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Parameter Identification of Framed Structures Using An Improved 

Finite Element Model Updating Method—Part I: Formulation & 

Validation 

Eunjong Yu1, Ertugrul Taciroglu2,*, and John W. Wallace2 

1Department of Architecture, Seoul National University, Seoul, Korea 
2Department of Civil & Env. Engineering, University of California, Los Angeles, CA, U.S.A.  

ABSTRACT 

In this study, we formulate an improved finite element model updating method to address the 

numerical difficulties associated with ill conditioning and rank-deficiency. These complications 

are frequently encountered model updating problems, and occur when the identification of a 

larger number of physical parameters is attempted than that warranted by the information content 

of the experimental data. Based on the standard Bounded Variables Least-squares (BVLS) 

method, which incorporates the usual upper/lower-bound constraints, the proposed method 

(henceforth referred to as BVLSrc) is equipped with novel sensitivity-based relative constraints. 

The relative constraints are automatically constructed using the correlation coefficients between 

the sensitivity vectors of updating parameters. The veracity and effectiveness of BVLSrc is 

investigated through the simulated, yet realistic, forced vibration testing of a simple framed 

structure using its frequency response function as input data. By comparing the results of 

BVLSrc with those obtained via (the competing) pure BVLS and regularization methods, we 

show that BVLSrc and regularization methods yield approximate solutions with similar and 

sufficiently high accuracy, while pure BVLS method yields physically inadmissible solutions. 

We further demonstrate that BVLSrc is computationally more efficient, because, unlike 

regularization methods, it does not require the laborious a priori calculations to determine an 

optimal penalty parameter, and its results are far less sensitive to the initial estimates of the 

updating parameters. 

                                                 
* Corresponding author: E. Taciroglu, Assist. Professor, (310) 267-4655, etacir@ucla.edu. 
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1. INTRODUCTION  

The true dynamic response of a structure obtained from vibration measurements generally 

displays significant discrepancies with the responses estimated using a highly idealized 

parametric model. “Finite Element (FE) model updating” is an analytical procedure for 

minimizing this discrepancy by adjusting, for example, the stiffness, mass, and/or damping 

parameters of the discrete numerical model. As such, model updating techniques are useful tools 

for assessing the health or performance of a structure, and for validating or improving the 

modeling assumptions. 

There are two main categories of FE model-updating methods proposed to date. In methods 

belonging to the first category, the coefficients of the system (e.g., stiffness and/or mass) 

matrices that comprise the analytical model are directly updated, generally using modal data [1-

3]. These are called the “direct methods,” since no iteration is needed in the updating 

computations. Although direct methods can reproduce the measured response quite accurately, 

they have the drawback of being based on updated quantities that are not directly related to the 

design parameters (e.g., the stiffness values of individual members) of the FE model. Therefore, 

it is often difficult to assign physical meanings to the changes made to the initial FE model 

matrices. The methods in the second category are referred to as “iterative methods,” whereby the 

system matrices of the structure are defined as explicit functions of a selected set of parameters 

(called “updating parameters”), and subsequently, their optimal values are sought by minimizing 

an objective function [4]. The basic form of an objective function is an error norm, defined as the 

sum of squares of the differences between estimated and measured response quantities. When the 

updating parameters are selected to represent physical (material or geometric) properties of the 

structure, their final (converged) values can be directly interpreted using the updated FE model. 
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The quantities used for constructing the objective function can be modal or frequency response 

function (FRF) data or both. Although modal data (i.e., the natural frequencies and mode shapes) 

are frequently used in updating procedures [5-7], the use of FRF data has several distinct 

advantages. To wit, (i) identification errors can be avoided through the use of FRF data, as 

system identification analysis is circumvented; and (ii) the FRF data contains information from 

all modes of the structure. The use of modal data is further complicated when a mode has high 

damping and/or modal density or when more than two modes are closely spaced, because 

identification of modal properties in such cases is extremely difficult [8]. 

Even for iterative methods, physically admissible solutions are not always attainable; and the 

results strongly depend on the selection of updating parameters. This phenomenon manifests 

itself as the “rank deficiency” or “ill conditioning” of the sensitivity matrix used in the updating 

equations. Rank deficiency occurs when information is insufficient to yield a unique solution to 

the model-updating problem, whereas ill conditioning occurs when the system response is 

insensitive to some of the updating parameters or when they have similar effects on the system’s 

response [4, 9]. Consequently, it is generally not possible to obtain accurate parameter values in 

ill-conditioned or rank-deficient problems using basic model updating techniques. 

There are two major approaches to avoid the aforementioned numerical difficulties. In the first 

approach, a sufficiently small number of updating parameters are selected in order to reduce the 

possibility (or, at least, the order) of rank deficiency and ill conditioning. However, it is 

generally difficult to determine the suitable (optimal or pareto-optimal) subset of parameters 

from numerous potential candidates—requiring engineering judgment, and/or trial-and-error. 

When the number of chosen parameters is too small, it often becomes very difficult to make 

plausible physical explanations to their updates, and as such, the main advantage of iterative 
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methods is significantly weakened. The second approach is to obtain an approximate solution in 

a “minimum-norm sense,” using a regularization technique. This alternative is preferred when 

the set of candidate updating parameters is large. Nonetheless, as the solutions depend on a 

regularization factor and the initial guess of the updating parameters—both of which are 

unknowns—evaluation of solutions from repetitive computations (by varying the two sets of 

unknowns) is needed to attain results with sufficient confidence. This additional computational 

task renders the model-updating problem intractable for even moderately complex structures.  

In this study, we propose an improved iterative FE model updating method based on the 

Boundary Variable Least Square Method (BVLS) [10]. In addition to (conventional) absolute 

bounds for the updating parameters, we impose relative constraints to any pair of parameters that 

have similar effects on the system response using the correlation coefficient between their 

sensitivity vectors. The proposed updating method is iterative, and thus, enables the direct 

identification of the properties of individual members of building structures. In what follows, we 

first present the formulation of this novel method—capable of using FRF and/or modal data as 

input—followed by its validation using a simulated, yet realistic, forced-vibration testing of a 

simple multi-degree-of-freedom structure. We demonstrate the advantages of the proposed 

method by comparing its predictions with those of existing methods. The application of the 

method—developed and validated in this article—to data obtained from forced-vibration tests of 

a four-story reinforced concrete building that we have recently conducted is presented in the 

companion manuscript [11].  

2. FORMULATION  

2.1 Sensitivity based updating equation 

The equation of motion of a system with n degrees-of-freedom can be expressed in the frequency 
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domain as,   

 ( ) ( ) ( )ω ω ω=B x f  (1) 

where 

 2( ) iω ω ω= − + +B M C K , (2) 

 ( )  ( )fω ω=f l . (3) 

Here, ( )ωB  is the dynamic stiffness matrix, and M, C and, K are ( )n n×  mass, damping and 

stiffness matrices of the system, respectively; ( )ωx  is the ( 1)n×  frequency response vector, and 

( )ωf  is the forcing function vector in the frequency domain described by the scalar external 

force ( )f ω  and the ( 1)n×  influence vector l  indicating the DOF being excited by ( )f ω . In Eq. 

(1), input ( )ωf  and output ( )ωx  may be replaced with the influence vector l  and transfer 

function vector ( )ωH , respectively, since transfer functions are commonly used to express the 

dynamic properties obtained from a test, instead of using input and outputs individually. By 

definition, transfer function vectors are equivalent to the outputs (responses) of system from the 

unit (whitenoise) input to the excitation DOF specified by l . Thus, Eq. (1) can be converted to 

 ( ) ( ) = ω ωB H l . (4) 

The dynamic stiffness matrix ( )ωB  can be replaced with its analytical counterpart ( , )ωB p , 

which is an explicit function of a set of (updating) parameters 1 2[ , , , ]T
kp p p=p  that are used 

in constructing the structural matrices M, C, and K through a finite element model. Similarly, 

the transfer function ( )ωH  can be replaced with ( )ωH  that is obtained experimentally (from 

measured input and outputs). As such, we can define the FRF error vector as  
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 ( , ) ( , ) ( )F ω ω ω−ε p = B p Hl . (5) 

Upon choosing a set of frequency points { }1 2, , mω ω ω  where we sample the error vector in Eq. 

(5), we can define the overall FRF error vector as 

 1 2( ) ( , ), ( , ), , ( , )
TT T T

F F F F mω ω ω ≡  e p ε p ε p ε p . (6) 

We then seek an optimal parameter vector that minimizes an objective function that is 

constructed using an appropriate norm (Euclidean norm in this study) of the error vector. The 

formal problem statement then becomes 

 21( ) min ( )
2F Fe ≡

p
p e p . (7) 

Notwithstanding the fact that this statement can be augmented with constraints (which shall be 

discussed later), the optimal solution is obtained by determining the root(s) of the gradient of the 

objective function in Eq. (7) with respect to the updating parameters p, to wit, 

 ( ) ( ) ( )F F Fe∇ =∇ =p pp e p e p 0 . (8) 

Depending on the finite element model, the preceding set of equations is generally nonlinear 

with respect to the updating parameters, and a solution can be obtained via Newton’s method by 

linearizing them. To simplify the presentation, let us first rename 

 ( , ) ( , ) ( )j j jω ω ω≡d p B p H  (9) 

from which it follows that,  

 1 2( ) ( , ), ( , ), , ( , )
HH H H

F mω ω ω ∇ ≡ − ∇ ∇ ∇ p p p pe p d p d p d p , (10) 
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and thus 

 

( )
( )

( )

1 1

2 2

( , ) ( , )
( , ) ( , )

( )

( , ) ( , )

H

H

F

H
m m

e

ω ω
ω ω

ω ω

 ∇ −
 ∇ − ∇ ≡ − = 
 
∇ −  

p

p
p

p

d p d p
d p d p

p 0

d p d p

l
l

l

 (11) 

where the superscript (.)H  denotes a complex conjugate transpose. By linearizing a typical term 

{ }1, 2, ,j m∈  in this vector, about the parameter vector at the current iteration ( )νp , and by 

neglecting the second-order derivatives—thereby adopting a Gauss-Newton approach—we 

arrive at 

 ( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ∆H H
j j j j

ν ν ν νω ω ω ω ∇ − −∇ ∇ = p p pd p d p d p d p p 0l . (12) 

Thus, the combined linearized equations (12) become 

 ( ) ( ) ( ) ( )∆H H
F F F F
ν ν ν ν=S S p S r  (13) 

where we have defined the complex-valued FRF sensitivity matrix, and the residual vector for 

the full set of frequencies as 

 

( ) ( ) ( ) ( )

,1 1 1 ,2 1 1 , 1 1 1 1

( ) ( ) ( ) ( )

,1 2 2 ,2 2 2 , 2 2 2

( ) ( ) ( )

,1 ,2 ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,

k

k

m m m m k m m

F F

ν ν ν ν

ν ν ν ν

ν ν ν

ν ν

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω ω

−

−

 
 
 ≡ = 
 
  

B H B H B H B H

B H B H B H B

B H B H B H

S r

l

l 2

( )

( )

( ) ( )m m

ν

ω

ω ω−

 
 
 
 
 
  

H

B Hl

.  (14) 

Note that each of the terms in Eq. (14) are defined as Eq. (15) using a frequency point ω j  within 

1 2{ , , , }ω ω ωm  
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( )

( ) ( ) ( )
,

( , )
( ) ( , ), ( ) j

j j i j
ip ν

ν ν ν ω
ω ω ω

=

∂
≡ ≡

∂
p p

B p
B B p B  (15) 

 with 

 ( ) 2 ( ) ( ) ( )
, , , ,( )i j j i j i iiν ν ν νω ω ω= − + +B M C K . (16) 

A second objective function—in addition to that given in Eq.(13)—can be constructed for model 

updating, which is a measure of the discrepancy between the natural frequencies obtained via 

modal system identification, and those of the finite element model. Omitting the intermediate 

steps for brevity, the resulting iterative equations (again, in a Gauss-Newton sense) can be stated 

as, 

 ( ) ( ) ( ) ( )∆T T
M M M M
ν ν ν ν=S S p S r  (17) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )
, 1 , 2 ,, , , ,M k M

ν ν ν ν ν ν ≡ = − S Ω Ω Ω r Ω Ω . (18) 

The vectors Ω  and ( )νΩ  denote the natural frequencies obtained from the experimental data 

(modal system identification) and those of the analytical model, evaluated at the iterative value 

of the updating parameter vector ( )νp , respectively. The vector ( )
, i
νΩ  represents the sensitivity 

(partial derivative) of the analytical natural frequencies with respect to pi, and ( )
M
νr  is the residual 

vector between the measured and analytical natural frequencies for the current estimate. Because 

it is not generally possible to identify the natural frequencies of all modes accurately from 

measured data, the analytical natural frequency vector is typically truncated to contain only the 

counterparts of experimental natural frequencies that were determined with sufficient 
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confidence.  

Both of the aforementioned (FRF and modal) objective functions can be combined to improve 

the accuracy of the model updating solutions. To wit, we have 

 ( ) ( ) ( ) ( )∆T Tν ν ν ν=S S p S r  (19) 

where the combined (2 )mn q k+ ×  sensitivity matrix ( )νS , and the (2 ) 1mn q+ ×  residual vector 

( )νr  are defined as 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

Re( ) Re( )
Im( ) , Im( )

F F

F F

M M

ν ν

ν ν ν ν

ν ν

   
   ≡ ≡   

     

S r
S S r r

S r
 (20) 

with m, n, q, and k denoting the numbers of frequency points, degrees-of-freedom, selected 

natural frequencies, and updating parameters, respectively. Note that, we separated the real and 

imaginary parts in Eq. (13) in order to get rid of the complex conjugate transpose operation, and 

combined them with Eq. (17) to obtain the overall objective function given in Eq. (19). 

The relative contributions of the two objective functions (based on FRF and modal data) can be 

adjusted using a weighting matrix. Since the terms from FRF data occupy a vast majority of the 

elements of the sensitivity matrix, larger weighting factors should be assigned to the modal data 

(otherwise, the modal data may not contribute to the updating process). A weighting matrix also 

allows the analyst to assign different weighting factors to each DOF depending on their relative 

perceived importance. The weighted version of Eq. (19) is given by,  

 ( ) ( ) ( ) ( )∆T Tν ν ν ν=S WS p S Wr  (21) 

where W is a diagonal matrix containing the weighting factors. It follows that Eq. (21) is iterated 
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using the sequence of approximations 

 ( 1) ( ) +∆ν ν+ =p p p  (22) 

until convergence is achieved. 

2.2 Selection of the updating parameters for building structures   

In order to expect a direct relationship between the updating parameters and the analytical 

model, the relevant parameter set must be consistent with the assumptions under which the 

analytical model is established. Here, we shall adopt the conventional assumptions used to model 

building structures; i.e., (i) mass is lumped at the floor levels; (ii) floor diaphragms are rigid in 

their plane; and (iii) the damping is classical (mode-proportional). Given these assumptions, 

system matrices are typically constructed through a static condensation of full matrices (M, C, 

K) based on the aforementioned assumptions. Parameters that influence the condensed matrices 

of a typical (three-dimensional) building structure are discussed next.  

2.2.1 Mass parameters 

Based on the assumption of a rigid diaphragm, the in-plane motion of all points within the 

diaphragm is defined using two horizontal translations and the rotation about the vertical axis. 

The mass matrix of a story which has three dynamic degrees-of-freedom can be expressed in 

terms of the translational story mass (mt) and the story mass moment of inertia (I0) lumped at the 

center of mass (CM) of a given floor level as 

 1
2

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0 0 1

T
xx xy xr CM t CM

yx yy yr CM t CM

rx yr rr t

m m m y m y
m m m x m x
m m m m r

  − −     
       = =       
             

M  (23) 

where 0 tr I m=  is the radius of gyration of story mass at its CM and CMx , CMy  denote the 
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distance to the CM from the reference point. It follows from Equation (23) that four distinct 

parameters are needed to describe the terms of the mass matrix of a given floor, and thus, the 

associated (mass) updating parameter vector is  

 [ ], , , T
M t CM CMm r x y=p  (24) 

Since the connectivity relationships between the mass parameters and the coefficients of the 

global mass matrix are known, as in Eq. (23), the sensitivity terms are easily calculated, i.e.   

 2 2 21 ,     ,     ,    etc.xx xr rr
CM CM CM

t t t

m m my x y r
m m m

∂ ∂ ∂
= = − = + +

∂ ∂ ∂
 (25) 

These presented results (for a single story building) can easily be extended to obtain the mass 

matrix of an n-story building, i.e.,  

 [ ]1 2, , ndiag=M M M M  (26) 

and its associated sensitivities. 

2.2.2 Stiffness parameters 

In a “condensed model” approach, whereby the beams and slabs are assumed to be rigid along 

the in-plane directions but not along the out-of-plane direction, a global stiffness matrix 

incorporating the vertical displacement and two (out-of-plane) rotations of each joint, in addition 

to the three rigid-body motions (in-plane) at each floor level, is formed first, and subsequently 

reduced to a condensed matrix for dynamic analysis. The flexural, shear, torsional and axial 

stiffness values of each structural member are all independent variables influencing the stiffness 

matrix of the system, and thus may be selected as updating parameters. However, assigning a 

single set of parameters to a particular type of structural members in a plane frame is deemed a 
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reasonable approach, as it simultaneously reduces the problem size and enhances numerical 

conditioning of updating matrices. For example, the stiffness contributions of two columns with 

equal dimensions and similar boundary conditions in a plane frame will be nearly identical. 

Clearly, assigning different parameters to two such columns will yield rank-deficient or, at best, 

ill-conditioned updating matrices. Thus, it is appropriate to select stiffness updating parameters 

as 

 _ _ _ _, , ,
T

K k flexual k shear k torsional k axial =  p p p p p , (27) 

which represents the combined stiffnesses of a single type (or class) of member in each plane 

frame. In practice, only the major contributors to the stiffness (i.e., the flexural stiffness of 

columns or slender beams, or shear and flexural stiffnesses of short shear walls) are selected to 

be the updating parameters, while the effect of others terms that are considered negligible in 

comparison are ignored. 

As per the preceding discussion, the global stiffness matrix, GK , is partitioned into four 

sub-matrices, and condensed using the transformation matrix derived from the appropriate 

operations on its sub-matrices as in 

 mm mo
G

om oo

 
=  
 

K K
K

K K
,            1 1

T

GT T
oo mo oo mo
− −

   
=    − −   

I I
K K

K K K K
. (28) 

All of the sub-matrices in GK  are functions of stiffness of structural members (i.e., columns, 

beams, etc.) Therefore, if the stiffnesses of the structural members are selected as updating 

parameters, the terms of the sensitivity matrix (i.e., the derivative of the condensed stiffness 

matrix with respect to the updating parameters) will be highly nonlinear functions because the 
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simple connectivity rule that existed in the global stiffness matrix is destroyed due to 

condensation. Given this, expressing the sensitivity of each term with an analytical expression, as 

it was the case for the mass matrix, is nontrivial. As such, the stiffness sensitivity matrix has to 

be computed numerically, typically using a FE analysis program.  

2.2.3 Damping parameters 

The (classical) damping matrix C is defined as  

 [ ] 12T− −≡C Φ ΞΩ Φ  (29) 

where Ξ  is the diagonal matrix containing modal damping ratios. The modal (Φ ) and spectral 

(Ω ) matrices contain the mass normalized mode shapes and natural frequencies, respectively, 

and are functions of the mass and stiffness matrices. Thus, the modal damping ratios comprise 

the only independent variables in Eq. (29), and thus, may be chosen as the updating parameters 

 [ ]1 2, , , T
D nζ ζ ζ=p . (30) 

2.3 Rank deficiency and ill-conditioning 

As previously mentioned, the dynamic behavior of a real structure obtained from vibration 

measurements and that estimated from a highly idealized FE model usually display significant 

discrepancies. These discrepancies mainly occur as a result of (i) measurement errors associated 

with sensor noise, (ii) numerical errors in data processing or calculations, (iii) modeling errors 

due to inappropriate idealization (e.g., inexact boundary conditions) of the structure, and (iv) 

parameter errors due to inaccurate material properties and geometric data for elements in the FE 

model. To a certain degree, the measurement and numerical errors are inevitable when collecting 

and processing experimental data (e.g., decimation, smoothing, filtering, etc.); and addressing 

these types of errors are not considered in this study.  
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However, updated parameters are not always physically admissible, even when the structure is 

modeled based on an appropriate idealization (modeling assumptions) and the measurement and 

numerical errors are believed to be reasonably small. This is because the optimal parameter set 

that minimizes the objective function within a normal range of the residual error is non-unique. 

This non-uniqueness happens when the number of selected updating parameters is larger than the 

number of measured response quantities [12]. Numerically, this aforementioned spatial 

incompleteness renders the updating procedure to be equivalent to a rank-deficient (or, at best, an 

ill-conditioned) least-squares problem as the sensitivity matrix becomes singular or nearly 

singular.  

One approach to avoid this type of numerical difficulty is to select a sufficiently small number of 

updating parameters [4]. The selected parameters should have significant and, to the largest 

extent possible, distinct effects on the system response. While this information can be deduced 

from a separate sensitivity analysis, it is not easy to decide the specific subset of suitable 

parameters (from among numerous candidates). Furthermore, reasonable estimates for the values 

of unselected parameters are still needed to obtain a good solution to the updating problem. The 

said choice is generally made through a process of subset selection, whereby response residuals, 

corresponding to candidate subsets of parameters, are evaluated and compared against each other 

[13].  The drawback of this approach is that the number of candidate parameter sets, that need to 

be tested, grows rapidly as the size/detail of the initial finite element model is increased. 

Alternative approaches to addressing the numerical difficulties are seeking (i) “minimum-norm” 

solutions using singular value decompositions, or (ii) approximate solutions using an appropriate 

regularization technique. The regularization approach is a generalized form of the 

minimum-norm approach that has been widely used for model updating [5-7]. Simply put, a 
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“minimum-norm” solution is a minimizer of the objective function (among all of the non-unique 

minimizers) that is closest to the initial guess of the updating parameters. Unfortunately, there is 

no guarantee that a minimum-norm solution will be physically more meaningful than the other 

minimizers of the objective function. In the more general—yet essentially identical—

regularization approach, any drastic deviation of updating parameters from their initial 

(estimated) values is suppressed by a penalty function—comprising a regularization parameter, 

and a set of side constraints—under the assumption that the initial model is already a reasonable 

approximation. To wit, the original objective function ( )e p  is augmented as in   

 22( ) ( )J e λλ= +p p B p  (31) 

where, λ  is the regularization parameter, and λB  is a matrix with a rank that is equal to the 

number of updating parameters. As Eq. (31) indicates, solutions using the regularization are 

dependent on the regularization parameter and the initial estimates of updating parameters. The 

value of the regularization parameter is chosen to give a suitable balance between the original 

objective function and the side constraints. A number of regularization methods are suggested 

(and demonstrated to be useful) in the literature for the solution of ill-conditioned least-squares 

problems [14-17]. We shall make use of these methods later in our validation studies. 

In a fundamental sense, the minimum-norm, and the regularized solutions suffer from the same 

issues as the first approach does. Specifically, repetitive analyses are needed (so that the 

minimizer that is closest to the initial guess is confidently identified) in case the minimum-norm 

approach is adopted; and, the side constraints as well as the value of the regularization parameter 

have to be based on judgment (and hence the experience of the analyst) and/or determined 

through laborious a priori computations in case the regularization approach is adopted. 
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In the following section, we propose sensitivity-based relative constraints to the objective 

function to obtain solutions to the updating problem that are as reasonable as those obtained 

using a regularization approach; however, the proposed constraints do not require any a priori 

assessment of the relative sensitivity of the structural response with respect the updating 

parameters by the analyst to maintain the well-conditioning of the updating matrices.  

2.4 Solution of the updating equation using a novel type of constraint 

As mentioned earlier, the conventional least-squares solution produces unbounded results to ill 

conditioned model-updating problems. Usually, ill conditioning causes big changes in a few 

parameters from their initial values when they have similar effects on the system response. 

Consequently, the obtained parameters have large variations, and their extreme values cannot be 

explained in a physical sense. Here, we add two kinds of constraint conditions to the least-

squares problem in order to overcome this problem. The first constraints are the, usual, upper and 

lower bounds that restrict the optimal solution within a “feasible domain.” The solution to such 

constrained least-squares problems is achieved through the Bounded Variables Least-Squares 

(BVLS) technique [10], which determines the solutions that satisfy the two-sided inequality 

constraints for each parameter given as  

 ( )  ν≤ + ∆ ≤p p p p  (32) 

where p  and p  denote the lower and upper bounds vectors, respectively, which are usually 

based on physical considerations. We propose additional constraints that restrict the deviation of 

two parameters that have similar effects on the system response, i.e., 

 1 cor( , ) ,     if  cor( , )i j i j i j limp p c− < − >S S S S . (33) 
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Eq. (33) represents the constraints placed on the relative variations between any two parameters, 

where iS  and jS  are the sensitivity vectors (i.e., the i-th and j-th columns of the sensitivity 

matrix S) with respect to the updating parameters pi and pj, respectively. The term cor( , )i jS S  

denotes the coefficient of correlation between the vectors iS  and jS . Therefore, if two 

parameters have similar effects on the response (i.e., the coefficient of correlation is larger than a 

given limit limc ), then the difference between the two updated parameters is restricted to remain 

within a range that depends on their degree of similarity. This requirement forces the updating 

parameters to change similarly (between iterations) if they have similar effects on the structural 

response. The least-squares solution of Eq.(21), subject to the constraints provided in Eqs. (32) 

and (33), can be achieved using the standard Bounded Variables Least Squares (BVLS) 

technique. As such, we shall refer to the proposed iterative method for model updating as the 

BVLSrc method, where “rc” stands for “relative constraints.” 

3. VALIDATION OF BVLSrc 

In this section, we investigate the effectiveness and the veracity of BVLSrc through a simulated 

forced-vibration test of a two-story frame building with an L-shaped floor plan, as shown in 

Figure 1.a. We arbitrarily vary the stiffness properties of structural members, and attempt to 

estimate their values using three types of FE model updating techniques: namely, the BVLSrc 

(proposed), regularization, and pure BVLS methods. We then compare the accuracy of the 

estimations of these methods. For brevity, we shall carry out model updating using FRF data 

only, and by selecting the updating parameters to be only the stiffness factors associated with the 

flexural stiffness of columns and beams in the building. Other (e.g., shear, axial, and torsional) 

stiffness properties, mass properties, and modal damping ratios can also be selected as updating 
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parameters, but their values will be fixed in this numerical investigation to simplify the 

comparison of methods. The use of the more general form of the proposed model updating 

technique (BVLSrc) is deferred to the companion paper [11] in which a larger set of updating 

parameters are included, and the model updating is performed using both the FRF and modal 

data of a real building, simultaneously.  

3.1 Description of the simulated forced vibration test   

Figure 1.b displays the roof floor plan of the simulated structure, the location where the 

excitation (input) is applied and its direction, and the reference point where the response (output) 

is measured. The building has an asymmetrical plan, and thus, the input generates a reasonably 

general dynamic response (i.e., two lateral translations as well as rotation about the z-axis).  

Simulation of the forced-vibration tests of the example building is performed using the 

proprietary finite element analysis program, SAP2000 [18]. Stiffnesses of the slabs are not 

included in the model, but their masses are accounted for. The modulus of elasticity (E) of the 

material comprising the beams and columns is assumed to be 24821 MPa. All beams are 46 cm 

deep and 25 cm wide, and all columns are 46 cm by 30 cm. Flexural stiffnesses of members are 

given by the product of the gross section properties and varied flexural stiffness factors.  

The effective flexural stiffness factors (i.e., the multipliers to gEI  for the beams and columns) 

are chosen as updating parameters. Following nominal assumptions, we group them by member 

type, by story, and by the plane frames to which they belong. To wit, as illustrated in Figure 2, 

the beams and the columns are divided into 12 groups each (i.e., 3 plane frames ×  2 directions (x 

and y) ×  2 stories). Arbitrary values ranging from 0.3 to 1.15, as shown in Table 1, are assigned 

to be the actual (“true”) effective stiffness factors (multipliers) for each group. These variations 
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may be thought of as a consequence of uncertainty in the values of material properties, 

construction tolerances, and/or the degree of concrete cracking. The actual stiffness values for a 

real building may be scattered even within a group of members; however, this is a reasonable 

simplifying assumption to assess the capability of the three updating methods by comparing the 

converged updating parameters that they yield with the true values.  

Adopting the “lumped mass” and “rigid in-plane diaphragm” assumptions discussed earlier, the 

building is represented by a six degree-of-freedom system—i.e., two translational and one 

rotational degree-of-freedom per floor—for dynamic analysis. The mass matrix with respect to 

the reference point is evaluated using the assumed self-weights of the building and the 

superimposed loads. The undamped natural frequencies of the building—calculated using the 

mass and stiffness matrices—are provided in Table 2. 

Transfer functions (i.e., experimental FRF data for model updating), were evaluated from story 

displacements (outputs) due to a whitenoise-type forcing function (input) via SAP2000. Six 

channels of output (i.e., one rotational and two translational components of story displacements 

in each floor) were obtained at the reference points, and the input force was transformed to an 

equivalent one at the reference point. The whitenoise-type forcing function, comprising 16384 

samples in 0.02 sec intervals, was obtained by bandpass-filtering of random numbers with cut-

off frequencies 1Hz and 10Hz. This type of broadband excitation can be generated using a linear 

inertial shaker [11]. The input force was applied at the B1 column on the roof, with an angle of 

o45  with respect to the x-axis, as shown in Figure 1.b.  

A damping ratio of 5% was assumed for all modes. To simulate measurement errors, a random 

noise corresponding to 5% of the maximum amplitude of the signal was added to both the input 
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and output streams. Transfer functions for each direction were evaluated as the ratio of the cross-

spectral density ( xfS ) between input and output to the auto-spectral density ( ffS ) of input as in  

 ( ) ( )( )
( ) ( )

xf

ff

S x fH
S f f

ω ωω
ω ω

= = . (34) 

The Matlab [19] command tfestimate was used for calculating the transfer functions. 

Evaluations were made at 1024 frequency points ranging from 0Hz to 25Hz at 0.0488 Hz 

intervals, and the curves were smoothed using a Hanning window [20] and signal averaging. 

From the obtained curve (henceforth referred to as the “experimental curve”), 164 frequency 

points between 1Hz to 9Hz were selected for updating. Figure 3 shows the experimental FRF 

data points and the theoretical FRF curves calculated using the system matrices. 

As discussed earlier, when the system matrices are obtained by static condensation, the 

condensed stiffness matrix is a nonlinear function of the updating parameters—in this particular 

case, the effective stiffness factors of structural members. Consequently, it is not trivial to 

express their relationships as closed-form functions. Thus, sensitivities of the system matrices 

with respect to the updating parameters, given in Eq. (16), were evaluated numerically using 

finite differences (i.e., using their rates of change to small perturbations in their values). For this 

purpose, a separate Matlab code was implemented that generates the three-dimensional 

condensed stiffness matrix of the example building, and calculates the terms of the sensitivity 

matrix using perturbations. This code was integrated with the Matlab code used for the updating 

computations to create an efficient solution process. 

3.2 Normalization of data and the updating parameters   

The initial values of the updating parameters were all assumed to be equal to one, and the 



 
21

updating calculations were performed with normalized (by the flexural stiffness based on gross 

section, gEI ) stiffness quantities. This type of normalization is commonly used to avoid 

ill-conditioning due to the differences in the relative magnitudes (units) of parameters [4]. 

Additionally, the translational components of story displacements were divided by a factor of 7.5 

before the evaluation of experimental FRF curves from measured data, so that they have similar 

spectral amplitudes with the rotational components. A similar scaling was applied to the 

analytical model by dividing and multiplying the said factor to translational and torsional 

coefficients of system matrices, respectively. The condition number of initial sensitivity matrix 

in this example was reduced from 2.46×1014 to 3.85×1013 by the scaling as stated above. 

The aforementioned normalization of updating parameters, scaling of experimental data and the 

system matrices model are not only essential for improving the initial conditioning of the model 

updating problem, but also for the efficient use of relative constraints given in Eq. (33). Of 

course, the aforementioned initial normalization operations are not a cure for the ill conditioning 

that results from spatial incompleteness. As it will be demonstrated in the following sub-sections, 

the proposed relative constraints in Eq. (33) alleviate the problem of ill-conditioning in the 

updating computations.  

3.3 Constraints, weights, and regularization  

For all (i.e., pure BVLS, BVLSrc, and regularization) methods, the weighting matrix in Eq. (21) 

was set to identity, and the standard Matlab command lsqlin was used as the solver. For 

BVLS and BVLSrc methods, the absolute lower and upper bounds for all of the (normalized) 

updating parameters were chosen to be 0.15, and 1.5, respectively. For BVLSrc, the value for 

limc  in Eq. (33) was set to 0.5. Because the coefficient of correlation varies from -1 to 1, and the 
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feasible domain is set to be [ ]0.15,1.5 , the range of relative constraints is [ ]0.0, 2.0  (i.e., wider 

than the absolute constraints). Thus, the possibility of constraining two parameters with low 

correlation is eliminated.  

For the regularization method, the iterative model updating equations—obtained by linearizing 

Eq. (31) with respect to the updating parameter vector p—are 

 2 ∆T T T
λ λλ + = S S B B p S r . (35) 

We set the side-constraint matrix λB  to identity as per Nakte [17], and tested various 

regularization parameters ranging from 0.134 to 13.4 to determine its optimal value. It is well 

known that the relationship between the norm of the residual and the parameter update vectors 

(i.e., r  and ∆p ) is generally an L-shaped curve; and the optimal value of the regularization 

parameter can be selected as the corner point of this L-shaped curve [21]. Following this 

approach, the regularization parameter was set to 1.34. 

3.4 Comparison of the three model updating methods  

For all methods, model updating was performed using the experimental FRF data described in 

§3.1. Figures 4.a and 4.b display the analytical FRF before and after the updating, respectively. 

The amplitude spectra (of the lateral and rotational responses) in these figures were arbitrarily 

scaled to distinguish each component. Figure 4.b represents the results from BVLSrc only, and 

the updated FRF curves using the other methods are almost identical to (i.e., as accurate as) the 

results from BVLSrc, and thus, are omitted for brevity.  Similarly, the natural frequencies of the 

original model were recovered accurately by all (three) methods as displayed in Table 3. 

However, as it will be demonstrated later, the accuracy of updated FRF and modal data does not 
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guarantee the accuracy of converged updating parameters. 

Figure 5 displays the convergence plots indicating the change of norms of the residual, parameter 

update, and estimation error vectors for each iteration. The norm of the residual vector r  was 

decreased from its initial value 33.1 to 5.8 after updating. Noting that these residuals are due to 

the differences between the analytical FRF (of initial or updated parameters) and experimental 

FRF evaluated using noisy response, the residuals do not diminish to zero due to the scatter of 

experimental FRF points, which, in turn, are brought on by the numerical errors associated with 

the evaluation of the transfer functions from measured data containing sensor noise 

(measurement errors). The dashed line in Figure 5.a represents combined measurement and 

numerical errors, which is the difference between the analytical FRF using actual (true) 

parameters and the experimental FRF using noisy response. When noise-free response was used, 

this value dropped to 0.8. Therefore, the initial residual norm (33.1) can roughly be broken into 

parameter, measurement, and numerical errors as 27.3, 5.0, and 0.8, respectively. Of course, 

these values are valid only for this example, and for another problem, measurement and 

numerical errors will depend on the amount of noise, method of evaluation, frequency range, and 

the smoothing method employed. 

The norms of parameter update vectors ∆p  obtained from the three methods are compared in 

Figure 5.b. In this particular simulation, ten iterations were performed for all methods (in 

practice, a convergence criteria based on the norm of parameter update vector can also be 

established to terminate the iterations). The norms of estimation errors *ν −p p  obtained from 

the three methods are plotted in Figure 5.c where *p  denotes the vector of true parameter values. 

As indicated by this figure, BVLSrc and the regularization methods have similar accuracy, while 
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the pure BVLS method does not appear to be capable of decreasing the parameter error from its 

initial value. 

As indicated by Figure 6—where the true and the converged values of the updating parameters 

are displayed—updated parameters obtained from the three methods show substantial 

discrepancies, even though no significant differences were found in their updated FRF curves 

and residual vectors. These discrepancies confirm that there are indeed multiple solutions that 

minimize the objective function, and that the identification of true parameters from an ill-

conditioned problem (i.e., with incomplete data) is, in general, not possible. As previously 

mentioned, this inherent limitation of model updating is due to the use of more updating 

parameters than the amount of information contained in the measurements. To estimate all 

parameters accurately, additional information (such as curvature distributions throughout the 

members) is needed. However, the rationale of model updating is that this incompleteness can be 

circumvented by taking the missing information from an a priori model instead of taking them 

from experimental data. This strategy distinguishes model updating from direct system 

identification [22]. 

Nevertheless, in general, the BVLSrc and the regularization methods yielded more accurate 

parameters than the pure BVLS method. In more detail, Figure 6.a displays the estimated 

parameters for beams on the second floor and columns between the second floor and the base (1st 

story), whereas Figure 6.b displays the parameters for beams on the roof and columns between 

the roof and the second floor (2nd story). Figure 6.b indicates that estimates from BVLS for the 

2nd story members are substantially deviated from their true values (in fact, a number of these 

parameters hit the upper-bound constraint). This is because the parameters for the members in 

the second story are closely related to each other. The coefficients of correlation (COR) between 
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the pairs of closely related parameters are shown in Figure 6.b, indicating the potential source of 

ill conditioning for the simulated structure.  

In Table 4, the coefficients of correlation between the sensitivity vectors in the final iteration (of 

the BVLSrc) are listed starting from the highest value. Deviation of estimates between each 

parameter pair was restricted by the given relative constraints. The relative constraints have the 

effect of reducing the number of parameters by forcing the closely related parameters to be 

updated similarly during iterations. Updated values for these parameters are located between the 

two true values. It was previously noted that one approach to address the ill conditioning is to 

reduce the number of parameters through the process of subset selection. BVLSrc performs this 

process automatically through the proposed relative constraints without requiring trial-and-error 

computations, and thus, minimizes the effort of choosing the “proper” set of updating parameters 

and assigning suitable values to the unselected ones. 

Results from the BVLSrc and the regularization method display similar accuracy (Figures 5.c 

and 6). However, the regularization method requires a series of calculations to construct the L-

shaped curve described in §3.3, so that the optimal value of the regularization parameter for a 

given initial parameter set can be determined. Additionally, the converged results of the 

regularization method are sensitive to the initial guess. Figure 7 compares the converged results 

of the BVLSrc and regularization methods when two different sets of initial guess (i.e., when 

(0)p  are all 1.0 and when (0)p  are all 1.4) are used. The regularization method yields somewhat 

different solutions for the different initial guesses, especially for closely correlated parameter 

pairs. On the other hand, BVLSrc yields almost identical solutions regardless of the initial guess 

even for the closely related pairs (for which the converged values always remained between the 
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true values of the pair). 

4. CONCLUSIONS 

In this manuscript, we developed an improved finite element model updating method in order to 

address the numerical difficulties associated with ill conditioning and rank deficiency associated 

with the selection of a proper set of updating parameters. Often, it is not possible to determine a 

priori which subset of the candidate updating parameters are free of redundancies; or, at best, 

repetitive computations as well as engineering judgment are required to deduce such information 

for a given problem.    

The proposed method is based on the standard Bounded Variables Least-squares (BVLS) 

method, and incorporates the usual upper/lower-bound constraints that are based on physical 

considerations, as well as novel sensitivity-based relative constraints (consequently, we named 

the proposed method BVLSrc). The relative constraints are constructed using the correlation 

coefficients between the sensitivity vectors (i.e., columns of the sensitivity matrix) of updating 

parameters, and thus, this approach does not require a priori calculations.  

We investigated the veracity and the effectiveness of BVLSrc through the simulated forced 

vibration tests of a simple, albeit sufficiently general, structure using the structure’s frequency 

response function as data. Through this numerical study, we compared the results obtained from 

BVLSrc with those from two other competing and prevalent, namely pure BVLS and 

regularization, methods. We have shown that pure BVLS yields physically inadmissible 

solutions (especially for parameter pairs, which have high coefficients of correlation due to ill 

conditioning), and that BVLSrc and regularization methods yield approximate solutions with 

similar and sufficiently high accuracy (to the extent possible with spatially incomplete data). 
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However, the BVLSrc is shown to be computationally more efficient than the regularization 

method. In the companion paper [11], we apply BVLSrc, developed and validated here, to the 

model updating of an actual, reinforced concrete office building that was subjected to a range of 

forced-vibration tests during the summer of 2004. 
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TABLES (4) 

Table 1. True parameter values (actual stiffness factors) of the simulated structure. 

 Line A Line B Line C Line 1 Line 2 Line 3 

Beams @2F 0.457 0.954 0.966 0.955 0.426 0.922 
Columns @2F 0.805 0.973 0.905 0.597 1.017 0.385 
Beams @1F 0.872 0.844 0.572 0.888 1.046 0.653 

Columns @1F 0.427 0.646 0.819 0.621 0.888 0.348 
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Table 2. The undamped natural frequencies of the simulated structure. 

Mode 1st 2nd 3rd 4th 5th 6th  

Type y-trans. rotation x-trans. y-trans. rotation x-trans. 

Natural frequency 1.66 Hz 1.99 Hz 2.25 Hz 4.81 Hz 5.84 Hz 6.61 Hz 
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Table 3. Natural frequencies of updated models normalized with their true values. 

Mode 1st 2nd 3rd 4th 5th 6th  

BVLS/True 1.000 1.004 1.001 1.000 1.000 0.998 

BVLSrc/True 1.000 1.001 1.002 1.000 0.999 0.999 

Regularization/True 1.000 1.002 1.002 1.000 1.000 0.999 
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Table 4. Coefficients of correlation between two closely related parameters. 

Parameters True BVLSrc 

ip  jp  1-COR ip  jp  ip  jp  Diff. 

Col-3-2F Bm-3-2F 0.013 0.653 0.922 0.712 0.699 0.013 
Col-2-2F Bm-2-2F 0.016 1.046 0.426 0.773 0.757 0.016 
Col-1-2F Bm-1-2F 0.030 0.888 0.955 0.946 0.916 0.030 
Col-B-2F Bm-B-2F 0.082 0.844 0.954 0.961 0.879 0.082 
Col-A-2F Bm-A-2F 0.084 0.872 0.457 0.683 0.599 0.084 
Col-C-2F Bm-C-2F 0.125 0.572 0.966 0.612 0.737 0.125 
Bm-3-1F Bm-3-2F 0.251 0.385 0.922 0.448 0.699 0.251 
Bm-A-1F Bm-A-2F 0.292 0.805 0.457 0.671 0.599 0.072 
Bm-2-2F Bm-3-2F 0.312 0.426 0.922 0.757 0.699 0.058 
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FIGURES (7) 

 
  
 

Figure 1. 3-D view of the simulated structure (left), its roof plan, and the applied excitation (right). 
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Figure 2. Grouping of member stiffnesses for updating. 
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Figure 3. Theoretical (lines) and experimental (symbols) frequency response functions. 
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(a) Initial FRF spectra. 

 
(b) Updated FRF spectra (BVLSrc). 

 
Figure 4. Frequency response function curves before and after updating. 
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Figure 5. Change of error norms during successive model updating iterations. 
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Figure 6. Comparison of true and updated parameter values. 
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Figure 7. Updated parameters starting from different initial guesses.  

 
 
 




