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Bayesian phylogenetic inference of HIV
latent lineage ages using serial sequences
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AAN, 0000-0001-6067-2800; BR, 0000-0002-8355-9955

HIV evolves rapidly within individuals, allowing phylogenetic studies to
infer histories of viral lineages on short time scales. Latent HIV sequences
are an exception to this rapid evolution, as their transcriptional inactivity
leads to negligible mutation rates compared with non-latent HIV lineages.
This difference in mutation rates generates potential information about the
times at which sequences entered the latent reservoir, providing insight
into the dynamics of the latent reservoir. A Bayesian phylogenetic method
is developed to infer integration times of latent HIV sequences. The
method uses informative priors to incorporate biologically sensible bounds
on inferences (such as requiring sequences to become latent before being
sampled) that many existing methods lack. A new simulation method is
also developed, based on widely used epidemiological models of within-
host viral dynamics, and applied to evaluate the new method—showing
that point estimates and credible intervals are often more accurate than exist-
ing methods. Accurate estimates of latent integration dates are crucial in
relating integration times to key events during HIV infection, such as treat-
ment initiation. The method is applied to publicly available sequence data
from four HIV patients, providing new insights regarding the temporal
pattern of latent integration.
1. Introduction
A major obstacle to the development of a cure for HIV has been the presence of
latently infected cells. HIV is a retrovirus that integrates its genome into the host
genome. During latent infection, the integrated provirus is in a reversible state
of transcriptional inactivity. Latently infected cells are not targeted by current
treatment methods, namely antiretroviral therapy (ART). Consequently, treat-
ment must be continued for life or reactivation of latent cells will lead to a
rapid rebound in viral load and disease progression [1]. A detailed understand-
ing of the dynamic processes of seeding, reseeding and decay of the latent
reservoir through the inference of latent integration dates for individual pro-
viruses will allow researchers to better understand the nature of the reservoir
as they work towards a cure for HIV.

HIV infects immune cells, specifically CD4+ cells, such as helper T cells and
macrophages. Most infected cells die quickly [2,3]. In contrast, memory T cells
have a long half-life of 4.4 years and can thus establish a latent reservoir for HIV
[4]. Memory T cells may be infected directly or an activated T cell may revert
back to a quiescent state [5]. Latently infected memory T cells can be activated
by antigens, leading to the activation of the HIV provirus [6]. Effective ART pre-
vents infections of new host cells but does not prevent previously infected cells
from producing virions. HIV can, therefore, persist hidden in memory cells for
decades, even with effective ART [4].

The latent reservoir is initially formed within days of infection and con-
tinues to be reseeded over time [7–9]. However, the extent to which the
composition of the reservoir changes over time is unclear. There is strong evi-
dence that there is not ongoing cycles of viral replication during ART [10–12],
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so it is very unlikely the HIV reservoir is replenished from
ongoing replication during ART. Some studies concluded
that the latent reservoir that exists during ART is mostly
seeded shortly before treatment initiation [13–15], while
others have concluded that the reservoir is continuously
seeded until treatment initiation [16]. However, some of
these results are difficult to interpret as a variety of mechan-
isms could account for these patterns. The timing of the
formation of the latent reservoir is ultimately an empirical
question that can be studied in multiple ways. Experimental
techniques, such as the use of quantitative viral outgrowth
assays (QVOAs), allow researchers to obtain sequence data
from individual cells known to be latent. In addition to
further experimental work, reconstructing the ages of latent
lineages can in principle be done by analysing the patterns
of variation observed among sampled sequences and apply-
ing phylogenetic methods designed to estimate sequence
divergence times with serial sequence samples [14–19]. The
focus of this paper will be the development of new statistical
and computational methods to accurately date the integration
times of sampled latent sequences.

A variety of heuristic methods have been developed to
estimate integration times using a combination of RNA
sequences from serially sampled actively replicating sequen-
ces and RNA or DNA from putative latent sequences. All
methods rely on a fixed estimate of the gene tree topology
for the HIV sequences and some require branch lengths.
Jones et al. developed a distance method that used linear
regression (LR) to estimate the mutation rate from root-to-
tip distances and sampling dates for non-latent sequences.
This mutation rate is then used to estimate the latent inte-
gration dates [16]. This method relies on a molecular clock,
and is not used if the clock is rejected. Jones & Joy [18] devel-
oped a related method, estimating mutation rate in the same
way but estimated internal node ages using a maximum like-
lihood (ML) approach using a specified mutation rate. To
et al. [20] developed a distance method using a least squares
(LS) approach to estimate mutation rates and date internal
nodes and tips with unknown ages. Their method requires
the sequence length for estimating confidence intervals, but
not the alignment. It was designed for extremely large phylo-
genies, but is applicable to HIV latency datasets as well.
Abrahams et al. used multiple heuristic methods to date
latent sequences. In one method, the distance from the closest
sequence to the latent sequence, d, is determined, and the age
of the latent sequence is assigned based on the sample time of
the majority of sequences within 2d of the latent sequence
[14]. A similar method traverses the tree from the latent
sequence towards the root of the tree until a node with 90%
bootstrap support is found with at least one pre-treatment
sequence. Then a latency time is assigned based on the
most common sampling time of the pre-treatment sequences
descendant from the well supported node [14]. The two
methods used by Abrahams et al. may be very sensitive to
the number of sequences sampled and the sampling times.
Simulation studies suggest that LS may out-perform all of
these methods [18,20]. An alternative to these existing
methods could be developed based on established parametric
phylogenetic models that use tip dating for estimating and
calibrating phylogenies of viral data, and are potentially
more accurate [21,22].

It has been difficult to evaluate the statistical performance
of current methods for inferring integration times of latent
HIV since existing simulation methods are biologically unrea-
listic. During the acute phase of infection, viral load grows
exponentially shortly after infection, peaking within several
weeks [23]. Then the viral load falls one to two orders of mag-
nitude before reaching a quasi-steady state. During this
chronic phase of infection, the viral load remains relatively
unchanged or rises only slowly until the onset of AIDS. By
contrast, simulation methods that have been used to evaluate
methods for dating integration events largely ignore the
underlying population dynamics of HIV. Some assume a
constant rate birth–death process while others use a compart-
mental model with logistic growth [16,18]. Epidemiologists
use more complex models, typically ordinary differential
equations (ODEs), to describe HIV viral dynamics [24–26].
These models produce population trajectories that more clo-
sely match empirical observations, especially during acute
infection, but the models have yet to be used in simulations
to generate within-host HIV sequence data. The time period
of acute infection is known to be important in establishing
the latent reservoir [7], and this peak dynamic should be
incorporated into simulation methods used to test inference
methods aimed at estimating latency times.

We propose a full likelihood Bayesian inference method
to infer the latent integration date of HIV sequences, con-
ditional on the phylogenetic tree topology. The method
assumes it is known a priori which sequences are derived
from latent proviruses and which are from non-latent viruses.
This is possible when sequencing RNA from untreated
patients and using QVOAs which stimulate the production
of virus from latently infected cells. Additionally, we develop
a simulation method based on existing viral dynamic models
of HIV to test the performance of the inference method. The
simulation model is parameterized using estimates from
empirical datasets that produce realistic viral population
dynamics (see material and methods) [27].
2. Model
A new program, HIVtree, was developed by modifying an
existing program, MCMCtree, to infer latent integration
dates [21]. MCMCtree is a Bayesian phylogenetic inference
program which estimates a time calibrated tree using viral
sequences with serial samples given a fixed tree topology.
It uses Markov chain Monte Carlo (MCMC) to estimate the
model parameters. HIVtree incorporates additional par-
ameters, the latent integration times, into the model. The
program also estimates the originally defined parameters in
MCMCtree, including substitution model parameters,
substitution rate and the internal node ages.

HIVtree assumes a priori that certain sequences are known
to be latent while others are known not to be. Every sequence
must also have a known sample date. In addition, every
latent sequence has an unknown latent integration date.
The youngest possible latent integration date is the sample
time, and internal nodes cannot be latent. There is an optional
bound on the oldest possible latent integration time, which
could correspond to the oldest possible infection time. The
model assumes that latent lineages have a mutation rate of
zero, and all other lineages follow strict molecular clock.
For calculating the likelihood, the latency time is treated as
if it were the sample date for a non-latent lineage. This acts
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to reduce the tip age to be the time the sequence became
latent (electronic supplementary material, figure S4).

2.1. Markov chain Monte Carlo
HIVtree adds an additional step to the MCMC to estimate the
latent times. In MCMCtree, proposals to non-root internal
node ages are bounded above by the age of the parent
node and below by the age of the oldest daughter node. A
new time for each internal node is proposed within these
bounds, the acceptance ratio is calculated and the move is
either accepted or rejected [21]. In HIVtree, in addition to
bounds on nodes, latent times are bounded above by the
age of the parent node and below by the sample time. This
ensures that the sequence becomes latent before it is sampled
and that internal nodes cannot be latent. If the optional
bound on latent integration times is used, the younger of
the parent node age and the bound is used as the bound.
Similar to MCMCtree, for each latent time, a move is pro-
posed within these bounds, the acceptance ratio is
calculated and the move is either accepted or rejected (elec-
tronic supplementary material, figure S4). Other than the
difference in bounds, the proposal moves for the internal
nodes and the latency times are identical. For the mixing
step, the latency time is treated as equivalent to the sample
date. The mixing step was not modified from MCMCtree
[21]. The implementation was validated with Bayesian
simulations (electronic supplementary material, section S7).

2.2. Prior on distribution of times
Two new root age priors were implemented in HIVtree. HIV-
tree and MCMCtree both require the user to specify the priors
in backward time. The time of the last sample is considered to
be time zero, and earlier times are positive. The programs
also require a specification of a time unit transformation.
For example, consider HIV data with the sample times speci-
fied in days. A time unit of 1000 days means that 0.365 is
equivalent to a year in the prior specification. A shifted
gamma prior, Gða, bÞ, is implemented as the root age prior.
The distribution is shifted by adding the earliest sample
time to the variable. This ensures there is no density for a
root age younger than the sample ages. The gamma distri-
bution parameters must also be chosen with the time unit
transformation going backward in time. An option for a
more informative prior is a uniform prior with narrow hard
bounds (zero tail probability), U (a, b). There is no explicit
prior on the internal nodes ages which is equivalent to a uni-
form prior on the possible node ages given the constraints
from the sampling dates and the root age. This is in contrast
to MCMCtree, which uses a birth–death sequential sampling
prior [21]. Since the sampling prior is not explicit and the
rank order of the nodes and the constraints jointly determine
the prior, the MCMC must be run without data in order to
recover the prior for the internal nodes, latency times and
root age. The distribution of the root age when the MCMC
is run without data will not be equivalent to the user speci-
fied prior (electronic supplementary material, figure S5).
This results from the lack of an explicit prior on the internal
nodes and latency times and from not explicitly conditioning
on the tip ages (electronic supplementary material, section
S13). This effect is similar to constraints imposed by fossil
calibrations [28]. The mean root age will be older than the
expectation of the prior distribution. The parameters of the
gamma distribution can be modified to achieve a desired
mean and variance for the root age. Using a uniform prior
with a wide interval is discouraged due to this effect (an
induced prior age of the root that is very old).
2.3. Combining inferences across genes
HIVtree only allows single locus inferences and assumes no
recombination within a locus. However, recombination is
common in HIV, meaning the whole genome cannot be ana-
lysed assuming a single gene tree topology. However, the
entire HIV genome is incorporated in the host cell genome at
the same time, meaning different regions of genome share
the same latent integration times. Let X = {xi} be sequence
data for n loci, where xi are sequence data at locus i. Let T
be a latency time that is shared across loci. The remaining par-
ameters of the gene tree may be different due to recombination
between loci. The posterior density of T is

f ðTjXÞ ¼ PðXjTÞf ðTÞÐ
PðXjTÞf ðTÞdT :

If we ignore the correlation between gene trees due to limited
recombination and treat the loci as independent, as is generally
done in phylogenetics, the posterior density can be written as

f ðTjXÞ ¼
Qn

i¼1 PðxijTÞf ðTÞ
CA

,

where CA is the marginal probability of the data (which is a
constant),

CA ¼
ðYn

i¼1

PðxijTÞf ðTÞdT:

We want to calculate the posterior probability of T for each
locus separately using MCMC and subsequently combine
them to obtain a posterior density for all the loci. To do this,
we formulate the above equation as a product of the marginal
posterior of T for each locus,

f ðTjXÞ ¼
Yn
i¼1

f ðTjxiÞ
fiðTÞ

� �
� f ðTÞ �

Qn
i¼1 Ci

CA
, ð2:1Þ

where fi(T ) is the prior on T for the ith locus and f(T ) is the
desired prior for the combined posterior. The last term is a pro-
portionality constant that insures the posterior density
integrates to 1. Ci is the marginal probability of the data for
an individual gene,

Ci ¼
ð
PðxijTÞf ðTÞdT:

A simple example illustrating this general approach to com-
bine posteriors using a normal distribution is provided in
electronic supplementary material, section S9.

In our analyses, n independent MCMC analyses are run
(with and without using the likelihood) and kernel density
estimation is used to estimate f(T|Xi) and fi(T ), respectively,
for i = 1,…, n. The estimated kernel functions are then used to
evaluate equation (2.1) up to an unspecified proportionality
constant (see electronic supplementary material). Simulations
were used to evaluate the performance of this approach to
combine posteriors.

This method may be used on regions of the genome that
are not complete genes. For simplicity, the term gene tree will
be used to describe a phylogeny inferred using data from any
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region of the genome, but genomic region will be used rather
than gene to describe a part of the genome that may not
produce a complete functional product.
3. Results
3.1. Simulation analysis
Here, we compare the statistical performance of HIVtree and
several other existing methods when analysing simulated
datasets with known latency times.

3.1.1. Comparisons on a fixed tree topology
HIVtree was compared with three existing methods, LS
dating [20], LR [16] and pseudo-ML [18] using simulated
datasets. The effect of variation among the independently
simulated sequences on point estimates of latent tip ages
can be seen by comparing the estimates for a given latent
tip in a fixed tree. Even with C1V2, the most informative
genomic region simulated, there is considerable variation in
the estimated latency time for a given latent tip (figure 1).
The variation is even larger for the other genomic regions
(electronic supplementary material, figure S13). The esti-
mated times for a single latent tip sometimes differs from
the true value by a decade or more for both the LR and
ML methods. The LS method has fewer extreme estimates,
which are prevented by bounds on the integration times.
LS allows for upper and lower bounds for each individual
latent sequence while ML has the same upper bound on all
latent sequences, which is the last sample time. The LR has
no bounds on the inferred integration time, potentially allow-
ing the latent sequences to be formed either after the
sequence was sampled or before an individual was infected.
Both outcomes are highly unlikely.

3.1.2. Combined inferences across genes
The posterior distribution for each latent time is inferred sep-
arately for each genomic region when using HIVtree. When
the marginal densities are combined across the regions, the
posterior densities become narrower and closer to the true
value (figure 2). The other methods presented here do not
allow such information sharing.

3.1.3. Summary of method performance
Root mean square error (RMSE) is a useful measure of method
performance that includes both bias and variance and is
directly comparable across methods. RMSE is lowest for
C1V2 and highest for tat for all analyses (figure 3a). For
C1V2, the average RMSE among methods, from lowest to
highest, is Bayesian (0.67), LS (0.74), LR (0.77) and ML (0.86).
All the methods are the least biased for C1V2 and most
biased for tat (figure 3b). The average bias for the ML and
LS methods are more negative for the shorter, slower evolving
genomic regions (−1.64 and −0.47 years, respectively, for tat),
while the Bayesian and LR method have a positive bias on
average (0.78 and 0.12 years, respectively, for tat). The trend
for the mean square error (MSE) is similar to the trend for
RMSE (electronic supplementary material, figure S36).

The probability that the true value falls in the 95% confi-
dence interval (or 95% highest posterior density interval for
Bayesian analysis) was also considered (figure 3d). The Baye-
sian method has comparable average coverage probabilities
for C1V2 and nef of 92% and 93%, respectively, with the
lowest coverage probability for tat (89%). The average size of
the 95% credible set for the longest and shortest sequences,
C1V2 and tat, are 2.4 years and 6.9 years, respectively. LR has
the highest coverage, with a coverage probability of 94% for
C1V2 and 95% for tat. However, LR has very large confidence
intervals (figure 3c). The mean sizes of the 95% confidence
interval is 3.4 years and 13.6 years for C1V2 and tat, respect-
ively. By contrast, LS shows lower coverage probabilities but
smaller confidence intervals. LS has its highest average cover-
age probability for nef (87%), but drops to 77% for tat
(figure 3d). For the longest genomic region, C1V2, the average
coverage probability is only 82%. This is likely due to the much
smaller confidence interval size. The size of the 95% confidence
interval is much larger for the LR method than either the LS or
Bayesian methods (figure 3c). The LS and Bayesian methods
have similar size confidence intervals, but the Bayesian
method is more likely to contain the true value in the 95% con-
fidence interval (has higher average coverage probability). The
ML method has the largest RMSE and bias on average for all
regions and does not provide confidence intervals.

For the Bayesian method, when the inferences are com-
bined across all four genomic regions, the average size 95%
credible set is 144 days smaller on average than with C1V2
alone. The average probability the true integration time is
in the 95% credible set is similar to the results for the longest
genomic region. When the two shortest genes, p17 and tat, are
combined, the average size of the 95% credible set is slightly
smaller than with p17 alone (60 days), but the probability the
true value is in the 95% credible set increases from 91% with
p17 alone to 95% in the combined analysis (figure 3c,d ). The
average RMSE is slightly smaller for the combined analysis of
all genes (0.59) than with C1V2 alone (0.67). The average
RMSE is smaller when p17 and tat are combined (1.39) than
with p17 alone (1.53).

3.2. Empirical analysis
We applied each of the four methods to HIV datasets from
two studies of serial sampled HIV sequences. The first data-
set comprises nef sequences for two patients [16]. For each
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patient, plasma HIV RNAwas sequenced multiple times over
a period of almost a decade either pre-treatment or during
incompletely suppressive dual ART. After the initiation of
combination ART (cART), samples from the putative reser-
voir were taken from at least two time points. Samples
consisted of HIV RNA sequences sampled during viral
blips and proviral DNA collected from whole blood and per-
ipheral blood mononuclear cells (PBMC). The second dataset
has three regions of env for both the patients analysed (217
and 257) and gag and nef sequences for one patient (257)
[14]. For both patients, virus was sequenced from the
plasma multiple times over several years prior to ART
initiation. After ART initiation, viral RNA was isolated from
the supernatant of QVOAs.

The inferred latent integration times for the patients in the
first dataset obtained using HIVtree span over a decade
(figure 4), similar to estimates obtained using other methods
(electronic supplementary material, figure S14). However, ML
and LR infer integration times that occur after the sampling
time in some cases (electronic supplementary material,
figure S14). For the second dataset, the point estimates,
especially for the early sample times (11.1 for patient 1 and
17.9 for patient 2), tend to be concentrated near the time of
ART initiation. The combined point estimates for the latency
times inferred using HIVtree appear loosely clustered around
the time ART began for patient 257, with narrower credible
sets than the analyses on individual genomic regions
(figure 5). These patterns for patient 217 are less clear, poss-
ible due to fewer genomic regions and fewer latent
sequences (electronic supplementary material, figure S15).
Sometimes LS gives very large confidence intervals, covering
the entire area between the bounds for a sequence (electronic
supplementary material, figures S16 and S19), while in other
cases the confidence intervals are smaller than LR.
4. Discussion
Here, we have described both a phylogenetic method to infer
latent integration times and a new method to simulate
sequence data based on within-host viral dynamics. While
there is currently only a limited amount of data suitable for
this method, future research will be able to use this tool to
make statistically justified conclusions about latent inte-
gration times. Our method does not directly address how
the composition of the reservoir changes over time and the
rates at which latent sequences enter the latent reservoir.
However, accurate dating of the entry of individual
sequences into the latent reservoir will likely be necessary
to answer these questions.

HIVtree performs better than existing methods by a var-
iety of metrics. The method has smaller credible/confidence
intervals on average than alternative methods, while still con-
taining the true value with high probability, resulting in more
precise interval estimates of the integration dates. The RMSE
of HIVtree was slightly lower on average than the other
methods for the largest gene, the average RMSE is compar-
able across all methods, with a difference of about two
months between the method with the lowest (Bayes) and
highest (ML) RMSE. The larger RMSE for HIVtree for small
regions is likely due to the influence of the uniformative
prior in low information cases which increases bias; more
informative priors based on other sources of information
could help reduce RMSE.

HIVtree has several improvements over existing methods.
It allows for biologically relevant bounds on latent integration
times, such as requiring the latent times be older than the
sample times with an option to bound the integration times
at the time of infection. Among the alternative methods,
only the LS method allows for such bounds. Bayesian infer-
ence also provides a sensible way to combine estimates
across genes or genomic regions, while allowing for potentially
different gene tree topologies due to recombination. This
results in more precise estimates, especially when the
sequences available are short. There is currently no alternative
to the HIVtree method for jointly inferring latency times using
multiple loci, nor is there a clear way to do so. Because each
locus is relatively short, combining information across loci
can greatly improve precision of latency time estimates.
Lastly, Bayesian methods have the advantage, shared by
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other likelihood based methods, of well known statistical prop-
erties, such as statistical efficiency and consistency. By treating
an alignment as data, HIVtree allows for full use of the
available sequence data in the inference, whereas the other
methods only use an inferred phylogenetic tree which may
not be a sufficient statistic.
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The simulation model in the study allows for the possi-
bility of a lineage becoming latent, reactivating and
potentially becoming latent again. However, the inference
model assumes that latency can only occur at the tips of the
tree. It is possible that some of the lineages in the trees
have ancestral periods of latency that are not accounted for
in the inference model. This does not appear to have a
large impact on the results, as the inference method performs
well on average. The simulation model did not include cases
where an individual was on effective treatment and then
ceased treatment. In this case, most of the virus in blood
may be derived from sequences that were latent at some
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point in the past. For this reason, we caution against using
this method for patients with a history of multiple periods
of treatment with periods of uncontrolled viremia in between.

There are several avenues for improvement of HIVtree. In
the current paper, to use data from multiple loci in HIVtree
the marginal distributions for the latent integration times
were combined. A more formal method to combine data
across loci would be to jointly analyse the loci in a single
model, allowing the MCMC to integrate over the node ages
in each of gene trees separately while constraining the latent
integration times to be the same for sequences derived from
an individual infected cell. It would also be better to integrate
over the different tree topologies, rather than fix the tree top-
ology as is done in this method and existing methods. This
would be most easily implemented in a program that accom-
modates multilocus data and estimates gene trees, such as
bpp [29], rather than the parent program of HIVtree,
MCMCtree.

Furthermore, despite the desirability of a diffuse prior on
the node ages and latent times, the prior model in HIVtree
seems to be too informative in some cases. The rank order
of the nodes and the serial sampling cause the average root
age of the phylogeny in the prior to be older than the user
input prior. If the root age is constrained, such as by using
a uniform prior, the latent times are pushed closer to the pre-
sent time by the prior, which introduces a bias to the latent
inferences (unpublished preliminary analysis). This means
that constraining the root age to be close to the true age
can increase the influence of the prior, leading to worse esti-
mates of the latent times. Similar effects driven by constraints
among node ages have been previously noted for fossil cali-
brations and serially sampled data [21,30]. However, the
effects appear to be more pronounced when the root ages
are close to the serially sampled sequences, as can result
from within-host viral data. While there may be quite infor-
mative outside knowledge on the age of the root for HIV,
such as the time of infection, we currently caution against for-
cing the root age to match the infection time when using
HIVtree because this may induce bias in estimates of latent
virus integration times.

The difference between the user input prior distribution on
the root age and the prior observed when running the MCMC
without data appears to be larger with the empirical data than
with the simulated datasets. While the exact cause of this dis-
crepancy is unknown, it may be related to the ladder-like tree
topologies of the empirical data or the sampling times of the
sequences. A different prior may improve some of these limit-
ations. One option would be a serial sample coalescent prior
with changing populations sizes [31,32]. This would also be
more sensible to implement in a program which includes
coalescent models, such as bpp. Such a prior could also
allow for the incorporation of information on viral population
sizes (such as from well described viral dynamic models) and
knowledge of the time of infection.

The viral dynamic simulation method developed in this
paper is based on well-studied models of HIV population
dynamics within hosts. This is likely to be more realistic
than traditional methods used to simulate phylogenies,
such as constant rate birth–death processes, and it follows
standard epidemiology approaches for studying viral
dynamics. However, this model does not incorporate selec-
tion or recombination, which are known to be important in
HIV evolution and effect tree topology. The method produces
trees that are more star-like, with short internal branches,
than those typically inferred in empirical studies of HIV
sequences. Future work should focus on simulating selection
and recombination, as well as other aspects of HIV biology,
such as clonal proliferation of latently infected immune
cells, which may impact tree topology and latent histories.
Additionally, researchers should investigate different priors
for inference that may more accurately model HIV biology
and produce trees that more closely match the empirical
observations, such as the ladder-like nature of many
within-host HIV phylogenies.
5. Material and methods
Here, we provide a brief description of the materials and
methods used in this paper, which are described fully in the
electronic supplementary material.

5.1. Simulation of phylogeny
A stochastic simulation based on existing ODEs was developed to
simulate tree topologies of sampled latent and active HIV
sequences. In the ODE, the sizes of five populations of cells and
viruses are tracked, including uninfected CD4+ target cells,
productively (actively) infected CD4+ target cells, virions, replica-
tion–competent latent cells and replication-incompetent latent
cells (electronic supplementary material, section S1). The start of
ART prevents the infection of new cells. The stochastic model is
formulated as a continuous-time Markov chain with instantaneous
rates as described in the deterministic model (electronic sup-
plementary material, section S2). The process is modelled as a
jump chain. A user specified number of virions and latent cells
are sampled at any number of user specified times.

A C program was written to simulate under the stochastic
model. In addition to simulating population sizes, it tracks the
parent–daughter relationships of all infected cells and viruses
in a binary tree (electronic supplementary material, section S3).
The amount of time latent in each branch is also tracked. The sto-
chastic and deterministic models are in good agreement when
population sizes are large, as expected (electronic supplementary
material, figure S3). The total number of tips in the tree varied
over time. The maximum number of tips in a tree was on the
order of 108 (electronic supplementary material, figure S3).

5.2. Simulation of sequence data
A separate C program was written to simulate DNA sequences
given a sampled tree with branch lengths and a latent history.
Sequences are simulated in the typical manner, assuming inde-
pendent substitutions among sites, starting at the root of the
tree and simulating forward in time towards the tips of
the tree. The simulator accommodates models as general as the
GTR + G substitution model [33,34]. No substitutions can occur
while a lineage is latent. Recombination and indels were not
simulated. Typically, regions with many indels are removed
from alignments. Not including indel in the simulation model
has the likely effect of making the sequences slightly longer
and slightly more informative than if indels were simulated,
but parts of the alignment were removed. The program allows
an outgroup with a node age of zero to be simulated. The
sequence at the root is specified by a FASTA format input file
(from an existing HIV sequence, for example).

5.3. Sampling and simulation parameters
One-hundred trees were simulated using the stochastic simu-
lator. Fifty viruses are sampled every year for 9 years. At year
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9, ART begins. One-hundred latent cells are sampled at year 10.
For each of these 100 phylogenies, 30 alignments for each of four
genomic regions were generated with the DNA simulator using
an outgroup. To determine the DNA substitution parameters,
within-host longitudinal samples from published datasets for
four regions (tat, p17, nef, C1V2) were analysed with MCMCtree
(electronic supplementary material, section S6). The estimated
substitution rate and length varied among the simulated regions,
with C1V2 having the highest substitution rate (μ = 3.56 × 10−5

per base per day) and the most sites (n = 825) and nef having
the next highest substitution rate (μ = 1.34 × 10−5 per base per
day) and number of sites (n = 618). p17 has a slightly lower sub-
stitution rate than tat (μ = 8.9 × 10−6 per base per day versus μ =
9.9 × 10−6 per base per day), but more sites (n = 391 versus n =
132) (electronic supplementary material, table S2). C1V2 had
the lower α for the G rate variation model, meaning it has the
highest variance in the substitution rate among sites. For each
phylogeny and alignment, the sequences and phylogenies were
then subsampled three times to generate three trees and three
corresponding alignments. Specifically, 10 viruses were sub-
sampled every year for 9 years. Twenty were subsampled at 10
years of infection. In total, 300 tree topologies were simulated,
each with 20 latent and 90 non-latent randomly sampled
sequences. This led to a total of 300 topologies × 30 alignments ×
4 regions = 36 000 simulated datasets.

5.4. Maximum likelihood tree inference and rooting
To analyse the simulated datasets a rooted tree topology was
first inferred for use by HIVtree and other heuristic programs.
ML trees were inferred with raxml-ng using an HKY + G model
and outgroup rooted [35,36]. Twenty-five parsimony and
25 random starting trees were used for the tree search. The out-
group was removed from the inferred tree. Both the LS and
Bayesian methods use the outgroup rooted tree. For the ML
method, the tree was re-rooted using root to tip regression avail-
able in the R package ape prior to analysis [22,37]. The LR
method re-roots the tree using root to tip regression as part of
the analysis. For LS, the sampling time was used as an upper
bound for the latent lineages and the lower bound was 45 days
prior to infection, while the active lineages were constrained to
their sampling time. The ML and LR methods do not include
additional constraints.

5.5. Bayesian inference
For HIVtree analyses of simulated data, an HKY + G model was
used with 5 rate categories and the prior k � Gð8, 1Þ [35]. The
prior for among site rate variation was a � Gð4, 8Þ. A time unit
of 1000 was used with a substitution rate prior of Gð2, 200Þ,
meaning the mean was 10−5 per base per day. The root age
prior was Gð36:5, 100Þ. The latent times were bounded at 3.695,
which is equivalent to 45 days prior to infection. Two MCMCs
were run for each analysis to check for convergence. MCMC
lengths and conditions for convergence are described in
electronic supplementary material, section S8).

5.6. Combining posterior estimates from HIVtree
For combining results in Bayesian analyses of the simulated and
empirical datasets, the function kdensity in the kdensity R pack-
age was used for kernel density estimation of the posterior
distribution and the prior distribution of each latent time [38].
The posteriors and priors for each genomic region were multiplied
according to equation (2.1), using a uniform distribution between
the sample time and the upper bound for the oldest possible inte-
gration date as the desired prior. The resulting function was
normalized by finding the proportionality constant using the inte-
grate function. For the simulated datasets, the integral bounds
were set to the bounds on the latent time in HIVtree, which was
the sample time and 45 days prior to infection. The 0.025 and
0.975 quantiles were found using the invFunc function in the R
package GoFKernel [39]. The mean for the joint posterior was
found using the integrate function. For the simulated datasets,
this analysis was conducted on only a third of the trees from the
main simulation analysis due to the highly demanding compu-
tations involved. For a small subset of simulated data, numerical
issues prevented estimation of a combined latent integration
time (electronic supplementary material, section S9b).

5.7. Existing methods
The LR method used scripts available at: https://github.com/cfe-
lab/phylodating This method uses a linear model to estimate
the latent integration dates. The ML method used scripts available
at: https://github.com/brj1/node.dating/releases/tag/v1.2 This
method uses a pseudo-ML approach to estimate the latent inte-
gration times by fixing the mutation rate and then using ML to
estimate the integration dates. The driver script provided by
Jones et al. is available at: https://github.com/nage0178/HIV-
treeAnalysis. The LS method was obtained from: https://github.
com/tothuhien/lsd-0.3beta/releases/tag/v0.3.3 This method uses
a LS approach to minimize the difference between the branch
lengths and sample dates and infer unknown ages.

5.8. Empirical analysis
Datasets published from Jones et al. [16] and Abrahams et al. [14]
required curation prior to analysis. Owing to the large number of
sequences in the Abrahams et al. dataset, sequences were sub-
sampled and alignments were edited due to gaps (electronic
supplementary material, section S11). For all empirical datasets,
raxml-ng was run using an HKY + G model [36]. Twenty-five
parsimony and 25 random starting trees were used for the tree
search. Trees were rooted using root to tip regression using the
rtt function (implemented by Rosemary McCloskey) in the ape
package available in the R package ape prior to analysis
[22,37]. Each of the four methods were run on all datasets.

For the first dataset [16], HIVtree was run with a root age
prior of Gð8, 60Þ for patient 1 and Gð15, 50Þ for patient 2. These
priors were chosen to have an induced prior when running with-
out data with a variance of several years and a mean several
years prior to diagnosis. Latent integration times were bounded
10 years prior to diagnosis, as a very conservative oldest possible
bound. In the HIVtree analysis, an HKY + G model was used
with 5 rate categories with the prior k � Gð8, 1Þ. The prior for
among site rate variation was a � Gð4, 8Þ. A time unit of 1000
was used with a substitution rate prior of Gð5, 1000Þ, meaning
the mean was 5 × 10−6 per base per day. For the LS analysis,
latent integration times had the same bounds of 10 years prior
to diagnosis and the sample times.

For the second dataset [14], the LS and HIVtree analyses
bounded the latent times at the infection times and the sample
times. In the HIVtree analysis, an HKY+G model was used with
5 rate categories with the prior k � Gð8, 1Þ. The prior for among
site rate variation was a � Gð4, 8Þ. A time unit of 1000 was used
with a substitution rate prior of Gð2, 200Þ, meaning the mean was
10−5 per base per day. The root age prior was Gð0:25, 110Þ for all
datasets. This prior was chosen to have a relatively wide variance
on the root age with a mean slightly before the infection time as
well as a large variance on the latent integration times. As described
in the Prior Model section, the root ages are older than the given
prior when run without data, and they are also different for
each dataset. When running the MCMC under the prior, small
changes to the prior appeared to cause little change to the
posterior distribution of the latent integration times. A full descrip-
tion of the MCMC convergence criteria is provided in electronic
supplementary material, sections 10 and 11 for the first and

https://github.com/cfe-lab/phylodating
https://github.com/cfe-lab/phylodating
https://github.com/brj1/node.dating/releases/tag/v1.2
https://github.com/nage0178/HIVtreeAnalysis
https://github.com/nage0178/HIVtreeAnalysis
https://github.com/tothuhien/lsd-0.3beta/releases/tag/v0.3.3
https://github.com/tothuhien/lsd-0.3beta/releases/tag/v0.3.3
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second datasets, respectively. The first dataset only sampled one
gene, so estimates from multiple genes could not be combined.
The estimates frommultiple genomic regions for the second dataset
were only combined for the tree with 10 non-latent sequences per
sampling time and sites with gaps in over 75% of the sequences
were removed from the alignment.

Program availability. The gene tree and the DNA simulation software
packages are available at: https://github.com/nage0178/HIVtreeSimu-
lations. The HIVtree software package is available at: https://github.
com/nage0178/HIVtree. Scripts to produce the results in this paper
are available at: https://github.com/nage0178/HIVtreeAnalysis.

The data are provided in electronic supplementary material [40].
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