update and propagation equations

Σ = Θ− CT

(
ĤQĤ − V −1

)
C (5.42a)

Θ̃ =

[
ΦΛ−1ΦT +

1

γ
F̂MF̂T

]−1

(5.42b)
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where Θ(t0) = Θ0 and the solution for the filter gain L is

L = Σ−1CTV −1. (5.43)

Through some algebraic manipulation, (5.32) may be rewritten using a new a posteriori

Riccati solution Λi as

Λi = Γi + CTV −1C = Πi − CT

(
ĤiQiĤi − V −1

)
C (5.44a)

Π̃i =

(
Φ
[
Λ−1

i + (LV − Λ−1

i CT ) (V − CΛ−1

i CT )−1 (V LT − CΛ−1

i )
]
ΦT +

1

γ
F̂iMiF̂

T

i

)−1

(5.44b)

Clearly, (5.44) is simply (5.42) with an added quadratic term. When L = Λ−1

i CTV −1, this

extra term is zero and (5.44b) becomes identical to (5.42b). Thus, (5.42) and (5.43) are a

special case of the solution to (5.30).

The advantage of (5.42) and (5.43) is that Θ can be computed independently of L,

thereby simplifying the calculation of the filter gain. However, the DGTMFDF problem

generalizes the solution to the single-fault problem in two ways. First, by adding an ad-

ditional term to the Riccati constraint as in (5.44), the filter gain can be chosen achieve

secondary objectives. For example, let

L = Λ−1

i CTV −1 + Li

where Li ∈ Rm×n is an arbitrary matrix. Then, (5.44b) becomes

Π̃i =

(
Φ
[
Λ−1

i + LiV (V − CΛ−1

i CT )−1 V LT

i

]
ΦT +

1

γ
F̂iMiF̂

T

i

)−1

,

and it may be possible to choose or optimize Li to improve transmission of the target fault

(though possibly at the expense of nuisance fault blocking and/or dynamic stability). Such
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optimization of the filter gain was the subject of Section 5.2.2. Second, since the Riccati

constraint of the DGTMFDF problem is an inequality constraint, one may determine a

range of possible (sub-optimal and optimal) solutions to the single-fault problem. This is

important, for example, in cases where the optimal solution is physically unattainable (e.g.

- due to mechanical limitations).

5.4 Lemmas and Propositions

Lemma 5.1: If F1, . . . , Fs, F̂ are (C,Φ)-output separable, then

Ŵ∗
i = W∗

1 ⊕ . . .⊕W∗
i−1 ⊕W∗

i+1 ⊕ . . .⊕W∗
s ⊕ Ŵ∗.

Proof: The proof is identical to that of Lemma 3.3, replacing the continuous time-varying

state dynamics matrix A with the discrete time-invariant state transition matrix Φ.

QED

Proposition 5.2: Assuming that Γi and Πi satisfy the constraints (5.23) and (5.25),

Γi ≥ 0, Π ≥ 0 ∀ k ∈ {k0, . . . , k1}.

Proof: To the contrary, let there exist a vector ν1 such that

Πiν1 = λ1ν1, λ1 < 0.
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Pre-multiplying (5.17) by νT
1 and post-multiplying by ν1 yields

νT

1Γiν1 = νT

1

(
Πi − CT ĤiQiĤiC

)
ν1

= νT

1

(
λ1I − CT ĤiQiĤiC

)
ν1 ≤ 0

Therefore, if Πi has a negative eigenvalue, then Γi, and by extension Γ̂i, has one as well.

Next, define the vector ν2 such that

Γ̂iν2 = λ2ν2, λ2 < 0.

Pre-multiplying (5.27) by νT
2 and post-multiplying by ν2 yields

νT

2 Π̃iν2 ≤ νT

2

Γ̂i − Γ̂i

[
F̂i −ΦL

]
S−1

i

 F̂T
i

−LTΦT

 Γ̂i

 ν2

≤ νT

2

λ2I − λ2
2

[
F̂i −ΦL

]
S−1

i

 F̂T
i

−LTΦT


 ν2 ≤ 0

where from (5.26)

Si =

 γM−1

i + F̂T
i Γ̂iF̂i −F̂iΓ̂iΦL

−LTΦT Γ̂iF̂i V −1 + LTΦT Γ̂iΦL

 > 0.

Therefore, if Γi has a negative eigenvalue, then Π̃i has one as well.

The two statements above imply that there will always exist a negative eigenvalue

associated with Πi and Γi. However, the terminal boundary constraint (5.25) requires

that Πi reach a nonnegative value, and so a contradiction is reached. Therefore, there

can be no negative eigenvalues associated with Πi and Γi. QED
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Chapter 6

Numerical Examples

6.1 Example 1

In this section, a linear time-invariant numerical example for the F16XL aircraft [24, 41, 45]

is used to demonstrate the performance of the GTMFDF from Chapter 3. The system has

four states (longitudinal velocity xu, normal velocity xw, pitch rate xq, and pitch angle xθ),

one control input (elevon deflection angle uδ), four measurements (longitudinal velocity yu,

normal velocity yw, pitch rate yq and pitch angle yθ), one disturbance input (wind gust µwg),

and sensor noise v. The system matrices are

A =



−0.0674 0.0430 −0.8886 −0.5587

0.0205 −1.4666 16.5800 −0.0299

0.1377 −1.6788 −0.6819 0

0 0 1 0


, Bδ =



−0.1672

−1.5179

−9.7842

0


, Bwg =



0.0430

−1.4666

−1.6788

0


,

and C = I. Three faults, including faults in the pitch angle sensor yθ, elevon deflector uδ,

and wind gust uwg, are considered. The fault directions used for the detection filter design
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are

Fθ =



0 0.5587

0 0.0299

0 0

1.0000 0


, Fδ = Bδ, Fwg = Bwg.

Note that the pitch angle sensor fault enters the measurement equation (3.1b) as an additive

input Fs,θµθ with fault direction Fs,θ = [0 0 0 1]T . However, by using the method described in

Section 2.1.1, the sensor fault is converted into an additive input to the dynamics Fθ[ µ̇θ µθ ]
T

with fault direction Fθ = [ fθ − Afθ ] where Cfθ = Fs,θ. It can be verified that the three

faults are output separable, mutually detectable, and have no invariant zeros at the origin.

Further, assume that the covariance of the measurement noise is V̄ = 10−6I.

The GTMFDF is demonstrated for this problem using three different methods. In

Section 6.1.1, the detection filter problem is solved using three single-fault detection filters,

like a bank of UIOs. For simplicity, the solution is made equivalent to the GTFDF solution

(3.29) and (3.30). In Section 6.1.2, the detection filter is derived as a multiple-fault detection

filter that detects all modeled faults, like the BJDF. In Section 6.1.3, the detection filter

is derived as a multiple-fault detection filter that detects only two of the modeled faults,

blocking the third from the residual. Finally, in Section 6.1.4, target fault sensitivity is

enhanced for the UIO-type and RDDF-type detection filters. For all of the implementations

below, assume the disturbance attenuation bound is γ = 10−6.

Remark 6.1: The example is simulated in MATLAB. Typically, the optimal multiple-fault

filter gain may be obtained using the “fminunc” function, which computes a numeri-

cal solution to an unconstrained minimization problem (using the continuous algebraic

Riccati equation function “care” to solve for the required Riccati solutions at each it-

eration). This function also requires an initial guess for the filter gain, which may be

calculated via the suggestion in [45]. However, the “care” function returns an error

when the eigenvalues of the problem’s Hamiltonian stray too close to the imaginary
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axis. Thus, to facilitate convergence to an asymptotically stable numerical solution,

two additions to this basic algorithm are introduced using the constrained functional

minimization algorithm “fmincon”. These include:

• A constraint so that the detection filter eigenvalues remain asymptotically stable

• A constraint so that the Hamiltonian eigenvalues do not fall on the imaginary axis

From Theorem 3.1, a nonnegative-definite stabilizing solution for the Riccati equation

exists when the above constraints hold. ♢

6.1.1 Unknown Input Observer

In this section, three detection filters, one to detect each fault, are derived in the form of

a bank of UIOs for which s = 1. Let F1 = Fθ, F2 = Fδ, and F3 = Fwg. The weights

on the complementary faults directions F̂i ∀i ∈ {1, 2, 3} for each Riccati constraint (3.29)

are Mi = 0.01 · I where I is the appropriately dimensioned identity matrix. Note that

F̂1 = [ F2 F3 ], F̂2 = [ F1 F3 ], and F̂3 = [ F1 F2 ]. The weights on the projected output error

for each Riccati constraint are Qi = 0.0001 · I. The weight on the measurement noise is

V = 1
γ
V̄ = I.

The steady-state solutions to (3.29) are obtained for i = 1, 2, 3, respectively. Then,

three single-fault detection filters are obtained via (3.30). Recall that the aforementioned

equations are a special case of the solution to (3.28). Each detection filter has only one

projected residual Ĥiri to detect fault Fi, where Ĥi is defined a priori by (3.10). The

detection filter is demonstrated by integrating the dynamic system (3.1) and detection filter

(3.7) simultaneously with a unit bias fault starting at t = 2s in yθ, uδ, or uwg. Note that it

is assumed that the nominal control input uδ = 0.

In Fig. 6.1, the frequency responses of the three detection filters are graphed with respect

to each fault direction. The blue and green lines represent the rate and magnitude of the

pitch angle sensor fault, respectively, which should be detected by the first detection filter.
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Figure 6.1: Projected residual frequency responses for UIO-type filter

The red line represents the elevon deflector fault, which should be detected by the second

filter. The cyan line represents the wind gust fault, which should be detected by the third

filter. The figure shows that the projected residual of each detection filter is sensitive only

to its associated target fault. This notion is supported by Fig. 6.2, which graphs the time

histories of the projected residuals to the unit bias faults. The figure shows that the target

fault in each case is clearly detectable, even in the presence of measurement noise.
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Figure 6.2: Projected residual time histories for UIO-type filter
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6.1.2 Beard-Jones Detection Filter

In this section, a single detection filter to detect all three faults is derived in the form of

a BJDF for which s = 3. The Riccati constraint weights are kept the same as for the

UIO-type filters above. The filter gain is obtained by numerically solving the optimization

problem (3.27) subject to the steady-state Riccati constraint (3.28). The weights on the

complementary fault transmissions for the cost function are K1 = 0.01 · I, K2 = 0.01 · I,

and K3 = 0.001 · I, respectively. The weights on the target fault transmissions are N1 = I,

N2 = 1.5 · I, and N3 = 0.1 · I, respectively.

In Fig. 6.3, the frequency response of the detection filter is graphed with respect to each

projected residual and each fault direction. The figure shows that each projected residual

is sensitive only to its associated target fault. This notion is supported by Fig. 6.4, which

graphs the time histories of the projected residuals to unit step inputs in each fault. The

figure shows that the target fault in each case is clearly detectable.

6.1.3 Restricted Diagonal Detection Filter

In this section, a single detection filter to detect two of the three faults is derived in the

form of a RDDF for which s = 2. It is desired to detect the pitch angle sensor and elevon

deflector faults in the presence of a wind gust disturbance and sensor noise. Thus, F1 = Fθ

and F2 = Fδ are the target fault directions and F̂ = Fwg is the nuisance fault direction. Two

residual projectors are obtained using (3.10) to isolate the two target faults. The Riccati

constraint and cost function weights remain the same as for the BJDF-type filter except that

for this case Q1 = 0.0002 · I.

In Fig. 6.5, the frequency response of the detection filter is graphed with respect to each

projected residual and each fault direction. The figure shows that each projected residual

is sensitive only to its associated target fault. This notion is supported by Fig. 6.6, which

graphs the time histories of the projected residuals to unit step inputs in each fault. The
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Figure 6.3: Projected residual frequency responses for BJDF-type filter
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Figure 6.4: Projected residual time histories for BJDF-type filter
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Figure 6.5: Projected residual frequency responses for RDDF-type filter

figure shows that the target fault in each case is clearly detectable. Therefore, the GTMFDF

sufficiently isolates the target faults and blocks the nuisance fault.

6.1.4 Enhancement of Target Fault Sensitivity

In this section, the ability of the GTMFDF to enhance sensitivity to the target fault is

demonstrated for single-fault and multiple-fault problems.

First, the set of UIO-type filters in Section 6.1.1 is derived with new Riccati weights.

The new weights on the complementary fault directions for each Riccati constraint are M1 =

0.08 · I, M2 = 0.01 · I, and M3 = 0.1 · I. The weights on the projected output error for each
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Figure 6.6: Projected residual time histories for RDDF-type filter

115



Riccati constraint are Q1 = 0.0002 · I, Q2 = 0.001 · I, and Q3 = 0.0001 · I.

In order to enhance target fault sensitivity, the optimization problem (3.27) is applied

to the single-fault detection filter problem. The weights on the complementary fault trans-

missions for the cost function are K1 = 0.01 · I, K2 = 0.01 · I, and K3 = 0.001 · I. The

weights on the target fault transmissions are N1 = 200 · I, N2 = 50 · I, and N3 = 10000 · I.

In Fig. 6.7, the projected residual frequency responses to their associated target faults for

the three new detection filters are compared to those of the detection filters in Section 6.1.1.

The color schemes are the same as before. The solid lines represent the responses of the new

detection filters while the dashed lines represent the old. The figure shows that new weights

have increased the frequency responses of the detection filters. This notion is supported by

Fig. 6.8, which graphs a comparison of the time histories of the projected residuals to unit

bias faults for the old and new filters. The figure shows that the target fault responses are

much larger than before. In each case, the target fault is clearly detectable compared to

both the old and the new nuisance fault responses.

Next, the RDDF-type filter in Section 6.1.3 is derived with new Riccati and cost function

weights. The new weights on the complementary fault directions for each Riccati constraint

are M1 = 0.01 · I and M2 = 0.1 · I. The weights on the projected output error for each

Riccati constraint are Q1 = 0.0002 ·I and Q2 = 0.001 ·I. The weights on the complementary

fault transmissions for the cost function are K1 = I and K2 = I. The weights on the target

fault transmissions are N1 = 12 · I and N2 = 100 · I.

In Fig. 6.9, the two projected residual frequency responses to their associated target

faults for the new detection filter are compared to those of the detection filter in Section 6.1.3.

As before, the solid lines represent the responses of the new detection filter while the dashed

lines represent the old. The figure shows that new weights have increased the frequency

responses of the detection filter. This notion is supported by Fig. 6.10, which graphs a

comparison of the time histories of the projected residuals to unit bias faults for the old and

new filters. The figure shows that the target fault responses are much larger than before.
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Figure 6.7: Comparison of target fault projected residual frequency responses for UIO-type
filter
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Figure 6.8: Comparison of projected residual time histories for UIO-type filter
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In each case, the target fault is clearly detectable compared to both the old and the new

nuisance fault responses.

Remark 6.2: In the previous cases of the GTMFDF, solutions were obtained using the

MATLAB function “fmincon” using the constraints mentioned at the beginning of this

section. However, attempts to increase target fault sensitivity were often met with

algorithmic failure due to the constraints being violated and “care” returning an error.

To facilitate convergence to a solution in the enhanced sensitivity case, when “care”

returned an error, the cost function was artificially forced to take on an extremely large

value. In that way, the solution would be driven away from values that cause algorithmic

failure. The weights in this section were chosen as acceptable after careful monitoring

of solution convergence during the algorithm. ♢

6.2 Example 2

In this section, a linear time-invariant numerical example taken from [19, 41, 45] is used to

demonstrate that the GTMFDF has behaviors similar to the RDDF and BJDF with respect

to invariant zeros. The system matrices are

A =


0 3 4

1 2 3

0 2 5

 , B = 0, C =

 0 1 0

0 0 1

 .

Further, assume that the covariance of the measurement noise is V̄ = 10−6I and let the

disturbance attenuation bound be γ = 10−6.

The GTMFDF is demonstrated for four different sets of faults. In Section 6.2.1, the

detection filter is derived when one of the faults is associated with an stable invariant zero.

In Section 6.2.2, the detection filter is derived when one of the faults is associated with an
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filter
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unstable invariant zero. In Section 6.2.3, the detection filter is derived when the faults are

not mutually detectable and have a stable invariant zero. In Section 6.2.4, the detection

filter is derived when the faults are not mutually detectable and have an unstable invariant

zero. For each case below, the first fault direction is defined as

F1 =


1

−0.5

0.5


and the second fault is modified to produce the intended invariant zero.

6.2.1 Stable Invariant Zero

In this section, the second fault direction is defined as

F2 =


3

1

0

 .

It can be shown that the two faults are output separable and mutually detectable. F2

is associated with an invariant zero at −3 with direction ν = [1 0 0]T . By using (2.13),

T1 = T̂2 = Im F1 and T2 = T̂1 = Im[F2 ν ]. Since T1 ⊕T2 = R3×3, there is no complementary

subspace.

The detection filter to detect both faults is derived in the form of a BJDF for which

s = 2. The weights on the complementary faults directions F̂i ∀i ∈ {1, 2} for the Riccati

constraint (3.28) are Mi = 0.05. Note that Mi is a scalar since F̂i is a vector. The weights

on the projected output error for each target fault are Q1 = 0.001 · I and Q2 = 0.002 · I. The

weight on the measurement noise is V = 1
γ
V̄ = I. The filter gain is obtained similarly to

the BJDF-type filter in Section 6.1.2. The weights on the complementary fault transmission
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for the cost function of (3.27) are Ki = 0.1 ∀i ∈ {1, 2}. The weights on the target fault

transmissions are N1 = 5 and N2 = 10, respectively.

The eigenvectors of the detection filter dynamics are very close to T1 and T2. Further,

the eigenvalues are −0.6779, −5.1079, and −6.8872. Since the invariant zero direction is

approximately included in T2, none of the eigenvalues are close to the invariant zero at −3.

Remark 6.3: That the GTMFDF includes the directions associated stable invariant zeros

in its detection spaces represents a major improvement over the single-fault GTFDF. It

can be shown that the GTFDF does not include stable invariant zeros in its nuisance

fault detection space. This is confirmed by designing the single-fault detection filter

to detect F1 with Riccati weights identical to those above, producing a detection filter

with eigenvalues at −3.0003, −5.4041, and −223.63. Note that there is an eigenvalue

very close to the invariant zero at −3. However, because the GTMFDF automatically

includes these directions in its detection spaces, none of the eigenvalues are close to

the invariant zero. Thus, the stability of the closed-loop system is unaffected by this

property of the open-loop system. ♢

6.2.2 Unstable Invariant Zero

In this section, the second fault direction is defined as

F2 =


−3

1

0

 .

It can be shown that the two faults are output separable and mutually detectable. F2

is associated with an invariant zero at +3 with direction ν = [1 0 0]T . By using (2.13),

T1 = T̂2 = Im F1 and T2 = T̂1 = Im[F2 ν ]. Since T1 ⊕T2 = R3×3, there is no complementary

subspace.
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The detection filter is derived as before with the same Riccati constraint and cost func-

tion weights. Once again, the eigenvectors of the detection filter dynamics are very close to

T1 and T2. The eigenvalues are identical to those in the stable invariant zero case. Since the

invariant zero direction is approximately included in T2, none of the eigenvalues are close to

the invariant zero at +3 or its mirror image over the imaginary axis −3.

Remark 6.4: It can be shown that, even though the GTFDF includes unstable invariant

zeros in its nuisance fault detection space, a subset of the eigenvalues of the filter are

very close to the mirror images of these invariant zeros over the imaginary axis [41].

This is confirmed by designing the single-fault detection filter to detect F1 with Ric-

cati weights identical to those above, producing a detection filter with eigenvalues at

−3.0003, −5.4041, and −223.63. Note that there is an eigenvalue very close to the

mirror image of the invariant zero at +3. The GTMFDF automatically includes these

invariant zero directions in its detection spaces as well. However, none of the eigenval-

ues are close to these invariant zeros or their mirror images. Thus, the stability of the

closed-loop system is unaffected by this property of the open-loop system. ♢

6.2.3 Nonmutually Detectable Faults with Stable Invariant Zero

In this section, the second fault direction is defined as

F2 =


5

1

1

 .

It can be shown that the two faults are output separable. However, F1 and F2 are not

mutually detectable, and an invariant zero at −1.5 is associated with (C,A, [ F1 F2 ]). By

using (2.13), T1 = T̂2 = Im F1 and T2 = T̂1 = Im F2. Since T1 ⊕ T2 ⊂ R3×3, there is a

complementary subspace.

124



The detection filter is derived as before with the same Riccati constraint and cost func-

tion weights. Once again, the eigenvectors of the detection filter dynamics are very close to

T1 and T2. However, in this case the eigenvalues are −1.5001, −4.4615, and −4.6708. Since

the invariant zero direction is not approximately included in T1 or T2, one of the eigenvalues

is close to the invariant zero at −1.5.

Remark 6.5: This behavior with respect to nonmutually detectable invariant zeros is iden-

tical to the behaviors of the BJDF [19] and RDDF [18]. However, the system may be

modified as in [19] so that the faults become mutually detectable. In that case, a de-

tection filter may still be obtained with eigenvalues independent of the invariant zeros.

♢

Remark 6.6: Recall that mutual detectability is not a constraint for the single-fault prob-

lem since only one detection space is formed for the nuisance fault. Thus, invariant

zeros associated with both the target and nuisance faults do not become eigenvalues of

the detection filter. This is confirmed by designing the single-fault detection filter to

detect F1 with Riccati weights identical to those above, producing a detection filter with

eigenvalues at −3.5305 + 1.7895j, −3.5305− 1.7895j, and −316.27. Note that none of

the eigenvalues are near the nonmutually detectable invariant zero at −1.5. ♢

6.2.4 Nonmutually Detectable Faults with Unstable Invariant Zero

In this section, the second fault direction is defined as

F2 =


0

0

1

 .

It can be shown that the two faults are output separable. However, F1 and F2 are not

mutually detectable, and an invariant zero at +2 is associated with (C,A, [ F1 F2 ]). By
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using (2.13), T1 = T̂2 = Im F1 and T2 = T̂1 = Im F2. Since T1 ⊕ T2 ⊂ R3×3, there is a

complementary subspace.

The detection filter is derived as before with the same cost function weights. The

Riccati constraint weights are changed to Mi = 0.01 and Qi = 0.0001 · I. Once again, the

eigenvectors of the detection filter dynamics are very close to T1 and T2. Further, in this case

the eigenvalues are −0.2540, −3062, and −6795. In its attempt to obtain a stable detection

filter, the optimization produces very large detection filter eigenvalues. Also, while the

disturbance attenuation bounds are met for both projected residuals, the projected residuals

are also both insensitive to their associated target fault. Thus, no stable detection filter that

isolates the can be obtained when there exists an unstable nonmutually detectable invariant

zero.

Remark 6.7: This behavior with respect to unstable nonmutually detectable invariant zeros

is identical to the behaviors of the BJDF [19] and RDDF [18]. For those filters, a solution

exists, but has an eigenvalue at the unstable invariant zero. However, the system may

be modified as in [19] so that the faults become mutually detectable. In that case, a

detection filter may still be obtained with stable eigenvalues. ♢

Remark 6.8: Recall that mutual detectability is not a constraint for the single-fault prob-

lem since only one detection space is formed for the nuisance fault. Thus, invariant

zeros associated with both the target and nuisance faults do not become eigenvalues of

the detection filter. This is confirmed by designing the single-fault detection filter to

detect F1 with Riccati weights identical to those above, producing a detection filter with

eigenvalues at −1.1925, −4.1878, and −100.14. Note that none of the eigenvalues are

near the nonmutually detectable invariant zero at +2. Further, the projected residual

of the single-fault detection filter is sensitive to the target fault. ♢
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Chapter 7

Conclusions

7.1 Summary of Contribution

The purpose of this dissertation is to develop advanced methodologies for the detection

of multiple, possibly simultaneously occurring faults using a single fault detection filter.

Previous Riccati-based detection filters were obtained from the application of game theory

to the disturbance attenuation problem. The approach of the current work is to extend these

detection filters to the multiple-fault case.

In this dissertation, the Game Theoretic Multiple-Fault Detection Filter was derived for

both continuous-time and discrete-time systems. The detection filters for the two system

descriptions displayed very similar modifications and advancements compared to their single-

fault counterparts. Specifically, it was shown that the detection filter problem has a range

of possible solutions for both the single-fault and multiple-fault cases. Thus, the detection

filter gain may be optimized to achieve secondary objectives, such as increased sensitivity to

the target fault. The continuous detection filter’s ability to detect multiple faults, enhance

target fault sensitivity for the single-fault problem, and reach arbitrarily stable steady-state

solutions that do not depend on the systems invariant zeros was demonstrated via examples.

For continuous systems, the multiple-fault detection filter was also derived in the limit

as the disturbance attenuation bound goes to zero. It was shown that, when the detection
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filter exists, the sufficient conditions for optimality force the desired structure of the detec-

tion filter so that the time-varying complementary faults are completely blocked from their

associated projected residuals. Thus, the Riccati-based approximate detection filter approx-

imates the detection filters derived from the spectral and geometric theories. A specific case

of the solution was examined in which the asymptotic full-order multiple-fault detection

filter satisfies the same constraints as the asymptotic full-order single-fault detection filter

for each complementary fault. Necessary and sufficient conditions for the existence of this

special case were derived. Further, an algorithm for generating a reduced-order detection

filter was obtained.

7.2 Future Work

In this section, several avenues to extend the analysis of the game-theoretic multiple-fault

detection filter are reviewed.

Alternative Solutions to the Asymptotic GTMFDF

In the current work, the existence conditions and model reduction algorithm for the asymp-

totic solution of the GTMFDF have been evaluated for a specific case. Namely, the Riccati

equations and filter gain of the evaluated solution mirror that of the single-fault detection

filter, with the difference that the filter gain must satisfy one such set of constraints for each

complementary fault. Given the current analysis, other solutions to the asymptotic detection

filter problem may exist. Thus, a secondary problem to optimize the filter gain may have

merit for the asymptotic filter.

Analysis of the Asymptotic DGTMFDF

To determine if the DGTMFDF approximates discrete detection filters derived from the

spectral and geometric theories, an analysis of the asymptotic detection filter is required.
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For the single-fault filter, it was shown in the previous work that the Riccati equation of the

discrete asymptotic filter develops a set of invariant directions in the limit. These directions

work like an analog to the invariant subspaces of the continuous-time case: they become

constant with respect to the Riccati solution after a certain number of time steps. It was

also shown that the minimal (C,Φ)-invariant subspace associated with the nuisance faults is

contained in the set of invariant directions after one time step. A similar analysis is required

for the DGTMFDF.

In the single-fault case, it was also shown that the Riccati equations retain curvature

with respect to the nuisance fault directions, even as the disturbance attenuation bound goes

to zero. This curvature was the basis of the asymptotic detection filter analysis, meaning

that it was unnecessary to examine a singular optimal control problem as for the continuous

case. However, the remaining curvature was assumed to be full rank, an assumption that

was never completely substantiated. If the curvature is indeed not full rank, the Riccati

equation becomes singular with respect to a subset of the nuisance faults and an analysis in

the vein of singular optimal control may be required.

Extension of the DGTMFDF to Time-Varying Systems

Currently, the problem of extending the discrete game-theoretic fault detection filters to the

time-varying case has not been examined. Extension of the DGTMFDF to time-varying

systems is trivial when the disturbance attenuation bound is non-zero. However, an issue

of particular importance to asymptotic filter how we define the minimal (C(k),Φ(k + 1|k))-

invariant subspace and the invariant directions for the more complex system. With answers

to these questions, a complete analysis of the time-varying version DGTMFDF should be

accessible.
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