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Summary

Sleep architecture encodes relevant information on the structure of sleep and has been

used to assess hyperarousal in insomnia. This study investigated whether

polysomnography-derived sleep architecture displays signs of hyperarousal in individ-

uals with insomnia compared with individuals without insomnia. Data from Phase 3 clini-

cal trials, private clinics and a cohort study were analysed. A comprehensive set of sleep

architecture features previously associated with hyperarousal were retrospectively ana-

lysed focusing on sleep–wake transition probabilities, electroencephalographic spectra

and sleep spindles, and enriched with a novel machine learning algorithm called the

Wake Electroencephalographic Similarity Index. This analysis included 1710 individuals

with insomnia and 1455 individuals without insomnia. Results indicate that individuals

with insomnia had a higher likelihood of waking from all sleep stages, and showed

increased relative alpha during Wake and N1 sleep and increased theta power during

Wake when compared with individuals without insomnia. Relative delta power was

decreased and Wake Electroencephalographic Similarity Index scores were elevated

across all sleep stages except N3, suggesting more wake-like activity during these

stages in individuals with insomnia. Additionally, sleep spindle density was decreased,

and spindle dispersion was increased in individuals with insomnia. These findings sug-

gest that insomnia is characterized by a dysfunction in sleep quality with a continuous

hyperarousal, evidenced by changes in sleep–wake architecture.

K E YWORD S

hyperarousal, insomnia, sleep, sleep architecture

1 | INTRODUCTION

Chronic insomnia disorder, the most prevalent sleep disorder, affects

up to 10% of the adult population globally (Morin & Jarrin, 2022), and

is characterized by difficulty initiating and/or maintaining sleep

coupled with distress or impairment in daytime functioning. (American

Psychiatric Association, 2013). It is a heterogenous disorder influ-

enced by predisposing factors that include personality traits, genetic

and epigenetic, and neurobiological factors (Riemann et al., 2022), pre-

cipitated by short-term stressors (Dressle & Riemann, 2023; Spielman
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et al., 1987), and further perpetuated by factors such as heightened

arousal states including unstable rapid eye movement (REM) sleep

(Riemann et al., 2012) that contribute to the onset and chronic pro-

gression of insomnia (Spielman et al., 1987). The concept of chronic

insomnia disorder being a condition of hyperarousal has attracted

substantial scientific attention in recent years (Dressle &

Riemann, 2023). Multiple lines of evidence support the role of hyper-

arousal in the pathophysiology of chronic insomnia disorder, including

studies showing both an elevated sympathetic activity (Kim

et al., 2022) and hypermetabolism in the hypothalamus and the rele-

vant efferent projections of arousal networks, including excessive cor-

tical activity during sleep, in individuals with insomnia (Nofzinger

et al., 2004).

Polysomnography (PSG) provides an opportunity to gain objec-

tive insights into the characteristics of hyperarousal in chronic insom-

nia disorder, by comparing individuals with and without insomnia.

Analysis of sleep macrostructure suggests that there are marginal dif-

ferences between individuals with insomnia and those without,

including only a 2% reduction in non-REM (NREM) Stage 3 (N3) and

REM sleep (Baglioni et al., 2014). Furthermore, insomnia can be char-

acterized by increased episodes of wakefulness during sleep, as well

as an increased vulnerability of NREM stage 2 (N2) sleep indicated

by more N2 to N1 sleep-stage transitions (Andrillon et al., 2020; Wei

et al., 2017). While useful, quantitative measures of sleep and wake

behaviour derived from standardized scoring methodology do not

consistently identify subjects with insomnia and offer less granularity

than electroencephalogram (EEG) measures, including spectral ana-

lyses or quantification of sleep microarchitecture (e.g. spindle-derived

metrics). An increasing body of research has focused on these

aspects of EEG, particularly increased high-frequency brain activity

and a shift towards wakefulness in patients with insomnia as com-

pared with individuals without insomnia (Kay et al., 2016; Levenson

et al., 2015; Riemann et al., 2010). Small studies have reported

increased alpha and beta EEG activity during Wake and NREM sleep

(Shi et al., 2022; Zhao et al., 2021), although this is not consistent in

the literature. These discrepancies might be due to the specific sub-

type of insomnia being examined or the influence of major medical

conditions (Cervena et al., 2014; Wu et al., 2013). Furthermore, the

potential confounding influence of hypnotic medications with well-

characterized effects on sleep architecture, such as benzodiazepines,

can confound the interpretation of existing research findings on the

EEG features that characterize patients with insomnia (Kang

et al., 2022; Poyares et al., 2004). Inconsistencies extend to other

parameters as well, such as changes in the incidence and morphology

of sleep spindles – oscillatory bursts of neural activity between

11 and 15 Hz generated by the thalamic reticular nucleus during N2

sleep, believed to aid sleep stability (Fernandez & Lüthi, 2020). The

role of spindle generation in insomnia remains uncertain, with studies

showing mixed results (Andrillon et al., 2020; Bastien et al., 2009).

Generally, these inconsistencies observed in the available literature

could be related to factors, such as the heterogeneity of insomnia

disorder itself (Buysse et al., 2010) or low sample sizes in many stud-

ies (Baglioni et al., 2014).

The hypothesis of this study is that patients with insomnia exhibit

quantifiable PSG features indicative of hyperarousal. To enhance the

generalizability of current findings, we performed a comprehensive

analysis using pooled data from 1710 individuals with and 1455 with-

out insomnia. Our aim was to investigate whether differences in

sleep-stage transitions, spectral features and spindle characteristics

exist between individuals with insomnia and those without. This anal-

ysis is intended to further explore and potentially support the hyper-

arousal model of insomnia.

2 | METHODS

2.1 | Individuals with insomnia

We analysed PSGs from three independent databases: (1) Idorsia

Pharmaceuticals Ltd; (2) Beacon Clinico-PSG Database (Beacon); and

(3) the Sleep Heart Health Study (SHHS). The datasets were pooled to

enhance the generalizability of our findings and to provide a more

comprehensive analysis by integrating diverse data sources. All stud-

ies were conducted in accordance with the Declaration of Helsinki,

the International Conference on Harmonization Guideline for Good

Clinical Practice, and local regulations. All individuals provided written

informed consent. Figure 1 presents a detailed flow chart illustrating

the various datasets and their numbers in this study.

2.1.1 | Idorsia Pharmaceuticals Ltd dataset

This dataset included all individuals who were randomized in the two

pivotal Phase 3 studies assessing the efficacy and safety of daridorex-

ant (clinicaltrials.gov: NCT03545191 and NCT03575104; Mignot

et al., 2022). For the purposes of this study, only the initial screening

PSG was considered, when individuals had not received any study

treatment. All individuals were aged 18 years or older, and had a clini-

cal diagnosis of insomnia disorder according to the Diagnostic and

Statistical Manual of Mental Disorders 5th edition (DSM-5) criteria

(American Psychiatric Association, 2013), an Insomnia Severity

Index© score ≥ 15 (Morin et al., 2011) and a self-reported history of

disturbed sleep (≥ 30 min to fall asleep, ≥ 30 min awake during sleep

time, and self-reported total sleep time [TST] of ≤ 6.5 hr) for more

than 3 nights per week for at least 3 months prior to screening. No

individuals had an apnea–hypopnea index (AHI) ≥ 15 per hr or an

event associated with a blood oxygen saturation level (SpO2) < 80%

during the screening PSG. Furthermore, individuals with major comor-

bidities such as acute or unstable psychiatric disorders, alcohol or sub-

stance use disorder, periodic limb movement disorder, restless legs

syndrome, circadian rhythm disorder, REM behaviour disorder or nar-

colepsy, and central nervous system active medications (including

hypnotics and anxiolytics) not discontinued at least 2 weeks prior to

the first study visit were excluded. Full details of the study design and

eligibility criteria of these two studies are published elsewhere

(Mignot et al., 2022).
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2.1.2 | Beacon dataset

Individuals with insomnia who received care at a single USA-based

academic medical centre sleep laboratory between 2008 and 2017

were selected from the Beacon Clinico-PSG Database (Abou Jaoude

et al., 2020; Sun et al., 2019). Individuals were considered to have

insomnia complaints if they checked at least one of the following: “I
have trouble falling asleep”; “I have trouble staying asleep”; “My sleep

is being evaluated because of my sleepiness”; “My sleep is being eval-

uated because of my insomnia”; “I am tired all the time no matter how

much sleep I get”; “I typically fall asleep after more than 60 min”; “I
typically wake up more than three times a night”; “Poor sleep impacts

my day” either “a little”, “somewhat”, “a lot”, or marked sleepiness,

fatigue or both when asked: “If ‘sleepiness’ means actually dozing off,

while ‘fatigue’ means lack of energy but NOT dozing off, which best

describes your symptoms?”. Although some of the questions may be

associated with other conditions as well such as narcolepsy or

obstructive sleep apnea, these individuals were excluded based on

International Classification of Diseases (ICD)-10 codes (Supplement

1). Individuals who had not filled out a pre-sleep questionnaire were

considered to have insomnia complaints if they had ICD-10 codes cor-

responding to diagnoses containing the word “insomnia” in their med-

ical record.

Individuals from the Beacon dataset were excluded if they had an

AHI >15 per hr or ICD-10 codes for psychiatric disorders or neurologi-

cal conditions within 1 year of the PSG (Supplement 1). Furthermore,

individuals were excluded if they were taking sedating antihistamines,

centrally acting anticholinergics, stimulants, antidepressants,

antipsychotics, anxiolytics, hypnotics, cholinesterase inhibitors, mood

stabilizers, anti-Parkinsonian therapies or anticonvulsants, as these

medications may influence sleep or relate to conditions with abnormal

sleep, as indicated in their pre-sleep questionnaire responses, or if a

pre-sleep questionnaire was not present for the PSG encounter, as

indicated in their medical record within 1 year of the PSG encounter.

All medications leading to exclusion are shown in Supplement 2.

2.1.3 | SHHS dataset

Individuals with insomnia complaints were selected from the SHHS

(ClinicalTrials.gov: NCT00005275; Quan et al., 1997), a publicly avail-

able dataset from a multicentre, community-based prospective cohort

study designed to evaluate associations between sleep-disordered

breathing and cardiovascular diseases. Eligible individuals were at

least 40 years old and were recruited from nine existing parent epide-

miological studies where data on cardiovascular risk factors had been

collected previously. Individuals were considered to have insomnia if

they reported at least 16–30 times per month: “Have trouble falling

asleep”; “Wake up during the night and have difficulty getting back to

sleep”; or “Wake up too early in the morning and be unable to get

back to sleep”. For the current analysis, all individuals considered to

have insomnia who had successfully completed a baseline PSG were

included. In contrast to the Idorsia and Beacon datasets, the SHHS

included home PSGs obtained between 1995–1998 and 2001–2003.

Full details of the SHHS design have been previously reported (Quan

et al., 1997).

Idorsia Dataset 
Individuals N= 1839

External Dataset 
Individuals N=11219

Excluded (N=9892)
WASO <30 minutes
• Idorsia=86
• SHHS=984
• =2340
LPS < 20 minutes
• Idorsia=244
• SHHS=2225
• =4034 
Sleep efficiency ≥ 85 
• SHHS=1600
• =3140
AHI ≥ 15 / h
• SHHS=1555
• =1847 
Forbidden medica�ons
• SHHS=0
• =2232 
Medical history
• SHHS=72
• =546 
Lifestyle exclusions
• SHHS=1
• =102

Insomnia cohortNon-Insomnia cohort

External Dataset 
Individuals N=11219

Excluded (N=8284)
Sleep efficiency < 85
• SHHS=2498
• =2908
AHI ≥ 15 / h
• SHHS=1555
• =1847 
Forbidden medica�on
• SHHS=675
• =2262 
Medical history
• SHHS=72
• =546
Age < 18
• SHHS=0
• =86
No REM or NREM
• SHHS=78
• =292 Objec�ve sleep complaints (N=3166) 

Idorsia (N= 1524)
SHHS (N= 1043)

 (N= 599)

Objec�ve good sleepers (N=2935) 
SHHS (N= 1367)

 (N= 1568)

Excluded (N=1480)
Subjec�ve insomnia complaints
• SHHS (N=836)
•  (N=614) 
Unusable EEG files 
• SHHS (N=10)
•  (N=41)

Excluded (N=1456)
Without subjec�ve insomnia complaints
• SHHS=931
• =371 
Unusable EEG files 
• Idorsia=75
• SHHS=465
• con=34

Individuals with insomnia (N=1710) 
Idorsia = 1449 

SHHS = 62
 = 199

Individuals without insomnia (N=1455) 
SHHS  (N=525)

 (N=930)

F IGURE 1 Flow chart for individuals with and without insomnia.
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Individuals from the SHHS dataset were excluded if they had an

AHI >15 per hr, relevant psychiatric disorders or neurological condi-

tions (a medical diagnosis for sleep apnea, restless legs syndrome or

narcolepsy), or if they were taking acetylcholine esterase inhibitors for

Alzheimer's disease, medications used to treat Parkinson's disease,

non-tricyclic antidepressants other than monoamine oxidase inhibi-

tors, tricyclic antidepressants, benzodiazepines, anticholinergic medi-

cations with beta2 antagonists, or within 2 weeks of the recording:

oral steroids, oral or inhaled sympathomimetic medications, or weight

loss medications, as indicated in SHHS questionnaire responses.

Individuals with insomnia from all three datasets were pooled to

create a single insomnia group. All individuals met the following objec-

tive PSG criteria: ≥ 30 min wake after sleep onset (WASO); ≥ 20 min

latency to persistent sleep (LPS), defined as time from lights off to the

first epoch of 20 consecutive epochs of non-wake (stage N1, N2, N3

or stage REM); and a sleep efficiency < 85% based on PSG evaluation.

These criteria were used to mimic the treated population from the

daridorexant clinical program (Mignot et al., 2022).

2.2 | Individuals without insomnia

Individuals without insomnia were selected from the Beacon and

SHHS datasets. All individuals met the following conditions: absence

of psychiatric disorders or neurological conditions (including insomnia)

using ICD-10 codes (World Health Organization(WHO), 1993); AHI

< 15 per hr; and absence of medications belonging to sedating antihis-

tamines, centrally acting anticholinergics, stimulants, antidepressants,

antipsychotics, anxiolytics, hypnotics, cholinesterase inhibitors, mood

stabilizers, anti-Parkinsonian therapies or anticonvulsants. Further-

more, individuals without insomnia had a sleep efficiency of ≥ 85%

during the PSG night; a sleep efficiency of ≥ 85% is usually associated

with adequate sleep quality (Buysse et al., 1989; Miyata et al., 2013).

The flow chart indicates the population and the exclusion criteria

(Figure 1).

2.3 | PSG recordings

Across all PSG databases, sleep–wake stages (Wake, N1, N2, N3 and

REM) were scored in 30-s epochs according to the American Academy

of Sleep Medicine (AASM) guidelines (Berry et al., 2015). The Idorsia

Pharmaceuticals Ltd dataset was collected using the methods of (and

analysed by) Clinilabs Drug Development Corporation. Prior to com-

puting any of the features below, EEG signals were re-referenced

using the contralateral mastoid process (M1 or M2), resampled to

200 Hz using a polyphase low-pass finite impulse response filter com-

puted from a Kaiser window, and high-pass filtered to 0.5 Hz to cor-

rect for variable pre-filtering settings that were observed across the

different datasets. Recordings with a sampling rate less than 200 Hz

were up-sampled (i.e. no frequencies above the Nyquist frequency of

the original sample rate would be present). All downstream analyses

further band-passed signals to a range below the Nyquist frequency

(50 Hz) of the lowest sample rates (100 Hz). For this analysis, only

central electrodes (C3 and C4) were used to align with the SHHS

dataset. Adjustments such as resampling EEG signals and focusing on

central electrodes were crucial in harmonizing data across different

datasets, ensuring the pooled data were as consistent and comparable

as possible. A number of individual EEG recordings (625) were

deemed unusable for purposes of this analysis for a variety of reasons

(e.g. incorrectly labelled channels, duplicate channels, of corrupt signal

data; Figure 1).

2.4 | Sleep–wake transition

To analyse the dynamics of sleep stages during the period between

lights off and lights on, the likelihood of transitioning between the five

stages, including Wake, was evaluated. Specifically, we counted the

number of transitions from one sleep stage in one epoch to another

sleep stage (including staying in the same annotated sleep stage) in

the next epoch, producing a 5-by-5 matrix of counts for each record-

ing. These counts were used to estimate the probabilities of transi-

tioning to each of the five sleep stages in the next epoch given the

current epoch's sleep stage; see the Statistical Modelling

subsection below.

2.5 | Spectral analysis

Band powers were estimated using multi-taper spectral density esti-

mation (Thomson, 1982). Multi-taper estimation leverages multiple,

orthogonal measurements (multi-taper windows) for each spectral bin

to reduce bias and variance in spectral power estimates. Spectral fea-

tures were derived using the power in four frequency bands (δ: 0.5–

4 Hz; θ: 4–8 Hz; α: 8–12 Hz; β: 12–30 Hz; Chikhi et al., 2022), com-

puting an average for each band across all epochs of a given sleep–

wake stage (five stages in total), summing up to a total of 20 features.

First, artefactual regions of the EEG were rejected: the root-mean

squared (RMS) amplitude was calculated for each 3-s segment of the

recording, and segments with an RMS amplitude ≤ 1 μV or ≥ 250 μV

were considered artefacts and excluded from downstream analyses.

These thresholds were selected to be relatively conservative as they

fall well outside the physiological range of approximately 10–100 μV

(Ernst Niedermeyer & Da Silva, 2005). The median fraction of a

recording rejected as artefactual was 0.0013. No full recordings were

rejected due to artefacts. No electrooculogram correction was applied

as only the central electrodes were used: note that we included only

two central lead channels across all analyses, as these were the

only electrodes available in the SHHS dataset. After artefact rejection,

spectral power was computed from 2-s multi-taper windows with 1-s

overlap. If a spectral window overlapped with a window marked as

artefactual, the spectral window was not included in the analysis.

The four band powers in the 2-s windows were averaged to 30-s

windows and summed across lateral channels C3 and C4. Given the

high variance of absolute power found across recording sites, analyses
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were focused on the four relative power bands: for each of the four

absolute power bands (δ, θ, α, β), the relative power was computed by

dividing the power in each band by the sum of the power of all four

bands within the same 30-s window and channel. The 30-s windows

were aggregated to the sleep stage by taking the mean across all

epochs of each stage (i.e. N1, N2, N3, REM and Wake) in each record-

ing. These spectral features were then log-transformed to

reduce skew.

2.6 | Spindle analysis

Spindle features were calculated using the open-source Luna package

(version 0.23; https://zzz.bwh.harvard.edu/luna/ref/) following the

methods from Purcell et al. (Ernst Niedermeyer & Da Silva, 2005). To

maintain consistency with the use of the Luna spindle analysis, arte-

fact rejection for spindle analysis followed the conventions described

in the Luna package. Briefly, we resampled signals to 128 Hz, low-

pass filtered them at 35 Hz, and removed artefacts by computing

power within the delta band, rejecting epochs that had more than 2.5

times the average delta power in a 15-epoch sliding window.

After artefact removal, spindles were detected within all N2

stages by first convolving a Morlet wavelet (13.5 Hz) over the signal

and then smoothing the convolution's magnitude using a sliding win-

dow of 0.1 s. Spindles were detected from this convolution by thresh-

olding: at least 0.3 s had to be over 4.5 times the mean of all N2

epochs, and in a 0.5-s window around this region, power had to be at

least twice this N2 epoch mean. These putative spindles were merged

if they fell within 0.5 s of one another, and any that lasted longer than

3 s were rejected. This basic approach to spindle validation, via Morlet

wavelets, has been validated against manual spindle annotation

(Younes et al., 2015).

Because sleep spindles are known to couple with slow oscillations

(SOs) during N2 sleep, we detected SOs by: (1) low-pass filtering the

entire signal at 4.5 Hz (note that the signal was already high-pass fil-

tered at 0.5 Hz to reduce site-to-site variability); and (2) within the N2

stage, marking all consecutive positive-to-negative zero-crossings that

fall between 0.8 and 2 s in length as a SO.

Having detected both spindles and slow waves, we computed the

following four features (spindle density, spindle dispersion, SO phase

at spindle peak for fast and slow spindles) per channel (C3 and C4),

for a total of eight unique features. Note that, because the underlying

data are discrete events and can be spatially sparse, not all of these

features can be sensibly averaged across channels; this is why spindle

features were kept separate per channel. Two of the features were

computed for all spindles (total range of 11–15 Hz): density (spindle

count in 1 min) and dispersion. We calculated spindle dispersion (how

variable spindle counts are across 30-s epochs) by dividing the vari-

ance of the spindle counts across epochs of N2 by the average num-

ber of spindles across 30-s epochs of N2. The remaining four features,

i.e. the SO spindle phase peak (SO phase at spindle peak) were calcu-

lated for fast (≥ 13–15 Hz) and slow (11 – < 13 Hz) spindles for each

channel. The SO phase at the spindle peak was determined by

inspecting each detected spindle that occurred during a detected

SO. We compared the peak of the spindle to the start and end of the

SO, reporting when the peak occurred relative to these two positions

as an angle between 0 and 360 degrees. The start of the SO was

defined as the preceding zero-crossing from positive to negative (rela-

tive to the spindle start), and the end was the subsequent such zero-

crossing.

2.7 | Wake EEG Similarity Index (WESI)

We developed the WESI base, in part, on an odds-ratio product calcu-

lation (Younes et al., 2015). The objective was to provide a continuum

of sleep/wake state that is robust to the mixed datasets and popula-

tions considered here. To generate the WESI model, we used training

data from a random sample of 80% of the data from all three of our

datasets (Idorsia, Beacon and SHHS) including both groups: insomnia

and non-insomnia individuals. We trained WESI by labelling all seg-

ments that occurred during a sleep stage (i.e. N1, N2, N3 or REM) as

0 and all segments that occurred during a Wake period as 1. Spectral

power in the delta, theta, alpha and beta frequency bands was com-

puted for every 3-s window and transformed into model features in

the following steps: (1) divided by the sum of powers δ + θ + α + β

to obtain the relative power in each band; (2) logit-transformed the

relative powers: log(x/(1 � x)); (3) computed the z-score for each

WESI feature as estimated by the training set data; (4) computed all

interaction terms (e.g. alpha power x beta power,alpha power2) for a

total of 14 features (four power bands, six power–power interactions,

and four squared power bands). The 15 regression parameters (one

per feature, plus an intercept) were fit to these labels using a

L1-regularized logistic regression (λ=1e�1) with a Huber-loss func-

tion (δ=3). This regularization and robust loss function was employed

to help ensure our model yielded reasonable out-of-sample

performance.

The WESI was then validated on the test data, which comprised

the remaining 20% of data excluded from training to ensure it accu-

rately identified out-of-sample segments as being from wake or sleep

periods, thus mitigating the risk of overfitting. The purpose of validat-

ing the model on the test data was to ensure that the model correctly

learned a function that separates most of the wake periods from most

of the sleep periods, and that the accuracy was similar across the

datasets. With such short segments it was to be expected that some

sleep-labelled segments appear more like a period of wakefulness. We

evaluated the model using its classification accuracy, and the AUC

(the area under the receiver operating curve, ROC). The AUC provides

a summary of model performance independent of the trade-off

between model hit rate and precision: specifically, the ROC gives the

false-positive rate of the model for any given hit rate. WESI correctly

labelled 78.6% (0.86 AUC) of the 3-s segments of the test data for

Idorsia, 78.5% (0.85 AUC) for SHHS, and 79.8% (0.86 AUC)

for Beacon.

In our results we report the mean WESI values for each sleep

stage (a total of five features). The statistical analysis of these values
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was performed on a logit-transformed scale, to ensure statistical

modelling assumptions were satisfied, and we report model coeffi-

cients and confidence intervals along a linear scale. To compute the

linear-scale means and confidence intervals from the logit-scale

model, we used a finite difference approximation (validated by boot-

strapping 10,000 samples from the population generating the most

extreme mean, and demonstrating a difference of less than 0.001).

2.8 | Statistical analysis

Statements around statistical significance were determined using lin-

ear mixed-effects regression models for spectral, spindle and WESI

feature types. All models included terms for age and sex, correcting

for the potential impact of these factors on EEG features when mak-

ing comparisons across groups.

For sleep-stage transition counts, a large number of recordings

did not contain some of the transitions. When necessary, we used a

Hurdle model (see below for further discussion of this model design)

when at least 1.5% of recordings contained the transition (transitions

that occurred in fewer than 1.5% of recordings were not modelled at

all) and no more than 98.5% of the recordings contained the transi-

tion, otherwise we used a Generalized Mixed Effects model.

For all models, the covariates for the regression were: age

(centred at 50 years old), sex and group (insomnia and non-insomnia

individuals). In addition to age and sex, a random effect for testing site

was also included in the model to account for potential variation intro-

duced by where the recording took place. The Idorsia dataset included

a total of 109 sites with standardized recordings, and the Beacon and

SHHS datasets included one site each. A null, main effect and full

interaction model were used, with the following formulas.

Null model:

feature¼1þage� sexþ 1jstudy_subject_idð Þþ 1jsiteð Þ:

Main effect model:

feature¼1þage� sexþgroupþ 1jstudy_subject_idð Þþ 1jsiteð Þ:

Interaction model:

feature¼1þage� sex�groupþ 1jstudy_subject_idð Þþ 1jsiteð Þ:

Features were determined to be relevant if the likelihood ratio

test between a null model and the main effect model had an adjusted

p-value < 0.05, and an interaction if the likelihood ratio test between

the full model and the main effect had an adjusted p-value < 0.05,

where p-values were adjusted for multiple comparisons within each

type of feature (spectral, spindle, WESI or sleep-stage transition) using

the False Discovery Rate (Hochberg & Y., 1995). Note that the multi-

plicity comparisons used a larger N than the models reported here

because initial exploratory work included a larger set of features.

Keeping the larger N when correcting for multiplicity is the more

conservative, and inferentially sound approach. We report the follow-

ing number of features per type: 20 spectral features (from a total of

180), eight spindle features (from a total of 14), five WESI features

(from a total of 10) and 25 sleep-stage transition features (from a

total of 25).

In the case of the sleep-stage transition analyses, a hurdle model

was employed for transitions that occur at least once in 1.5%–98.5% of

recordings. In a hurdle model there are two stages: an initial model that

predicts the probability that a given transition is observed zero times in

a recording (the zero-count model), and a second model, that is condi-

tioned to predict non-zero values (the non-zero-count model). In the

present case, both of these models employed a logistic function as the

link in a generalized mixed-effect linear regression: the zero-count

modelled a single observation (zero versus non-zero) and the second

modelled all counts for the non-zero observations. Both stages of the

hurdle model employed the same covariate structure as used above for

the other features. For all sleep-stage transitions, in addition to requir-

ing significance of the adjusted p-value of the likelihood ratio test

between main effect and null models, at least one insomnia coefficient

was required to be significant for the transition count to be deemed sig-

nificantly different between insomnia and non-insomnia groups.

3 | RESULTS

3.1 | Demographic characteristics

A total of 1710 individuals with insomnia from the three datasets

were analysed: 1449 individuals from the Idorsia dataset, 199 from

the Beacon dataset, and 62 from the SHHS dataset. A total of 1455

individuals without insomnia were included (Beacon, n = 930; SHHS,

n = 525; Figure 1).

The mean age was higher in the insomnia group (insomnia:

56.3 years [standard deviation (SD) 14.8]; non-insomnia: 50.5 years

[SD 14.0]; Table 1). The insomnia group included more females (66%)

than the non-insomnia group (50%), consistent with sex differences

reported in insomnia populations.

Sleep parameter values in individuals with insomnia varied across

the three datasets, as detailed in Table 1. The proportions of N2, N3

and REM sleep were lower, and the proportion of time spent awake

was higher in the insomnia group compared with the non-insomnia

controls. The proportion of N1 was similar between groups. While

statistical tests comparing differences across populations are provided

in Table 1 for reference, the pre-selection of the population infers an

inherent bias that makes it difficult to interpret these p-values

(Sassenhagen & Alday, 2016).

3.2 | Comparison of sleep–wake transitions
probabilities in individuals with and without insomnia

Individuals with insomnia, as compared with controls, had a higher

probability to transition to Wake from every stage (range: 0.6%–
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14.9%, p < 0.05) and lower probability to transition from Wake to all

sleep stages (range: �0.04% to �11.4%, p < 0.05; Figure 2). N2-to-

Wake and N2-to-N1 transitions were increased (1.6% and 0.7%,

respectively, p < 0.05), whereas transitions from N2-to-N2 were

decreased (�1.5%, p < 0.05) in individuals with insomnia compared

with controls. Additionally, transitions from N1-to-N1, N1-to-N2 and

N1-to-REM were decreased (p < 0.05) in individuals with insomnia

compared with controls. Finally, individuals with insomnia had fewer

transitions from Wake-to-REM and from N1-to-REM (�0.7% and

�3.8%, respectively, p < 0.05) compared with those without insomnia.

The absolute transition probabilities per group are reported in

Figure S3.

TABLE 1 Demographics, baseline characteristics and sleep parameters of individuals with and without insomnia.

Variables
Insomnia N = 1710 Non-insomnia N = 1455

Statistical comparison
Idorsia Beacon SHHS Beacon SHHS

Number of individuals 1449 199 62 930 525

Demographics and baseline characteristics

Age, years 56.1 (14.5) 53.8 (15.7) 69.1 (10.7) 45.8 (13.6) 58.7 (10.8)

56.3 (14.8) 50.5 (14.0) p < 0.001

Sex %, female 67.8 51.7 70.3 46.0 57.4

66.0 50.2 p < 0.001

Sleep variables

Sleep efficiency, % 62 (15) 67 (16) 70 (12) 92 (4) 90 (3)

63 (15) 92 (4) p < 0.001

TST, min 296.6 (74.9) 300.9 (80.0) 336.4 (77.1) 410.5 (40.2) 394.3 (52.7)

298.6 (75.9) 404.5 (45.8) p < 0.001

LPS, min 79.7 (55.7) 56.0 (48.0) 56.5 (33.1) 10.6 (12.0) 12.9 (12.2)

76.0 (54.8) 11.4 (12.1) p < 0.001

WASO, min 112.5 (53.6) 92.7 (52.8) 82.0 (48.9) 22.6 (15.4) 28.3 (13.7)

109.0 (53.9) 24.7 (15.0) p < 0.001

N1 sleep, min 39.0 (21.5) 57.9 (37.0) 18.4 (12.9) 47.4 (30.8) 16.1 (10.5)

35.9 (24.8) 45.9 (29.5) p = 0.043

N2 sleep, min 168.7 (52.7) 149.5 (55.5) 185.4 (53.2) 217.8 (48.6) 213.5 (49.6)

167.1 (53.5) 216.2 (49.0) p < 0.001

N3 sleep, min 36.2 (29.3) 49.5 (35.5) 64.5 (44.7) 71.4 (41.0) 77.5 (41.3)

38.8 (31.5) 73.6 (41.2) p < 0.001

REM sleep, min 52.6 (25.1) 44.1 (31.2) 68.0 (27.6) 73.9 (29.5) 87.3 (25.6)

52.2 (26.3) 78.8 (28.9) p < 0.001

Awake, min 181.7 (73.2) 141.9 (70.3) 131.7 (59.3) 30.9 (17.4) 38.0 (15.7)

175.1 (74.0) 33.5 (17.1) p < 0.001

N1 sleep, % 8.1 (4.5) 13.0 (8.0) 3.9 (2.6) 10.6 (6.8) 3.7 (2.3)

8.5 (5.3) 8.1 (6.5) p < 0.001

N2 sleep, % 35.1 (11) 33.6 (11.7) 39.9 (11.2 49.3 (10.1) 49.2 (9.3)

35.1 (11.1) 49.3 (9.8) p < 0.001

N3 sleep, % 7.5 (6.1) 11.1 (7.9) 13.6 (8.8) 16.2 (9.3) 18.1 (9.7)

8.2 (6.6) 16.9 (9.5) p < 0.001

REM sleep, % 11.0 (5.2) 9.8 (6.8) 14.4 (5.5) 16.7 (6.5) 20.1 (5.2)

10.9 (5.5) 18 (6.2) p < 0.001

Awake, % 37.8 (15.2) 32.2 (16) 28.2 (12) 7 (3.9) 8.7 (3.3)

36.8 (15.4) 7.6 (3.7) p < 0.001

Note: Data are shown as mean (standard deviation) across datasets. A comparison of each measure across insomnia and non-insomnia groups is provided

using a Chi-squared test for Sex and Welch's t-test for the other measures.

Abbreviations: Awake, total time awake, from light-off to lights-on; Beacon, Beacon Clinico-PSG Dataset; LPS, latency to persistent sleep; REM, rapid eye

movement; SHHS, Sleep Heart Health Study; TST, total sleep time; WASO, wake after sleep onset, defined as wake time after onset of persistent sleep

until lights-on.
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F IGURE 2 Transition matrix
illustrating the model-estimated
probabilities of sleep–wake transitions.
The colour gradient represents the
percentage change in transitions for
individuals with insomnia as compared
with those without insomnia. Bold entries
represent transitions with a statistically
significant difference (p < 0.05).

F IGURE 3 Relative spectral features in individuals with and without insomnia (mean, 95% confidence interval [CI]) within each sleep stage.
The y-axis represents the proportion of total power for each frequency band, with a value of 1 corresponding to 100%. *Indicates statistically
significant difference (p < 0.05) between groups (with versus without insomnia).
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3.3 | Comparison of relative spectral features
in individuals with and without insomnia

Figure 3 shows the full set of spectral features per band, sleep stage

and group.

During epochs scored as Wake, the mean relative alpha power

was 20.25% (95% confidence interval [CI]: 18.76%, 21.86%) and

16.81% (95% CI: 15.83%, 17.84%), and the mean relative theta power

was 18.1% (95% CI: 17.2%, 19.1%) and 16.7% (95% CI: 16.0%, 17.4%)

in insomnia and non-insomnia individuals, respectively. Alpha power

was increased by 3.45% (95% CI: 2.49%, 4.49%; p < 0.001) in individ-

uals with insomnia. They also had theta power that was increased by

1.40% (95% CI: 0.79%, 2.04%; p < 0.001) compared with the non-

insomnia group. The mean relative delta power during Wake was

39.15% (95% CI: 36.88%, 41.56%) and 44.87% (95% CI: 42.75%,

47.10%) in insomnia and non-insomnia individuals, respectively. The

difference in delta power during Wake between these groups was

reduced by �5.71% (95% CI: �7.09%, �4.29%; p < 0.001) in the

insomnia group.

During N1 sleep, similar results were observed as in Wake. In

individuals with insomnia, relative alpha power was increased by

1.64% (95% CI: 1.15%, 2.16%; p < 0.001) and mean relative delta

power was reduced by �4.41% (95% CI: �5.45%, �3.34; p < 0.001)

as compared with non-insomnia controls.

During N2 sleep, mean relative delta power was decreased

by �1.47% (95% CI: �2.43, �0.48%; p = 0.009) when compared

with individuals without insomnia. No significant (p > 0.05) dif-

ferences were observed in N3 and REM sleep in the mean rela-

tive spectral power between individuals with and without

insomnia.

3.4 | Comparison of WESI in individuals with
and without insomnia

Higher WESI scores indicate more wake-like EEG patterns regardless of

scored sleep stage (Figure 4). During Wake, individuals with insomnia

had higher WESI scores, with a mean of 0.654 (95% CI: 0.633, 0.675)

compared with 0.586 (95% CI: 0.568, 0.603) in non-insomnia individuals,

with a difference between these two groups of 0.068 (95% CI: 0.054,

0.083, p < 0.001). Individuals with insomnia showed higher WESI scores

in N1 sleep (0.039 points higher; 95% CI: 0.025, 0.053; p < 0.001), N2

sleep (0.018 points higher, 95% CI: 0.007, 0.030; p = 0.003) and REM

sleep (0.020 points higher, 95% CI: 0.005, 0.034; p = 0.004). There was

no statistically significant difference in N3 between the two groups.

3.5 | Comparison of spindle features in individuals
with and without insomnia

Spindle density (number of sleep spindles per minute) was reduced in

individuals with insomnia when compared with controls, ranging from

�0.35 (C4 electrode: 95% CI: �0.44, �0.27; p < 0.001) to �0.39

(C3 electrode: 95% CI: �0.47, �0.30; p < 0.001), and dispersion

(a marker for the spread of the spindles) was increased at both central

recording sites by 0.11 (C3 electrode: 95% CI: 0.06, 0.15; p < 0.001)

and 0.12 (C4 electrode: 95% CI: 0.07, 0.17; p < 0.001) in individuals

with insomnia when compared with non-insomnia

individuals (Figure 5). The SO phase at the peak of fast spindles was

decreased in individuals with insomnia when compared with non-

insomnia individuals. The decrease in phase observed in individuals

with insomnia ranged from �2.54 degrees (C4 electrode: 95% CI:

F IGURE 4 Mean (95% confidence interval
[CI]) of the Wake Electroencephalographic
Similarity Index (WESI) feature in individuals with
and without insomnia. The y-axis indicates the
WESI score for the given sleep stage. WESI was
trained with 3-s spectral patterns of awake
periods labelled as 1 and sleep periods labelled as
0. WESI scores closer to 1 denote a segment was
more like awake spectral patterns, and WESI

scores closer to 0 denote a segment was more like
sleep spectral patterns. *Indicates statistically
significant difference (p < 0.05) between groups
(with minus without insomnia).
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�4.85, �0.23; p = 0.018) to �3.71 degrees (C3 electrode: 95% CI:

�5.82, �1.60; p < 0.001).

4 | DISCUSSION

In an analysis of one of the largest insomnia datasets to date, we

found that individuals with insomnia, when compared with individuals

without insomnia, have more frequent transitions to Wake from any

stage (especially from Wake and N1) and fewer transitions from Wake

to all sleep stages. These results demonstrate a drive to wakefulness

in individuals with insomnia. In addition, Wake and N1 had more rela-

tive alpha power and less relative delta power, suggesting hyperarou-

sal in insomnia subjects. These findings are further supported by

higher WESI scores, which are indicative of a more wake-like EEG pat-

tern in individuals with insomnia. Finally, spindle density was reduced

in individuals with insomnia compared with controls, potentially sug-

gesting an instability in sleep-sustaining microarchitecture.

Several hypotheses on the pathophysiology of chronic insomnia

disorder have been proposed, with most evidence to date supporting

hyperarousal (Riemann et al., 2015; Van Someren, 2021). We identi-

fied reduced transitions to REM from any sleep stage and increased

transitions from REM-to-Wake in the insomnia group compared with

controls. These observations suggest REM fragmentation (Conte

et al., 2023; Riemann et al., 2012), which may be influenced by various

elements. Notably, the wake-promoting components of the ascending

arousal system, primarily via the locus coeruleus as the main source of

noradrenaline, might be hyperactive during REM sleep in insomnia

and thus lead to hyperarousal and increased sleep instability (Feige

et al., 2023). However, in our analysis the probability of staying in

REM sleep did not differ between the two groups, therefore other

systems might be involved that may play a significant role in REM

sleep regulation in insomnia pathology.

Another hypothesis is that the sleep–wake circuit is disturbed in

insomnia (Palagini et al., 2023). γ-Aminobutyric acid (GABA)ergic neu-

rons of the ventrolateral preoptic nucleus (VLPO) are a key inhibitor

of the ascending arousal system, whereas orexin neurons in the lateral

hypothalamus activate this system (Saper et al., 2001). In animals,

lesions of the VLPO can produce an insomnia-like phenotype (Lu

et al., 2000), while loss of the orexin neurons in narcolepsy causes

sleepiness (De Luca et al., 2022; Lecea & Huerta, 2014). As sleep and

arousal systems reciprocally inhibit one another (Saper et al., 2005),

an imbalance might contribute to the sleep issues seen in insomnia, as

evidenced by the increased wake transitions in the insomnia group.

However, the neurobiological mechanisms underlying these observa-

tions in people with insomnia remain poorly understood.

Building on this neurobiological context, the complexity of insom-

nia's heterogeneity is further elucidated by EEG studies that not only

quantify disease severity through parameters such as reduced TST,

but also through qualitative changes in brain activity (Andrillon

et al., 2020; Zhao et al., 2021). Among these are sleep spindles, which

provide further insight into the pathophysiology of this disease given

their hypothesized involvement in maintaining sleep stability and

memory consolidation (Buysse et al., 2010). Here, we found consis-

tently lower spindle density and higher spindle dispersion in individ-

uals with insomnia. Altered sleep spindle properties have been

previously described in individuals with paradoxical insomnia; how-

ever, results have not been consistently observed across groups

F IGURE 5 Spindle features in individuals with and without insomnia (mean, 95% confidence interval [CI]). SO, slow oscillations. *Indicates
statistically significant difference (p < 0.05) between groups (with minus without insomnia). Frequency range for fast (≥ 13–15 Hz) and slow (11–
13 Hz) spindles.
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(Andrillon et al., 2020; Bastien et al., 2009; Normand et al., 2016).

Additionally, the observed decrease in SO spindle phase peak may

suggest that individuals with insomnia have dysregulated thalamocor-

tical activity (Kim et al., 2021), which has been previously linked to

sleep misperception (Zou et al., 2021) that may underlie cognitive

hyperarousal due to excessive information processing during sleep

(Riemann et al., 2010).

Using EEG spectral analysis, we identified further differences in

this population as compared with non-insomnia controls. We found

increased alpha and lower delta power in Wake and N1 sleep. As pre-

viously noted, it has been hypothesized that patients with insomnia

have dysfunction of wake- and sleep-promoting circuits (Scammell

et al., 2017), and increased reactivity to internal and external stimuli

(Van Someren, 2021). Spectral changes observed in this study support

these hypotheses, with evidence of hyperarousal manifesting as

increased alpha, a marker of the top-down regulation of cortical acti-

vation (Halgren et al., 2019). This is a possible explanation for why

insomnia sufferers have difficulty initiating sleep (Perlis et al., 2022),

and experience both reduced quality and intensity once it occurs

(Long et al., 2021), further underscored by the decrease in relative

delta power during Wake and N1 sleep that might be associated with

reduced drowsiness. Notably, we did not observe spectral differences

in N3 sleep, suggesting that brain networks involved in the regulation

of this sleep stage may not be substantially impaired in individuals

with insomnia (Van Someren, 2021; Wei et al., 2017), although the

overall amount of N3 sleep is reduced in insomnia (Baglioni

et al., 2014). Interestingly, we found no increase in beta activity, a

marker of cognitive processing, in individuals with insomnia, different

from what has been reported in prior studies (Shi et al., 2022; Zhao

et al., 2021). This discrepancy highlights the heterogeneity of insom-

nia and may reflect differences in participant selection (e.g. the cur-

rent study excluded individuals taking benzodiazepines and other

hypnotics; Kang et al., 2022), differences in the frequency range used

to define beta activity (Zhao et al., 2021), or may be due to not taking

into consideration the effect of age and sex in the statistical models,

factors that impact EEG activity (Djonlagic et al., 2020; Svetnik

et al., 2017).

To delve further into the pathophysiology of insomnia, we devel-

oped a machine learning technique, the WESI. This multidimensional

analytical approach approximates sleep depth, using a combination of

spectral features. Here, we observed that individuals with insomnia

had consistently higher scores across all stages except for N3, indicat-

ing lower sleep depth and more wake-like characteristics across both

NREM and REM sleep. Employing this model helped identify differ-

ences in individuals with insomnia where individual EEG features

failed to do so, supporting the complexity and heterogeneity of the

condition. Based on these results, we conclude that individuals with

insomnia have difficulty fully achieving the sleep depth of controls,

possibly due to a persistent state of hyperarousal (Christensen

et al., 2019).

Despite utilizing one of the largest insomnia groups reported, the

current study has limitations that should be considered when inter-

preting these results. First, pooling individuals from different

recording sites and datasets, along with the inclusion of diverse

insomnia groups, such as combining DSM-5 diagnosed insomnia disor-

der, with non-DMS-5 insomnia, introduces confounders that could

reduce differences and thus obscure otherwise significant findings. It

is important to consider that acute and chronic manifestations of the

disease can present different pathophysiological markers. For exam-

ple, acute forms of insomnia could be characterized by a significant

increase in sympathetic activation, but these differences might dimin-

ish when the condition becomes chronic leading to the inability to

inhibit excessive wakefulness (Vargas et al., 2020). Nevertheless, this

was partially mitigated by using objective inclusion criteria to define a

relatively homogenous population, and by accounting for age, sex and

recoding variability in the statistical analysis that should improve the

generalizability of the results. A further limitation pertains to the use

of individuals without insomnia from the Beacon and SHHS datasets.

As the Idorsia dataset is derived from two registered Phase 3 clinical

trials, it contains only patients diagnosed with chronic insomnia, with-

out direct age-matched controls without insomnia. Thus, this discrep-

ancy could affect the strength of comparative analyses between

insomnia and non-insomnia individuals further driven by a “first-night
effect” that might be different between groups. Third, the selected

cut-off for insomnia could restrict the applicability of our findings to

individuals with insomnia with objective short sleep and not to indi-

viduals with insomnia but without short sleep durations. Furthermore,

the changes in relative power reported here leave out a more granular

understanding of spectral differences: for instance, as we examined

only relative power, changes in delta, which tends to include more

power overall, may have influenced the power of other spectral

bands. Likewise, because we did not isolate the aperiodic power spec-

tra, it is not clear to what extent the differences we identified were

driven by periodic versus aperiodic components of the underlying

EEG signal. Finally, we did not assess differences in individual NREM–

REM sleep cycles, instead averaging across the entire night and there-

fore possibly missing cycle-dependent changes in the dynamics of

sleep architecture.

5 | CONCLUSION

Our findings confirm that insomnia is likely due to a dysfunction both

in sleep quantity and quality, as well as to hyperarousal. Assessing the

impact of insomnia therapies on these sleep measurements will be of

interest for future studies.
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