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Abstract

Homological mirror symmetry for open Riemann surfaces from pair-of-pants decompositions

by

Heather Ming Lee

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Denis Auroux, Chair

Given a punctured Riemann surface with a pair-of-pants decomposition, we compute its

wrapped Fukaya category in a suitable model by reconstructing it from those of various pairs

of pants. The pieces are glued together in the sense that the restrictions of the wrapped

Floer complexes from two adjacent pairs of pants to their adjoining cylindrical piece agree.

The A∞-structures are given by those in the pairs of pants. The category of singularities

of the mirror Landau-Ginzburg model can also be constructed in the same way from local

affine pieces that are mirrors of the pairs of pants.
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Chapter 1

Introduction

Mirror symmetry is a duality between symplectic and complex geometries, and the homo-

logical mirror symmetry (HMS) conjecture was formulated by Kontsevich [Ko94] to capture

the phenomenon by relating two triangulated categories. This first formulation of HMS is for

pairs of Calabi-Yau manifolds (X,X∨) and it predicts two equivalences: the derived Fukaya

category of X (which depends only on its symplectic structure) is equivalent to the bounded

derived category of coherent sheaves of X∨ (which depends only on its complex structure),

and the bounded derived category of coherent sheaves of X is equivalent to the derived

Fukaya category of X∨.

A non-Calabi-Yau manifold X can also belong to a mirror pair (X, (X∨,W )), where

(X∨,W ) is a Landau-Ginzburg model consisting of a non-compact manifold X∨ and a holo-

morphic function W : X∨ → C called the superpotential. HMS has been extended to cover

Fano manifolds by Kontsevich [Ko98] based on works by Batyrev [Ba94], Givental [Gi96],

Hori-Vafa [HV00], and others, and more recently to cover general type manifolds [Ka07,

KKOY09]. The complex side of (X∨,W ) is described by Orlov’s triangulated category

of singularities of the singular fiber W−1(0), or equivalently the category of matrix factor-

izations MF (X∨,W ) [Or04]. The symplectic side of (X∨,W ) is described by the derived

Fukaya-Seidel category [Se08] of Lagrangian vanishing cycles associated with W .

Another recent discovery is that, in the case where X is an open manifold, the symplectic

side of X needs to be described by its wrapped Fukaya category. (Similarly, when the fibers

of W : X∨ → C are open, the symplectic side of (X∨,W ) is determined by its fiberwise
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wrapped Fukaya category [AA].) The wrapped Fukaya A∞-category is an extension of the

Fukaya category constructed by Abouzaid and Seidel [AS10] for a large class of non-compact

symplectic manifolds known as Liouville manifolds. Examples of such manifolds include

cotangent bundles, complex affine algebraic manifolds, and many more general properly

embedded submanifolds of Cn. A Liouville manifold X is equipped with a Liouville 1-form

λ, has an exact symplectic form ω = dλ and a complete Liouville vector field Z determined

by ιZω = λ, and satisfies a convexity condition at infinity.

In general, the wrapped Fukaya category of a Liouville manifold, W(X), is very hard

to compute; therefore, it is of much interest to develop sheaf-theoretic techniques to com-

pute W(X) by first decomposing X into simpler standard pieces X =
⋃
i∈I Si and then

reconstructing W(X) from the wrapped Fukaya categories of the standard pieces.

Inspired by Viterbo’s restriction idea for symplectic cohomology [Vi99], Abouzaid and

Seidel [AS10] constructed anA∞-restriction functor from a quasi-isomorphic full-subcategory

of W(X) to W(N) for every Liouville subdomain N of X (A Liouville subdomain is a

codimension-0 compact submanifold of X whose boundary is transverse to the flow of the

Liouville vector field Z. Its completion is a Liouville manifold.) Suppose X = S1∪S2 can be

decomposed into two standard Liouville subdomains, then we can hope to compute W(X)

from W(Si), i = 1, 2, by gluing them along S1 ∩ S2 in the sense of matching the images of

the restriction functors ρi :W(Si)→W(S1∩S2). However this procedure cannot be readily

implemented due to two obstacles. First, many pseudo-holomorphic discs that contribute

to the A∞-structures of W(X) are not contained in any single Si. Second, in general it is

not always possible to equip X =
⋃
i∈I Si with a single Liouville structure such that all Si’s

are Liouville subdomains. In addition, the restriction functors could in general have higher

order terms which could make the computation intractable.

We focus on punctured Riemann surfaces that have decompositions into standard pieces

which are pairs of pants. A pair of pants is a sphere with three punctures; its wrapped

Fukaya category is computed in [AAEKO13]. The intersection between two adjacent pairs

of pants is a cylinder. We provide a suitable model for the wrapped Fukaya category of

such a punctured Riemann surface and compute it by providing an explicit way to glue

together the wrapped Fukaya categories of the pairs of pants. Thus, our results achieve

something very close to the picture conjectured by Seidel [Se12]. (Other instances of sheaf-
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theoretic computation methods include calculations for cotangent bundles [FO97, NZ09],

and a program proposed by Kontsevich [Ko09] to compute the Fukaya categories in terms

of the topology of a Lagrangian skeleton on which they are conjectured to be local. See also

[Na14], [Ab14] and others for recent developments.)

The category of matrix factorizations MF (X∨,W ) of the toric Landau-Ginzburg mirror

can also be constructed in the same manner from a Čech cover of (X∨,W ) by local affine

pieces that are mirrors of the various pairs of pants. We will demonstrate that the restric-

tion from the category of matrix factorizations on an affine piece to that of the overlap

with an adjacent piece is homotopic to the corresponding restriction functor for the wrapped

Fukaya categories. In turn, we prove the HMS conjecture that the wrapped Fukaya category

of a punctured Riemann surface is equivalent to MF (X∨,W ); in fact, HMS served as our

guide in developing this sheaf-theoretic method for computing the wrapped Fukaya category.

The HMS conjecture with the A-model being the the wrapped Fukaya category of a punc-

tured Riemann surface has been proved for punctured spheres and their multiple covers in

[AAEKO13], and punctured Riemann surfaces in [Bo]. However, our approach yields a

new proof that is in some sense more natural, and the main benefit of this approach is that

one can hope to extend it to higher dimensions.
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Chapter 2

Review of hypersurfaces and tropical

geometry

Let H be a punctured Riemann surface with a pair-of-pants decomposition. We will focus on

the case where H is a hypersurface in (C∗)2 that is nearly tropical, in which case H always

has a preferred pair-of-pants decomposition. Mikhalkin [Mi04] used ideas from tropical

geometry to decompose hypersurfaces in projective toric varieties into higher dimensional

pairs of pants. We decompose H into pairs of pants in his style because it is natural for

mirror symmetry [Ab06, AAK12] and we hope to generalize our results to hypersurfaces in

(C∗)n. In this section, we summarize this decomposition procedure as explained in [Mi04,

Ab06, AAK12].

Consider a family of hypersurfaces

Ht =

{
ft :=

∑
α∈A

cαt
−ρ(α)zα = 0

}
⊂ (C∗)2, t→∞, (2.0.1)

where z = (z1, z2) ∈ (C∗)2, A is a finite subset of Z2, zα = zα1
1 zα2

2 , and cα, t ∈ R>0. The

function ρ : A→ R is the restriction to A of a convex piecewise linear function ρ̄ : Conv(A)→
R.

The family of hypersurfaces Ht has a maximal degeneration for t → ∞ if the maximal

domains of linearity of ρ̄ : Conv(A)→ R are exactly the cells of a lattice polyhedral decom-

position P of the convex hull Conv(A) ⊂ R2, such that the set of vertices of P is exactly A

and every cell of P is congruent to a standard simplex under GL(2,Z) action.
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The logarithm map Logt : (C∗)2 → R2 is defined as Logt(z) = 1
| log t|(log |z1|, log |z2|).

Due to [Mi04, Ru01], as t → ∞, Log-amoebas At := Logt(Ht) converge in the Gromov-

Hausdorff metric to the tropical amoeba Π, a 1-dimensional polyhedral complex which is the

singular locus of the Legendre transform

Lρ(ξ) = max{〈α, ξ〉 − ρ(α)|α ∈ A}. (2.0.2)

An edge of Π is where two linear functions from the collection {〈α, ξ〉 − ρ(α)|α ∈ A} agree

and a vertex is where three linear functions agree. In fact, Π is combinatorially the 1-skeleton

of the dual cell complex of P , and we can label the components of R2−Π by elements of A,

which are vertices of P , i.e.

R2 − Π =
⊔
α∈A

Cα − ∂Cα.

We identify (C∗)2 with the cotangent bundle of R2 with each cotangent fiber quotiented

by 2πZ2, via (C∗)2 ∼= R2 × (S1)2 ∼= T ∗R2/2πZ2 given by

zj = tuj+iθj ∈ (C∗)2 7→ (uj, θj) =
1

| log t|
(log |zj|, arg(zj)) ∈ T ∗R2/(2π/| log t|)Z2. (2.0.3)

This gives a symplectic form on (C∗)2

ω =
i

2| log t|2
2∑
j=1

d log zj ∧ d log z̄j =
2∑
j=1

duj ∧ dθj, (2.0.4)

which is invariant under the (S1)2 action with the moment map

(u1, u2) =
1

| log t|
(log |z1|, log |z2|).

By rescaling the symplectic form by | log t|, all f−1
t (0) ⊂ (C∗)2 are symplectomorphic.

We study a hypersurface H = f−1
t (0) (fix t� 1) that is nearly tropical, meaning that it

is a member of a maximally degenerating family of hypersurfaces as above, with the property

that the amoeba A = Logt(H) ⊂ R2 is entirely contained inside an ε-neighborhood of the

tropical hypersurface Π which retracts onto Π, for a small ε. Then each open component

Cα,t of R2− Logt(H) is approximately Cα− ∂Cα as ∂Cα,t is contained in an ε-neighborhood

of ∂Cα. The monomial cαt
−ρ(α)zα dominates on Log−1

t (Cα,t).
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The SYZ mirror to H is shown in [AAK12] to be the Landau-Ginzburg model (Y,W ),

where Y is a toric variety with its moment polytope being the noncompact polyhedron

∆Y = {(ξ, η) ∈ R2 × R|η ≥ Lρ(ξ)}.

The superpotential W : Y → C is the toric monomial of weight (0, 0, 1); it vanishes with

multiplicity 1 exactly on the singular fiber D = W−1(0) that is a disjoint union D =
∐

α∈ADα

of irreducible toric divisors of Y . Each irreducible toric divisor Dα corresponds to a facet of

∆Y , which corresponds to a connected component of R2−Π, and Crit(W ) is a union of P1’s

and C1’s corresponding to bounded and unbounded edges of Π, respectively. In fact, (Y,W )

is equivalent to the mirror of the blow up of (C∗)2 × C along H × {0}.
We would like to demonstrate homological mirror symmetry that is the equivalence be-

tween the wrapped Fukaya category of H and the triangulated category of the singularities

Db
sg(D), which is defined as the Verdier quotient of the bounded derived category of coher-

ent sheaves Db(Coh(D)) by the subcategory of perfect complexes Perf(D). The category

Db
sg(D) is equivalent to the triangulated category of matrix factorizations [Or11].
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Chapter 3

The wrapped Fukaya category of the

punctured Riemann surface H

3.1 Generating Lagrangians

In this section, we describe a set of Lagrangians that split-generates the wrapped Fukaya

category W(H).

There is a projection π : H → Π from the Riemann surface to the tropical amoeba

such that π is a circle fibration over the complement of the vertices of Π. The complement

consists of open edges int(Cα ∩ Cβ), whose preimage in H is an open cylinder denoted by

ẽαβ = π−1(intCα ∩Cβ). The preimage of π over each tripod graph at a vertex of Π is a pair

of pants.

Recall the defining function for the Riemann surface H is

ft =
∑

γ∈A cαt
−ρ(α)zγ

= cαt
−ρ(α)zα

(
1 +

cβ
cα
tρ(α)−ρ(β)zβ−α +

∑
γ∈A\{α,β}

cγ
cα
tρ(α)−ρ(γ)zγ−α

)
.

(3.1.1)

Near the edge Cα ∩ Cβ,

|tρ(α)−ρ(γ)zγ−α| = tρ(α)−ρ(γ)t〈Logt z,γ−α〉 =
t〈Logt z,γ〉−ρ(γ)

t〈Logt z,α〉−ρ(α)

is very small when t is very large. Hence ẽαβ in the Riemann surface lies close to the cylinder

with the defining equation

cαt
−ρ(α)zα + cβt

−ρ(β)zβ = 0. (3.1.2)
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Since this equation can be written in the form zα−β = − cβ
cα
tρ(α)−ρ(β) < 0, an approximation

to ẽαβ is given by the complexification of int(Cα ∩ Cβ) with the argument defined by

ẽαβ ∼= {z ∈ (C∗)2|Logt(z) ∈ int(Cα ∩ Cβ), arg zα−β ≡ π} ∼= int(Cα ∩ Cβ)× S1. (3.1.3)

We parametrize each bounded edge of Γ, i.e. int(Cα ∩ Cβ), by the interval (−ε, 4 + ε)

for ε � 1. From now on, we will leave out a small neighborhood around each vertex of Π

instead of taking the entire int(Cα ∩ Cβ) × S1, and we define the edge eαβ of the Riemann

surface H to be the subset of ẽαβ corresponding to the model (0, 4) × S1, with coordinates

(τ, ψ) and symplectic form

ωαβ = nαβdτ ∧ dψ.

The constant nαβ is determined by the symplectic area of the edge eαβ, which is 8nαβπ, so

nαβ = |(Cα ∩ Cβ) ∩ Z2| − 1 is the “length” of the edge ẽαβ.

We proceed similarly for unbounded edges of Π, using (0,∞)× S1 instead of (0, 4)× S1.

Each unbounded edge corresponds to a neighborhood of a puncture. A punctured Riemann

surface is a Liouville manifold when the neighborhood of each puncture is modelled after a

cylindrical end ([1,∞)× S1, τdψ).

The Lagrangian objects under consideration are Lα(k), for α ∈ A and k ∈ Z. Each Lα(k)

is an embedded curve in H follows the contour of Cα running through all edges eαβ, for each

β ∈ A such that Cβ is adjacent to Cα. We require Lα(k) to be invariant under the Liouville

flow everywhere on the cylindrical end.

Let lα(0) be a Lagrangian that runs through each edge “straight” in a prescribed manner,

e.g. with constant ψ, also see Remark 3.1.2 for an eample. Denote dα,β = degO(Dα)|Dα∩Dβ .

Let δα,β and δβ,α be integers satisfying δβ,α − δα,β = 1 + dα,β; this is well defined since the

Calabi-Yau property implies that dα,β + dβ,α = −2. Each Lα(k) would differ from lα(0) in

each bounded cylindrical edge eαβ by the time-(k + δα,β/nαβ) flow of the action given by a

Hamiltonian hαβ whose restriction on (1, 3) × S1 is hαβ(τ, ψ) = −π
2
n2
αβ(τ − 2)2. The time-

(k + δα,β/nαβ) flow of this Hamiltonian action on (1, 3)× S1 is given by ϕ
k+δα,β/nαβ
αβ (τ, ψ) =

(τ, ψ − πkαβ(τ − 2)), where kαβ = nαβk + δα,β. So, this action rotates lα(0) for kαβ times

in the region (1, 3) × S1. Lastly, we orient each Lα(k) counterclockwise along ∂Cα. A few

examples are shown in Figure 3.1. Applying Abouzaid’s generation criterion [Ab10] to a

suitably chosen Hochschild cycle, we find that:
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Lemma 3.1.1. The wrapped Fukaya category W(H) is split-generated by objects Lα(k),

α ∈ A, k ∈ Z.

Figure 3.1: Examples of Lagrangians in H: Lβ(0), Lα(2), and Lγ(−2). In this example,
dα,γ = dβ,γ = 0, and we pick, δα,γ = δβ,γ = 0 and δγ,α = δγ,β = 1.

Remark 3.1.2. We can choose the generating Lagrangians in H as boundaries of La-

grangians in (C∗)2 − H. Assume that for each α ∈ A, there is a point pα ∈ Z2 ∩ Cα
with the property that 〈pα−u, α−β〉 is an odd integer for any u ∈ Cα∩Cβ. Note that α−β
is an integral normal vector to the edge Cα ∩Cβ pointing into the region Cα. Let Lα be the

zero section of the cotangent bundle T ∗R2/2πZ2 with its base restricted to Cα, on which we

consider the Hamiltonian function

Hα = −π[(u1 − pα,1)2 + (u2 − pα,2)2].

Then for k ∈ Z, the time-(1
2

+k) Hamiltonian flow is given by (written in the universal cover

of T ∗R2/2πZ2),

φ
k+ 1

2
α (u1, θ1, u2, θ2) = (u1, θ1 − (π + 2πk)(u1 − pα,1), u2, θ2 − (π + 2πk)(u2 − pα,2)).

Let lα(k) := ∂(φ
1
2

+k
α (Lα)). Lemma 3.1.3 shows that each lα(k) corresponds to a Lagrangian

contained in H, and the correspondence comes from the identification ẽαβ ∼= eαβ discussed

earlier. We also need to modify lα(k) by untwisting it so that it is invariant under Liouville

flow in each cylindrical end, and further twist the bounded edges as needed to account for

the δα,β’s.
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Lemma 3.1.3. lα(k) ⊂
⋃
β∈A ẽαβ.

Proof. For any u ∈ intCα ∩ ∂Cβ, let z be the preimage of u, suppose z ∈ lα(k), and let θ be

the fiber coordinate of z. Then

arg(zα−β) ≡
∑2

j=1 θj(αj − βj)
=
∑2

j=1−(π + 2πk)(uj − pα,j)(αj − βj)
≡ −π(1 + 2k)〈u− pα, α− β〉
≡ π

(3.1.4)

where k ∈ Z, and the last equivalence comes from (1 + 2k)〈u − pα, α − β〉 being an odd

integer. By equation (3.1.3), z ∈ ẽαβ.

3.2 Hamiltonian perturbation

We now introduce Hamiltonian perturbations that will eventually enable us to define a model

for W(H) that is suitable for pair-of-pants decompostions.

For every integer n ≥ 0, let Hn : H → R be a Hamiltonian such that for any unbounded

edge eαβ, Hn is linear on its cylindrical end (as in [AS10]), i.e. Hn(τ) = nτ + dn, τ ∈ [1,∞)

there. On each bounded edge eαβ, Hn agrees with the following function Hαβ,n on (0, 4)×S1

with coordinates (τ, ψ),

Hαβ,n(τ, ψ) =


nαβ(−nπτ 2 + 2nπ) + dαβ,n, 0 < τ ≤ 1

nαβnπ(τ − 2)2 + dαβ,n, 1 ≤ τ ≤ 3

nαβ(−nπ(τ − 4)2 + 2nπ) + dαβ,n, 3 ≤ τ < 4

. (3.2.1)

The constants dn and dαβ,n above (regardless of whether the edge is bounded or unbounded)are

picked so that Hn is continuous for all n and that it is constant near the vertices in the com-

plement of all the edges. These can be satisfied by letting

cn = max {2nαβnπ | eαβ is an bounded edge} ,

and then setting dαβ,n = cn − 2nαβnπ for each bounded edge eαβ and dn = cn − n for each

unbounded edge eαβ. This way, Hn = cn in the complement of all the edges. We can check
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that Hn ≥ Hn−1 for all n. Even though Hn is defined for n ∈ Z≥0, we can also define Hw for

any real value w ≥ 0 the same way. We will make use of it in Section 3.5.

The corresponding time-1 flow of the vector field XHαβ,n is given by

ωαβ(·, XHαβ,n) = nαβdτ ∧ dψ(·, XHαβ,n) = dHαβ,n.

The time-1 flow written in the universal cover of Eαβ ∼= (0, 4)× R is

φ1
αβ,n(τ, ψ) =


(τ, ψ − 2nπτ), 0 < τ < 1

(τ, ψ + 2nπ(τ − 2)), 1 ≤ τ ≤ 3

(τ, φ− 2nπ(τ − 4)), 3 < τ < 4

. (3.2.2)

Figure 3.2: Time-1 perturbation of Lα(k) by Hamiltonian Hn on the edge eαβ.

Denote by φn the flow of Hn. We can see from equation 3.2.2 that the Lagrangians φ1
n(Lα(k))

and φ1
n(Lβ(k)) wrap around the bounded cylinder eαβ in the “negative” direction on intervals

(0, 1)∪ (3, 4) for n times each and in the “positive” direction on (1, 3) for 2n− kαβ times, as

shown in figure 3.2. Note that the degree of the generators of CF (Lα(k), Lα(k);Hn) is even

in the region where Hn wraps positively and odd when it wraps negatively.
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We also need to make a small modification of Hn for all n ∈ Z so that φ1
n(Lα(k)) intersects

Lα(k) transversely and to make it smooth at τ = 0, 1, 3, 4 on bounded edges and at τ = 1 on

unbounded edges. Furthermore, the perturbations are chosen consistently inside the pair of

pants regions (i.e. complements of the edges) so that φ1
n(Lα(k)) intersects Lα(k) transversely,

just once inside the pair of pants, and always at the same point which has degree 0.

3.3 Backgrounds on Floer complex and product

operations

For any pairs of objects Li(k1), Lj(k2), we get a Floer complex CF ∗(Li(k1), Lj(k2);Hn),

where Hn is the Hamiltonian defined in Section 3.2. This Floer complex is generated by the

set X (Li(k1), Lj(k2);Hn) consisting of Reeb chords that are time-1 trajectories of the Hamil-

tonian Hn starting in Li(k1) and ending in Lj(k2). Equivalently, these chords correspond to

intersection points of φ1
n(Li(k1)) ∩ Lj(k2).

The differential d : CF ∗(Li(k1), Lj(k2);Hn) → CF ∗(Li(k1), Lj(k2);Hn) is given by the

count of pseudo-holomorphic strips u : R× [0, 1]→ H which are solutions to the inhomoge-

neous Floer’s equation

(du−XHn ⊗ dt)
0,1
Jt

= 0, equivalently,
∂u

∂s
+ Jt

(
∂u

∂t
−XHn

)
= 0 (3.3.1)

with boundaries u(s, 0) ∈ Li and u(s, 1) ∈ Lj. As s→ ±∞, u converges to Hamiltonian flow

lines that are generators the Floer complex involved in the differential. Such a solution u(s, t)

can be equivalently seen as an ordinary J̃ = (φ1−t
n )∗J-holomorphic strip ũ(s, t) = φ1−t

n (u(s, t))

with boundaries on φ1
n(Li(k1)) and Lj(k2). Indeed,

∂ũ

∂s
= (φ1−t

n )∗

(
∂u

∂s

)
and

∂ũ

∂t
= (φ1−t

n )∗

(
∂u

∂t
−XHn

)
,

so the Floer equation (3.3.1) becomes ∂ũ
∂s

+ J̃ ∂ũ
∂t

= 0.

For Lagrangians Li0(k0), Li1(k1), Li2(k2), n� |k0|, |k1|, |k2|, the product

µ2(Hn) : CF ∗(Li1(k1), Li2(k2);Hn)⊗ CF ∗(Li0(k0), Li1(k1);Hn)

→ CF ∗(Li0(k0), Li2(k2); 2Hn)
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is given by the count of solutions u : D → H of the perturbed Floer equation

(du−XHn ⊗ β)0,1
Jt

= 0 (3.3.2)

where D is a disc with three strip-like ends, and the images of the three components of

∂D are contained in the respective Lagrangians Li0(k0), Li1(k1), and Li2(k2). The 1-form

β on D satisfies dβ = 0 and it pulls back to dt on the input strip-like ends and to 2dt

on the output strip-like end. Again, by changing to a domain dependent almost-complex

structure, this is equivalent to counting standard holomorphic discs with boundaries on

φ2
n(Li0(k0)), φ1

n(Li1(k1)), and Li2(k2) instead. The higher products

µd(Hn) : CF ∗(Lid−1
(kd−1), Lid(kd);Hn)⊗ · · · ⊗ CF ∗(Li0(k0), Li1(k1);Hn)

→ CF ∗(Li0(k0), Lid(kd); dHn)

are constructed in a similar way.

3.4 Orientation and grading

Let’s orient each Lα(k) counterclockwise along ∂Cα. This will give each Floer complex a

Z2-grading. For each transverse intersection point x of L0 and L1, we can identify TxL0
∼= R

and TxL1
∼= iR via a linear symplectic transformation. Consider the path lt of Lagrangian

lines with l0 = R and l1 = iR, and lt = e−iπt/2R. If the path lt maps the orientation of TxL0

to the orientation of TxL1, then deg(x) = 0; otherwise, deg(x) = 1.

It is also possible to define a Z-grading on Floer complexes of the Lagrangians in consid-

eration. To do that, we need to pick a trivialization of T ∗H1,0. There’s no canonical way to

choose this trivialization. We can just choose a global nonvanishing section Ω of T ∗H1,0 to be

any meromorphic form allowed to have zeros or poles at each puncture. Once we make that

choice, for any Lagrangian plane l ⊂ TxH, Ω|l = αvoll where α ∈ C∗ and voll is a real volume

form. And we can define arg(l) := arg(Ω|l) = arg(α) ∈ R/πZ (or R/2πZ if Lagrangians are

oriented already). The Lagrangian Grassmannian LGr(TH) can then be lifted to a fiberwise

universal cover L̃Gr(TpH) = {(l, θ)|l ∈ LGr(TpH), θ ∈ R, θ ≡ arg(Ω|l) mod π}.
The tangent lines along a Lagrangian L form a path of Lagrangian planes, which are

mapped by the above phase function to S1. Because of the Lagrangians we consider are
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simply connected, the homotopy class of this map is trivial, i.e. the Lagrangians have

vanishing Maslov class. Hence for each Lagrangian L, we can equip it with a grading, which

is a consistent choise of a graded lift to L̃Gr(TH) of the section p 7→ TpL of LGr(TH) over

L. Then we can assign a degree to a transverse intersection p ∈ L0 ∩ L1. In the case of

Riemann surface H, deg(p) =
⌈
θ1−θ0
π

⌉
. (Ref. [Se08, Au13].)

Once this Z-grading is available, the index of a rigid holomorphic polygon in H corre-

sponding to a higher product µk is deg(output)−
∑

deg(inputs) = 2− k.

3.5 Linear continuation map

For any two Lagrangians L1 = Li(k1), L2 = Lj(k2), we would like to define the wrapped Floer

complex CW ∗(L1, L2) as a direct limit of the perturbed Floer complexes CF ∗(L1, L2;Hn) as

n→∞. This definition relies on the existence of continuation maps

κ : CF ∗(L1, L2;Hn)→ CF ∗(L1, L2;HN),

whenever n ≤ N (recall, by construction, Hn ≤ HN whenever n ≤ N). In general, the

direct limit construction would not be compatible with A∞ structures, hence, CW ∗(L1, L2)

is defined as the homotopy direct limit in [AS10]. However, we will show in this section that

it turns out in our case, each continuation map κ above is just an inclusion for n sufficiently

large depending on L1, L2. Furthermore, we will show in the next section that higher order

continuation maps (i.e. those with d ≥ 2 inputs) are trivial when mapping from sufficiently

perturbed Floer complexes. Consequently, the wrapped Floer complex can be defined as

CW ∗(Li(k1), Lj(k2)) =
∞⋃

n=n0

CF ∗(Li(k1), Lj(k2);Hn)/ ∼ (3.5.1)

where the equivalence relation is given by continuation maps which are inclusions. Moreover,

we have well defined differential and A∞ products

µd : CW ∗(Ld−1, Ld)⊗ · · · ⊗ CW ∗(L0, L1)→ CW ∗(L0, Ld)

which are given by ordinary Floer differential and products.
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In the usual definition of the continuation map, for an input p ∈ X (L1, L2;nH1) =

X (L1, L2;Hn), the coefficient of q ∈ X (L1, L2;NH1) = X (L1, L2;HN) in κ(p) is given by the

count of index zero solutions to the perturbed Floer equation (the continuation equation)

∂u

∂s
+ J

(
∂u

∂t
− λ(s)XH1

)
= 0, (3.5.2)

where λ(s) is a smooth function which equals N for s � 0 and n for s � 0, and such that

λ′(s) ≤ 0. Such a solution also needs to satisfy the boundary conditions u(s, 0) ∈ L1 and

u(s, 1) ∈ L2, and it converges to the generator p as s→∞ and the generator q as s→ −∞.

Instead of considering moduli spaces of perturbed Floer solutions, we will introduce the

related moduli spaces of cascades of pseudoholomorphic discs by taking the limit where the

derivative of λ tends to zero. Counting cascades of pseudoholomorphic discs with appropriate

indices give equivalent definitions of continuation maps. We will only discuss the construction

of cascades briefly following Appendix A of [Au10], [AS10], and Section 10(e) of [Se08],

and we refer to them for details.

First of all, we would like to go to the universal cover to make visualization and discussion

easier. For any given input data (p;L1, L2), we can obtain a lift (p′;L′1, L
′
2) in the universal

cover EH of the Riemann surface by picking an arbitrary lift L′1 of L1 and then tracing the

lift of L2 through p′ to determine L′2. Rather than counting pseudo-holomorphic strips in

H with the above conditions, it is equivalent to counting pseudo-holomorphic strips in the

universal cover EH with boundaries in the lifts L′1 and L′2. The Lagrangians L′1 = Li(k1)′

and L′2 = Lj(k2)′ satisfy some nice properties which are necessary for defining cascades:

(P1) For all integer values of w ≥ n0 large enough, φ1
w(L1) is transverse to L2, so φw(L′1) is

transverse to L′2.

(P2) For w ≥ n0 large enough, each point x′ ∈ φ1
w(L′1)∩L′2 lies on a unique maximal smooth

arc γ : [n0,∞) → EH given by t 7→ γ(t), where γ(t) is a transverse intersection point

of φ1
t (L

′
1) and L′2 for all t. In other words, as w increases from n0 to ∞, no new

intersection between φw(L′1) and L′2 are created, and the existing intersections remain

transverse.

Both (P1) and (P2) can be achieved by choosing n0 > max{1, |k1|+ |k2|}. For Lagrangians

L1, L2 ⊂ H, property (P2) for their corresponding lifts in EH implies that as w increases
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from n0 to ∞, any newly created intersection of φw(L1) and L2 will not be the output of

any J-holomorphic disc. For any x ∈ φ1
w(L1) ∩ L2 and its lift x′ ∈ φ1

w(L′1) ∩ L′2 which lies

on the arc γ, we can identify x with a unique point ϑw
′

w (x), w′ ≥ w, determined by requiring

the lift of ϑw
′

w (x) to be γ(w′).

For Lagrangians L1 = Li(k1), L2 = Lj(k2), and n ≥ n0, we define the continuation map

κ : CF ∗(L1, L2;Hn) → CF ∗(L1, L2;HN), N ≥ n, as follows. Given p ∈ X (L1, L2;Hn) and

q ∈ φ1
N(L1) ∩ L2, the coefficient of q in κ(p) is given by the count of linear cascades from p

to q of Maslov index zero. A k-step linear cascade from p to q is a sequence of k ordinary

pseudo-holomorphic strips u1, . . . uk : R× [0, 1]→ H satisfying:

• ui(R× 0) ⊂ φ1
wi

(L1), ui(R× 1) ⊂ L2 for some w1 ≤ · · · ≤ wk in the interval [n,N ];

• ui has finite energy, and we denote by p±i ∈ φwiH(L1) ∩ L2 the intersection points to

which ui converge at ±∞;

• p+
i+1 = ϑ

wi+1
wi (p−i ), p+

1 = ϑw1
n (p), and q = ϑNwk(p

−
k ).

When q = ϑNn (p), we allow the special case of k = 0.

Figure 3.3: a k-step linear cascade from p to q.

Lemma 3.5.1. Given any two Lagrangians, L1 = Li(k1) and L2 = Lj(k2), and n0 ≤ N , the

linear continuation map κ : CF ∗(L1, L2;Hn)→ CF ∗(L1, L2;HN) is just the inclusion.

Proof. The components of an index zero linear cascade are holomoprhic strips whose Maslov

indices sum to zero. The only holomorphic strip of index zero on a Riemann surface (with

an arbitrary complex structure) is the constant disc, and there are no holomoprhic strips of

negative index. Hence the continuation map has to be the inclusion induced by identifying

intersection points using ϑNn .
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As expected, κ also has to be an inclusion in the usual definition of the continuation map

which is defined by counting inhomogeneous holomorphic strips that are solutions to (3.5.2).

Otherwise, there are nontrivial index zero inhomogeneous strips from p to a different q 6=
ϑNn (p). Taking the limit where dλ(s)/ds → 0, the index zero inhomogeneous holomorphic

strips from p to q converge in the sense of Gromov to a nontrivial index zero linear cascade,

thus contradicting Lemma 3.5.1.

3.6 Higher continuation maps

A given set of boundary data consists of Lagrangians L0, . . . , Ld with each Li = Lαi(ki), αi ∈
A, ki ∈ Z, inputs p1 ∈ X (L0, L1;Hn), . . . , pd ∈ X (Ld−1, Ld;Hn), and the output q ∈
X (L1, L2;HN) with N ≥ dn. The coefficient of q in the continuation map

CF ∗(Ld−1, Ld;nH)⊗ · · · ⊗ CF ∗(L0, L1;nH)→ CF ∗(L0, Ld;NH)

can be defined by counting exceptional solutions, u : D → H where D is a disc with d + 1

strip-like ends, to the perturbed Floer equation (du − XH̃ ⊗ β)0,1 = 0 with boundaries

on Lagrangians L0, . . . , Ld. Here, β is a closed 1-form, and H̃(s) is a domain dependent

Hamiltonian. If we represent D as a strip-like disc illustrated in Fig. 3.4, then H̃ = λ(s)H

interpolates between H̃(s) = nH as s→∞ and H̃(s) = N
d
H as s→ −∞.

Figure 3.4: Higher continuation maps with d = 4 inputs can be defined by counting perturbed
Floer equations u : D → H with boundaries on L0, . . . , Ld=4. The disc D with 4+1 strip-like
ends is equivalent to the strip {(s, t) ∈ (R× [0, d])\((d− 1) slits)}.

As with linear continuations, such a definition is hard to use for explicit computations,

hence we use the equivalent definition of counting cascades. Intuitively, perturbed Floer
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solutions are homotopic to cascades as we take the limit by stretching the strip so that the

interpolating Hamiltonian H̃(s) changes infinitely slowly, i.e. λ′(s) → 0. Gromov compact-

ness tells us that there are finitely many places where the energy concentrates and we get

unperturbed pseudo-holomorphic discs as pieces of a cascade. A cascade is a collection of

unperturbed pseudo-holomorphic discs with boundary on any (r + 1)-tuple

φωi0λ(s)H(Li0), . . . , φωirλ(s)H(Lir)

of perturbed Lagrangians with i0 < · · · < ir ∈ {0, . . . , d}, n ≤ λ ≤ N/d, ωj = d− j for each

j = 0, . . . , d, and such that at least one of the pseudo-holomorphic discs in this collection

must be exceptional, i.e. of index less than (2-#inputs). Again, refer [Au10],[AS10], [Se08]

for details. In this section, we will show that there are no such exceptional discs, hence higher

continuation maps are all trivial.

Stability of intersection points and crossing changes.

Given a set of boundary data as above, let L′0, . . . , L
′
d be lifts of L0, . . . , Ld in the universal

cover EH obtained from choosing an arbitrary lift L′1 of L1 and then determining L′2, . . . , L
′
d

by tracing through p1, . . . , pd. By taking n0 > max{1, |k1|+ · · ·+ |kd|}, any pair of L′i, L
′
j of

Lagrangians in this collection of lifts satisfy property (P1) and (P2) mentioned in Section

3.5.

Besides pairwise intersections, in order to obtain a vanishing result for cascades, we also

want to make sure that intersection points of three or more Lagrangians also stabilize. That

is, for any (r + 1)-tuple l0 = φωi0λ(L
′
i0

), . . . , lr = φωirλ(L
′
ir) with with i0 < · · · < ir ∈

{0, . . . , d}, n ≤ λ ≤ N/d, ωj = d − j for each j = 0, . . . , d as above, we would like to

show that no intersection points in l0 ∩ · · · ∩ lr are created or canceled as we vary λ(s) so

long as n is large enough. This is equivalent to saying that there are no crossing changes

(i.e. Reidemeister moves) between multiple Lagrangians in {φω0λ(L
′
0), . . . , φωdλ(L

′
d)} as λ(s)

varies so long as n is large enough.

First, suppose all of l0, . . . , lr run through the universal cover Eαβ ∼= (0, 4) × R of the
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edge eαβ, we can write down the coordinates for each lj = (τ, ψj(τ)) from Equation (3.2.2)

ψj(τ) =


cj(τ)− 2π(d− ij)λ(s)τ, 0 < τ < 1

cj(τ) + 2π(d− ij)λ(s)(τ − 2), 1 ≤ τ ≤ 3

cj(τ)− 2π(d− ij)λ(s)(τ − 4), 3 < τ < 4

, (3.6.1)

where cj(τ) is a continuous function that can be arranged to be constant in the τ -interval

(0, 1) ∪ (5/4, 4) and cj(5/4) − cj(1) = −2πkij . To arrange cj(τ) to be constant in (0, 1) ∪
(5/4, 4), we need to adjust the construction of each Lα(k) in Section 3.1 so that Lα(k) twists

k times in the interval (1, 5/4) instead of in the interval (1, 3). All the results in this paper are

valid (with some obvious changes in the arguments) when we use this modified construction

for Lα(k), which is homotopic to the construction given in Section 3.1. We will use this

modified construction only in this section.

As n increases, the τ -coordinate of any intersection point, p, between any pair of La-

grangians lj and lj′ in {l0, . . . , lr} moves toward 0, 2, or 4. Indeed, it follows from Equation

3.6.1 that one of τ(p), τ(p) − 2, or τ(p) − 4 is equal to
cj(τ)−cj′ (τ)

λ(s)2π(ij′−ij)
→ 0 as λ(s) → ∞.

Consequently, given inputs p1, . . . , pd, we can always choose n to be large enough so that

none of the τ -coordinates of the given pi’s will be in the the region (1, 5/4) after replacing

p1, . . . , pd by their corresponding generators via the linear continuation map. Furthermore,

by choosing n to be large enough, the appropriate lifts l0, . . . , lr to the universal cover of the

cylinder will no longer have any intersections in the (1, 5/4) region.

In each of the intervals (0, 1), (5/4, 3), and (3, 4), lj is a line segment with the same slope

of 2π(d− ij)λ(s) in absolute value. In each interval, these line segments belong to r+ 1 lines

that may or may not intersect at a single point. Whether they intersect in a single point

or not depends on the ψ-intercepts cj(τ)’s and ratios between the differences in the slopes,

which are independent of λ(s). Take the interval (0, 1), if the corresponding (r+ 1) lines do

intersect at a single point, then for n large enough, the line segments in l0, . . . , lr will either

always intersect in a single point in the interval (0, 1) or they will never intersect in that

interval. The same can be said for the other intervals. We can then apply the same procedure

to all edges and for all subsets of multiple Lagrangians in {φdλ(L′0), . . . , L′d}. We can obtain

a large enough n for each of these cases and take the maximum value. The argument for

intersections inside the unbounded cylinders is the same. There will be constant multiple
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intersections inside each pair of pants (in the complement of the edges), but because of the

small perturbations we chose at the end of Section 3.2, they will be always be of degree zero

(so, not exceptional), and they will never move or undergo crossing changes.

Exceptional discs are constant.

A pseudoholomorphic disc u bounded by Lagrangians

l0 = φωi0λH(L′i0), . . . , lr = φωirλH(L′ir)

is either a nondegenerate polygon, a constant disc at the intersection of all r+1 Lagrangians,

or a polygon with some of its corners being intersection points of multiple Lagrangians. We

want to investigate when such a pseudo-holomorphic disc is exceptional, i.e. of index less

than 2− r. A nondegenerate polygon has index

2− r + 2 ·#(interior branch points) + #(boundary branch points) ≥ 2− r,

hence it’s not exceptional.

Next, we analyze the degenerate cases involving multiple intersection points. At such a

point, note that even though l0, . . . , lr may come from different components and hence have

different orientations, we can change the orientation of some of them so that l0, . . . , lr have

the same orientation on every edge in trying to compute the index of the disc. This is because

changing the orientation of a Lagrangian lj will change the degree of intersections between

lj−1 ∩ lj and lj ∩ lj+1 in opposite ways leaving the overall index of the disc unchanged. For

the rest of this section, let us assume that l0, . . . , lr have the same orientation on every edge.

For any two Lagrangians lj, lj+1, then the degree of an intersection point p ∈ lj ∩ lj+1

inside a cylindrical edge is either 0 or 1 depending on the location of p. If p is in the positively

wrapped region (1, 3) × R of some edge, then deg(p) = 0 because the slope of li is positive

and larger than that of li+1 which is also positive. On the other hand, if p is in the negatively

wrapped region ((0, 1) ∪ (3, 4))× R of some edge, then deg(p) = 1.

Case 1: Suppose u is a constant disc with its image in a cylindrical end or in the positively

wrapped region of a bounded edge (i.e. in (1, 3)×S1). In this case, all the input and output

intersection points have degree zero, hence indu = 0. When r ≥ 2, indu ≥ 2 − r, so it is

not an exceptional disc that contribute to the higher continuation map.
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Case 2: Suppose u is a constant disc with its image in the negatively wrapped region

of a bounded edge (i.e. in ((0, 1) ∪ (1, 3)) × S1). In this case, all the input and output

intersection points have degree 1, hence indu = 1− r < (2− r) and u is an exceptional disc.

We have dim kerD∂̄,u = r − 2 coming from the freedom to move the r + 1 marked points.

(Note that dim kerD∂̄,u = 0 if we fix the marked points because u is constant with image

p and u∗TH = TpH ∼= C. By the open mapping theorem, the only holomorphic disc with

boundary in the union of the lines Tpl0, . . . , Tpls is the constant map at the origin of the

tangent space.) Hence dim cokerD∂̄,u = r − 1 > 0 and u is not regular. This analysis shows

that we need to perform a deformation to achieve transversality, and this will be our topic

of the next section.

Case 3: Suppose u is a polygon with r̃ + 1 geometrically distinct vertices p0, . . . , pr̃

(r̃ ≥ 1 since we assume u is not constant) with some of its vertices being intersection points

of multiple Lagrangians. We know that the index of a nondegenerate polygon with r̃ + 1

vertices (i.e. bounded by r̃ + 1 Lagrangians) is at least 2 − r̃. If a vertex of u which is an

intersection point of multiple Lagrangians is located in the positively wrapped region, then

its contribution to indu is zero. If a vertex of u is an intersection point of v+ 2 Lagrangians

(v > 0) located in the negatively wrapped region, then the extra degenerate edges and

vertices add to the contribution of this vertex to indu by −v. That is, each of the (r − r̃)
extra Lagrangians contributes at least −1 to indu. Hence, indu ≥ (2− r̃)− (r− r̃) = 2− r,
i.e. u is not exceptional.

Deformation of constant discs.

At each intersection of r + 1 (r > 1) Lagrangians

l0 = φωi0λ(s)H(L′i0), . . . , lr = φωirλ(s)H(L′ir),

in the negatively wrapped portion of a cylinder, we want to pick Hamiltonian perturbations

ch0(s), . . . , chr(s) that perturb these Lagrangians locally so that as soon as we turn on the

Hamiltonian perturbation, the constant disc u at the intersection of these Lagrangians is

removed and we don’t introduce any new holomorphic discs with boundary on l0, . . . , lr in

that order. Recall that each weight ωij = d − ij, and the Lagrangians are ordered with

i0 < · · · < ir.
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Let h(s) be a Hamiltonian supported near the moving intersection point (this is the

only way in which it depends on s) such that locally h(s)(τ, ψ) = ψ − ψ0, so Xh ∼ − ∂
∂τ

points along the negative τ -axis. We use chj(s) = cωijh(s) to perturb lj. This pushes

the Lagrangians into the desired positions as shown in Fig. 3.5. Indeed, up to rescaling

of both axes, each lj was initially the line ψ = −ωijτ , and after translation, it becomes

ψ = −ωij(τ +ωij). Lagrangians lj and lk intersect where ψ = −ωij(τ +ωij) = −ωik(τ +ωik),

so τ = −(ωij +ωik). For a fixed j, these are all distinct and in the correct order. These local

perturbations for the Lagrangians are automatically consistent because they are built from

a single ch(s) and the existing weights.

Figure 3.5:

The constant map u, with its image being the point p, is a non-regular solution to the

perturbed Floer equation (du+cXh(s)⊗β)0,1 = 0 for c = 0; we study its deformations among

solutions to this equation for small c. Let us consider the first order variation

(d(u+ cv) + cXh(u+ cv)⊗ β)0,1 = 0,

where v : D → TpH = C. From the above equation, v satisfies the linearized equation

∂̄v = (Xh(p)⊗β)0,1 with boundary conditions on the real line Tplj. We claim that, no matter

the position of the boundary marked points on the domain D, this linearized equation has

no solutions. Indeed, we rewrite the linearized equation for ṽ = v − tXh(p), where t is a

coordinate on D with dt = β, and t = −ωij on the j-th piece of the boundary of D. Then a

solution ṽ is a holomorphic map with boundary conditions in Tplj +
∂lj
∂c

= Tplj + ωijXh(p),

which are lines in C as in Fig. 3.5. Hence this linearized equation has no solution; that
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is, the projection to cokerD∂̄J
of the perturbation term yields a nonvanishing section of the

obstruction boundle over the moduli space of solutions. This means that there is no way of

deforming the constant map u to a solution with the perturbation term added, i.e. cascades

with such a constant component do not contribute to the continuation map.

3.7 Wrapped Fukaya category of a pair of pants:

some notations.

We can view H as a union of pairs of pants, H =
⋃
α,β,γ Pαβγ, where each Pαβγ is a pair of

pants whose image Logt(Pαβγ) is adjacent to all three components Cα, Cβ, and Cγ. Also,

if eαβ is bounded, we require that the leg Pαβγ ∩ eαβ ∼= (0, 3) × S1, which comes from the

above model of eαβ. This way, if eαβ is a bounded edge connecting two pairs of pants Pαβγ

and Pαβη, then these two pairs of pants will overlap on the positive wrapping part of eαβ

(fig.3.2). Denote Sαβ = Pαβγ ∪ Pαβη. When we are considering a Lagrangian restricted to

a pair of pants, Lα(k) ∩ Pαβγ, we still call it Lα(k) for convenience. Note that Lα(k) are

actually equivalent to Lα in the wrapped Fukaya category of the pair of pants. The objects

Li(k), i ∈ {α, β, γ}, k ∈ Z, generate the wrapped Fukaya category of Pαβγ.

The definitions for Floer complex and product structures introduced in Section 3.3 apply

to a pair of pants Pαβγ as well. (In fact, if we extend each bounded leg of a pair of pants

to an infinite cylinderical end, then the quadratic Hamiltonian Hn on (1, 3) × S1 is equiv-

alent to a linear Hamiltonian on that cylindrical end.) We can define the Floer complex

CF ∗Pαβγ (Li(k1), Lj(k2);Hn) and its set of generators XPαβγ (Li(k1), Lj(k2);Hn) for any pairs

of objects Li(k1), Li(k2) in W(Pαβγ). Similarly, we can define the differential

d : CF ∗Pαβγ (Li(k1), Lj(k2);Hn)→ CF ∗Pαβγ (Li(k1), Lj(k2);Hn)

and products

µdPαβγ (Hn) : CF ∗Pαβγ (Lid−1
(kd−1), Lid(kd);Hn)⊗ · · · ⊗ CF ∗Pαβγ (Li0(k0), Li1(k1);Hn)

→ CF ∗Pαβγ (Li0(k0), Lid(kd); dHn)

by counting perturbed pseudo-holomorphic discs u : D → Pαβγ with strip-like ends satisfying

appropriate boundary and limiting conditions. For the same reason as in the previous section,
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the continuation maps

κ : CF ∗Pαβγ (Li(k1), Lj(k2);Hn)→ CF ∗Pαβγ (Li(k1), Lj(k2);HN), n < N,

are inclusions and compatible with A∞ structures if n > n0 for a large n0. We then have the

wrapped Floer complex

CW ∗
Pαβγ

(Li(k1), Lj(k2)) =
∞⋃

n=n0

CF ∗Pαβγ (Li(k1), Lj(k2);Hn)/ ∼

and the product

µdPαβγ : CW ∗
Pαβγ

(Ld−1, Ld)⊗ · · · ⊗ CW ∗
Pαβγ

(L0, L1)→ CW ∗
Pαβγ

(L0, Ld).

3.8 Pair of pants decomposition

We can split the generators XPαβγ (Li(k1), Lj(k2);Hn) into two parts

XPαβγ (Li(k1), Lj(k2);Hn) = J γ
αβ(Li(k1), Lj(k2);Hn) ∪ Cαβ(Li(k1), Lj(k2);Hn), (3.8.1)

consisting of generators in Pαβγ\ ((1, 3)× S1) and (1, 3)× S1 ⊂ eαβ, respectively. Denote

Jγαβ(Hn) =
⋃

i,j,k1,k2

J γ
αβ(Li(k1), Lj(k2);Hn),

Cαβ(Hn) =
⋃

i,j,k1,k2

Cαβ(Li(k1), Lj(k2);Hn).

Let CF ∗
Jγαβ

(Li(k1), Lj(k2);Hn) and CF ∗Cαβ(Li(k1), Lj(k2);Hn) be subspaces generated by

J γ
αβ(Li(k1), Lj(k2);Hn) and Cαβ(Li(k1), Lj(k2);Hn), respectively.

Let XPαβγ (Li(k1), Lj(k2)) be the generators of the wrapped Floer complex

CW ∗
Pαβγ

(Li(k1), Lj(k2)) given in equation (3.5.1). We can similarly define subsets of gen-

erators J γ
αβ =

⋃∞
n=n0
J γ
αβ(Hn)/ ∼ and Cαβ =

⋃∞
n=n0
Cαβ(Hn)/ ∼. We can also define

CW ∗
Jγαβ

(Li(k1), Lj(k2)) and CW ∗
Cαβ

(Li(k1), Lj(k2)) as subspaces of CW ∗
Pαβγ

(Li(k1), Lj(k2))

generated by J γ
αβ and Cαβ, respectively.

Note that XPαβγ (Li(k1), Lj(k2);Hn) = XPαβγ (Li(k1), Lj(k2);nH1) because nH1 only dif-

fers from Hn by a constant on each edge and both Hamiltonians only act on the edges (and

the small perturbations inside the pants yield the same generators as well).
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Lemma 3.8.1. Given

x1 ∈ XPαβγ (Li0(k0), Li1(k1)), . . . , xd ∈ XPαβγ (Lid−1
(kd−1), Lid(kd)),

where at least one of xj, j = 1, ..., d is in J γ
αβ, then the output y = µdPαβγ (x1, . . . , xd) is in

CW ∗
Jγαβ

(Li0(k0), Lid(kd)).

Proof. From the definition of the wrapped Floer complex, there is a sufficiently large N ,

dependent on x1, . . . , xd, such that for all n ≥ N , xj ∈ XPαβγ (Lij−1
(kj−1), Lij(kj)) has a

representative xj ∈ XPαβγ (Lij−1
(kj−1), Lij(kj);Hn), for all j = 1, . . . , d (we use the same

notation for the representative xj for convenience). Also at least one of xj is in J γ
αβ(Hn).

To prove this lemma, we would like to show that there is a sufficiently large integer N ,

dependent on x1, . . . , xd, such that for all n ≥ N , any generator y appearing in the output

of the product

µdPαβγ (xd, . . . , x1;Hn) ∈ CF ∗Pαβγ (Li0(k0), Lid(kd); dHn)

is in J γ
αβ(dHn).

We prove by contradiction. Suppose the output y can be in Cαβ(Li0(k0), Lid(kd); dHn)

for infinitely many values of n. Due to this assumption, i0, id ∈ {α, β}. This output y

is given by the count of index (2 − d) pseudo-holomorphic discs (with a modified almost-

complex structure) with boundaries on φdn(Li0(k0)), φd−1
n (Li1(k1)), . . ., and Lid(kd) and with

strip-like ends converging to intersection points φd−1
n (x1) ∈ φdn(Li0(k0)) ∩ φd−1

n (Li1(k1)), . . .,

xd ∈ φ1
n(Lid−1

(kd−1)) ∩ Lid(kd), and y ∈ φdn(Li0(k0)) ∩ Lid(kd).
From now on we will only consider the universal cover of eαβ and lifts of all Lagrangians

in eαβ to this universal cover. We keep the same notation for convenience.

The boundary of a holomorphic disc satisfying the above traces out two curves on eαβ

starting at y, each of which is connected and piecewise smooth. One curve C1 consists of

boundary arcs in φdn(Li0(k0)), φd−1
n (Li1(k1)), . . ., φd−c1n (Lic1 (kc1)). The other curve C2 consists

of boundary arcs in Lid(kd), φ
1
n(Lid−1

(kd−1)), . . ., φc2n (Lid−c2 (kd−c2)). We choose the largest

possible c1 and c2 so that the four conditions below are satisfied. We list the first three now

and the fourth later:

1. all of i0, . . . , ic1 , id, id−1, . . . , id−c2 ∈ {α, β};
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2. C1 and C2 do not contain any input intersection points that are not in eαβ;

3. d− c2 > c1.

Note that if the boundary of the holomorphic disc leaves eαβ and enters back into eαβ again,

then it must go through an intersection point outside eαβ. This is because if it doesn’t go

through an intersection point outside eαβ, then it must create a boundary branch point by

backtracking along a Lagrangian, but a rigid holomorphic disc does not have any boundary

branch points. Hence, C1 and C2 are connected, and they don’t leave eαβ and then enter

back.

A fourth condition for choosing c1 and c2 becomes necessary when C1 and C2 satisfy-

ing conditions (1)-(3) intersect at an input point, which happens if and only if the entire

holomorphic disc is contained in eαβ with its boundary being the closed loop C1 ∪ C2. In

this case, d − c2 − 1 = c1. Let τc = min{τ |(τ, ψ) ∈ C1 ∪ C2)}. Every Lagrangian in-

volved has the property that its lift intersects each fiber of the universal cover of eαβ at

only one point. Hence τc must be the τ coordinate of an intersection point x̃c = φd−cn (xc) ∈
φ
d−(c−1)
n (Lic−1(kc−1)) ∩ φd−cn (Lic(kc)), i.e. τc = τ(x̃c). To summarize, we require that

(4) if the holomorphic disc is contained in eαβ, then choose d − c2 − 1 = c1 = c where

τ(x̃c) = min{τ |(τ, ψ) ∈ C1 ∪ C2}.

Figure 3.6 illustrates the subset of the holomorphic disc which lies inside eαβ with boundary

C1 and C2.

Figure 3.6: The subset of the holomorphic disc which lies inside eαβ has boundary on C1∪C2.
The dashed curves represent C1. The right-most picture illustrates the situation where the
curves C1 and C2 intersect at an input point.
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Observe for each τ < τ(y), the fiber over τ intersects C1 and C2 at no more than

one unique point (τ, ψ1(τ)) ∈ C1 and one unique point (τ, ψ2(τ)) ∈ C2. We show this

observation is true by contradiction. If the fiber of the universal cover over some τ < τ(y)

intersects C1 at more than one point, then an interior point of C1 must be an intersection

point x̃b = φd−bn (xb) ∈ φd−(b−1)
n (Lib−1

(kb−1)) ∩ φd−bn (Lib(kb)) at which the τ coordinate of C1

backtracks, meaning that τ(x̃b) is the minimum value of τ in an open neighborhood of x̃b in

C1. The lift of each Lagrangian intersects each fiber (level of τ) of the universal cover of eαβ

at only one point, the rigid holomorphic disc has no branch point, and each corner of the

disc is convex. For these reasons, the τ coordinate cannot backtrack more than once along

C1 ∪C2 , and where it backtracks, τ(x̃b) is actually the minimum value of τ achieved by the

holomorphic disc, i.e. the holomorphic disc is contained in {(τ, ψ) ∈ eαβ|τ ≥ τ(x̃b)}. From

property (4), b = c and x̃b is the end point of C1, contradicting x̃b being an interior point of

C1. The same reasoning can be applied for C2.

Let’s choose N � |k0|, . . . , |kd|, then for every τ ∈ (0, τ(y)), the absolute value of the

slope of the tangent line to C1 at (τ, ψ1(τ)) is greater than that of C2 at (τ, ψ2(τ)). Also

note that from inside the holomorphic disk, the angle between tangent lines Tyφ
d
n(Li0(k0))

and TyLid(kd) must be greater than π/2 due to the ordering of the boundary Lagrangians

and the assumption that n > |k0|, |kd|.
We want to show for n > N sufficiently large, the holomorphic disc under consideration

cannot have any input in J γ
αβ. We analyse two cases.

Case 1: the holomorphic disc is contained in eαβ. Use the same notation that we used

when explaining property (4). The holomorphic disc is contained in {τ ≥ τ(x̃c)} for an input

x̃c. The slope of the tangent lines Tx̃cφ
d−(c−1)
n (Lic−1(kc−1)) and Tx̃cφ

d−c
n (Lic(kc)) have the same

sign, i.e. negative if τ(x̃c) ∈ (0, 1) and positive if τ(x̃c) ∈ (1, 3). Thus the angle between

these tangent lines, from inside the holomorphic disc, must be less than π/2. The input x̃c

must be in Cαβ(Hn), i.e. τ(x̃c) > 1, because the angle at any input in the positively wrapped

region is less than π/2 and in the negatively wrapped region is greater than π/2. This is due

to the ordering of the boundary Lagrangians and the assumption that n� |k0|, . . . , |kd|. So

we just have a triangle in {τ > 1} ⊂ eαβ with no inputs in J γ
αβ. (See Fig. 3.7a.)

Case 2: the holomorphic disc is not contained in eαβ. As explained before, for every

τ < τ(y), the fiber over τ intersects C1 once and C2 once, with ψ1(τ) > ψ2(τ) as illustrated
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in Figure 3.7b. Note that all boundary Lagrangians φd−jn (Lij(kj)) are dependent on n, so

are ψ1, ψ2. The value of ψ1(0) and ψ2(0) are dictated by inputs outside of eαβ, so they

will stay almost constant as a function of n. Indeed, ψ1(0) and ψ2(0) are determined by

the remaining portion of the boundary of the disc (other than C1 ∪ C2). As n varies and

the inputs x̃c1 , . . . , x̃d−c2 move by continuation, this boundary curve varies by a homotopy

inside the cylindrical ends and remains constant inside the pants, and in particular ψ1(0) and

ψ2(0) remain constant. Hence ψ1(0) > ψ2(0) always, but their difference remains bounded

no matter how large n gets. However, as n gets large enough, ψ1(1) < ψ2(1) because the

absolute value of the slope of the tangent line to C1 at each (τ, ψ1(τ)) is greater than that of

C2 at (τ, ψ2(τ)) and the slopes increase with n. Hence C1 crosses C2 before reaching τ = 1,

which contradicts an assumption that y ∈ Cαβ(dHn). Hence, we can pick a sufficiently large

N , so that for all n ≥ N , there does not exist any rigid holomorphic disc with the given

inputs x1, . . . , xd, at least one of which lies in J γ
αβ(Hn) and its output in Cαβ(dHn).

Figure 3.7: dashed line is C1

Corollary 3.8.2. There is a restriction map

ργαβ :
⊕
Li,Lj

CW ∗
Pαβγ

(Li, Lj)→
⊕
Li,Lj

CW ∗
Cαβ(Li, Lj)

which is a quotient by CW ∗
J γαβ

(Li, Lj), and it is compatible with A∞ structures with no higher

order terms.
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Proof. It follows from Lemma 3.8.1.

Lemma 3.8.3. Given inputs x1 ∈ X (Li0(k0), Li1(k1)), . . . , xd ∈ X (Lid−1
(kd−1), Lid(kd)) and

output y = µd(x1, . . . , xd) ∈ X (Li0(k0), Lid(kd)), there is a single pair of pants P0 ⊂ H

and a sufficiently large N , dependent on x1, . . . , xd, y, such that for all n ≥ N , there are

representatives xj ∈ XP0(Lij−1
(kj−1), Lij(kj);Hn), y ∈ XP0(Li0(k0), Lid(kd); dHn) for all j =

1, . . . , d. Hence, µd(x1, . . . , xd) = µdP0
(x1, . . . , xd).

Proof. From the assumptions, there is a sufficiently large N0, dependent on x1, . . . , xd, y,

such that for all n ≥ N0, xj has a representative xj ∈ X (Lij−1
(kj−1), Lij(kj);Hn), for all

j = 1, . . . , d, and y ∈ XP0(Li0(k0), Lid(kd); dHn). Suppose the holomorphic disc has at least

one of its vertices is contained in a pair of pants Pαβγ, but not in an adjacent pair of pants

Pαβη, and at least one of its vertices is contained in Pαβη but is not contained in Pαβγ. We

will show that such a holomorphic disc cannot exist. The same arguments also excludes discs

in which an edge goes into Pαβη to reach an vertex lying in another pair of pants even further

away from Pαβγ. Hence, all intersections points are actually in a single pair of pants. Note

that Pαβγ and Pαβη overlap on the cylinder eαβ. We focus on the portion of the disc that lies

in eαβ, and the manner in which it escapes into both ends of the cylinder. Again, we view

perturbed pseudo-holomorphic discs as ordinary peudo-holomorphic discs with perturbed

boundaries as explained in Section 3.3.

None of the inputs can be in Cαβ(Hn), the positively wrapped region shared by both

pairs of pants. This is due to what we noticed before (in the proof of Lemma 3.8.1) that

the angle at any input in the positively wrapped region is less than π/2. Then by convexity,

the holomorphic disc will not go beyond that input point, i.e. it does not escape into both

Pαβγ\eαβ and Pαβη\eαβ. Hence, in the region [1, 3] × S1 ⊂ eαβ, either there’s no vertex at

all, or there is one output.

First, assume the output is not in the positively wrapped region, then there’s no in-

tersection point at all in this region. Consider the universal cover of the cylinder eαβ and

lifts of all Lagrangians in eαβ to this universal cover. We can find two boundary arcs in

Lagrangians φsn(Lid−s(kd−s)) and φtn(Lid−t(kd−t)) that are non-parallel lines and that they

intersect the fiber of the universal cover over τ = 2 at ψ1(2) and ψ2(2), repsectively. The

Hamiltonian perturbations we use actually keep ψ1(2) and ψ1(2) constant as n varies, and
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the input marked points move along by continuation. So, these two lines will cross each

other for all n > N = |ψ1(2)−ψ2(2)
2π(t−s) |. So there are no holomorphic discs with the assumed

inputs and outputs for sufficiently large n.

Now, suppose the output y is in the positively wrapped region. In the universal cover

of eαβ, the disc will look like one of the configurations in Figure 3.8. The output point is

bounded by Lagrangians Lid(kd) and φdn(Li0(k0)), which have the biggest and smallest slopes.

When we increase n to be large enough, ψ1(2) and ψ2(2) remain constant as before, and the

boundary arcs will cross each other again inside the positively wrapped region, which rules

out the existence of such holomorphic discs.

Figure 3.8:

Theorem 3.8.4. The wrapped Fukaya category W(H) is split-generated by the Lagrangian

objects Lα(k) where α ∈ A and k ∈ Z. In a suitable model for W(H), the morphism complex

between any two objects, Lα(k) and Lβ(l), is generated by

X (Lα(k), Lβ(l)) =
(⋃
XPαβγ (Lα(k), Lβ(l))

)
/ ∼ (3.8.2)

where XPαβγ (Lα(k), Lβ(l)) is the set of generators of the morphism complexes in W(Pαβγ),

and the equivalence relation identifies x ∈ XPαβγ\J γαβ with y ∈ XPαβη\J ηαβ whenever ργαβ(x) =

ρηαβ(y), where ργαβ, ρηαβ are restriction maps to the cylinder Cαβ = Pαβγ ∩Pαβη. Moreover, in

this model, the A∞-products in W(H) are given by those in the pairs of pants.

To clarify the last statement in Theorem 3.8.4, any product µd(x1, . . . , xd) vanishes unless

x1, . . . , xd all live in a single pair of pants Pαβγ (by Lemma 3.8.3), in which case we take
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the product inside Pαβγ. If in fact the generators x1, . . . , xd all live inside the same bounded

cylinder Cαβ, then so do the discs with these inputs (by the preceding arguments in Lemma

3.8.1), and the calculations A∞-products in Pαβγ and Pαβη give the same answer, i.e. the

product is compatible with the equivalence relation. On the other hand, if at least one of

the given inputs x1, . . . , xd lives in J γ
αβ, then so does the output by Lemma 3.8.1, and so

there is no question of compatibility with the equivalence relation.

Proof. Follows from Lemma 3.8.3.

We label the 2n−nαβ(k− l)+ 1 generators in Cαβ(Lα(k), Lα(l);Hn) by x−nαβ , . . . , x
−1
αβ , x

0
αβ,

x1
αβ, . . . , x

n−nαβ(l−k)

αβ , successively with the minimum of the Hamiltonian labelled as x0
αβ as

illustrated in Fig. 3.9. Each Floer complex CW ∗
Pαβγ

(Lα(k), Lβ(l)) is a

CW ∗
Pαβγ

(Lα(k), Lα(k))−CW ∗
Pαβγ

(Lβ(l), Lβ(l))-bimodule. We label the 2n−nαβ(l−k)−dα,β−1

generators in Cαβ(Lα(k), Lβ(l);Hn) by x−nα;β, . . . , x
−1
α;β, x0

α;β, . . . , x
n−nαβ(l−k)−dα,β−2

α;β (Fig. 3.9).

Figure 3.9: Generators in Cαβ(Lα(0), Lα(0);H2) and Cαβ(Lα(0), Lβ(0);H2); assuming dα,β =
−1.

The object Lα(k) is equivalent to Lα(l) in the category W(Pαβγ), and similarly in

W(Pαβη). However, they can be distinguished as the object for which the generator xi ∈
Cαβ(Lα(k), Lα(l)) in the image of the restriction functor ργαβ is identified with the generator

x̃−(i+nαβ(l−k)) ∈ Cαβ(Lα(k), Lα(l)) in the image of ρηαβ. In addition,xiα;β is identified with

x̃
−(i+nαβ(l−k)+dα,β+2)

α;β .
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Chapter 4

The Landau-Ginzburg mirror

4.1 Generating objects.

The category of matrix factorizations MF (X,W ) is defined to be the Verdier quotient

of MF naive(X,W ) by the subcategory Ac(X,W ) of acyclic elements [AAEKO13, LP11,

Or11]. The objects of MF naive are

T := T1

t1 //
T0

t0
oo ,

where T1, T0 are locally free sheaves of finite rank on X, and t1, t0 are morphisms satisfying

ti+1 ◦ ti = W · idTi . The morphism complex

Hom(S, T ) = ⊕i,jHom(Si, Tj)

is graded by (i+ j)mod 2, i.e. even and odd, that is

Homeven(S, T ) = Hom(S0, T0)⊕Hom(S1, T1),

Homodd(S, T ) = Hom(S0, T1)⊕Hom(S1, T0).

The differential on this complex is d : f 7→ t◦f−(−1)|f |f ◦s. The equivalence MF (X,W )
∼→

Db
sg(D) is given by T 7→ coker(t1), which is a sheaf on D because it is annihilated by W .

For each irreducible divisor Dα = {tα;1 = 0}, tα;1 : O(−Dα) → O is an injective sheaf

homomorphism. It also induces a map tα;1 : O(−Dα)(k) → O(k) for any k ∈ Z (with
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the notation O(k) := O(1)⊗k, where O(1) is the polarization (ample line bundle) on X

determined by the polytope ∆X). For each α ∈ A, k ∈ Z, we consider

Tα(k) := O(−Dα)(k)
tα;1 // O(k)
tα;0

oo . (4.1.1)

in MF (X,W ). The object Tα(k) in Db
sg(D) is coker(tα;1) = ODα(k). An argument similar

to that in Section 6 of [AAEKO13] implies that:

Lemma 4.1.1. MF (X,W ) is split-generated by objects Tα(k), k ∈ Z, α ∈ A.

4.2 Čech model and homotopic restriction functors

Let

U = {Uαβγ = C[xαβ, xαγ, xβγ],W = xαβxαγxβγ}α,β,γ∈A adjacent

be a finite covering of (X,W ) by affine toric subsets. The moment polytope of each Uαβγ

corresponds to a corner of ∆X given by Cα, Cβ, Cγ. The divisor D restricted to Uαβγ is equal

to the restriction (Dα ∪ Dβ ∪ Dγ)|Uαβγ , with Dα|Uαβγ = {xβγ = 0}, Dβ|Uαβγ = {xαγ = 0},
Dγ|Uαβγ = {xαβ = 0}, and W is locally given by the product of these affine coordinates. The

object Tα(k) restricted to this local chart is

Tα(k)(Uαβγ) = O(−Dα)(k)(Uαβγ)
xβγ // O(k)(Uαβγ)

xαβxαγ
oo ,

and similarly for Tβ(k)(Uαβγ) and Tγ(k)(Uαβγ). Note that Tα(k)(Uαβγ) is actually equivalent

to Tα(0)(Uαβγ) in the category of matrix factorizations on the local chart Uαβγ.

There is a restriction functor, simply to the complement of the coordinate plane {xαβ =

0},

σγαβ : MF (Uαβγ, xαβxαγxβγ)→MF (C∗[xαβ]× C[xαγ, xβγ], xαβxαγxβγ) ∼= Db(Coh(C∗[xαβ])),

where C∗[xαβ] is the C∗ with ring of functions C[x±αβ]. The equivalence

MF (C∗[xαβ]× C[xαγ, xβγ], xαβxαγxβγ) ∼= Db(Coh(C∗[xαβ]))

is due to the Knörrer periodicity theorem [Or04, Kn87]. In this section, we will check the

commutativity of the following diagram up to the first order
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A :=W (
∐
Pαβγ)

ρ //

qa

��

B :=W (
∐
Cαβ)

qb
��

A′ := MF (
∐

(Uαβγ, xαβxαγxβγ))
σ // B′ := Db(Coh(

∐
C∗[xαβ])).

In this diagram, ρ is the restriction functor from Section 3.8. Due to HMS for pairs of pants

(as shown in [AAEKO13]), the category A is quasi-equivalent to A′ via the A∞-functor qa.

The categories B and B′ are quasi-equivalent due to HMS for cylinders, and the functor qb

has no higher order terms. We want to show that the two A∞ restriction functors

F = qb ◦ ρ, G = σ ◦ qa : A → B′

are equal up to the first order.

The following diagram shows the morphisms (f1, f0) ∈ Hom0(Tα(k)(Uαβγ), Tα(l)(Uαβγ))

and (h0, h1) ∈ Hom1(Tα(k)(Uαβγ), Tα(l)(Uαβγ)),

O(−Dα)(k)(Uαβγ)
xβγ //

f1

��

h0

((

O(k)(Uαβγ)xαβxαγ
oo

f0

��
h1

vv
O(−Dα)(l)(Uαβγ)

xβγ // O(l)(Uαβγ)
xαβxαγ
oo

.

The differential maps

(f1, f0) 7→ (xβγ(f1 − f0), xαβxαγ(f1 − f0)),

(h0, h1) 7→ (xαβxαγh1 − xβγh0, xαβxαγh1 − xβγh0).

Hence in cohomology

Hom0(Tα(k)(Uαβγ), Tα(l)(Uαβγ)) ∼= O(l − k)(Uαβγ)/(xβγ, xαβxαγ),

Hom1(Tα(k)(Uαβγ), Tα(l)(Uαβγ)) = 0.

Restricting via σγαβ gives

Hom0(Tα(k)(Uαβγ), Tα(l)(Uαβγ)) ∼= O(l − k)(Uαβγ)/(xβγ, xαγ) ∼= ODαβ |Uαβγ(l − k),
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where Dαβ|Uαβγ = (Dα ∩Dβ)|Uαβγ ∼= C∗[xαβ]. Hence Tα(k)(Uαβγ), Tα(l)(Uαβγ) and

Tα(k)(Uαβη), Tα(l)(Uαβη) are respective objects in MF (Uαβγ, xαβxγβxαγ) and

MF (Uαβη, xαβxηβxαη) for which the generator xiαβ ∈ ODαβ |Uαβγ(l − k) in the image of the

restriction function σγαβ is identified with x̃
−(i+nαβ(l−k))

αβ ∈ ODαβ |Uαβη(l−k) in the image of σηαβ.

Indeed, the restriction of O(1) to Dαβ has degree given by the length of the corresponding

edge of ∆X , i.e. nαβ, so O(l − k)Dαβ has degree nαβ(l − k).

A similar calculation can be carried out for Hom(Tα(k)(Uαβγ), Tβ(l)(Uαβγ)). One finds

that the restriction functors from adjacent affine charts to their common overlap now identify

generators whose degrees add up to the degree of O(−Dα)(l−k)|Dαβ , namely nαβ(l−k)+dαβ.

This matches with the behavior described at the end of Section 3 for the restriction functors

in Floer theory, via the natural identification between cohomology-level morphisms on two

sides of mirror symmetry as suggested by our notations. Hence the functors F and G agree

on cohomology as claimed.

The restriction functor makes B′ a module over A, and the Hochschild cohomology

HH1(A,B′) determines the classification of A∞-functors from A to B′ which induce a a

given cohomology-level functor; see Section 1h of [Se08]. A Hochschild cohomology calcu-

lation similar to that in Section 3 of [AAEKO13] shows that:

Lemma 4.2.1. The Hochschild cohomology HH1(A,B′) vanishes in all pieces which have

length filtration index greater than one.

Corollary 4.2.2. Two A∞-functors from A to B′ which agree to first order are homotopic.
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Appendix A

A global cohomology level

computation

We compute the wrapped Fukaya categoryW(H) and the category of singularityDb
sg(W

−1(0))

at the level of cohomology, using methods very similar to those in [AAEKO13]. Aside from

using a few earlier notations, this appendix is self contained, independent from the sheaf

theoretic computation in the rest of the paper. We show it because it is a straightforward

demonstration of HMS, though we do not know how to extend this to compute the higher

A∞-structures. We will list the generators of the morphism complexes for both categories,

but we will be very brief in discussing the product structures on the morphism complexes

because this computation is not the main point of this paper.

A.1 The wrapped Fukaya category.

We use Abouzaid’s model of the wrapped Fukaya category [Ab10], with only a Hamil-

tonian perturbation H : M → R that is quadratic in the cylindrical ends. Then the

wrapped Floer complex CW ∗(Lα(k), Lβ(l)) is generated by the Reeb chords that are the

time-1 trajectories of the Hamiltonian flow from Lα(k) to Lβ(l). Equivalently, up to a

change of almost-complex structure, CW ∗(Lα(k), Lβ(l)) = 〈φ1(Lα(k))∩Lβ(l)〉. The product

µ2 : CW ∗(Lβ(j), Lγ(l))⊗CW ∗(Lα(j), Lβ(k))→ CW ∗(Lα(j), Lγ(l)) is equivalent to the usual

Floer product CF ∗(φ1(Lβ(j)), Lγ(l))⊗CF ∗(φ2(Lα(j)), φ1(Lβ(k))→ CF ∗(φ2(Lα(j)), Lγ(l)),
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which counts holomorphic triangles with boundaries on φ2(Lα(j)), φ1(Lα(k)), and Lα(l).

The inputs are φ1(p1) ∈ φ2(Lα(j))∩φ1(Lβ(k)) and p2 ∈ φ1(Lβ(k))∩Lα(l), and the output is

q̃ ∈ φ2(Lα(j)) ∩ Lα(l), which corresponds to q ∈ φ1(Lα(j)) ∩ Lα(l) by the rescaling method

explained in [Ab10].

Lagrangians from the same component.

First, we list the generators of CW ∗(Lα(k), Lα(l)); see Fig. A.1 and A.2. There are two

cases.

Case 1: on a bounded edge eαβ. For k < l, Lα(k) intersects Lα(l) at nαβ(l − k) + 1

points on eαβ, all of which have degree 0. We label each intersection point sequentially

by x
nαβ(l−k)−j
αβ yjαβ, for j = 0, . . . , nαβ(l − k). If eαβ is adjacent to another bounded edge

eαη, then there is a generator that is an interior intersection point at the joint of these two

edges labelled by x
nαβ(l−k)

αβ on one side and y
nαη(l−k)
αη on the other side; we identify them

x
nαβ(l−k)

αβ = y
nαη(l−k)
αη . For k > l, Lα(k) intersects Lα(l) at nαβ(k − l) − 1 points of degree 1,

and we label them sequentially by
(
x
nαβ(k−l)−2−j
αβ yjαβ

)∗
, for j = 0, . . . , nαβ(k − l)− 2. When

eαβ is adjacent to another bounded edge eαη, we get an extra degree 1 generator that is an

interior intersection point at the joint of these two edges. Again, we identify the two labels

coming from both sides.

Case 2: on an unbounded edge eαγ. Let eαη be the adjacent edge. If k < l, then φ1(Lα(k))

and Lα(l) have one interior intersection point at the joint of eαγ and eαη, which we label

by x0
αγ, and we label the infinitely many purturbed intersections points on eαγ successively

by xjαγ for j = 1, 2, . . .. Like before, we need to set x0
αγ to equal the label for the same

generator coming from the edge eαη, i.e. x0
αγ = x0

αη if eαη is unbounded, and x0
αγ = y

nαη(l−k)
αη

(or = x
nαβ(l−k)
αη depending on which side eαγ is attached to eαβ) if eαη is bounded. If k > l,

then there is no interior intersection point, only infinitely many perturbed intersection points

labeled by xjαγ for j = 1, 2, . . ..

As for the products CW ∗(Lα(k), Lα(l)) ⊗ CW ∗(Lα(j), Lα(k)) → CW ∗(Lα(j), Lα(l)),

there are no holomorphic triangles with vertices in more than one edge. The product
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Figure A.1: Generators of CW ∗(Lα, Lα(3)) assuming nαβ = 1.

Figure A.2: Generators of CW ∗(Lα(3), Lα) assuming nαβ = 1. The generators x∗αβ and y∗αβ
are of degree 1. Intersection points on unbounded edges are always of degree 0.

p2 · p1 = q needs to satisfy deg(p1) + deg(p2) = deg(q)(mod 2) where the grading is by

Z2, so there are just the three possibilities listed below. The formulas for the products are

obtained by counting holomorphic triangles.

• CW 0(Lα(k), Lα(l)) ⊗ CW 0(Lα(j), Lα(k)) → CW 0(Lα(j), Lα(l)), with xp
′

αβy
q′

αβ · x
p
αβy

q
αβ =

xp+p
′

αβ yq+q
′

αβ . For generators on a bounded edge, such a product is only possible when j ≤ k ≤ l.

• CW 0(Lα(k), Lα(l)) ⊗ CW 1(Lα(j), Lα(k)) → CW 1(Lα(j), Lα(l)), k < l < j, with xp
′

αβy
q′

αβ ·
(xpαβy

q
αβ)∗ = (xp−p

′

αβ yp−p
′

αβ )∗.

• CW 1(Lα(k), Lα(l))⊗CW 0(Lα(j), Lα(k))→ CW 1(Lα(j), Lα(l)), l < j < k, with (xp
′

αβy
q′

αβ)∗ ·
xpαβy

q
αβ = (xp

′−p
αβ yp

′−p
αβ )∗.

Lagrangians from two adjacent components.

In this section, we focus on two adjacent components Cα and Cβ. Recall that on the edge

eαβ, Lα(k) and Lβ(l) have the opposite orientations. When the edge eαβ is unbounded, we

do the same as in [AAEKO13]; we label the infinite sequence of odd degree intersection

points by xjα;β, for j = 0, 1, 2 . . ..

On a bounded edge eαβ, if k < l, then Lα(k) and Lβ(l) intersect at nαβ(l− k) + dα,β + 1
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points of degree 1, and we label them by x
nαβ(l−k)+dα,β−j
α;β yjα;β for j = 0, . . . nαβ(l − k) + dα,β.

For k > l, Lα(k) and Lβ(l) intersect at nαβ(k− l) + dα,β + 1 points of degree 0, and we label

them by
(
x
nαβ(k−l)+2+dα,β−j
α;β yjα;β

)∗
for j = 0, . . . , nαβ(k − l) + dα,β. See Figure A.3.

Figure A.3: Intersections of Lα and Lβ(3) on a bounded edge eαβ; assuming nαβ = 1,
dα,β = −1.

Assuming j < k < l, we have the following products:

• CW 1(Lα(k), Lβ(l)) ⊗ CW 0(Lα(j), Lα(k)) → CW 1(Lα(j), Lβ(l)), with xp
′

α;βy
q′

α;β · x
p
αβy

q
αβ =

xp+p
′

α;β y
q+q′

α;β .

• CW 0(Lβ(k), Lβ(l)) ⊗ CW 1(Lα(j), Lβ(k)) → CW 1(Lα(j), Lβ(l)), with xp
′

αβy
q′

αβ · x
p
α;βy

q
αβ =

xp+p
′

α;β y
q+q′

α;β .

• CW 1(Lβ(k), Lα(l))⊗CW 1(Lα(j), Lβ(k))→ CW 0(Lα(j), Lα(l)), with xp
′

β;αy
q′

β;α ◦ x
p
α;βy

q
α;β =

xp+p
′+1

αβ yq+q
′+1

αβ .

There are three other products by interchanging α and β above. There are additional

products of a similar nature when we change the assumption of j < k < l to other orders.

Lagrangians from three adjacent components.

Suppose a holomorphic triangle is bounded by Lagrangians from three different components

Cα, Cβ, Cγ. The boundary of this triangle can be decomposed into three arcs, each arc only

winding around one leg of the pair of pants. Pick a point in the center of the triangle, then

joining these three arcs to this center point form three loops γ1, γ2, and γ3. The fundamental

group of the pair of pants is a free group on two generators a and b, where a is a loop around

one leg of the pair of pants, b is a loop around another leg, and ab is a loop around the third

leg. Hence γ1 = ap, γ2 = bq, and γ3 = (ab)r. However γ1 · γ2 = γ3, hence we must have
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p = q = r = 1 or p = q = r = 0. Hence, the vertices of such a holomorphic triangle in a

pair-of-pants cannot be an intersection point that is further down any edge than the first

one.

A.2 Category of singularities of the Landau-Ginzburg

mirror

We describe the triangulated category of singularities Dsg(D) of D = W−1(0). As in [Or04],

HomDsg(ODα(k),ODβ(l)[n]) ∼= ExtnD(ODα(k),ODβ(l)),

for n > dimD = 2. The morphisms only depend on whether the degree n is even or odd, so

calculating Ext’s for n > 2 is enough to determine the morphisms.

Assuming Dαβ := Dα∩Dβ 6= ∅, we get a 2-periodic resolution of ODα(k) on D by locally

free sheaves,

{· · · → OD(k)→ OD(−Dα)(k)→ OD(k)} → ODα(k)→ 0.

We can replace ODα(k) with the above 2-periodic complex, and Hom(−,ODβ(l)) maps this

complex to

0→ ODβ(l − k)
φαβ→ ODβ(Dα)(l − k)

ψαβ→ ODβ(l − k)→ · · · .

We get ExtnD(ODα(k),ODβ(l)) as the hypercohomology groups of this complex.

Morphisms HomDsg
(ODα

(k),ODα
(l)[n]).

In this case φαα = 0, and ψαα is isomorphic to the injective map ODα(−Hα)(l − k) →
ODα(l − k) with its cokernel being OHα(l − k), where Hα =

⋃
βDαβ. Hence for n > 2,

ExtevenD (ODα(k),ODα(l)) = H0(OHα(l − k)) and ExtoddD (ODα(k),ODα(l)) = H1(OHα(l − k)).

So

HomDsg(ODα(k),ODα(l)[∗]) ∼= H∗(OHα(l − k)).

First, suppose Dα is unbounded. If Hα = C∪C, then H0(OHα(l−k)) = C[x]⊕C[y]/x0 =

y0 and H1(OHα(l − k)) = 0. Otherwise, Hα consists of two C1’s connected by one or more
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P1’s, as illustrated in Fig. A.4. We denote the two C1’s by C ′ and C ′′, and the connecting

sequence of P1’s by C1, ..., Cm, and C =
⋃m
j=1Cj. Then Hα = C ∪ C ′ ∪ C ′′ and there is an

exact sequence

0→ H0(OC∪C′∪C′′(l − k))
∼=−→ H0(OC(l − k))⊕H0(OC′∪C′′) � H0(Op∪p′′)

0−→ H1(OC∪C′∪C′′(l − k))
∼=−→ H1(OC(l − k))→ 0.

Figure A.4: Hα = C ∪ C ′ ∪ C ′′

When l − k ≥ 0,

H0(OC(l − k)) ∼=
m⊕
j=1

H0(OCj(l − k))/ ∼ ∼=
m⊕
j=1

C[xj : yj]
nj(l−k)/ ∼,

H1(OC(l − k)) = 0,

where (xj : yj) are homogenous coordinates. The equivalence relation above identifies

y
nj(l−k)
j ∈ H0(OCj(l − k)) and x

nj+1(l−k)
j+1 ∈ H0(OCj+1

(l − k)) with each other and with the

section of OC(l−k) obtained by considering these two polynomials together on Cj∪Cj+1. In

this notation, if Cj = Dα ∩Dβj , then we are identifying xj ∼ xαβj , yj ∼ yαβj , and nj ∼ nαβj .

Suppose C ′ = Dα ∩Dγ and C ′′ = Dα ∩Dη, then H0(OC′∪C′′) = C[xαγ]⊕ C[xαη].

When l − k < 0, H0(OC(l − k)) = 0, H0(OC′∪C′′) = C[xαγ]⊕ C[xαη], and

H1(OCj(l − k)) =
(
C[xj : yj]

nj(k−l)−2
)∗
.

(When nj(l − k) = −1, H1(OCj(l − k)) = 0.) Then H1(OC(l − k)) is a direct sum of all

the H1(OCj(l − k)) for j = 1, . . . ,m plus m − 1 extra generators associated to each vertex

Cj ∩ Cj+1. Note by Serre duality, H1(P1,O(n(l − k))) ∼= H0(P1,O(n(k − l) − 2))∗, with

(xpjy
q
j )
∗ = dx

xp+1
j yqj

= − dy
xpyq+1 , where p+ q = n(k − l)− 2.

Comparing this with the wrapped Floer cohomology, we get

Hom∗(Lα(k), Lα(l)) ∼= HomDsg(ODα(k),ODα(l)[∗]).
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Morphisms HomDsg
(ODα

(k),ODβ
(l)[n]), α 6= β.

In this case ψαβ = 0, and φαβ is isomorphic to the injective map ODβ(l−k)→ ODβ(Dα)(l−k)

with its cokernel being ODαβ(Dα)(l − k). Hence for n > 2, ExtevenD (ODα(k),ODβ(l)) =

H1(ODαβ(Dα)(l − k)) and ExtoddD (ODα(k),ODβ(l)) = H0(ODαβ(Dα)(l − k)). So

HomDsg(ODα(k),ODβ(l)[∗+ 1]) ∼= H∗(ODαβ(Dα)(l − k)).

If Dαβ is unbounded, then Dαβ = C[x] and H∗(ODαβ(Dα)(l− k)) ∼= H0(OC) ∼= C. If Dαβ

is bounded and Dαβ
∼= P1, then ODαβ(Dα) ∼= OP1(dα,β), where dα,β = degO(Dα)|Dαβ , and

H∗(ODαβ(Dα)(l − k)) = H∗(OP1(nαβ(l − k) + dα,β)).

For nαβ(l − k) ≥ −dα,β,

H0(OP1(nαβ(l − k) + dα,β)) ∼= C[xα;β : yα;β]nαβ(l−k)+dα,β ,

H1(OP1(nαβ(l − k) + dα,β)) = 0.

For nαβ(l − k) = −dα,β − 1,

H0(OP1(nαβ(l − k) + dα,β)) = H1(OP1(nαβ(l − k) + dα,β)) = 0.

For nαβ(l − k) < −dα,β − 1,

H0(OP1(nαβ(l − k) + dα,β)) = 0,

H1(OP1(nαβ(l − k) + dα,β)) =
(
C[xα;β : yα;β]nαβ(k−l)+dα,β+2

)∗
.

Comparing with wrapped Floer cohomology, we get

Hom∗(Lα(k), Lβ(l)) ∼= HomDsg(ODα(k),ODβ(l)[∗]).
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Basel, 1995.

[Kn87] Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities I., Invent.

Math., v.88 (1987) 153-164.

[Ko98] Maxim Kontsevich, Lectures at ENS, Paris, Spring 1998, notes taken by J. Bellaiche,

J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, unpublished.



BIBLIOGRAPHY 45

[Ko09] Maxim Kontsevich, Symplectic geometry of homological algebra, preprint, 2009,

http://www.ihes.fr/~maxim/TEXTS/Symplectic_AT2009.pdf.

[LP11] Kevin Lin, Daniel Pomerleano, Global matrix factorization. Math. Res. Lett.

20(2013), no. 1, 91-106.

[Mi04] Grigory Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hyper-

surfaces, Topology 43 (2004), no. 5, 1035-1065.

[Na14] David Nadler, Fukaya categories as categorical Morse homology, SIGMA Symmetry

Integrability Geom. Methods Appl. 10 (2014), Paper 018, 47 pp, arXiv:1109.4848.

[NZ09] David Nadler, Eric Zaslow. Constructible sheaves and the Fukaya category, J. Amer.

Math. Soc. 22 (2009), no. 1, 233-286.

[Or04] Dimitri Orlov, Triangulated categories of singularities and D-branes in Landau-

Ginzburg models, Proc. Steklov Inst. Math. 2004, no. 3 (246), 227-248, arXiv:0302304.

[Or11] Dimitri, Orlov, Matrix factorizations for nonaffine LG-models, Maths. Ann. 353

(2012), no. 1, 95-108.

[Ru01] H. Rullg̊ard, Polynomial amoebas and convexity, preprint, Stockholm University

(2001).

[Se08] Paul Seidel, Fukaya categories and Picard-Lefschetz theory, Zürich Lectures in Ad-
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