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Abstract

Eye movement detection plays a crucial role in various fields,
including eye tracking applications and understanding human
perception and cognitive states. Existing detection methods
typically rely on gaze positions predicted by gaze estimation
algorithms, which may introduce cumulative errors. While cer-
tain video-based methods, directly classifying behaviours from
videos, have been introduced to address this issue, they often
have limitations as they primarily focus on detecting blinks. In
this paper, we propose a video-based two-stream framework
designed to detect four eye movement behaviours—fixations,
saccades, smooth pursuits, and blinks—from infrared near-eye
videos. To explicitly capture motion information, we intro-
duce optical flow as the input for one stream. Additionally, we
propose a spatio-temporal feature fusion module to combine
information from the two streams. The framework is evaluated
on a large-scale eye movement dataset and performs excellent
results.

Keywords: eye movement detection; action recognition; neu-
ral networks;

Introduction
Eye movement detection is a critical area of research within

the field of eye tracking studies, alongside gaze estimation

and eye-controlled human-computer interaction. The goal is

to accurately predict the start time, end time, and semantic

classification of various eye movement behaviours, includ-

ing fixations, saccades, smooth pursuits, blinks, and addi-

tional categories, in a given video or signal sequence obtained

from eye-tracking devices. Eye movement detection has

widely served for various downstream tasks, such as human-

computer interaction (Harezlak, Duliban, & Kasprowski,

2021; Niu et al., 2023) and understanding human perception

and cognitive states (Leigh & Zee, 2015; Gale & Findlay,

2021).

Most previous eye movement detection approaches have

complicated pipelines, involving pre-processing, classifica-

tion methods and post-processing, as shown in Figure 1.

These approaches, called signal-based, first regress gaze po-

sitions from eye images and subsequently classify eye move-

ment behaviours using different classification methods, such

as traditional handcrafted feature-based methods (Larsson,

Nyström, Andersson, & Stridh, 2015), machine learning

methods (Zemblys, Niehorster, Komogortsev, & Holmqvist,

2018), and deep learning methods (Zemblys, Niehorster, &

Holmqvist, 2019), followed by a post-processing procedure,

which is employed to merge individual samples into coherent
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Figure 1: Comparison of different pipelines of eye move-

ment detection. (a) Handcrafted feature-based methods. (b)

Machine learning methods. (c) Deep learning methods. (d)

Video-based methods in this paper.

events. Signal-based approaches rely on accurate gaze po-

sition predictions from upstream gaze estimation algorithms.

Decrease in the precision of predicted results leads to cumu-

lative errors that impact the classification performance of eye

movement detection. Compared to signal-based approaches,

video-based algorithms (Nousias et al., 2022; Zeng et al.,

2023) directly classify behaviours in videos without the need

for intermediate gaze position acquisition. This reduces de-

pendency on upstream eye tracking algorithms and eliminat-

ing cumulative errors. However, these approaches primarily

focus on detecting blinks and there is limited work on directly

classifying other eye movement behaviours from videos, such

as saccades and smooth pursuits, which also play crucial roles

in understanding human perception and cognitive states.

In this paper, we propose a video-based eye movement

detection framework capable of frame-by-frame classifying

four types of eye movement behaviours: fixations, saccades,

smooth pursuits, and blinks, from near-eye infrared videos.

Considering the characteristics of rapid occurrence and short

duration of eye movement behaviours, optical flow is intro-

duced to capturing subtle motion information. Inspired by

SlowFast (Feichtenhofer, Fan, Malik, & He, 2019), we de-

sign a two-stream architecture to detect eye movement be-

haviours, where one slow stream utilizes a small number of

infrared frames, obtained through downsampling from near-

eye infrared videos, as input to focus on spatial features ex-

traction, and another fast stream utilizes a larger number of

optical flow frames calculated from videos as input to capture

temporal features. To better capture high-dimensional spatio-
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temporal features, we employ the Transformer-based video

action recognition model, Video Swin Transformer(VST)

(Liu et al., 2022), as the primary feature extraction backbone

in each stream. In addition, we propose a spatio-temporal fu-

sion module, employing lateral connections to merge spatial

and temporal information and facilitate interaction between

the two streams for a better eye movement detection perfor-

mance.

In summary, the contributions of this paper are as follows:

• We propose a video-based eye movement detection frame-

work capable of classifying four types of eye movement

behaviours from near-eye infrared videos. To the best of

our knowledge, this is the first method to achieve multi-

class classification of eye movement behaviours based on

near-eye infrared videos.

• We design a two-stream architecture focusing on extracting

spatial and temporal features independently. Additionally,

we introduce optical flow as an input modality into one

stream to capture the subtle motion information inherent in

eye movement behaviours. The Transformer-based action

recognition model Video Swin Transformer is used as our

feature extraction backbone in each stream.

• We propose a spatio-temporal feature fusion module to

merge spatial and temporal information, enabling the

framework to have a better performance on the frame-level

classification task.

Related Work
Eye Movement Detection Methods
Previous methods for eye movement detection can be roughly

categorized into groups based on the pipelines as shown in

Figure 1. (a) Handcrafted feature-based methods are de-

veloped in early eye movement detection research, which

relying on complex features(i.e. Velocity (Dorr, Martinetz,

Gegenfurtner, & Barth, 2010), PCA-based dispersion thresh-

olding (Berg, Boehnke, Marino, Munoz, & Itti, 2009), etc.)

that may lead to a large number of tunable parameters and

thresholds, resulting in increased computational costs. (b)

Machine learning methods allow thresholding and classi-

fication to be learned from handcrafted features and per-

formed automatically by using algorithms, such as k-nearest-

neighbors (Vidal, Bulling, & Gellersen, 2012), support vec-

tor machines (Anantrasirichai, Gilchrist, & Bull, 2016), ran-

dom forests (Zemblys et al., 2018) and others, but they are

still necessary to perform the step of obtaining handcrafted

features. (c) Deep learning methods automatically learn all

features and appropriate thresholds from gaze positions using

deep neural networks (Zemblys et al., 2019). However, meth-

ods mentioned above are susceptible to upstream gaze esti-

mation tasks and suffer from cumulative errors. (d) Video-
based methods have been explored to solve this problem

by directly classifying eye movement behaviors from videos

without any intermediate step. (de la Cruz, Lira, Luaces, &

Remeseiro, 2022) combines a convolutional neural network

for feature extraction with a bidirectional recurrent neural net-

work that performs sequence learning and classifies the blinks

in RGB near-eye videos. (Nousias et al., 2022) performs tem-

poral filtering and adaptive thresholding on the data obtained

from iris and eyelid segmentation to classify blinks in near-

infrared high-resolution image sequences. Existing video-

based methods only detect blinks and have not been applied

to the detection of other eye movement behaviours. This pa-

per expands video-based detection methods in the categories

of eye movement behaviors.

Action Recognition Methods
Video-based eye movement detection can be regarded as an

action recognition task and therefore action recognition mod-

els can be used to assist in the classification of eye move-

ment behaviours. Current deep neural networks for action

recognition can primarily be categorized into two groups:

CNN-based and Transformer-based networks. (Carreira &

Zisserman, 2017) inflates the 2D convolutions to 3D con-

volutions and extracts spatio-temporal features using a two-

stream structure. Inspired by the retinal ganglia of primates,

(Feichtenhofer et al., 2019) proposes SlowFast, a CNN-based

network, using a slow, high-resolution channel to analyse

static content in the video, and a fast, low-resolution chan-

nel to analyse dynamic content. With the development of vi-

sion transformer, Transformer-based networks have achieved

excellent performance in various action recognition tasks.

(Bertasius, Wang, & Torresani, 2021) studies five different

variants of space-time attention and suggests a factorized

space-time attention for its strong speed-accuracy tradeoff.

(Liu et al., 2022) advocates Video Swin Transformer, which

uses an inductive bias of locality in video Transformers in-

stead of self-attention globally and achieves state-of-the-art

accuracy on a broad range of video recognition benchmarks.

We use Video Swin Transformer as our backbone to extract

spatial and temporal features in near-eye infrared videos.

Method
Problem Definition
Given a near-eye infrared video clip X = {x1,x2, · · · ,xT} ∈
R

T×c×h×w, we have T infrared frames and corresponding op-

tical flow frames, where c, h and w denote the channel, height

and width of each frame, respectively. Ground truth of the

video clip is defined as Y = {sk,ek,ck}K
k=1. Here K denotes

the number of eye movement behaviour instances in the video

clip X . sk, ek and ck denote the start time, end time and seman-

tic classification of each instance. Our goal is to train a model

to predict the start time, end time and semantic classification

of each instance in the video clip X with high precision.

Method Overview
We propose a video-based two-stream framework for eye

movement detection, directly classifying eye movement be-

haviours from near-eye infrared videos, without the interme-

diate step of obtaining gaze positions. Inspired by SlowFast
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Figure 2: (a) Overview of our proposed framework. (b) Structure of two successive Video Swin Transformer blocks. (c)

Structure of our proposed spatio-temporal feature fusion module.

(Feichtenhofer et al., 2019), our two-stream framework con-

sists of a slow stream, emphasizing the extraction of spatial

features at a lower frame rate, and a fast stream, focusing

on capturing temporal and motion features at a higher frame

rate. Considering that optical flow inherently reflects object

motion characteristics and overlooks many spatial details, we

use optical flow as the input for the fast stream. Concurrently,

infrared frames act as the input for the slow stream to extract

spatial information with a downsampling operation. As illus-

trated in the Figure 2(a), the overall process of our framework

can be summarized as follows: first, horizontal and vertical

components of optical flow are obtained for each frame from

the given clip, and sparse infrared frame sequences are ob-

tained through downsampling, serving as inputs for the fast

stream and slow stream, respectively. Then, each stream uti-

lizes Vision Swin Transformer (Liu et al., 2022) as the fea-

ture extraction backbone, extracting high-dimensional tem-

poral and spatial features at frame level through four stages,

followed by a Multilayer Perceptron (MLP) for frame-level

classification. The frame-level representations obtained from

the fast stream are fused into the slow stream by a spatio-

temporal feature fusion module after each stage. Finally, a

post-processing procedure is employed to average the outputs

of both streams and obtain the final predictions.

Fast Stream
Optical Flow Representation Considering that eye move-

ment behaviours are rapid and short-duration processes, we

introduce optical flow to capture the motion characteristics of

eye movement behaviours. For an infrared frame, there are

horizontal and vertical components of optical flow, we con-

catenate them in the channel dimension as an optical flow

frame. We select n optical flow frames corresponding to the n
infrared frames and take them as the input for the fast stream

for temporal feature extraction. The optical flow frames can

be represented as:

Input f ast =
{
(Ix

i ⊕ I
y
i )
}n

i=1
∈ R

n×h×w×2 (1)

where Ix
i and I

y
i denote horizontal and vertical components of

optical flow corresponding to the i-th infrared frame. ⊕ is the

concatenating operation at channel level.

Patch Partition and Linear Embedding Considering that

optical flow has already provided motion information, unlike

the approach used in (Liu et al., 2022), we treat each 2D

patch, instead of a 3D patch, with dimensions 1×4×4×2, as

an individual token for subsequent frame-level feature learn-

ing. In this way, the patch partitioning layer obtains n× H
4 ×

W
4 ×1 tokens, with each token contains a 32-dimensional fea-
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ture. The linear embedding layer maps each token to a C-

dimensional feature vector.

Frame-level Feature Learning The feature vectors ac-

quired from linear embedding pass through four stages to

learn deeper frame-level features. After each stage, the tem-

poral dimension remains unchanged, the spatial dimension is

halved, and the channel doubles. Each stage includes sev-

eral VST blocks, as shown in Figure 2(b), each utilizing the

shifted window mechanism in 3D W-MSA and 3D SW-MSA

with a local inductive bias for a better speed-accuracy trade-

off. With the shifted window mechanism, two consecutive

VST blocks are computed as:

ẑl = 3DW−MSA(LN(zl−1))+ zl−1,

zl = MLP(LN(ẑl))+ ẑl ,

ẑl+1 = 3DSW−MSA(LN(zl))+ zl ,

zl+1 = MLP(LN(ẑl+1))+ ẑl+1

(2)

where ẑl and zl denote the output features of the 3D(S)W-

MSA module and the MLP for block l, respectively; 3DW-

MSA and 3DSW-MSA denote 3D window based multi-head

self-attention using regular and shifted window partitioning

configurations, respectively.

Except for stage 4, patch merging is employed for 2× spa-

tial downsampling, followed by concatenation of adjacent

2× 2 neighboring patches and a linear layer for channel di-

mension halving.

MLP Fast stream has acquired temporal feature informa-

tion from the clip through four stages. Subsequently, a MLP

head is used for classifying behaviour types of each frame.

To predict frame-level labels for the input clip, the output di-

mension of the MLP is set to c×n, representing the predicted

behaviour probabilities for each frame, where c and n denote

the number of behaviour types and input frames for the clip.

Slow Stream

Given that adjacent near-eye infrared frames are nearly iden-

tical, we downsample the input video clip to reduce redun-

dancy with a downsampling rate of r, sending the low frame

rate infrared frame sequence with length of m =
⌈ n

r

⌉
to the

slow stream for learning frame-level spatial features such as

appearance and shape. Unlike optical flow frames, near-eye

infrared frames are input as a single-channel, where the patch

size in the channel dimension changes from 2 to 1. The patch

partitioning layer obtains m× H
4 × W

4 ×1 tokens, and each to-

ken contains a 16-dimensional feature. The mapping dimen-

sion of the linear embedding layer remains consistent with

the fast stream.

Inspired by SlowFast (Feichtenhofer et al., 2019), we em-

ploy lateral connections for two-stream feature fusion. A Fu-

sion Module is added after each stage during frame-level fea-

ture learning in the slow stream. The features learned from

the fast stream at each stage are incorporated into the slow

stream through lateral connections followed by the feature fu-

sion module to fuse temporal and spatial information.

Despite downsampling resulting in the loss of spatial in-

formation, the output size of the MLP is also set to c× n for

n-frame prediction in the slow stream. Table 1 shows varia-

tions in data size after each step in each stream.

Table 1: Variations in data size after each step in each stream.

Slow Stream Fast Stream

Input size m×H ×W ×1 n×H ×W ×2

Partition m× H
4 × W

4 ×16 n× H
4 × W

4 ×32

Embedding m× H
4 × W

4 ×C n× H
4 × W

4 ×C

Stage 1 m× H
8 × W

8 ×2C n× H
8 × W

8 ×2C

Stage 2 m× H
16 × W

16 ×4C n× H
16 × W

16 ×4C

Stage 3 m× H
32 × W

32 ×8C n× H
32 × W

32 ×8C

Stage 4 m× H
32 × W

32 ×8C n× H
32 × W

32 ×8C

MLP c×n c×n

Spatio-temporal Feature Fusion Module During frame-

level feature learning of the fast stream, frame-level classifi-

cation tokens are obtained through each stage. As shown in

Figure 3, each frame is represented as a frame-level classifi-

cation token fi, i = 1, . . . ,n, where n denotes the number of

optical flow frames in the fast stream. Similarly, the frame-

level classification token in the slow stream can be described

as g j, j = 1, . . . ,m, where m represents the number of infrared

frames in the slow stream. Assuming r =
⌈ n

m

⌉
, we average r

tokens to one token in the fast stream, obtaining the classifica-

tion tokens f ′i , i = 1, . . . ,m. Subsequently, based on the frame

index, averaged tokens from the fast stream are concatenated

to the slow stream through lateral connections and then sent

to the next stage before the operation of layer normalization

and linear projection to half the dimension of channel. The

detailed fusion structure can be observed in the Figure 2(c).

Loss Function
Each stream utilizes the cross-entropy loss Lcls to calculate

the loss between the output and the ground truth.

Lcls =−1

n

n

∑
i=1

Y (i)� log(Ŷ (i)

+(1−Y (i))� log(1− Ŷ (i)) (3)

where Y (i) and Ŷ (i) represent the label vector and predicted

vector of i-th frame, and � denotes the Hadamard product.

The losses are then weighted, yielding final loss function. The

final loss function L is defined as:

L = λL f ast +(1−λ)Lslow (4)
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Table 2: Sample-level F1 scores and Event-level F1 scores on Gaze-in-the-Wild dataset compared to CNN-based and

Transformer-based action recognition baselines. ”SP” stands for ”Smooth Pursuit”.

Method
Sample-F1 Event-F1

Fixation SP Saccade Blink Average Fixation SP Saccade Blink Average

Eye-LRCN(de la Cruz et al., 2022) 65.79 50.32 45.72 67.47 57.33 50.53 36.12 34.69 44.07 41.35

C3D(Tran, Bourdev, Fergus, Torresani, & Paluri, 2015) 67.47 66.70 65.86 83.28 70.83 65.26 43.02 57.71 82.77 62.19

I3D(Carreira & Zisserman, 2017) 71.95 68.29 67.85 84.10 73.05 67.43 46.57 62.02 85.24 65.32

Slow-Fast(Feichtenhofer et al., 2019) 76.58 69.44 63.12 87.94 74.27 69.80 55.34 61.29 86.56 68.25

ViViT-B(Arnab et al., 2021) 73.39 63.97 59.67 88.71 71.44 68.91 53.31 57.33 86.36 66.48

MViTv2-S(Li et al., 2022) 77.96 69.70 68.56 89.34 76.39 70.87 54.04 69.92 87.17 70.50

TimeSformer(T+S)(Bertasius et al., 2021) 78.32 70.96 72.47 90.56 78.08 71.13 55.37 69.36 88.09 70.99

ours(Slow stream) 68.49 55.86 54.46 87.44 66.56 68.96 50.23 53.92 85.91 64.76

ours(Fast stream) 72.61 64.97 71.28 89.66 74.63 71.63 53.14 68.11 87.46 70.09

ours(Two-Stream) 79.92 71.85 73.60 91.47 79.21 72.39 60.32 72.52 88.38 73.40
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Figure 3: Illustration of our proposed feature fusion module.

(an example of n=6, m=2, r=3)

where L f ast is the cross-entropy loss Lcls of the fast stream,

Lslow is the cross-entropy loss Lcls of the slow stream and λ
is balanced weight.

Post-processing Module
The goal of eye movement detection is to detect the start, end

times and semantic classification of each eye movement be-

haviour instance. To achieve this, a post-processing step is

necessary. The predicted results from the fast stream and slow

stream are averaged. For each frame, the class with the high-

est predicted probability is then selected as the predicted label

for eye movement behaviour. Subsequently, an operation Φ
that adjacent frames with the same predicted label are merged

into one event is used to determine the semantic classification

and start and end time of each instance. The final prediction

Ŷ is defined as:

Ŷ (X) = Φ(
{

max(Ŷ (i))
}n

i=1
) = {ŝi, êi, ĉi}K′

i=1 (5)

where ŝi, êi and ĉi denote the start time, end time and classi-

fication of i-th predicted eye movement event. K′ is the total

number of predicted events for the input X .

Experiments
Dataset and Evaluation Metrics
We evaluated our proposed framework on Gaze-in-the-Wild

dataset (Kothari et al., 2020), a large-scale public infrared

near-eye dataset, which contains over 140 minutes of hand-

labelled eye movement events collected from 19 participants

in four different environments and approximately 20,000 fix-

ations, 18,000 saccades, 1,200 smooth pursuits, and 4,000

blinks. Our framework is evaluated using leave-one-out cross

validation by testing on a single subject’s data, training on

remaining subjects, and reporting average performance. In

order to ensure the balanced distribution of data, under-

sampling is adopted for fixations and saccades.

We used sample-level metrics sample-F1 score (Sokolova

& Lapalme, 2009) and event-level metrics event-F1 score

(Hooge, Niehorster, Nyström, Andersson, & Hessels, 2018)

to assess the performance of our method.

Baselines
In addition to the blink detection model Eye-LRCN (de la

Cruz et al., 2022), we choose the mainstream CNN-based

backbones including C3D (Tran et al., 2015), I3D (Carreira &

Zisserman, 2017), Slow-Fast (Feichtenhofer et al., 2019) and

Transformer-based backbones including MViTv2-S (Li et al.,

2022), TimeSformer(T+S) (Bertasius et al., 2021), ViViT-B

(Arnab et al., 2021)as the feature extractor, followed by a

MLP for classification, to compare with our method.

Implementation Details
We computed optical flow by using implementation of (Brox,

Bruhn, Papenberg, & Weickert, 2004) from the OpenCV

toolbox before training. Swin-S (C = 96, layer numbers=
{2,2,18,2}) is used as our feature extraction backbone. Dur-

ing the training phase, the input of each stream is resized from

the original resolution of 640x480 to 256x256 and subjected

to a random crop operation, resulting in a size of 224x224.

Data augment techniques including rotation and flipping are

also used to improve the robustness of the model and reduce

the sensitivity to frames. All compared models are trained for

30 epochs, utilizing a batch size of 16 and a cosine learning
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rate decay scheduler on the NVIDIA A100 GPU. For opti-

mization, we employ AdamW (Kingma & Ba, 2014) to min-

imize the weighted cross-entropy loss function, starting with

an initial learning rate of 5e-5 and a weight decay of 0.02. The

balanced weight λ is set to 0.8. We set the input size of fast

stream and slow stream to n = 16 and m = 8 (r = 2) for the

framework, respectively. During testing, we use a no-lapping

sliding window method to detect the whole video. The sliding

window size is set to 16.

Results
Main Experimental Results
Table 2 shows the experimental results of our method and

baselines on Gaze-in-the-Wild dataset. As expected, our pro-

posed method demonstrates superior performance, outper-

forming TimeSformer (Bertasius et al., 2021), the most effec-

tive network among the baselines, with an average improve-

ment of 1.13% and 2.41% for sample-level and event-level

evaluation metrics, respectively. Notably, our method ex-

cels in blink detection, achieving sample-F1 and event-F1 of

91.47% and 88.38%, respectively, followed by fixations, sac-

cades, and smooth pursuits. Although event-F1 for smooth

pursuits is 60.32%, it signifies a significant improvement of

4.95% compared to TimeSformer (Bertasius et al., 2021).

Ablation Studies
Analysis of Two-stream Architecture To evaluate the ef-

fectiveness of the two-stream architecture, we conducted sep-

arate assessments of the single-stream model on Gaze-in-the-

Wild dataset. The results in Table 2 illustrate that the two-

stream architecture, coupled with a feature fusion module,

surpasses the performance of using a single-stream strategy

alone, showcasing improvements across all evaluation met-

rics. Additionally, we observe differential enhancement lev-

els in recognizing all four eye movement behaviours when

utilizing optical flow as the input for the single-stream struc-

ture compared to using the raw infrared video. Particularly,

there is a notable enhancement for saccades, with improve-

ments of 16.82% and 14.19% in sample-level and event-level

metrics, respectively. This enhancement can be attributed to

the rapider nature of saccades compared to other eye move-

ment behaviours. The utilization of optical flow effectively

captures and represents the distinctive characteristics of these

swift movements.

Analysis of Downsampling Rate To study the effects of

downsampling rate on performance, we set the input size of

the fast stream to n=16 and adjusted the downsampling rate

r to 1, 2, 4, and 8, respectively, on Gaze-in-the-Wild dataset.

The larger the downsampling rate, the fewer input frames for

the slow stream. As shown in Figure 4, with the increase

of the downsampling rate, our framework exhibits a trend

of initially improving and subsequently declining classifica-

tion performance for fixations, saccades, and smooth pursuits,

achieving the best performance when the downsampling rate

is 2. We conjecture this is due to the fact that the redun-

（a） （b）

Figure 4: Results for Sample-F1 (a) and Event-F1 (b) on

Gaze-in-the-Wild dataset with varying downsampling rate pa-

rameters.

dancy of data in neighbouring frames makes the framework

underperform when downsampling is not used (r = 1), and

then with the decrease of the number of input frames for the

slow stream (r > 2), resulting in the reduction of spatial fea-

ture information, the performance decreases. Interestingly,

we observe that when the downsampling rate is 2, there is

a significant decrease in the classification performance for

blinks. We attribute this to the distinct generation mode of

blinks compared to the other three eye movement behaviours,

as some details about eyelid movements are forgotten when

the framework focuses more on learning eyeball movement

information.

CONCLUSION

In this paper, we present a novel two-stream vision swin

transformer framework for eye movement detection, designed

to classify four eye movement behaviours in infrared near-eye

videos. To the best of our knowledge, this is the first video-

based multi-class eye movement detection method. One

stream of our framework introduces optical flow as input to

capture temporal and motion information of eye movement

behaviours, while the other stream focuses on extracting spa-

tial features such as appearance and shape. To fuse spatial

and temporal information, we propose a feature fusion mod-

ule with lateral connections to combine the frame-level fea-

ture representations learned from two streams. Our frame-

work is evaluated on Gaze-in-the-Wild dataset, demonstrat-

ing superior performance compared to other baselines in both

sample-level and event-level metrics. In the future, we aim

to explore alternative approaches dedicated to enhancing the

recognition performance of smooth pursuits.
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