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Abstract

Evidence suggests that an early representation in the visual
processing of orthography is neither visual nor
phonological, but codes abstract letter identities (ALls)
independent of case, font, size, etc. How could the visual
system come to develop such a representation? We
propose that, because many letters look similar regardless
of case, font, etc., different visual forms of the same letter
tend to appear in visually similar contexts (e.g., in the
same words written in different ways) and that correlation-
based learning in visual cortex picks up on this similarity
among contexts to produce ALIs. We present a simple self-
organizing Hebbian neural neiwork model that illustrates
how this idea could work and that produces ALIs when
presented with appropriate input.

Abstract Letter Identities

A growing body of evidence suggests that an early
processing stage in reading involves the computation of
abstract letter identities (ALIs), that is, a representation of
letters that denotes their identity but that abstracts away
from their visual appearance (uppercase vs. lowercase, font,
size, etc.) (Coltheart, 1981; Besner, Coltheart, & Devalaar,
1984; Bigsby, 1988; Mozer, 1989; Prinzmetal, Hoffman, &
Vest, 1991). It appears that this representation is not a
phonological code, but is computed much earlier by the
visual system itself (Bigsby, 1988). For example, even
when subjects are asked to classify pairs of letter strings as
same or different based purely on physical criteria, letter
strings that differ in case but that share the same letter
identities (e.g., HILE/hile) are distinguished less efficiently
than are strings with different spellings but the same
phonological code (e.g., HILE/hyle) (Besner et al., 1984).
Similarly, just as subjects tend to underestimate the number
of letters in a string of identical letters (e.g., DDDD)
compared with a heterogenous string (e.g., GBUF), subjects
also tend to misreport the number of Aa's and Ee's in a
display more often when uppercase and lowercase instances
of a target appear than when one of each target appears
(Mozer, 1989). The repetition of ALIs must be responsible
for this effect because visual forms were not repeated in the
mixed-case displays. Notice that none of these effects can be
due simply to the visual similarity of different visual forms
for a given letter because they also show up for letters
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whose visual forms are not visually similar (e.g., Afa, D/d,
Ele, etc.).

The evidence then is that a relatively early representation
in the visual processing of orthography (before lexical access
or the representation of phonology) does not reflect
fundamental visual properties such as shape—stimuli that
have little or no visual similarity (e.g., “A" and “a") are
represented with the same code. This is quite surprising.
After all, how could the visual system come to develop such
a representation? Reading and writing are relatively recent
developments in evolutionary terms so a genetic explanation
seems implausible. But what learning mechanisms would
cause the visual system to develop such a representation?

The Co-Occurrence Hypothesis

We propose that the statistics of co-occurrence among letters
in words interact with correlation-based Hebbian learning in
the visual system of the brain to produce ALls.
Specifically, because many letters look similar regardless of
case, font, etc., we assume that there is often a high degree
of visual similarity among the contexts in which different
visual forms of the same letter appear, and that the visual
system picks up on this correlation and produces
representations corresponding to ALIs as a result.

During reading, people are exposed to the same word written
in a variety of different ways: all caps and lowercase, in
different fonts, in different sizes, etc. As a result, the
contexts in which one visual form of a letter appear are
similar to the contexts in which other visual forms of that
same letter appear. For example, if the visual form "a"
occurs in a given context (e.g., between "c¢" and “p" in
“cap", before "s" in "as"), then the visual form "A" almost
always occurs in a similar context (between "C" and "P" in
"CAP", before "S" in "AS"). What is critical, according to
our explanation, is not that these contexts involve the same
letters, but rather that these contexts are visually similar ("c-
p" and "-s" look similar to "C-P" and "-S8" respectively). Of
course, the different visual forms of some letters are fairly
different (e.g., "D" vs. "d") and so there will be some
contexts that are unique to one visual form of a letter (e.g.,
"a" but not "A" occurs in the context "d-d"). But given that
18 out of 26 letters have a fair degree of similarity in their
uppercase and lowercase forms (the obvious exceptions are:
Aa, Bb, Dd, Ee, Gg, Nn, Qq, and Rr) and that letters in
different fonts and sizes tend to look similar, these cases
should be the exception rather than the rule.
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A Neural Network Model

How could the visual system pick up on this correlation in
the environment to produce representations corresponding 10
ALIs? Figure 1 presents a simple and natural mechanistic
model that demonstrates one possibility. The model is a 2-
layer neural network that uses a Hebbian learning rule to
modify the weights of the connections between the input and
output layers. Hebbian leamning is a neurophysiologically
plausible mechanism that generally corresponds to the
following rule: If two units are both firing then their
connection is strengthened, if only one unit of a pair is
firing then their connection is weakened (Hebb, 1949). The
input layer represents the visual forms of input letters using
a localist representation (each unit represents a visual form,
similar visual forms (e.g., “C" and “c") are represented by
the same unit). This representation does not code letter
position as it does not play a role in our explanation (the
same mechanism would work for a representation that did
code letter position). Initially, the output layer does not
represent anything (since the connections from the input
layer are initially random), but with training it should self-
organize to represent ALIs. Neighboring units in the output
layer are connected via excitatory connections and units
further away are connected via inhibitory connections, in
keeping with the general pattern found in human cortex.

The appendix describes the model’s details.

The figure illustrates the model’s behavior when the first
word (say “cap”) is initially presented. The pattern of output
activity is initially random (Figure 1, left), reflecting the
random initial connection strengths. The short-range
excitatory connections lead to clusters around the most
active units (Figure 1, middle) and these, in turn, drive down
activity elsewhere via the longer-range inhibitory
connections leading to a single cluster (or a small number)
(Figure 1, right). The Hebb rule then strengthens the
connections to this active cluster from the active input units
(the letters “c”, “a”, and “p"), but weakens the connections
from other (inactive) inputs as well as the connections from
the active input to the inactive output units. Because of
these weight changes, “c”, “a”, and “p" will subsequently be
biased toward activating units in that cluster while other
inputs (e.g., “d”) will be biased away from that cluster. So,
for example, if the word “dog” was presented next, then it
would tend to excite units outside the cluster excited by
“mp“.

Now suppose we present the same word, but now in
uppercase (“CAP”, Figure 2). Because “C” and “P” are
visually similar to “c” and “p” their input representations
will also be similar (in this simple localist model, that
means they excite the same units; in a more realistic
distributed model, the representations would share many
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Figure 1. A neural network model of the development of abstract letter identities. The input layer (top) represents the visual
forms of input letters, but does not code their position. Letters whose uppercase and lowercase forms are visually similar are
represented by a single unit (e.g., C, P, §). In this example, the word “cap” is presented. Initially, the output representation
is random (left), but eventually a cluster of activity develops (right) and Hebbian learning strengthens the connections to it

from the input letters.
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Figure 2. The behavior of the network from Figure 1 when presented with the word “CAP”. “C” and “P”
excite the previous cluster because of their visual similarity to the “c” and “p” in “cap”, but at first “A” excites
a distinct set of units (top of the output layer). These two regions of activity compete until the previous
cluster wins out. Hebbian learning then strengthens the connections from all the active inputs (including “A™)
to the cluster, biasing “a” and *A” toward exciling nearby units.

units rather than being identical, but the same process
should work). As a result, “C" and “P" will be biased
toward exciting some of the same output units that *“cap”
excited. The input A", however, has no such bias. Indeed,
its connections to the “cap” cluster would have been
weakened (because it was inactive when the cluster was
previously active) and it excites units outside this cluster
(top of the output layer at the left of Figure 2). The cluster
inhibits these units via the long-range inhibitory
connections and it eventually wins out (right of Figure 2).
Hebbian learning again strengthens the connections from the
active inputs (including “A") 1o the cluster. The result is
that “a” and “A™ are biased toward exciting nearby units
despite the fact that they are visually dissimilar and initially
excited quite different units. An ALI has emerged.

If this were the whole story then one might expect all
letters to converge on the same output representation. But
in addition to strengthening the connections between
correlated units, the learning mechanism also weakens
connections between anti-correlated units. So when two
visual forms occur in different contexts (e.g., “a” in “cap”
and “d” in “dog”), the network will be biased toward using
distinct output units to represent them. Of course, the same
is true of the different visual forms of any given letter:
Because the two forms appear in many different contexts
(e.g., “a" in “cap” vs. “A" in "BAT"), there is pressure on
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the network to represent them using different output units.
Indeed, given that the network will be exposed to far more
pairs of different words than pairs of words that differ only in
visual appearance (e.g., uppercase vs. lowercase), one might
think that the bias toward using distinct output units will far
outweigh any tendency toward ALIs. But because the
network has a limited amount of space in the output layer in
which to represent the visual forms, it will be forced to put
some of these representations closer together than others.
The critical question is which representations will the
network prefer to put nearby, given that it cannot keep them
all widely separated. The answer is that it will tend toward
moving together those visual forms whose contexts are the
most similar. And those visual forms, for the reasons
discussed above, will correspond to the same abstract letter
identity.

Simulation Results

Figure 3 shows the results of presenting a network like
this with simple stimuli that satisfy the constraints outlined
above. The stimuli consisted of a random sequence of 36 3-
letter words—12 in uppercase and 24 in lowercase (the same
12 words that appeared in uppercase were presented in
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Figure 3. The patterns of output activity when presenting two different visual forms for each of three letters to
the trained network model. In all three cases, the two different visual forms activate virtually identical output
representations, that is, ALIs. Also note that the three letters each have distinct representations.

lowercase twice in the random scquence}l. Each word
contained one letter from a set of three ALI candidate
letters—each of these letters had two possible visual forms
(e.g., uppercase and lowercase)—and each such letter
appeared in four of the 12 words. The other two letters were
randomly chosen from a set of 20 whose visual forms were
similar in uppercase and lowercase. The figure shows the
output activity when presenting each of the three candidate
ALI letters in each of their visual forms. In all three cases
the output representations for the two different visual forms
are virtually identical—the output representation corresponds
to an ALI for the letter. Also note that the output
representations of the three different letters were distinct.

Discussion

This model is relatively simple and that is both an advantage
and a disadvantage. On the positive side, it is easy to
understand and hence illustrates the theory much more
clearly than a more complicated model would. But it also
has a number of limitations that future models will need to

1 The two visual forms were presented with different frequency
in order to prevent the two forms from balancing out and
possibly canceling the effects of compeltition (e.g., if “cap” and
“CAP" occur with the same frequency, then the network will not
be biased toward one cluster). Of course, lowercase words occur
far more frequently than uppercase words in real text as well.
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address: It uses a simple, localist input representation rather
than a more realistic distributed code, it only_ addresses a
specialized subset of words (three-letter words in which one
letter is an ALI candidate and the other two are not), and it
does not model the positions of letters within words. The
theory itself does not depend on these assumptions,
however, and they could thus presumably be relaxed in
future work. In any case, the model provides the first
hypothesis to account for the development of ALIs, namely,
that they arise from an interaction between the co-occurrence
of letters in words and a correlation-based learning
mechanism.
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Appendix: Details of the Neural Network

The network has 195 total units. 26 are inputs (3 ALI
candidate letters x 2 visual forms each + 20 other letters) and
the other 169 are outputs in a 13x13 2-D arrangement. All
input units are connected to all output units with plastic
connections. Output units are connected 1o neighbors (in 2-
D) by fixed excitatory connections (weight = 0.2) and to
other output units by fixed inhibitory connections (weight =
-0.02). The minimum and maximum unit firing rates are
fixed at 0.0 and 100.0 while the minimum and maximum
connection weights are fixed at (0.0 and 3.0.

Initially, the activity of output units is uniform random
between 0.0 and 10.0 and the connection weights from
inputs to outputs is uniform random between 0.0 and 0.6.

The following Hebbian learning rule based on firing rate
is used after every cycle 10 update connection strengths
between input and output units: If both pre- and post-
synaptic units are firing above threshold (50.0), increase
connection weight by 0.08; if both units are below
threshold, make no change; otherwise, decrease the
connection weight by 0.02.

The output units use a sigmoid transfer function:

100.0

—(inpur—40.0)

output =

P 1+e

The total input to each output unit is multiplied by a 0.9

gain factor before passing through the transfer function. The
input units are clamped to their values and do not decay.
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