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Abstract

We investigated how cognitive neuroscientific studies during the last decade have advanced
understanding of cognitive control from adolescence to young adulthood in individuals with
autism spectrum disorder (ASD). To do so, we conducted a selective review of the larger
structural, resting state, and diffusion imaging studies of brain regions and networks related to
cognitive control that have been conducted since 2007 in individuals with ASD and typical
development (TYP) ages 10 to 30 years that examined how these regions and networks support
behavioral and task-based fMRI performance on tasks assessing cognitive control during this
period. Longitudinal structural studies reveal overgrowth of the anterior cingulate (ACC) and
slower white matter development in the parietal cortex in adolescents with ASD versus TYP.
Cross-sectional studies of the salience, executive control and default mode resting state functional
connectivity networks, which mediate cognitive control, demonstrate patterns of connectivity that
differ from TYP through adolescence. Finally, white matter tracts underlying these control-related
brain regions continue to show reduced diffusion properties compared to TYP. It is thus not
surprising that cognitive control tasks performance improves less during adolescence in ASD
versus TYP. This review illustrates that a cognitive neuroscientific approach produces insights
about the mechanisms of persistent cognitive control deficits in individuals with ASD from
adolescence into young adulthood not apparent with neuropsychological methods alone, and draws
attention to the great need for longitudinal studies of this period in those with ASD. Further
investigation of ACC and fronto-parietal neural circuits may help specify pathophysiology and
treatment options.
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Cognitive control — the maintenance of situational context and inhibition of prepotent
responding to permit the goal-directed behavior [1] — is a key component in the NIMH
Research Domain Criteria project (RDoC; [2]). As specified by RDoC, cognitive control
consists of three broad components: working memory or cue/context maintenance; inhibition
of prepotent response tendencies; and set shifting, task switching or cognitive flexibility.

In perhaps the most influential theory of the neural mechanisms governing cognitive control,
Miller & Cohen [3] proposed that the prefrontal cortex (PFC) is specialized for the
representation and maintenance of situational context that provides top-down biasing to
facilitate information flow from relevant neural systems. This model has provided a
foundation for the development of testable mechanistic hypotheses using cognitive
neuroscientific versus clinical neuropsychological measurements [4]. Hypotheses then can
be verified using functional magnetic resonance imaging studies (FMRI). These studies have
localized control processes to the dorsolateral prefrontal (DLPFC), ventrolateral prefrontal
(VLPFC), anterior PFC (aPFC), anterior cingulate (ACC), and parietal cortices [5, 6], and
have generated insights about how control is evoked in response to ACC-generated conflict
signals [7] and timing differences in neural circuits recruitment [8]; and basal ganglia/PFC
interactions that guide reward-driven learning [9].

In typical development (TYP), adolescence is considered a critical period for the
development of mature thought and action [10]. This has not been well-examined in
individuals with autism spectrum disorder (ASD). To help fill this gap in understanding, this
manuscript selectively reviews structural, resting state, diffusion, and task-based functional
magnetic resonance imaging (fMRI) studies of brain regions and networks sub-serving
cognitive control in individuals with ASD. Peer-reviewed and published scientific papers
written in English from 2007-2017 were identified through a computerized literature search
using Google Scholar and PubMed. Search terms used across all studies included autism,
cognitive control, adolescence, young adulthood, and MRI. Other terms including brain
structure, default mode network, salience network, executive control network, diffusion,
DTI, cue/context maintenance, response inhibition, set shifting, and task switching also were
used in their respective sections. To be included, studies also had to have a mean of >10
participants per group (e.g. a two-group study where one group had 9 participants and the
other had 11 participants was included). Given the relative lack of longitudinal studies of
ASD during the adolescence to young adulthood period, many comparisons are of cross-
sectional studies, although greater weight is given to existing longitudinal studies when
drawing inferences about findings.
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Components of the Scaffold

Structural neuroimaging of cognitive control related brain regions

Cortical gray matter volume, increases during childhood, peaks around puberty and then
begins to decline across adolescence and adulthood [9]. Frontal and parietal regions reach
peak volume around 12 years of age in males, and about a year earlier in females [11].
Increases and decreases in volume pre and post-adolescents are steeper for parietal lobe than
for frontal lobe. In TYP, decreases in volume within the cognitive control network during
adolescence and adulthood are associated with increased performance on tasks of executive
functioning and emotion identification [12].

Several cross-sectional structural MRI studies have evaluated global cortical gray and white
matter differences between adolescents with ASD compared to age matched TYPs (see
[13]). Since 2007, there has been one study that utilized whole brain voxel-based
morphometry (VBM; a technique involving comparing differences in brain anatomy using
volumetric MRI scans across groups) that identified volume increases in both the DLPFC
and superior and interior parietal lobule, as well as decreased white matter volume across all
cerebral lobes in those with ASD versus TYP [14]. Differences in the folding of the cerebral
cortex (gyrification), also have been reported in the frontal lobe and intraparietal sulcus in
individuals with ASD versus TYP [15].

More recently, evidence from two longitudinal studies suggest there are between group
differences in the structure of cognitive control-related brain regions. Hua et al. [16]
evaluated youth with ASD from late childhood into adolescence. They report abnormal
overgrowth versus the pruning typically found during adolescence, in the anterior cingulate
cortex (ACC) and slower white matter development in the parietal lobe in those with ASD
versus TYP. Wallace et al. [17] evaluated cortical thickness (a brain morphometric measure
used to assess the combined thickness of the layers of the cerebral cortex) and surface area
in slightly older adolescents with ASD beginning at 17 and then again at 19 years. They
observed accelerated cortical thinning in superior parietal cortex in ASD relative to TYP.
Table 1 presents the two cross-sectional structural, VBM and cortical folding studies and
two longitudinal studies of white and gray matter and cortical thickness development since
2017. While older studies are ambiguous, two recent longitudinal studies suggest that the
rate of development in key cognitive control regions is implicated in ASD. However, no
studies include both males and females with ASD. See Figure 1A for a depiction of brain
regions implicated in structural studies.

Resting-state functional neuroimaging studies of cognitive control in ASD

Resting-state fMRI (rsfMRI) examines the correlation in BOLD signal between brain
regions during periods of quiet rest. This is referred to as functional connectivity (FC) [18].
A reliable set of rsfMRI networks [19] emerges during adolescence, when there is a
strengthening of FC within networks (integration) and decreased FC between networks
(segregation). This culminates in the establishment of a mature intrinsic functional brain
architecture in young adulthood [20-22]. Atypical connectivity between three specific
intrinsic functional networks — the default mode (DMN), salience (SN), and executive
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control networks (ECN) [23]-is central to disorders involving cognitive control impairments,
and are the focus of this selective review.

Most rsfMRI studies in ASD have examined the default mode network, which includes the
posterior cingulate cortex/retrosplenial cortex and medial prefrontal cortex, and which
demonstrates robust FC at rest and during self-referential processing [Figure 1B; [24]].
Children with ASD demonstrate aberrant FC within the DMN, and greater FC between the
DMN and other intrinsic functional networks [25-27] than those with TYP. During
adolescence DMN connectivity does not increase to the same extent in ASD relative to TYP
[28, 29], and remains decreased in young adults with ASD [30-33]. Collectively, these data
suggest that DMN integration during adolescence may be reduced in individuals with ASD.

The second network implicated in cognitive control impairments is the salience network
(SN). The SN is centered around the anterior insula (Al) and the anterior cingulate cortex
(ACC; Figure 1B), and plays a role in detecting stimuli of high relevance [34, 35]. FC within
the SN is increased in adults relative to children, suggesting this circuit develops during
adolescence [36]. Whereas the SN demonstrates overconnectivity in children with ASD [37,
38], the SN is under-connected in adolescents with ASD relative to those with TYP [38-40],
suggesting that it demonstrates a flatter developmental trajectory in ASD. This may lead to
enduring differences in salience processing within this network in adulthood in those with
ASD [41].

One hypothesized role of the SN is to prioritize stimuli for processing by the ECN—the
third network implicated in cognitive control. The ECN is anchored in the DLPFC and
parietal cortex [23, 34]. Cross-sectional and longitudinal studies of TYP have suggested that
ECN FC increases during adolescence and young adulthood, whereas FC between the ECN
and other networks decreases [20, 42, 43]. Recently, Elton et al. [26] analyzed ECN
connectivity in 90 ASD and 95 TYP youth ages 6.5-18.7 years. Youth with ASD showed
underconnectivity within prefrontal sectors of the ECN relative to TYP. In this study there
also was a positive association between connectivity of the ECN and the DMN and scores on
a dimensional ASD symptom measure [26, 44]. Abbott and colleagues [45] found similar
FC anomalies within the ECN and increased connectivity between the ECN and DMN in
youth ages 8-17 with ASD relative to TYP. As the DMN and ECN underlie “task-negative”
and “task-positive” information processing, respectively, these findings suggest that the
typical pattern of segregation between these networks across adolescence may not be present
in ASD. See Table 2 for studies of the three networks in ASD since 2007. Notably, there
have been no large-scale longitudinal rsfMRI studies in ASD, and hypotheses derived herein
are based on cross-sectional comparisons.

Diffusion MRI studies of cognitive control in ASD

Three white matter tracts — the corpus callosum, cingulum bundle, and superior longitudinal
fasciculus — underlie brain regions involved in cognitive control. See Figure 1(C). These
tracts play a role in processing speed and complex cognition [46], attention and working
memory [47], motor behavior, spatial attention, language, and response inhibition [48, 49],
respectively. Atypical development of these three tracts in early childhood leads to continued
alterations in diffusion properties in adolescents and adults with ASD [50-53].

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2018 September 01.
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The corpus callosum is most implicated in ASD. Structural MRI studies have consistently
reported reduced size of the corpus callosum, in ASD relative to TYP. The front end or genu
of the corpus callosum, and its most anterior portion (the forceps minor), radiates across the
lateral and medial sides of the PFC, connecting the PFC and orbitofrontal cortex (OFC) [54].

Alterations in white matter diffusion specific to the genu and forceps minor have been
reported cross-sectionally in adolescents and young adults with ASD compared to TYP [55-
60], as well as in the white matter tracts connecting to the OFC specifically [61]. In addition,
one longitudinal study found that the developmental trajectory of diffusion properties of the
genu was altered during childhood in individuals with ASD compared to TYP, leading to
persisting atypicalities in the white matter into adolescence and adulthood [50]. The few
studies that relate alterations in diffusion with behavioral measurements have found that
fractional anisotropy (FA) — a measurement of the directional flow of cerebrospinal fluid
thought to reflect fiber density, axonal diameter, and myelination — of the corpus callosum
was correlated with performance 1Q with a medium effect size and that FA of the genu was
associated with processing speed with a large effect size [55].

The second white matter tract implicated in cognitive control — the cingulum bundle —
stretches from anterior temporal gyrus to orbitofrontal cortex and runs within the cingulate
gyrus and over the top of the corpus callosum [54]. Cross-sectional studies have identified
consistent alterations in the diffusion properties of the cingulum bundle in both adolescents
and young adults with ASD [56, 57, 59, 61-65]. In addition, one study reported a significant
negative relationship between FA of the cingulum bundle and scores on a parent-report
measure of executive functions, such that lower FA in cingulum predicted greater executive
function deficits in participants with ASD with a large effect size [65]. The final tract
involved in cognitive control — the superior longitudinal fasciculus (SLF) — extends from the
inferior fontal gyrus (IFG) to the superior temporal gyrus (STG) and temporoparietal
junction (TPJ), terminating close to Broca’s Area, Wernicke’s Area, precentral gyrus and the
supramarginal gyrus [48, 66—68]. For this tract too, a number of previous cross-sectional
studies have found reductions in diffusion properties in those with ASD during both
adolescence and young adulthood [56, 59, 62, 64, 69-71]. See Figure 1C, and Table 3 for a
review of twenty cross-sectional studies and one accelerated longitudinal study comparing
the diffusion properties of these tracts between adolescents and young adults with ASD and
TYP. Although we must rely on findings from diffusion MRI studies in ASD that have been
almost entirely cross-sectional by design, it appears that alterations of diffusion properties
within the three tracts associated with cognitive control are present during adolescence and
persist into early adulthood.

Behavioral and neuroimaging studies of cognitive control in ASD

Neuropsychological studies illustrate that executive control deficits are among the most
common impairments found in individiuals with ASD [72]. Neuropsychological and
cognitive neuroscientific studies find impairments in the three RDoC domains of cognitive/
executive control including: working memory or cue/context maintenance [73, 74],
inhibition of prepotent response tendencies or response inhibition [75-77] and set shifting or
task switching or cognitive flexibility [78]. However, shifting deficits have been questioned

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2018 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Solomon et al.

Page 6

[79], and may only be present if participants must choose to switch tasks [80-82]. Despite
the typical maturation of cognitive control from adolescence to young adulthood, studies of
those with ASD generally show persisting lag through this period [83] or isolated
development of a subset of component processes [75, 84], or limited improvement within the
context of persistent delay [85].

Since the advent of fMRI during the decade of the brain (1990-1999), there have been a
growing number of task-based fMRI studies of cognitive control in ASD from adolescence
to young adulthood. Studies since 2007 are reviewed below.

Cue/context maintenance—Solomon et al. [86] used event-related fMRI to assess
holding a cue in mind when preparing to overcome a prepotent response tendency in 12-18
year olds with ASD (n=22) and TYP (n=23). TYP versus ASD recruited significantly more
aPFC and parietal (BA 7 and BA 40) regions for correct trials requiring overcoming a
prepotent response tendency. ASD also exhibited reduced FC and network integration
compared to TYP that was associated, with symptoms of attention deficits (medium effect
size). An additional cross-sectional followup study in an overlapping larger sample
investigated the development of control through early (ages 12-15) and late (ages 16-18)
adolescents [87]. Older ASD and TYP showed reduced activation in sensory and premotor
areas relative to younger ones. However, older individuals with ASD showed reduced left
parietal recruitment relative to TYP. FC analyses showed that the older ASD group exhibited
increased functional connectivity strength between the VLPFC and the ACC, bilaterally.
This was interpreted as a signature of cognitive control that was less planful/proactive and
more last-minute and reactive. This FC strength was associated with task performance in
ASD with a medium effect size, whereas DLPFC and parietal cortex FC was related to task
performance in TYP with a large effect size. Vogan et al. [88] examined performance on a
simple color matching one-back task. TYP activated regions of the PFC, while ASD
activated posterior regions of the brain. TYP recruited more of the PFC and parietal cortex
as load increased, while ASD did not. In sum, based on the few studies of context
maintenance to date, adolescents with ASD appear to recruit the PFC and parietal cortex less
than those with TYP. One study suggested that TYP appear to become more planful
(proactive), while those with ASD remain more reactive, and show increasing PFC/ACC FC.

Coghnitive control of response inhibition—Response inhibition in ASD has been
studied using both go/no-go and saccadic eye movement paradigms which require the
participant to look towards a target. Kana, Keller, Minshew, & Just [89] manipulated
working memory load in a go/no-go paradigm in young adults with ASD and TYP, and
examined recruitment in ROIs in the ACC, PFC, and parietal cortex. The ASD group
showed poorer memory performance in greater load conditions than TYP with less
recruitment of the PFC, ACC, and insula. In the most difficult condition, the ASD group
showed reduced recruitment of the ACC and precuneus, but greater recruitment of premotor
regions. A factor analysis of FC showed poorer integration of the inhibitory and control
networks in ASD. However, writing about FC in a younger group of adolescents, Lee et al.
[90] conducted a left and right IFG seed-based FC study of a similar go/no-go task and
found no group FC differences.

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2018 September 01.
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Thakkar et al. [91] used rapid even-related fMRI and diffusion imaging of an anti-saccade
task in which participants were required to make a saccadic eye movement away from a
target, rather than towards it (an anti-saccade), to investigate response inhibition deficits,
ACC dysfunction, and restricted interests and repetitive behaviors (RBs) in young adults
with ASD versus TYP. The ASD group made more anti-saccade errors; responded more
quickly on correct trials; showed reduced discrimination in rostral ACC between error and
correct trials and reduced FA in white matter underlying the ACC. Recruitment on correct
trials and reduced FA were associated with RBs with a large effect size. Agam et al. [92]
then examined ACC regions recruited during anti-saccades versus pro-saccades in the same
young adult participants, using an ROl based approach. TYP showed greater bilateral frontal
eye field (FEF) and dorsal ACC (dACC) recruitment than ASD. Greater activation in the
dACC predicted fewer errors across both groups. In those with ASD, greater recruitment in
the dACC during inhibition predicted faster anti-saccades. Activation in both the left and
right dACC predicted RBs. Finally, Padmanabhan et al. [93] used fMRI to extend Luna et
al.’s [85] behavioral study of cognitive control using an anti-saccade task. The groups did
not differ in pro-saccade performance. However, the ASD group showed less BA 7
recruitment during task preparation, but greater activation of this region during anti-saccade
performance. Taken together, go/no-go and eye movement studies again suggest that
integrated recruitment of the ACC and parietal cortices is critical to cognitive control of
response inhibition, although there may be no group differences in FC of these regions with
the PFC in adolescents. The presence of RBs may be associated with the functioning of the
ACC, but the relation remains complex and difficult to interpret.

Cognitive control of set shifting/task switching—Shaffritz, Dichter, Baranek, &
Belger [94] used an event-related target detection task to examine the association between
set shifting and RBs. There were no group differences in the ability to shift versus maintain
responding to the target. TYP exhibited greater recruitment of the DLPFC, IPS, and basal
ganglia during target, and target shift versus target maintain trials. RBs were negatively
associated with ACC activation to targets with a large effect size. Using a different task,
Yerys et al. [95] employed event-related fMRI to examine a model of set shifting involving
simple versus more complex rules in children and adolescents with ASD and TYP. The ASD
group performed more poorly and was slower than TYP. There was no group by trial type
interaction for the lowest level dimension shifts. ASD versus TYP recruited more ACC,
superior frontal gyrus, frontal pole and right IFG, in the switch versus stay condition.
Authors interpreted this as a sign that ASD needed stronger recruitment of task-relevant
brain regions to complete the task when task performance was the same for both groups. In
conclusion set shifting appears to rely on similar brain regions as other components of
cognitive control, and that group differences may emerge with age. Inconsistent study
findings may also derive from different levels of task difficulty. As shown in Table 4, during
the past decade there have been only 10 task-based fMRI studies (3 of cue/context
maintenance, 5 of response inhibition, and 2 of switching) meeting our criteria. Studies were
small, and utilized diverse paradigms, study designs, and thresholding. Furthermore, none
were longitudinal or examined sex differences.
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Discussion

This review of structural, rsfMRI, and diffusion imaging studies converged in suggesting
that the scaffold supporting cognitive control in adolescents with ASD transitioning to
young adulthood is altered. Longitudinal structural studies suggest there is enlargement of
the ACC and excess white matter and gray and white matter pruning in the parietal cortex
during this period [16]. This is accompanied by over and under-connectivity within the
DMN and other brain networks important for cognitive control (SN, ECN) compared to that
found in TYP. Finally, ASD shown early developing, persistent, and widespread diffusion-
related differences compared to TYP in the white matter tracts supporting control. Given
that a different and compromised neural scaffold restricts the functioning of control
processes in adolescents and young adults with ASD, it is not surprising that their
performance on executive control and task-based fMRI paradigms across multiple
component processes develops less during adolescence than TYP. More specifically,
adolescents with ASD appear to recruit the PFC and parietal cortex less than those with TYP
when keeping context in mind, inhibiting prepotent responses, and engaging in more
difficult forms of set shifting.

This conclusion offers several potential etiological and treatment related leads that could be
explored in future studies. First, based on structural findings of its potential increased size
[16] and fMRI studies documenting its atypical recruitment and potential relationship to
RBs [89, 91, 92, 94], the ACC may represent a node that alters the functioning of the
impaired cognitive control network. This assertion is consistent with early theoretical work
suggesting that inefficient functioning the dorsal medial PFC system produces social
orienting deficits found in young children with ASD [96]. The work of our group, which
finds that as adolescence progresses those with ASD show increasing PFC/ACC FC while
those with TYP show decreasing FC between these brain regions, also is consistent with the
contention that the mechanisms of cognitive control operate differently in those with ASD.
Also supportive of the importance of the ACC in ASD, are recent rsMRI FC studies of the
SN, which includes the ACC. One such study showed that functioning of this brain region
has extremely high and unique power in predicting the development of ASD traits and
adaptive functioning from late adolescence to early adulthood [97]. Furthermore, several
dimensional psychopathology studies illustrate that the ACC is implicated in ASD-like
symptoms across multiple neurodevelopmental disorders such as attention deficits in
attention deficit hyperactivity disorder [98], and repetitive behaviors in obsessive compulsive
disorder [99].

This review also highlighted the potential role of the parietal cortex and related impairments
in the functioning of fronto-parietal neural circuits in both structural neuroimaging and task-
based fMRI [86, 87, 89] studies. The parietal cortex has been implicated in the storage of
spatial information in working memory [100], rule representation, and attention allocation
[101]. Parietal cortex also is thought to help establish and maintain context [102]. Given the
ubiquity of executive functions deficits to neurodevelopmental disorders, investigations of
atypical fronto-parietal functioning, holds the potential to provide a more trans-diagnostic
perspective on neuropsychiatric disorders. The association between fronto-parietal FC
deficits and symptoms of attention and hyperactivity in adolescents with ASD constitutes a
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promising lead, although it is not likely that RDoC will trully help carve nature at its joints,
and there still will likely be multiple mechanisms underlying each symptom domain [103,
104].

It was challenging to complete a comprehensive and integrative review. Although the
neuroimaging field has seen the evolution of increasingly rigorous best-practice standards
[105], these have not been fully implemented in ASD research. As illustrated by Tables 1, 2,
3, and 4, ASD neuroimaging studies typically are small (< 20 participants/group), which is
alarming given the recent suggestion that 50-100 participants/group may be necessary to
detect subtle effects in fMRI [106]. Subject motion also can both confound task-based fMRI
analyses and alter rsfMRI connectivity metrics [107-109]. While data scrubbing [110]
techniques have been developed, they only have been used routinely for the past 5 years. The
use of overly liberal thresholds, which still are routinely employed in ASD fMRI research,
also has drawn criticism [111]. In addition to methodological challenges related to imaging,
studies of cognitive control in ASD often employ heterogeneous neuroimaging tasks with
different levels of discriminating power/difficulty, making it virtually impossible to compare
and interpret their results. Finally, we can only truly understand development if we complete
more longitudinal studies that carefully examine sex differences.

Despite revealing an altered scaffold that produces decreased cognitive control development
in adolescence, this review is hopeful. The use of minimally invasive neuroimaging
methodologies has greatly advanced our capacity for understanding the neural systems
underpinning ASD-specific symptoms and strengths. The field should move towards
developing adequately powered and standardized cognitive control paradigms that can be
used in large longitudinal studies across a wide range of ages and cognitive ability levels,
which is important given the dearth of studies in those with intellectual disability who also
experience control impairments [112]. Until these studies have been conducted, meta-
analyses can help bridge the gap in better understanding the mechanisms of the development
of cognitive control in ASD — a goal that is highly consistent with the National Institute of
Mental Health (NIMH) view that the best way to advance treatment development is through
research that furthers understanding of the function of neural circuits and how to manipulate
them.
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Figure 1.
Glass brain schematic of the neural circuits underlying cognitive control difficulties in ASD.

(A) Outline of the brain structures that have demonstrated developmental anomalies in
individuals with autism spectrum disorders, including the anterior cingulate cortex [yellow;
[19]] and superior parietal cortex [yellow/white; [20]]. (B) Depiction of the intrinsic
functional brain networks that have demonstrated aberrant functional connectivity profiles in
ASD [default mode network, dark green; salience network, green; executive control
network, bright green; [23]]. (C) White matter tracts involved in cognitive control that have
demonstrated alterations in ASD [corpus callosum, dark red; cingulum bundle; red; superior
longitudinal fasciculus, bright red; [142]].
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Table 1

Summary of Structural Neuroimaging Studies in ASD.

Page 16

Two MRI time points; 1.7 (0.8) year
interval

STUDY N Mean Age (SD) Method Finding(s)
Bonilha et al. ASD: 12 ASD: 124+ 4 Whole-brain VBM ASD > TYP: DLPFC and
2008 [14] TYP: 16 TYP:13.2+5 parietal gray matter
ASD < TYP: frontal and parietal
white matter
Nordahl et al ASD?: 15 ASD: 12.3 (3.2) Cortical folding ASD > TYP: intraparietal sulcal
2007 [15] TYP: 29 TYP:11.8 (26) depth
Hua et al 2013 ASD: 13 ASD: 12.0+23 Longitudinal brain growth ASD < TYP: white matter
[16] TYP: 7 TYP:123+24 growth in parietal lobe
Two MRI time points; ASD > TYP: gray matter
2.9+ 0.9 year interval expansion in ACC
Wallace et al ASD: 17 ASD: 17.4 (2.4) Longitudinal cortical ASD > TYP: Cortical thinning in
2015 [17] TYP: 18 TYP:17.5(1.5) thickness and surface area superior parietal cortex

a Lo . . i
These individuals were diagnosed with Asperger’s Syndrome per DSM-1V criteria

Abbreviations used: ASD: autism spectrum disorder; TYP: typical development; ACC: anterior cingulate cortex; Gl: Gyrification Index.
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Table 2
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Summary of resting state fMRI (rsfMRI) of intrinsic functional brain networks in ASD.

STUDY N Mean Age (SD) Motion Correction Finding(s)

Default-mode network (DMN)

Kennedy & Courchesne, 2008 [32] | ASD: 12 | ASD: 26.5 (12.8) Scrubbing Underconnectivity
TYP:12 | TYP:27.5(10.9)

Monk et al., 2009 [33] ASD: 12 ASD: 26 (5.93) Standard Mixed (PCC-frontal under-, PCC-temporal
TYP: 12 TYP: 27 (6.1) overconnectivity)

Weng et al., 2009 [30] ASD: 16 ASD: 13-17 Standard Underconnectivity; Note: no mean/SD age
TYP: 15 TYP: 13-18 provided

Assaf et al., 2010 [31] ASD: 15 | ASD: 15.7 (3.0) ICA Underconnectivity
TYP:15 | TYP:17.1(3.6)

Wiggins et al., 2011 [29] ASD:39 | ASD:14.0(2.1) Standard TYP have greater increases in DMN
TYP: 41 TYP: 15.3 (2.4) connectivity with age

Lynch et al., 2013 [27] ASD: 20 | ASD: 10.0 (1.6) Scrubbing Overconnectivity
TYP:19 | TYP:9.9(1.6)

Uddin et al., 2014 [36] ASD: 17 ASD: 9.9 (0.4) Standard Reduced segregation between rest and task in
TYP:17 | TYP:9.8(0.4) ASD

Washington et al., 2014 [28] ASD: 24 | ASD:10.9(2.3) Scrubbing TYP have greater increases in DMN
TYP:24 | TYP:10.1(3.2) connectivity with age

Elton et al., 2016 [26] ASD: 90 | ASD:13.1(3.3) Standard Overconnectivity
TYP:95 | TYP:13.2(3.1)

Salience network (SN)

Ebisch et al., 2010 [40] ASD: 14 | ASD:15.8(1.9) Standard Mixed (Al under- and overconn. to different
TYP:15 | TYP:16.0 (1.6) seeds)

Uddin et al., 2013 [37] ASD: 20 | ASD:10.0(1.6) Scrubbing Overconnectivity predictive of restricted and
TYP:20 | TYP:10.0 (1.6) repetitive behavior

Eilam-Stock et al., 2014 [41] ASD: 14 | ASD: 26.1 (6.5) Standard Low correlation between arousal and SN
TYP: 13 TYP: 27.1(8.2) activity in ASD

Elton et al., 2016 [26] ASD: 90 | ASD:13.1(3.3) Standard Mixed (ACC overconnectivity, frontal
TYP: 95 TYP: 13.2(3.1) underconnectivity)

Executive control network (ECN)

Abbott et al., 2015 [45] ASD: 37 | ASD:13.9(2.6) Scrubbing Mixed (Right ECN over- and left ECN
TYP:38 | TYP:13.0(2.6) underconnectivity)

Elton et al., 2016 [26] ASD: 90 | ASD:13.1(3.3) Standard Underconnectivity
TYP:95 | TYP:13.2(3.1)

Given its potential to introduce systematic between-group variance in functional connectivity (FC) measures, subject motion is one of the most

1duosnuen Joyiny

important methodological considerations in rsfMRI studies in ASD (Power et al., 2012; Van Dijk et al., 2012). “Standard” motion correction refers
to some combination of removing subjects with excessive motion and standard image realignment, “scrubbing” refers to the use of temporal masks
to censor the influence of high-motion data points within a rsfMRI session, and independent component analysis (ICA) refers to the decomposition
of the rsfMRI signal to identify and control for spatial components that represent motion-related artifact. List of abbreviations. Anterior insula (Al),
autism spectrum disorders (ASD), default-mode network (DMN), executive control network (ECN), functional connectivity (FC), independent
component analysis (ICA), posterior cingulate cortex (PCC), salience network (SN), standard deviation (SD), and typical development (TYP).
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