
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
INTERACTIVE DISPLAY OF POLYGONAL DATA

Permalink
https://escholarship.org/uc/item/74q988m4

Author
Wood, Peter M.

Publication Date
1977-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/74q988m4
https://escholarship.org
http://www.cdlib.org/

Presented at an Advanced Study Symposium on
Topological Data Structures for Geograp~ic

Infonnation Systems, Ha.rvard University,
Cambridge, MA, October 16 - 21, 1977

INTERACfIVE DISPLAY OF POLYGONAL DATA

Peter M. Wood

October 1977

Prepared for the U. S. Department of Energy
under Contract W-740S-ENG-48

TWO-WEEK LOAN COpy

LBL-6490 ..
C\~

r~ECE~VED
lAi;VRtiNt:,:r:;

I"Ht'i(\:U:V. tABCli!iATORY'

LlBFttl,RY ,c,ND
DOCUMENTS SECTION

.~ ,,-,-------- -;.o LEGAL NOTICE ----...;..-----...----~

.This report WfJ.S prepared. as. an accountof work sponsoredby the
United State.sGovernme[lt, Neither the United States nor. the Depart­
mentof Energy,· nor any of their· employees, nor any of thei (con- .

. tractors, subcont~actors,ortheir employees, makes any warranty,
expressor implied, or assumes any legal liability or responsibility for
the accuracy, cOmpleteness or usefulness of anyinformation,appa­
ratus, product 6r·process disclosed ,(jrrepresents that its use would
not infringe privatelyownedrights.

'';

"

LBL-6490

INTERACTIVE DISPLAY OF

POLYGONAL DATA

Peter M. Wood

Computer SCIence and Applied Mathematics Department

Lawrence Berkeley' Laboratory

University of California

Berkeley, CA. 94720

October, 1977

ABSTRACT

The operations of interactive thematic mapping program

are described which supports both quick display of retrieved

data and detailed mapi design for printing. Emphasis is on

the user view and map design functions such as data base ari­

thmetic, definition of insets, shading algorithms, and on-line

placement of text and figures.

Presented at An Advanced Study Symposium on Topological

data structures for geographic informati9n systems, Harvard

University Oct. 16-21, 1977

TABLE OF CONTENTS

INTRODUCTION

USER VIEW AND SIMPLE MAP DESIGN

Input files
,

The setup phase

Simple map a1gorit?m

MAP DESIGN FUNCTIONS

Data base arithmetic

Defining insets

Defining shades

Area sharUng by character

Area shading by lines

Line shading

Point shading

Adding titles and other information

EXTENSIONS

CONCLUSION

SAIvlPLE MAPS

REFERENCES

1

2

6

8

10

11

12

13

19

19

19

22

22

25

27

30

30

33

LBL 6490

INTERACTIVE DISPLAY OF POLYGONAL DATA

Introduction

Interactive computer graphics is an excellent approach

to many types of applications. It is an exciting method of

doing geographic analysis when desiring to rapidly examine

existing geographically related data or to display specially

prepared data and base maps for publication. One such

program is descpibed in the following paper.

The interactive thematic mapping system called CARTE

combines polygonal base maps with statistical data to produce

shaded maps using a variety of shading symbolisms on a

variety of output devices. A polygonal base map is one

where geographic entities are described by points, lines,

or polygons. It is combined with geocoded data to produce

special subject or thematic maps. Shading symbolisms

include texture shading for areas, varying widths for lines,

and scaled symbols for points. Output devices include

refresh and storage CRTs and auxiliary Calcomp or COM

hardcopy.

The system is designed to aid in the quick display of

spatial data and in detailed map design. These two aspects

of the program will be presented from the view of a user

and then that of the underlying data structure and algorithms

"-1-

which perform the variOllS functions: The discussion will

progress from those elements required to just make a map

to those which support more sophisticated map design

functions.

USER VIEW AND SIMPLE MAP DESIGN

When the user enters CARTE, he or she is confronted

with a display much like those in figure one. Although

initially overwhelmed, most users quickly adapt to the

light pen menu format in which a command from the menu

is selected for execution by a light pen or crosshairs.

Many like the much reduced need for keyboard entries (in

this system they are needed only for the specification

of textual or numerical parameters, such as title text

or character size).

One of the design goals was to allow an analyst to

make one or more maps easily. Minimal labeling is needed

as this mode assumes that the data and geographical area

are familiar to the user. In batch mode programs, simple

maps can be made with just a few directives. It is usually

several hours or days before the user sees the results.

With CARTE, a simple map can be made with a few (5) light

pen hits and no keyboard entries. It can usually be viewed

in just a few seconds. The co~puter cost is somewhat

-2-

functional module
\

\

most recent action
\

\
\

\

input mode,
\

escape
\
\

\

command
menu

}prompts

\ \ , \ \
~ ~ -i4 ."CARTE DISPLAY , GRAPHIC ESCAPE = END

SELECT-
INSETS
DATA
BINNING
SHADING

work space TITLES

STATE
I

SAVE
LOAD

DISPLAY

HARDCOPY

END I
Zero Level Commands

INSETS GRAPHIC ESCAPE=- RETURN

SELECT
WINDOW
VIEWPORT

BY

work space PT INPUT
GRID
GEO CODE

SAVE INSET
~10DIFY

RESET
REJ)RAI.J

RETURN
--

First.Level Commands

Figure 1. The screen layout

TOTAL BTU

TIT L E SPACE

M A

A 8 0 V E I 0 , 0 0 0

I , a 0 0 - I :J , 0 0 0

I 0 0 - 9 9 9

I 0 - 9 9

8 E L a u I 0

LEGEND SPA C E

XBL 776-9246

Figure 2. A simple map design

4

U1

INSETS DATA BIN

CARTE

STATE DISPLAY

SAVE I I
)

- _---../

SHADING TITLES

END

COt-1PUTE EXAMINE

Figure 3. Possible flOH of control

higher for interactive mapping, while the cost in a user's

time is much lower. Figure 2 shows the format in which

a quick map will appear.

Command flow possibilities are shown in Figure 3.

The path followed in simple map-making is indicated by the

double lines. Each of the commands at the first "level or

under SELECT is a module in the specific sense of being

a separate subroutine with no parameters. Communication

between these modules is by labeled common blocks and

arrays stored on disk. Careful selection of the data structure

elements to be fixed in the common blocks and of those to

be stored on disk ,is needed to maximize program flexibility

and minimize overhead. In CARTE any data structure element

having a possible size greater than 64 words is made into

a variable length array. Elements fitting this definition

are the space for storing the points of a polygon (only

one is in core at once), elements that are a function of

the number of areas in the data or the number of areas

on the mapfile, various workspaces, and the amount of supp­

lementary identifying information (titles and figures).

Input Files

While CARTE proper is a stand alone subsystem for

entity-driven mapping, it expe~ts as input fjles which

arc the output of, two other SEEDJS I subsystems, MAPEDIT and

-6-

DO BE DO. Together these three form the basis for the

polygon-based mapping system in SEEDIS (Socio-Economic-

Environmental-Demographic-Information System) at the Lawrence

Berkeley Laboratory2.

3MAPEDIT prepares a base map of outlines fOT mapping

in a standard format called a nickel format. It consists

of what may be called a bounded location list structure.

It is a location list in the sense of consisting of geocode

identifiers and all points for a single entity. It can

be called bounded because it also has the points of the

rectangle bounding the entity, as well as the centroid.

These are important elements, simplifying several operations

when making shaded maps. The advantages of this structure

are that 1) an entity can be retrieved in just one binary

FORTRAN read, 2) determination of its inclus ion in an

inset requires the comparison of only two already calculated

points, and 3) certain types of sillading can be done without

reference to the actual points of the entity. Its disad­

vantages are well known in that 1) explicit adjacency in-

formation is not contained and 2) several inefficiencies occur

because of duplicate boundaries.

DO BE DO prepares a data base for mapping so that all

the values of a characteristic can be accessed also in a

s.ingle FORTRAN binary read. This is the inverted file

d ' d . . 4structure Iscusse In a prevIous report

-7-

It allows

the mapping program to efficiently access the data base

for all values of a characteristic for binning and mapping,

for the names of all characteristics (a data base directory),

as well as for data base geocodes and how they correspond

to map geocodes.

It is these two files that are combined under user

direction to make thematic maps. They are linked by the map

dir~ctory as shown in figure-four, during the setup phase

of the program. The algorithm is:

1. Read data base id to identify data key records
2. Load data key records into core
3. Set map keys (geocodes) to match with data
4. Read the mapfile to get an entity record
S. Enter into the map directory:

a. address of the ~ntity on the map file
b. type (point, line, or polygon)
c. pointer to corresponding data area (result of

key match)
d. hierarchy indicator (shade only counties when

states are present)
6. Save other available information as needed:

a. Centroid and extent
b. Names and geocodes

7. If more enti ty records go to 4

Pre-calculating the correspondence between map areas

and data areas eliminates the need for key matching each

time a map is drawn. The centroid is essential for certain

types of shading and when insets are drawn. Let us first

however, discuss the simple mapping algorithm. The data

structure which is its base is diagrammed in Figure 4.

-8-

SHADE LEGENDS
AND DEFINITIONS

/~.

,.,.,./ /' DATA
/',/ CHARACTERISTICS

1 SELECTED CHARACTERISTIC

DATA
DIRECTORY

MAP
DIRECTORY

BASE MAP

POINTS POINTER

Figure 4. Basic Map Data Structure

-9-

Simple Map Algorithm

Here is the algorithm used in CARTE to generate a map.

Light pen hits of the user are followed by the operations

they initiate. The same algorithm is follo~ed "for all

maps whenever these functions are performed, with additions

of new data structure elements.

*** hits data select -- call DATA subroutine

1. Fetch data directory from disk
2. Displa~ names of characteristics on screen (assign

each to a rectangle)

* hits a characteristic name

3. Locate name from position of hit on screen
4. Copy information for that characterisitic to working

data di'rectory
5. Display name in selection list

*** hits done -- return data directory, call BINNING
SUDToutine

1. Fetch selected data record from disk
2. Allocate work space for shades (one per area)

* hi ts generate intervals command'

3. "Bin the data, generating "dividing values and shades
for each area

4. Create legends for shades by calculating size of
values, encoding with commas, and combining

5. Display legends and counts for each bin

*** hits done -- area shades saved on disk, data record
returned

*** hits terminal display -- enter DISPLAY subroutine

1. Display title (characteristic name at top of screen)
2. Display legend for each shade

a. generate and shade legend box
b. display legend text

3. Display the map body
a. Fetch area shades

-10-

3.
b. Fetch map directory
c. For each entry in map directory

1. Set plotting limits·
2. Fetch and draw its points
3. Look up its shade
4. If non-zero) then shade it according to the

correspondtng shade definition
4. Return and wait for the next command

There are several algorithms for displaying a map.

Looping on shade value is the technique for producing color

separation nogatives. It is not useful in this application

as it requires two disk accesses per entity, one for the

outline and one for the shading. Thus the two were separated.

Looping ln data area order was ruled out because more than

one entity often occurs for one data value, e.g. the islands

of Alaska. Looping on map entity is easier to program

because one region corresponds to only one data area, and

requires the points for a polygon to be fetched just once. In

more complicated designs) when multiple insets are defined,

an entity is plotted for all its insets before the next

entry is examined.

MAP DESIGN FUNCTIONS

The secondary design goal allows the user to do much more

than simply display given data with a given map. Arithmetic

ma~ be performed on data characteristics, insets may be made

from the base map) shading sym~)olisms may be defined) and

identifying information such as titles and legends may

-11-

be added to enhance the map's impact. Figure 12 gives the

complete data structure elements of CARTE. Map 1 is an

example of more complicated design.

Data Base Arithmetic

Performing calculations using data characteristics

is a subfunction of data selection. It is useful for

changing uriits or calculating percentage change between

two characteristics.

The operation is invoked simply. Characteristics to

be used as operands are selected, as if to be mapped (and

in a sense they are). The COMPUTE command is selected, and

the desired expression is entered. If successrul, the user

views the result and then continues on to bin the data as

with any other characteristic.

Evaluation of the expression ~s done by a module written

by Peter Kreps of LBL. The module works with vector

operands. The expression R2 - Rl means simply that for each

area in the data set, record 1 is to be subtracted from

record 2, where record 1 is the first data characteristic

selected into the working data directory and record 2

the second. The expression is scanned for operators, scalar

o~ vector operands. Operators are put on an operator

stack, scalars are expanded to a vector and put on an

-12-

operand stack. A characteristic operand is first fetched

through the working directory and then passed to the module

to be put on the operand stack. Thus the operand stack is

n x m words in length, where n = vector length and m = number

of operands. At each stage syntax is checked for a valid

arithmetic expression and, if possible, the stack is reduced

by performing the indicated operation. When the expression

has been completely processed, the final result may be called

for and is returned in an array to the data module. Data base

arithmetic can greatly enhance a user's ability to analyze

data.

Defining Insets

Often some portion of the base map is either extraneous
-,

to the interests of the user or consists of many small areas

that are indiscernible. One wants to zoom in on a portion

of the base map, thus creating a window. The portion of

the screen through which the window is viewed is a viewport.

Together a window and viewport define an inset.

Inset definition has been generalized in CARTE to provide

a multiple inset capability. This allows several disjoint

areas to be displayed together as well as more detail of one

area. Windows can be defined by graphically input geometry

(i.e. two points) and geocodes, while viewports may be

defined by graphic input or by user defined grid. This

~13-

makes it easy for a viewport to fill the entire screen or

a quadrant exactly.

Data structure elements needed to provide this capa­

bility are minimal: arrays for the two points defining.each

window and viewport and a byte for the type of geocode

selection (currently limited to all states or a specific

state). The difficulties arise in ensuring complete defin­

ition of an inset.

A temporary window and viewport are defined. Infor­

mation is kept on which parts of the inset definition have

been filled in. As points are entered, old ones are re­

placed. The user is required to specifically save an inset

and this can only'be done if it (s fully defined. The al­

gorithm for inset definition is shown in figure 5. Figure

6 gives some examples of inset.

Another difficulty is preventing them from distorting

the map. This requires adjusting the window to fit the

aspect ratio of the viewport.

Displaying the desired map outlines becomes a simple

operation. The map directory and centroids are retrieved

into core. Cycling thru the map directory, the centroid

and extent of an entity are compared with those of the

insets. For those windows the entity falls within by

geometry and geocode tIle pl.ottirig limits are set and the

points arc drawn.

- J 4-

o

-----1
I
I
I
I
I
I
I

START
Implied Inset

creation

QUAD

'- -.- -
I

.------------...:-~.)E-------l~e1ect t'E;------j

Inset

,- -:: - - - -",

(REDRAW) (optional)
'--- ---'"

yes

(RESET

I
I
I

}J

Figure 5 . INSETS Flow Diagram

-15-

viewport
wi...n_d_o_w...,- - - -,--------------.

"-
"-
""""""""

multiple insets------

_---t"-.......---------I

------------- --1

Figure 6. Examples of insets

-16-

The display algorithm requires at most npolys + 2

disk accesses and 2 x npolys + 2 x npts words of memory,

where npolys = number of entities in the map directory and

npts = maximum number of points. (This is faT a CDC 6000

series computer where.the four fields of the directory and

the centroid and extent are packed into 2 words. On the other

hand, each point of an entity is allocated 2 words of memory.)

The process can be done either each time a map is made or

once, but adding extra fields to the directory. This is

not critical as the operation is I/O bound, and the largest

portion is spent writing the display file. The largest

proportion of central processor time is used by the generation

of vector character titles and shade lines.

-17-

angle font char. shade inten- type
size char. sity

u v dash intensity type
length

u v ±dash intensity type
ength

.
u type

symbol smallest largest size type
number size

character
at centroid

parallel lines

cross-hatched
lines

expansion of
line width

scaled symbol
at centroid

Figure 7. Parameters of the various shade types

-18-

Definillg Shades

Area Shading by Character

Polygons can be shaded by a character placed at its

centroid. This is useful particularly for refresh CRTs to avoid

f1icker problems. Since the centroids can be fetched by

one disk access, a map can be shaded very quickly. The major

parameters are the character itself and its size and intensity.

Area Shading by Lines

Polygons may also by shaded by using parallel or cross­

hatched lines. Both these types have the same parameters.

U and V in Figure 7 define a vector about the origin which

determines shade line orientation and spacing. For cross­

hatched shading, the shade algorithm is called a second

time with a vector perpendicular to the original.

-19-

The s}lading algorithm differs from previous ones which

generate all shade lines for a polygon in core. The memory

required for this approach is unavailable to an interactive

program. Thus a fast vector shadi!lg algorithm which minimizes

the use of memory was'developed by Harvard Holmes of LBL for
,,~,

interactive shading applications.

The method is as follows:

1. Rotate and scale the points so that the shade lines
are horizontal and spaced one unit apart .

. 2. a. Initialize pointers to the points in a temporary
array, K.

b. Sort the pointers so that they select points
in order of ascending y value. .

3. Set init~al y coordinate. Set pointer to beginning
of K.
a. Select points using K, between the last scan line

and the next scan line. Include either or
both of the associated edges if they extend
beyond the next scan line.
Insert the edge data into the edge intersection
list.

b. Transfer the x coordinates (from'the edge list)
and the y coordinate (from scan line value) back
to the original space and output the shading
segments.

c. Remove completed edges and upqate others. If
any edges are left, go to step 3a.

4. Empty the plot buffer
5. Rotate the points back to the original coordinates.

The algorithm is fast. Most of the time is spent in step

2b, ~orting the points by y value. Combining cross-hatched

lines with dashed lines gives some very interesting textures.

Many of the resulting patterns resemble those of woven fabric.

-20-

character at
centroid

parallel lines

cross-hatched
lines

Figure 8. Examples of area shading

-21-

Line Shadi!:!ll

Line shading is done by expanding the line in width. This

width is variable, beirig user-defined, and actually defines

the width of a rectangle which is first constructed and then

shaded to give the appearance of a solid line. The method

is as follows: (see Figure 9)

1. Calculate x and y offset such that P3P2 1 PIP2 and the

distance from P3 to P2 = u/2.

delx - u/2 ~!: -cos(a) ::: u/2 "}: (-dx)/dis dx = x2 x 1·

dely = u/2 * sin(a) = u/2 * dy /dis dy = Y2 Yl

where user-defined width and dis sqrt (dx 2 2u ::: = + dy).

2. Create a closed rectangle from the old points PI and

P2 and the x and y offsets, balance about the old

segment so two segments of opposite direction will

meet correctly.

3. Draw and shade the rectangle.

Point Shad~EJl

Points are represented in interactive CARTE by symbols that

are scaled by data value. This differs from the batch symbol

shading where symbols are filled with a texture corresponding

to data valueS. Symbol points are drawn in by the user and

a minimum and maximum scale defined, the minimum corresponding

to the lowest bin, the maximum to the highest. Since the

number of symbols can vary as well as the number of points per

-22-

del y

del x = u/2*-cos a

del y = u/2*sin a

_______ -.J

Figure 9. Steps in shading a line

-23-

Pz

Figure 10. The method of point shading

-24-

symbol viewport scaled
by small value

symbol viewport scaled
by large value

c'

symbol (there is no limit), the symbol definitions are

stored with other identifying information in the title

array.

When a symbol is to be drawn, its points are retrieved

from the title array. It is scaled by defining a temporary

window and viewport such that the symbol fills the window

and the viewport is scaled'by data value and centered at
-

the point (which has been stored as the centroid in the map

directory).

Adding Titles and Other Information

Adding identifying information can greatly enhance map

impact. This includes user-defined titles, legends, and

figures. The number and size of these elements varies widely

from map to map. The information is stored in a dynamic
,

array, with each element pointed to by a word in common.

This data structure is diagrammed in Figure 11.

Titles can be in either hardware or vector characters.

If vector characters are specified, one of eight fonts may

be chosen and the character size becomes a continuous variable.

A legend is specified by two points and the type of

entity. The rectangle defined by the two points is subdivided

into smaller rectangles and the appropriate shade displayed

in each.

-7.S-

title

legend ..

r'\ ntnnber of character
, characters size font

figure
or <V"'"

symbol 1\ x coordinate

y coordinate

text

~
I

geographic type

lower left x coordinate

lower left y coordinate

upper right x coordinate

upper right y coordinate

.

number of points""VI'"

first x coordinate

first y coordinate

next x coordinate

next y coordinate

Figure 11. Data structure for added text and lines

-26-

c'

r

Figures and sYlnbo1~ arc simply a collection of points.

Figures requiring more than one line can be described using

several figures.

Any information of these types will be pointed to by

a work in the control array. Its index number in this array

is its name and is used to create, modify and delete these

elements. The index number also determines the order in

which the elements are drawn.

Extension

It may be useful to be able to tie "identifying information

to an inset. Then a simple redefinition of the inset would

translate and scale all text and figures associated with

the inset, as well as any geo-entities as in now done. An

initial implementation was inconclusive as to the value of

this capability.

Binding an inset explicitly to ~ characteristic adds

another dimension in map-making capacity. It essentially

provides the capability for multiple maps on one display,

either side by side or as visual overlays. The value of

this capacity is also not clear. The size of each component

would be reduced, perhaps limiting legibility. The capacity

constitutes the gCllcralization ?f implicit data structure

relations, requiriIlg small data structure modifications,

-27-

while adding another dimension to the display.

Conclusion

The potential of interactive computer mapping is great.

Algorithms have been presented here for the quick display

of spatial data and the design of maps of publication quality.

Substantial savings in people-time can be realized using

interactive thematic mapping. The time between designing

a map and viewing the result is reduced from hours to seconds.

The value to those engaged in map production is clear. However,

its main value in the future ~ay be for quick displays of

data to analysts, managers, and interested ci tizens.

Work performed under the auspices of the U. S. Department of Energy.

-28-

',.

titles

working
directory

title
text

figure
and
symbol
points

/----'7

shades, legends
and definitions

, symbol

data
characteristics

selected
characteristics .

MAP
DIRECfORY

inset definitionsnames
and

geocodes

Figure 12. TIle major.elements of tile data structure

-29-

ENTIRE A 6000 DMIN

Capacity - ACTUAL

Volume - 6000

Sedson - ENTIRE

Minimization - DANGER

campsites

1':,
,~

!'.

Legend

101-300

51-100

I-50

o

/
// ~g~

above 300

OPTIMAL
BACKCOUNTEY
USE PATTERN

art - d6 S nl hls

XBL 772-7595

Output from a linear programming model is mapped
using line and point symbolism. The design was
done' interactively and in~luded designation of
shading and placement and entry of titles and
figures. The model minimized dangerous bear
contacts for northern Glacier National Park.

I,

Map 1. An example of complex map design.
v

-30-

S F Bay Area

and

Lake Tahoe - Reno area

ABO v E I 0 , 0 0 0

J , 0 0 0 - J 0 , 0 0 0

I 0 0 - 9 9 9

I 0 - 9 9

BEL (I W I 0

Map 2. An Example of Multiple Insets

-31-

XBL 776-9247

100000

10000
1000

100

10

billions of btu

CONSUMPTION
for Arizona. California. llnd Nevada
from Brookhaven Energy Model
by CSAM. Lawrence Berkeley laboratory

GASOLINE

XBL 772-7594

Map 3. Some Possible Shading Textures

-32-

REFEllli\!CES

1. Aus tin, D.M., Kranz, S.G., and Quong,C. An Overvie..... of the LBL
Socio-Econornic-Environmcntal Information System. LBL-3699. ~mrch, 1975.

2. Burkhart, B. and Wood, P. SEEDIS Workbook III, Interactive Polygon
Mapping. LBL-6439. May, 1977. .

3. Holmes, H.H., Austin, D.M., and Benson, W.H. The }.1APEDIT System for·
Automatic Map Digitization. LBL-3072. August, 1974.

4. Wood, P.M. Interactive Thematic ~mpping -- A Report. LBL-S362. October, 1976.

S. Wood, P.M" and Austin, D.M. CARTE - a thematic mapping program.
LBL-3073. July, 1974.

-33-

.<

"
"

This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory or the
Department of Energy.

,,~,~-:-'.,~:

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

~:i!-~':;.-.,- _,f~

,~

