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ABSTRACT OF THE THESIS

On the Capacity of K-Star-Graph Private Information Retrieval

By

Yuhang Yao

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2024

Professor Syed A. Jafar, Chair

We study the capacity of the K-star-graph private information retrieval (PIR) problem

introduced by Sadeh et al. The problem is so labeled because the storage graph corresponds

to a star-graph with K edges (corresponding to the edges) and K+1 vertices (corresponding

to the servers): K messages are separately (one each) stored in K dedicated servers and

meanwhile a universal server stores all K messages. While it is one of the simplest PIR

settings to describe, the capacity CK of K-star-graph PIR is open for K ≥ 4. We study the

critical K = 4 setting, for which prior work establishes the bounds 2/5 ≤ C4 ≤ 3/7. As

our main contribution, we characterize the exact capacity of 4-star-graph PIR as C4 = 5/12,

thus improving upon both the prior lower-bound as well as the prior upper-bound. The

main technical challenge resides in the new converse bound, whose non-trivial structure is

deduced indirectly from the achievable schemes that emerge from the study of a finer tradeoff

between the download costs from the dedicated servers versus the universal server. A sharp

characterization of this tradeoff is also obtained for K = 4. The connection of the PIR

problem to caching and interference alignment indicates that our result may provide insight

for these problems as well.
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Chapter 1

Introduction

1.1 Overview of Private Information Retrieval (PIR)

1.1.1 Private Information Retrieval

Suppose there are K messages replicated into N distributed databases. The goal of Private

Information Retrieval (PIR) (See Fig. 1.1) is to allow a user to retrieve one of the messages

from the databases while keeping the demand private from the database(s). In terms of

the privacy, there are two parallel lines of research. One considers information-theoretic

(or perfect) privacy, whereas the other line focuses on computational privacy, where privacy

needs to be satisfied only for computationally bounded databases. In this work, we consider

the information-theoretic privacy model. If N = 1, it is shown in the initial work [1] that

there is no way to obtain privacy more than to download all messages from the database.

However, when N = 2, much more can be done. In fact, a simple way to obtain information-

theoretic privacy is as follows. Let Wk denotes the kth message, and let WΘ be the message

that the user demands. The user first generates a random vector v = [v1, v2, · · · , vK ], vk ∈
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K messages
W1,W2, · · · ,WK

Database
1

Database
2

· · · Database
N

User retrieves WΘ

Θ ∈ {1, 2, · · · , K}

Answers

Figure 1.1: Private information retrieval

{0, 1}, ∀k ∈ {1, 2, · · · , K}. The user then requires the sum of messages
∑

k∈{1,2,··· ,K} vkWk

from the first database, and requires the another sum of messages
∑

k∈{1,2,··· ,K}\{Θ} vkWk +

(1− vΘ)WΘ from the second database. All additions are defined as bitwise XOR. By adding

these two answers, the user gets WΘ since the term
∑

k∈{1,2,··· ,K}\{Θ} vkWk is cancelled, only

leaving WΘ after decoding. The privacy is guaranteed because to each database, the user

requires a sum of messages from a random subset of {1, 2, · · · , K}, therefore the database

can tell nothing about Θ. The communication cost from the databases to the user is referred

to as the download cost. In this simple protocol, the download cost is 2 times the size of one

message. We further defined the rate of the protocol as 1/2, since each information bit the

user retrieve corresponds to 2 bits of download.

1.1.2 Capacity of PIR

The rate 1/2 may not be optimal since there exist schemes that achieve a higher rate,

especially for small K. The (asymptotically) highest rate is called the capacity. It was first

shown by [2] that the capacity of PIR with 2 databases is actually
(
1 + 1

2
+ 1

4
+ · · ·+ 1

2K−1

)−1
.

Therefore, if there are only K = 3 messages, the capacity for N = 2 databases is equal to

2



4/7, which is higher that the one we previously achieved. [2] also characterizes the general

capacity for arbitrary N,K, as

C =

(
1 +

1

N
+

1

N2
+ · · ·+ 1

NK−1

)−1

. (1.1)

In general, the scheme that achieves the capacity requires the message to be divided into

multiple sections, and the download symbols are linear combinations with finer structures.

1.1.3 Variants of PIR

Many PIR schemes are proposed after [2], based on different assumptions on the privacy,

storage, database behavior, user-side-information, measure of cost, and so on. In the follow-

ing, let us provide a brief explanation for some of these models.

1. T -private information retrieval (TPIR): This model is the generalization of PIR set-

ting to guarantee privacy even if any T of the databases collude, meaning that these

databases may share the requests they received from the user. These schemes are

considered as T -private information retrieval. The capacity is also characterized for

T -private information retrieval in [3].

2. Symmetric PIR: This model further assumes that not only the databases cannot learn

the information about which message the user wants, but also the user cannot learn

anything more than the desired message from the download. The capacity is charac-

terized by [4].

3. PIR with coded storage: In the above settings, one common assumption is that all

messages are replicated into all databases. However, this may cause two issues. One

is that this may require too much storage at the databases. The other one is that if

any database is controlled by a malicious party, then the data will be at risk. To solve

3



these issues, there are works on PIR with coded storage, where instead of storing all

of the messages at all databases, they allow the databases to store coded data. Coded

storage can be designed to allow each database to store less data, or be designed to

prevent any database(s) from learning useful information about the original messages.

The capacity of such PIR schemes are also fully or partially characterized in works

such as [5, 6].

4. PIR with graph-based (uncoded) storage: Unlike coded storages, this model deals with

PIR in the setting where each database knows a subset of uncoded messages. The

storage pattern may be modeled as a (hyper)-graph such that each vertex represents a

database, and each edge (or hyper-edge) represents a message that is replicated at the

databases that correspond to the vertices of that edge. This problem has been studied

in [7–10].

5. PIR with stragglers and Byzantine databases: Considering that the databases may not

follow the schemes or protocols, there are works that consider stragglers or Byzantine

databases. Stragglers are those databases that do not provide an answer, whereas the

Byzantine databases are those databases that provide incorrect answers maliciously.

The capacity for these settings are also studied in works such as [11–13].

6. Quantum PIR: This is a branch of PIR works that consider quantum communications

between the databases and the user. By enabling quantum transmission from the

databases to the user, a rate of 1 PIR can be realized in some regimes [14]. This

means the user can retrieve one bit of the desired message per qubit of the download.

The user need not have quantum resource before the transmission, but the databases

are assumed to establish quantum entanglement in the first place. The capacity of

Quantum PIR in various settings are studied in works such as [15–17].

7. Other extensions: There are also many other extensions of the prior PIR works, fo-

cusing on other sides of the problem, such as the trade-off between upload cost vs

4



download cost [18], different capacity definitions, user-side-information [19], and so

on [20]. These problems are also very meaningful. In general, the study of PIR prob-

lems are motivated not only by growing privacy concerns, but also, and perhaps even

more so, by the fundamental connections of PIR to other ideas, such as locally de-

codable codes, interference alignment, caching, to name a few. These problems are

attractive, because they are simple to describe (allowing broader connections), but

challenging to solve (allowing deeper insights) — a trait also evident in the celebrated

index coding problem [21], similarly simple-to-describe and broadly insightful.

1.2 PIR with Graph-based Storage

The model most closely related to our focus in this work is one of the variants of the PIR

problems we previously mentioned, that being PIR with graph-based storage, where the

storage at the databases is such that each message is replicated into a subset of databases.

Henceforth, we refer to the databases as servers. Recall that the name ‘graph’ comes from

the fact that the storage pattern may be described by a (hyper)-graph. If each each message

is only replicated into at most 2 servers, then the corresponding graph is a planer graph.

For the capacity related to these graphs, [8] characterizes the capacity associated with two

classes of graphs, the complete graphs and the cyclic graphs, as shown in Fig. 1.2 and Fig.

1.3. The capacity for the complete graph is equal to min{2/K, 1/2} and the capacity for the

cyclic graph is equal to 2/(K+1) where K denotes the number of messages. Note that there

is symmetry in the storages for these two types of graphs. On the other hand, the capacity

for the star-graphs (Fig. 1.4), is only asymptotically characterized by [10] as Θ(1/
√
K).

Note that for the star graph withK+1 nodes, there areK+1 servers andK messages. There

are two types of servers. There is one server that stores all messages while the other servers

store only message each. This creates asymmetry in the storages. For K ≤ 3, the exact

5



. . .

Figure 1.2: A Complete Graph

. . .

Figure 1.3: A Cyclic Graph

. . .
Figure 1.4: A Star Graph

capacity CK is obtained, whereas for K = 4, the known results showed that the capacity is

bounded by 2/5 ≤ C4 ≤ 3/7. Besides the non-triviality caused by storage asymmetry, the

motivation for studying the capacity of K-star-graph PIR also comes from the connection

of the problem to other problems such as caching and retrospective interference alignment.

These connections will be mentioned in Section 5.1.

1.3 Contributions of This Work

In this work, we study the capacity of K-star-graph PIR, i.e., PIR with star-graph based

storage with K messages. As a main achievement of this work, we successfully characterized

the capacity for the case K = 4 to be C4 = 5/12. The proof of the result relies on both

6



the design of a new PIR coding scheme for K-star-graph PIR, and a novel converse proof,

thus improving the previously best known lower and upper bounds on the capacity. The

result can be also applied to finding the capacity of a caching problem in the many-to-

one communication setting, and the design of respective interference alignment schemes in

wireless communications.

1.4 Thesis Organization

We present the formal definition of the problems of PIR and K-star-graph PIR in Chapter

2. In Chapter 3, coding schemes for the K-star-graph PIR are proposed. In Chapter 4, we

prove several converse bounds for the K-star-graph PIR, in particular, our improved bound

for the K ≥ 4 case. Finally, in Chapter 5, we conclude the work and present examples

showing connections of the K-star-graph PIR to other interesting problems.

7



Chapter 2

Problem Formulation

2.1 Notations

Let N denote the set of positive integers. For n ∈ N, [n] denotes the set {1, 2, · · · , n}.

For n1, n2 ∈ N, [n1 : n2] denotes the set {n1, n1 + 1, · · · , n2} if n1 ≤ n2 and ∅ otherwise.(
n
r

)
≜ n!

r!(n−r)!
with the convention that

(
n
r

)
= 0 if n < r or r < 0. C denotes the set of

complex numbers. R+ denotes the set of non-negative real numbers. Fq denotes the finite

field with q = pr a power of a prime. Define compact notations A[n] ≜ (A(1), A(2), · · · , A(n))

and A[n] ≜ (A1, A2, · · · , An). Sa×b denotes the set of a× b matrices with elements in S. For

a set N , the set of its cardinality-m sub-sets is denoted as
(N
m

)
≜ {A ⊂ N | |A| = m} if

|N | ≥ m. The notation 2N denotes the power set of N . The notation f : A 7→ B denotes

a map f from A to B. For classical random variables X, Y, Z, H(X), H(X|Y ), I(X;Y )

and I(X;Y |Z) denote the entropy of X, the conditional entropy of X given Y , the mutual

information between X and Y , and the conditional mutual information between X and Y

given Z, respectively. By default the base of the logarithm is 2 in the calculations of entropy.
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2.2 A General Formulation

The problem of private information retrieval (PIR) contains

• K messages W1,W2, · · · ,WK ;

• N servers with Sn denoting the storage of Server n ∈ [N ]. For n ∈ [N ], Sn is determined

by the collection of the messages (W1,W2, · · · ,WK);

• The random index Θ that determines which message is demanded by the user, i.e., the

user demands the message WΘ.

• The local randomness Z at the user;

• The queriesQn, n ∈ [N ]. Qn is the query sent to Server n for n ∈ [N ]. (Q1, Q2, · · · , QN)

is determined by (Θ, Z). Conditioned on Θ = θ ∈ [K], the query sent to Server n is

denoted by Qθ
n;

• The answers An, n ∈ [N ]. Given Θ = θ ∈ [K], An is the answer from Server n, and An

is determined by (Qn, Sn) for n ∈ [N ]. Conditioned on Θ = θ ∈ [K], the answer from

Server n is denoted by Aθ
n.

• It is also implicitly assumed that Θ is independent of (W1,W2, · · · ,WK , Z).

An information-theoretic PIR scheme must guarantee the following two properties,

• Correctness: WΘ is determined by (Θ, Z, {Ai}i∈[N ]);

• Privacy: For n ∈ [N ], Qθ
n andQ

θ′
n has the same probability distribution for θ ̸= θ′ ∈ [K].

In other words, Qn is independent of Θ.

The above privacy constraint guarantees information-theoretic privacy when there is no

communications between the servers. A stronger privacy constraint may guarantee perfect

9



privacy even when some subset of servers talk to each other. In general, if the scheme is

still private even if a subset N ⊂ [N ] shares their queries, we say that the scheme can

resist to the collusion of the servers in N = {n1, n2, · · · , n|N |}. Mathematically, this means

that in addition to the the above constraints posed to privacy, the scheme must also satisfy

that (Qθ
n1
, Qθ

n2
, · · · , Qθ

n|N|
) and (Qθ′

n1
, Qθ′

n2
, · · · , Qθ′

n|N|
) has the same probability distribution

for θ ̸= θ′ ∈ [K]. For an example that has been widely studied, a scheme call T -private [3]

if it can resist to the collusion of any subset of T servers.

2.3 PIR with Graph-based Storage

The storage (S1, S2, · · · , SN) may be specified in several ways. Most PIR works assume that

all messages are completely available at all servers, i.e., Sn = (W1,W2, · · · ,WK) for n ∈ [N ].

Some PIR works assume coded storage, such as MDS PIR. Coded storage can be used to

provide secrecy of the messages, preventing the servers from knowing the information of the

messages. If Sn is a subset of uncoded messages for n ∈ [N ], it is called a PIR with graph-

based storage, since a (hyper)-graph G can be used to describe the storage. Specifically,

each server is mapped to a unique vertex, and each message is mapped to a unique edge,

identifying servers that store that message. For a planar graph G(V,E) with V and E

denoting the vertex set and the edge set, each message is known by only a pair of servers.

In contrast to the extreme setting where all messages are completely available at all servers,

PIRs with planar graph based storage represent the other extreme, where each message is

known at fewer servers.

10



2.4 K-star-graph PIR

The problem of K-star-graph PIR is a PIR with graph-based storage when the graph is

a K-star graph defined as follows. A K-star graph contains K + 1 vertices and K edges.

The first vertex, indexed with 0 is connected to Vertex i for i ∈ [K]. In other words, the

K-star-graph PIR contains N = K + 1 servers and K messages. There are K dedicated

servers that store one message each, with Server k storing only Wk, k ∈ [K]. Besides, there

is one universal server, called Server 0 that stores all K messages. Fig. 2.1 illustrates the

setting of K-star-graph PIR.

Desired message: WΘ

private, uniform Θ ∈ [K]

User

W1,W2, · · · ,WK

Server 0

W1 W2 W3 · · · WK

Server K

Q0

A0 Q1
A1 Q2 A2

Q3 A3

QK

AK

Figure 2.1: K-star-graph PIR with messages W1,W2, · · · ,WK stored among K + 1 servers
according to the K-star storage-graph illustrated with dashed-edges.

2.4.1 Scheme, Rate and Capacity

The main goal of this work is to study the capacity of K-star-graph PIR. To define the

capacity, we formulate a coding scheme as follows. A coding scheme is specified by a tuple

C = (L,Z, µ0, µ1, · · · , µK , ϕ0, ϕ1, · · · , ϕK , ψ). L ∈ N denotes the batch size, which is the

number of bits contained in one message. Z ∈ Z is the local randomness generated privately

by the user. µ0, µ1, · · · , µK are functions that generate queries sent by the user to the servers.

ϕ0, ϕ1, · · · , ϕK are functions that generate answers returned by the servers the user. ψ is the

11



final decoding function. A feasible coding scheme must satisfy the correctness and privacy

constraints defined in Section 2.2. The functions and the constraints are described next.

• The K +1 functions µk : [K]×Z → Qk,∀k ∈ [0 : K], map (Θ, Z) to the K +1 queries

Q0, Q1, · · · , QK , respectively, i.e.,

Qk = µk(Θ, Z), ∀k ∈ [0 : K]. (2.1)

• The K + 1 functions, ϕ0 : [(FL
2 )

K ] × Q0 → A0, and ϕk : FL
2 × Qk → Ak,∀k ∈ [K],

map the stored message(s) and the query at each server to the answer that the server

returns to the user, i.e.,

A0 = ϕ0(W1,W2, · · · ,WK , Q0) and Ak = ϕk(Wk, Qk), ∀k ∈ [K]. (2.2)

• The decoding function ϕ : A0 × A1 × · · · × AK × [K] × Z → FL
2 allows the user to

retrieve the desired message WΘ, i.e.,

WΘ = ψ(A0, A1, · · · , AK ,Θ, Z). (2.3)

• The privacy of the scheme requires

I(Θ;Qk, Ak,W1,W2, · · · ,WK) = 0, ∀k ∈ [0 : K]. (2.4)

The download cost (measured in bits) from Server k is defined as

Dk = log2 |Ak|, ∀k ∈ [0 : K]. (2.5)

12



Since each alphabet set Ak is deterministic, our focus in this work is limited to the maximum

(instead of average) download costs across queries. The rate achieved by the scheme C is

defined as the ratio

R(C) = L

D0 +D1 + · · ·+DK

, (2.6)

and the capacity of K-star-graph PIR is then defined as

CK ≜ sup
C∈CK

R(C), (2.7)

where CK denotes the set of all feasible coding schemes for K-star-graph PIR.

2.4.2 Balanced Download Costs

In general, a scheme may have different costs for different dedicated servers, e.g., D0 ̸= D1 ̸=

D2. If D1 = D2 = · · · = DK , i.e., the download costs from all dedicated servers are the same,

we say that the scheme has balanced download costs. Otherwise, we say that the scheme has

imbalanced download costs. Let CK be the set of all coding schemes of K-star-graph PIR

with balanced download costs. It is important to note that the inherent symmetry of the

K-star-graph guarantees that any rate that can be achieved by a scheme with imbalanced

download costs can be also achieved by a scheme with balanced download costs. Therefore,

for capacity, there is no loss of generality in restricting the coding schemes to CK . We

formalize it into the following theorem.

Theorem 2.1 (Balanced Cost Achieves Capacity).

CK = sup
C∈CK

R(C) = sup
C∈CK

R(C). (2.8)

Proof. The proof is similar to the proof of [22, Thm. 4] and the idea is called ‘time-sharing’.
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For a scheme C = (L,Z, µ0, µ1, · · · , µK , ϕ0, ϕ1, · · · , ϕK , ψ) ∈ CK that has download costs

(D0, D1, · · · , DK), let us map it to a scheme C ′ ∈ CK with balanced costs, while preserving

the rate of the original scheme, i.e., R(C ′) = R(C). To do so, let us first define the cyclic

permutation functions {πk}k∈[0:K−1] as

πk(i) ≜ i+ k mod K, ∀k ∈ [K], i ∈ [K]. (2.9)

Then, consider the K schemes C(0), C(1), · · · , C(K−1) with

C(k) ≜ (L,Z(k), µ0, µπk(1), · · · , µπk(K), ϕ0, ϕπk(1), · · · , ϕπk(K), ψ), ∀k ∈ [0 : K − 1].

(2.10)

Here, Z(0), Z(1), · · · , Z(K−1) are independent and each has the same distribution as Z. Next,

combine the K schemes to a scheme C ′ with batch size L′ = KL. The scheme C ′ by definition

has download cost D′
k = D1 +D2 + · · ·+DK for Server k ∈ [K], and D′

0 = KD0 for Server

0. Thus, we obtain that

R(C ′) =
L′

D′
0 +D′

1 + · · ·+D′
K

(2.11)

=
KL

KD0 +K(D1 + · · ·+DK)
(2.12)

=
L

D0 +D1 + · · ·+DK

(2.13)

= R(C). (2.14)

This shows that the new scheme C ′ has balanced download costs from the dedicated servers.

The correctness of C ′ follows directly from the correctness of C. The privacy of C ′ follows

from the reasoning that the queries to a server in each C(k) are individually independent of

Θ (because the original scheme C is private), and conditioned on Θ = θ ∈ [K] the queries to

the same server in the different C(k) schemes are independent because Z(0), Z(1), · · · , Z(K−1)
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are independent. For example, consider queries to Server 1 for schemes C(0), C(1), namely

Q1, Q
′
1. We have by the privacy of C that I(Θ;Q1) = I(Θ;Q′

1) = 0, and by the independence

of Z(0), Z(1) that I(Q1;Q
′
1 | Θ) = 0. This implies that H(Q1, Q

′
1 | Θ) = H(Q1 | Θ) +H(Q′

1 |

Θ) − I(Q1;Q
′
1 | Θ) = H(Q1) + H(Q′

1) ≥ H(Q1, Q
′
1). Since conditioning cannot increase

entropy, we have H(Q1, Q
′
1 | Θ) = H(Q1, Q

′
1), i.e., Θ is independent of the combined query

(Q1, Q
′
1) to Server 1. The reasoning extends to any server, and to the combination of all

C(k), k ∈ [0 : K−1], i.e., C ′. From this it follows that the combined-query in C ′ is independent

of Θ. In the following, for a scheme C ∈ CK , the download cost for Server 0 is denoted as

D0, and the download cost for Server 1 to Server K is denoted simply as D.

We finally remark that a scheme that has balanced download cost means that the download

costs from all dedicated servers are the same, but the cost from the universal server may

still be different. The asymmetry in the storage of dedicated servers and the universal server

makes this difference.

2.4.3 Feasible Normalized Cost Region

In order to study the capacity of K-star-graph PIR, it is a first step to study the region

D∗
K of the feasible normalized cost tuple, defined as follows. A tuple (∆0,∆) ∈ R2

+ is said

to be a feasible normalized cost tuple if there exists a coding scheme with batch size L and

download costs D0, D, such that

∆0 ≥ D0/L− ϵ, and ∆ ≥ D/L− ϵ (2.15)

for any ϵ > 0. The set of such tuples, denoted as D∗
K , is called the feasible normalized cost

region for the K-star-graph PIR. Given D∗
K , the capacity of K-star-graph PIR reduces to
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the following optimization problem

CK =

(
min

(∆0,∆)∈D∗
K

∆0 +K∆

)−1

. (2.16)
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Chapter 3

Coding Schemes for K-star-graph PIR

3.1 Introductory Examples: K = 3

In order to show the idea of constructing private transmission schemes for the K-star-graph

PIR, let us begin with a small case with K = 3. Recall that there are 3 messages W1,W2

and W3, and 4 servers, the universal server, Server 0, and the three dedicated servers, Server

1, Server 2 and Server 3, with Server 0 storing (W1,W2,W3), and Server k storing Wk for

k ∈ [3]. For a scheme with batch size L, let us use Wk(ℓ) to denote the ℓ-th bit of the

message Wk, where k ∈ {1, 2, 3} and ℓ ∈ [L].

3.1.1 Scheme I: L = 1, D0 = 0, D = 1

Consider that each message has one bit. The desired message is WΘ. The user can require

nothing from Server 0, but require W1(1) from Server 1, W2(1) from Server 2 and W3(1)

from Server 3. This makes sure that there is nothing revealed about Θ to the servers since
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the queries are independent of the queries. The scheme can be written as

A0 = ∅, Ak = Wk(1), ∀k ∈ [3]. (3.1)

The download cost from the universal server is D0 = 0, and the download cost from the

dedicated servers is D = 1. This scheme shows that the normalized cost tuple (∆0,∆) =

(D0/L,D/L) = (0, 1) is feasible.

3.1.2 Scheme II: L = 2, D0 = 1, D = 1

Consider that each message has two bits. Let the user locally generate z that is uniformly

drawn in {1, 2}, and let z̄ = 3−z. The user requireW1(z)+W2(z)+W3(z) from the universal

server. If the index of the desired message is Θ = θ, then require Wθ(z̄) from Server θ, and

Wn(z) from Server n for n ̸= θ. Since z is uniformly distributed in {1, 2} and so is z̄, it can

be easily calculated that the query sent to Server θ or Server n ̸= θ is independent of Θ. This

makes sure that the dedicated servers do not know which message is desired by the user.

Note that from the downloads, the user can now decode Wθ(z) from the answers of Servers

n, n ̸= θ. Besides, the user directly get Wθ(z̄) from the answer of Server θ. Therefore, the

user can recover (Wθ(1),Wθ(2)), which is the whole desired message. The scheme can be

concisely written as

A0 = W1(z) +W2(z) +W3(z), Aθ = Wθ(z̄), An = Wn(z), n ̸= θ, given Θ = θ.

(3.2)

Note that writing in this way, we can easily tell the queries sent to the servers from the

indices in the round parentheses ‘()’. For example, the query sent to Server 0 is Qθ
0 = z,

and the query sent to Server k is Qθ
k = z̄ for k ∈ [3], given that Θ = θ. The download cost

from the universal server is D0 = 1, and the download cost from the dedicated servers is
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D = 1. Since each message contains 2 bits, this scheme shows that the normalized cost tuple

(∆0,∆) = (D0/L,D/L) = (1/2, 1/2) is feasible. Do note that, if the three dedicated servers

collude, i.e., the join together and share the requests they received from the user, they can

figure out Θ. To resolve this issue, and to enhance the robustness of the scheme, let (zn, z̄n)

be uniformly drawn in {(1, 2), (2, 1)} for n ∈ [3], and independent across different n. Then

download

A0 = W1(z1) +W2(z2) +W3(z3), Aθ = Wθ(z̄θ), An = Wn(zn), n ̸= θ, given Θ = θ.

(3.3)

This makes sure that even if the three dedicated servers collude, the joint query does not

reveal anything about Θ.

3.1.3 Scheme III: L = 3, D0 = 3, D = 1

Consider that each message has three bits. Let the user locally generate

(z11 , z
2
1 , z

3
1), (z

1
2 , z

2
2 , z

3
2), (z

1
3 , z

2
3 , z

3
3)

being three i.i.d. uniform permutations of (1, 2, 3). The downloads are then specified as

A0 =


W1(z

2
1) +W2(z

1
2)

W1(z
3
1) +W3(z

1
3)

W2(z
3
2) +W3(z

2
3)

 , Aθ = Wθ(z
θ
θ), An = Wn(z

θ
n), ∀n ̸= θ, given Θ = θ.

(3.4)

We can similarly tell the queries from the indices in the parentheses. Given Θ = θ, the query

sent to Server 0 is Qθ
0 = (z21 , z

1
2 , z

3
1 , z

1
3 , z

3
2 , z

2
3). The query sent to Server θ is Qθ

θ = zθθ . The

queries sent to Server n ̸= θ is Qθ
n = zθn. As an example, if Θ = 1, then the query to Server 1
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is z11 . If Θ = 2, the query to Server 1 is z21 . If Θ = 3, the query to Server 1 is z31 . Note that

z1, z2, z3 have the same distribution. Thus, the query sent to Server 1 is independent of Θ. It

can be similarly verified that the scheme is also private even if all dedicated servers collude.

This scheme shows that the normalized cost tuple (∆0,∆) = (D0/L,D/L) = (1, 1/3) is

feasible.

3.1.4 Scheme IV: L = 1, D0 = 3, D = 0

This scheme only needs the download from the universal server. For privacy, the user down-

load all messages from the universal server to hide the index Θ from it. The scheme is

written as,

A0 =


W1(1)

W2(1)

W3(1)

 , An = ∅, ∀n ∈ [3]. (3.5)

This scheme shows that the normalized cost tuple (∆0,∆) = (D0/L,D/L) = (3, 0) is feasible.

3.1.5 Rate

Let us compute the rates for the 4 schemes, respectively. By definition, the rate can be

computed as R = 1/(∆0 + 3∆). Thus, Scheme I – Scheme IV have rates 1/3, 1/2, 1/2, 1/3,

respectively. The highest rate we achieved so far is 1/2. This means that in order to get one

bit of the desired message, the user download 2 bits from the 4 servers in total. In fact, the

rate of 1/2 can be proved to be optimal for K = 3. The optimality analysis will be given in

the next section.
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3.1.6 Time-sharing of Schemes

Given two schemes, Scheme1 with batch size L, download tuple (D0, D), and Scheme2 with

batch size L′, download tuple (D′
0, D

′), by combining the schemes, one can construct a

new scheme with batch size L + L′ and download tuple (D0 + D′
0, D + D′). This immedi-

ately implies the following result: If (∆0,∆) and (∆′
0,∆

′) are two feasible cost tuple, then

(λ∆0 + (1− λ)∆′
0, λ∆+ (1− λ)∆′) is a feasible normalized cost tuple.

3.1.7 Feasible Normalized Cost Region

From Scheme I – Scheme IV, together with the time-sharing argument, we are now able to

show that the feasible normalized cost region at least contains the region shown in Fig. 3.1,

i.e., any point on and above the curve is a feasible normalized cost tuple. In fact, it will be

shown in the next section that this region is equal to D∗
3, i.e., any point that is below the

curve is not a feasible normalized download cost tuple.

∆0

∆

•
(0, 1)

•
(
1
2 ,

1
2

)
•

(
1, 1

3

)
•

(3, 0)

∆0 +∆ ≥ 1
∆0 + 3∆ ≥ 2
∆0 + 6∆ ≥ 3

D∗
3

Figure 3.1: Feasible normalized cost region D∗
3. The feasibility is the direct result of the

aforementioned 4 schemes and time-sharing. The converse result will be proved by (4.12),
(4.20) and (4.30) in the next section.
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3.2 Schemes for K = 4

Similar to K = 3, it is easy to see that (0, 1) and (4, 0) (in general (K, 0)) are feasible

normalized download cost tuples. Also, it is not difficult to generalize the Scheme II in

Section 3.1.2, with downloads specified as

A0 = W1(z) +W2(z) +W3(z) +W4(z), Aθ = Wθ(z̄), An = Wn(z), n ̸= θ,

given Θ = θ, (3.6)

thus showing that (1/2, 1/2) is a feasible normalized download cost tuple also for K = 4.

Next, we construct another two schemes that work for K = 4 and proving another two

feasible normalized cost tuple associated with them.

3.2.1 Scheme V: L = 4, D0 = 6, D = 1

Consider that each message is composed of 5 bits. For k ∈ [K], let (z1k, z
2
k, z

3
k, z

4
k) be a uniform

permutation of {1, 2, 3, 4}. Then the downloads are specified as

A0 =



W1(z
2
1) +W2(z

1
2)

W1(z
3
1) +W3(z

1
3)

W1(z
4
1) +W4(z

1
4)

W2(z
3
2) +W3(z

2
3)

W2(z
4
2) +W4(z

2
4)

W3(z
4
3) +W4(z

3
4)


, Aθ = Wθ(z

θ
θ), An = Wn(z

θ
n), ∀n ̸= θ, given Θ = θ. (3.7)

This scheme shows that the normalized cost tuple (∆0,∆) = (3/2, 1/4) is feasible.
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3.2.2 Scheme VI: L = 5, D0 = 4, D = 2

Let (z
{2,3}
1 , z

{2,4}
1 , z

{3,4}
1 , z̄11 , z̄

2
1) be a uniform permutation of {1, 2, 3, 4, 5}. Similarly, let

(z
{1,3}
2 , z

{1,4}
2 , z

{3,4}
2 , z̄12 , z̄

2
2), (3.8)

(z
{1,2}
3 , z

{1,4}
3 , z

{2,4}
3 , z̄13 , z̄

2
3), (3.9)

(z
{1,2}
4 , z

{1,3}
4 , z

{2,3}
4 , z̄14 , z̄

2
4) (3.10)

be another three uniform permutations of {1, 2, 3, 4, 5}. The downloads are then specified as

A0 =



W1(z
{2,3}
1 ) +W2(z

{1,3}
2 ) +W3(z

{1,2}
3 )

W1(z
{2,4}
1 ) +W2(z

{1,4}
2 ) +W4(z

{1,2}
4 )

W1(z
{3,4}
1 ) +W3(z

{1,4}
3 ) +W4(z

{1,3}
4 )

W2(z
{2,4}
2 ) +W3(z

{2,4}
3 ) +W4(z

{2,3}
4 )


, (3.11)

and

Aθ =

Wθ(z̄
1
θ)

Wθ(z̄
2
θ)

 , An =

[
Wn(z

S
n ), θ ∈ S

]
, ∀n ̸= θ, given Θ = θ. (3.12)

Given Θ = θ, note that the user can retrieve the desired message Wθ by cancelling Wn(z
θ
n)

in A0 from An, n ̸= θ, and collecting the remaining pieces from Aθ. This scheme shows that

the normalized cost tuple (∆0,∆) = (4/5, 2/5) is feasible. It will be shown later that this

scheme achieves the capacity of the 4-star-graph PIR.
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3.3 Generalization

In this section, we generalize the idea used in constructing the previous schemes to K-star-

graph PIR.

For K-star-graph PIR, we construct K + 1 schemes. We denote the schemes as Schemes

(K, 0), (K, 1), · · · , (K,K).

Scheme (K, 0): It is the trivial scheme in which the user downloads nothing from Server 0

and downloads the whole message Wk from Server k for all k ∈ [K]. This

scheme shows the feasibility of (∆0,∆) = (0, 1).

Scheme (K, t): For t ∈ [K], the scheme is designed as follows. Let L =
(
K−1
t−1

)
+
(
K−2
t−2

)
. First,

the user locally generates K independent uniform random permutations of

{1, 2, · · · , L}. The kth permutation is denoted as

zk =

(
zSk ,S ∈

(
[K] \ {k}
t− 1

)
; z̄ik, i ∈

[(
K − 2

t− 2

)])
. (3.13)

Here,
(A
a

)
denotes the set of all a-subset of a set A, in lexicographic order.

Take K = 5, t = 4 and k = 1 as an example, (3.13) is

z1 =
(
z
{2,3,4}
1 , z

{2,3,5}
1 , z

{2,4,5}
1 , z

{3,4,5}
1 , z̄11 , z̄

2
1 , z̄

3
1

)
. (3.14)

Given Θ = θ, the download from Server 0 is

A0 =

[∑
k∈S Wk(z

S\{k}
k ),S ⊂

(
[K]
t

)]
(3.15)
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which is a vector with length
(
K
t

)
. The download from Server θ is

Aθ =

[
Wθ(z̄

i
θ), i ∈

[(
K−2
t−2

)]]
(3.16)

which is a vector with length
(
K−2
t−2

)
. The download from Server n ̸= θ is

An =

[
Wn(z

S
n ),S : θ ∈ S

]
(3.17)

which is a vector with length
(
K−2
t−2

)
. To retrieve Wθ, the user first cancels

the terms Wn(z
S
n ) in A0 using An, for n ̸= θ. This gives

(
K−1
t−1

)
bits of Wθ.

Then the user collects the remaining bits of Wθ from Aθ. Note that each

message contains L bits, the download from Server 0 has
(
K
t

)
bits since

there are
(
K
t

)
components in A0, and the download from Server k ∈ [K]

has
(
K−2
t−2

)
bits since there are

(
K−2
t−2

)
components in both Aθ and An. This

scheme shows the feasibility of (∆0,∆) =

(
(Kt )

(K−1
t−1 )+(

K−2
t−2 )

,
(K−2

t−2 )
(K−1

t−1 )+(
K−2
t−2 )

)
.

By a time-sharing argument, the above K + 1 schemes (K, 0), (K, 1), · · · , (K,K) together

show that the feasible normalized download cost region at least contains

DK =

(∆0,∆):

(
t+1
2

)
∆0 +

((
K
2

)
+Kt

)
∆ ≥ Kt,

for t ∈ {1, 2, · · · , K − 1};

∆0 +∆ ≥ 1.

 . (3.18)

Next we prove the privacy of the scheme. Suppose Θ = θ. First let us note that A0 does not

have θ by definition. Therefore, Server 0 learns nothing about Θ. The query sent to Server

θ is z̄iθ for i ∈ [
(
K−2
t−2

)
] which is a uniformly distributed random subset of

(
K−2
t−2

)
elements

from [L] by definition. Therefore, Server θ learns nothing about Θ. Finally, the query sent

to Server n ̸= θ is zSn for S such that θ ∈ S. This is also a uniformly distributed random
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subset of
(
K−2
t−2

)
elements from [L]. Therefore, for n ̸= θ, Server n learns nothing about Θ.
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Chapter 4

Converse Bounds

In the previous section, we have constructed schemes for theK-star-graph PIR, which provide

inner regions for the feasible normalized cost region. In this section, the goal is to show the

converse, i.e., the outer regions for the feasible normalized cost region. As a main result, we

will show that the inner regions and the outer regions match for K ≤ 4. In other words,

we will characterize the feasible normalized cost region for K up to 4. The following lemma

serves as a preliminary. Given discrete random variables A,B,C,

[Submodularity] H(A,B) +H(A,C) ≥ H(A) +H(A,B,C). (4.1)

4.1 Known Bounds

In [10], a series of converse bounds are proved for K-star-graph PIR as

∆0 +
t(t+ 1)

2
∆ ≥ t, ∀t ∈ [K]. (4.2)
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Let us provide the proof here for completeness. The idea is essentially the same as the proof

in [10], but the proof will be useful to establish some notations that also help to prove our

new bounds later. First, recall that the query sent to Server 0 is Q0 = µ0(Θ, Z), which is

determined by Θ, Z. By the privacy constraint I(Q0; Θ) = 0, there must be z1, z2, · · · , zK ∈

Z such that

µ0(1, z1) = µ0(2, z2) = · · · = µ0(K, zK) = q0, (4.3)

i.e., the same query q0 works for all Θ = θ ∈ [K]. Let us denoteX0 = ϕ0(W1,W2, · · · ,Wk, q0),

i.e., X0 is the answer from Server 0 corresponding to this query q0. Then, denote

Xθ
k = ϕk(Wk, µk(θ, zθ)), ∀k ∈ [K], θ ∈ [K]. (4.4)

We obtain the following.

1. Wθ is determined by X0, X
θ
1 , X

θ
2 , · · · , Xθ

K , for θ ∈ [K].

2. X1
k , X

2
k , · · · , XK

k are determined by Wk.

They imply the following entropic conditions.

H(Wθ | X0, X
θ
1 , X

θ
2 , · · · , Xθ

K) = 0,∀θ ∈ [K], (4.5)

H(X1
k , X

2
k , · · · , XK

k | Wk) = 0,∀k ∈ [K]. (4.6)
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To show the bounds in (4.2), we continue as follows. For any K, and t = 1,

D0 +D

≥ H(X0 | W[2:K]) +H(X1
1 | W[2:K]) (4.7)

≥ H(X0, X
1
1 | W[2:K]) (4.8)

(4.5)

≥ H(W1 | W[2:K]) (4.9)

= L (4.10)

=⇒ D0/L+D/L ≥ 1 (4.11)

=⇒ ∆0 +∆ ≥ 1 (4.12)

(4.12) follows from the definition of the feasible download cost tuple in Section 2.4.3.

For t = 2,

D0 + 3D

≥ H(X0 | W[3:K]) +H(X1
1 | W[3:K]) +H(X1

2 | W[3:K]) +H(X2
2 | W[3:K]) (4.13)

≥ H(X0, X
1
1 , X

1
2 , X

2
2 | W[3:K]) (4.14)

(4.5)

≥ H(W1, X0, X
2
2 | W[3:K]) (4.15)

(4.6)
= H(W1, X0, X

2
1 , X

2
2 | W[3:K]) (4.16)

(4.5)

≥ H(W1,W2 | W[3:K]) (4.17)

= 2L (4.18)

=⇒ D0/L+ 3D/L ≥ 2 (4.19)

=⇒ ∆0 + 3∆ ≥ 2 (4.20)
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For t = 3,

D0 + 6D

≥ H(X0 | W[3:K]) +H(X1
1 | W[4:K]) +H(X1

2 | W[4:K]) +H(X1
3 | W[4:K])

+H(X2
2 | W[4:K]) +H(X2

3 | W[4:K]) +H(X3
3 | W[4:K]) (4.21)

≥ H(X0, X
1
1 , X

1
2 , X

1
3 , X

2
2 , X

2
3 , X

3
3 | W[4:K]) (4.22)

(4.5)

≥ H(W1, X0, X
2
2 , X

2
3 , X

3
3 | W[4:K]) (4.23)

(4.6)
= H(W1, X0, X

2
1 , X

2
2 , X

2
3 , X

3
3 | W[4:K]) (4.24)

(4.5)

≥ H(W1,W2, X0, X
3
3 | W[4:K]) (4.25)

(4.6)
= H(W1,W2, X0, X

3
1 , X

3
2 , X

3
3 | W[4:K]) (4.26)

(4.5)

≥ H(W1,W2,W3 | W[4:K]) (4.27)

= 3L (4.28)

=⇒ D0/L+ 6D/L ≥ 3 (4.29)

=⇒ ∆0 + 6∆ ≥ 3 (4.30)

These three bounds, (4.12), (4.20) and (4.30) prove that the region shown in Fig. 3.1 is

equal to D∗
3.
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Similarly, for t ∈ [K],

D0 +
t(t+ 1)

2
D

= D0 +
(
t+ (t− 1) + · · ·+ 1

)
D (4.31)

≥ H(X0 | W[t+1,K]) +H(X1
1 | W[t+1,K]) +H(X1

2 | W[t+1,K]) + · · ·+H(X1
t | W[t+1:K])︸ ︷︷ ︸

t terms

+H(X2
2 | W[t+1:K]) +H(X2

3 | W[t+1:K]) + · · ·+H(X2
t | W[t+1:K])︸ ︷︷ ︸

t−1 terms

+ · · ·

+H(X t
t | W[t+1:K])︸ ︷︷ ︸
1 term

(4.32)

≥ H(X0, X
1
1 , · · · , X1

t , X
2
2 , · · · , X2

t , · · · , X t
t | W[t+1:K]) (4.33)

(4.5)

≥ H(W1, X0, X
2
2 , · · · , X2

t , · · · , X t
t | W[t+1:K]) (4.34)

(4.6)
= H(W1, X0, X

2
1 , X

2
2 , · · · , X2

t , · · · , X t
t | W[t+1:K]) (4.35)

(4.5)

≥ H(W1,W2, X0, X
3
3 , · · · , X3

t , · · · , X t
t | W[t+1:K]) (4.36)

≥ · · · (4.37)

(4.5)

≥ H(W1,W2, · · · ,Wt | W[t+1:K]) (4.38)

= tL (4.39)

=⇒ D0/L+
t(t+ 1)

2
D/L ≥ t (4.40)

=⇒ ∆0 +
t(t+ 1)

2
∆ ≥ t (4.41)

4.2 New bound: 3∆0 + 14∆ ≥ 8 for K ≥ 4

For K ≥ 4, we now prove the new bound, which is stated in the following theorem

31



Theorem 4.1. For any feasible normalized cost tuple (∆0,∆), we have

3∆0 + 14∆ ≥ 8. (4.42)

Note that this bound is not implied by the bounds in (4.2). Indeed, this bound requires the

use of submodularity in a non-trivial way. In order to prove it, we proceed as follows. First,

H(W1) +H(X2
2 ) +H(X2

3 ) +H(X2
4 ) +H(X0)

≥ H(W1, X
2
2 , X

2
3 , X

2
4 , X0)

(4.6)(4.5)

≥ H(W1,W2, X
2
3 , X

2
4 , X0)︸ ︷︷ ︸

T1

.

(4.43)

Due to symmetry, we have

H(W3) +H(X1
1 ) +H(X1

2 ) +H(X1
4 ) +H(X0)

≥ H(W3,W1, X
1
2 , X

1
4 , X0)︸ ︷︷ ︸

T2

,
(4.44)

H(W4) +H(X1
1 ) +H(X1

2 ) +H(X1
3 ) +H(X0)

≥ H(W4,W1, X
1
2 , X

1
3 , X0)︸ ︷︷ ︸

T3

.
(4.45)

Then, by submodularity and (4.6),

T1 + T2

≥ H(W1, X
2
3 , X

1
2 , X0)︸ ︷︷ ︸

T4

+H(W1,W2,W3, X
1
4 , X

2
4 , X0)︸ ︷︷ ︸

T5

.
(4.46)

32



Again by submodularity,

T3 + T4

≥ H(W1, X
1
2 , X0)︸ ︷︷ ︸

T6

+H(W1,W4, X
1
2 , X

1
3 , X

2
3 , X0)︸ ︷︷ ︸

T7

. (4.47)

Then

T5 +H(X4
4 )

(4.6)(4.5)

≥ H(W1,W2,W3,W4), (4.48)

and by submodularity

T6 +H(W2) +H(X3
3 ) +H(X3

4 ) +H(X4
4 )

≥ T6 +H(W2, X
3
3 , X

3
4 , X

4
4 )

(4.5)

≥ H(X1
2 ) +H(W1,W2, X

3
3 , X

3
4 , X

4
4 , X0) (4.49)

(4.6)(4.5)

≥ H(X1
2 ) +H(W1,W2,W3,W4),

and finally

T7 +H(X2
2 ) +H(X3

3 )

≥ H(W1,W4, X
1
2 , X

1
3 , X

2
3 , X

2
2 , X

3
3 , X0) (4.50)

(4.6)(4.5)

≥ H(W1,W2,W3,W4).

Adding (4.43), (4.44), (4.45), (4.46), (4.47), (4.48), (4.49), (4.50) (two terms of H(X1
2 ) are
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canceled from both sides), we have

2H(X1
1 ) + 2H(X2

2 ) + 2H(X3
3 ) + 2H(X4

4 )

+H(X1
2 ) +H(X1

3 ) +H(X1
4 ) +H(X2

3 ) +H(X2
4 ) +H(X3

4 )

+ 3H(X0) +H(W1) +H(W2) +H(W3) +H(W4)

≥ 3H(W1,W2,W3,W4). (4.51)

Since D0 ≥ H(X0) and D ≥ H(Xθ
k) for all k, θ ∈ [K], we conclude that

14D + 3D0 + 4L ≥ 12L =⇒ 3∆0 + 14∆ ≥ 8. (4.52)

Finally, let us note that although the argument holds for K = 4, the bound is also true for

K > 4. This can be seen by rewriting all the entropic terms in the proof conditioned on

H(W[5:K]).

4.3 Feasible Normalized Cost Region D∗
4

Together with the coding schemes presented in Section 3.2, we obtain that the feasible

normalized cost region D∗
4 as illustrated in Fig. 4.1. The capacity C4 for the K = 4-star-

∆0

∆

•
(0, 1)

•

(
1
2 ,

1
2

)
•
(
4
5 ,

2
5

)
•
(
3
2 ,

1
4

)
•

(4, 0)

D∗
4

∆0 +∆ ≥ 1
∆0 + 3∆ ≥ 2
3∆0 + 14∆ ≥ 8
∆0 + 10∆ ≥ 4

Figure 4.1: Feasible normalized cost regionD∗
4. The feasibility is a direct result of the schemes

constructed in Section 3.2 and time-sharing. The converse result is proved in Section 4.1
and Section 4.2. The section in thick blue highlights our new bound.
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graph PIR is then the optimization

C4 =
(

min
(∆0,∆)∈D∗

4

∆0 +K∆
)−1

=
5

12
, (4.53)

achieved by (∆0,∆) =
(
4
5
, 2
5

)
. It is noteworthy that with only the previously best known

bounds provided in Section 4.1, the best upper bound for the capacity is C4 ≤ 3/7. With

our new bound 3∆0+14∆ ≥ 8, the upper bound is improved to C4 ≤ 5/12, thus successfully

characterizing the capacity, as well as the complete feasible region of the 4-star-graph PIR.

4.4 On the Capacity C5

We have characterized the capacities of K-star-graph PIR for K up to 4. Now, let us see

how close we can bound the capacity C5 for 5-star-graph PIR with the previous result only.

For the direct part, the general scheme in Section 3.3 implies that C5 ≥ 9/25, achieved by

(∆0,∆) = (10/9, 1/3). For the converse part, the new bound together with the previously-

known bounds imply that C5 ≤ 4/11. Specifically,

∆0 + 10∆ ≥ 4, 3∆0 + 14∆ ≥ 8 =⇒ ∆0 + 5∆ ≥ 11

4
. (4.54)

Therefore, we have 9/25 ≤ C5 ≤ 4/11. The gap between the lower and upper bounds is

4/11− 9/25 = 1/275 ≈ 0.0037.

Our next result further reduces this gap. In the following, let us prove another non-trivial

converse bound, which is stated in the following theorem.

Theorem 4.2. For K ≥ 5, any feasible normalized cost tuple (∆0,∆) must satisfy

3∆0 + 21∆ ≥ 10. (4.55)
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Let us start from

H(W1) +H(W2) +H(X3
3 ) +H(X3

4 ) +H(X3
5 ) +H(X0)

≥ H(W1,W2, X
3
3 , X

3
4 , X

3
5 , X0)

(4.6)(4.5)

≥ H(W1,W2,W3, X
3
4 , X

3
5 , X0)︸ ︷︷ ︸

T1

. (4.56)

Also,

H(W3) +H(X4
1 ) +H(X4

2 ) +H(X4
4 ) +H(X4

5 ) +H(X0)

≥ H(W3, X
4
1 , X

4
2 , X

4
4 , X

4
5 , X0)

(4.6)(4.5)

≥ H(W3,W4, X
4
1 , X

4
2 , X

4
5 , X0)︸ ︷︷ ︸

T2

, (4.57)

and similarly,

H(W5) +H(X3
1 ) +H(X3

2 ) +H(X3
3 ) +H(X3

4 ) +H(X0)

≥ H(W5, X
3
1 , X

3
2 , X

3
3 , X

3
4 , X0)

(4.6)(4.5)

≥ H(W3,W5, X
3
1 , X

3
2 , X

3
4 , X0)︸ ︷︷ ︸

T3

. (4.58)

Adding (4.56) and (4.57), by submodularity and (4.6), we have

T1 + T2

≥ H(W3, X
3
4 , X

4
1 , X

4
2 , X0)︸ ︷︷ ︸

T4

+H(W1,W2,W3,W4, X
3
5 , X

4
5 , X0)︸ ︷︷ ︸

T5

(4.59)
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Again by submodularity,

T3 + T4

≥ H(W3, X
3
4 , X0)︸ ︷︷ ︸

T6

+H(W3,W5, X
4
1 , X

4
2 , X0)︸ ︷︷ ︸

T7

. (4.60)

Then

T5 +H(X5
5 )

≥ H(W1,W2,W3,W4, X
5
5 , X0)

(4.6)(4.5)

≥ H(W1,W2,W3,W4,W5), (4.61)

and by submodularity

T6 +H(W4) +H(X1
1 ) +H(X1

2 ) +H(X1
5 ) +H(X2

2 ) +H(X2
5 ) +H(X5

5 )

≥ T6 +H(W4, X
1
1 , X

1
2 , X

1
5 , X

2
2 , X

2
5 , X

5
5 )

(4.6)

≥ H(X3
4 ) +H(W3,W4, X

1
1 , X

1
2 , X

1
5 , X

2
2 , X

2
5 , X

5
5 )

(4.6)(4.5)

≥ H(X3
4 ) +H(W1,W2,W3,W4,W5), (4.62)

and finally

T7 +H(X4
4 ) +H(X1

1 ) +H(X1
2 ) +H(X2

2 )

≥ H(W3,W5, X
4
1 , X

4
2 , X

4
4 , X

1
1 , X

1
2 , X

2
2 , X0)

(4.6)(4.5)

≥ H(W1,W2,W3,W4,W5). (4.63)

Adding (4.56), (4.57), (4.58), (4.59), (4.60), (4.61), (4.62) and (4.63) (two terms of H(X3
4 )
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are canceled from both sides), we have

2H(X1
1 ) + 2H(X2

2 ) + 2H(X3
3 ) + 2H(X4

4 ) + 2H(X5
5 )

+H(X3
1 ) +H(X4

1 ) + 2H(X1
2 ) +H(X3

2 ) +H(X4
2 ) +H(X3

4 )

+H(X1
5 ) +H(X2

5 ) +H(X3
5 ) +H(X4

5 )

+H(W1) +H(W2) +H(W3) +H(W4) +H(W5)

+ 3H(X0) (4.64)

≥ 3H(W1,W2,W3,W4,W5). (4.65)

Since D0 ≥ H(X0) and D ≥ H(Xk
θ ) for all k, θ ∈ [K], we conclude that

21D + 3D0 + 5L ≥ 15L =⇒ 3∆0 + 21∆ ≥ 10. (4.66)

Similarly the bound (4.55) also extends to any K > 5 by conditioning on W[6:K]. Note that

the two bounds

3∆0 + 14∆ ≥ 8, 3∆0 + 21∆ ≥ 10 =⇒ ∆0 + 5∆ ≥ 58

21
. (4.67)

Therefore, C5 ≤ 21/58. With this improved upper bound, the gap between our best known

lower bound and upper bound becomes 21/58 − 9/25 = 3/1450 ≈ 0.0021. Closing this gap

requires finding possibly stronger converse bounds and/or constructing coding schemes with

higher rates.
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Chapter 5

Conclusion

We studied the capacity of K-star-graph PIR, and characterized the capacity CK for K up

to 4. The case K = 4 is non-trivial particularly because it requires a new converse bound

based on a technically involved way of applying submodularity. The capacity C5 for 5-star-

graph PIR is still open and may require further improvement of the design of the coding

scheme. Generalizing the converse bounds to K > 4 may require deeper understanding of

the structure of the coding/decoding constraints posed by the problem or it may require

the use of non-Shannon inequalities [23]. Our result also includes the construction of a

general coding schemes for the K-star-graph PIR. As we have mentioned, the problems of

PIR are broadly insightful as they have connection to other important problems. Therefore,

before we conclude, let us briefly point out two such problems that have connections to the

K-star-graph PIR.
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5.1 Connection with Other Problems

5.1.1 Caching Over MAC

Caching is a technique to reduce peak traffic rates by prefetching content. With coded

caching and transmission, one can design schemes that deliver the desired message to the

end users more efficiently [24] than the uncoded counterpart.

Let us consider the following caching problem in a multiple access scenario. Consider a

setting with K distributed servers, so that the kth server has a message Wk for k ∈ [K]. For

simplicity, say each message contains L bits. A user is connected to the servers through a

network. Suppose with each use of the network, the user is able to get one bit from each

of the servers separately. In the off-peak hours, the user can prefetch up to M bits of data

from the servers. In the peak hours, the user demands one of the K messages, and uses

the network D times, together with its cached data to recover its desired message. We are

interested in finding the optimal trade-off between the normalized cache size µ = M/L and

the average download cost for the peak hours, ∆ = D/L.

  Cache

A0

W1

A1

W2 WK

A2
AK

WΘ

⋯

Figure 5.1: Caching Over MAC
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Since the user is unaware of the index of the desired message in the off-peak hours, the

cache content must be independent of this index, which is similar to the setting of the K-

star-graph PIR, where the server A0 does not learn the index of the message. This may be

more transparent when we look at the the PIR schemes proposed in Chapter 3, in which

the transmission from the universal server, i.e., A0, is always determined without knowing

the message index Θ. Therefore, the scheme can be applied to the caching setting as well.

Specifically, let A0 be the prefetched data in the off-peak hours. Then, in the peak hours, if

the user desiresWθ, then it downloads Aθ
k from Server k. Note that our schemes has balanced

download, i.e., A1, A2, · · · , AK are of the same length. Therefore, the number of uses of the

network is equal to the size of the answers Ak for any k ∈ [K]. The trade-off between µ and

∆ in the caching problem is exactly the trade-off between ∆0 and ∆ in the K-star-graph

PIR problem. Therefore, the study of the feasible region D∗
K for the K-star-graph PIR is

also the study of the memory-download trade-off in the aforementioned caching setting.

5.1.2 Retrospective Interference Alignment

The K-star-graph PIR scheme also resembles a type of retrospective interference alignment

schemes in the study of the DoF of the wireless interference network. Specifically, consider

the following wireless network, with K transmitters, Tx-1–Tx-K and K receivers, Rx-1–Rx-

K. Each transmitter/receiver is equipped with one antenna. For k ∈ [K], Rx-k desires a

message Wk which is known by Tx-k.

Let n ∈ N. For the nth use of the wireless channel, denote the input at Tx-k as Xk(n) and
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W1 Ŵ1

Ŵ2

ŴK
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Tx-1

Tx-K Rx-K

Tx-2 Rx-2

Rx-1

Delayed CSI

Figure 5.2: Retrospective Interference Alignment

the output at Rx-k as Yk(n). Then



Y1(n)

Y2(n)

...

YK(n)


︸ ︷︷ ︸

Y(n)

=



h11(n) h12(n) · · · h1K(n)

h21(n) h22(n) · · · h2K(n)

...
...

. . .
...

hK1(n) hK2(n) · · · hKK(n)


︸ ︷︷ ︸

Channel Matrix H(n)



X1(n)

X2(n)

...

XK(n)


︸ ︷︷ ︸

X(n)

+



Z1(n)

Z2(n)

...

ZK(n)


︸ ︷︷ ︸

i.i.d. noise Z(n)

. (5.1)

We assume that the channel matrix H(n) is available at the receivers at and after the nth

channel uses, but is only available at the transmitters not earlier than the (n+ 1)th channel

use, because it may take the time equivalent to one channel use for the feedback of the

channel state information. This restriction poses constraint on the design of the possible

coding schemes. For example, the K-user interference alignment scheme which achieves K/2

DoF as shown in [25] requires perfect channel state information at the transmitter, thus not

applicable to this setting. Schemes that works in this setting are considered in e.g., [26].

A possible construction of coding schemes in this wireless channel contains two phases. Each

phase contains multiple uses of the wireless channel. In the first phase, the transmitters send
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their message symbols simultaneously, therefore each receiver will receive some noisy version

of linear combinations of the message symbols. Let us refer to these linear combinations as

the side information at the receivers. In the second phase, each channel is only occupied

by one transmitter. Since in the second phase the channel state information of the first

phase is fed back to the transmitters, the transmitters may use this information to design

beamforming vectors in a way that it exploits the side information at the receivers. From

each receiver’s respective, the symbols it receives in the first phase (side information) has a

similar structure to A0, i.e., the download from the universal server of the PIR problem, and

the symbols it receives in the second phase has a similar structure to Ak, k ∈ [K], i.e., the

download from the dedicated servers. Based on a similar idea, the retrospective interference

alignment scheme of [26] achieves a total DoF of Θ(
√
K), which is Θ(1/

√
K) DoF per Tx-

Rx pair. Meanwhile, recall that [10] shows the capacity of the K-star-graph PIR being also

Θ(1/
√
K). The two results together indicate a deeper connection between these problems.
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