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EPIGRAPH

Truth lives, in fact, for the most part on a credit system. Our thoughts and beliefs ’pass,’

so long as nothing challenges them, just as bank-notes pass so long as nobody refuses

them.

—William James
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ABSTRACT OF THE DISSERTATION

Worker and Firm Responses to Environmental Policies

by

Matthew Gibson

Doctor of Philosophy in Economics

University of California, San Diego, 2015

Professor Julie Cullen, Co-Chair
Professor Mark Jacobsen, Co-Chair

This work examines responses to environmental policies. Treating workers and

firms as optimizing agents, it derives theoretical predictions and evaluates them using

data.

In Chapter 1, exploiting the natural experiment created by an unanticipated

court injunction, we evaluate driver responses to road pricing. We find evidence of

intertemporal substitution toward unpriced times and spatial substitution toward unpriced

roads. The effect on traffic varies with public transit availability. Net of these responses,

Milan’s pricing policy reduces air pollution substantially, generating large welfare gains.
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In addition, we use long-run policy changes to estimate price elasticities.

Chapter 2 examines the unintended consequences of pollution regulations. By

regulating air emissions in particular counties, the Clean Air Act (CAA) gives firms

incentives to substitute: 1) toward polluting other media, like landfills and waterways;

and 2) toward pollution from plants in other counties. Using EPA Toxic Release Inventory

data, I examine the effect of CAA regulation on these types of substitution.

Chapter 3 takes advantage of time zones, which influence worker sleep, to study

the relationship between sleep and wages. Because sleep influences performance on

memory and focus intensive tasks, it plausibly affects economic outcomes. We identify

the effect of sleep on wages by exploiting the relationship between sunset time and sleep

duration. Using a large, nationally representative set of time use diaries from the United

States, we provide the first causal estimates of the impact of sleep on wages. A one-hour

increase in seasonal weekly sleep increases a worker’s wage by 1%. At the location level,

a one-hour increase in long-run weekly mean sleep increases mean wage by 4.5%. Our

results highlight the economic importance of sleep and pose potentially fruitful questions

about the effects of time use on labor market outcomes.

These findings illustrate the richness of human responses to the new incentives

and constraints imposed by environmental policies. They suggest ways in which efficient

policies might account for such responses.
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Chapter 1

The effects of road pricing on driver

behavior and air pollution

Abstract

Exploiting the natural experiment created by an unanticipated court injunction, we

evaluate driver responses to road pricing. We find evidence of intertemporal substitution

toward unpriced times and spatial substitution toward unpriced roads. The effect on

traffic varies with public transit availability. Net of these responses, Milan’s pricing

policy reduces air pollution substantially, generating large welfare gains. In addition, we

use long-run policy changes to estimate price elasticities.

1.1 Introduction

Growing air pollution, congestion, and accident externalities from vehicle traffic

have produced increasing interest in policy remedies. Beijing and Mexico City bar

vehicles from their roads on some days based on their license plate numbers (Davis,

2008; Viard and Fu, 2014; Wang et al., 2014). Many German cities have created Low

1
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Emissions Zones (Wolff, 2014), which prohibit dirtier vehicles within their borders.

Stockholm, London, and Milan charge fees to enter congested downtown areas. In the

US, the Department of Transportation is currently sponsoring a large number of road

pricing experiments, including San Francisco’s Golden Gate Bridge, Interstate 95 near

Miami, SR520 near Seattle, and Interstate 35W near Minneapolis (DeCorla-Souza, 2004;

Xie, 2013). Economists have raised concerns over non-price policies because behavioral

responses can be so large that net policy benefits may be zero, or even negative (Davis,

2008; Gallego et al., 2013). Theory suggests that road pricing might be more efficient

(Vickrey, 1963; Arnott et al., 1993), but this prediction depends on driver responses. On

which margins do drivers respond to road pricing, and how large are such responses?

Confounding factors typically make traffic policies difficult to evaluate. Drivers

know the policy start date well in advance and may begin to adjust their behavior before-

hand, which will attenuate estimated effects. Municipalities typically increase public

transit service at the same time they implement road pricing or a driving restriction.

This makes it impossible to estimate the effect of the policy in isolation. For example,

Eliasson et al. (2009) point out that Stockholm expanded bus service at the same time it

implemented a congestion charge. Because the buses used for the expansion were older

and dirtier, the reduction in emissions within the charge area was muted. Milan first im-

plemented a congestion charge concurrent with, “traffic calming measures, new bus lanes,

increased bus frequency, increases in parking restrictions and fees, and medium-term

policies such as park-and-ride facilities and underground network extensions” (Rotaris

et al., 2010).

To address these identification challenges, we exploit a natural experiment: in

late July 2012, an Italian court unexpectedly suspended Milan’s road pricing policy,

called “Area C.” The city reinstated pricing eight weeks later. Using unique traffic data at

15-minute resolution, our study examines behavioral responses to Milan’s policy, which
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requires drivers entering the city center to pay d’5 on weekdays 7:30AM - 7:30PM.

Drivers respond to pricing in two ways: 1) shifting trips to the unpriced period, just

before 7:30AM or after 7:30PM; and 2) driving around the boundary of the priced area.

Net of these behavioral responses, we find the pricing policy decreases traffic by

14.5 percent and air pollution by 6 to 17 percent. The latter effect is large, particularly

given that the priced area is small and Milan has an unusually clean vehicle fleet. We

calculate that this pollution reduction increases welfare by approximately $3 billion

annually. Routes without public transit experience large traffic changes from pricing,

while those with public transit experience much smaller changes. We provide evidence

that this surprising result may arise from residential sorting: residents who live near

public transit may strongly prefer public transit. In addition, we use long-run changes

in Milan’s pricing policy to estimate elasticities: city-center entries by charged vehicles

decrease .3 percent in response to a one percent price increase.

This study contributes to the empirical literature on second-best road pricing

policies (Small et al., 2005; Small and Verhoef, 2007; Xie, 2013). Closely related to our

analysis are Olszewski and Xie (2005), which analyzes the cordon charge and expressway

pricing in Singapore, Santos and Fraser (2006) and Santos (2008) on the London cordon

charge, and Eliasson et al. (2009) on the Stockholm cordon charge. These studies find

cordon charges do reduce traffic within the priced area. Also related are Foreman (2013)

and Small and Gomez-Ibanez (1998), which find evidence of intertemporal substitution

in response to time-varying tolls. Our work complements the theoretical literature on

second-best road pricing (Lévy-Lambert, 1968; Marchand, 1968; Verhoef et al., 1996),

particularly the literature on cordon charges (Mun et al., 2003; Verhoef, 2005). Finally,

we contribute to the literature on environmental effects of traffic policies. Many such

studies have found no evidence of air quality improvements (Transport for London, 2005;

Transport for London, 2008; Invernizzi et al., 2011). Authors commonly attribute this to
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driver substitution behaviors or exploitation of policy loopholes (Davis, 2008; Gallego

et al., 2013). In important work, Wolff (2014) finds that German Low Emissions Zones

reduce the concentration of particles with a diameter of 10 microns or less (PM10) by

approximately 9 percent; this study is particularly significant given efforts by European

cities to meet stringent air quality standards.

Our study is unique in obtaining unconfounded causal estimates of behavioral

responses to road pricing and net road pricing effectiveness. This is the first analysis

to examine removal, rather than imposition, of a traffic policy. Other studies have used

indirect measures of traffic (such as gasoline sales or vehicle registrations) or hourly

vehicle counts, but to the best of our knowledge ours is the first to combine direct,

high-resolution measures of traffic volume with air pollution data. Finally, our finding

that the net effect of pricing varies with public transit availability is novel. It contributes

to the literature on public transit and air quality (Friedman et al., 2001) and adds a new

dimension to the literature on traffic policies.

The remainder of the paper proceeds as follows. Section 2.2 provides policy

background and describes the natural experiment. Section 2.4 covers data, Section

2.5 describes our estimating equations, and Section 2.6 discusses results. Section 2.8

concludes.

1.2 Background

Located in the center of Milan, Area C includes approximately 8.2 square kilo-

meters (4.5 percent of city land area) and 77,000 residents (6 percent of population). The

boundary follows the Cerchia dei Bastioni, the route of the walls built under Spanish

control in 1549. Many of the portals still stand today, though the walls are largely gone.

Figure 1.7 illustrates the area.
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Milan provides high levels of public transit, including four subway lines, 19

tram lines, 120 bus lines, and 4 trolley lines. Together these lines transport 700 million

passengers across 155 million kilometers per year. The 80-kilometer subway network

is larger than all other Italian subways combined (Azienda Transporti Milanesi, 2013).

Public transit has a 41 percent mode share in the city, followed by cars at 30 percent,

walking at 17 percent, bicycles at 6 percent, and motorbikes at 6 percent (Martino, 2012).

The average round-trip commute in Milan takes 53 minutes, comparable to US cities like

Dallas (52 minutes), Seattle (55 minutes), and Los Angeles (56 minutes; Toronto Board

of Trade, 2011).

Milan is one of the most polluted large cities in Europe. From 2002 through 2010

the city exceeded the EU standard for PM10 on an average of 133 days per year (Danielis

et al., 2011). Since the mid 1990s the city has experimented with traffic policies intended

to curb its air pollution problem. Milan’s first major road pricing program, called Ecopass,

ran from January 1, 2008 to December 31, 2011. Drivers paid a fee to enter Area C

that varied with the emissions from their vehicles. Vehicles meeting the Euro 3 standard

paid nothing, while the dirtiest diesel vehicles paid d’10.1 The charge applied weekdays

7:30AM-7:30PM. Drivers could pay by internet, phone, or at the bank. The city enforced

the charge using license plate-reading cameras located at the 43 entrances to Area C

(Danielis et al., 2011). Drivers who entered without paying faced fines of d’70-d’275 (la

Repubblica, 2008). Approximately 2 percent of entering vehicles each day incurred fines

(Martino, 2012).

In June 2011 the voters of Milan overwhelmingly approved continued road

pricing, with 79 percent in favor (Danielis et al., 2011).2 As of January 16, 2012, the

1Vehicles built prior to imposition of EU emissions standards were prohibited from October 15 through
April 15. Drivers received a 50% discount on the first 50 entries and a 40% discount on the next 50 entries.
Residents of Area C were also eligible for discounts (Rotaris et al., 2010).

249 percent of voters participated. The referendum did not specify the exact form the continued program
would take.
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city implemented a d’5 congestion charge for most vehicles entering Area C weekdays

7:30AM-7:30PM. This policy was named Area C.3 Motorcycles and public vehicles (e.g.

ambulances) were exempted.4 Administrative details were largely the same as those for

Ecopass. Drivers gained the option to pay by direct debit, using a radio reflector placed

in the vehicle (similar to FasTrak or E-ZPass in the US). Violators were fined d’87 (Carra,

2012).

On July 25, 2012, a court unexpectedly suspended the Area C congestion charge

in response to a lawsuit by Mediolanum Parking (Povoledo, 2012). More than ten previous

lawsuits against Ecopass and Area C had failed, so the suspension provoked surprise

from the press (Carra and Gallione, 2012). Charge enforcement halted the next day, July

26. There was no press coverage prior to the court injunction, suggesting the decision

was completely unanticipated. The duration of the suspension was unknown and some

observers believed it would be permanent (Carra, 2012). Political forces marshaled on

both sides. The mayor declared, “We will save Area C.” Meanwhile the opposition

called suspension the “death” of Area C, “the defeat of ideological fervor and the victory

of Milan’s productivity and good sense” (Carra, 2012). The city altered neither public

transit service nor parking fees in response to the injunction. On September 6, the city

announced the charge would be reinstated as of September 17, 2012.5 For a timeline of

these events, see Figure 1.1.

3Vehicles classified diesel Euro 3 or below, or gasoline Euro 0 or below, were prohibited. Private
vehicles over 7m long were also prohibited. Scooters, motorcycles, and alternative-fuel vehicles, including
hybrids, were exempted. Residents paid d’2 per entry (City of Milan, 2012; Milan Tourism, 2012).

4This category includes mopeds and powered scooters.
5The reinstated charge now ends at 6PM on Thursdays, rather than at 7:30PM as before (Corriere della

Sera, 2012a). Other features are unchanged.
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1.3 Data

Our traffic data come from AMAT and the Settore Pianificazione e Program-

mazione Mobilità e Trasporto Pubblico Comune di Milano. For Area C, we have entries

by vehicle type and entry portal at 15-minute resolution, 2008-2012. There are 43 entry

portals. These data are recorded by the license plate cameras used to enforce the Area C

charge. In addition, we have counts of passing vehicles at 15-minute resolution, 2008-

2012. These data are measured by 748 buried sensors, mostly outside Area C.6 Table

1.1 reports descriptive statistics for both data sets at the daily level (aggregating over

sensors/cameras and 15-minute intervals).

Our pollution and weather data come from ARPA Lombardia, the provincial air

quality agency. We have pollution and weather data at the monitor level, from 2003

through February 2013. Measured pollutants include carbon monoxide (CO), particles

10 microns or less in diameter (PM10), and particles 2.5 microns or less in diameter

(PM2.5). CO is measured hourly, while particulates are measured daily. There are eight

pollution measurement stations in the city of Milan proper (see Figure 1.2), of which two

are inside Area C. The number of monitors varies by pollutant and over time, as not all

stations monitor all pollutants.

Table 1.1 provides descriptive statistics at the monitoring station-day level. The

rightmost column includes EU pollution standards for comparison. The European Com-

mission (EC) has the power to levy large fines against non-attainment cities. For example,

the EC fined Leipzig d’700,000 per non-attainment day for failing to meet the PM10

standard (Wolff and Perry, 2010).

6According to AMAT, the buried sensors are less accurate than the cameras. Neither buried sensor data
nor camera data are available prior to 2008 (the cameras had not yet been installed and activated).
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1.4 Estimation

To explore the effect of policy suspension on traffic we estimate a series of

equations within the following framework:

tra f f ict = β∗ suspensiont +λ∗ suspensiont ∗wkendt

+ γ̄∗ timet + θ̄∗ trendt + η̄∗weathert + εt (1.1)

The tra f f ic variable measures either Area C entries or passing cars, over a day or

a 15-minute period, with t indexing days. The timet vector includes dummies for

year, month, week, weekend, day of week, and holidays, plus interactions of weekend

with year. In addition, it includes dummies for the two-week interim period between

Ecopass and Area C and the interaction of the interim period with weekend.7 (While

the interim period is non-random, we briefly analyze it in Section 1.5.5.) In our primary

results below we report estimates using a 7th-degree trend in date, following Davis

(2008). Weather controls comprise ten-piece linear splines in temperature and positive

precipitation. We control for weather because it plausibly influences the choice of public

versus private transportation, or car versus motorcycle. The suspension variable is a

dummy equal to one for the period when the charge was suspended. The error term ε

includes shocks to traffic not captured by our controls, for example, an unusually bad

auto accident or the Pope’s visit on June 2, 2012. In this and all subsequent equations, the

coefficient of interest is β, the weekday effect of charge suspension. The weekend effect

(β+λ) is generally not statistically different from zero, suggesting limited scope for

weekday-weekend substitution, so we do not report it in the estimation results. Weekend

observations are still used in all of our estimation, however, as long-run trends may

7We do not explicitly control for Ecopass because of the year dummies 2008-2011.
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influence both weekday and weekend traffic.

The key identifying assumption underlying both equation 1.1 and subsequent

models is the exogeneity of the suspension variable. That is, we assume that conditional

on our rich seasonal and weather controls, the timing of charge suspension is unrelated to

other determinants of traffic volume and pollution. This is reasonable because the charge

was suspended unexpectedly by a court, as discussed in Section 2.2.

For the analysis of spatial substitution, we estimate two panel models at the

sensor-day level, with sensor fixed effects (FE). The first specification is as follows (s

indexes sensor):

tra f f icst = β̄∗ suspensiont ∗distances + λ̄∗ suspensiont ∗wkendt ∗distances

+αs + γ̄∗ timet + θ̄∗ trendt + η̄∗weathert + εst (1.2)

In equation (3) distancep is a vector of dummies for sensors in several distance bins,

where distance is measured from the outside of the Area C boundary. The second

specification is similar, but instead of grouping sensors by distance, we group them into

ring and non-ring roads (described in more detail in Section 2.6).

To analyze heterogeneity by public transport availability, we estimate a panel

version of equation 1.1 with portal fixed effects (p indexes portal):

tra f f icpt = β∗ suspensiont ∗pubtransp +λ∗ suspensiont ∗pubtransp ∗wkendt

+αp + γ̄∗ timet + θ̄∗ trendt + η̄∗weathert + εpt (1.3)

In the equation above, pubtransp is a vector containing a dummy for the presence of
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public transit, and another for the absence of public transit. We also estimate versions of

the model comparing portals with and without bus, tram, and metro service. 8

To investigate the effect of suspension on daily average pollution we estimate the

following equation:

ln(avg_pollution)t = β∗ suspensiont +λ∗ suspensiont ∗wkendt

+ γ̄∗ timet + θ̄∗ trendt +η∗ ln(avg_pollutiont−1)+ δ̄∗atmospheret + εt (1.4)

The dependent variable is the log average level of a pollutant measured over a day, with t

indexing days. We conduct the analysis in logs to make the estimates for different pollu-

tants more easily comparable. To avoid the endogeneity problems that arise in a dynamic

panel specification, we average over monitors and estimate the model separately for each

pollutant and area of Milan.9 In order to control for the persistence of pollutants emitted

on the previous day, we include one lag of the dependent variable. The lagged pollution

variable also controls for the previous day’s atmospheric conditions, avoiding the need

for functional form assumptions on lagged atmospheric variables. ARPA normalizes the

pollution measurements for temperature and pressure. The vector atmospheret includes

4-knot cubic splines in humidity, wind speed, solar radiation, and precipitation, plus a

dummy for positive precipitation. As in equation 1.1, our specification also includes a

7th-degree trend in date and time dummies.

8For example, a given portal will have bus equal to 1 if a bus line crosses the boundary of Area C
through that portal. This is a simplification that ignores the effect of being near (but not on) a bus line. If
the two effects have the same sign, as is plausible, this specification will bias us against finding a difference
between portals with and without a bus line. Similarly, the tram and metro variables equal 1 only if the
mode in question passes directly through or beneath the portal in question.

9Estimation results from a dynamic panel specification are available upon request. They are extremely
similar, as the asymptotic bias is of order 1/T and our data contain thousands of days.
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1.5 Results

1.5.1 Traffic

We first provide some semi-parametric evidence on the effect of charge suspension

for vehicle types subject to the charge (buses and motorcycles are excluded). Figure

1.3 plots the residuals from a daily model that omits the suspension variable. We fit

separate degree-zero local polynomials for the period June-July 2012 (charge), August-

September (no charge), and October-November (charge). The graph shows a sharp

increase in weekday entries into Area C upon charge suspension, consistent with a

surprise announcement.10 All three fitted lines are flat; there is no evidence of a seasonal

trend in the residuals before, during, or after charge suspension. This indicates that our

time fixed effects, together with a polynomial trend in date, are effectively controlling for

seasonal patterns that might otherwise bias our estimates. There are several large positive

residuals between the Sept. 17 reinstatement of pricing and Oct. 1. This may reflect

commuters delaying a mode switch before purchasing an October public transit pass.

Table 1.2 records results from our linear model for all vehicles, charged vehicles

(buses and motorcycles excluded), motorcycles (including mopeds and scooters), and

other vehicles (primarily police cars and ambulances, which are exempt from the charge).

Charge suspension results in approximately 27,000 additional entries per day and the

estimate is statistically significant at the one percent level. This represents an increase of

approximately 14.5 percent. The composition of entries also changes. Entries by charged

vehicles increase by roughly 29,000 while entries by motorcycles, which are exempt from

the Area C charge, fall by roughly 2000. The latter result is not statistically significant.

The estimate for other vehicles, predominantly public vehicles like police cars, is small in

magnitude and not statistically distinguishable from zero at any conventional significance

10The large positive residuals in the October-November period correspond to weekends. Interacting the
weekend dummy with month did not appreciably reduce the magnitude of these residuals.
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level. This provides a placebo test, as drivers of public vehicles are exempt and so do not

face a price change from charge suspension. We employ Newey-West standard errors

to account for autocorrelation in εt out to seven lags. Because of occasional missing

data, these standard errors will be biased slightly downward. We have also estimated our

models with standard errors clustered at the week level and the results (available upon

request) are not meaningfully different. Note that the assumption of independence across

clusters fails for days near the boundary of a week, so this is not our preferred method of

estimating standard errors.

Table 1.9 compares our estimated change in entries by charged vehicles (expressed

as a percentage) to results for 10 other pricing policies. Eight find effects broadly

comparable in magnitude, ranging from −3 percent to −22 percent. These include the

London (−18 percent) and Stockholm (−22 percent) cordon charges studied by Santos

(2008) and Eliasson et al. (2009), respectively. Singapore’s central Restricted Zone

yields two appreciably larger estimates,−44 percent and −52 percent. Small and Verhoef

(2007) suggest this policy produced such a dramatic response because the charge was

initially set extremely high.

To examine intertemporal substitution, Figure 1.4 plots the coefficients from a

series of 96 regressions, with each 15-minute interval of the day modeled separately.11

The estimates show intertemporal substitution in both the morning and the evening.

Charge suspension results in approximately 500 fewer entries in the 15 minutes just

before the charge begins at 7:30AM and just after it ends at 7:30PM. (This indicates

that under the charge, drivers were shifting trips into these periods.) Indeed in the

morning the negative estimates are statistically distinguishable from zero (at the 5 percent

level) for the entire hour 6:30-7:30AM. Charge suspension increases entries during the

11We use Newey-West standard errors to account for serial correlation. For most 15-minute intervals,
serial correlation falls to near zero after 7 lags. For the period 11:30PM-5:15AM, however, there are spikes
in serial correlation at 14, 21, and 35 days. We hypothesize that this results from the preponderance of
public and commercial vehicles during this window.
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7:30AM-7:30PM period, consistent with the daily average estimates reported in Table 1.2.

The increases achieve local maxima just after 7:30AM and before 7:30PM, suggesting

intertemporal substitution by commuters. The hours 9AM-3PM, however, see roughly

uniform increases in traffic under charge suspension. This indicates that non-commuters

comprise a large share of marginal drivers.

Such a pattern of responses is the inverse of what is often called “peak spreading.”

In theory peak spreading affects driver welfare through two channels: 1) by reducing trip

duration; and 2) by rescheduling trips (Arnott et al., 1993; Lindsey and Verhoef, 2000).

The former welfare effect is positive, but the sign of the latter is theoretically ambiguous.

Spreading the peak traffic load increases aggregate schedule delays12, but pricing better

aligns trip times with drivers’ values of schedule delay (Arnott and Kraus, 1998; Lindsey

and Verhoef, 2000). Because most air pollution emitted by vehicles is persistent within

a day (Seinfeld and Pandis, 2012), peak spreading may not change welfare along this

dimension.

Finally we investigate spatial substitution toward roads outside Area C. Table

1.3 presents results from a panel model at the sensor-day level, estimated from the

buried sensor data. (Note these data measure passing cars per unit time and the resulting

estimates are not directly comparable to those from camera data.) Traffic at the average

sensor increases approximately 8 percent (469 vehicles per day) and the estimate is

statistically significant at the one percent level. This overall result conceals an interesting

spatial pattern. Consistent with the models based on camera data, suspension of the

charge increases traffic inside Area C. Traffic on the roads within 1km outside the Area C

boundary, however, decreases by approximately 18 percent. This estimate is significant at

the ten percent level. Both point estimates for roads more than 2km outside the boundary

are positive, with one statistically significant at five percent and the other not significant.

12In keeping with the theoretical literature, by “delay” we mean a deviation from the desired arrival
time, either earlier or later.
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This is consistent with an increase in radial trips (e.g. commutes from a residential

neighborhood into the center) from charge suspension. Overall this pattern of results

suggests that some drivers respond to the charge by driving around Area C. For drivers

seeking to avoid the priced area, the natural route typically involves the Circonvallazione

Esterna, a ring of larger roads located .6km-2km outside the Area C boundary. Table

1.3 shows the estimated effect of charge suspension on these roads is large, negative,

and significant at the five percent level. Some of this decrease may reflect reduced

circumferential commuting to public transit stations. Evaluating this type of spatial

substitution has proved difficult in other settings due to confounding factors. In London,

for example, the city substantially improved ring-road infrastructure because Transport

for London anticipated spatial substitution (Santos, 2004). To the best of our knowledge,

ours is the first study to recover an unconfounded driver response on this dimension.

In interpreting these results, it is reasonable to ask whether they capture the

short-run response to a pricing holiday or a long-run response. The initial six-month

trial of the Stockholm cordon charge provides some evidence on this point. Eliasson

et al. (2009) observe, “. . . there was some doubt as to whether any traffic reduction would

actually take place during a brief and transient trial. Could it be that people would decide

to ‘sit out’ the trial period without changing their travel habits? We now know that the

trial indeed had an immediate effect.” Effects from Stockholm’s initial trial proved very

similar to long-run effects (Börjesson et al., 2012). In Milan the suspension of the Area

C charge was widely publicized, so the vast majority of residents knew about the change.

Evidence on residents’ expectations is qualitative and limited. Press accounts suggested

Area C pricing might not return (Corriere della Sera, 2012b), but there was likely a range

of beliefs about this. The key question is not, however, whether residents expected the

suspension to be permanent, but whether they behaved as though it were. We have some

suggestive evidence on this point from Figure 1.3. If residents exhibited habit persistence
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or slowly updated their beliefs about the suspension, we would expect an upward trend

in the residuals during the suspension period. No such trend is apparent; instead the

full magnitude of driver responses emerges immediately. This pattern also implies that

switching costs across modes, routes, and travel times are not first-order considerations

for marginal drivers. Therefore we believe our estimates largely reflect long-run behavior.

There is one respect in which the observed behavior during suspension likely does

not correspond to long-run behavior: vehicle portfolios. Intuition suggests they adjust

slowly. Given the possibility of renewed pricing, a risk-averse resident of Milan might

well have been reluctant to purchase a new vehicle in response to charge suspension. If

vehicle portfolios constrained a reasonably large fraction of the population, our estimates

represent lower bounds on the magnitude of long-run effects. While our use of a natural

experiment does incur this cost on the external validity dimension, it brings benefits on

the internal validity dimension (e.g. avoidance of policy endogeneity concerns).

It is impossible to conduct a full welfare analysis of the Area C policy using

our data, but previous work casts light on some of its efficiency properties. Verhoef

(2005) studies a cordon charge in a general-equilibrium model of a monocentric city

with endogenous population density. He finds the optimal cordon location is at 22

percent of the distance from the city center to the city limits. We can compare the

location of Milan’s cordon to this benchmark. Like many older European cities, Milan

is monocentric. From the land area of Area C, we can calculate an idealized radius of√
8.2km2

π
= 1.62 kilometers. Proceeding in like fashion for the city limits, we obtain an

idealized radius of
√

181km2

π
= 7.59 kilometers. Dividing yields a ratio of 1.62km

7.59km = .21.

This suggests that at minimum Milan’s cordon is not badly located. We can also evaluate

the level of Milan’s charge. Mun et al. (2003) simulate a cordon charge using data

from Osaka and find the optimal charge is equivalent to roughly 30 minutes’ worth of

labor income. In Milan this would be about d’9. While Milan differs from Osaka on
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many dimensions, it is possible that a charge modestly above the current d’5 level would

increase welfare. Verhoef (2005) finds that an optimal cordon charge achieves 88-90

percent of the gains from a first-best pricing policy. De Borger and Proost (2001) find

an optimal combination of a cordon charge and parking fees can achieve 70 percent of

first-best gains. Taken together, this body of research implies that the Area C pricing

policy may be reasonably efficient.

1.5.2 Interaction with public transit

In addition, we investigate the interaction of charge suspension and public transit

availability. To that end we estimate a panel model with a portal-day as the unit of

observation. The results in Table 1.4 indicate commuters on routes with public transit

available respond much less to the suspension of the charge. Portals on a metro line, for

example, show a response that is not statistically distinguishable from zero.13

There are at least two plausible explanations for these results. The first relies

on cost differences. Assume an identical distribution of preferences for driving on two

routes, one with public transit ("Route A") and one without ("Route B"). If a sorting

equilibrium holds, commuters on the two routes must achieve equal utility. This implies

that if Route A has cheap public transit, it must have expensive car travel. This could be

a direct result of public transit, as when road lanes are devoted to tram lines, or a product

of transit planning, as when metro lines are placed beneath more congested roads. If a

city applies the same charge to cars on both routes, the percentage price change for Route

A is much smaller and theory predicts a smaller traffic response.

Alternatively, the results in Table 1.4 could spring from residential sorting (pref-

erence heterogeneity). Suppose people with strong preferences for public transit live near

13Portals with public transit may still be generating welfare changes if the composition of traffic is
changing, but we cannot evaluate this with our data.
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Route A. They might not own cars. They might, for example, dislike the claustrophobic

conditions that prevail on buses and trains at rush hour. Such individuals might be

relatively unresponsive to changes in the price of driving. Assume the initial cost of

driving is the same for both routes. Then for a given road price change, there will be

more infra-marginal drivers on Route B than Route A.

It is difficult to choose between these explanations using the available data, but

Table 1.8 provides suggestive evidence. When we interact charge suspension with a time-

invariant measure of rush-hour congestion,14 the response is larger for congested portals

without public transit than for uncongested portals without public transit. (Congestion

does not matter for portals with public transit.) This result is inconsistent with an

explanation based solely on cost differences, which would predict smaller responses on

more congested routes. It provides some evidence of preference heterogeneity, but does

not exclude the possibility that cost differences drive some of the responses to charge

suspension. For further discussion, see Appendix Section 1.8.1.

1.5.3 Price response

Milan’s sequence of traffic policies, including both Ecopass and Area C, presents

an opportunity to recover another important feature of driver behavior: price responsive-

ness. Under Ecopass, the weighted average weekday price for passenger vehicles was

approximately d’0.72 (author’s calculation, based on Rotaris et al. 2010). The Area C

policy increased the weekday price to d’5. This provides potentially exogenous price

variation, although the usual concerns about policy endogeneity obtain. We estimate the

elasticity of vehicle entries with respect to price using a variant of equation 1.1, replacing

14We standardize entries at the portal-15 minute-lane level, then average the resulting values during
rush hour periods (over days). Portals with lower values (low rush hour throughput relative to the portal
average) are likely more congested. We define a congestion dummy equal to 1 for portals in the bottom 10
percent of the distribution.
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the dependent variable with log entries and the policy variables with log price. Table

1.5 reports results. Overall a one percent price increase decreases entries by charged

vehicles by .3 percent. This estimated response captures the net effect of two changes: the

increase in pecuniary cost and the decrease in time cost (from reduced congestion) under

the Area C policy. Given that the Area C charge is a relatively small part of total trip cost,

which includes time, fuel, and depreciation, this demand response is large. For passenger

and commercial vehicles elasticities are -.17 and -.47, respectively, with both estimates

significant at the five percent level.15 The estimate for other vehicles is a placebo test

estimating the effect of passenger prices on entries by exempt municipal vehicles; we

find no effect. Our elasticity estimates are necessarily local and may not obtain outside

the range of prices observed in our data. They suggest, however, that a modest price

increase, e.g. from d’5 to d’6, might produce substantial additional reductions in Area C

entries.

If the change in price from Ecopass to Area C is conditionally exogenous, our es-

timate captures an internally valid causal effect. The question of external validity remains,

however. Theory predicts that demand elasticity will vary with income, preferences, the

availability of substitutes, and other factors. To provide a qualitative sense of such factors,

Table 1.9 puts our estimated elasticity in the context of estimates from other locations.

At -.3 our overall estimate is modestly larger than most previous findings for cordon

charges, which generally range from -.2 to -.1. Estimates for expressway and bridge tolls

exhibit more variation, ranging from -.56 to -.06. While some are similar to our result

(e.g. Small et al. (2006) for California State Route 91), others are substantially larger or

smaller. For example, Odeck and Brathen (2008) find an average price elasticity of -.56

on Norwegian toll roads. Such larger estimates may reflect the often-greater availability

of close substitutes for single-facility tolls than for cordon charges.

15We do not separate passenger and commercial vehicles in our primary analysis because under the Area
C policy they both face the same d’5 price.
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Some cities manipulate parking prices, rather than road prices, in order to optimize

travel demand. Studies of such policies typically estimate parking demand, rather than

demand for travel on a given road or demand for cordon crossing. While these estimates

are not directly comparable to ours, they may provide an instructive benchmark. In a

survey of research findings, the US Transit Cooperative Research Program found a range

of parking demand elasticities from -.6 to -.1, with -.3 the mode (Vaca and Kuzmyak,

2005). Using data from exogenous changes in San Francisco parking prices, Pierce and

Shoup (2013) estimate an average demand elasticity of -.4.

1.5.4 Pollution

Table 1.6 reports the pollution effect of charge suspension on weekdays, estimated

using equation 1.4. We focus on CO, PM10, and PM2.5 because these pollutants have

direct, negative health effects (Seaton et al., 1995) and all are closely associated with

vehicle emissions (Gallego et al., 2013). Estimates show statistically significant increases

in CO and PM10, both inside and outside Area C, in the 6 to 17 percent range. These

magnitudes are similar to those from our traffic models. The point estimate for PM2.5

outside Area C is greater at 21 percent, but the standard error is large and the estimate

is significant only at the ten percent level. This imprecision may stem from the much

shorter period over which PM2.5 data have been collected. For CO we can also estimate

the effect for monitors located on the ring roads (Circonvallazione Esterna). This estimate

is near zero, which roughly accords with our traffic results in Table 1.3. As the half-lives

of commonly regulated air pollutants are measured in hours or days (Seinfeld and Pandis,

2012), the observed pollution increases likely derive from additional trips and mode

shifting, rather than from trip rescheduling.

These pollution effects are large, particularly given that the priced area is small

(5 percent of the city) and Milan has an unusually clean vehicle fleet. Milan’s earlier
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Ecopass policy, which applied from 2008 through 2011, created incentives for drivers to

purchase cleaner vehicles and many did so (Rotaris et al., 2010). This means that for a

given number of foregone trips, the effect on pollution would have been smaller in 2012

than in 2007. Like our traffic estimates, our pollution estimates are lower bounds on

long-run effects because of the potential for vehicle portfolios to change over the long

run.

In order to evaluate the welfare effects of these air pollution changes, we require

an estimate of willingness to pay for reductions in PM10 pollution. We adopt estimated

annual willingness to pay of $148.70 per person per µg/m3 (in 1982-1984 dollars) from

Bayer et al. (2009), who use data from US metropolitan statistical areas. By accounting

for migration costs and instrumenting for ambient pollution, this study overcomes several

important identification challenges. For comparison, note that the meta-analysis by

Smith and Huang (1995) finds a mean marginal willingness to pay of $110 (in 1982-

1984 dollars) per µg/m3 TSP reduction in US cities. While this estimate is meaningfully

smaller than the one from Bayer et al. (2009), this is unsurprising for two reasons: 1)

the downward biases in the OLS hedonic specifications analyzed by Smith and Huang

(1995); and 2) the higher real income of the US population in the data used by Bayer

et al. (2009). The rough similarity between the Bayer et al. (2009) and Smith and Huang

(1995) estimates provides some reassurance that our choice is reasonable.

Naturally the use of a willingness to pay estimate from the United States raises

benefit transfer concerns. Kaul et al. (2013) find that transfer errors are typically smaller

for function transfers than for value transfers. While a full function transfer is beyond the

scope of the present exercise, we can scale the Bayer et al. (2009) estimate to account

for local income in Milan. As suggested by Ready and Navrud (2006), we employ

a PPP-adjusted exchange rate and find that average income in Milan was roughly 85

percent of US income in 2007 (Hammitt and Robinson, 2011; OECD, 2011). Both Smith
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and Huang (1995) and Hammitt and Robinson (2011) find that the income elasticity

of willingness to pay for air pollution reduction is small in wealthier nations, with

the latter noting that US agencies often use an income elasticity of approximately .5.

Multiplying $149∗ (1− (.15∗ .5)) yields approximately $138. Converted to 2014 dollars,

this becomes $327.

With this figure in hand, we can compute the aggregate welfare effects of the

PM10 changes in Milan from the Area C policy. Mean PM10 concentration in our data

is 48µg/m3 inside Area C, 44µg/m3 outside. The concentration changes implied by our

estimates are 1.9µg/m3 and 7.5µg/m3, respectively. Approximately 77,000 people live in

Area C and 1.2 million outside. The implied welfare gain from the Area C policy is

approximately $48 million inside Area C and $2.94 billion outside, for a total of $3

billion. This estimate is very large relative to the annual PM10 benefit figures used by

transportation researchers in cost-benefit analysis of the Ecopass policy, which have

typically been in the range of d’0.4-1.3 million (Rotaris et al., 2010; Danielis et al., 2011).

We note that the median transfer error identified by Kaul et al. (2013) is 39 percent, and

this does suggest some caution. Even allowing for the possibility of large transfer error,

however, our welfare estimate is an order of magnitude larger than those in Rotaris et al.

(2010) and Danielis et al. (2011).

The finding that pricing reduce air pollution both inside and outside Area C

speaks to an important distributional question. Opponents of the Area C policy have

claimed that it improves air quality in an affluent area while doing nothing to address the

remainder of the city (Danielis et al., 2011). The estimates in Table 1.6 provide evidence

against this claim. While spatial substitution may reduce air quality near ring roads, the

policy improves air quality in other locations, both inside and outside Area C. Voting

behavior is consistent with such a widespread improvement. In a 2011 referendum on

road pricing, more than 79 percent voted in favor (Danielis et al., 2011), an outcome that
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would be unlikely if only Area C residents benefited from the policy. The successful

referendum is somewhat surprising in view of the generally unfavorable public attitudes

toward road pricing. As in Stockholm, residents experienced the benefits of road pricing

during a trial period before voting and this may have been influential (Eliasson, 2008;

Harsman and Quigley, 2010).

1.5.5 Robustness checks

Traffic

We estimated all models with the following trends in date: 1) no trend; 2) linear

trend; 3) 4th-degree trend; 4) 7th-degree trend. In nearly all cases the choice of trend had

negligible influence on the sign, magnitude and significance of the estimates.

In addition, we compare our primary estimates to those from the interim period

between the end of the Ecopass policy and the start of the Area C policy (January 1-15,

2012). During this time drivers could enter the city center without paying, but this period

raises identification concerns. First, it was not randomly timed and therefore the potential

for unobserved confounders (like changes in bus service) is greater than for the period of

our natural experiment. Second, because the return of pricing was assured, questions of

habit formation and switching costs are more problematic. Third, because this period

lasted only two weeks, these models have less statistical power. Nonetheless the interim

period provides a rough benchmark against which to evaluate our main results. Table

1.10 shows that the estimated effects on Area C entries for all vehicles and charged

vehicles are similar in magnitude and statistically significant at the one percent level. The

estimated effect on motorcycle entries is positive and significant for the interim period,

which differs from our primary result and does not accord with theory. The positive sign

could reflect the fact that riding a motorcycle in a lower-traffic environment is both safer
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and more fun.

Table 1.11 reports spatial substitution results for the interim period. The pattern

of results accords with those from our natural experiment, but the decrease in traffic on

ring roads is no longer statistically significant. Similarly, Table 1.12 shows how effects

on Area C entries during the interim period vary with public transit availability. (These

estimates come from the same model as those in Table 1.4.) Again the pattern of results is

strongly similar to those from our natural experiment, with portals lacking public transit

seeing greater increases in traffic.

Taken together, Tables 1.10, 1.11, and 1.12 demonstrate that estimates from

the interim period (in January) are quite similar to those from our natural experiment

(July-September). This pattern suggests that seasonality in the elasticity of demand for

Area C trips is not a first-order concern. Thus our primary estimates provide evidence on

driver responses to pricing that generalizes beyond the time of year at which the natural

experiment happened to occur. There remains the possibility of bias from seasonal trends

in the level of demand. As discussed in Section 1.5.1 and illustrated in Figure 1.3, our

time fixed effects and polynomial trend in date appear to effectively control for such

trends. Nonetheless we describe seasonal trends in more detail here. Figure 1.8 shows

the seasonal pattern of entries into Area C. The period of the natural experiment includes

Italy’s traditional vacation season, which sees far fewer Area C entries in three August

weeks. The five remaining weeks of the experiment, however, include some of the busiest

weeks of the year (in September). Given the pattern in Figure 1.8, any failure of our

seasonality controls will bias the magnitude of our estimates downward.

Figure 1.5 displays the “effect” of a placebo charge suspension each year 2008-

2011 on Area C vehicle entries. There is no evidence of an increase in Area C entries

during the placebo periods; if anything they show slight decreases. Similarly, Table 1.13

reports estimated effects of a placebo suspension for the same dates in 2011 (rather than
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2012). Estimated magnitudes are much smaller than those in our main results and not

one is significant.

Pollution

Table 1.7 reports the estimated effects of placebo suspensions for the same dates

2008-2011 (rather than 2012). Half the estimates are negative and most are statistically

insignificant, which aligns with the placebo tests from our traffic models and suggests

that our main results are not driven by misspecification. The estimated placebos for

CO inside Area C (2011) and PM10 outside Area C (2009) are positive and statistically

significant, which recommends some caution in interpreting our corresponding primary

estimates.

1.6 Conclusion

Our analysis uses a natural experiment to examine behavioral responses and

recover causal effects of Milan’s Area C road pricing policy. We find the policy reduces

traffic and pollution considerably. Drivers respond with intertemporal substitution toward

unpriced times and spatial substitution toward roads outside the charge area. In addition,

we show that the effect of pricing on traffic depends on the availability of public trans-

portation. Routes without public transit experience large traffic changes from the Area C

charge, while those with public transit experience much smaller changes. We also use

long-run changes in Milan’s pricing policy to estimate elasticities of traffic with respect

to the charge: entries by charged vehicles decrease .3 percent in response to a one percent

price increase. This estimate captures the net effect of an increase in the charge and the

resulting decrease in time cost from reduced congestion.

Our findings are relevant for policy design. Theory predicts that the substitution
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behaviors we observe would occur under both optimal and second-best policies, but

cities can tailor policy to manage their magnitudes. Cities like Milan, with fixed cordon

charges, might reduce intertemporal substitution and move closer to the theoretical

optimum by charging a lower but non-zero price for “shoulder” periods adjacent to peak

periods. Some drivers might still choose the shoulder period, or switch back to the peak

period, but others might switch to public transit or carpool. A city might reduce spatial

substitution by expanding the geographic area subject to pricing, such that driving around

the priced area would be impractical. Alternatively it might improve roads likely to

see policy-driven traffic increases, as London did prior to introducing its cordon charge

(Santos, 2004).

Our public transit results also have policy implications. Because responses to

pricing vary with transit availability, welfare impacts from pricing will be spatially

heterogeneous. Policymakers may wish to consider these distributional impacts when

designing a road pricing policy. More generally, our results suggest that road pricing and

public transit may be substitutes, at least within cities. In areas that already have high

levels of public transit, there may be limited scope for reducing traffic via road pricing.

We find suspension of the charge increased weekday concentrations of CO by 6

percent and PM10 by 17 percent. This is a remarkable change in air quality, given: 1) the

charge area represents only 5 percent of the city, and a smaller fraction of the broader

metropolitan area; and 2) it is a lower bound on the potential long-run increase. Our

estimate is still more surprising in light of Milan’s relatively clean vehicle fleet. Previous

welfare analyses of Milan’s Ecopass policy have found net benefits of approximately

d’7-12 million per year, even placing extremely low values on air pollution reductions

(Danielis et al., 2011). We estimate that the Area C policy produces a $3 billion welfare

gain from air pollution reductions alone.

Pollution effects from similar policies in cities with dirtier fleets could well be
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larger. More congested cities would also tend to see larger welfare gains. Among the

most congested large world cities are Istanbul, Mexico City, and Rio de Janeiro (TomTom,

2014). Among large US cities, New York, Los Angeles, and Chicago see the highest

welfare losses from congestion (Lomax et al., 2012). Our results suggest there is scope

for road pricing, even in second-best form, to produce very large welfare gains in such

environments.
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1.7 Figures & tables
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Figure 1.1: Timeline of road pricing in Milan

Figure 1.2: Air pollution monitoring stations in Milan

Green circles represent the locations of pollution monitoring stations operated by ARPA Lombardia. Not all stations
monitor all pollutants. The via Senato and Verziere stations are inside Area C. The Piazza Zavattari, viale Marche, and
viale Liguria stations are on the ring road. The Piazza Abbiategrasso, Pascal Citta Studi, and Parco Lambro stations
are outside the ring road.
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Figure 1.3: Effect of Area C charge suspension on vehicle entries

Residuals are from equation (1.1), with the charge suspension dummy variable excluded. The dependent variable is
daily entries into Area C by vehicles subject to the charge. Each point represents one observation (one day). Fitted lines
are based on separate degree-zero local polynomial regressions for pre-suspension, suspension, and post-suspension
periods. Time controls include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with
year, a holiday dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period.
Weather controls comprise ten-piece linear splines in temperature and positive precipitation.
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Figure 1.4: Effect of Area C charge suspension on vehicle entries, by 15-minute interval

Dependent variable is Area C entries by vehicles subject to charge. Estimates are from equation (1.1), estimated
separately for each 15-minute interval. Whiskers represent Newey-West standard errors multiplied by 1.96. The lag
length is 35 for hours 23.5-5.25, 7 otherwise.
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Figure 1.5: Effect of placebo suspensions on Area C vehicle entries

Residuals are from equation (1.1). Dependent variable is daily entries into Area C by vehicles subject to charge. Each
point represents one observation (one day). Fitted lines based on separate degree-zero local polynomial regressions
for pre-placebo, placebo, and post-placebo periods (which correspond to the dates of the 2012 natural experiment).
Time controls include 0-4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a
holiday dummy, a 7th-degree time trend in date, a dummy for the unpriced January 2012 interim period, and a dummy
for the June-Sept. 2012 charge suspension. Weather controls comprise ten-piece linear splines in temperature and
positive precipitation.
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1.7.2 Tables

Table 1.1: Descriptive statistics, daily level

Units Mean Std. dev. Min Max N EU standard

Area C entries - 169,743.7 47,627.8 3,905 261,172 1,737 -

Passing vehicles - 2,585,316 1,348,275 37,412 5,918,492 1,754 -

CO mg/m3 1.26 .67 0 7.6 17,625 10

PM10 µg/m3 47.66 31.07 0 276 9,091 40

PM2.5 µg/m3 33.74 26.56 0 177 2,550 25

Precipitation mm 2.07 6.91 0 121.2 30,929 -

All statistics calculated over daily means. The EU standard for CO is based on a rolling 8-mean, while those for PM10 and PM2.5
are based on annual means.

Table 1.2: Weekday effect of Area C charge suspension on vehicle entries

All vehicles Charged vehicles Motorcycles Other vehicles

Charge suspension 26725.2∗∗∗ 29266.1∗∗∗ -1920.9 -62.69

(5059.5) (3275.8) (2447.3) (54.50)

Charge suspension*weekend -19590.1∗∗ -23094.3∗∗∗ 3295.2 171.4∗

(9090.5) (5865.1) (3566.0) (98.93)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes

Observations 1737 1737 1720 1737

R2 0.808 0.805 0.785 0.901

Dependent variable is daily Area C entries. “Other” vehicles are primarily public vehicles like police cars and am-
bulances, which are exempt from the charge. Each column is a single model corresponding to equation (1.1). All
specifications include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a
holiday dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period. Weather
controls comprise ten-piece linear splines in temperature and positive precipitation. Newey-West standard errors with
7 lags in parentheses. Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01. The effect on entries by all
vehicles is approximately 14.5 percent of the mean.
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Table 1.3: Weekday effect of Area C charge suspension on sensor-level traffic volume,
by distance outside Area C boundary

Vehicle count Vehicle count Vehicle count

All roads 469.8∗∗∗

(131.3)

Area C 1063.2∗∗∗

(337.1)

0-1km outside boundary -1061.1∗

(587.0)

1-2km outside boundary -161.5

(361.0)

2-4.2km outside boundary 606.8∗∗

(258.3)

>4.2km outside boundary 515.3

(391.2)

Non-ring roads 469.2∗∗∗

(158.4)

Ring roads -2433.7∗∗

(1020.0)

Year, month, week, DoW FEs Yes Yes Yes

7th-deg. trend in date Yes Yes Yes

Weather controls Yes Yes No

Observations 803086 801442 801442

R2 0.085 0.093 0.093

Dependent variable is daily count of vehicles passing over sensor. Each column is a single model corresponding to equation (1.2).
All specifications include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday
dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period. Weather controls comprise ten-
piece linear splines in temperature and positive precipitation. Distance measured from the outside of the Area C boundary. Distance
dummies set at the 25th, 50th, and 75th percentiles. Ring roads allow drivers to avoid charge area. Standard errors clustered at
sensor level in parentheses. Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01. The overall effect in the leftmost column
is approximately 8 percent of the mean.
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Table 1.4: Weekday effect of Area C charge suspension on portal-level vehicle entries,
by public transit availability

Vehicle count Vehicle count Vehicle count Vehicle count

No metro 883.9∗∗∗

(160.4)

Metro 259.9

(266.5)

No bus 905.6∗∗∗

(148.6)

Bus 374.3∗

(211.7)

No tram 788.6∗∗∗

(152.3)

Tram 586.1∗∗

(247.1)

No public trans. 1063.2∗∗∗

(208.9)

Public trans. 518.3∗∗∗

(133.4)

Yr, mo, wk, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes

Observations 71862 71862 71862 71862

R2 0.407 0.407 0.406 0.407

Dependent variable is daily Area C entries through a given portal. Each column is a single model corresponding to equation (1.3).
All specifications include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday
dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period. Weather controls comprise ten-
piece linear splines in temperature and positive precipitation. Standard errors clustered at portal level in parentheses. Significance
denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 1.5: Price elasticity of Area C vehicle entries

All charged Passenger Commercial Other
log(Price) -0.304∗∗∗ -0.171∗∗∗ -0.467∗∗ -0.0222

(0.0944) (0.0330) (0.221) (0.0341)

Month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes
Observations 1147 1147 1147 1147
R2 0.458 0.418 0.662 0.557

Dependent variable is log daily Area C entries. Each column is a single model corresponding to equation (1.1), but with the policy
variables replaced by the log of weekday average price: d’0.72 for passenger vehicles and d’3.52 for commercial vehicles under
Ecopass, d’5 under Area C. Estimated elasticities reflect traffic response to two changes: 1) a 1 percent increase in the Area C cordon
charge; 2) the resulting cost decrease from reduced congestion and travel time. Weekends were unpriced under both policies and
are excluded from the sample. The January 2012 interim period and the July-September 2012 natural experiment period were also
unpriced. All specifications include 11 month, 51 week, and 4 day of week FEs, a holiday dummy, and a 7th-degree time trend in
date. Co-linearity with price variation prevents the inclusion of year dummies. Weather controls comprise ten-piece linear splines
in temperature and positive precipitation. “Other” vehicles are primarily public vehicles like police cars and ambulances, which are
exempt from charge. Standard errors clustered at the year-week level. Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p <
0.01.
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Table 1.6: Weekday pollution effect of Area C charge suspension, by location

ln(CO) ln(PM10) ln(PM2.5)

Area C 0.0606∗∗ 0.0404

(0.0248) (0.0407)

Ring roads 0.0182

0.0205

Outside 0.1696∗∗ 0.2139∗

(0.0676) (0.1210)

Lagged pollution Yes Yes Yes

Weather controls Yes Yes Yes

Year, month, week, DoW FEs Yes Yes Yes

7th-deg. trend in date Yes Yes Yes

Dependent variable is daily log average pollution in a given area of Milan. Pollution normalized for temperature and pressure by
ARPA. Each estimate comes from a different regression corresponding to equation (1.4). Specifications include 10 year, 11 month,
51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday dummy, a 7th-degree trend, a dummy for the
unpriced January 2012 interim period, and 1 lag of log average pollution. Weather controls include 4-knot cubic splines in humidity,
wind speed, solar radiation, and precipitation, plus a dummy for positive precipitation. Newey-West standard errors with 1 lag in in
parentheses. Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 1.7: Weekday pollution effects of placebo suspensions

CO PM10 PM25

2008

Area C 0.0463 -0.0642

(0.0247) (0.0472)

Ring roads -0.0358∗

(0.0206)

Outside -0.0495 0.0474

(0.0681) (0.1399)

2009

Area C -0.0095 0.0464

(0.0198) (0.0428)

Ring roads 0.0433∗∗

(0.0182)

Outside 0.1231∗∗ 0.1492

(0.0591) (0.0917)

2010

Area C -0.0182 -0.0718

(0.0254) (0.0493)

Ring roads 0.0063

(0.0184)

Outside -0.0258 -0.0498

(0.0736) (0.1054)

2011

Area C 0.1007∗∗∗ -0.0516

(0.0177) (0.0492)

Ring roads -0.0506∗∗∗

(0.0190)

Outside 0.0142 0.0697

(0.0849) (0.1138)

Dependent variable is daily log average pollution pollution in a given area of Milan. Pollution normalized for temperature and
pressure by ARPA. Each estimate comes from a different regression corresponding to equation (1.4). Placebo suspension runs
July 27-September 16. Specifications include 10 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted
with year, 7th-degree trend, a holiday dummy, a dummy for the unpriced January 2012 interim period, a dummy for the June-Sept.
2012 charge suspension, and 1 lag of log average pollution. Weather controls include 4-knot cubic splines in humidity, wind speed,
solar radiation, and precipitation, plus a dummy for positive precipitation. Newey-West standard errors with 1 lag in parentheses.
Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01.
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1.8 Supplementary material

1.8.1 Public transit results

The results in Table 1.8 provide evidence of some preference heterogeneity

(sorting). They are inconsistent with an explanation solely based on cost differences,

which would predict smaller responses on more congested routes, but do not exclude the

possibility that cost differences drive some of the responses to charge suspension.

To see this, consider the framework of Anderson (2014), who derives a condition

for choosing rail over driving (simplified here): crail− cdrive ≤ P0, where crail and cdrive

denote the time costs of driving and the subway. P0 is the fiscal cost difference between

modes converted to units of time. Suppose three driver types, A, B, and C as illustrated

in Figure 1.6, all of whom initially take the subway.16 Drivers B and C face higher

subway time cost because they must commute circumferentially to the subway line.

Assume B and C are close enough that this cost is the same (crail,C = crail,B). Then

we have crail,C − cdrive,C < crail,B − cdrive,B ≤ P0. Provided cdrive,A is not too small,

crail,A− cdrive,A < crail,C − cdrive,C < crail,B− cdrive,B ≤ P0. This framework partially

reproduces the public transit results of Table 1.4; it predicts the marginal drivers will be

of types B and C, not A. But it implies more infra-marginal drivers on less congested

roads (more type B than C), which does not match the pattern of Table 1.8.

16While this example is obviously stylized, the radial layout mimics the actual pattern of roads in Milan.



43

Figure 1.6: Marginal drivers
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Table 1.8: Weekday effect of Area C charge suspension on portal-level vehicle entries,
by public transit availability and congestion

Vehicle count

No public trans. 1012.6∗∗∗

(211.4)

Public trans. 541.5∗∗∗

(149.3)

No public trans. * congested 843.9∗∗∗

(159.7)

Public trans. * congested -189.1

(534.9)

Year, month, week, DoW FEs Yes

7th-deg. trend in date Yes

Weather controls Yes

Observations 71862

R2 0.407

Dependent variable is daily Area C entries through a given portal. Each observation is a portal-day. Each column is a single
model corresponding to equation (1.3). Congested dummy equals 1 for portals where avg standardized peak (8-9:30AM, 5:45-8PM)
volume is below 10th percentile. All specifications include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy
interacted with year, a holiday dummy, a 7th-degree time trend in date, and a dummy for the unpriced January 2012 interim period.
Weather controls comprise ten-piece linear splines in temperature and positive precipitation. Standard errors clustered at portal level
in parentheses. Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01.
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1.8.2 Supplemental figures

Figure 1.7: Milan’s Area C

Area C is the area of the Milan city center that has been priced under the Ecopass and Area C policies. Numbered circles represent
entry portals where the charge is applied using license plate-reading cameras.
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Figure 1.8: Seasonal pattern of Area C vehicle entries

Figure shows average number of Area C entries by week of year, as measured by license plate readers. Vertical lines delimit the
period of the 2012 charge suspension.
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1.8.3 Supplemental tables

Table 1.9: Comparison of traffic volume effects and elasticities to other empirical road
pricing studies

Paper Location Policy Volume change Price elasticity

Gibson & Carnovale 2015 Milan Cordon charge +14.5% -.30

Jones and Hervik (1992) Alesund Toll - -.45

Jones and Hervik (1992); Ramjerdi et al. (2004) Oslo Cordon charge -10% to 0% -.22, -.03

Polak and Meland (1994); Meland (1995) Trondheim Cordon charge -10% -.10

Small and Gomez-Ibanez (1998) Autoroute A1 Paris-Lille Variable toll -4% -.16

Small and Gomez-Ibanez (1998) Singapore Restricted Zone Cordon charge (1975) -44% -

Goh (2002); Olszewski and Xie (2002) Singapore Expressways Toll (1995) -16% -.22 to -.15

Olszewski and Xie (2002) Singapore Restricted Zone Cordon charge (1976, 1989) -52% to -10% -.22 to -.32

Tretvik (2003); Ramjerdi et al. (2004) Bergen Cordon charge >-3% -

Small et al. (2006) Orange County SR91 Variable toll - -.36

Odeck and Brathen (2008) Norway, various Toll - -.56 to -.82

Santos (2008) London Cordon charge -18% -

Eliasson et al. (2009) Stockholm Cordon charge -22% -

Finkelstein (2009) Various US Toll - -.06

Foreman (2013) SF Bay Bridge Variable toll -9%, -4% -.08

Xie (2013) Minneapolis I-394 Variable toll - -.14

With the exception of our result, papers are listed in order of publication. Volume changes are from the introduction of pricing
or a price change. The volume estimate from our study is positive because we examine the removal of a pricing policy, rather
than the imposition of one. Note that our volume change estimate is from a natural experiment, while our price elasticity relies on
long-run policy variation. Small and Verhoef (2007) suggest the very large effect of Singapore’s initial pricing policy was due to
the extremely high charge, which they characterize as far above the second-best optimum level. We separate estimates based on the
initial 1977 introduction of pricing in Singapore (Small and Gomez-Ibanez, 1998) from those based on later price changes (Goh,
2002; Olszewski and Xie, 2002). Foreman (2013) provides two estimates: -9% from a regression discontinuity identification, and
-4% from a difference-in-differences identification. The rightmost column contains elasticities of traffic volume (cordon crossings
or volume on a segment) with respect to price. Unless otherwise noted, they reflect both the direct effect of a toll increase (negative)
and the rebound effect from reduced congestion (positive). They generally do not correspond to structural parameters. Elasticities
are not available for all of the policies. In some cases authors do not provide sufficient information to calculate them. In others
the relevant toll rises from zero to a positive number, leaving the percentage change undefined. In particular, the elasticity estimate
of Olszewski and Xie (2002) comes from later price variation, not the initial introduction of the Singapore cordon charge. The
Finkelstein (2009) estimate is an average over 33 US facilities.
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Table 1.10: Comparison of Area C charge suspension to unpriced January 2012 interim
period

All vehicles Charged vehicles Motorcycles Other vehicles

Charge suspension 26725.2∗∗∗ 29266.1∗∗∗ -1920.9 -62.69

(5059.5) (3275.8) (2447.3) (54.50)

Interim period 38692.4∗∗∗ 31237.0∗∗∗ 7924.1∗∗ 13.11

(8308.6) (6166.6) (3978.2) (68.76)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes

Observations 1737 1737 1720 1737

R2 0.808 0.805 0.785 0.901

Charge suspension estimates are identical to those in main results (Table 1.2). Dependent variable is daily Area C entries. Each
column is a single model corresponding to equation (1.1). All specifications include 4 year, 11 month, 51 week, and 5 day of week
FEs, a weekend dummy interacted with year, a holiday dummy, and a 7th-degree time trend in date. Weather controls comprise
ten-piece linear splines in temperature and positive precipitation. Other vehicles are primarily public vehicles like police and
ambulances, which are exempt from charge. The interim period January 1-15, 2012, between the Ecopass and Area C policies, was
unpriced. Newey-West standard errors with 7 lags in parentheses. Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 1.11: Weekday effect of unpriced January 2012 interim period on sensor-level
traffic volume, by distance outside Area C boundary

Vehicle count Vehicle count Vehicle count

All roads 1067.6∗∗∗

(127.4)

Area C 1597.4∗∗∗

(437.7)

0-1km outside boundary 583.8

(494.3)

1-2km outside boundary 892.9∗∗∗

(344.6)

2-4.2km outside boundary 978.0∗∗∗

(308.1)

>4.2km outside boundary 1402.0∗∗∗

(310.5)

Non-ring roads 1330.2∗∗∗

(150.8)

Ring roads -231.0

(697.1)

Year, month, week, DoW FEs Yes Yes Yes

7th-deg. trend in date Yes Yes Yes

Weather controls Yes Yes No

Observations 803086 801442 801442

R2 0.085 0.093 0.093

Dependent variable is daily count of vehicles passing over sensor. Each column is a single model corresponding to equation (1.2).
All specifications include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday
dummy, a 7th-degree time trend in date, and a dummy for the July-September 2012 charge suspension. Weather controls comprise
ten-piece linear splines in temperature and positive precipitation. Distance measured from the outside of the Area C boundary.
Distance dummies set at the 25th, 50th, and 75th percentiles. Ring roads allow drivers to avoid charge area. The interim period
January 1-15, 2012, between the Ecopass and Area C policies, was unpriced. Standard errors clustered at sensor level in parentheses.
Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 1.12: Weekday effect of unpriced January 2012 interim period on portal-level
vehicle entries, by public transit availability

Vehicle count Vehicle count Vehicle count Vehicle count

No metro 800.9∗∗∗

(118.9)

Metro 577.1∗∗∗

(153.9)

No bus 822.4∗∗∗

(131.2)

Bus 571.6∗∗∗

(130.3)

No tram 791.5∗∗∗

(128.1)

Tram 598.6∗∗∗

(133.8)

No public trans. 913.3∗∗∗

(148.2)

Public trans. 633.5∗∗∗

(109.2)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes

Observations 71862 71862 71862 71862

R2 0.407 0.407 0.406 0.407

Dependent variable is daily Area C entries through a given portal. Each column is a single model corresponding to equation (1.3).
All specifications include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year, a holiday
dummy, a 7th-degree time trend in date, and a dummy for the July-September 2012 charge suspension. Weather controls comprise
ten-piece linear splines in temperature and positive precipitation. The interim period January 1-15, 2012, between the Ecopass and
Area C policies, was unpriced. Standard errors clustered at portal level in parentheses. Significance denoted by: ∗ p < 0.10, ** p <
0.05, *** p < 0.01.
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Table 1.13: Effect of 2011 placebo suspension on Area C vehicle entries

All vehicles Charged vehicles Motorcycles Other vehicles

Placebo suspension (2011) 2296.6 419.8 1815.7 -77.80

(5826.7) (3992.3) (2297.9) (48.72)

Year, month, week, DoW FEs Yes Yes Yes Yes

7th-deg. trend in date Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes

Observations 1737 1737 1720 1737

R2 0.808 0.805 0.785 0.901

Dependent variable is daily Area C entries. “Other” vehicles primarily public vehicles like police cars and ambulances, which are
exempt from charge. Each column is a single model corresponding to equation (1.1). Placebo suspension runs July 27-September
16, 2011. All specifications include 4 year, 11 month, 51 week, and 5 day of week FEs, a weekend dummy interacted with year,
a holiday dummy, a 7th-degree time trend in date, a dummy for the unpriced January 2012 interim period, and a dummy for the
June-Sept. 2012 charge suspension. Weather controls comprise ten-piece linear splines in temperature and positive precipitation.
Newey-West standard errors with 7 lags in parentheses. Significance denoted by: ∗ p < 0.10, ** p < 0.05, *** p < 0.01.



Chapter 2

Regulation-induced pollution

substitution

Abstract

Regulations may cause firms to re-optimize over pollution inputs, leading to

unintended consequences. By regulating air emissions in particular counties, the Clean

Air Act (CAA) gives firms incentives to substitute: 1) toward polluting other media, like

landfills and waterways; and 2) toward pollution from plants in other counties. Using

EPA Toxic Release Inventory data, I examine the effect of CAA regulation on these

types of substitution. Regulated plants increase their ratio of water to air emissions by

44 percent. Regulation of an average plant increases air emissions at unregulated plants

owned by the same firm by 17 percent, resulting in a net emissions increase.

2.1 Introduction

Pollution regulations can have large benefits (Chay and Greenstone, 2003b; Currie

and Neidell, 2005). For example, EPA estimated the 1970-1990 benefits of the Clean Air

52
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Act (CAA) at $22 trillion (Environmental Protection Agency, 2011). Previous research

has examined some of the costs of the CAA, including labor transition costs (Walker,

2011; Walker, 2013) and firm entry and exit decisions (Henderson, 1996; Becker and

Henderson, 2000), but little is known about the costs of firms re-optimizing over pollution

inputs. The CAA regulates particular pollutants in particular counties, which creates

incentives for firms to substitute among different forms of pollution. This paper tests

two variants of this hypothesis: 1) Do firms respond to regulation by polluting other

channels, like landfills and waterways? (cross-media substitution); and 2) Do multi-plant

firms substitute toward pollution from other plants? (spatial leakage). The existence and

magnitude of such responses is important both for welfare analysis of existing policies

and for design of future policies.

If one of a county’s air pollution monitors exceeds the CAA standard, the EPA

designates the county as “non-attainment.” The state then issues regulations to reduce

that county’s air pollution, including emissions requirements for industrial plants. Simple

economic theory suggests that firms will respond to such regulations by substituting

toward unregulated or less-regulated forms of pollution. In practice, many air emissions

abatement strategies collect rather than destroy harmful material, generating secondary

waste streams that must be discharged into other media (Farnsworth, 2011).

While there is anecdotal evidence of such behavior (Duhigg, 2009), previous em-

pirical studies have not found much evidence of cross-media substitution. Sigman (1996)

tests for substitution in chlorinated solvent releases by metals and manufacturing plants.

The author finds no substitution driven by the CAA, but does find substitution driven

by hazardous disposal prices. Greenstone (2003) tests for CAA-induced substitution in

releases from the iron and steel industry and finds no evidence for it. Gamper-Rabindran

(2009) models emissions of volatile organic compounds (VOC) by chemical manufactur-

ers as a function of CAA non-attainment, proxying for output changes with employment
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changes. She finds no increased emissions into other media. Both Greenstone and

Gamper-Rabindran model emissions differences as a function of county non-attainment.

My approach builds on this work along several dimensions. First, I outline a

simple theoretical model that assumes constant returns to scale (CRS). Motivated by

this model, I show that one can use emissions ratios to recover consistent estimates of

substitution elasticities among pollution inputs. Ratio estimation avoids confounding

substitution and output effects.

Second, by estimating in ratio levels rather than differences, I account for two

important facts: 1) the CAA allows states and firms to respond slowly (over three years)

to a non-attainment designation; and 2) many abatement decisions are discrete, producing

a one-time change in the level of emissions, not a change in the growth rate. These facts

will bias difference-based estimates of substitution responses toward zero.

Third, I control for spatial heterogeneity in regulation. My study follows the

implications of Auffhammer et al. (2009), which finds that the effect of CAA non-

attainment on the average monitor in a non-attainment county is zero, but that the effect

on monitors above the CAA standard is -11 to -14 percent. Similarly, Bento et al.

(2014) find that non-attainment affects home prices near non-attainment monitors, but

not farther away. These findings suggest that regulators respond to non-attainment by

focusing on problematic areas, rather than requiring uniform changes across a county. I

demonstrate that only plants near non-attainment monitors are treated under the CAA.

This pattern is consistent with a regulator whose objective function involves minimization

of enforcement costs, either pecuniary or political (Amacher and Malik, 1996), rather

than socially efficient abatement. My analysis of substitution accounts for this and so

avoids averaging changes at treated plants with null responses from untreated plants in

non-attainment counties. Finally, by pooling across industries I improve statistical power.

Using EPA Toxic Release Inventory (TRI) data, this study tests the substitution
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hypotheses outlined above by comparing regulated (“treated”) plants in particulate non-

attainment counties to unregulated plants. My identification relies on the exogeneity of

non-attainment status and monitor locations with respect to time-varying plant charac-

teristics. The exogeneity of non-attainment status derives largely from the small share

of point sources in particulate emissions (25 percent; Auffhammer et al., 2011). The

exogeneity of monitor placement derives from EPA placement rules, which are based on

population characteristics (e.g. average age) rather than industrial characteristics, and the

prohibitively high cost of relocating a plant in response to monitor placement (Raffuse

et al., 2007).

Both cross-media substitution and spatial leakage occur and responses can be

large. Regulated plants increase their ratio of water to air emissions by 44 percent.

Regulation of an average plant increases air emissions at unregulated plants owned by

the same firm by 17 percent, resulting in a net emissions increase. Not all substitution

responses constitute unintended consequences; regulated plants increase their ratio of

recycling to air emissions by 41 percent.1

One might worry that estimation in ratios assumes the hypothesis of cross-media

substitution: if a firm fixes water emissions and reduces air emissions, for example, the

ratio will increase. This is not the pattern observed in the data. Regulated plants increase

their level of water emissions by 25 percent. While this estimate is not statistically

significant at any conventional level (p = .25), it is large and practically important. My

analysis focuses on emissions ratios rather than levels because this approach allows me

to infer substitution elasticities, which facilitate both evaluation of existing policies and

simulation of proposed policies.

These findings are important not only for air pollution regulation, but for pollution

control policy generally. If firms substitute among various forms of pollution, an optimal

1Here and throughout the paper, I refer to changes in log values as percentage changes. While this is
not strictly correct for the large changes I estimate, I follow this practice for simplicity of exposition.
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policy must consider not just a plant’s emissions into a particular medium, but rather

a firm’s emissions across all media, in all locations. Optimal policy would set a firm’s

emissions price for each medium and location equal to the marginal damage from

emissions (leaving no medium or location unpriced). While such an optimal policy might

not be feasible or consonant with policymaker goals, elasticities of substitution among

pollutants are nonetheless a vital input into policy design.

This analysis contributes to the literature on regulation in the presence of mis-

priced substitutes (e.g. Campbell, 1991). It is the first work to document regulation-

induced cross-media pollution substitution. My findings are consistent with the theo-

retical work of Fullerton and Karney (2014) on pollution substitution. This study also

contributes to the literature on pollution leakage. To date this literature has focused

on international leakage (Levinson and Taylor, 2008; Davis and Kahn, 2010; Hanna,

2010) and simulated carbon leakage (Fowlie, 2009; Bushnell and Mansur, 2011). Both

Henderson (1996) and Becker and Henderson (2000) find the CAA makes firms more

likely to enter attainment counties, which might be considered a form of leakage. Fowlie

(2010) demonstrates reallocation of NOx emissions across plants in response to the NOx

Budget Program, but in that case such reallocation was among the aims of the policy. To

the best of my knowledge, mine is the first study to find evidence of unintended emissions

leakage across existing domestic plants, and the first to show spatial heterogeneity in

CAA-driven air pollution reductions at the plant level.

The rest of the paper is organized as follows. Section 2.2 provides background on

regulations and abatement technology important to cross-media substitution. Section 2.3

discusses a simple theoretical model that informs my estimation. Section 2.4 describes

the data, Section 2.5 presents estimating equations, Section 2.6 presents results, and

Section 2.7 explores their robustness. Section 2.8 concludes.
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2.2 Background

2.2.1 The Clean Air Act

Under the Clean Air Act, the EPA sets air quality standards for six criteria

pollutants: carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter (PM),

lead (Pb), sulfur dioxide (SO2), and volatile organic compounds (VOC). For detailed

information on particulate standards, which are the focus of this paper, see Appendix

Table 2.17. A county violates the standard for a particular pollutant if at least one monitor

exceeds the CAA standard in a given year.2 In what follows, I refer to a monitor that

exceeds the annual standard as a non-attainment monitor. A monitor violation triggers

the following sequence of events (author’s interview notes; Environmental Protection

Agency, Undated):

1. Together EPA and the state go through a process to designate a county as non-

attainment. This may take up to two years.

2. Non-attainment designation begins a process by which states submit a State Imple-

mentation Plan (SIP) to EPA. This may take 18 to 36 months.

3. SIPs are not federally enforceable until EPA approves them, but state authorities

may enforce them prior to such approval. As a result actual regulation sometimes

begins concurrent with a non-attainment designation, but often begins after a delay

of a year or more.

As a result of such lags, states have often drafted or even submitted State Implementa-

tion Plans before one of their constituent counties officially receives a non-attainment

designation (see for example Missoula County Environmental Health Division, 1999).

2While EPA sometimes regulates smaller areas within counties, this far less common than county-level
regulation (author’s interview notes).



58

SIPs detail steps that will bring the county into attainment. These typically include

“lowest achievable emissions rates” (LAER) equipment requirements and plant-specific

emissions limits (Becker and Henderson, 2000; Becker and Henderson, 2001; Walker,

2013). SIPs may prescribe a specific control technology for a plant, but they often allow

a plant to choose an abatement strategy (discussed in Section 2.2.3). State and EPA

enforcement mechanisms include fines, inspections, and withholding of federal highway

funds (Becker and Henderson, 2000; Chay and Greenstone, 2005).

Under the CAA, EPA periodically revises standards to reflect new research on the

health effects of air pollution. For example, the agency finalized new PM10 standards in

1987, but did not designate a county in non-attainment of the new standard until 1990.3

Revisions of CAA standards typically cause large numbers of counties to fall into non-

attainment simultaneously. In my data (described in Section 2.4), PM non-attainment

lasts for an average of approximately 7 years. Conditional on PM non-attainment in at

least one year, I observe on average 1 entry into non-attainment and .16 exits; most of

these counties remain in non-attainment through 2010, the last year of my data. For 9

counties I observe two entries into non-attainment.

2.2.2 Regulation of water and land emissions

CAA-induced substitution will reduce welfare, relative to an optimal policy, only

if substitute emissions are unpriced or underpriced. Such is the case for many TRI

pollutants and many emissions channels. The Safe Drinking Water Act (SDWA) and the

Pollutant Priority List (PPL) for the Clean Water Act do not cover many TRI chemicals

(Gamper-Rabindran, 2009). For example, my TRI data contain 580 chemicals. The PPL

lists 126 chemicals (Environmental Protection Agency, 2013). In addition, two recent

Supreme Court decisions have limited the scope of the CWA. Solid Waste Authority of

3Particulate matter 10 microns or less in diameter.
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Northern Cook County v. U.S. Army Corps of Engineers removed CWA protection from

“isolated” water bodies, including many wetland areas. Rapanos v. United States removed

CWA protection from waterways that are not navigable year-round (Environmental

Protection Agency, 2008). (Note that the Mississippi River would arguably have met

such a definition in 2012.)

The Resource Conservation and Recovery Act (RCRA) governs many forms

of toxic disposal on land. Coal combustion residuals are currently exempt from many

provisions of the RCRA, though the EPA is attempting to regulate them (Environmental

Protection Agency, 2010). Some mining and petrochemical wastes are also exempt

(Environmental Protection Agency, 1999). Regulation of TRI-listed air pollutants that

do not fall into one of the six CAA criteria categories varies by industry. Under the

1990 CAA Amendments, EPA develops industry-specific regulations governing the air

release of 187 toxic chemicals (“air toxics”). EPA “...does not prescribe a specific control

technology, but sets a performance level based on a technology or other practices already

used by the better-controlled and lower emitting sources in an industry” (Environmental

Protection Agency, Undated). While the incomplete regulations governing water and land

emissions suggest cross-media substitution may reduce welfare relative to the first-best

case, a full welfare analysis is beyond the scope of this paper.

2.2.3 Abatement strategies and variable costs

If abatement costs were entirely fixed or if abatement were costless, plants would

have no incentive to substitute in response. While abatement technologies usually have

fixed costs, they also have large operating costs. Pollution control devices typically

require substantial energy and may yield secondary wastes that require costly disposal.

Processes that employ catalysts require periodic replacement of the catalyst. These vari-

able costs range from 33 to 100 percent of capital cost for most abatement technologies
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(Environmental Protection Agency, Undated; Vatavuk et al., 2000; Farnsworth, 2011).

For other abatement options like fuel switching and coal washing, the new fuel must

be weakly more expensive than the old, or the plant would have been using it before.

Such costs mean that CAA non-attainment changes the relative price of air emissions

for regulated plants. I catalog the most common particulate air emissions abatement

strategies in Table 2.1.

Many abatement strategies produce secondary waste streams. For example,

incineration decreases toxic air emissions but increases carbon emissions. Wet scrubbers

“...can lead to water and solid waste pollution problems” (EC/R Incorporated, 1998).

Theory predicts that firms will not consider the external costs of such secondary waste and

so their abatement strategies may not be socially efficient. Even when a SIP prescribes a

particular strategy, this may not correspond to the social optimum. In discussing potential

environmental harm from air emissions abatement, EPA argues, “Such well-established

adverse effects and their costs are normal and assumed to be reasonable and should not,

in most cases, justify nonuse of the control technology” (Domike and Zacaroli, 2011). If

states do not consider such adverse effects in formulating SIPs, then they may generate

inefficiently high levels of pollution into landfills and waterways.

Abatement strategies often produce abrupt reductions in emissions once im-

plemented. This is one of the reasons I estimate in levels rather than differences, as

described in Section 2.5. Note that the set of available technologies may partially reflect

the US policy environment, as the Clean Air and Clean Water acts have been in place, in

approximately their current form, since the early 1970s.
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2.3 Theory

The following simple model informs my estimating equations for cross-media

substitution. Suppose a firm produces a single good, which trades at exogenous price pO,

using two pollution inputs A and W . (The following argument also holds in a three-input

case; see Appendix Section 2.10.1.) For discussion, let A be air emissions and W be

water emissions. The CAA may be viewed as shift in relative input prices pA
pW

, with

the increased price of air emissions having two components: 1) pecuniary cost, like

the variable abatement cost described in Section 2.2.3; and 2) non-pecuniary cost, for

example the cost of incurring the displeasure of a regulator. The object of policy interest

is unconditional factor demand W ∗, incorporating firms’ possible output response to

regulation. Suppose a CES production function, so the firm problem becomes:

max
A,W

pO (cAAρ + cWW ρ)
1/ρ− pAA− pWW

The constants cA and cW reflect a firm’s technology. I adopt a CES functional

form for expositional convenience, but the key assumption of my model is constant

returns to scale (CRS). In their important theoretical work on pollution substitution,

Fullerton and Karney (2014) likewise employ a CRS assumption. One might worry that

the fixed costs associated with some abatement choices (e.g. scrubbers) violate a CRS

assumption. If such costs are financed over relatively long time horizons, however, the

non-convexity in the production set is minimal and a CRS assumption is reasonable. This

is roughly analogous to modeling a scrubber as an increase in a third input, capital (see

Appendix Section 2.10.1).

The choice of CES does not impose any strong assumptions on the nature of

substitution.4 Taking first order conditions, one obtains an optimality condition:

4If ρ = 1 the production function is linear (perfect substitution); if ρ→ 0, it is Cobb-Douglas; if
ρ→−∞, it is Leontief (perfect complements).
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(
cW

cA

)(
W ∗ρ−1

A∗ρ−1

)
=

pW

pA

Taking logs gives a ratio of unconditional factor demands:

ln
(

W ∗

A∗

)
=

1
1−ρ

ln
(

cW

cA

)
+

1
1−ρ

ln
(

pA

pW

)
(2.1)

If ρ is finite and ρ ≤ 1, the inputs are substitutes and the coefficient σ = 1
1−ρ

on the

price ratio is positive. In a two-input model σ is the Hicks elasticity of substitution,

which measures the curvature of an isoquant. In a model with three or more inputs, the

derivative of the log optimal input ratio with respect to the log price ratio is instead the

Morishima elasticity of substitution, which can be negative. If A and W are substitutes, σ

is positive and theory predicts CAA regulation will produce an increase in the ratio of

water to air pollution W ∗
A∗ .5 Modeling W ∗ as a function of prices alone will not recover

the elasticity of substitution because of the omitted variable A∗. Rearranging equation

2.1 to put A∗ on the right hand side makes this apparent.

ln(W ∗) =
1

1−ρ
ln
(

cW

cA

)
+

1
1−ρ

ln
(

pA

pW

)
+ ln(A∗) (2.2)

In the context of the CAA, suppose a plant is located in a county that falls into non-

attainment. The plant has two emissions reduction options: 1) substitute toward another

form of pollution W ∗ (e.g. by switching fuels or using existing pollution-control capital

more intensively); 2) produce less output. If the plant does both, the level of W ∗ may fall

even though the ratio W ∗
A∗ has increased. The output reduction disguises the regulation-

induced substitution. Avoiding this confusion requires controlling for A∗, Y ∗ (output),

or both. I model the input ratio, thereby controlling for changes in A∗. Under a CRS

5For a model that treats CAA non-attainment as a limit on the quantity of air emissions, please see
Appendix Section 2.10.1. The qualitative predications from that model are the same as those presented
here.
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assumption this is sufficient to recover a scalar function of σ, as the curvature of a firm’s

isoquants does not vary with output. This approach avoids the potential endogeneity

from including choice variables A∗ or Y ∗ on the right-hand side of a regression equation.

One might worry that this framework will capture a “mechanical” substitution

effect. After all, if the CAA causes plants in non-attainment counties to reduce their

air emissions and leave water emissions unchanged, the ratio W ∗
A∗ will increase. But

this is actually evidence of substitution, as apparent from Figure 2.1. In the left-hand

panel, the price of air emissions rises from pA0 to pA1. Holding total cost TC and

water emissions fixed, the firm’s new input bundle is (W1,A1) at lower output Y1. Water

emissions are unchanged (by construction), but air emissions are lower. This change,

however, incorporates both output and substitution effects. The right-hand panel removes

the output effect by drawing a cost line (in green) at the new prices and the original

output level Y0. The input bundle is now (W2,A2), where W2 >W0. Holding output fixed,

water emissions have actually increased.

The preceding discussion assumes a static production technology, with input

substitution driven by exogenous price changes. This assumption may be incorrect

if firms respond to regulation with both technology changes (e.g. installation of new

pollution-control capital) and input substitution. Such a firm response might be thought

of as an increase in a third factor (capital), or instead as a technological change in

the constants cW and cA. Under a CES functional form assumption, the latter case is

unproblematic. Factoring equation 2.1 yields the following.

ln
(

W ∗

A∗

)
=

1
1−ρ

[
ln
(

cW

cA

)
+ ln

(
pA

pW

)]
(2.3)

Given a proxy for the quantity
[
ln
(

cW
cA

)
+ ln

(
pA
pW

)]
, it is still possible to recover a scalar

function of the elasticity of substitution σ = 1
1−ρ

. If the CES assumption fails in this case,
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my estimates are no longer informative about the substitution elasticity σ. Instead they

will capture the full effect of CAA regulation on the log optimal input ratio, which may

be a function of multiple underlying structural parameters.

2.4 Data

My plant-level emissions and location data come from the EPA Toxic Release

Inventory (TRI) 1987-2010. TRI records annual emissions of more than 500 chemicals

by mass (in pounds or grams). TRI data encompass a broad set of industries, from electric

power to soybeans. The top ten industries by total TRI-reportable emissions are listed in

Table 2.2. The database also includes the Dun & Bradstreet DUNS number for the parent

company of each plant.

These data have several shortcomings, discussed in Hamilton (2005). Only large

facilities are required to participate.6 Firms typically report estimates derived from

engineering models, rather than direct measurements. Gamper-Rabindran (2006) finds

that the location variables are sometimes inaccurate. Under TRI there are penalties for

false reporting, but not high emissions, which should ameliorate firm incentives to under-

report emissions. The EPA has fined firms up to $27,000 per day for reporting problems

in the past (Gamper-Rabindran, 2009). In the early years of TRI data collection, reporting

requirements changed dramatically. For example, reported pollution increased sixfold

between 1990 and 1991 due to reporting changes required by the Pollution Prevention Act

(Environmental Protection Agency, 2012). To avoid confounding such reporting changes

with genuine emissions changes, I exclude the period 1987-1992 from my analysis.

A subset of TRI chemicals are classified as particulates (PM).7 The TRI data

6Reporting thresholds have varied over time and by chemical. Typically firms must report if they use or
process more than 10,000 pounds of a TRI-listed chemical per year.

7Professor Michael Greenstone generously shared his mapping from TRI chemicals to CAA criteria
pollutants. Details are available in Greenstone (2003). These data also include mappings to lead and VOC,
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capture emissions in great detail, distinguishing for example between different types of

underground wells. To simplify presentation and analysis I aggregate up to the categories

described in Table 2.3 by adding the mass of each chemical emitted (in pounds).

Data on county attainment status come from the EPA Green Book. Monitor-

level data on pollutant concentrations come from the EPA Air Quality System (AQS)

1993-2010. For descriptive statistics see Appendix Table 2.15.

2.5 Estimation

2.5.1 Estimating equations

To estimate treatment effects on air emissions, I use the following specification,

with i indexing plant and t year.

ln(Ait) = αi +δt +βtreatedit + εit (2.4)

The dependent variable is the log of a plant’s air emissions. The equation includes

plant fixed effects and year dummies, with the latter capturing secular forces influencing

emissions. As discussed in Section 2.5.2 below, the variable treatedit equals 1 for plants

that were within two kilometers of a non-attainment monitor in year t − 1. If CAA

regulations are effective in reducing air emissions, I expect estimates of β to be negative.

Because this specification does not control for output or other inputs, it captures the full

effect of the policy, including both output and substitution effects.

which I do not employ. I do not analyze lead emissions because of the small number of treated plants. The
VOC mapping is problematic because VOC are not directly regulated under the CAA. They are one of two
primary precursors (the other is NOx) of ozone, which is a CAA criteria pollutant. While one would expect
ozone non-attainment to affect VOC emissions, the link is much less clear than for particulates, as not all
VOC contribute substantially to ozone formation. EPA regulates PM10 (particles <10 microns in diameter)
and PM2.5 (<2.5 microns in diameter) separately, but the Greenstone data do not allow me to separately
identify these categories. TRI does not include emissions of CO, NO2, or SO2.
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In addition, to investigate the time pattern of effects, I estimate an event-study

specification.

ln(Ait) = αi +δt +∑
j

τ j + εipt (2.5)

The variables τ j are indicators for a time index defined relative to treatment. I include

dummies for τ =−3, τ =−2, τ =−1, τ = 0, τ = 1, τ = 2, and τ≥ 3, so the reference

category is the average of years for which τ <−3. Tau equals 0 in the first treated year.

This means that if a county receives a non-attainment designation in year τ =−1, some

of its plants enter treatment the following year.

To test for cross-media substitution, I estimate the following.

ln
(

Wit

Ait

)
= αi +δt +βtreatedit + εit (2.6)

As before, I include plant fixed effects and year dummies. The quantity ln
(

Wit
Ait

)
is the

plant’s log emissions ratio, with the numerator emissions into another medium (e.g. water

or land) and the denominator air emissions. The estimating equation closely parallels the

ratio of unconditional factor demands from equation 2.1 above. The treatment dummy

proxies for the unobservable shift in the price ratio pA
pW

or, alternatively, the combination

of price changes and technology changes in cW
cA

. The coefficient β = νσ is a scalar

function of the elasticity of substitution σ = 1
1−ρ

, where ν is the percentage change in

relative prices produced by treatment. If air and water emissions are substitutes, theory

predicts the CAA will induce cross-media substitution and estimates of β will be positive.

If instead air and water emissions are complements, estimates of β will approach zero.8

To test for within-firm leakage, I estimate the following specification using all

plants in attainment counties.

8If the true aggregate production function includes three or more inputs, β is a function of the Morishima
elasticity and negative values are possible.
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ln(Ait) = αi +δt + γmultiplantit +βmultiplantit ∗other_treatedit + εit (2.7)

Again I include plant fixed effects and year dummies. The variable multiplantit is a

dummy for being part of a multi-plant firm. The variable other_treatedit is a dummy for

one or more treated plants within the same firm, year, and 6-digit NAICS code. If the

CAA induces spatial leakage, estimates of β will be positive.

Finally, in order to test indirectly for general-equilibrium leakage to untreated

plants, I estimate the following equation, again using plants in attainment counties.

ln(Ait) = αi +δt +βtotal_treated jt + εit (2.8)

In this specification the variable total_treated jt is a count of treated plants at either the

state-year level or the state-year-NAICS6 level. If general-equilibrium leakage is in fact

occurring, estimates of β should be positive.

All of the above specifications involve logs or log ratios and thus exclude plants

reporting zero emissions into a given medium. Plants that do not emit into the air are

beyond the scope of this work. Plants that do not emit into a given non-air medium (e.g.

water) before treatment, but begin emitting under treatment, are potentially interesting.

As a practical matter there are very few such plants–fewer than 25 for any medium.

Nonetheless I am investigating hurdle models that better account for such behavior.

2.5.2 Defining treatment

Past research on cross-media substitution has typically defined treatment as

presence in a non-attainment county, but this conceals important spatial heterogeneity.
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Auffhammer et al. (2009) find the effect of county non-attainment status on an average

monitor is zero, but the effect on a non-attainment monitor is negative 11 to 14 percent.

This suggests that regulators treat plants near non-attainment monitors intensively, while

treating plants farther away lightly or not at all. I present evidence in support of this

hypothesis. First I estimate a simple regression of a plant’s air emissions on plant fixed

effects and year dummies:

ln(Ait) = αi +δt + εit (2.9)

In this equation A denotes air emissions, while i indexes plant and t year. Figure

2.2 is a local linear regression fit to plant residuals from non-attainment counties against

the distance to the nearest non-attainment monitor. It provides evidence that regulators

indeed treat plants near non-attainment monitors intensively, while treating more distant

plants lightly or not at all. This pattern is consistent with the hedonic results from Bento

et al. (2014).

Based on this pattern, I define a variable treatedit equal to Nonattainit−1 ∗

1
{

Distanceit−1 6 D
}

. That is, I consider a plant treated in year t if in the prior year

its county was in non-attainment and the plant was located “close” to a non-attainment

monitor. Based on Figure 2.2, I use a threshold distance D of two kilometers.9 I use

lagged rather than contemporaneous non-attainment status because: 1) state regulations

may not take effect in the first non-attainment year (see Section 2.2); and 2) some firm

responses plausibly require substantial time to implement (e.g., existing contracts might

limit fuel switching). This treatment variable forms the basis for all subsequent results.

Defining treatment in this way invokes an additional identifying assumption, exogeneity

of monitor placement with respect to plant-level scope for abatement and substitution,

9While this pattern holds on average, it need not hold for all industries and pollutants. Stack height
provides one source of heterogeneity. If a plant has tall stacks, it exerts more influence on distant monitors
than on those nearby (author’s interview notes). In such a case, even if regulators focus on particular plants,
they may not be the plants adjacent to non-attainment monitors.



69

which I discuss in Section 2.5.3. This spatial pattern is consistent with a regulator

whose objective function involves minimization of enforcement costs, either pecuniary

or political (Amacher and Malik, 1996). The qualitative evidence presented by Becker

and Henderson (2000) on regulator-firm negotiations is also consistent with such an

explanation.

2.5.3 Treatment exogeneity

I cannot recover the causal effects of treatment unless it is exogenous to my plant-

level outcomes of interest. Concretely, I assume exogeneity of: 1) county-level attainment

status; and 2) distance to the nearest non-attainment monitor. As for the first assumption,

past literature has typically argued that county non-attainment is exogenous.10 Chay

and Greenstone (2003a); Chay and Greenstone (2003b); Chay and Greenstone (2005)

document that PM10 non-attainment counties do not differ systematically from attainment

counties on observable dimensions (including economic shocks), either in levels or

in changes. Appendix Table 2.15 shows that the emissions profiles of plants in PM

attainment and non-attainment counties are not statistically different in my data.

Non-attainment is plausibly exogenous if a given firm produces a small portion

of the ambient air pollution in a county. For the average plant in a non-attainment county,

this is a tenable assumption. Motor vehicles typically account for the majority of PM

pollution, especially in urban areas. The California Air Resources Board estimates that

74 percent of PM10 emissions come from non-point sources like road dust and from

residential fuel combustion (Auffhammer et al., 2011).

The spatial heterogeneity documented in Section 2.5.2, however, calls into ques-

tion the exogeneity of CAA regulation for treated plants (plants actually affected by

10Examples include Henderson (1996); Becker and Henderson (2000); Greenstone (2002); Auffhammer
et al. (2011); Walker (2011).
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regulation). CAA regulations primarily affect plants within two kilometers of a non-

attainment monitor. It might be that past emissions by a given plant were pivotal in

pushing its county above the CAA standard. If that were the case, CAA regulation would

be endogenous to past emissions by treated plants. For example, if a plant experienced

particularly strong demand for its output in a given year, it might have emitted more air

pollution than usual and pushed the nearby monitor above the CAA standard.

This potential problem provides additional motivation for my use of emissions

ratios, rather than emissions levels, in my analysis of cross-media substitution. If the

endogeneity of non-attainment with respect to past emissions stems from output shocks,

then treatment should remain exogenous to emissions ratios. It is still possible, however,

that a plant might push its county into non-attainment because of shocks to emissions

ratios. This form of endogeneity is perhaps less plausible, but impossible to exclude in

principle. For example, a plant’s scrubber might fail in a given year, increasing its ratio

of air to water emissions and pushing its county into non-attainment. The sign of the

bias in such a case would depend on the autocorrelation in the shocks to emissions ratios.

Endogenous past output could also bias my estimates of CAA treatment effects on the

level of air emissions. For example, if output shocks were negatively autocorrelated, my

estimates might overstate CAA treatment effects. If instead output shocks were positively

autocorrelated, it might understate them.

Figure 2.3 investigates the possibility of endogenous entry into treatment using an

event study framework (estimates from equation 2.5). I define a new time index τ relative

to treatment. A county receives a non-attainment designation in year τ =−1 and plants

within 2km of a non-attainment monitor enter treatment in the following year (τ = 0). If

the figure showed either higher air emissions or a lower ratio of other emissions to air

emissions at τ =−1, that would be evidence of endogenous entry into treatment. Instead

the figure shows the opposite pattern. Air emissions fall in the final pre-treatment year
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and the ratio of other emissions to air emissions increases. I attribute this pattern to two

sources: 1) by time τ =−1, firms have potentially known of their state’s implementation

plan (SIP) for several years and may have begun to respond; and 2) some provisions

of the SIP may take effect during year τ =−1, and some firms may be able to respond

within the year. Any such anticipatory behavior or rapid adjustment by firms will bias

the magnitudes of my estimates downward. Note however that for most plants I observe

long pre- and post-treatment periods. By estimating in levels with 18 years of data, I

largely mitigate potential biases from anticipatory behavior or rapid firm responses.

My second identifying assumption is exogeneity of distance to the nearest non-

attainment monitor. Violations of this assumption could spring from two sources: firm

location decisions and state monitor placement decisions. Given the relatively low cost

of new monitors, firms are unlikely to profit by strategically locating away from existing

monitors. The state monitor location decision warrants more discussion. States design

monitoring networks, which must follow EPA rules and which EPA must approve (CFR,

2015). EPA may also suggest changes to planned networks. Importantly in this setting,

the agency’s placement rules largely depend on population characteristics, not firm

characteristics. For example, EPA requires monitors in areas of high population density

(Bento et al., 2014) and near large sensitive populations (e.g. asthmatic children Raffuse

et al., 2007). Two types of monitoring sites raise potential endogeneity concerns: “Sites

located to determine the impact of significant sources or source categories on air quality”

and “Sites located to determine the highest concentrations expected to occur in the area

covered by the network” (CFR, 2015). Monitors placed under these two rules could be

correlated with unobservable time-varying characteristics of plants, as discussed below.

States are prohibited from putting monitors in locations that do not meet scientific criteria.

In most cases it is illegal for a state to move a monitor, and EPA allows relocation only if

the new site is better under its scientific criteria. Should a state fail to follow these rules,
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EPA may file suit against it (Chay and Greenstone, 2005).

Note that my identifying assumption is exogeneity of distance to the nearest

non-attainment monitor, not distance to the nearest monitor. The former is a weaker

assumption, particularly given the event-study evidence that the plants in my data are not

pivotal in putting their counties into non-attainment. Nonetheless, to investigate potential

endogeneity, I first regress the distance to the nearest non-attainment monitor on a set of

317 dummies for six-digit NAICS codes, omitting the constant term. Figure 2.4 displays

the probability density function of the coefficient estimates. While the distribution is

roughly normal around a mean of 11.7 kilometers, some coefficients are statistically

distinguishable from that mean in both the positive and negative directions. Industries in

the right tail show no clear pattern. They include, for example, beet sugar manufacturing,

prisons, and national defense. The R2 from the regression is .6, indicating that industry

explains a substantial fraction of the variation in distance to the nearest non-attainment

monitor. This suggests that plant fixed effects are necessary to my identification strategy,

but even with plant fixed effects the possibility of non-zero covariance between time-

varying plant unobservables and monitor distance remains. To evaluate this threat to

identification, I regress the distance to the nearest non-attainment monitor on a vector

of year dummies and the changes in log emissions into various media for untreated

plant-years (pre-treatment or farther than two kilometers from the nearest non-attainment

monitor). A negative coefficient is consistent with states strategically placing monitors

near faster-growing emissions sources. Table 2.4 shows that the estimates are positive in

five of eight cases and generally not statistically significant. Emissions growth rates in

untreated plant-years generally do not systematically predict distance from eventual non-

attainment monitors. The estimate for “onsite other” is negative and significant, however.

If states are placing monitors closer to plants with faster growth in their emissions to

waste piles, this will potentially bias my estimates for the “onsite other” channel. (For a
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version of this specification with emissions levels instead of growth rates, see Appendix

Table 2.18.)

2.6 Results

2.6.1 Air emissions

Table 2.6 presents my estimate of the CAA treatment effect on airborne particulate

emissions. Treated plants decrease their air emissions by 23 percent. This is larger than

the 11 to 14 percent effect on non-attainment monitors reported by Auffhammer et al.

(2011) because: 1) plant emissions become diluted as they mix with surrounding air;

and 2) the treated plants in my sample are not the only factor influencing ambient air

pollution. Column 2 adds state linear time trends. This reduces the magnitude of the

estimate modestly, from 23 to 19 percent, but it remains statistically significant at the

five percent level. These estimates reflect both output and substitution effects. If there is

substantial general-equilibrium leakage to untreated plants, my estimated effects on air

emissions will be biased upward in magnitude. I investigate this possibility in Section

2.7.1 and provide evidence this is not a substantial concern. Bento et al. (2014) show

these air quality improvements disproportionately benefit low-income people.

Column 3 presents the results from an event-study specification (equation 2.5),

where again the dependent variable is log air emissions. The time pattern suggests that

most of the emissions reductions occur when τ is 0 or 1. (For discussion of the pre-

treatment decline, see Section 2.5.2.) This helps motivate my use of fixed-effects models

in levels. Estimates based on changes in treatment status would be biased toward zero

because of the emissions decline at τ =−1. With a relatively long pre-treatment period,

however, a model in levels averages this pre-treatment decline with other untreated years,

mitigating the bias. At approximately -36 percent, the event-study estimates are close in
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magnitude to my primary result (-23 percent). Together these results demonstrate that

treated plants do indeed reduce airborne particulate emissions.

2.6.2 Cross-media substitution, all industries

Panel A in Table 2.7 shows estimated treatment effects from equation 2.6, by

medium across all industries. The dependent variable is a log emissions ratio, with

emissions into a given medium (indicated in the column heading) in the numerator, and

air emissions in the the denominator. Positive estimates are evidence of cross-media

substitution. There is evidence of statistically significant substitution toward onsite

water emissions
(

β̂ = .44
)

, offsite water emissions
(

β̂ = .26
)

, and recycling
(

β̂ = .41
)

.

(“Onsite other” emissions include waste piles, leaks, and spills.) The negative estimate

for onsite land emissions demonstrates that the ratio approach does not assume positive

elasticities of substitution.

Panel B in Table 2.7 adds state linear time trends. The estimates for onsite water(
β̂ = .49

)
, offsite water

(
β̂ = .26

)
, and recycling

(
β̂ = .45

)
are essentially unchanged

from my primary results in panel A. The EPA is aware of the potential for substitution

and in some cases has taken steps to mitigate it (Environmental Protection Agency,

2001). In particular, EPA is currently developing rules to restrict water emissions from

power plants (Environment News Service, 2013). The potential for pollution substitution

remains, however, in a wide variety of industries.

The large increase in recycling highlights the fact that not all substitution re-

sponses work against the intent of the CAA. The increased water emissions, however,

impose social costs. The magnitude of those costs is difficult to quantify, given the

relative scarcity of well-identified studies on the health and productivity effects of water

pollution. On a net basis, cross-media substitution need not reduce welfare. Suppose

a plant responds to non-attainment by reducing output and substituting toward water
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emissions. Gross water emissions may end up below their initial level. In such a case the

CAA may still improve welfare, but substitution attenuates the gains if water emissions

are mispriced, relative to a counterfactual world with an optimal policy.

2.6.3 Cross-media substitution, by industry

It is difficult to analyze substitution patterns at the industry level due to the

small number of treated plants: recall that not all plants in non-attainment counties are

treated. Moreover not all plants report emissions into all media. Nonetheless, to illustrate

the heterogeneity in substitution responses, Table 2.9 presents estimates for the three

industries with the largest treated sample sizes: primary metals, wood products, and

utilities. (Appendix Table 2.25 presents more disaggregated estimates at the 3-digit

NAICS level.) Estimates again come from equation 2.6. In the discussion that follows,

note that I cannot reject the null hypothesis of equal coefficients in most cases; the

evidence of heterogeneity is merely suggestive. Wood products and utilities show large

decreases in air emissions, 47 and 36 percent respectively, while primary metals show

only a 8 percent decrease. Similarly, wood products and utilities increase their ratios of

water to air emissions by 59 and 118 percent, while primary metals increase this ratio by

only 33 percent. The primary metals industry increases the use of waste piles (“onsite

other”) by more than 180 percent. Only utilities substantially increase their ratio of offsite

land disposal to air emissions, but the effect is very large at 174 percent. Both wood

products and utilities increase their ratio of recycling to air emissions by much more than

does the primary metals industry, again suggesting the former two industries are more

intensively regulated or have greater scope for substitution.
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2.6.4 Leakage

Intuition predicts that firms might respond to treatment of a plant in one county

by shifting output to a plant in another county. Table 2.11 provides evidence they do

so. Estimates correspond to equation 2.7. For the average plant in an attainment county,

treatment of another plant within the same firm and 6-digit NAICS code increases air

emissions by 17 percent. Column (2) adds state linear time trends and the estimate

is slightly smaller at 15.5 percent. Treating the number of other treated plants as a

continuous variable (column 3), estimated leakage is 12 percent per treated plant. With

the addition of state linear time trends in column 4, the estimate is again slightly smaller

at 11 percent, but remains statistically significant at the ten percent level. This leakage

has associated health, mortality, and productivity costs. As a robustness check I estimate

the same model, grouping plants by firm and 2-digit NAICS code, and report results in

Table 2.29. Estimates are modestly smaller than in my preferred specification, though

still positive and significant. This is reasonable, as the coarser classification groups

plants that may not be close substitutes for each other. I take the TRI parent company

identifiers as given. If they are defined at a level below the ultimate corporate parent,

my estimates will likely understate the true amount of leakage. Likewise, if there is

general-equilibrium leakage to plants owned by other firms in attainment counties, my

estimates will be biased downward (see Section 2.7.1).

The identifying assumptions for this model are modestly stronger than for my

model of cross-media substitution and warrant brief discussion. Limiting the sample to

attainment-county plants changes the interpretation of the estimates, but is not in itself

problematic, especially if attainment status is exogenous. Interpreting the estimates in

Table 2.11 as causal, however, also requires that the leakage plants do not differ from

other attainment-county plants in time-varying, unobservable ways. Appendix Table 2.16

shows that emissions profiles for leakage and non-leakage plants are not significantly
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different, which is reassuring but does not exclude the possibility of endogeneity.

The average treated plant in my data is the only treated plant within its firm,

and on average that firm includes approximately three plants that are candidates for

leakage-driven increases: they share the same six-digit NAICS code and are located

in attainment counties.11 Average air emissions at eventually treated plants prior to

treatment are 4394 pounds, while average baseline emissions at leakage candidates are

2318 pounds. The estimate from column one of Table 2.11 implies the following net

change in emissions from treating an average plant. The treated plant reduces emissions

by .23∗4394 = 1010 pounds. The three candidate plants together increase emissions by

3∗ .17∗2318 = 1182 pounds. On net, then, the average CAA plant treatment increases

firm-level particulate emissions by 1182− 1010 = 172 pounds. This result should be

interpreted with several important caveats in mind. First, the TRI data cover only large

plants, which may be more likely to belong to multi-plant firms and thus may have more

scope for within-firm leakage. Second, these estimates describe only TRI-reportable

particulate emissions. Third, leakage patterns might differ for other CAA-regulated

pollutants (e.g. SO2). Fourth, industrial sources account for approximately 25 percent

of particulate emissions in an average county (Auffhammer et al., 2011), so the implied

changes in ambient pollution are much smaller than the emissions changes I estimate at

the plant level.

Leakage reduces the welfare gains from CAA regulation, relative to a first-best

policy, because attainment-county emissions are unpriced (unregulated). This leakage

need not imply a net welfare loss, however. Leakage-driven emissions increases occur in

attainment counties, which by definition have lower ambient air pollution. In addition, the

average attainment county population is approximately 1/3 of the average non-attainment

11This is the average number of leakage candidates over all treated firms, including single-plant firms
that have zero leakage candidates by definition.
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county population.12 Particularly if the social damage function for air pollution is convex,

the net welfare effect from CAA treatment of the plants in my data may be positive.

Leakage does present a potential problem in using difference-in-differences designs to

evaluate the CAA, as it is a spillover from the treatment group (typically non-attainment

counties) to the control group (attainment counties). The spillovers identified in Table

2.11 imply that such analyses overstate CAA benefits in non-attainment counties and

fail to account for some of the costs in attainment counties. This provides additional

motivation for my use of an emissions ratio, rather than a level, in my analysis of

cross-media substitution.

2.7 Additional results, robustness & placebos

2.7.1 Air emissions

It is possible CAA regulation induces general-equilibrium leakage, with output

reallocated from treated plants to attainment-county plants not owned by the same

firm. If this is the case, my estimated effects on air emissions at treated plants will be

biased upward in magnitude. My estimated within-firm leakage effects will be biased

downward in magnitude. Under a CRS assumption, general-equilibrium effects will

not bias my estimates of cross-media substitution. It is impossible to test directly for

general-equilibrium leakage, since all plants are potentially affected by CAA regulation

through general-equilibrium mechanisms. One can however test indirectly for general-

equilibrium leakage by modeling the air emissions at untreated plants13 as a function

of the number of treated plants “nearby.” To that end I estimate equation 2.8 and report

results in Appendix Table 2.20. In the first specification, the estimated coefficient on the

12Author’s calculation from 2010 Census data.
13i.e. Attainment-county plants and plants farther than 2km from a non-attainment monitor in a non-

attainment county
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number of treated plants in the same state-year is negative, insignificant, and zero to two

decimal places. In the second, the estimated coefficient on the number of treated plants in

the same state, year, and six-digit NAICS code is .048 and significant at the ten percent

level. Together these estimates suggest that if general-equilibrium leakage is occurring, it

is relatively small in magnitude.

It is possible that intra-firm leakage causes my treatment model to overestimate

the air emissions reductions undertaken by treated plants. To evaluate this possibility, I

estimate a variant of my air emissions model (equation 2.4), controlling for spillovers as

in equation 2.7. Reported in Appendix Table 2.21, the estimates are unchanged.14

Appendix Table 2.22 presents results based on toxicity-weighted air emissions.

The treatment effect is larger in magnitude, at −.51, and significant at the five percent

level. I do not employ toxicity weights in my preferred specifications for the following

reasons: 1) toxicity weights for a given chemical can vary by three orders of magnitude,

depending on the method used (Hertwich et al., 1998); and 2) toxicity weights rely on

assumptions that some chemicals are not carcinogenic, but epidemiological evidence

suggests such assumptions may not hold (Hendryx et al., 2012).

Both Henderson (1996) and Becker and Henderson (2000) show that CAA non-

attainment influences plant entry and exit decisions, and this is a potential source of bias.

A Heckman correction would be inappropriate, as I do not have any variables that would

enter the selection equation but not the outcome equation. Instead I restrict the sample to

plants present throughout the study period and estimate treatment effects on air emissions

(see Appendix Table 2.23). While the estimates are no longer statistically significant due

to the much smaller sample, at −.26 and −.23 they are remarkably close to the results in

Table 2.6. This suggests selection does not meaningfully bias my main results.

14The potential bias in my main specification would come from the influence of the spillover plants on
the estimates for year dummies. The failure to control for spillovers has no practical import because only a
small number of plants are affected by spillovers. Identification of the year dummies comes primarily from
plants that do not receive spillovers.
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Lastly I estimate a specification where the dependent variable is the growth

rate of air emissions (the difference in logs), similar to the specifications employed by

Greenstone (2003) and Gamper-Rabindran (2009). Results are in Appendix Table 2.24.

The estimated treatment effect is −.03, roughly similar to the Greenstone and Gamper-

Rabindran results, and not statistically significant. This demonstrates the importance of

modeling air emissions in levels, rather than growth rates.

2.7.2 Cross-media substitution

Table 2.12 moves from a ratio specification based on equation 2.1 to a speci-

fication in levels. Only the recycling estimate remains statistically significant.15 The

estimated 24 percent increase in the level of water emissions, while not statistically

significant (p = .25), is practically important. It suggests that plants may be substantially

increasing water emissions in response to CAA regulation. If such is indeed the case,

the estimated elasticity of substitution from my preferred specification is an important

consideration for policy design.

To test whether spillovers influence my cross-media results, I estimate my leakage

model using an emissions ratio as the dependent variable and report results in Appendix

Table 2.26. Estimates are generally near zero and statistically insignificant, with one

exception: the estimate for “offsite other” is negative 66 percent. This spillover will tend

to bias my cross-media model toward finding evidence of substitution toward the “offsite

other” channel.

In addition, Appendix Table 2.27 shows estimates for toxicity-weighted emis-

sions ratios, indicating firms shift their most toxic emissions into on-site waste heaps

and recycling facilities. As discussed in Section 2.7.1, however, toxicity weights are

15This result indicates recycling is not a good output proxy, as firms typically face higher costs under
environmental regulation and therefore reduce output (Becker and Henderson, 2000).
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problematic in several respects. Finally, Appendix Table 2.28 presents results aggregated

across all non-air media, for specifications in both ratios and levels. The elasticity of

substitution from my preferred ratio specification is .27 and the estimate is significant at

the five percent level.

2.7.3 Placebos

Treatment should have no direct effect on plants that do not emit any air pollution,

and the results from Appendix Table 2.20 suggest that general-equilibrium treatment

effects are negligible. Table 2.13 tests this hypothesized null effect by estimating a variant

of equation 2.6 with two changes: 1) the dependent variable is log emissions into a given

medium (the lack of air emissions precludes a ratio); and 2) treatment is interacted with a

dummy indicating zero air emissions. If my model is well specified, it should find no

effect of CAA regulation on these plants. The estimates are indeed insignificant, with the

exception of the one for onsite land emissions. While the latter is statistically significant,

it is negative. If there were some omitted variable decreasing land emissions at plants

near non-attainment monitors, it would work against finding cross-media substitution (it

would bias my primary estimates downward).

Table 2.14 reports results from a placebo test of my leakage model. I construct

variables based on placebo “treated” plants: plants within the same firm and 6-digit

NAICS code that are located in non-attainment counties, but farther than eight kilometers

from the nearest non-attainment monitor. As these plants are not treated and general-

equilibrium effects are not apparent, one should not see increased air emissions by

attainment-county plants in the same firm and NAICS code. If my leakage model is

capturing, for example, changes in the geographic distribution of output that happen to be

correlated with treatment, this placebo test should return large positive estimates. Instead

the estimates in Table 2.14 are in the one to three percent range and are not statistically
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significant. This suggests that the leakage results in Table 2.11 do not spring from an

omitted variable problem.

2.8 Conclusion

While economists have long recognized the potential for substitution responses

to single-medium pollution regulation, empirical studies have found little evidence of

such effects. The paucity of available data and the difficulty of controlling for scale have

made firm responses hard to detect. Using specifications motivated by classical firm opti-

mization theory, this study provides evidence of regulation-induced pollution substitution

in response to the Clean Air Act. Estimates from EPA Toxic Release Inventory data show

that CAA-regulated plants increase their ratio of water to air emissions by 44 percent.

Particulate regulation of an average plant increases air emissions at unregulated plants

owned by the same firm by 17 percent. This results in a net emissions increase. Responses

of this magnitude plausibly have social costs and should be considered in policy design.

The welfare effects of such substitution present an interesting subject for future research.

Additionally, I document spatial heterogeneity in regulatory intensity, which suggests

that regulators seek to minimize costs (political or pecuniary) in implementing the CAA.

My ratio estimation approach could be used to recover other policy-relevant

substitution elasticities. Given current policy focus on carbon abatement, well-identified

estimates of the carbon-labor and carbon-capital substitution elasticities would be valu-

able. The PM elasticities estimated in this study might also helpfully inform the design

of future pollution control policy. A maximally efficient policy, with emissions into

every medium and location priced according to marginal damage, would be difficult to

achieve and might not be desirable for normative reasons. The primary goal of the Clean

Air Act is safeguarding human health (Environmental Protection Agency, 2011), not
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economic efficiency. Given any set of policy goals, however, it is easier to formulate

effective policy when policymakers have well-identified estimates that allow prediction

of firm responses. For example, my cross-media results suggest that restricting water

emissions or increasing water quality monitoring in CAA non-attainment counties might

be important for protecting public health. My estimates of within-firm leakage imply

that applying PM-style regulations to carbon emissions would be largely ineffective.

Legislators might also want to consider the regulator behavior implied by my spatial

heterogeneity result when designing future policy.

Such improvements in policy design would likely have economically significant

consequences. While environmental economics research initially focused on the mortality

effects of air pollution, especially for infants and the elderly, there is growing evidence

that air pollution has costly effects on healthy adults. Isen et al. (2014), for example, find

that in-utero and early childhood air pollution exposure depresses earnings for workers

ages 29-31. Zivin and Neidell (2012) find air pollution decreases worker productivity.

Given these large costs, the returns to improved pollution regulation may be large.
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2.9 Figures and tables

2.9.1 Figures
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Figure 2.1: Pollution changes, holding output fixed
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Figure 2.2: Residual air emissions by distance from nearest non-attainment monitor

Underlying residuals from equation 2.9, a panel model of log air emissions (lbs) with year dummies and plant fixed effects. The fitted
line represents a local linear regression run on residuals for plants in non-attainment counties. Shaded area is the 95% confidence
interval.
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Figure 2.3: Event study estimates

Estimates from equation 2.5, also reported in column 3 of Table 2.6. Dependent variable is log air emissions (lbs).
Reference category is years for which τ <−3. A county enters non-attainment in year tau=-1 and plants within 2km of
a non-attainment monitor enter treatment in the following year (tau=0). Dependent variable is log air emissions. SEs
clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.
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Figure 2.4: PDF of NAICS6 coefficients

Probability distribution function of estimates from a regression of distance to nearest non-attainment
monitor on year dummies and 317 dummies for six-digit NAICS codes. Regression does not include a
constant. R2 = .6. Industries in the right tail show no clear pattern. They include, for example, beet sugar
manufacturing, prisons, and national defense.
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2.9.2 Tables

Table 2.1: Particulate abatement strategies

Name Category Description Variable Costs Secondary wastes

Output reduction - - - -

Reduce exhaust temp./pressure - Lower reaction temperature generates fewer particulates Efficiency loss -

Fuel switching - Switch to washed coal, oil, or natural gas Added fuel cost Coal slurry (offsite)

Process modification - e.g. Changing furnace type or cooling system - -

Flue gas conditioning Pretreatment Chemistry/temp./moisture modified to aid collection Absorbant, electricity Sulfates

Precollection Pretreatment Collectors use gravity/intertia to gather particles Electricity Solid waste

Electrostatic precipitation End-of-pipe Field charges particles, collected by electrode Electricity, water Liquid/solid waste

Fabric filters End-of-pipe Tightly woven fabric and dust layer trap particles Electricity, filters Solid waste

Wet scrubbers End-of-pipe Liquid (often sprayed) traps particles Electricity, water Liquid/solid waste

Incineration End-of-pipe Emissions burned at 300-2000oF, sometimes catalyzed Fuel, catalyst CO2, N2, H2O

Ventilation Fugitive control e.g. Vacuum hoods, building enclosue Electricity Solid waste

Road paving Fugitive control - Maintainance -

Water spraying Fugitive control Wet down sources of fugitive emissions, e.g. coal piles Water Coal slurry

Sources: Department of Energy (2014); EC/R Incorporated (1998); Environmental Protection Agency (Undated); Farnsworth
(2011); Vatavuk et al. (2000). Variable costs range from 33 to 100 percent of capital cost for most “end-of-pipe” abatement tech-
nologies. Incineration is typically used only for waste streams containing both PM and VOCs.

Table 2.2: Top ten industries, by TRI-reportable emissions

Rank NAICS code Industry

1 221112 Fossil electric power

2 325188 Inorganic chemicals

3 212231 Pb & Zn mining

4 212234 Cu & Ni mining

5 212221 Au mining

6 331111 Iron & steel

7 325199 Organic chemicals

8 322121 Paper

9 562211 Hazardous waste

10 324110 Petroleum Refining
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Table 2.3: Aggregated TRI emissions categories

Aggregated category Included TRI components

Onsite air Fugitive air, stack air

Onsite water Onsite water

Onsite land Landfills, impoundment ponds, underground wells

Onsite other Waste piles, leaks, spills

Offsite water Public/private water treatment

Offsite land Landfills, impoundment ponds, underground wells

Offsite other Residual emissions, waste brokers, incinerators and storage facilities

Recycled or treated Recycled, recovered, treated

Table 2.4: Monitor distance and emissions growth rates

(1) (2) (3) (4) (5) (6) (7) (8)

Distance Distance Distance Distance Distance Distance Distance Distance

D.Onsite air 0.185

(0.131)

D.Onsite water 0.0303

(0.219)

D.Onsite land 0.296

(1.022)

D.Onsite other -1.284∗∗

(0.575)

D.Offsite water -0.0165

(0.0800)

D.Offsite land 0.0742

(0.0855)

D.Offsite other 0.123

(0.0852)

D.Recycled or treated -0.0146

(0.0794)

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7824 1384 391 288 2578 2619 1899 3836

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates from a regression of distance to the nearest non-attainment monitor (in km) on changes
in log emissions. Sample is untreated plant-years. SEs clustered at the county level, which is the
level of exogenous variation. Observation counts differ across columns because not all plants report
emissions into all media. “Onsite other” emissions include waste piles, leaks, and spills.
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Table 2.6: Effect on air emissions

(1) (2) (3)

Onsite air Onsite air Onsite air

Treated -0.225∗∗ -0.192∗∗

(0.0968) (0.0964)

Tau=-3 -0.174

(0.141)

Tau=-2 -0.0778

(0.116)

Tau=-1 -0.208

(0.138)

Tau=0 (1st treated year) -0.348∗∗

(0.158)

Tau=1 -0.454∗∗

(0.182)

Tau=2 -0.350∗

(0.183)

Tau>=3 -0.384∗∗

(0.153)

State linear trends No Yes No

Year dummies Yes Yes Yes

Plant FEs Yes Yes Yes

Observations 97621 97621 97621

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates in columns 1-2 correspond to equation 2.4, while estimates in column 3 correspond to
equation 2.5. Dependent variable is log air emissions (lbs). SEs clustered at the county level, which
is the level of exogenous variation. Unit of observation is a plant-year.
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Table 2.7: Effect on emissions ratios

Panel A: Main specification

Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled or treated

Treated 0.436∗∗ -0.363 0.889 0.257∗ 0.101 0.271 0.412∗∗∗

(0.186) (0.309) (0.562) (0.152) (0.146) (0.282) (0.128)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 24458 12088 5233 28260 40286 24026 49007

Panel B: State linear trends

Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled or treated

Treated 0.487∗∗∗ -0.380 1.141 0.259∗ 0.176 0.261 0.447∗∗∗

(0.179) (0.345) (0.767) (0.141) (0.149) (0.275) (0.139)

State linear trends Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 24458 12088 5233 28260 40286 24026 49007

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.6. Dependent variable is log emissions ratio (lbs), with the numerator indicated atop the
column and the denominator air emissions in all columns. Specification includes year dummies and plant fixed effects. SEs
clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year. Observation
counts differ across columns because not all plants report emissions into all media. “Onsite other” emissions include waste
piles, leaks, and spills.

Table 2.9: Effect on emissions ratios, by 2-digit NAICS code

Onsite air Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled or treated

Primary metals -0.0776 0.334 -0.560 1.880∗∗∗ 0.340∗ -0.0649 0.245 0.219

(0.129) (0.232) (0.408) (0.384) (0.183) (0.179) (0.386) (0.147)

Observations 51678 11228 2090 1545 20900 22943 14202 36568

Wood products -0.470∗∗∗ 0.585 0.0615 0.203 0.157 0.302 0.983∗∗

(0.158) (0.358) (0.234) (0.248) (0.267) (0.392) (0.411)

Observations 33612 8668 5447 1531 5906 12851 7003 9538

Utilities -0.356 1.180 -0.998 -0.159 1.742∗ 2.036 11.10∗∗∗

(0.438) (0.890) (1.139) (0.591) (0.975) (1.445) (0.287)

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5399 3207 3317 838 368 2445 1451 1188

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Includes the three 2-digit NAICS industries with the largest treated sample sizes. Column 1 (onsite air) corresponds to
equation 2.4, remaining columns to equation 2.6. Dependent variable is log air emissions (lbs) in column 1, otherwise log
emissions ratio (lbs), with the numerator indicated atop the column and the denominator air emissions in all columns. All
specifications include year dummies and plant fixed effects. SEs clustered at the county level, which is the level of exogenous
variation. Unit of observation is a plant-year. Observation counts differ across columns because not all plants report emissions
into all media. “Onsite other” emissions include waste piles, leaks, and spills.
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Table 2.11: Leakage effect, within firm & 6-digit NAICS code

(1) (2) (3) (4)

Onsite air Onsite air Onsite air Onsite air

1+ other treated plants 0.169∗∗ 0.155∗∗

(0.0718) (0.0700)

Count other treated 0.120∗∗ 0.107∗

(0.0594) (0.0579)

State linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Multiplant dummy Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes

Observations 90688 90688 90688 90688

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.7, where “other treated plant” is a treated plant within the same firm and 6-
digit NAICS code. Dependent variable is log air emissions (lbs). Specification includes year dummies and plant
fixed effects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is
a plant-year. Sample restricted to plants in attainment counties. Parent firm identifiers come from TRI data.
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Table 2.12: Effect on emissions levels

Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled or treated

Treated 0.234 -0.367 0.485 0.0619 -0.0900 0.174 0.184∗

(0.202) (0.277) (0.493) (0.135) (0.163) (0.242) (0.0954)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 24458 12088 5233 28260 40286 24026 49007

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Dependent variable is log emissions (lbs), with the medium indicated atop the column. All specifications include year dummies and
plant fixed effects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.
Observation counts differ across columns because not all plants report emissions into all media. “Onsite other” emissions include
waste piles, leaks, and spills.

Table 2.13: Placebo effect on emissions levels

Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled or treated

Treated*no air emissions -0.647 -0.761∗∗∗ 0.171 0.243 0.0984 -0.774 -0.127

(0.454) (0.0474) (0.139) (0.376) (0.294) (0.581) (0.162)

Treated*air emissions 0.273 0.620 0.877∗∗∗ -0.0544 0.0724 0.144 0.172∗

(0.192) (0.666) (0.323) (0.185) (0.154) (0.200) (0.0899)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 34544 16393 7307 51753 69004 39451 85433

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.6, but with 2 changes: 1) the dependent variable is log emissions in pounds (not a ratio); and 2)
estimates for “Treated*no air emissions” report the effect of placebo treatment (being near a non-attainment monitor) on plants with
no air emissions, which should not be affected by the CAA. Estimates for “Treated*air emissions” are for actually treated plants;
they are not placebos. The medium is indicated atop the column. All specifications include year dummies and plant fixed effects.
SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year. Observation counts
differ across columns because not all plants report emissions into all media.
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Table 2.14: Placebo leakage effect, within firm & 6-digit NAICS code

(1) (2) (3) (4)

Onsite air Onsite air Onsite air Onsite air

1+ other placebo plants 0.0293 0.0245

(0.0443) (0.0446)

Count placebo plants 0.0142 0.0115

(0.0234) (0.0239)

State linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Multiplant dummy Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes

Observations 99580 99580 99580 99580

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.7, but using variables based on placebo treated plants: plants within the
same firm and 6-digit NAICS code, located in non-attainment counties, but farther than 8km from the nearest
non-attainment monitor. Dependent variable is log air emissions (lbs). Specification includes year dummies
and plant fixed effects. SEs clustered at the county level, which is the level of exogenous variation. Unit of
observation is a plant-year. Sample restricted to plants in attainment counties. Parent firm identifiers come from
TRI data.
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2.10 Supplementary material

2.10.1 Alternative theoretical models

Modeling the CAA as a quantity restriction

Suppose two pollution inputs: A ~ air emissions, W ~ water emissions. Treat

the CAA as an exogenous quantity restriction A on air emissions. The object of policy

interest is unconditional factor demand W ∗, incorporating firms’ possible output response

to regulation. Suppose a CES production function, so the firm problem becomes:

max
A,W

po (cAAρ + cWW ρ)
1/ρ− pAA− pWW +λ

[
A−A

]
Taking FOCs, one obtains an optimality condition:

(
cW

cA

)(
W ∗ρ−1

A∗ρ−1

)
=

pW

pA +λ

If the constraint does not bind prior to CAA non-attainment, the shadow price λ

is zero. Taking logs gives ratio of unconditional factor demands:

ln
(

W ∗

A∗

)
=

1
1−ρ

ln
(

cW

cA

)
+

1
1−ρ

ln
(

pA +0
pW

)
(2.10)

Treat CAA non-attainment as a decrease in A such that it binds. This changes

the value of λ from zero to an unknown positive number. The optimality condition then

becomes:

ln
(

W ∗

A

)
=

1
1−ρ

ln
(

cW

cA

)
+

1
1−ρ

ln
(

pA +λ

pW

)
(2.11)

If ρ is finite and ρ ≤ 1, then the coefficient on the last term is positive. The

positive shadow price λ causes an increase in the last term. Theory then predicts an
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increase in the ratio of water to air pollution W ∗

A
. This prediction is the same as the one

from the model treating CAA non-attainment as a relative price change. The difference is

that under this model, a regression that fails to control for output will not produce biased

estimates if A is truly exogenous. Rearranging equation 2.11 yields:

ln(W ∗) =
1

1−ρ
ln
(

cW

cA

)
+

1
1−ρ

ln
(

pA +λ

pW

)
+ ln

(
A
)

(2.12)

If regulators consider plant characteristics when deciding on the constraint A, however,

the potential for bias in a non-ratio specification returns.

Three production inputs

Suppose a nested CES production function, including a third input L. As in

Fullerton and Karney (2014), this input may be regarded as labor or as a composite of

non-pollution inputs like labor, land and capital. The firm problem then becomes:

max
A,W,L

pOc2

{
cP

[
c1 (cAAρ + cWW ρ)

1/ρ

]θ

+ cLLθ

}1/θ

− pAA− pwW

The constants c1, c2, cA, cW , cP and cL reflect a firm’s technology. Taking first order

conditions on A and W , then dividing, yields:

pO

pO

c2

c2

{·}1/θ−1

{·}1/θ−1
cP

cP

[·]θ−1

[·]θ−1
c1

c1

(·)1/ρ−1

(·)1/ρ−1
cW

cA

W ∗ρ−1

A∗ρ−1 =
pW

pA

This produces the same optimality condition derived in Section 2.3.

(
cW

cA

)(
W ∗ρ−1

A∗ρ−1

)
=

pW

pA
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Intuitively, this is because the firm substitutes over the air-labor and water-labor input

pairs in the same way, so changes in the third factor do not affect the ratio of A and

W . Under this functional form assumption, the omission of other inputs from my

ratio regression specifications will not prevent inference of properties of the parameter

σ = 1
1−ρ

. Nested CES is not the only functional form with this property, but it illustrates

the character of the required assumptions in a three-input case.

Now let us consider a three-input case where production is not nested CES,

but remains CRS. My estimates can no longer be interpreted as the Hicks elasticity σ.

Instead they will capture the Morishima elasticity of substitution with respect to price pA

(Blackorby and Russell, 1989):

MAW (Y, pA, pW ) = εWA− εAA

where εWA and εAA are cross- and own-price elasticities of factor demand. (While this

is the natural generalization of the Hicks elasticity, its asymmetry makes it different in

one important respect: the elasticity MAW is informative for changes in pAbut not for

changes in pW .) Unlike the sign of σ, the sign of MAW is ambiguous because the sign of

εWA is unknown when there are three or more inputs. If in fact production is non-CES

in three or more inputs, my estimates allow the possibility of a negative Morishima

elasticity. Note that adding controls for the levels of additional inputs (beyond A and W )

would force the tradeoff back into the A−W plane. As Blackorby and Russell (1989)

argue, this measure of curvature is interesting but substantially less informative than

the Morishima elasticity. In this case the omission of other inputs from the right hand

side of my regression equations does not create confounding problems, but rather allows

recovery of the Morishima elasticity. The identifying assumption is not that the change

in pA has no effect on other inputs, but rather that only pA changes and other prices
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remain constant. If the plants under study are price takers in factor markets and CAA

non-attainment does not produce general-equilibrium effects on other factor prices, then

this assumption likely holds.

2.10.2 Additional tables

Descriptive tables

Table 2.15: TRI PM descriptive statistics, by attainment status

Attainment counties Nonattainment counties

Mean Stdev Mean Stdev

Onsite air 6757.32 498535.05 1927.42 39160.96

Onsite water 1032.32 13219.98 465.88 9128.17

Onsite land 62328.93 1328520.39 55508.89 687992.66

Offsite other 53327.01 2576281.40 74478.75 1847581.34

Offsite water 476.49 24594.32 1104.67 49007.71

Offsite land 15236.25 155807.26 21324.12 178990.85

Offsite other 5360.06 75463.33 5673.53 78149.45

Recycled or treated 88889.85 740562.92 99512.66 965368.21

Dist. to nonattain monitor (km) 0.00 0.00 11.78 12.27

Treated 0.00 0.02 0.09 0.29

Observations 99580 20529

Emissions measured in pounds. Unit of observation is a plant-year.
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Table 2.16: TRI PM descriptive statistics, by leakage dummy

Other plants Leakage plants

Mean Stdev Mean Stdev

Onsite air 7542.00 532524.13 1370.39 5731.27

Onsite water 1127.86 13903.57 582.96 11175.12

Onsite land 65172.75 1357515.96 12245.54 119960.86

Offsite other 51794.02 2440025.55 70.45 1783.87

Offsite water 523.38 26249.00 363.11 5354.29

Offsite land 15724.30 152502.16 27039.82 308992.27

Offsite other 5626.86 78133.06 8745.91 93685.60

Recycled or treated 95116.95 783390.88 100342.31 446333.85

Observations 87263 3425

Emissions measured in pounds. Unit of observation is a plant-year. “Other plants” are plants in attainment
counties that have no treated plants within the same firm-year. “Leakage plants” are plants in attainment
counties that have at least one treated plant within the same firm-year.

Table 2.17: Historical CAA particulate standards

Final rule Type Averaging time Standard (g/m3) Form

1987 PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period

Annual 50 Annual arithmetic mean, averaged over 3 years

1997 PM2.5 24hr 65 98th percentile, averaged over 3 years

Annual 15 Annual arithmetic mean, averaged over 3 years

PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period

Annual 50 Annual arithmetic mean, averaged over 3 years

2006 PM2.5 24hr 35 98th percentile, averaged over 3 years

Annual 15 Annual arithmetic mean, averaged over 3 years

PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period

Adapted from http://www.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html. Accessed March 19, 2014.
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Monitor distance

Table 2.18: Monitor distance and emissions levels

Distance Distance Distance Distance Distance Distance Distance Distance

Onsite air 0.0180

(0.0867)

Onsite water 0.204

(0.201)

Onsite land 1.088∗∗∗

(0.383)

Onsite other 0.310

(0.386)

Offsite water -0.278∗∗∗

(0.0773)

Offsite land 0.0584

(0.0798)

Offsite other -0.152∗

(0.0889)

Recycled or treated -0.124

(0.0874)

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 8227 1519 451 349 2843 2988 2297 4308

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates from a regression of distance to the nearest non-attainment monitor (in km) on log emissions.
Sample is untreated plant-years. SEs clustered at the county level, which is the level of exogenous vari-
ation. Observation counts differ across columns because not all plants report emissions into all media.
“Onsite other” emissions include waste piles, leaks, and spills.
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Table 2.20: General-equilibrium spillover test

(1) (2)
Onsite air Onsite air

Num. treated plants (state) -0.00140
(0.00148)

Num. treated plants (state and NAICS6) 0.0481∗

(0.0269)

Year dummies Yes Yes

Plant FEs Yes Yes
Observations 96529 96529
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Estimate corresponds to equation 2.8. Dependent variable is log air emissions (lbs). SEs clustered
at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.
Sample restricted to plants in attainment counties. “Num. treated plants (state)” is the number of
treated plants in a given state-year. “Num. treated plants (state and NAICS6)” is the number of
treated plants in a given state, year, and six-digit NAICS code.
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Air emissions

Table 2.21: Effect on air emissions, intrafirm spillover controls

(1) (2)

Onsite air Onsite air

Treated -0.243∗∗ -0.206∗∗

(0.0987) (0.0977)

Spillover controls Yes Yes

State linear trends No Yes

Year dummies Yes Yes

Plant FEs Yes Yes

Observations 102039 102039

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates in columns 1-2 correspond to equation 2.4, while estimates in column 3 correspond
to equation 2.5, but with the inclusion of spillover controls from equation 2.7: a multiplant firm
dummy and the interaction of that dummy with the number of treated plants within the same firm.
Dependent variable is log air emissions (lbs). SEs clustered at the county level, which is the level
of exogenous variation. Unit of observation is a plant-year.
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Table 2.22: Effect on toxicity-weighted air emissions

(1) (2)

Onsite air Onsite air

Treated -0.515∗∗ -0.413∗

(0.240) (0.236)

State linear trends No Yes

Year dummies Yes Yes

Plant FEs Yes Yes

Observations 62119 62119

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates in columns 1-2 correspond to equation 2.4, while estimates in column 3 correspond to
equation 2.5. Dependent variable is log toxicity-weighted air emissions (unitless). SEs clustered
at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.
EPA inhalation toxicity weights applied to air emissions.
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Table 2.23: Effect on air emissions, plants open 1993-2010

(1) (2)

Onsite air Onsite air

Treated -0.259 -0.228

(0.158) (0.164)

State linear trends No Yes

Year dummies Yes Yes

Plant FEs Yes Yes

Observations 21864 21864

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.4. Dependent variable is log air emissions (lbs). SEs clustered
at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.
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Table 2.24: Effect on air emissions, difference specification

(1) (2)

D.Onsite air D.Onsite air

Treated -0.0341 -0.0329

(0.0370) (0.0383)

State linear trends No Yes

Year dummies Yes Yes

Plant FEs Yes Yes

Observations 93443 93443

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.4, but with the dependent variable replaced by the year-on-year
difference in logs (the growth rate). This specification parallels those used by Greenstone (2003)
and Gamper-Rabindran (2009). SEs clustered at the county level, which is the level of exogenous
variation. Unit of observation is a plant-year.
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Cross-media substitution

Table 2.25: Effect on emissions ratios, by 3-digit NAICS code

Onsite air Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled

Primary metals 0.116 0.193 0.194 2.052∗∗ -0.211 -0.0477 0.114 0.0358

(0.179) (0.282) (0.848) (0.854) (0.454) (0.274) (0.431) (0.267)

Chemicals -0.347∗ -0.102 4.030 2.826∗∗∗ 0.0284 0.0294 0.146 1.324∗∗

(0.196) (0.268) (3.790) (0.629) (0.227) (0.292) (0.458) (0.631)

Fabricated metals -0.246 0.467 0.338 0.436 -0.444 0.270

(0.335) (0.634) (0.309) (0.400) (0.410) (0.257)

Nonmetallic mineral products -0.677∗ 1.939∗∗∗ 4.552∗∗∗ 1.034∗∗ 0.611 -0.0928

(0.350) (0.488) (0.246) (0.449) (0.656) (0.229)

Transportation equipment -0.891∗∗ 1.977 -0.493 0.647∗ -0.114 2.767∗∗ 0.948

(0.369) (1.972) (0.805) (0.333) (0.543) (1.405) (0.800)

Petroleum and coal -1.173∗∗ 2.506∗∗∗ 6.434∗∗ 1.396∗∗ -2.001 0.501

(0.539) (0.483) (3.079) (0.599) (1.905) (0.765)

Utilities -0.606 0.875 -0.999 -0.132 2.193∗∗ 2.061 11.16∗∗∗

(0.443) (0.853) (1.139) (0.590) (1.076) (1.448) (0.289)

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes Yes

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Includes the seven 3-digit NAICS industries with the largest treated sample sizes. Column 1 (onsite air) corresponds to
equation 2.4, remaining columns to equation 2.6. Dependent variable is log air emissions (lbs) in column 1, otherwise log
emissions ratio (lbs), with the numerator indicated atop the column and the denominator air emissions in all columns. All
specifications include year dummies and plant fixed effects. SEs clustered at the county level, which is the level of exogenous
variation. Unit of observation is a plant-year. Observation counts differ across columns because not all plants report emissions
into all media. “Onsite other” emissions include waste piles, leaks, and spills.

Table 2.26: Intra-firm leakage effect on emissions ratios, within firm & 6-digit NAICS
code

Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled or treated

1+ other treated plants -0.0357 -0.0543 -0.0778 0.0877 0.295∗ -0.655∗∗∗ 0.00585

(0.195) (0.213) (0.261) (0.163) (0.159) (0.243) (0.143)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 23174 11729 4872 25634 37787 21502 45138

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.7, where “other treated plant” is a treated plant within the same firm and 6-digit NAICS
code, but dependent variable is log emissions ratio (lbs). Numerator indicated atop column and denominator is air emissions
in all columns. Specification includes year dummies and plant fixed effects. SEs clustered at the county level, which is the
level of exogenous variation. Unit of observation is a plant-year. Observation counts differ across columns because not all
plants report emissions into all media. “Onsite other” emissions include waste piles, leaks, and spills. Sample restricted to
plants in attainment counties. Parent firm identifiers come from TRI data.
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Table 2.27: Effect on toxicity-weighted emissions ratios

Panel A: Main specification

Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled or treated

Treated 0.151 0.0613 2.075∗∗∗ 0.174 0.174 -0.00606 0.797∗∗

(0.239) (0.181) (0.305) (0.451) (0.353) (0.813) (0.368)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 10668 3792 1967 15739 20928 10950 32862

Panel B: State linear trends

Onsite water Onsite land Onsite other Offsite water Offsite land Offsite other Recycled or treated

Treated 0.150 -0.0102 2.142∗∗∗ 0.215 0.236 -0.144 0.728∗∗

(0.284) (0.187) (0.371) (0.406) (0.333) (0.832) (0.367)

State linear trends Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes

Observations 10668 3792 1967 15739 20928 10950 32862

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.6. Dependent variable is log toxicity-weighted emissions ratio (unitless), with the
numerator indicated atop the column and the denominator air emissions in all columns. Specification includes year
dummies and plant fixed effects. SEs clustered at the county level, which is the level of exogenous variation. Unit of
observation is a plant-year. Observation counts differ across columns because not all plants report emissions into all
media. “Onsite other” emissions include waste piles, leaks, and spills. EPA inhalation toxicity weights applied to air
emissions and ingestion weights applied to all other emissions.
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Table 2.28: Aggregate effect on emissions ratios

(1) (2) (3) (4)

Other media Other media Other media Other media

Treated 0.271∗∗ 0.284∗∗ 0.144 0.108

(0.121) (0.121) (0.122) (0.131)

Log air emissions 0.217∗∗∗

(0.0105)

State linear trends No Yes No No

Year dummies Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes

Observations 83218 83218 83218 83218

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.6. In columns 1-2, dependent variable is log emissions ratio
(lbs), with the numerator aggregate emissions into all non-air media and the denominator air emis-
sions. In columns 3-4 dependent variable is log emissions into all non-air media. All specifications
include year dummies and plant fixed effects. SEs clustered at the county level, which is the level
of exogenous variation. Unit of observation is a plant-year.
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Leakage

Table 2.29: Leakage effect, within firm & 2-digit NAICS code

(1) (2) (3) (4)

Onsite air Onsite air Onsite air Onsite air

1+ other treated plants 0.118∗∗ 0.104∗∗

(0.0477) (0.0463)

Count other treated 0.0644∗ 0.0540

(0.0375) (0.0364)

State linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Multiplant dummy Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes

Observations 90688 90688 90688 90688

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.7, where “other treated plant” is a treated plant within the same firm and 2-
digit NAICS code. Dependent variable is log air emissions (lbs). Specification includes year dummies and plant
fixed effects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is
a plant-year. Sample restricted to plants in attainment counties. Parent firm identifiers come from TRI data.
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Table 2.30: Leakage effect, continuous firm size controls

(1) (2) (3) (4)

Onsite air Onsite air Onsite air Onsite air

1+ other treated plants 0.171∗∗ 0.156∗∗

(0.0714) (0.0714)

Count other treated 0.121∗∗ 0.108∗

(0.0592) (0.0593)

Plants in firm Yes Yes No No

Plants in firm and NAICS No No Yes Yes

Year dummies Yes Yes Yes Yes

Multiplant dummy Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes

Observations 90688 90688 90688 90688

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 2.7, where “other treated plant” is a treated plant within the same firm and
6-digit NAICS code. “Plants in firm” is a count of all plants in a given firm-year. “Plants in firm and NAICS”
is a count of plants within firm-year and 6-digit NAICS code. Dependent variable is log air emissions (lbs).
Specification includes year dummies and plant fixed effects. SEs clustered at the county level, which is the level
of exogenous variation. Unit of observation is a plant-year. Sample restricted to plants in attainment counties.
Parent firm identifiers come from TRI data.



Chapter 3

Time Use and Productivity: The Wage

Returns to Sleep

Abstract

While economists have long been interested in effects of health and human capital

on productivity, less attention has been paid to the influence of time use. We investigate

the productivity effects of the single largest use of time—sleep. Because sleep influences

performance on memory and focus intensive tasks, it plausibly affects economic outcomes.

We identify the effect of sleep on wages by exploiting the relationship between sunset

time and sleep duration. Using a large, nationally representative set of time use diaries

from the United States, we provide the first causal estimates of the impact of sleep on

wages. A one-hour increase in seasonal weekly sleep increases a worker’s wage by

1%. At the location level, a one-hour increase in long-run weekly mean sleep increases

mean wage by 4.5%. Our results highlight the economic importance of sleep and pose

potentially fruitful questions about the effects of time use on labor market outcomes.

114
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3.1 Introduction

Economists have long been interested in determinants of productivity. Under-

standing what makes workers more effective is a fundamental question in economics,

important for both individual decisions and public policy. While there are traditions of

research in human capital (Becker, 1962; Becker, 1964) and health (Grossman, 1972),

less attention as been paid to the influence of time use on worker productivity. Many

types of time use, from reading to vacationing, plausibly impact productivity on the job.

In this study we focus on the time a worker spends sleeping, potentially one of the most

important influences on human performance.

Evidence from medical research points to the vital role sleep plays in determining

productivity. Tired doctors make more mistakes (Ulmer et al., 2009). Tired students

perform worse on tests (Taras and Potts-Datema, 2005). Poor sleep raises total mortality

rates (Cappuccio et al., 2010). These results suggest that inadequate sleep lowers pro-

ductivity, impedes the development of human capital, and imposes large direct costs on

society. Moreover for the average individual, sleep takes up more time than any other

activity. Despite the manifest importance of sleep, economists have largely treated it as

a biological phenomenon outside their purview. We investigate an important question

that has been overlooked almost entirely in economics: what are the effects of sleep on

wages?

Answering this question poses formidable challenges. First, a pioneering study

by Biddle and Hamermesh (1990) shows that higher wages raise the opportunity cost

of sleep time, leading individuals to decrease their sleep. This result demonstrates that

causal relationships between sleep and wages could run in both directions. Additionally,

sleep may be correlated with unobservable worker characteristics, like ability, that

also influence wages. Finally, because sleep is a large portion of the time budget and
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complementary to almost all human activity, it is extremely difficult to isolate exogenous

variation in sleep.

Motivated by medical research on circadian rhythm, we resolve this endogeneity

using changes in sleep induced by differences in sunset time. Earlier sunset causes

workers to begin sleeping earlier. Because work and school start times do not respond

to solar cues (Hamermesh et al., 2008), this earlier bed time translates into more sleep.

We exploit this mechanism to identify the wage effects of both short and long-run sleep

changes. First, we use seasonal variation in sunset time within a location to identify

the wage effect of short-run sleep changes: earlier sunset in winter induces longer sleep

duration. Second, we use long-run variation in average sunset time across locations,

created by time zones, to identify the wage effects of long-run sleep changes. Such timing

differences stem from US time zone boundaries drawn in 1883, which stem in turn from

the historical accident that placed the Prime Meridian through Greenwich, England. For

two locations at the same latitude and in the same time zone, the location farther east will

experience sunset sooner than the location farther west. Residents of the eastern location

will go to bed earlier and sleep longer on average.

To implement our empirical strategy, we geocode observations from the American

Time Use Survey (ATUS), at the county or CBSA level where possible and at the state

level otherwise. ATUS provides rich labor market information about individuals, a wealth

of control variables, and detailed time use data from daily diaries. Using the diary date

and location, we assign each observation a diary-date sunset time and an annual average

sunset time. We then use these sunset time instruments to estimate the short and long-run

causal effects of sleep on wages.

Our results show that a one-hour increase in average weekly sleep, on a seasonal

time scale, increases a worker’s wage by 1%. At the location level, a one-hour increase

in long-run weekly average sleep increases average wage by 4.5%. Both estimates
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reflect exogenous sleep changes for all workers in a location, so they potentially include

productivity spillovers across workers. In addition, our long-run estimate may include

general-equilibrium effects induced by exogenously higher worker productivity. These

are, to our knowledge, the first causal estimates of how sleep affects wages.1

Our long-run identification strategy naturally raises concerns that workers might

sort on sunset time or on its correlates. As part of our large set of robustness checks, we

demonstrate that our long-run wage effects are offset by increased home prices, removing

the incentive to sort. In addition, we conduct a variety of tests for worker sorting and find

no evidence for it.

Our study demonstrates that sleep is not just an economic curiosity, but rather a

vital determinant of productivity. A one-hour increase in a location’s weekly mean sleep

raises wages by roughly half as much as a one-year increase in education (Psacharopoulos

and Patrinos, 2004). These results point to the large impact that non-labor market activities

can have on labor market performance. They suggest governments and schools must

account for the productivity impacts of sleep to design optimal scheduling and time-use

policies. By examining the largest use of human time, our study contributes to the

time-use literature following Becker (1965). We also contribute to the growing literature

on how environmental forces influence worker productivity (Zivin and Neidell, 2012) and

to the broader productivity literature on factors like information technology (Bloom et al.,

2012) and workplace practices (Black and Lynch, 2001). Future work should extend these

results to compare them to non-time intensive changes in leisure or lifestyle attributes.

The rest of the paper proceeds as follows. Section 3.2 presents a time use model

with sleep as a choice variable, illustrating challenges associated with identifying the

effect of sleep on wages, and discusses related literature. Section 3.3 presents the

1Biddle and Hamermesh (1990) includes a regression with wages on the left-hand side and sleep on the
right and finds a negative relationship. This is consistent with reverse causality and highlights the difficulty
of isolating quasi-experimental variation in sleep.
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estimating equations and discusses our identification strategy. Section 3.4 describes the

data used in the study. Section 3.5 reports and discusses our short-run results, provides

robustness checks, and discusses extensions to the main results, while Section 3.6 does

the same for our long-run results. Section 3.7 concludes.

3.2 Identifying the effect of sleep on productivity and

wages

3.2.1 Previous research

Existing studies of the relationship between sleep and wages in economics are few

and are largely concerned with addressing the question of whether sleep should be treated

as a choice variable rather than simply a biological necessity. Biddle and Hamermesh

(1990) is the first paper to provide empirical evidence on this issue and remains one

of the only empirical investigations of labor market impacts of sleep. The authors lay

out a model with agents optimizing over sleep, work, and leisure time in an otherwise

standard setting. While their theoretical model allows sleep to affect productivity, Biddle

and Hamermesh do not focus on this relationship in their empirical work. Instead they

emphasize the causal mechanism operating in the opposite direction, modeling sleep as a

function of instrumented wage (see Biddle and Hamermesh (1990) Table 6). Brochu et al.

(2012) and Szalontai (2006) also estimate the impact of changes in wage on sleep using

more recent data from Canada and South Africa. Finally, Bonke (2012) has examined

the impact of two chronotypes—whether the individual is a “morning” or “evening”

person—on income. This study provides evidence on the related question of whether

sleep quality impacts labor market outcomes.

Daylight savings time (DST) has been used in a variety of settings in economics
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as a proxy for sleep changes. (See for example Smith (2014).) However, the short-term

nature of any sleep change induced by DST limits its use in studying slow-moving

outcomes like wages. Moreover, examination of ATUS data shows that the relationship

between DST and sleep is complex. Transition into DST reduces sleep by 40 minutes

on the day of the change, but transition out of DST is not associated with a noticeable

change in sleep time (Barnes and Wagner, 2009).

Medical studies concerned with the effect of long term differences in sleep on

health or mortality2 are closest to our study in terms of time horizon. A series of

papers starting with Mckenna et al. (2007) have used laboratory tasks to examine the

impact of short-term sleep loss on a variety of outcomes that provide insight into how

sleep could impact work performance. Van Dongen et al. (2003) conducted the longest

laboratory-controlled study on the effect of sleep levels on cognitive performance. The

researchers kept subjects in the lab for two weeks, placing them into groups receiving

4, 6, and 8 hours of sleep. The subjects were given daily tests of attention, memory,

and cognition. The research found that the groups subjected to 4 and 6 hours of sleep

performed progressively worse on all three tests, relative to the 8-hour group. Intriguingly,

the subjects’ subjective assessments followed a different pattern, declining for a few days

and then leveling off. Observed cumulative effects quickly achieved large magnitudes:

after one week, subjects in the 6-hour group performed as badly as subjects who were

deprived of sleep entirely for one night. This indicates that small sleep reductions over

long periods of time can have very large effects. Van Dongen et al. (2003) provides one

of the most compelling pieces of evidence for the negative productivity effects of reduced

sleep. Appendix Table 3.12 expresses the results of Van Dongen et al. (2003) and similar

medium-term causal studies as elasticities. These studies all manipulated sleep duration

by relatively modest amounts, from one to four hours per night, over periods of one to

2For instance Cappuccio et al. (2010) and Krueger and Friedman (2009).
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three weeks. In almost every case they find very large effects. The typical elasticity of

task performance with respect to sleep duration is approximately four.

3.2.2 A productive sleep model

The following analytical model, adapted from Biddle and Hamermesh (1990),

illustrates the trade-offs between consumption, leisure, and sleep when sleep affects

wages. It also demonstrates the reverse causality from wages to sleep that creates one

of the main identification challenges and clarifies how we think about our instrument.

Consider a consumer optimizing over sleep time TS and a composite leisure good Z,

which requires inputs of both time Tz and goods X such that Tz = bZ and X = aZ. The

good X trades at the exogenous price P. The consumer has non-labor income I and time

endowment T ∗. Denote work time Tw. Let an individual’s market wage wm depend on

sleep as follows: wm = w1 + f (TS), with w1 > 0, f ′ (TS)> 0, and f ′′ (TS)< 0.

Note that this theoretical model could easily be adapted to study other non-work

time uses, but the function linking wage to time use would likely be different. We assume

that a function of sleep, αTS, enters the utility function, where α is the relative utility

enjoyed by the individual per hour of sleep.3 The parameter α provides a convenient

link between our analytical model and our instrumental variables estimation strategy, as

discussed below. The worker optimizes over sleep and composite leisure, subject to time

and income constraints, as follows.

max
Z,TS,λ

U (Z,αTS)+λ(I +(w1 + f (TS))(T ∗−TS−bZ)−aPZ)

Combining first-order conditions yields a two by two system of equations that implicitly

3Our predictions are qualitatively unchanged if we assume that sleep does not enter the utility function
directly, but rather as an input to the production of the composite leisure good Z as in HEREHERE.
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describe the worker’s optimal choice.

U1wm−U1 f ′ (TS)Tw−αU2 (aP+bwm) = 0

and

I +(w1 + f (TS))(T ∗−TS−bZ)−aPZ = 0

Applying the implicit function theorem, we can evaluate several interesting

derivatives. First, consider the effect of an exogenous wage increase on sleep time.

∂TS

∂w1
= (aP+bwm)(U1−αU2b)D−1 +Tw

∂TS

∂I

In the previous expression, D−1 < 0 equals the negative of the Jacobian. This is a

variant of the usual Slutsky equation. The first term captures the substitution effect,

which differs from the typical form in that it includes −αU2b. When α = 1 the value

(U1−αU2b) > 0 and the first term is negative. Increased wages raise the opportunity

cost of sleep, decreasing optimal sleep. This means that a naïve regression of wages on

sleep will not recover causal effects.

To motivate our later use of an instrument for sleep, consider the effects of an

exogenous increase in α. Since α controls the relative attractiveness of sleep, an increase

in the parameter will induce agents to want to consume more sleep.

∂TS

∂α
=U2 (aP+bwm)

2 (−D)−1 > 0

The effect on leisure can operate in either direction.

∂Tz

∂α
= bU2 (aP+bwm)

(
f ′ (TS−wm)Tw

)
(−D)−1 ≶ 0
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The ambiguous sign comes from the expression ( f ′ (TS−wm)Tw), which is the oppor-

tunity cost of an additional leisure hour. More specifically, this expression is the gross

opportunity cost of an additional leisure hour, −wm, adjusted for the additional income

generated by increased sleep, f ′ (TS)Tw (recall that TS increases in response to an increase

in α). Individuals with low wages (low w1), or a combination of high work hours and

low sleep hours, will tend to decrease leisure time in response to decreased α. This is

because the income effect dominates the substitution effect and income is a complement

of leisure time. For low-wage workers, the substitution effect is small. For high-work,

low-sleep workers, the income effect is large; they are in the steep portion of the sleep-

wage function and any change in wage applies to many hours. We test these theoretical

predictions in Section 3.6.4.

3.3 Empirical strategy

3.3.1 Estimating equations

Our goal is to estimate an equation of the form

wageit = f (TS,it)+ εit

where we expect ∂ f/∂TS > 0, at least for low TS. Given the reverse causality between

wages and sleep, however, we might erroneously find ∂ f/∂TS < 0.4 To avoid this problem

and to account for the wide variety of other omitted variables that might co-vary with

sleep and wages, we predict sleep using one of two instruments based on local sunset

4The general form is given in the model above, but we can also illustrate the issue with a simple two
equation system that will prove useful below. Let the sleep-wage relationship be given by

w = αTS + ε

TS = βw+ν
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time, then use the instrumented values of sleep to estimate wage impacts.

To estimate short-run seasonal effects, we employ sunset time on the ATUS diary

date as our instrument.

TS,i jt = αsunset jt + γ j +x′itδ1 +νi jt

ln(wagei jτ) = βTS,i jt + γ j +x′itδ2 + εi jτ (3.1)

In the above equations TS,i jt is nighttime sleep for individual i in location j on date t,

sunset jt is the sunset time on that date in that location, γ j is a location fixed effect, xit is a

vector of controls, and wageiτ is a measure of wages or earnings at time τ. We distinguish

between the time subscripts on wages, τ, and sleep, t, to highlight the fact that we treat

sleep on date t as a consistent estimate of average sleep at time τ.5 Our wage measure is

the answer to a question about “usual weekly earnings” rather than wages on the day of

the interview, so τ may be thought of as indexing the wage-setting period. We provide

more discussion of the interpretation of this estimator in the presence of slow-moving

wages, measurement error, and seasonality below. Only if some realized wages adjust

seasonally or intra-seasonally do we expect a positive estimate of β. Controls include:

race indicators; age; age squared; a full-time indicator; a gender indicator; indicators for

holiday, day of week, and year; and detailed occupation code indicators.

To investigate long-run effects, we employ annual average sunset time as our

where ε and ν are random error terms, E[εν] = 0, E[TSε] = 0, and E[wν] = 0. Then if β < 0 as is argued
by the previous literature, the bias from OLS estimation can be signed as follows:

α̂ = α+β
E[εw]
E[T 2

S ]︸ ︷︷ ︸
<0

So α̂ < α. Naive OLS will tend to understate the effect of sleep on wages if this is the dominant source of
bias.

5We also treat a worker’s observable characteristics on date t as consistent estimates of observables at
time τ. Since many such characteristics are fixed or vary extremely slowly (for example race, occupation,
and education), we believe this assumption is benign.
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instrument. Because this instrument does not vary across individuals within a location,

we collapse the ATUS data to the location level. This highlights the long-run, group-

level nature of our exogenous variation and maximizes first-stage power. Following

the recommendation in Solon et al. (2013), we weight location-level observations using

counts of the underlying individual ATUS observations to correct for heteroskedasticity.

(Appendix Table 3.16 provides evidence of heteroskedasticity from a modified Breusch-

Pagan test and Appendix Table 3.17 presents unweighted results.)

TS, j = αsunset j +x′jδ1 +ν j

ln(wage j) = βTS, j +x′jδ2 + ε j (3.2)

In the above equations TS, j is average nighttime sleep in location j, sunset j is the average

sunset time in that location, x j is a vector of controls, and wage j is average wage in that

location. Controls include: coastal distance, a 10-piece linear spline in latitude; share

full time; median age; race shares; occupation shares; and a 5-piece linear spline in

population density.

The ideal experiment aimed at our question would exogenously vary short- or

long-run sleep at the individual level, then estimate the relationship between wages and

average sleep over the wage-setting period. Our study departs from this ideal in one

important respect: our instrument exogenously varies sleep at the location level, not the

individual level. This is important for the interpretation of our estimates, as discussed in

Section 3.6.

3.3.2 Local sunset time instruments

We would like to estimate the relationship between sleep and wages, but, as

discussed above, sleep is plainly endogenous. To isolate exogenous variation in sleep,
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we instrument for sleep using two measures of local sunset time: sunset time on the

day of the ATUS interview (short-run, seasonal variation) and average sunset time in a

location (long-run variation). Instrument relevance flows from the same source in both

cases. Human sleep patterns and circadian rhythm are synchronized with the rising and

setting of the sun through a process known as entrainment. Roenneberg et al. (2007)

show that “the human circadian clock is predominantly entrained by sun time rather

than by social time.” The authors demonstrate that earlier sunset induces workers to

begin sleep earlier. The detailed ATUS files enable us reproduce this result: workers

experiencing earlier sunset go to bed earlier and this causal connection between sunset

and bedtime persists even if the worker goes to bed well after dark. In a vacuum, an

earlier sunset time would cause workers to go to bed earlier and rise later, so it would not

affect sleep duration. But workers face morning coordination constraints due to work

and school scheduling (Hamermesh et al., 2008), so earlier sunset and earlier bedtime

increase sleep duration. (We verify that sunrise time does not predict sleep duration in

ATUS below.) The arguments for validity are different for the two instruments and we

discuss them separately below.

Seasonal variation

Figure 3.1 shows sunset times across the continental United States on the summer

solstice (Panel 3.1a), the vernal equinox (Panel 3.2), and the winter solstice (Panel 3.1b)

in 2012. Darker reds indicate later sunset times. Sunset time differences at the equinox

are equivalent to long-run average differences. On average, locations farther west have

later sunset times than locations farther east within each time zone. The exact difference,

however, changes seasonally, with locations farther north experiencing later sunset during

the summer and the reverse in the winter. This variation in the angle of the sunset gradient

is caused by changes in solar declination, or the angle of the sun relative to the equator.
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For more discussion of solar mechanics, see Section 3.8.2.

(a) Summer solstice, Jun 20 (b) Winter solstice, Dec 21

Figure 3.1: Seasonal sunset time

Each map shows sunset time for the continental United States in 2012. Panel (a) is for the summer solstice and Panel
(b) is for the winter solstice. Sunset times are indicated by color according to the scale under each figure. Darker red
indicates later sunset, lighter red indicates earlier. The time zone boundaries are given by bold black lines.

In our models of seasonal effects, validity requires that other wage determinants

not co-vary with sunset time within a location. While many wage determinants potentially

exhibit seasonal patterns, there is no reason a priori to assume those seasonal patterns

match the seasonal pattern in sunset time. Helpfully for our strategy, seasonality in sunset

time is different at different latitudes, with northern locations exhibiting much higher

variance in daily sunset (earlier in winter, later in summer) compared to southern locations.

This allows us to disentangle seasonal variation in sunset from seasonal variation tied to

the calendar, for example the December shopping season. Potentially important omitted

variables remain, however. We test the robustness of our estimates to additional controls,

including weather and finer time dummies, in Section sec:seas-robustn-checks. There is

one potential confounder we cannot address. Seasonal variation in sunset time is almost

perfectly correlated with seasonal variation in daylight duration. Note, however, that our

sleep model predicts higher wages in winter, when sleep is high and daylight duration is

low. If low daylight duration leads to poor mood and reduced productivity, this will bias
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our specifications against finding wage effects from sleep.

Long-run variation

Figure 3.2 illustrates the source of our long-run variation in average sunset time

across locations. As the sun sets, eastern locations grow dark earlier than western

locations. On average, residents in more easterly locations go to bed earlier and sleep

longer. The maximum difference in sunset time within a US time zone is approximately

one hour.

Figure 3.2: Vernal equinox, Mar 20

Map shows sunset time at the vernal equinox for the continental United States in 2012. Darker red indicates later
sunset, lighter red indicates earlier. The time zone boundaries are given by bold black lines.

The difference in average sunset time between two locations over the year is

plausibly orthogonal to other factors influencing the labor market, making average sunset

time a valid instrument. In particular, time zone boundaries break the link between

average sunset time and longitude. On average sunset time is, by construction, orthogonal

to latitude, however controlling for latitude accounts for the North-South wage gradient

in the US. All locations on earth experience the same average daylight duration over the

year, so this is not a problematic omitted variable.

The design of US time zones derived primarily from scientific, rather than com-

mercial, considerations. Railroads implemented the first US time zones, called Standard
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Railroad Time (SRT), on November 18, 1883. They replaced a patchwork of railroad

time standards and were quickly adopted by the US government and Western Union

(Allen, 1883; Anonymous, 1883). While railroads were the first adopters, the primary

impetus for standard time and the zone plan itself came from scientists concerned with

problems like simultaneous observation of the aurora borealis at different points across

the US (Bartky, 1989). The width of a zone, 15 degrees of longitude, was chosen to

correspond with a one-hour difference in solar time (LOC, 2010). Ultimately, US time

zones derive from the speed at which the earth rotates and the historical accident that

drew the Prime Meridian through Greenwich, England: King Charles II chose Greenwich

as the site for the Royal Observatory in 1675.

Endogenous modifications to time zone borders could have undermined this initial

randomization. Indeed, state and local governments may petition the Department of

Transportation to switch time zones, which has resulted in a long-run westward movement

of boundaries (USNO, 2014). This movement means that the precise location of the

boundary is endogenous and research designs based on comparing nearby communities

on opposite sides of the boundary might be biased. Note, however, that the westward

movement of boundaries is the opposite of what we expect if counties are choosing

their time zone based on sleep-driven productivity considerations. Switching from being

on the eastern side of a time zone to the western side (which is what has happened to

shift the time zone boundaries) moves the county from getting the “best” average sunset

treatment to getting the “worst” in terms of sleep duration. Moreover, our design does

not depend on the exact location of the boundary, but on the relative longitudes of cities

across a time zone; the distance between the easternmost city in our data and the border

is common to all observations in the time zone and does not contribute to our coefficients

of interest. (In Table 3.7 we show our results are robust to the exclusion of all counties

on time zone borders.) To avoid potential endogeneity, we drop locations that do not
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observe daylight saving time. Finally, while time zone borders often coincide with state

borders, they frequently do not, and twelve of the lower 48 US states span multiple time

zones (Hamermesh et al., 2008).

Current or past worker sorting on sunset time would also threaten the validity of

our average sunset time instrument. We provide empirical evidence against such sorting

in Section 3.8.5. Furthermore, visual inspection of Figure 3.1 makes a sorting story

difficult to credit. There is no intuitive similarity across locations with the same average

local sunset time. Central Kentucky is not obviously like Eastern Colorado, nor is San

Francisco like the Ozarks. To test for contemporary worker sorting, we regress county

demographics on our average sunset instrument in Appendix Table 3.18. We do find

a significant relationship between average sunset time and population density, which

motivates our use of a flexible control for this variable. Estimated coefficients for other

variables are generally small and not statistically significant. We also investigate the

possibility of sorting responses to the 1883 institution of time zones in Section 3.8.5.

Firms might also sort on average sunset time, but simple firm optimization theory

suggests that firms do not have strong incentives to do so. If a firm pays its workers

their marginal product, managers may not care whether that marginal product is slightly

higher or lower. Nonetheless this sorting is a theoretical possibility, and we test for it

by regressing total wage bill in a county on sunset time and find no effect. In contrast,

per-capita wage bill is influenced by sunset time, as shown in Table 3.9.

Other possible channels for failure of our exclusion restriction are discussed

below, and for issues that are amenable to empirical investigation, results are shown in

Section 3.6.3. First, if sunrise and sunset shift the timing of activities within a day, this

could conceivably influence productivity in ways that are hard to anticipate. In part, this

motivates the use of our instrument, which induces changes in sleep small enough to be

unlikely to trigger schedule changes but large enough to identify effects. Hamermesh
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et al., 2008 show that, conditional on hours worked, sunrise and sunset do not alter

within-day work schedules.

Second, introspection suggests that average sunset time might have direct effects

on mood and thus productivity. This is substantially more difficult to argue given locations

do not differ in average daylight duration. Even if average sunset is correlated with mood,

this could be the result of changes in sleep duration (Minkel et al., 2011). We would have

to believe that conditional on daylight duration and sleep time, average sunset still has

direct effects on mood, perhaps through an interaction with schedule. For example, if a

worker anticipates eating dinner in darkness, perhaps she is sad and less productive all

day. If this were true, it would create downward bias in our estimates: workers closer

to the eastern edge of a time zone would be sad (reducing productivity) and sleep more

(boosting productivity). There are numerous such possible narratives and we cannot sign

the potential net bias.

3.3.3 Wage setting and measurement error

Even in the case where we correctly identify exogeneous changes in short-run

sleep using our seasonal instrument, there is an additional identification issue inherent in

studying wages rather than productivity: timing mismatch between observations of sleep

and wages combined with a potentially low frequency relationship between wages and

productivity mean that our seasonal estimate will necessarily be biased. For the survey

day, we observe that day’s sleep and the income reported by the individual, but if sleep

is productive and earnings are a function of productivity, then the wage we observe is

actually based on past sleep, not the contemporaneous sleep that we see. Luckily, using

seasonal sunset to predict sleep in the first stage of Equation (3.1) provides us, under

an assumption about the function that relates productivity to earnings, with a functional

form for the relationship between observed sleep and earnings-relevant sleep. In the
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Appendix, we exploit this relationship to get exact bounds on the expected bias.

This bias is present in any seasonal estimate, but can be relatively benign. Con-

sider, for instance, a piece-rate worker paid each day. Our observation of this worker’s

earnings could be based on yesterday’s earnings and therefore sleep the previous night.

We observe tonight’s sleep, however, so the timing of our sleep observation is off by

one night. Since the seasonal component of sleep is highly autocorrelated, the error in

our estimate will be slight because we are using almost the right variable. In general,

however, earnings change more slowly, and the degree of bias in the seasonal estimate

can be large.

To calculate the bias, note that the equation for the seasonal component of sunset

time is a known expression and therefore induces, in the first stage, a known function

for the seasonal variation in sleep. This functional form is a sinosoidal pattern with

wavelength equal to one year. In the Appendix we show that if earnings are a linear

function of average productivity, then the estimated seasonal coefficient has an asymptotic

bias that depends only on the distribution of D, the frequency of earnings changes in the

popultaion, and a known trigonometric function. In particular

β̂

β
= ∑

D
D−2

D

∑
k=1

D−1

∑
j=0

cos(k+ j)Pr(D) (3.3)

where β̂ is the estimate from the second stage of Equation (3.1).

Barattieri et al. (2010, Figures 12 and 13) provide estimates of the density function

for D, allowing us to calculate this expression. The authors provide two sets of estimates:

one based on raw, reported earnings and another based on earnings that have been cleaned

to remove measurement error. The raw series corresponds to the earnings variable that

we use for our headline estimates. For a given individual, these earnings can vary over

time due to contractual wage changes, changes in real take-home pay unrelated to wage
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(like overtime or commision), and measurement error. Using this measure, Equation

(3.3) is 0.25, indicating that our estimate is one-quarter the size of the true coefficient.

Ideally, we would like to calculate the distribution of D using only contractual

wage changes and other changes in take-home income caused by productivity changes,

but due to the presence of measurement error, we view 0.25 as a lower bound on the

attenuation of our estimate, with one important caveat. Since Barattieri et al. (2010)

provide estimates of earnings changes only at 4 month intervals, this bound could

overstate attenuation because it will under-weight changes that occur in less than 4

months (D ≤ 120). From Figure 3.7, one can see that underweighting these high-

frequency changes will substantially increase the bias.

Using the cleaned series from Barattieri et al. (2010), Equation (3.12) is -0.006,

indicating that our estimate would be fully attenuated. The cleaned series removes

measurement error but also likely removes real take-home pay changes, which would

raise the frequency of earnings changes. Thus, we view this as a upper bound on the

degree of attenuation. In conclusion, we expect, a priori that our seasonal should either

be 0 or no more than one-quarter of the long-run estimate, which does not suffer from

this source of bias.

3.4 Data

The most recent and largest data set from the United States containing both sleep

time and wage information is the American Time Use Survey (ATUS), which asks a

subset of Current Population Survey (CPS) participants to fill out a time use diary for one

day. ATUS began in 2003 and the most recent data are for 2013. For this study, we use

the sample of individuals age 18 or older who report receiving positive weekly wages

from a primary or secondary job. Summary statistics for variables of interest are given in
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Table 3.1 along with a comparison between early and late sunset time areas. The table

shows values for all individuals who report earning a weekly wage. (We discuss data

processing in more detail in the appendix.)

Table 3.1: ATUS Summary Statistics

Early Sunset Late Sunset Difference
Variable Mean/(SD) Mean/(SD) (SE) Obs.
Weekly earnings ($) 856.7 848.3 8.4* 76,062

(633.6) (623.1) (4.6)
Hourly wage ($) 15.7 15.5 0.18* 43,927

(9.6) (9.3) (0.09)
Sleep (min/week) 3516.0 3463.5 52.6*** 76,062

(889.0) (861.1) (6.3)
Sunset time (24 hr) 17.6 20.1 -2.5*** 76,062

(0.7) (0.5) (0.005)
Work (min/week) 1739.0 1734.6 4.4 76,062

(1814.1) (1817.7) (13.2)
Female (0/1) 0.53 0.53 0.005 76,062

(0.50) (0.50) (0.004)
Age (years) 42.3 42.22 0.03 76,062

(12.5) (12.6) (0.09)
Race, white (0/1) 0.82 0.82 -0.0007 76,062

(0.39) (0.38) (0.0028)
Race, black (0/1) 0.13 0.13 -0.0002 76,062

(0.33) (0.33) (0.0024)
Weekend (0/1) 0.51 0.51 0.004 76,062

(0.50) (0.50) (0.004)
HS or less (0/1) 0.33 0.33 -0.008** 76,062

(0.47) (0.47) (0.003)
Some college 0.29 0.30 -0.002 76,062

(0.46) (0.46) (0.003)
College 0.24 0.236 0.003 76,062

(0.43) (0.42) (0.003)
Number of children 0.96 0.96 0.004 76,062

(1.12) (1.12) (0.008)
Ever married (0/1) 0.76 0.76 -0.001 76,062

(0.43) (0.43) (0.003)
Summary statistics for two sub-samples from ATUS are shown. Early sunset is defined as having a sunset
time earlier than the median, and late sunset time is later than the median. Significance is determined from
a t-test on the difference between means. Total observations are given in the far right column. The early
and late sunset time groups are samples with half of these observations each.

Aside from giving basic information on the sample, Table 3.1 also provides
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initial evidence in support of our main results. One can see that early sunset locations

have significantly higher wages and sleep duration than areas with later sunset times.

(Dividing the data in this way conflates seasonal and long-run variation in sunset time.)

In contrast, other individual characteristics are well balanced across the two groups. Out

of 11 other tests, only one difference is significant—the fraction of the population with

a high school degree or less. This difference works in the direction of explaining the

difference in wages in the two groups, but other (insignificant) differences work in the

opposite direction. Results controlling for these characteristics are reported in Sections

3.5.1, 3.5.2, 3.6.1, and 3.6.2.

To assign locations to individuals in ATUS, we began by merging the ATUS data

with the corresponding CPS data (the match rate was 100%). For a given individual, the

CPS data often contain location at the county level. This variable is censored for indi-

viduals living in counties with fewer than 100,000 residents. When county is available,

we assign the county centroid as an individual’s location. We have county location for

approximately 44% of ATUS observations. For an additional 28% of observations, we

observe location at the level of Census CBSA, a small group of counties in the same

metropolitan area. For the remaining 28% of observations, ATUS contains location at

the state level. We assign the 2010 population-weighted state centroid (computed by

the Census) as the location for these individuals. In all cases where we refer to Federal

Information Processing Standards (FIPS) codes, we are referring to either the county-

(FIPS 6-4) or CBSA-level code, if available, or the state level code (FIPS 5-2) where

more detailed location data is unavailable.

Nighttime sleep is our primary sleep measure. We remove any sleep that starts

and ends during daylight hours on the date of diary entry. This will exclude naps, which

might be an adaptation strategy for some short sleepers. Importantly, it also removes

night-shift workers, for whom the sunset instrument should not be relevant. ATUS gathers
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data on all sleep during the course of a single 24 hour period for each individual, so

there are potentially other ways to calculate naps, and our results are robust to alternative

definitions.

Our primary wage measure is “usual weekly earnings” as reported in ATUS.

This variable is defined for all respondents who have positive labor income and are

not self-employed. It is top-coded above $2,884.61. We also estimate a version of our

model including only workers who receive an hourly wage, “hourly earnings at main job”

as reported in ATUS. This variable is likewise top-coded at the level such that hourly

earnings multiplied by usual weekly hours equals $2,884.61. Some control variables

(e.g. occupation codes) appear in both ATUS and CPS files, with very minor differences

across the two versions. Where possible we use ATUS variables. Some variables (e.g.

race) are available only in the CPS. Our preferred regression specifications include a

set of 22 occupation dummies or shares based on the ATUS “trdtocc1” variable, which

categorizes the respondent’s main job. Examples include “education, training, and library

occupations” and “food preparation and serving related occupations.”

The main shortcoming of ATUS is that it asks a new cross section of individuals

for time use diaries each year, so we cannot construct an individual-level panel. As

the summary statistics make clear, however, it offers a rich set of covariates including

education, gender, race, and household characteristics. For a more detailed description

of ATUS, see Hamermesh et al. (2005). Importantly, ATUS also releases the exact date

that the survey was conducted. Using this date and respondent location, we are able to

determine sunset time for each individual in the dataset using solar mechanics algorithms

from Meeus (1991). We compute annual average sunset time by computing sunset for

each day in an individual’s location, then calculating the mean over days of the year.

The Quarterly Census of Employment and Wages (QCEW), collected by the US

Bureau of Labor Statistics, includes information on wages and employment (workers,
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not hours) at the county level. We construct a panel in counties, 1990-2013, in order to

investigate the reduced-form effects of our long-run instrument. Appendix Table 3.13

presents summary statistics.

3.5 Short-run results: the effect of sleep on wages

This section examines whether a marginal increase in weekly average sleep will,

over a seasonal time horizon, change hourly wage. Here, we present results from ATUS

on this question. Estimation methodology is described in Section 3.3.1.

3.5.1 Primary short-run results

Table 3.2: Short-run effects

First stage Reduced form 2SLS OLS
Sleep ln(earnings) ln(earnings) ln(earnings)

Seasonal sunset time -24.0*** -0.0039**
(2.28) (0.0017)

Sleep 0.00016** -0.000028***
(0.000074) (0.0000026)

Individual controls Yes Yes Yes Yes
Time controls Yes Yes Yes Yes
Occupation Yes Yes Yes Yes
FIPS FEs Yes Yes Yes Yes
Observations 76062 76062 76062 76062
F-stat on IV 118.66
Elasticity 0.60

The table shows results from estimating Equation (3.1). The first three columns show the first stage, reduced form, and two-
stage least squares estimates. The fourth column reports the uninstrumented version of the second stage of Equation (3.1).
The dependent variable is indicated at the top of each column. Earnings refers to “usual weekly earnings”. Sleep is measured
in minutes per week and sunset time in hours. Controls include: location fixed effects; race dummies; age; age squared; a
full-time dummy; a gender dummy; dummies for holiday, day of week, and year; and occupation dummies. Standard errors,
clustered at the FIPS code (location) level, are reported in parentheses. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1.

Table 3.2 presents the estimated effect of short-run sleep changes on wages,
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instrumenting for sleep on the ATUS diary date using the local sunset time on that date.

Column 1 reports the first-stage estimates. Consistent with the dicusssion in Section

3.3.2, a one-hour increase in local sunset time causes an individual to sleep about 24

minutes less per week. The raw covariance between sleep and wage (Column 4) is

slightly negative, as we would expect given strong reverse causality. Using the sunset

time instrument, however, the estimated coefficient of .00016 log points per minute

of weekly average sleep is positive and significant. For comparison with our long-run

estimates, we can multiply this estimate by 60 and obtain .0096. A one-hour increase

in weekly average sleep over a seasonal time horizon increases wages by just under one

percent. Because we include location fixed effects as controls, this specification does not

use any of the long-run variation in sunset time to identify our effect of interest.

We cluster standard errors at the FIPS code level (county, CBSA, or state) to

reflect that the exogenous variation is at the group rather than the individual level. Note

that clustering at higher levels does not change the inference. We have clustered up to the

state level without any appreciable difference in standard errors. The first-stage F statistic

of 109.9 well exceeds the relevant Stock-Yogo critical value of 16.38, so we reject the

null hypothesis of weak instruments, where “weak” is defined as true size greater than

10% for a nominal 5% test (Stock and Yogo, 2002). This reassures us that the results of

our t-tests are reasonable.

Expressed as an elasticity, our IV estimate is .6. This magnitude is consistent with

the experimental evidence summarized in Table 3.12. Medical researchers have typically

found elasticities of task performance with respect to sleep duration of approximately four.

If wages are equal to a worker’s marginal physical product multiplied by output price,

we expect such performance effects to produce equally large wage effects. The smaller

magnitude of our estimate, relative to the medical literature, may reflect differences

between laboratory tasks and actual work tasks or the broader scope for adaptation (e.g.
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stimulant use) outside the lab. Many workers’ wages do not vary over a seasonal time

horizon and such workers will also decrease the magnitude of our estimate (relative to a

case with perfectly flexible wages).

Unaided intuition might suggest smaller effects of sleep on performance, but

intuition provides a poor sense of this relationship: Van Dongen et al. (2003) showed

that subjects’ self-reported fatigue quickly stabilized after a few days of sleep reduction,

even as their performance continued to decline. Van Dongen et al. (2003) also found

that several days of two–hour sleep reductions reduced performance by as much as a

night of complete sleep deprivation. Based on this study, the experience of attempting to

work after a completely sleepless night likely provides a better sense of the performance

effects from reducing short-run weekly sleep by one hour per night.

Several nuances bearing on the interpretation of our estimate warrant discussion.

First, our instrument affects all workers in a location identically, which changes the

interpretation of our results if there are productivity spillovers across workers. While

we do not know if sleep generates such spillovers, Moretti (2004) finds evidence that

human capital does. In such a case our estimated β captures not the effect of increasing

individual sleep, but rather the effect of increasing sleep for all workers in a location.

Second, managers might set wages based on average productivity in a location rather

than individual worker productivity. Under this assumption, an increase in sleep by an

individual would have no effect on her wage, as it would not appreciably change average

productivity. In a case like this, our estimate captures the effect of increased sleep by

all workers on average productivity, rather than an individual-level effect. Finally, it is

possible our instrument influences both sleep duration and sleep quality. This is true,

however, of any exogenous variation in sleep, even in a laboratory setting. In such a case

our estimates are still consistent for the effect of an exogenous sleep change, but the

interpretation changes slightly.
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3.5.2 Short-run robustness checks

We test the sensitivity of our short-run results to a wide variety of robustness

checks, including varying controls for worker and location characteristics, and varying

controls for seasonal trends. These checks generally indicate that the results are robust to

a broad set of specifications.

Table 3.3 demonstrates that while different control sets yield different precision,

they have very little influence on the point estimate. Controlling for a quadratic in usual

hours worked returns estimates very similar to our primary short-run results. Note that

we deliberately do not include usual hours worked as a control variable in the main

specification. This allows the worker to take additional sleep time out of either work

time or other (non-work, non-sleep) time. By controlling for work time, we would be

forcing all changes in sleep to come out of other time, which might bias our estimates.

Nonetheless the robustness of our result to this control is encouraging.

Omitting controls entirely, or omitting various subsets, likewise makes little

difference. The addition of finer race controls or education controls does not meaningfully

change the estimate. Finally, if we cluster at the state level, rather than the location level,

the standard errors are approximately the same.

The temperature data is the NCEP/NCAR reanalysis produced by Kalnay et al.

(1996). The data is available at a daily frequency on a two-by-two degree spatial grid.

We use the daily temperature from the nearest grid point for estimation.

In Table 3.4 we show our results are robust to varying controls for seasonality,

including quarter fixed effects and a cubic time trend. We also subset to weekdays and

workdays (these differ because some workers work on the weekend) and find similar

estimates.

Appendix Table 3.14 reprises the specification from Table 3.2, but only for

workers who report being paid hourly. These results are quite similar. In principle the
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Table 3.3: Robustness of short-run estimates: Controls

First stage Reduced form 2SLS
Sleep ln(earnings) ln(earnings)

Usual work hours quadratic
Seasonal sunset time -23.8***(2.28) -0.0043***(0.0016)
Sleep 0.00018** (0.000071)
No controls
Seasonal sunset time -23.1***(2.46) -0.0041* (0.0023)
Sleep 0.00018* (0.00010)
Only time controls
Seasonal sunset time -23.3***(2.30) -0.0044* (0.0022)
Sleep 0.00019* (0.00010)
Only FIPS FEs
Seasonal sunset time -23.4***(2.46) -0.0028 (0.0022)
Sleep 0.00012 (0.000100)
Only time controls and FIPS FEs
Seasonal sunset time -23.7***(2.30) -0.0033 (0.0022)
Sleep 0.00014 (0.000098)
More controls
Seasonal sunset time -23.9***(2.26) -0.0041** (0.0016)
Sleep 0.00017** (0.000072)
More controls: Education
Seasonal sunset time -24.1***(2.25) -0.0035** (0.0016)
Sleep 0.00015** (0.000069)
State clustering
Seasonal sunset time -24.0***(2.29) -0.0039** (0.0016)
Sleep 0.00016** (0.000070)

The table shows results from estimating Equation (3.1). Dependent variable is indicated at the top of each col-
umn. Unless otherwise noted, controls, number of observations, and standard errors are the same as in Table 3.2.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

coefficients are not directly comparable, since the change in weekly wage includes both

wage and hour effects. As we show below, however, our seasonal sunset time differences

produce very small changes in work hours, so the two tables represent roughly the same

change.

In part, we examine hourly wage earners to address concerns like those raised

in Borjas (1980) about the use of constructed hourly wage measures. The hourly wage

results also allow us to explore one interesting possible source of heterogeneity between

salaried and hourly workers. One might expect that salaried workers are engaged in less

routine tasks so attention lapses or other sleep-driven performance changes might be
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Table 3.4: Robustness of short-run estimates: Time controls and sample

First stage Reduced form 2SLS
Sleep ln(earnings) ln(earnings)

Quarter FEs
Seasonal sunset time -22.2***(4.56) -0.0090***(0.0032)
Sleep 0.00041** (0.00016)
Cubic time trend
Seasonal sunset time -24.6***(2.30) -0.0038** (0.0017)
Sleep 0.00015** (0.000072)
No weekends
Seasonal sunset time -16.7***(3.12) -0.0035* (0.0021)
Sleep 0.00021 (0.00014)
Observations 37525 37525 37525
Only workdays
Seasonal sunset time -17.6***(2.77) -0.0059***(0.0022)
Sleep 0.00033** (0.00014)
Observations 43296 43296 43296

The table shows results from estimating Equation (3.1). Dependent variable is indicated at the top of each column. Unless
otherwise noted, controls, number of observations, and standard errors are the same as in Table 3.2. Significance indicated
by: *** p<0.01, ** p<0.05, * p<0.1.

more costly. We do not find a substantial or significant difference between the two groups

using our preferred specification, but we examine this comparison using QCEW data in

Section 3.6.4.

3.6 Long-run results: the effect of sleep on wages

3.6.1 Primary results

We now turn to the long-run effects of average weekly sleep in a location on

average wage in that location. Estimation methodology is described in Section 3.3.1.

Table 3.5 presents long-run effects using the average sunset time instrument

described in Section 3.3.2. The first column reports the first-stage estimates for average

sleep, within a location, as a function of average sunset time. Average weekly sleep

in a location where the sun sets one hour later is approximately one hour less. This
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Table 3.5: Long-run effects

First stage Reduced form 2SLS OLS
Sleep ln(earnings) ln(earnings) ln(earnings)

Avg. sunset time -64.0*** -0.049***
(16.2) (0.019)

Sleep 0.00077** 0.00012***
(0.00033) (0.000044)

Geographic controls Yes Yes Yes Yes
Demographic controls Yes Yes Yes Yes
Observations 529 529 529 529
Adjusted R2 0.137 0.809 0.718 0.809
F-stat on IV 15.52
Elasticity 2.33

The table shows results from estimating Equation (3.2), with location-level observations weighted by the count of underlying ATUS respondents.
The first three columns show the first stage, reduced form, and two-stage least squares estimates. The fourth column reports the uninstrumented
version of the second stage of Equation (3.2). The dependent variable is indicated at the top of each column. Earnings refers to “usual weekly
earnings”. Sleep is measured in minutes per week and sunset time in hours. Controls include: coastal distance, a 10-piece linear spline in
latitude; share full time; median age; race shares; occupation shares; and a 5-piece linear spline in population density. White heteroskedasticity-
robust standard errors reported in parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

corresponds to the range of variation produced by the long-run sunset time instrument.

Using the IV specification, we again recover a positive, significant effect of average sleep

on average wage: .00077. For comparison with our short-run estimates, we can multiply

this estimate by 60 and obtain .046. A one-hour increase in weekly average sleep over a

seasonal time horizon increases wages by about 4.5%. This is roughly 4.5 times larger

than our short-run estimate, consistent with greater wage flexibility in the long run and

the difficulty of adapting to long-run sleep reductions with strategies like stimulant use.

Expressed as an elasticity, our estimate is 2.3, again smaller than the average value of 4

observed in medical studies summarized in Table 3.12.

We report White heteroskedasticity-robust standard errors. We do not cluster

because the data underlying Table 3.5 are collapsed to a cross section (in locations) and

our instrument varies exogenously across locations. The first-stage F statistic of 15.5

falls slightly short of the Stock-Yogo critical value (16.38) for a maximum size of 10%
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in a nominal 5% test. It is substantially greater than the value (8.96) for a maximum size

of 15% in a nominal 5% test. This recommends some modest caution in interpreting the

results of our t tests, but rules out gross failures of size control.

The estimated effects in Table 3.5 correspond to long-run, or even permanent,

changes in the mean values of variables within a location. This means they potentially

incorporate spillovers across workers and general-equilibrium effects accumulated over

time. While they demonstrate sleep has large long-run effects on wage, they may not

provide a good estimate of, for example, the effect from increased long-run sleep by a

single worker, or even all the workers in a single business.

Taking average values for wages and assuming 50 work weeks per year, one can

calculate the annual income effects implied by our long-run estimates. If mean weekly

sleep in a location increased by one hour per week and work time remained unchanged,

mean annual income would rise by about $1,950. In reality, extra sleep comes out of

both work and non-work time. If workers took roughly half of the extra sleep hour out of

work time, as we find in Table 3.10, then a one-hour increase in weekly mean sleep in a

location would increase mean annual income by about $1,340. If extra sleep came solely

at the expense of work time, the income increase would be $880. That figure naturally

leads one to ask why workers don’t work less and sleep more. One possible explanation

lies in the spillovers and general-equilibrium effects our estimate incorporates. Because

our estimates are based on location means, they likely overstate the effects an individual

worker would experience from changing her sleep in isolation.

3.6.2 Long-run robustness checks

As before, we test the sensitivity of our primary results to a wide variety of

robustness checks. Broadly, we examine the inclusion or exclusion of controls and

changes to the estimation sample. We also conduct a deeper exploration of geographic
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sorting that might invalidate our instrument in Section 3.6.3. Together our checks

indicate that the results reported above are robust to varying assumptions and changes in

estimation technique.

We first show the linear results hold under alternative control variable specifica-

tions in Table 3.6. The first pair of rows show that including a quadratic in usual hours

worked does not move the coefficient estimate appreciably. (As discussed above, we

exclude hours worked from the primary specification to avoid bias from forcing sleep

increases to come at the expense of leisure.) Inclusion of this control does not move the

coefficient estimate.

Table 3.6: Robustness of long-run estimates: Controls

First stage Reduced form 2SLS
Sleep ln(earnings) ln(earnings)

Usual work hours quadratic
Avg. sunset time -60.0***(16.3) -0.053***(0.019)
Sleep 0.00088** (0.00036)
Only geographic controls
Avg. sunset time -70.1***(15.9) -0.12** (0.051)
Sleep 0.0017** (0.00079)
No occupation controls
Avg. sunset time -62.8***(14.8) -0.064 (0.039)
Sleep 0.0010 (0.00068)
Education controls
Avg. sunset time -59.2***(16.1) -0.042***(0.016)
Sleep 0.00072** (0.00031)
Median age squared control
Avg. sunset time -64.0***(16.2) -0.050***(0.019)
Sleep 0.00078** (0.00033)
Industry controls
Avg. sunset time -61.0***(18.1) -0.056***(0.019)
Sleep 0.00092** (0.00037)
Region indicators
Avg. sunset time -63.7***(17.8) -0.046** (0.021)
Sleep 0.00072** (0.00036)
Longitude control
Avg. sunset time -60.5***(16.1) -0.047** (0.019)
Sleep 0.00077** (0.00035)

The table shows results from estimating Equation (3.2). Dependent variable is indicated at the top of each column. Unless
otherwise noted, controls, number of observations, and standard errors are the same as in Table 3.5. Education controls are
shares of observations in 5 attainment levels. Industry controls are shares of observations in 52 industries. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Next, we include only geographic controls, without any other covariates. Al-

though the exclusion restriction for the validity of our instrumental variable estimate

is based on the error term for the full model, it is reassuring to see that the coefficient

from this minimal specification is just over one standard error away from our preferred

estimate (a hypothesis test fails to reject the null hypothesis of zero difference in these

two estimates). The additional demographic controls do make the coefficient estimate

more precise, however, as can be seen by comparing standard errors between the main

result and robustness check. This result implies that sunset time is not highly correlated

with the covariates in the main specification, which also provides initial evidence against

sorting on sunset time. We then implement a less drastic change in control variables,

removing occupation indicators from our preferred specification. These variables are

potentially endogenous, so it is important to show that our coefficient estimate does not

change when they are excluded. We next add richer sets of individual controls. These

include squared median age, a set of industry shares, region indicators, and a longitude

control. Adding these additional variables does not change the results.

The second set of robustness checks, presented in Table 3.7, deals with changes

to the sample. In our main specification, we control for the share of full-time workers.

The first estimates in Table 3.7, however, show that our main results still hold even when

we drop part-time employees entirely.

ATUS oversamples weekends so that roughly half of the total observations are

from weekend dates (see Table 3.1). We test the sensitivity of our results to this by

dropping the weekend diary entries entirely. The estimate is similar to baseline, albeit

less precise. While the number of location-level observations is the same, this spec-

ification drops roughly half of the underlying ATUS sample. Next we estimate our

preferred model excluding counties within four degrees longitude of a time zone border.

This drops all counties that might have selected into a time zone based on economic
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Table 3.7: Robustness of long-run estimates: Sample

First stage Reduced form 2SLS
Sleep ln(earnings) ln(earnings)

Only full time workers
Avg. sunset time -44.9** (19.2) -0.054***(0.020)
Sleep 0.0012* (0.00063)
Observations 529 529 529
No weekend diaries
Avg. sunset time -54.0** (21.2) -0.074***(0.026)
Sleep 0.0014** (0.00069)
Observations 529 529 529
No time zone border counties
Avg. sunset time -97.8***(37.2) -0.11*** (0.039)
Sleep 0.0011** (0.00050)
Observations 340 340 340
No Eastern time zone
Avg. sunset time -19.6 (26.8) -0.071** (0.032)
Sleep 0.0036 (0.0046)
Observations 244 244 244
No high-wage cities
Avg. sunset time -27.7** (13.6) -0.029 (0.021)
Sleep 0.0011 (0.00087)
Observations 476 476 476

The table shows results from estimating Equation (3.2). Dependent variable is indicated at the top of each column. Unless
otherwise noted, controls, number of observations, and standard errors are the same as in Table 3.5. Results reported un-
der “No high-wage cities” exclude workers in San Francisco, Los Angeles, Chicago, Boston, and New York. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.

considerations. Again the results are not statistically distinguishable from our preferred

estimates. Exclusion of wealthier, denser Eastern time zone or exclusion of selected

high-wage cities similarly has only modest impact on coefficient estimates. In Appendix

Table 3.15 we estimate long-run effects for only those workers who report an hourly

wage, and recover similar point estimates.

All of these robustness checks support our primary result. The first-stage coef-

ficient on sleep is generally stable between 60 and 70 minutes per week, and typically

significant at the 1% level. The reduced-form estimate is more sensitive to specification,

but remains in the interval from −.04 to −.07 in nearly all cases. Its statistical signif-

icance varies, but the reduced-form estimate is most commonly significant at the 1%
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level. The overall pattern of results, showing stability of the coefficients under different

reasonable samples and control sets, suggests our assumption of instrument validity is

reasonable.

3.6.3 Instrument validity

The robustness checks in Tables 3.3, 3.4, 3.6 and 3.7 provide evidence against

some of the more plausible potential omitted variable or specification failures. In the

following subsections, we conduct more direct tests for some of the potential identification

failures discussed in Section 3.3.2.

Short-run validity

Daily sunset time follows a seasonal pattern and induces a seasonal pattern in

sleep. If other wage determinants follow a causally unrelated, but similar seasonal pattern,

we might recover a spurious estimate. First we investigate the possibility that seasonal

trends in the composition of employment might bias our results. Appendix Figure 3.6a

shows that occupation shares in our sample are constant over the months of the year.

Appendix Figure 3.6b shows that the share of ATUS respondents reporting a positive

wage is likewise constant over the year.

Long-run validity

One of the primary channels through which pernicious omitted variables might

appear is through individuals sorting across locations based on average sunset or its

correlates. For sorting to threaten identification, workers would have to sort based on the

timing of daylight. Sorting on daylight duration would not bias our estimates, as average

sunset time is independent of daylight duration. Note that even if workers actually sort
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on the sunset-induced wage differential, we can still test for the problem by examining

sorting on sunset.

Before proceeding with empirical tests, it will be helpful to consider a few

theoretical points. First, a worker who decides to sleep more need not move to another

city; she can simply sleep more. Only if workers suffer some optimization failure, like an

inability to commit to a particular bedtime, will they have an incentive to sort. Second,

an optimizing worker responds to real, not nominal, income. If home prices in more

productive (higher sleep) locations adjust to offset wage gains, workers will not have a

financial incentive to move. This is exactly the prediction of a sorting model like Roback

(1982). With perfect worker and firm mobility, the gains from a productive location-

specific amenity accrue to owners of land, the fixed factor. Such a model predicts that

locations with earlier average sunset times will have higher rents and house prices, even

without worker sorting on ability. Using county-level Census data from 2010, Table 3.8

provides evidence that this is indeed so. We regress log median county home value on

average sunset time and a rich set of controls.

ln(median home value) j = βsunset j +x′iγ+ ε j

A county experiencing sunset one hour earlier than a comparison county will have,

on average, a median home value approximately 9% to 13% higher. This result is

statistically significant at the 1% level. In levels, the estimated effect on median home

value is approximately $13,000 to $22,000. Based on the discussion following Table 3.5,

a worker’s annual income gain from moving to a location where sunset is an hour earlier

is approximately $1340. The present discounted value of this increase, assuming a five

percent discount rate, is approximately $26,800. This result is roughly consistent with the

prediction of the Roback model: the wage gains from additional sleep in a location accrue
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largely to landowners, not workers, and workers have little incentive to sort on sunset

time. In Appendix Table 3.19 we show this estimate is robust to additional controls.

Table 3.8: Effects on log median home value

Log value Log value
Sunset time -0.127*** -0.0851***

(0.0235) (0.0192)
Geographic controls Yes Yes
Demographic controls No Yes
Observations 2824 2824
Adjusted R2 0.342 0.600

White heteroskedasticity-robust standard errors are reported in parentheses. Significance indicated by: *** p<0.01,
** p<0.05, * p<0.1. Data are 2010 5-year ACS estimates. Sunset time is the average for a given county. Geographic
controls include coastal distance and a ten-piece linear spline in latitude. Demographic controls include percent
female, percent in four race categories, occupation shares, and a five-piece linear spline in population density.

Our hedonic results support our interpretation of the findings in Section 3.6.1 and

are consistent with a general-equilibrium model in which workers do not sort on ability.

They could also, however, be consistent with worker sorting. Therefore we conduct direct

sorting tests: first, we examine historical population growth patterns in response to time

zone creation in 1883 and 1918. Second, we examine the relationship between current

county-level characteristics and sunset time.

Table 3.18 in the Appendix compares present-day county level characteristics

by regressing a number of demographic variables on sunset time. Out of nine variables,

we find two estimates that are significant at the 5% level. There is a significant negative

relationship between average sunset time and population density, which is why we employ

a spline in this variable as a control. The results also suggest that unemployment is lower

for locations with later sunset time, but this is the reverse of what we would expect if

sorting or selection were driving our result. Finally, Table 3.6 also provides present-day

sorting evidence by indicating that our estimate is robust to the inclusion or exclusion of

demographic characteristics. This indicates that people of different ages, genders, race,
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and education levels are exposed to roughly equal sunset times, on average, across the

United States.

Taken together, Table 3.6, Table 3.18, and Figure 3.8 suggest that sorting does

not bias our results. The lack of sorting is perhaps unsurprising given the extremely

small wage differences implied by our reduced-form results: even at the extremities of

the widest (Central) time zone, the nominal wage differential between two locations at a

given latitude is less than five percent.

3.6.4 County average wages

To corroborate the long-run results from ATUS data, we also estimate reduced-

form models using data from the BLS Quarterly Census of Employment and Wages

(QCEW). Unlike ATUS, QCEW data allow us to observe all US counties. In the following

equation, j indexes county and t quarter-year. Data restrictions prevent us from exactly

replicating our long-run ATUS specification, but the control set is similar: coastal distance,

a linear spline in latitude, share female, share in four racial categories, six occupation

shares, and a linear spline in population density. We include dummies for quarter-year,

so we are using only the long-run variation in sunset time. The dependent variable is the

average weekly wage per worker.

ln(w jt) = δt +x′jγ+βsunset jt + ε jt (3.4)

Table 3.9 presents estimates based on the above equation. The estimate for all

workers, -.026, is roughly similar to our estimate of -.049 from ATUS data; we cannot

reject a null hypothesis of zero difference between the two. The QCEW allows for greater

precision due to the longer time coverage of the data. The larger sample also allows us
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Table 3.9: Effects on average wage

All industries Goods Services
Sunset time -0.0263** -0.0111 -0.0392***

(0.0120) (0.0148) (0.0107)

Yr-qtr FEs Yes Yes Yes

Geographic controls Yes Yes Yes

Demographic controls Yes Yes Yes
Observations 291271 287657 288520

Standard errors are reported in parentheses. Clustering is at the county level. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1. Data are from the BLS Quarterly Census
of Employment and Wages 1990-2013. Sunset time is the quarterly county average. Control
set includes: coastal distance, a 10-piece linear spline in latitude, share female, share in four
racial categories, six occupation shares, and a 5-piece linear spline in population density.

to begin exploring heterogeneity of the reduced-form effect. The estimate for services,

-.039, is considerably larger than the estimate for goods, -.011. In Appendix Table 3.20

we show this result is robust to additional controls.

Other time uses

Our primary analysis demonstrates that workers experiencing an earlier sunset

get more sleep. It is natural to ask where the additional sleep time comes from, and the

answer to this question informs the interpretation of our estimates. Table 3.10 shows

that when faced with an earlier sunset, workers increase sleep by decreasing work and

leisure in roughly equal amounts. These estimates are not statistically distinguishable

from zero or from each other, so this is at best suggestive evidence. Insofar as these

changes in work and leisure impact worker productivity, our sleep estimates also contain

those effects. While this might seem undesirable at first glance, it is unavoidable. An

agent’s time constraint always binds with perfect equality. Even in a laboratory setting, it

is not possible to change the time use of interest without also changing at least one other
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time use.

Table 3.10: Waking time use as a function of sunset time

Work time Non-work time
Avg. sunset time 33.9 19.0

(33.6) (30.6)
Geographic controls Yes Yes
Demographic controls Yes Yes
Observations 529 529
Adjusted R2 0.028 0.090
The table shows results from estimating the first stage of Equation (3.2), replac-
ing sleep time with either work time or waking non-work time as the dependent
variable. Dependent variable is indicated at the top of each column. Unless oth-
erwise noted, controls, number of observations, and standard errors are the same
as in Table 3.5. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Recall that in Section 3.2.2, we found the sign of the derivative ∂Tz/∂α, the

derivative of leisure time with respect to the parameter α, was theoretically ambiguous,

depending on wage and hours worked. In a regression of waking non-work time on sunset

time (as in column 2 of Table 3.10), this prediction corresponds to smaller, possibly

negative, coefficients on sunset time for low-wage workers and high-work, low-sleep

workers (in contrast to the overall positive result from Table 3.10). To test this prediction,

we estimate separate regressions for these groups. Estimates are reported in Table 3.11.

Consistent with our theoretical predictions, estimates for both groups are negative, though

not statistically significant.

3.7 Conclusion

Although time use is entangled in a causal web with labor market outcomes,

economists have largely ignored these relationships. In particular, the profession has

paid scant attention to sleep. Our results demonstrate that sleep has a powerful impact

on labor market outcomes and should be considered an integral part of a worker’s utility
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Table 3.11: Waking non-work hours as a function of sunset time, selected groups

Non-work time Non-work time
High work hours Low wage earners

Avg. sunset time -54.2 -62.3
(68.6) (84.5)

Geographic controls Yes Yes
Demographic controls Yes Yes
Observations 495 513
Adjusted R2 0.098 0.145

The table shows results from estimating the first stage of Equation (3.2), replacing sleep time with waking non-work
time as the dependent variable. In column 1 the sample is workers who work more than 8 hrs on the diary date (7th
percentile) and sleep less than 6 hrs (10th percentile). In column 2 the sample is workers with log wages below
5.44 (10th percentile). Dependent variable is indicated at the top of each column. Unless otherwise noted, controls,
number of observations, and standard error clustering are the same as in Table 3.5. Significance indicated by: ***
p<0.01, ** p<0.05, * p<0.1.

maximization problem. Using individual time-use diaries matched with labor market

variables from ATUS, we show that increasing short-run weekly average sleep by one

hour produces a 1% higher wage, while increasing long-run weekly average sleep by 1

hour, for all workers in a location, produces a 4.5% higher wage. Our use of instrumental

variables techniques addresses the reverse-causality and omitted variable problems that

would bias naïve estimates. We buttress this finding with a battery of seasonal and

long-run robustness checks, and a hedonic model of home prices showing that long-run

wage increases are capitalized into housing.

Sleep is arguably the third most important determinant of productivity, following

ability and human capital. Our findings have important implications for individuals, firms,

schools, and governments. A worker who desires higher wages might be able to obtain

them by increasing sleep. Firms might be able to increase profit by varying start times,

providing workers with incentives to sleep more, or with information interventions (e.g.

information on how to improve sleep quality or consistency). Governments conducting

cost-benefit analyses of policies that change sleep time, for example daylight savings time,

should consider the productivity effects to design efficient policies. Countries spanning a
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wide range of longitudes might benefit from abolishing time zones and adopting a single

standard time, preserving ease of coordination while allowing firms and schools to set

schedules optimally with respect to local solar cues.

Further attention should be paid to industries characterized by chronic sleep

shortages. In addition to wages, optimal sleep plausibly depends on other factors like

leisure complimentarities, direct sleep utility, and health optimization. Each of these trade-

offs suggests an interesting research question. More broadly, our results demonstrate that

non-labor time uses can have first-order effects on labor outcomes—effects that should

continue to be investigated in future work.
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3.8 Supplementary material

3.8.1 Background and summary statistics

Table 3.12: Causal medical studies of sleep and performance

Study Sleep change Study duration Outcome Elasticities
(hr/day) (days) (abs. value)

Belenky et al. (2003) -4, -2, -1, +1 7 PVT speed .7, .5, .7, 0
Cohen et al. (2010) -2.5 21 PVT reaction time 18
Dinges et al. (1997) -2.4 7 PVT lapses 6
Landrigan et al. (2004) +.82 21 Serious medical errors 4.5
Lockley et al. (2004) +.82 21 Attention failures 4
Van Dongen et al. (2003) -4, -2 14 Memory task 3.3, 2.2
Vgontzas et al. (2004) -2 7 PVT lapses 2.9
Mean magnitude 3.9

Table includes all studies that experimentally manipulated sleep over at least 7 days, drawing on reviews by Van Dongen and Dinges
(2005) and Banks and Dinges (2007). Studies of complete sleep deprivation were excluded. PVT stands for psycho-motor vigilance
test, described in Section 3.2.1.

Figure 3.3: ATUS county-level geocoding

The map shows, in blue, locations in the continental United States where we are able to geocode
ATUS records at the county level.
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Figure 3.4: ATUS raw correlation: sleep and sunset time

Created using binscatter. Sunset time and sleep are divided into 20 equal-width bins and
means are computed within each. These means provide x and y coordinates. Fitted line
(dashed) estimated using OLS. Sample is the estimation sample from Table 3.5.
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Figure 3.5: Sleep seasonality

The figure shows a local polynomial fit to sleep data from ATUS. Calculations
use a bandwidth of 10 days and an Epanechnikov kernel. Note that the range of
sleep in the sample is 2 to 16 hours and the standard deviation is 2.03.
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(a) ATUS occupation shares by month
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(b) ATUS share reporting positive wage by
month

Figure 3.6: ATUS occupations do not exhibit seasonality

Panel (a) Lines show average values of our 23 occupation dummies by month, pooled over the period 2003-2013 for our estimation
sample. The occupation exhibiting a modest summer dip in the upper-right panel is “Arts, design, entertainment, sports, and media
occupations.” Excluding this occupation does not change our results. Panel (b) Line shows average value of dummy that equals 1 if
the respondent reports a non-zero weekly or hourly wage, by month, pooled over the period 2003-2013 for all ATUS respondents.

Table 3.13: QCEW summary statistics

Variable Mean Std. Dev.
Weekly wage 492.37 171.88
Weekly wage - goods 609.35 240.53
Weekly wage - services 431.84 161.19
Sunset time 18.38 .94
Observations 285,680

All data are from the Quarterly Census of Employment and Wages at the
county level from 1990-2013.
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3.8.2 Solar mechanics

Here, we provide a brief summary of how sunset time is calculated and a glossary

of terms. We calculate sunset, sunrise, solar declination, and sunlight duration each

day using the algorithm of Meeus (1991) as implemented by NOAA’s Earth Systems

Research Laboratory (ESRL). The calculator takes inputs of the date, time zone offset,

latitude, and longitude. The Stata code that we used for calculation is available upon

request.

Sunset and sunrise time are both calculated assuming 0.833◦ of atmospheric

refraction, or the bending of the path of light as it passes through the Earth’s atmosphere.

In practice a refraction correction would need to incorporate information on air pressure

and humidity. Also, we calculate sunset assuming an observer with a 0 elevation change

view of the horizon. Over a full county, this assumption should introduce minimal error.

Sunlight duration is simply calculated as the difference between sunrise and

sunset time for a location on a given day.

Solar declination is the angle of a line segment from the sun to the earth relative

to a plane projected from the equator of the Earth. The solar declination is a function only

of the day of year and time zone offset (to compute fractional days for high-resolution

local time sunset), and changes in solar declination correspond to the seasonal movement

of the sun. The highest solar declination, 23.44◦ occurs on the summer solstice, and the

lowest solar declination, -23.44◦, occurs on the winter solstice. On the equinox, solar

declination is 0◦. A rough calculation of solar declination can be made with the following

equation:

−23.44cos
(

360
365

(d +10)
)

where d is the day of the year. For a detailed glossary, see NOAA’s ESRL website.
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3.8.3 Measurement error in seasonal estimate

Here we derive expressions for the expected bias in our seasonal estimates

reported in Section 3.5. The informal version of this derivation is discussed in Section

3.3.3.

Assume that for a given individual i surveyed on day t, wages are equal to the

average of D past sleep observations plus random noise. Thus the true model relating

sleep to wages is

wit,τ = β

(
D−1

i

τ−1

∑
k=τ−T

TS,ik

)
+ εiτ (3.5)

= βT ∗S,iτ + εiτ (3.6)

Thus, we are assuming that earnings change for this individual every D days, and sleep

only matters during the earnings determination period. The subscript τ indexes the day

that these earnings start to be observed in the data. Because of the fixed earnings change

frequency for a given individual, these earnings will be observed for days τ through

D+τ−1. To be concrete, consider the case of D = 2. Then we, the researchers, can only

sample the individual the day after they received an earnings change or 2 days after, so τ

will either be equal to t or t−1.

We further assume that τ is uniformly distributed across the year (a person has

an equal probability of receiving an earnings change on any given day). This is a strong

assumption, but the best available evidence from Barattieri et al. (2010) suggests that it

is not broadly incorrect. Of course, for a given year, there will be weekend or holiday

effects, but asyptotically, these become less relevant. Moreover, we do not have any

information on when a given individual in our sample last experienced an earnings

change, so this uniform assumption is a relevant baseline.

Finally, we assume that the researcher has isolated exogenous variation in sleep
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so that E[TS,tετ] = 0 for all t and τ.

If we observed past sleep and knew the earnings change frequency, we could

estimate Equation (3.5) and return the correct estimate. Instead, We observe wages and

sleep on date t ≥ τ, with which we estimate

wit,τ = β1TS,it + εiτ

We wish to know the relationship between β1 and β.

We will exploit the wage setting structure given above and the functional form

for the time series of sunset time from Section 3.8.2 to calculate this relationship. First,

given the results from Frazis and Stewart (2012) we can use sunset time to both isolate

daily, exogenous variation in sleep and to predict daily sleep for any day of the year, even

though we only observe sleep on one day. This individual time series of sleep will have a

similar functional form to the instrument, namely

TS,it = Acos(θt)

where A is the population coefficient on the unconditional version of the first stage of

Equation (3.1) and where we drop an ignorable, uncorrelated error term. The value

θ = 360/365 scales the wavelength to one year, so we make an additional simplification

by assuming that a year is 360 days long so that this term can be ignored. Alternatively,

one could, as we do when we analytically calculate the bias, rescale t to incorporate the

term. Thus

TS,it = Acos(t) = Acos(τ+ j) (3.7)

where j = t−τ is the number of days since the latest earnings change for this observation.
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We apply Lagrange’s identity to rewrite earnings-relevant sleep.

T ∗S,iτ = D−1
i

Di

∑
k=1

Acos(τ) =
A

Di2sin(1/2)
(cos(τ−Di +(π−1)/2)− cos(τ+(π−1)/2))

The two cosine functions are simply phase shifts of each other, so we apply phasor

addition to reduce this to

T ∗S,iτ = AB1 cos(τ+ω) (3.8)

where

B2
1 =

(cos((π−1)/2−Di)+ cos((π−1)/2))2 +(sin((π−1)/2−Di)+ sin((π−1)/2))2

2Di sin(1/2)

ω = arctan(cot((Di +1)/2))

This form is convenient because observed sleep can now be written as a phase shift of

earnings-relevant sleep and thus suggests that a version of the error-in-variables formula

will apply in this setting since by another application of phasor addition, we can linearly

relate observed sleep to earnings-relevant sleep plus a correlated error term.

Now note that the only individual heterogeneity is in terms of the frequency of

earnings changes, so without loss of generality, we can replace the Di index with just D.

Then, applying the usual variance-covariance formula for the OLS estimator of a single

coefficient, we have that our estimator relative to the true coefficient is given by6

β̂1,D =
Cov(wD,TS,D)

Var(TS,D)
(3.9)

= β
Cov(T ∗S,D,TS,D)

Var(TS,D)
(3.10)

6We loosely call this value attenuation even though in practice the estimate can be negative even when
the true coefficient is positive.
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Where we have dropped the time subscripts based on the calculations below.

To derive closed-form expressions for Equation (3.10) observe that since seasonal

sleep is mean zero, and, for all D, we are equally likely to observe sleep on any day of

the year, then by the double angle formula and Lagrange’s identity, the denominator is

Var(TS,D) = lim
T→∞

T−1
T

∑
t=0

A2 cos2(t)

=
A2

2
+ lim

T→∞

A2 csc(1)sin(2T +1)+3
T

=
A2

2

Where T (not to be confused with TS) is the total number of time observations and the

last equality follows from the boundedness of sine.

The numerator is, by application of the product-to-sum and Lagrange identities

Cov(T ∗S,D,TS,D) = D−2
D

∑
k=1

D

∑
j=1

lim
T→∞

T−1
T

∑
τ=0

A2 cos(τ− k)cos(τ+ j)

= D−2
D

∑
k=1

D

∑
j=0

lim
T→∞

T−1
T

∑
τ=0

A2 cos(τ− k)cos(τ+ j)

=
A2

2D2

D

∑
k=1

D

∑
j=0

cos(k+ j)

Taking the ratio of these two values gives the relative bias of the seasonal estimate

with respect to the true estimate for a given D.

β̂1,D

β

p→ D−2
D

∑
k=1

D−1

∑
j=0

cos(k+ j) (3.11)

Figure 3.7 shows this value for all frequencies of earnings changes less than a year.

This shape is the result of two factors. First, for any two of the same sinosoidal functions

that are phase shifted from each other by less than a quarter or more than three-quarters

of a wavelength, the product will be positive because the two functions are “in phase
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Figure 3.7: Seasonal estimate versus true estimate

The figure shows the ratio of the probability limit of the seasonal estimate to
the true estimate on the y-axis for a range of possible frequencies of earnings
changes on the x-axis. A value of 1 on the y-axis indicates no bias, while a
negative value indicates that the estimated coefficient has the wrong sign.

enough”. For a phase shift greater than one-quarter but less than three-quarters of a

wavelength, the product will be negative. The attenuation of the estimate is an average

of these products, so for frequent earnings changes (small D), we are largely averaging

sleep that is less than a quarter wavelength off from the truth. For intermediate values of

D, we are averaging in sleep that is phase shifted enough to flip the sign on the estimate.

For D near a year, however, we have “crossed the hump” again and are averaging in

sleep values that are phase shifted so much that they are back to the beginning of the

cosine wave. Beyond D = 365, the estimate remains nearly fully attenuated, with slight

oscillations around 0.

The expected attenuation for the full population will depend, therefore, only on

the distribution of the frequency of earnings changes.

β̂1/β
p→∑

D
D−2

D

∑
k=1

D−1

∑
j=0

cos(k+ j)Pr(D) (3.12)

Barattieri et al. (2010) provide estimates of this density function (derived from Figures 12
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and 13), with which we can calculate Equation (3.12). We discuss the measures provided

by these authors in Section 3.3.3, ultimately concluding that the degree of attenuation

will be between 75 to 100%.

Finally, a note on alternative assumptions about the earnings determination pro-

cess (Equation (3.5)). If earnings are based more on recent earnings rather than historical

earnings (for instance if the manager is myopic when writing wage contracts), then our

estimate will be closer to the true coefficient because we will be more likely to average

together observed sleep that is less than a quarter wavelength phase shifted from the

truth. If earnings are based on longer-term sleep or productivity patterns (for instance,

the manager is very slow to update the wage contract and needs two earnings change

cycles to fully incorporate current productivity changes), then our estimate will either be

more biased or will be more likely to be attenuated all the way to zero. In the limit, as

the manager or earnings process only takes into account productivity signals from the

beginning of the worker’s career, our estimate will be zero with probability one.

3.8.4 Auxiliary results and robustness checks

3.8.5 ATUS robustness checks

Tables 3.14 and 3.15 repeat our preferred specification for the sample of workers

who report being paid an hourly wage. Estimates are much less precise. The estimates in

Table 3.14 are quite close to our primary estimates. In principle the coefficients are not

directly comparable, since the change in weekly wage could include both wage and hour

effects. Because our instrument induces very small changes in hours worked (roughly

half an hour per week), however, the two tables represent roughly the same change.

In Table 3.15, the two-stage estimate of .0013 is within one standard error of our

preferred estimate of .00077. The imprecision in these estimates means that size control
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Table 3.14: Short-run effects: Hourly workers

First stage Reduced form 2SLS OLS
Sleep ln(wage) ln(wage) ln(wage)

Seasonal sunset time -24.6*** -0.0025*
(3.15) (0.0014)

Sleep 0.00010* -0.000016***
(0.000060) (0.0000020)

Individual controls Yes Yes Yes Yes
Time controls Yes Yes Yes Yes
Occupation Yes Yes Yes Yes
FIPS FEs Yes Yes Yes Yes
Observations 43927 43927 43927 41991
F-stat on IV 62.58
Elasticity 0.72
The table shows results from estimating Equation (3.1). The first three columns show the first stage, reduced form, and
two-stage least squares estimates. The fourth column reports the uninstrumented version of the second stage of Equation
(3.1). The dependent variable is indicated at the top of each column. Earnings refers to “usual weekly earnings”. Controls
include: location fixed effects; race dummies; age; age squared; a full-time dummy; a gender dummy; dummies for
holiday, day of week, and year; and occupation dummies. Standard errors, clustered at the FIPS code (location) level,
are reported in parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

may be an important problem for the two-stage estimate. According to Stock and Yogo

(2002), with a first-stage F of approximately 4, the actual size of the 5% t test on this

coefficient could be greater than 25%.

Per the recommendation in Solon et al. (2013), we conduct a modified Breusch-

Pagan test for heteroskedasticity of the residuals from the unweighted 2SLS model.

The results in Table 3.16 show that location-level observations with smaller underlying

counts of ATUS observations exhibit higher variance, as expected, and the relationship is

statistically significant at the one percent level. While the constant term is statistically

significant, it is an order of magnitude smaller. This suggests that the common error

component within location is minimal, so weighting will likely result in an efficiency

improvement, and indeed that is what we see in Table 3.17.

Table 3.17 reproduces our long-run results from Table 3.5 above their unweighted

counterparts. Weighting does indeed improve efficiency, reducing the standard errors in
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Table 3.15: Long-run effects: Hourly workers

First stage Reduced form 2SLS OLS
Sleep ln(wage) ln(wage) ln(wage)

Avg. sunset time -48.6** -0.064***
(24.4) (0.021)

Sleep 0.0013* 0.000032
(0.00074) (0.000033)

Geographic controls Yes Yes Yes Yes
Demographic controls Yes Yes Yes Yes
Observations 529 529 529 529
Adjusted R2 0.119 0.576 . 0.564
F-stat on IV 3.98
Elasticity 4.39

The table shows results from estimating Equation (3.2), with location-level observations weighted by the count of un-
derlying ATUS respondents. The first three columns show the first stage, reduced form, and two-stage least squares
estimates. The fourth column reports the uninstrumented version of the second stage of Equation (3.2). The dependent
variable is indicated at the top of each column. Wage refers to hourly wage for those workers who report being paid
hourly. Controls include: coastal distance, a 10-piece linear spline in latitude; share full time; median age; race shares;
occupation shares; and a 5-piece linear spline in population density. White robust standard errors reported in parentheses.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Table 3.16: Modified Breusch-Pagan heteroskedasticity test

Residuals2

1/Observations 0.15***
(0.030)

Constant 0.011***
(0.0014)

Observations 529
Adjusted R2 0.040

The dependent variable is the squared residual from estimating the unweighted version of (3.2). The variable “1/Ob-
servations” is the reciprocal of the number of ATUS interviews underlying a given location-level observation. Because
the modified Breusch-Pagan test relies on the assumption of homokurtosis, we compute unmodified OLS standard errors.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

both the first stage and reduced form models. It does not appreciably alter the first-stage

coefficient on sleep, but it does increase the magnitude of the reduced-form estimate.

This suggests the presence of heterogeneity in the marginal effect of sleep on wages.

High-skill urban workers have greater influence on the estimates in the weighted model,
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so the pattern of results below is consistent with larger marginal effects for such workers.

Table 3.17: Long-run effects, weighted and unweighted

Panel A: Weighted
First stage Reduced form 2SLS

Sleep ln(earnings) ln(earnings)
Avg. sunset time -64.0*** -0.049***

(16.2) (0.019)
Sleep 0.00077**

(0.00033)
Observations 529 529 529
Adjusted R2 0.137 0.809 0.718
F-stat on IV 15.52
Panel B: Unweighted

First stage Reduced form 2SLS
Sleep ln(earnings) ln(earnings)

Avg. sunset time -55.6** -0.0083
(26.0) (0.022)

Sleep 0.00015
(0.00038)

Observations 529 529 529
Adjusted R2 0.237 0.650 0.652
F-stat on IV 4.57

The table shows results from estimating Equation (3.2). In Panel A location-level observations are weighted by the count
of underlying ATUS respondents, while in Panel B they are unweighted. The dependent variable is indicated at the top
of each column. Earnings refers to “usual weekly earnings”. Controls are as reported below Table 3.5. White robust
standard errors reported in parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

We have also performed a variety of additional robustness checks with little or no

change in estimates. We list them here without full tables, but all results are available

upon request. 0.2% of the sample has topcoded wages. A tobit accounting for this does

not change the results. Likewise, accounting for the truncation of sleep does not change

inference. We have also estimated the models on only the sub-sample that is geocoded at

the county or CBSA level. All of these robustness checks do not change inference.

In Table 3.18 we report estimates of county level characteristics as functions

of average sunset time. We find a large and statistically significant relationship with
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population density, which motivates our use of a flexible control for this variable in

estimating long-run effects. We also see a statistically significant relationship with

unemployment, consistent with our estimated long-run wage effect.

Table 3.18: Robustness: County characteristics

Log pop. density Pop. change frac. Net migration frac.
Sunset time -0.642*** -0.000931 -0.000980*

(0.110) (0.000814) (0.000533)
Observations 3104 3104 3104
Adjusted R2 0.012 0.000 0.001

Log poverty rate Labor force change Unemployment rate
Sunset time 0.0157 0.00184 -1.412***

(0.0221) (0.00342) (0.169)
Observations 3103 3103 3103
Adjusted R2 -0.000 -0.000 0.023

Dependent variable is indicated at the top of each column. All data are from the Census and observations are at the county
level. Population, net migration, and unemployment rate are all 2012 values. Poverty is from 2011. Labor force change is
from 2000 to 2010. White heteroskedasticity-robust standard errors are reported in parentheses. Significance indicated by:
*** p<0.01, ** p<0.05, * p<0.1.

Historical sorting

Figure 3.8 shows the county-level growth patterns around the dates of the 1883

and 1918 time zone implementations. For both figures, the 10% of counties that are

closest to the eastern or western time zone boundary are considered to be on the eastern

or western side, respectively. The dashed lines show median population growth rates

(inter-census) for eastern side counties, and the solid lines show the same for western

side counties. The composition of these groups differs between the two panels due to

changes in the location of the 1883 versus 1918 time zones.

If gross sorting were occurring, one would expect eastern side counties to grow

faster than western side counties after time zone implementation. Indeed, one might even

expect the incentive to sort with respect to the 1883 time zones to be stronger than in



173

0

.2

.4

.6

Po
pu

la
tio

n 
gr

ow
th

1800 1850 1900 1950
Eastern side of time zone Western side of time zone

1883 Time Zone 1918 Time Zone

0

.2

.4

.6

1800 1850 1900 1950

Figure 3.8: Historical time zone sorting

The figure shows median growth rates between censuses in counties on the eastern and western edges of the
1883 (left panel) and 1918 (right panel) time zones. Eastern counties are represented by the dashed line and
western counties are the solid line. All data are from Haines and Inter-university Consortium for Political
and Social Research (2010).

the present day due to the lack of electrification. Instead, one can see that there is no

evidence of gross sorting in response to the 1883 time zone. After implementation, the

two regions of the time zones grow at almost identical rates. Growth rates around the

1918 law are more volatile but tell a similar story. Western side counties experience a

slightly larger drop in growth rates after 1918 compared to eastern side counties, but the

difference in changes between the two groups is not significant.

Hedonic and QCEW robustness checks

In Table 3.19 we show the robustness of our hedonic result to additional controls,

including industry shares, a spline in coastal distance, and longitude.

In Table 3.20 we show the robustness of our QCEW reduced-form result (all

industries) to additional controls, again including industry shares, a spline in coastal

distance, and longitude.
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Table 3.19: Hedonic robustness

Log value Log value Log value Log value
Sunset time -0.0851*** -0.0811*** -0.0745*** -0.0828***

(0.0192) (0.0153) (0.0190) (0.0190)
Base controls Yes Yes Yes Yes
Industry shares No Yes No No
Coastal distance spline No No Yes No
Longitude No No No Yes
Observations 2824 2824 2824 2824
Adjusted R2 0.600 0.760 0.619 0.603

White heteroskedasticity-robust standard errors are reported in parentheses. Significance indicated by: *** p<0.01,
** p<0.05, * p<0.1. Data are 2010 5-year ACS estimates. Sunset time is the average for a given county. Column
1 reproduces the final column of our preferred results from Table 3.8 and “Base controls” denotes the controls from
that model. Additional controls employed in this table are a 3-piece linear spline in coastal distance, 13 industry
shares, and longitude.

Table 3.20: QCEW robustness

Log avg. wage Log avg. wage Log avg. wage Log avg. wage
Sunset time -0.0263** -0.0317*** -0.0259** -0.0246**

(0.0120) (0.0111) (0.0120) (0.0121)
Base controls Yes Yes Yes Yes
Industry shares No Yes No No
Coastal dist. spline No No Yes No
Longitude No No No Yes
Observations 291271 291271 291271 291271

Standard errors are reported in parentheses. Clustering is at the county level. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1. Data are from the BLS Quarterly Census of Employment and Wages 1990-2013. Sunset time is the quarterly county average.
Column 1 reproduces the final column of our preferred results from Table 3.9 and “Base controls” denotes the controls from that
model. Additional controls employed in this table are a 3-piece linear spline in coastal distance, 13 industry shares, and longitude.




