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Abstract

In this paper we present a new approach, based on a shifted Green function, to evaluate
the electromagnetic field in a simulation of colliding beams. Unlike a conventional particle-
mesh code, we use a method in which the computational mesh covers only the largest of the
two colliding beams. This allows us to study long-range parasitic collisions accurately and
efficiently. We have implemented this algorithm in a new parallel strong-strong beam-beam
simulation code. As an application, we present a study of a beam sweeping scheme for the
LBNL luminosity monitor of the Large Hadron Collider.

1 Introduction

The beam-beam interaction puts a strong limit on the performance of most colliders. At the
interaction points, the electromagnetic fields generated by one beam focus or defocus the beam
moving in the opposite direction. This can cause beam blowup and a reduction of luminosity.
An accurate simulation of the beam-beam interaction will help to optimize the luminosity in
high energy colliders. Macroparticle tracking provides an invaluable tool for the study of beam-
beam interactions. In this approach, a number of simulation particles are generated with the
same charge-to-mass ratio as the real particles. Outside the interaction region, each particle
is transported using transfer maps associated with external elements, radiation damping, and
quantum excitation. At interaction point, the electromagnetic fields from the colliding beams are
calculated and applied to the opposite beam. To calculate the electromagnetic field requires the
solution of the Poisson equation after each turn. The soft Gaussian approximation is usually used
to obtain the electromagnetic fields quickly [1, 2, 3, 4, 5, 6, 7, 8]. To take into account the effects of
the beam distribution self-consistently, one has to solve the Poisson equation numerically. Particle-
mesh methods have been used to solve the Poisson equation on a numerical grid [9, 10, 11]. Using
these methods, the computational cost for the Poisson solver can be on the order of Ngzlog(Ng),
where NV, is the number of grid points in one direction. Since these methods normally require
using a mesh covering both beams, the straightforward application of such an approach would have
strong disadvantages for two beams with large separation as in the long-range interaction [12].
Given that the electromagnetic fields in the empty space between the two beams are not needed,
such an approach would be a waste of computational power, and would furthermore lead to poor
numerical resolution on the grid for widely spaced beams. A hybrid fast multipole method has
been proposed to calculate the electromagnetic field [12]. In this paper, we propose a particle-
mesh method using a shifted Green function. Using such an approach, the computational domain



covers only the size of the largest beam. This avoids the potential loss of numerical resolution and
leads to high computational efficiency since the fields between the bunches are not calculated.

The organization of this paper is as follows: The physical model and computational method
are described in Section 2. Applications to the study of coherent beam-beam oscillations and
beam sweeping in the Large Hadron Collider (LHC) are given in Section 3. The conclusions are
drawn in Section 4.

2 Physical Model and Computational Method

In our beam-beam simulation, each charged particle has a position in phase space with coordi-
nates (z,2',y,y',Az/o,, Ap,/o,.). Here, a superscript prime denotes 0/0s, where s is the arc
length. The motion of a particle will be subject to the influence of external fields, which pro-
vide transverse and longitudinal focusing of the beam. A particle will also lose energy through
synchrotron radiation, i.e., through radiation damping and quantum excitation. The Coulomb
interaction among charged particles within a bunch is negligible due to the cancellation of electric
and magnetic forces at high energy. However, for the opposite-moving particles, the electric and
magnetic forces will add up. This can significantly affect the motion of the particles in the other
beam.

The effects of the external field can be represented, in the small-amplitude approximation, by
a one-turn linear map. For our model, the map governing the horizontal motion is given by

B cos(2mvy,) + oy sin (27, ) By sin (27,

< ;C, >n+1 B ( — Yz Sin(27v,) cos (271, ) — o sin(271g,) ) < ;f’ )n (1)

where «,, B, and 7, are lattice functions at the interaction point, vy, is the horizontal lattice
tune, and n is the turn number. A similar map applies to the vertical phase space y and y" by
replacing x — y in the above equation. For the longitudinal phase space, the one-turn map is

defined by
Az/o, B cos(2mvg)  sin(27vy) Az/o, (2)
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where v, is the synchrotron tune.

The effects of radiation damping and quantum excitation can be represented using a localized
stochastic map. For each particle, the map consists of the following transformations [3]:

Tpil = AaZp + rlaxm (3)
Ty = Mgy, +7200/1— A2 (4)
Ynt1 = AyYn+ 7”3%\/@ (5)
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(7)
(8)
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where the ¢’s are the nominal rms equilibrium beam sizes in each dimension, the \’s are given in
terms of the damping time 7 (measured in units of turns) by \; = exp (—1/7;) where i denotes z,
y, or z, and the r’s are independent random numbers satisfying

(ri) = 0 (9)
(rirj) = 0y (10)

The first term in the above transformation represents the radiation damping, and the second term
represents the quantum excitation.
After applying the previous maps, the slopes of the particles are updated,
T, = x+Az (11)

new

Ynew = Y +AY (12)

due to the beam-beam electromagnetic forces at the collision point. Here, the kick on a particle
in beam 1 due to the influence of beam 2 is given by

Azl = ME@ (13)
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2 N

Ay, = A2 o (14)
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where 7 is the relativistic factor, 5 = |v|/¢, ¢ is the speed of light, €y is the vacuum permittivity,
q is the charge of a particle, m is the rest mass of a particle, N is the number of particles
in a bunch, and E, and E, are the transverse electric fields generated by the opposing beam.
The corresponding expression for the influence of beam 1 on particles in beam 2 is obtained by
exchanging the subscripts 1 and 2.

For two relativistic colliding beams with large longitudinal-to-transverse aspect ratio, the elec-
tric field can be obtained from the solution of the two-dimensional Poisson equation. The general
solution of Poisson’s equation can be written as

da.y) = [Glo,a.y.9)p(,7) dudy (15)

where GG is Green’s function and p is the charge density. For the case of transverse open boundary
conditions, Green’s function is given by:

Glr,2,,9) = —ghn((— "+ (y— 7)) (16)

Now consider a simulation of an open system where the computational domain containing the
particles has a range of (0, L,) and (0, L,), and where each dimension has been discretized using
N, and N, points. From Eq. 15, the electric potentials on the grid can be approximated as

Nz Ny

(i, y;) = haohy Y > Glai — xy,y; — yj)p(, yjr) (17)
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where z; = (i —1)h, and y; = (j —1)h,. This convolution can be replaced by a cyclic convolution
expression in a double-gridded computational domain [13, 14]:
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im1 j=1
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. G(.Z‘QNE_Z'_'_Q,yj) D N, +1<01 < 2Na:; 1< ] < Ny +1
Geleiyy) = Gl yony—y12) : 1<i<Ny+1 Ny+1<j<2n, (20
G(won,—it2, Yon,—j+2) © Ne+1<i<2N,; N,+1<j<2N,
pe(@iy;) = pelwi +2(La + he),yj + 2(Ly + hy)) (21)
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From the above definition, one can show that the cyclic convolution will give the same electric
potential as the convolution eq. 17 within the original domain, i.e.

(i, yj) = Pelwi,y;) Jor i=1,Ng j=1,N, (23)

The potential outside the original domain is incorrect but is irrelevant to the physical domain.
Since both G, and p. are periodic functions, the convolution for ¢. in Eq. 18 can be computed
efficiently using an FFT as described by Hockney et. al. [13].

In the above FFT-based algorithm, the particle domain and the electric field domain are
contained in the same computational domain. Here, the particle domain is the configuration
space containing the charged particles, and the field domain is the space where the electric field
is generated by the charged particles in the particle domain. In the beam-beam interaction,
two opposite moving beams might not overlap with each other. For example, in the long-range
interaction, the two colliding beams could be separated more than 90, where o is the rms size of
the beam. The field domain where the electric field is generated by one beam can be different
from the particle domain containing the beam. Fig. 1 shows a schematic plot of the two separated
domains. In this figure, the particle domain has a range from —Rjy to R, for x and y, and the
field domain has a range from 0 to 2R, for x and y, where Ry is maximum extent of the beam.
To apply Hockney’s algorithm directly will require the computational domain to contain both
the particle domain and the field domain, i.e. both beams. Since there is a large empty space
between two beams, containing both beams in one computational domain will result in a poor
spatial resolution of the beams. This is also computationally inefficient because the electric fields
in the empty space between two beams are not used. To avoid this problem, we have defined a
shifted Green function as

Culr, B T) = —s((ee bz~ D+ (et y— 7)) 24)
where x. and y. are the center coordinates of the field domain. The electric potential in the field
domain is written as

ST+ Ty + 1) = / Gy(w, Z,,9)p(T, ) dzdy (25)
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Figure 1: A schematic plot of the particle domain and the field domain.

Using the shifted Green function, the center of the field domain is shifted to the center of the
particle domain. The range of x and y cover both the particle domain and the field domain in
one computational domain. The FF'T can be used to calculate the cyclic convolution in Eq. 18
using the new Green function. Here, on the doubled grids, the Green function is given as

ln((mc+xl) +(yc+yj)2) . 1<i<Ng; 1<j<N,
Gulonys) = 1) In((ze — mon,—ig2)* + (e +5)%) : N, <i<2N,; 1<j<N, (26)
B 2 ] In((ze + 2:)* + (Yo — von,—jt2)°) : 1<i< N N, <i<2N,
In((ze — wan, —it2)* + (Yo — 92Ny—j+2)2) : Ny <i<2N,; Ny <i< 2Ny

Using the shifted Green function avoids the requirement that the particle domain and the field
domain be contained in one big computational domain. This leads to good numerical resolution
for the charge densities and resulting electric fields, because the empty space between the beams
is not included in the calculation. This is also far more efficient, in terms of computational effort
and storage, than the traditional approach of gridding the entire problem domain.

As an example of the above FFT-based algorithms, we computed the radial electric field
distribution generated by a round beam with a Gaussian density distribution using the particle
domain and the field domain shown in Fig. 1. Fig. 2 shows the radial electric field E, as a function
of distance along the diagonal line of the particle domain using the conventional algorithm, i.e.
without the shifted Green function, and 128x128 grid. The electric field from the analytical
calculation is also given in the same figure for comparison. It is seen that the agreement between
the numerical solution and the analytical calculation is excellent. As a test of the shifted Green
function approach, we also computed the electric field E, along the diagonal line of the field
domain. The results are shown in Fig. 3 together with the the analytical calculation. We see that
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Figure 2: Radial electric field as a function

domain.

Figure 3: Radial electric field as a function of distance
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Table 1: LHC nominal beam-beam parameters

beam energy (TeV) 7
protons per bunch 1.05 x 10!
f* (m) 0.5
RMS spot size at the IP (um) 15.9
betatron tunes (v, vy) (0.31, 0.32)
RMS bunch length (m) 0.077
synchrotron tune v, 0.0021
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Figure 4: Spectra of the horizontal (left) and vertical (right) sum and the difference centroid
motion for nominal beam-beam collision parameters.

the two solutions are in excellent agreement.

3 Applications

As a first application, we have studied the coherent beam-beam dipole oscillation in the proposed
Large Hadron Collider (LHC). The nominal beam-beam parameters of LHC are given in Table 1.

In this study, the two proton beams are assumed to have the same physical parameters. The
nominal beam-beam parameter £ is —0.0034. Here £ is defined as —4’;75;” and r, is the classical
proton radius. Fig. 4 shows the spectra of the sum and the difference of the beam centroids
for the nominal LHC parameters. The normalized tune is defined as (v — v4)/|£], where v,
is the horizontal bare tune, and where v is the power spectrum associated with the sum or the
difference of the centroid motion of the two beams. The simulation was run for 20000 turns
using a single slice model for each beam with one million particles and a 128 x 128 grid. The
centroid of one beam is initially displaced by 0.01c on the horizontal plane and the vertical plane.
Only head-on collisions were taken into account in this simulation. It is seen that there exist two
oscillation frequencies for the centroid motion, one corresponding to the bare tune without beam-
beam interaction (the o mode) and the other (the 7 mode) with its frequency shifted downwards
in tune by (1.21 £ 0.015)|¢| in x and by (1.19 £ 0.015)|¢| in y, where the uncertainty 0.015 is
due to the finite number of turns used in the simulation. The frequency downshift has also been




1 T T T T 1 T T T T
X'sum ‘ Y sum

0.001 - Bl

0.0001
0.0001

1e-05 [

1e-06 | | w
1e-06 |- i l
k it

power spectrum
power spectrum

I W VM
HP\ H ’ v
"\» I" M W i (A |
vmw\\‘ ‘MM V “ W ‘ V ‘ “H w WM [ 4“ ‘\ M\

1e-1oH “‘ ‘u V H \‘

1e-07 |- 4
il ﬁ I
1e-08 W‘ M‘\‘\‘M

h\ 1

i iy I W i W \e‘\W‘”W V‘ \ “ W A M

1e-08 -
\\ U MW‘

1e-09 -

1e-10 ‘

1e-11 L L L L L 1e-12
-2 -1 0 1 2 -2 -1 0 1 2
normalized tune normalized tune

Figure 5: Spectra of the horizontal (left) and vertical sum and difference centroid motion for
long-range beam-beam collision with 90, horizontal separation.

calculated using a linearized Vlasov analysis which gives 1.21€ [15]. We see that the simulation
result agrees with the theoretical calculation within 2%.

The same model was also employed to simulate the long-range parasitic collisions in the LHC.
To reduce the computing time, we lumped all parasitic collisions into a single collision. A static
dipole kick from the long-range collision was subtracted following the treatment of Herr et. al. [12].
The beam-beam kick in the long range interaction is given by:

2q1q2 N1 » L2
Ax! = w———-—(F,, , — D 1.0 — — 27
‘,I;Q,l np 72’147'(—6[]7’”/27102 ( 1,2 2O ( exXp ( 9 ))) ( )
2q1q2N1 2 L?
Ayl = w————-——(F,, ., — D 1.0 — — 28
Ya1 Ty o Ameqmmy ( 1,2 L,o, ( exp ( 9 ) (28)

where L0, is the horizontal separation distance of the two beams, L, o, is the vertical separation
distance, D is a sign function depending on the relative position of the two beams, and 7, is
the number of parasitic collisions. In the above equations, the static dipole kick is approximated
by a constant dipole kick generated by a Gaussian distribution at a distance x = L,0, or y =
Lyo,. Fig. 5 shows the spectra of the sum and the difference of the beam centroids with 9o,
horizontal separation. Here, only long-range interactions are included with 16 parasitic collisions.
In the horizontal plane, the 7 mode frequency is shifted upward instead of downward as opposed
to the no-separation collision case in Fig. 4. The normalized tune shifts of the m mode are
(0.794£0.015, —0.78 £0.015). The numerical parameters are the same as those used in the nominal
LHC simulation without separation. Since the transverse distance between the two beams at the
parasitic collision points is significantly larger than the rms size of the beams, the effects of the
beam distribution on the coherent motion might not be important. The beams might be treated
as rigid bunches. In this case, the contribution of the long range beam-beam interaction to the
tune shift of the coherent oscillation modes would be twice the incoherent long-range tune shift,
which is proportion to 1/L2. Fig. 6 shows the values of the 7 mode tune shifts at several different
horizontal separations, along with a curve having the 1/L? dependence. We see that the tune
shifts fit the 1/L2 scale very well.
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Figure 7: The luminosity per collision as a function of turns during the sweeping process.

In the luminosity monitoring scheme being developed at LBNL for the LHC, one beam is
deliberately swept in a circle about the geometrical collision point, where the other beam remains
fixed [16, 17]. This sweeping can be achieved by an appropriate time-dependent closed orbit
bump spanning the interaction point. As a test, we have chosen a sweeping period of 1000 turns
and a sweeping radius of 0.60( for the closed orbit of beam 2, while the closed orbit of beam 1
remains static and is offset by 0.20( from the nominal interaction point at 45 degrees relative to
the horizontal axis. Fig. 7 shows the luminosity per collision as a function of turns during the
process of sweeping. It is seen that the luminosity oscillates due to the off-center collisions with a
period of 1000 turns. In practice, this is the signal that could be used to optimize the luminosity.
Fig. 8 shows the normalized rms emittances as a function of turns during the sweeping process.
There is no significant emittance growth after 55000 turns except for a slightly initial increase
that can be attributed to particle redistribution. However, we have found that, when the number
of charged particles per bunch is increased by a factor of 10, 3 — 4% emittance growth is observed
after 55000 turns. Fig. 9 shows the beam centroid spectra of two sweeping beams. Comparing
with the nominal case in Fig. 4, we see that the tune shifts of the 7 modes are smaller during the
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sweeping operation owing to the lower effective beam-beam parameter. The difference spectra
also show sidebands of the 7 modes separated by 0.001, corresponding to the sweeping tune.

4 Conclusions

In this paper, we have presented an FF'T-based method to evaluate the electromagnetic field
in the study of the strong-strong beam-beam interaction. Using such a method, we can handle
not only the on-axis head-on beam-beam collision but also the long-range beam-beam collision
with arbitrary separation without losing computational efficiency. A study of the coherent tune
shift for the beam-beam interaction shows good agreement with the theoretical prediction. As
an application, we have also studied a luminosity monitoring scheme for LHC based on beam
sweeping. In our simulations, there is no significant beam quality degradation after 55000 turns
for the nominal parameter values.
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