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ABSTRACT OF THE DISSERTATION

Distributed Averaging Dynamics and Optimization over Random Networks

by

Adel Aghajan Abdollah

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2021

Professor Behrouz Touri, Chair

In this thesis, we study distributed averaging dynamics and its main application, i.e.,

distributed optimization. More specifically, the results of this thesis can be divided into two main

parts: (i) Ergodicity of distributed averaging dynamics, and (ii) Distributed optimization over

dependent random networks.

On Topic (i), we study both discrete-time and continuous-time time-varying distributed

averaging dynamics. First, we show a necessary and a sufficient condition for ergodicity of

discrete-time time-varying distributed averaging dynamics. We extend a well-known result in

ergodicity of time-homogeneous (time-invariant) averaging dynamics and we show that ergodicity

of a dynamics necessitates that its (directed) infinite flow graph has a spanning rooted tree.
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Then, we show that if groups of agents are connected using a rooted tree and the averaging

dynamics restricted to each group is P∗ and ergodic, then the dynamics over the whole networks

is ergodic. In particular, this provides a general condition for convergence of consensus dynamics

where groups of agents, which are capable of reaching consensus in the absence of other agents,

follow each other on a time-varying network. Then, we extent this condition for convergence of

consensus dynamics to continuous-time distributed averaging dynamics.

On Topic (ii), we study distributed optimization solvers over random networks for both

convex and strongly convex functions. We show a general result on the convergence of such

schemes for a broad class of dependent weight-matrix sequences. In addition to implying many

of the previously known results on this domain, our work shows the robustness of distributed

optimization results to link-failure. Also, it provides a new tool for synthesizing distributed

optimization algorithms. To prove our main theorems on this topic, we establish new results

on the rate of convergence analysis of averaging dynamics and non-averaging dynamics over

(dependent) random networks. These secondary results, along with the required martingale-

type results to establish them, might be of interest to broader research endeavors in distributed

computation over random networks.
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Chapter 1

Introduction

Distributed averaging dynamics has received increasing attention in recent years due to its

applications in distributed control of robotic networks (see e.g., [10]), study of opinion dynamics

in social networks (see e.g., [17, 24, 2]), distributed estimation and signal processing (see e.g.,

[50, 13, 63]), and power networks (see e.g., [19, 18, 16]). However, the main application of

distributed averaging dynamics is distributed optimization (see e.g., [76, 28, 46, 45, 66]), which

is the main subject of this thesis. Before studying distributed optimization, we study distributed

averaging dynamics and prove some results for ergodicity of those dynamics. Therefore, the

material of the thesis can be divided into two main topics:

1. Ergodicity of Distributed Averaging Dynamics

2. Distributed Optimization Over Dependent Random Networks

1.1 Ergodicity of Distributed Averaging Dynamics

A discrete-time distributed averaging dynamics is a linear time-varying dynamics x :

{t0, t0 + 1, . . .}→ Rn driven by stochastic matrices W (t) = [wij(t)]n×n with some initial condi-
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tion x(t0) ∈ Rn, i.e.,

x(t+ 1) =W (t)x(t), for t≥ t0. (1.1)

A continuous-time distributed averaging dynamics is a linear time-varying dynamics1

ẋ(t) = A(t)x(t) for t≥ t0, (1.2)

driven by a Laplacian process A(t) = [aij(t)]n×n with an initial condition x(t0) ∈ Rn. In this

thesis, we assume that for all i, j ∈ [n], aij(t) is a measurable function of time and
∫ t
τ aij(s) ds <

∞ for all t0 ≤ τ ≤ t, implying that (1.2) has a unique continuous solution [62].

We refer to the solution x(t) of (1.2) (resp. (1.1)) as the dynamics driven by {A(t)}

(resp. {W (t)}). It can be shown that the transition matrices of a Laplacian process are stochastic

matrices [37]. This fact makes the continuous-time and discrete-time distributed averaging

dynamics closely related. In this thesis, we study both the discrete-time and continuous-time

distributed averaging dynamics.

The main problem that we deal with in this part of the thesis is Ergodicity. We say that

{W (t)} is ergodic if limt→∞x(t) = x̄e for some x̄ ∈ R, and for all initial time t0 ∈ Z+ and

all choices of initial condition x(t0) ∈ Rn in the dynamics (1.1). Similarly, {A(t)} is ergodic

if limt→∞x(t) = x̄e for some x̄ ∈ R, and for all initial time t0 ∈ R+ and all choices of initial

condition x(t0) ∈ Rn for the dynamics (1.2).

For time-invariant continuous-time distributed averaging dynamics, having a spanning

directed rooted tree in the associated graph is shown to be the necessary and sufficient condition

for ergodicity [56]. Also, the counterpart of this condition for time-invariant discrete-time

distributed averaging dynamics besides having a root with a self-loop is the weakest sufficient

1In this thesis, for consistency of notation, we use t to denote time variable for both discrete-time and continuous-
time settings.
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condition for ergodicity in terms of associated graph [80].

We study time-varying distributed averaging dynamics. We can divide the literature of

time-varying distributed averaging dynamics into two parts, based on the assumption on whether

there is a uniform lower bound on the non-zero entries of the underlying matrices or not:

1. With a uniform lower bound on the non-zero entries: Most of the existing works on

distributed averaging assume that over every given fixed time window, there is guaranteed

connectivity between the nodes in the time-varying dynamics. In this regard, it is proved

that a dynamics is ergodic if the union of the associated graphs over every window of a

given fixed length has a spanning directed rooted tree [76, 77, 27, 11, 12, 55, 40].

2. Without a uniform lower bound on the non-zero entries: In this case, which has been

investigated more recently, instead of focusing on non-zero entries, the focus is on the

study of the unbounded interactions graph of the underlying process. This approach was

introduced in [69] by introducing the infinite flow graph of an underlying chain, which is a

generalization of the associated graph in time-invariant dynamics to time-varying dynamics,

and a class of chains, named P∗, which is a generalization of non-negative matrices

with positive Perron eigenvectors to non-negative matrix chains. Later this approach was

extended to the continuous-time dynamics in [6, 8, 25, 37]. In [25], it was shown that

the connectivity of the infinite flow graph and instantaneous cut-balancedness conditions

are sufficient conditions for ergodicity. This result was further extended for average cut-

balanced processes in [37]. In [8] it was shown that the instantaneously cut-balanced

processes are in fact in class P∗.

In the first part of the thesis, we take the modern approach, described above, and do not assume a

uniform lower bound on the non-zero entries of the underlying chains. For distributed optimization

(i.e., the second part of the thesis), to ensure fast-enough mixing, we assume a condition similar

to uniform lower bound condition on the entries of the underlying matrix sequence.
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1.2 Distributed Optimization Over Dependent Random Net-

works

In distributed optimization, we are often interested in finding an optimizer of a decompos-

able function

F (z) =
n∑
i=1

fi(z)

such that fi(·)s are distributed through a network of n agents, i.e., agent i only knows fi(·), and

we are seeking to solve this problem without sharing the local objective functions. Therefore, the

goal is to find distributed dynamics over (possibly time-varying) communication networks that,

asymptotically, all the nodes agree on an optimizer of F (·).

The most well-know algorithm that achieves this is, what we refer to as, the averaging-

based distributed optimization solver, is introduced in [45] which is the dynamics of the form

x(t+ 1) =W (t+ 1)x(t)−η(t)g(t), (1.3)

where W (t) = [wij(t)] is a weight matrix, xi(t) is agent i’s estimate of an optimizer of F (·),

gi(t) ∈ Rm is a subgradient of fi(z) at z = xi(t) for i ∈ [n], and {η(t)} is a step-size sequence2.

In this algorithm, each node maintains an estimate of an optimal point, and at each time step,

each node computes the average of the estimates of its neighbors and performs (sub-)gradient

descent on its local objective function. To show the convergence of such an algorithm, the

corresponding weight matrices are often assumed to be doubly stochastic. Doubly stochasticity of

weight matrices causes that the average of estimates of all agents behaves similar to the gradient

descent dynamics for F (·)

While making a row-stochastic or a column-stochastic matrix is easy, this is not necessarily

2The constant step-size variation of this dynamics was studied in [45].

4



the case for doubly stochastic matrices. By taking average of the neighbors’ estimates that are

received by all agents, we can construct a row-stochastic weight matrix. Also, if every agent

sends out its estimate after dividing it by its out-degree, we can construct an update mechanism

involving column-stochastic weight matrices. However, we cannot do both of these procedures

simultaneously to construct a doubly stochastic matrix sequence and constructing such a sequence

often requires extra efforts and assumptions. For example, to construct a doubly stochastic

sequence, one can use Metropolis algorithm. In this algorithm, it is assumed that all the nodes are

connected through an undirected graph sequence, and every node knows the degree of all of its

neighbors (in addition to its own degree). In this case, we can set

wij(t) =


1

max{di(t),dj(t)} , if i 6= j

1−
∑
6̀=iwi`(t), if i= j

,

where di(t) is the degree of node i at time t. It can be verified that such a matrix is doubly

stochastic for all t.

In vast majority of the distributed optimization literature, it is assumed that, through such

mechanisms, a doubly stochastic matrix sequence is established and is given. A solution to

avoid such an assumption is to establish more complicated distributed algorithms that effectively

reconstruct the average-state distributively. The first algorithm in this category was proposed

in [73, 75, 74], which is called push-sum or subgradient-push, and later was extended for time-

varying networks [43]. In this scheme, the weight matrices are assumed to be column-stochastic,

and through the use of auxiliary state variables the approximate average state is reconstructed.

Another scheme in this category that works with row-stochastic matrices, but does not need the

column-stochastic assumption, is proposed in [36, 79]. However, to use this scheme, every node

needs to be assigned and know its unique label. Assigning those labels distributively is also

another challenge in this respect. In addition, both these schemes invoke division operation which
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results in theoretical challenges in establishing their stability in random networks [58, 57].

An alternative way to avoid using doubly stochastic weight matrices is to use gossip-based

algorithms over random networks [42, 31]. In gossip algorithms, which were originally studied

in [9, 3], at each round, a node randomly wakes up and shares its value with all or some of its

neighbors. The weight matrices of gossip-based algorithms are row-stochastic and in-expectation

column-stochastic. This fact was generalized in [4, 41], where it is proven that it is sufficient

to have row-stochastic weight matrices, that are column-stochastic in-expectation and satisfy

certain connectivity assumptions. In all the above works on distributed optimization over random

networks, all weight matrices are assumed to be independent and identically distributed (i.i.d.) or

independent. In [34], a broader class of random networks, i.e., Markovian networks, was studied

for distributed optimization; however, weight matrices were assumed to be doubly stochastic

almost surely. As mentioned, distributed optimization is an application of distributed averaging

dynamics. Therefore, our work in this part of the thesis is also closely related to the existing

works on distributed averaging on random networks [29, 64, 70, 65].

If the objective function is β-smooth and α-strongly convex, the centralized variation of

(1.3), which is the gradient descent algorithm, geometrically converges to the minimizer with

a constant step-size. However, the dynamics (1.3) cannot converge to the minimizer with a

constant step-size. Even worse, Theorem 6 in [49] proves that any dynamics similar to (1.3)

cannot converge to the global minimizer geometrically fast. To remedy this, in [82, 49, 44], the

following dynamics is proposed

x(t+ 1) =W x(t+ 1)x(t)−ηs(t), (1.4)

s(t+ 1) =W s(t+ 1)s(t) +g(t+ 1)−g(t), (1.5)

where both {W x(t)} and {W s(t)} are doubly stochastic sequences and its geometric convergence

rate is established there. Since, in this dynamics, s(t) tracks the gradient of F (·), this dynamics
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is referred to as a distributed gradient-tracking algorithm. Later, in [81] (time-invariant setting)

and [60] (time-varying setting), it was shown that having a row-stochastic sequence of {W x(t)}

and a column-stochastic sequence of {W s(t)} is enough for the convergence of the dynamics

(1.4)-(1.5) to the minimizer.

In this thesis, we consider communication networks that have link-failure. Hence, each

agent receives perfect information or no information. However, links in the communication

networks can also be noisy where each agent receives imperfect information. This problem was

studied in [52, 78, 53] for time-invariant networks and in [54] for time-varying networks.

1.3 Dissertation Overview

The rest of this dissertation is organized as follows.

In Chapter 2, we consider discrete-time time-varying distributed averaging dynamics. We

show a necessary and a sufficient condition for ergodicity of such dynamics. First, we extend a

well-known result in ergodicity of time-homogeneous (time-invariant) averaging dynamics and

we show that ergodicity of a dynamics necessitates that its (directed) infinite flow graph has a

spanning rooted tree. Then, we show that cut-balanced and even class P∗ assumption on the

underlying processes is a restrictive assumption and there are ergodic processes that do not have

these conditions and the focus of this study is on extending these conditions for ergodicity of

time-varying dynamics. More specificity, we show that if groups of agents are connected using

a rooted tree and the averaging dynamics restricted to each group is P∗ and ergodic, then the

dynamics over the whole network is ergodic.

In Chapter 3, we consider continuous-time time-varying distributed averaging dynamics

and extend the results of Chapter 2 to continuous-time dynamics. More specificity, motivated by

a necessary condition on the ergodicity, we provide a sufficient condition for the ergodicity of

such dynamics. We show that if groups of agents are connected using a directed acyclic graph
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containing a spanning directed rooted tree and the averaging dynamics restricted to each group

is P∗, then the dynamics over the whole network is ergodic. Also, we discuss how much our

sufficient condition generalizes the known result in the literature in this chapter.

In Chapter 4, we study distributed optimization over random networks, where the ran-

domness is not only time-varying but also, possibly, dependent on the past. Under the standard

assumptions on the local objective functions and step-size sequences for the gradient descent algo-

rithm, we show that the averaging-based distributed optimization solver at each node converges to

a global optimizer almost surely if the weight matrices are row-stochastic almost surely, column-

stochastic in-expectation, and satisfy certain connectivity assumptions. It is worth mentioning

that to prove the main result in this chapter, we establish new results on the rate of convergence

analysis of averaging dynamics over (dependent) random networks.

In Chapter 5, we study the gradient-tracking distributed optimization solvers over random

dependent networks. In this chapter, we consider a probabilistic model for the underlying random

networks similar to the one introduced in Chapter 4. We show that as in the deterministic setting,

for strongly convex and smooth functions, the gradient-tracking algorithm finds the minimizer

geometrically fast almost surely in this probabilistic setting. In this algorithm, we use two

weight matrices, one for tracking the minimizer and one for tracking the gradient. While the

gradient-tracking algorithm still works if the weight matrix corresponding to the minimizer is just

row-stochastic, we show that the weight matrix corresponding to the gradient needs to be at least

column stochastic. To prove our main theorem, we study the limiting behavior of products of

random matrices and establish a sufficient condition for the convergence of the limit to zero.

1.4 Notation and Basic Terminology

The following notation and terminologies are used throughout this thesis.
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Sets: Let [n] , {1, . . . ,n}, and for S ⊂ [n], S̄ be the complement of S, i.e., S̄ = [n]\S.

We denote the space of real numbers by R and natural numbers by N. We denote the space of

n-dimensional real-valued vectors by Rn.

Vectors: In this thesis, all vectors are assumed to be column vectors. The transpose of

a vector x ∈ Rn is denoted by xT . For a vector x ∈ Rn, xi represents the ith coordinate of x,

except, where for notational convenience, we denote en1 , . . . , e
n
n as the standard basis vectors of

Rn. We denote the all-one vector in Rn by en = [1,1, . . . ,1]T . We drop the superscript n in

en and en1 , . . . , e
n
n whenever the dimension of the space is understandable from the context. For

convenience and due to the frequent use of `2 norm in the paper, we use ‖ · ‖ to denote the `2

norm ‖x‖=
√∑m

i=1x
2
i . Also, we denote `∞ norm with ‖x‖∞ , maxi∈[m] |xi|.

Matrices: For two m×n matrices A= [aij ] and B = [bij ], we use A≥B when aij ≥ bij

for all i ∈ [m] and j ∈ [n]. A non-negative vector x is a stochastic vector if xT e = 1 and a

non-negative matrix A is a stochastic (or row-stochastic) matrix if Ae= e. A non-negative matrix

A is a sub-stochastic matrix if Ae ≤ e, and it is a column-stochastic matrix if eTA = eT . A

non-negative matrix A= [aij ] is a Laplacian matrix if Ae= 0e and it is a sub-Laplacian matrix if

Ae≤ 0e. We refer to a continuous-time indexed sequence of (sub-)Laplacian matrices {A(t)} as

a (sub-)Laplacian process. A matrix A is cut-balanced with parameter K ≥ 1 if for all non-empty

proper subsets S ⊂ [n], there holds

∑
i∈S,j 6∈S

aij ≤K
∑

i 6∈S,j∈S
aji.

For a matrix A, we write ‖A‖∞ to denote the induced matrix norm induced by the vector norm

‖ · ‖∞. We use block matrix notation B = [Aij ]m×n to represent a matrix B that is composed

of matrices Aij for all i ∈ [m] and j ∈ [n], where the matrix Aij is the ijth sub-matrix of B. In

particular, [C,D] is a block matrix composed of C and D.
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Graphs: In this thesis, unless otherwise stated, all graphs are directed graphs. A directed

graph G = ([n],E) (on n vertices) is defined by a vertex set (identified by) [n] and an edge

set E ⊆ [n]× [n]. A graph G = ([n],E) has a spanning directed rooted tree if it has a vertex

r ∈ [n] as a root such that there exists a (directed) path from r to every other vertex r̂ ∈ [n],

i.e., there exists a sequence of vertices r0 = r,r1, . . . , rk = r̂ ∈ [n], such that (ri, ri+1) ∈ E for

i= 0, . . . ,k−1. A directed acyclic graph containing a spanning directed rooted tree is a graph

G = ([n],E) having a spanning directed rooted tree such that G does not contain any directed

cycle. For a matrix A = [aij ]n×n, the associated directed graph with parameter γ > 0 is the

graph Gγ(A) = ([n],Eγ(A)) with the edge set Eγ(A) = {(j, i) | i, j ∈ [n],aij > γ}. Later, we fix

the value 0 < γ < 1 when it is clear from the context, and hence, unless otherwise stated, for

notational convenience, we use G(A) and E(A) instead of Gγ(A) and Eγ(A). Finally, for a matrix

A= [aij ]n×n, the associated or underlying directed graph is the graph G0(A) = ([n],E0(A)).

Probability: Let (Ω,F ,Pr) be a probability space and let {W (t)} be a chain of random

matrices, i.e., for all t ≥ 0 and i, j ∈ [n], wij(t) : Ω→ R is a Borel-measurable function. For

random vectors (variables) x(0), . . . ,x(t), we denote the σ-algebra generated by these random

vectors by σ(x(0), . . . ,x(t)). We say that {F(t)} is a filtration for (Ω,F) if F(0)⊆F(1)⊆ ·· · ⊆

F . Further, we say that a random process {V (t)} (of random variables, vectors, or matrices) is

adapted to {F(t)} if V (t) is measurable with respect to F(t).

Functions: The function f : Rm→ R is convex if for all x,y ∈ Rm and all θ ∈ [0,1],

f(θx+ (1− θ)y)≤ θf(x) + (1− θ)f(y).

We say that g ∈ Rm is a subgradient of the function f(·) at x̂ if for all x ∈ Rm, f(x)− f(x̂)≥

〈g,x− x̂〉 , where 〈u1,u2〉= uT1 u2 is the standard inner product in Rm. The set of all subgradients

of f(·) at x is denoted by∇f(x). For a convex function f(·),∇f(x) is not empty for all x ∈ Rm

(see e.g., Theorem 3.1.15 in [48]). If the function f(·) is differentiable, ∇f(x) denotes the
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gradient of f(·). The function f : Rm→ R is β-smooth for some β > 0 if it is differentiable, and

its gradient is β-Lipschitz, i.e., for all x,y ∈ Rm,

‖∇f(x)−∇f(y)‖ ≤ β‖x−y‖.

For α > 0, a function f is α-strongly convex if for all x,y ∈ Rm

f(y)≥ f(x) + 〈∇f(x),y−x〉+ α

2
‖y−x‖2.

Miscellaneous: We say that a sequence {f(t)} is summable if
∑

τ f(τ) <∞. We say

that a function f(t) is integrable if
∫∞
t0
f(τ) dτ <∞.
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Part I

Ergodicity of Distributed Averaging

Dynamics
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Chapter 2

Discrete-Time Distributed Averaging

Dynamics

In this chapter, we study discrete-time distributed average dynamics and prove some

results about the ergodicity of those dynamics

The structure of this chapter is as follows: In Section 2.1, we state the main definitions

related to this chapter and formulate the problem of interest. In Section 2.2, we state the main

results which are a necessary condition and a sufficient condition for ergodicity. In this section,

we also provide our motivation to prove those results. In Section 2.3, we prove the necessary

condition, and in Section 2.4, we prove the sufficient condition.

2.1 Main Definitions and Problem Statement

In this section, we discuss the main problem and definitions of this chapter.

We study linear time-varying dynamics x : {t0, t0 + 1, . . .} → Rn driven by stochastic

13



matrices A(t) = [aij(t)]n×n with some initial condition x(t0) ∈ Rn, i.e.,

x(t+ 1) = A(t)x(t), for t≥ t0. (2.1)

For convenience, we refer to x(t) as a dynamics driven by {A(t)}.

Definition 1. Let x(t) be the dynamics driven by {A(t)}. We say that a chain {A(t)} is ergodic

if limt→∞x(t) = x̄e for some x̄ ∈R, for all initial time t0 ∈N and all choices of initial condition

x(t0) ∈ Rn.

From (2.1), we have x(t) = Φ(t, τ)x(τ) where Φ(t, τ) =A(t−1) · · ·A(τ) is the transition

matrix for (2.1) for all t ≥ τ ≥ t0. Since the product of any two stochastic matrices is also

a stochastic matrix, the transition matrices Φ(t, τ) are all stochastic matrices. An equivalent

condition for ergodicity based on the transition matrices is that (2.1) is ergodic if and only if

limt→∞Φ(t, τ) = eπT (τ) for a stochastic vector π(τ) ∈Rn and all τ ≥ t0. We say that {A(t)} is

ergodic if this condition holds.

When considering time-invariant dynamics, i.e., when A(t) is constant (A(t) =A for all t

and a stochastic matrix A), interestingly, the limiting behavior of the dynamics (2.1) becomes

closely related to the graph theoretic properties of the associated graph of A. Indeed, it was

proved that a time-invariant chain {A} is ergodic if its associated graph has a spanning rooted

tree with a root having a self loop [55, 80]. Such results significantly reduce the complexity of

dealing with the dynamics (2.1). Similarity, in [69], the infinite flow graph of a discrete-time

chain (process) is defined and its graph theoretic properties were used to analyze the ergodicity of

such chains.

Definition 2. (Directed Infinite Flow Property) For a stochastic chain {A(t)}, we define its
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directed infinite flow graph G∞ = ([n],E∞) to be the graph with the edge set

E∞ =

{
(j, i)

∣∣∣i, j ∈ [n],
∞∑
τ=t0

aij(τ) =∞

}
.

Note that the associated graph and infinite flow graph of a time-invariant chain are the

same. As a result, from the discussion above, for time-invariant chains the ergodicity of (2.1) and

the existence of spanning rooted tree in G∞ is equivalent.

Another important notion to study ergodicity is a class of stochastic chains, namely the

class P∗ which was first introduced in [71] for discrete-time distributed averaging dynamics.

Definition 3. (Class P∗) A stochastic chain {A(t)} is in the class P∗ if eTΦ(t, τ)≥ peT for some

p > 0 and all t≥ τ ≥ t0.

2.2 Motivations and Main Results

The main results of this chapter are a necessary condition and a sufficient condition for

ergodicity. In this section, we provide the main theorems and what motivates us to investigate

those results. The proofs of those results will be presented in the subsequent sections.

2.2.1 Necessary Condition

As mentioned, for time-invariant chains the ergodicity of (2.1) and the existence of

spanning rooted tree in G∞ is equivalent. One might be tempted to generalize this result to

time-varying chains, i.e., A(t) is ergodic if and only if the directed infinite flow graph of A(t) has

directed spanning rooted tree. However, such a result does not hold in general as discussed in the

following example.
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1 2 3

Figure 2.1: The infinite flow graph of the chain in Example 1

Example 1. Consider the stochastic matrices

A1 =


1 0 0

1
2

1
2 0

0 0 1

 ,A2 =


1
2

1
2 0

0 1 0

0 0 1

 ,A3 =


1 0 0

0 1
2

1
2

0 0 1

 ,

and the stochastic chain

A(t) =


A1, σk ≤ t < σk + τk

A2, σk + τk ≤ t < σk + 2τk

A3, σk + 2τk ≤ t < σk + 3τk = σk+1

,

where τk =
⌈
log2

x1(σk)−x2(σk)
x1(σk)

⌉
, and σk = 1 + 3

∑k−1
`=1 τ` for k > 1 with σ1 = 1. Let t0 = 1 and

x(1) = [−2,1,2]T . For σk < t≤ σk + τk, we have

x2(t) = (x2(σk)−x1(σk))2
−t+σk +x1(σk). (2.2)

Note that x3(t) = x3(1) = 2 for all t≥ 1. Initially, x2(·) moves toward x1(·) and due to (2.2), stops

somewhere less than or equal to 0 at time τ1 +1, and then x1(·) moves toward x2(·). Therefore, we

have x1(2τ1 + 1)< x2(2τ1 + 1)≤ 0. The same argument holds for the behavior of the dynamics

in the subsequent intervals [σk,σk+1) for k = 2,3, . . .. Therefore, this chain is not ergodic as

x1(t)≤ 0 and x3(t) = 2 for all t≥ 1. Since the dynamics ends when x1(t) = x2(t) for some t≥ 1,

it does not end in finite time. Thus,
∑∞

τ=1a12(τ) =
∑∞

τ=1a21(τ) =
∑∞

τ=1a32(τ) = σ∞
3 =∞, and

the infinite flow graph has a spanning rooted tree as shown in Fig. 2.1.
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2

1

3

4

Figure 2.2: A graph that is connected as an undirected graph but does not have a spanning
rooted tree

Although, the existence of a spanning rooted tree in the infinite flow graph is not equivalent

to ergodicity, in [8], for continuous processes, it is shown that it is still necessary for ergodicity of

time-varying processes, which is implied from Theorem 3 and 4 of [8]. In the following theorem,

we extend this result for discrete chains.

Theorem 1. (Necessary Condition for Ergodicity) If {A(t)} is ergodic then, its infinite flow graph

G∞ has a spanning rooted tree.

This result strengthens the existing necessary condition for ergodicity as discussed in [69,

72]. There, it is shown that the connectivity of the undirected infinite flow graph is necessary for

ergodicity, where the undirected infinite flow graph is obtained by removing the directions on the

edges of the directed infinite flow graph. Note that graphs such as the graph shown in Fig. 2.2 do

not have a spanning rooted tree but the associated undirected graph is connected.

2.2.2 Sufficient Condition

In [71] and [6], it was shown that for processes or chains that are in class P∗ having a

connected undirected infinite flow graph plus some mild additional conditions (namely, weakly

periodic for discrete-time chains and boundedness for continuous-time processes) is sufficient

for ergodicity for discrete-time and continuous-time dynamics, respectively. However, there are

many chains that are not in class P∗ and they are ergodic as discussed in the following example.
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Example 2. Consider the stochastic chain

A(t) =

1−a(t) a(t)

0 1

 ,
where 1≥ a(t)≥ 0 such that

∑∞
s=t0

a(s) =∞. Then, we have

Φ(t, t0) =

φ11(t, t0) 1−φ11(t, t0)

0 1

 ,
where φ11(t, t0) =

∏t
s=t0

(1−a(s)). Therefore, we have

lim
t→∞

Φ(t, τ) = e

[
0 1

]
,

and hence, A(t) is ergodic but not in P∗.

Intuitively, for class P∗ chains, the initial condition of each agent (entry) contributes to

the steady state value of the dynamics (2.1). In this chapter, we deal with the chains that some of

their coordinates does not contribute to the steady state, such as the process discussed in Example

2. We consider a general class of chains that are driven by class P∗ chains that are interacting

with each other through an underlying directed acyclic graph containing a spanning directed
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A33(t)

5

6

A22(t)

3

4

A11(t)

1

2

α(t)

β(t)

γ(t)

Figure 2.3: A chain with 6 agents which can be viewed as a chain with 3 sub-chains A11(t),
A22(t), and A33(t)

rooted tree, such as the chain

A(t) =



A11(t)
0 0

0 β(t)

0 γ(t)

0 0

0 0

0 0
A22(t)

α(t) 0

0 0

0 0

0 0

0 0

0 0
A33(t)


,

which is shown in Fig. 2.3. As we can see, there are three clusters/sub-graphs of agents, each

of them contains two agents, and the underlying graph connecting each sub-graph (inside gray

circles) is a directed acyclic graph containing a spanning directed rooted tree, while sub-graphs

are in class P∗.

Definition 4. For a matrix A= [aij ]n×n with non-negative elements and
∑n

j=1aij ≤ 1 for i∈ [n],

we define the stochastic matrix S[A] , [bij ]n×n as follows:

bij ,

 aij , i 6= j

1−
∑

j∈[n]\{i}aij , i= j
.

Theorem 2. (Sufficient Condition for Ergodicity) Consider a stochastic chainB(t) = [Aij(t)]m×m,
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where for each i ∈ [m], S[Aii(t)] is in P∗ and ergodic, and for i > j, ‖Aij(t)‖∞ is summable.

The stochastic chain {B(t)} is ergodic, if its infinite flow graph has a spanning rooted tree.

2.3 Necessary Condition

In this section, we prove the necessary condition outlined in Theorem 1. To do so, we need

to remove some unnecessary structures of a chain and approximate it with a simpler chain. In this

regard, we use the `1-approximation concept and the lemma about it, which were introduced and

proved in [68].

Definition 5. We define B(t) as an `1-approximation of A(t) if ‖B(t)−A(t)‖∞ is summable.

Also, we say B(t) = [bij(t)]n×n is minimal `1-approximation of A(t) with the infinite flow graph

([n],E∞) if B(t) is stochastic for t≥ t0 and

bij(t) =

 aij(t), if (j, i) ∈ E∞

0, if i 6= j ∈ [n],(j, i) 6∈ E∞
.

Lemma 1 ([68]). (Approximation Lemma) Let stochastic chains {A(t)} and {B(t)} be an `1-

approximation of each other. Then, {A(t)} is ergodic if and only if {B(t)} is ergodic.

Proof of Theorem 1: We prove that if the infinite flow graph of {A(t)} does not have a

spanning rooted tree, then it is not ergodic. Let B(t) = [bij(t)] be the minimal `1-approximation

of {A(t)}. Note that the infinite flow graphs of {A(t)} and {B(t)} are the same. Hence, it is

enough to prove that {B(t)} is not ergodic because by Lemma 1, this would imply that {A(t)} is

not ergodic.

So, assume that {B(t)} does not have spanning rooted tree. Let z(t) be a dynamics driven

by B(t). Consider a rooted tree T with the maximum number of nodes. Suppose that the vertex

set of this tree is S = {i1, i2, . . . , im} with the root i1. Because this tree is not spanning, we have

20



m< n, and there are nodes S̄ = {im+1, . . . , in} that are not in the tree. Because of the maximal

assumption on the size of this tree, we cannot expand this tree and hence, there is no edge from S

to S̄, and we can write

zi(t+ 1) =
∑
j∈S̄

bij(t)zj(t),

for i ∈ S̄ and t > t0. This itself implies that if we set zi(t0) = 0 for i ∈ S̄, we will have zi(t) = 0

for all i ∈ S̄ and t≥ t0. Now let D ⊆ [n] be all nodes such that there is a path from them to the

root i1. First notice that D∩ S̄ = ∅. This is because if i ∈D∩ S̄, then there is a path from i to

every node in S. So, we have a rooted tree with root i and m+ 1 nodes which is a contradiction

with the assumption that T was maximal. By the same argument, there is no edge from S̄ to

D. Also, there is no edge from S \D to D, otherwise we can expand D. Therefore, there is no

edge from outside of D to D. Hence, similar to the nodes i ∈ S, if we set zj(t0) = 1 for j ∈D,

we have zj(t) = 1 for j ∈D and t≥ t0, implying that {B(t)} (and hence, {A(t)}) is not ergodic.

2.4 Sufficient Condition

In this section, we prove the sufficient condition discussed in Theorem 2. To do so, we

need to work on a more general form of the dynamics (2.1).

A dynamics x : {t0, t0 + 1, . . .} → Rn driven by a sub-stochastic chain {A(t)} with the

perturbation λ(t) and the initial condition x(t0) is a dynamics satisfying

x(t+ 1) = A(t)x(t) +λ(t), for t≥ t0. (2.3)
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From (2.3), it follows that

x(t) = Φ(t, t0)x(t0) +
t∑

s=t0+1

Φ(t,s)λ(s), (2.4)

where Φ(t, τ) = A(t− 1) · · ·A(τ) is the transition matrix from time τ to t. In the following,

i.e., Lemma 2 and Remark 1 and 2, we study (2.3) where λ(t) = B(t)y(t) and [A(t),B(t)] is

stochastic.

Lemma 2. Let x(t) be defined by

x(t+ 1) = A(t)x(t) +B(t)y(t),

with the initial condition x(t0) ∈ Rn where {[A(t),B(t)]} is a stochastic chain. Then, we have

max
i
xi(t)≤max

{
max
i
xi(t0), max

t>τ≥t0
max
i
yi(τ)

}
,

min
i
xi(t)≥min

{
min
i
xi(t0), min

t>τ≥t0
min
i
yi(τ)

}
.

Proof: We prove by induction on t. The lemma is true for t= t0; hence, suppose that it

is true for t. Suppose that B(t) is n×m for m≥ 1. Since, A(t) and B(t) are non-negative, we

have:

xi(t+ 1) =
n∑
j=1

aij(t)xj(t) +
m∑
j=1

bij(t)yj(t)

≤max

{
max
i∈[n]

xi(t),max
i∈[m]

yi(t)

} n∑
j=1

aij(t) +
m∑
j=1

bij(t)


= max

{
max
i∈[n]

xi(t),max
i∈[m]

yi(t)

}
,
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where the last equality follows from [A(t),B(t)] being stochastic. Therefore,

max
i
xi(t+ 1)≤max

{
max
i∈[n]

xi(t),max
i∈[m]

yi(t)

}
(a)
≤ max

{
max
i
xi(t0), max

t>τ≥t0
max
i
yi(τ),max

i
yi(t)

}
= max

{
max
i
xi(t0), max

t+1>τ≥t0
max
i
yi(τ)

}
,

where (a) follows from the induction hypothesis. The proof of the lower bound follows from a

similar argument.

Remark 1. Note that if x(i)(t) is driven by {A(t)}with the perturbationB(t)y(i)(t) and the initial

condition x(i)(t0), then,
∑

iµix
(i)(t) is driven by {A(t)} with the perturbation B(t)

∑
iµiy

(i)(t)

and the initial condition
∑

iµix
(i)(t0).

Remark 2. Let

Ψ(t, τ) ,

Φ(t, τ),
t∑

s=t0+1

Φ(t,s)B(s)

 , and z(t) =

x(t)

y(t)

 .
Assume y(t) is constant, i.e., y(t) = y0 for some y0 ∈ Rm. Then, we have

1. x(t) = Ψ(t, τ)z(τ) which is implied by (2.4).

2. Ψ(t, τ) is stochastic as [A(t),B(t)] is stochastic.

From classical results in the study of inhomogeneous Markov chains [61], we know that

the stochastic chain {A(t)} (with dynamics (2.1)) is ergodic if and only if there exists q > 0 such

that for all τ ≥ t0

liminf
t→∞

Φ(t, τ)ek(τ) ≥ qe (2.5)
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for some k(τ) ∈ [n]. Motivated by this we have the following definition.

Definition 6. For a stochastic chain {A(t)} with the transition matrix Φ(t, τ), we say that the

kth coordinate is q∗, if there exists q > 0 such that liminft→∞Φ(t, τ)ek ≥ qe for some tq ≥ t0,

and all τ ≥ tq.

Note that by (2.5), if one of the coordinates of {A(t)} is q∗, then {A(t)} is ergodic. Also,

by definition P∗, if A(t) is in P∗ and ergodic, then all its coordinates are q∗. The following

lemma plays a key role in the proof of Theorem 2.

Lemma 3. Let x(t) be defined by

x(t+ 1) = A(t)x(t) +B(t)z̄e,

where {[A(t),B(t)]} is a stochastic chain. Suppose that the kth coordinate of S[A(t)] is q∗ and

∞∑
τ=t0

eTkB(t)e=∞.

Then, we have limt→∞x(t) = z̄e for all x(t0) ∈ Rn.

Proof: To prove the lemma, according to Remark 2, it is enough to prove that if z̄ = 1,

then limt→∞x(t) = e for all initial conditions x(`)(t0) for 0 ≤ ` ≤ n where x(0)(t0) = 0e and

x(`)(t0) =
∑n

i=` ei for ` ∈ [n]. Let α(t) = B(t)e and ui(t) = αi(t)(1−xi(t)) for i ∈ [n]. Note

that from Lemma 2, x(t0)≤ e and α1(t)≤ 1 imply that x(t)≤ e for t≥ t0, and hence, ui(t)≥ 0

for i ∈ [n] and t≥ t0. Without loss of generality suppose that k = 1.

For now, assume that bij(t) = 0 for i > 1 and all t≥ t0. Let Φ(t, τ) be the transition matrix

associated with the chain S[A(t)]. We can write the dynamics as:

x(t+ 1) = S[A(t)]x(t) +u1(t)e1. (2.6)
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Therefore, from (2.4), any solution x(t) to (2.6), satisfies

x(t) = Φ(t, t0)x(t0) +
t∑

τ=t0+1

Φ(t, τ)u1(τ)e1 (2.7)

= Φ(t, t0)x(t0) +
∞∑

τ=t0+1

1(t0,t]u1(τ)Φ(t, τ)e1.

Thus, we can write

liminf
t→∞

x(t)≥ liminf
t→∞

Φ(t, t0)x(t0) + liminf
t→∞

∞∑
τ=t0+1

1(t0,t]u1(τ)Φ(t, τ)e1

(a)
≥ liminf

t→∞

∞∑
τ=t0+1

1(t0,t]u1(τ)Φ(t, τ)e1

(b)
≥

∞∑
τ=t0+1

liminf
t→∞

1(t0,t]u1(τ)Φ(t, τ)e1

(c)
≥
∞∑
τ=tq

u1(τ)qe, (2.8)

where (a) follows from the fact that Φ(t, t0) is a non-negative matrix and x(t0) ≥ 0e, (b) fol-

lows from Fatou’s Lemma (Theorem 2.18 [21]) and the fact that 1(t0,t]u1(τ)Φ(t, τ)e1 is non-

negative, and (c) holds as the first coordinate is q∗, and hence, there exists q > 0 such that

limt→∞Φ(t, τ)e1 ≥ qe for all τ ≥ tq. Since, liminft→∞x(t) is bounded, and q > 0, (2.8) implies

that

∞∑
τ=t0+1

u1(τ)<∞. (2.9)

On the other hand, since Φ(t, τ)≤ eeT , we have

∞∑
τ=t0+1

u1(τ)e≥
∞∑

τ=t0+1

1(t0,t]u1(τ)Φ(t, τ)e1.
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Hence, using the Dominated Convergence Theorem (Theorem 2.24 [21]), we have

lim
t→∞

∞∑
τ=t0+1

1(t0,t]u1(τ)Φ(t, τ)e1 =
∞∑

τ=t0+1

lim
t→∞

1(t0,t]u1(τ)Φ(t, τ)e1

=
∞∑

τ=t0+1

u1(τ)π1(τ)e.

This and (2.7) imply that there exists x̄ ∈ [0,1] such that limt→∞x(t) = x̄e. Note that x̄ < 1

contradicts (2.9) and hence, x̄= 1 which concludes the proof for the case bij(t) = 0 for i > 1 and

all t≥ t0. In other words, so far, we have proved that

lim
t→∞

Ψ(t, t0)

x(t0)

1

= e, (2.10)

where Ψ(t, τ) is the transition matrix of the dynamics

x(t+ 1) = S[[A(t),α1(t)e1]]

x(t)

1

 .
In the following, we prove the lemma for the general case. We can write the dynamics as follows

x(t+ 1) = S[[A(t),α1(t)e1]]

x(t)

1

+λ(t),
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where λ(t) =
∑n

i=2ui(t)ei. From (2.4), we have

lim
t→∞

x(t) = lim
t→∞

Ψ(t, t0)

x(t0)

1

+
t∑

τ=t0+1

Φ(t, τ)λ(τ)

≥ lim
t→∞

Ψ(t, t0)

x(t0)

1

 ,
which follows as Φ(t, τ) and λ(t) are non-negative. Finally, x(t) ≤ e and (2.10) complete the

proof.

The main theorem is proved using the following lemma.

Lemma 4. Consider a stochastic chain

C(t) =

A(t) B(t)

0eeT Â(t)

 .
where S[A(t)] is in P∗ and ergodic, and Â(t) is ergodic. The stochastic chain C(t) is ergodic if

its infinite flow graph has a spanning rooted tree.

Proof: Let z(t) be driven by {C(t)}with the initial condition z(t0), and sizeA(t) andC(t)

be n×n and N ×N , respectively. Let x(t) , [z1(t), . . . , zn(t)] and y(t) , [zN−n+1, . . . , zN (t)].

Because x(t) does not contribute to y(t), and Â(t) is ergodic, we have limt→∞ y(t) = z̄e for

some z̄. Set sε ≥ t0 such that

sup
τ∈[sε,∞)

‖y(τ)− z̄e‖∞ <
ε

2
. (2.11)
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Let w(t) be defined by

w(t+ 1) = A(t)w(t) +B(t)z̄e, (2.12)

with the initial time sε and the initial condition w(sε) = x(sε). Because S[A(t)] is in P∗ and

ergodic, and hence, all its coordinates are q∗, Lemma 3 implies limt→∞w(t) = z̄e. Set tε ≥ sε

such that

sup
τ∈[tε,∞)

‖w(t)− z̄e‖∞ <
ε

2
. (2.13)

Let v(t) be driven by

v(t+ 1) = A(t)v(t) +B(t)(y(t)− z̄e) (2.14)

with the initial condition v(sε) = 0e. Because the block [A(t),B(t)] is stochastic, Lemma 2

implies

‖v(t)‖∞ ≤ max
sε≤τ<t

‖y(τ)− z̄e‖∞ <
ε

2
.

Adding (2.12) and (2.14), we have

w(t+ 1) +v(t+ 1) = A(t) [w(t) +v(t)] +B(t)y(t).

Also, we have x(sε) = w(sε) + v(sε). Therefore, we have x(t) = w(t) + v(t) for sε ≤ t, and

hence, for tε ≤ t
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‖x(t)− z̄e‖∞ = ‖w(t)− z̄e+v(t)‖∞

≤ ‖w(t)− z̄e‖∞+‖v(t)‖∞

≤ ε

2
+
ε

2
= ε,

which follows from (2.11) and (2.13). This is true for every ε > 0, and hence, we have

limt→∞x(t) = z̄, and the proof is complete.

Proof of Theorem 2: From Lemma 1, without loss of generality, we can assume that for

i > j, Aij(t) is a zero matrix for t≥ t0. We use induction on m to prove the theorem. The result

is true for m = 1. Assume theorem is true for m− 1. Therefore, B̂(t) , [Âij(t)](m−1)×(m−1)

where Âij = Ai+1j+1(t) is ergodic. Now, we have

B(t) =

A11(t) C(t)

0eeT B̂(t)

 ,
where C(t) = [A1j(t)]1×m. Note that B̂(t) is ergodic and S[A11(t)] is in P∗ and ergodic, and

hence, by Lemma 2.4, we conclude the proof.

Chapter 2, in full, is a reprint of the material as it appears in A. Aghajan and B. Touri, On

ergodicity of time-varying distributed averaging dynamics, 2020 American Control Conference

(ACC), IEEE, 2020, pp. 4417–4422. The dissertation author was the primary investigator and

author of this paper.
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Chapter 3

Continuous-Time Distributed Averaging

Dynamics

In this chapter, we extend the results for discrete-time distributed averaging dynamics,

which are derived in Chapter 2, to continuous-time distributed averaging dynamics. However, The

logic behind the proof of most lemmas in this chapter are similar to the proof of the corresponding

lemma in discrete-time setting, we prove them separately in this chapter for completeness.

The structure of this chapter is as follows: In Section 3.1, we formulate the problem of

interest and state the main results of this work. In Section 3.2, we discuss the broad class of

processes that satisfy the proposed sufficient condition. In Section 3.3, we prove the main results

from Section 3.1, and finally, in Section 3.4, we provide the proof of the lemmas related from

Section 3.2 and some other lemmas from Section 3.3.

3.1 Problem Statement and Main result

In this section, we discuss the problem statement and the main result of this work. The

proof of the result will be presented in the subsequent sections.
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We study the linear time-varying dynamics

x(t) = x(t0) +

∫ t

t0

A(τ)x(τ) dτ, for t≥ t0, (3.1)

driven by a Laplacian process {A(t) = [aij(t)]n×n} with an initial condition x(t0) ∈ Rn. We

refer to the solution x(t) of (3.1) as the dynamics driven by {A(t)}. Because A(t) is a Laplacian

matrix, we can write the above system as

xi(t) = x(t0) +

∫ t

t0

n∑
j=1

aij(τ)(xj(τ)−xi(τ)) dτ (3.2)

for i ∈ [n]. In this chapter, we assume that for all i, j ∈ [n], aij(t) is a measurable function of time

and
∫ t
τ aij(s) ds <∞ for all t0 ≤ τ ≤ t, implying that (3.1) has a unique continuous solution [62].

Note that we can write x(t) = Φ(t, τ)x(τ) where Φ(t, τ) is the transition matrix for (3.1) for all

t0 ≤ τ ≤ t. For Laplacian processes, from Lemma 6 in [37], we know that Φ(t, τ) is a stochastic

matrix for all t0 ≤ τ ≤ t.

Definition 7 (Ergodicity). Let x(t) be the dynamics driven by {A(t)}. We say that a process

{A(t)} is ergodic if for all initial time t0 ∈ R and all choices of initial condition x(t0) ∈ Rn,

limt→∞x(t) = x̄e for some x̄ ∈ R which depends on t0 and x(t0).

Since x(t) = Φ(t, τ)x(τ), if {A(t)} is ergodic, then for all i ∈ [n], we have

lim
t→∞

Φ(t, τ)ei = eπi(τ),

for some πi(τ)∈R, and hence limt→∞Φ(t, τ) = eπT (τ). On the other hand, if limt→∞Φ(t, τ) =

eπT (τ), then

lim
t→∞

Φ(t, τ)x(τ) = eπT (τ)x(τ) = x̄e,

where x̄= πT (τ)x(τ). Therefore, an equivalent characterization of ergodicity using the transition
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matrices Φ(t, τ) is that (3.1) is ergodic if and only if limt→∞Φ(t, τ) = eπT (τ) for a stochastic

vector π(τ) ∈ Rn and all τ ≥ t0.

As mentioned in Chapter 2, in [69], the infinite flow graph of a discrete-time chain is

defined and its graph theoretic properties were used to analyze the ergodicity of discrete-time

chains. Similar structures and results were developed for the continuous-time setting [25, 6].

Definition 8. (Directed Infinite Flow Graph) For a Laplacian process {A(t)}, we define its

directed infinite flow graph G∞ = ([n],E∞) to be the graph with the edge set

E∞ =

{
(j, i)

∣∣∣i, j ∈ [n],

∫ ∞
s

aij(τ) dτ =∞ ∀s≥ t0
}
.

Unless stated otherwise, we simply refer to this graph as the infinite flow graph of {A(t)}.

Again, similar to the discrete-time distributed averaging dynamics, One might think A(t) is

ergodic if and only if the directed infinite flow graph of A(t) has a spanning directed rooted tree.

However, such a result does not hold in general as discussed in the following example, which is

the extension of Example 1 to the continuous-time setting.

Example 3. Consider the Laplacian matrices

A1 =


0 0 0

1 −1 0

0 0 0

 ,A2 =


−1 1 0

0 0 0

0 0 0

 ,A3 =


0 0 0

0 −1 1

0 0 0

 ,

and the Laplacian process

A(t) =


A1, σk ≤ t < σk + τk

A2, σk + τk ≤ t < σk + 2τk

A3, σk + 2τk ≤ t < σk + 3τk = σk+1

,
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where

τk = max

{
ln
x1(σk)−x2(σk)

x1(σk)
,1

}
,

and σk = 3
∑k−1

`=1 τ` for k > 1 with σ1 = 0. Let t0 = 0 and x(0) = [−2,1,2]T . For σk ≤ t < σk+τk,

we have

x2(t) = (x2(σk)−x1(σk))exp(−t+σk) +x1(σk). (3.3)

Note that x3(t) = x3(0) = 2 for all t ≥ 0. Initially, x2(·) moves toward x1(·) and due to (3.3),

stops somewhere less than or equal to 0 at time τ1, and then x1(·) moves toward x2(·). Therefore,

we have x1(2τ1) < x2(2τ1) ≤ 0. The same argument holds for the behavior of the dynamics

in the subsequent intervals [σk,σk+1) for k = 2,3, . . .. Therefore, this process is not ergodic as

x1(t)≤ 0 and x3(t) = 2 for all t≥ 0. Since the dynamics ends when x1(t) = x2(t) for some t≥ 0,

it does not end in finite time. Thus,

∫ ∞
σk

a12(τ)dτ =

∫ ∞
σk

a21(τ)dτ =

∫ ∞
σk

a32(τ)dτ =
σ∞−σk

3
=∞,

for k ∈ N, and the infinite flow graph has a spanning directed rooted tree as shown in Fig. 2.1.

Although, the existence of a spanning directed rooted tree in the infinite flow graph is not

equivalent to ergodicity, in [8], it is shown that it is still necessary for ergodicity of time-varying

processes. More specifically, from Theorems 3 and 4 of [8], we can imply if {A(t)} is ergodic,

then its infinite flow graph G∞ has a spanning directed rooted tree.

To present the main result of this chapter, we define an important class of Laplacian

processes, namely the class P∗, which is first introduced in [71] for discrete-time chains and were

studied in [6] for continuous-time dynamics.

Definition 9 (Class P∗). A Laplacian process {A(t)} is said to be in class P∗ if for some p > 0,
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we have eTΦ(t, τ)≥ peT for all t0 ≤ τ ≤ t.

Despite the fact that for processes that are in class P∗, having a connected undirected

infinite flow graphs plus a mild additional condition is sufficient for ergodicity for continuous-time

dynamics [6], there are many processes that are not in class P∗ and they are ergodic as discussed

in the following example, which is extension of Example 2 to the continuous-time setting.

Example 4. Consider the Laplacian process

A(t) =

−a(t) a(t)

0 0

 ,
where a(t)≥ 0 such that

∫∞
t0
a(s) ds=∞. Then, we have

Φ(t, τ) =

φ11(t, τ) 1−φ11(t, τ)

0 1

 ,

where φ11(t, τ) = exp
(
−
∫ t
τ a(s) ds

)
. Therefore, we have limt→∞Φ(t, τ) = e

[
0 1

]
for all τ ,

and hence, A(t) is ergodic but not in class P∗.

Similar to the discrete-time setting, in this chapter, we deal with the processes that some

of their coordinates does not contribute to the steady state, such as the process discussed in

Example 4. We consider a general class of processes that are driven by class P∗ processes that are

interacting with each other through an underlying directed acyclic graph containing a spanning

directed rooted tree, such as the processes that is shown in Fig. 2.3.

Definition 10. For a matrix A = [aij ]m×n with aij ≥ 0 for all i 6= j, we define the Laplacian
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matrix L[A] , [cij ]m×n by:

cij ,

 aij , i 6= j

−
∑

j∈[n]\{i}aij , i= j
.

Theorem 3. (Sufficient Condition for Ergodicity) Consider a Laplacian process

A(t) = [Aij(t)]m×m,

where for each i ∈ [m], L[Aii(t)] is in class P∗, and for i > j, ‖Aij(t)‖∞ is integrable. The

Laplacian process {A(t)} is ergodic, if its infinite flow graph has a spanning directed rooted tree.

3.2 Implications

Theorem 3 studies ergodicity (and hence, consensus) of time-varying processes that are

specific combinations of processes that are in class P∗. It is worth discussing what processes are

in class P∗ and the implications of Theorem 3 to these processes. We show that a very broad

class of processes, i.e., the average cut-balanced processes (that were studied in [37]), are subset

of class P∗.

Definition 11 (Average Cut-Balanced Processes). We say that {A(t)} satisfies average cut-

balanced property if there exists a sequence {ts}s∈N of increasing times with lims→∞ ts =∞

such that for R(s) ,
∫ ts+1

ts
A(τ) dτ :

(a) There exists a uniform upper bound M such that for all s ∈ N we have R(s)≤MeeT .

(b) R(s) is cut-balanced for all s ∈ N with some constant parameter K ≥ 1 (independent of s).

In [37], it is proved that the average cut-balanced processes that satisfy the infinite flow

property (i.e., its directed infinite flow graph is connected), admit consensus. Furthermore, this
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class includes instantaneously cut-balanced processes (i.e., processes {A(t)} that A(t) is cut-

balanced for all t) that were introduced and their ergodic behaviors were studied in [25]. We show

that class P∗ includes average cut-balanced processes.

Lemma 5. Processes {A(t)} satisfying Definition 11 are in class P∗.

The proof of this result is provided in Appendix. Note that if in the statement of Theorem 3,

for each i∈ [m], the diagonal blockAii(t) is average cut-balanced (Definition 11), then by Lemma

5, Aii(t) is in class P∗. Therefore, in this case, by Theorem 3 the process {A(t)} will be ergodic.

However, {A(t)} itself does not satisfy Definition 11, and hence, its ergodicity cannot be deduced

using the previously known results (e.g., [37]).

Note that the class of cut-balanced processes itself contains many of the existing classes

of processes in the literature:

• M -subsymmetric processes: where aij ≤Maji for all i, j ∈ [n]. The discrete-time variation

of such processes have been studied in [7] and [35] and they have important implications in

the study of Hegselmann-Krause opinion dynamics [5, 39, 67].

• Weight-balanced processes: where
∑

i 6=j aij =
∑

i6=j aji for all i ∈ [n]. These processes

have been studied extensively in the past and has application in the study of distributed

optimization algorithms over networks [22, 30, 32].

In addition to the above broad class of P∗-processes, in the following we show that this class is

large enough to be invariant under `1-approximations as defined below.

Definition 12. We say Z(t) as an `1-approximation of A(t) if ‖Z(t)−A(t)‖∞ is integrable. Also,

we say Z(t) = [ζij(t)]n×n is minimal `1-approximation of A(t) with the directed infinite flow

graph ([n],E∞) if Z(t) is Laplacian for t≥ t0 and

ζij(t) =

 aij(t), if (j, i) ∈ E∞

0, if i 6= j ∈ [n],(j, i) 6∈ E∞
.
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If Z(t) is an `1-approximation of A(t), in [8] (for discrete chain in [68]), it is proved

that if the process (chain) {A(t)} is ergodic, then the process (chain) {Z(t)} is ergodic. In the

following lemma, we show that this mutual relation is also the case for the class P∗.

Lemma 6. (Approximation Lemma for class P∗) Let {Z(t)} be an `1-approximation of {A(t)}.

Then, if {A(t)} is in class P∗, {Z(t)} is in class P∗.

We prove this result in Appendix. Lemma 6 and Lemma 5 imply that not only the average

cut-balanced processes are in class P∗, but also any of their `1-approximations belong to class

P∗, and Theorem 3 applies to any group of such processes that are interconnected by a spanning

directed rooted tree.

3.3 Proof of the Main Result

In this section, we provide the proof of the main result of this chapter, i.e., Theorem 3.

We say that a dynamics x : [t0,+∞)→ Rn is driven by a sub-Laplacian process {A(t)}

with a perturbation λ : [t0,+∞)→ Rn (where
∫ t
τ λ(s)ds <∞ for all t0 ≤ τ ≤ t) and the initial

condition x(t0) is a dynamics satisfying

x(t) = x(t0) +

∫ t

t0

(A(τ)x(τ) +λ(τ))dτ. (3.4)

Here, λ(t) can be viewed as the input to the averaging dynamics and since it is assumed∫ t
τ λ(s)ds <∞ for all t0 ≤ τ ≤ t, the solution x(t) is a continuous function. From (3.4), it

follows that

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)λ(τ) dτ, (3.5)

where Φ(t, τ) is the transition matrix from time τ to t (for the unforced dynamics ẋ(t) =A(t)x(t)).
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In the following discussion, we study (3.4) where λ(t) =B(t)y(t) and {[A(t),B(t)]} is a Lapla-

cian process.

Remark 3. Note that if x(i)(t) is driven by {A(t)} with the perturbation λ(i)(t) and the initial

condition x(i)(t0), then,
∑

iµix
(i)(t) is driven by {A(t)} with the perturbation

∑
iµiλ

(i)(t) and

the initial condition
∑

iµix
(i)(t0).

Lemma 7. Let x(t) ∈ Rn be defined by

x(t) = x(t0) +

∫ t

t0

A(τ)x(τ) +B(τ)y(τ) dτ.

where [A(t),B(t)] is a Laplacian matrix, x(t) is a continuous function, and B(t) is some n×m

matrix, and y(t) ∈ Rm for some m≥ 1 and for all t≥ t0. Then, we have

max
i
xi(t)≤max

{
max
i
xi(t0), sup

t≥τ≥t0
max
i
yi(τ)

}
,

min
i
xi(t)≥min

{
min
i
xi(t0), inf

t≥τ≥t0
min
i
yi(τ)

}
.

Proof: Let M(t) = maxixi(t) and p(t) ∈ argmaxixi(t) for t ≥ t0. Since xi(t) is a

continuous function for all i ∈ [n], M(t) is also a continuous function of t. Fix t ≥ t0, and let

µ, supt≥τ≥t0 maxi yi(τ). If M(t)≤ µ, there is nothing to prove; hence, assume that µ <M(t).

Let s, inf{s′ ≥ t0|M(τ)≥ µ,∀τ ∈ [s′, t]}. Since M(t) is continuous, if s > t0, then M(s) = µ.

Therefore, M(s)≤max{M(t0),µ}. From Proposition 2 in [26], we have

M(t) =M(s) +

∫ t

s

n∑
j=1

ap(τ)j(τ)(xj(τ)−M(τ)) dτ +

∫ t

s

m∑
j=1

bp(τ)j(τ)(yj(τ)−M(τ)) dτ

(a)
≤ M(s)

≤max{M(t0),µ}

38



where (a) follows from the facts that M(τ) is the maximum of x(τ), y(τ) ≤ µe ≤M(τ)e for

τ ∈ (s, t), and ap(τ)j(τ) and bp(τ)j(τ) are non-negative for all τ . The proof of the lower bound

follows from a similar argument.

Remark 4. Suppose that {[A(t),B(t)]} is a Laplacian process, and Φ(t, τ) is the transition

matrix of the process {A(t)}. Let

Ψ(t, τ) ,

[
Φ(t, τ),

∫ t

t0

Φ(t, τ)B(τ)dτ

]
, and z(t) =

x(t)

y(t)

 .
Assume y(t) is constant, i.e., y(t) = y0 for some y0 ∈ Rm. Then, we have

1. x(t) = Ψ(t, τ)z(τ), which is implied by (3.5).

2. Ψ(t, τ) is a stochastic matrix. This is because from Lemma 7, min` z`(τ) ≤ zi(t) ≤

max` z`(τ), and hence, the elements of Ψ(t, τ) are all non-negative. Moreover, because

{[A(t),B(t)]} is a Laplacian process, from (3.4), if z(τ) = ae for some a ∈ R, then

z(t) = ae. Therefore, the summation of each row of Ψ(t, τ) is equal to one.

Inspired by classical results in the study of inhomogeneous Markov chains [61], we have

the following lemma whose proof is provided in Appendix.

Lemma 8. The Laplacian process {A(t)} is ergodic if and only if there exists q > 0 such that for

all τ ≥ t0

liminf
t→∞

Φ(t, τ)ek(τ) ≥ qe (3.6)

for some k(τ) ∈ [n].

Motivated by this result we have the following definition.
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P∗ process

z̄ z̄

Figure 3.1: Lemma 9 considers this special case of the main theorem

Definition 13. For a Laplacian process {A(t)} with the transition matrix Φ(t, τ), we say that the

kth coordinate is q∗, if there exists q > 0 such that liminft→∞Φ(t, τ)ek ≥ qe for some tq ≥ t0,

and all τ ≥ tq.

Note that by Lemma 8, if one of the coordinates of {A(t)} is q∗, then {A(t)} is ergodic.

Also, by the definition of class P∗, if A(t) is in class P∗ and ergodic, then all its coordinates are

q∗.

The following lemma plays a key role in the proof of Theorem 3. This lemma is a special

case of the main theorem, in which we have only one P∗ process, the outside nodes’ values are

fixed to z̄, and they are only connected to the nodes in the P∗ process. This situation is similar to

Lemma 3 in Chapter 2, which is depicted in Fig. (3.1) where the gray area is representing the

nodes in the P∗ process.

Lemma 9. Let x(t) be defined by

x(t) = x(t0) +

∫ t

t0

A(τ)x(τ) +B(τ)z̄e dτ, (3.7)

where {[A(t),B(t)]} is a Laplacian process. Suppose that the kth coordinate of L[A(t)] is q∗

and
∫∞
s eTkB(τ)e dτ =∞ for all s≥ t0. Then, we have limt→∞x(t) = z̄e for all x(t0) ∈ Rn.

Proof: Without loss of generality, we assume that k = 1. First, we show that instead of

considering all initial conditions x(t0) ∈ Rn, it suffices to prove the lemma for a finite number
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of initial conditions. For this, let v0 = 0e and for ` ∈ [n] define v` =
∑n

i=` ei. Then the vectorsv0

e

 , . . . ,
vn
e

 span


 v
z̄e

∣∣∣v ∈ Rn, z̄ ∈ R

 .

Therefore, for any initial condition x(t0) ∈ Rn, we can write

x(t0)

z̄e

=
n∑
`=0

µ`

v`
e

 ,
where

∑n
`=0µ` = z̄. But by Remark 4, we have

lim
t→∞

x(t) = lim
t→∞

n∑
`=0

µ`Ψ(t, t0)

v`
e

 ,
therefore, it is sufficient to show that limt→∞x(t) = e for initial conditions x(t0) = v` for all

` ∈ [n]∪{0}, and z̄ = 1, i.e.,

lim
t→∞

Ψ(t, t0)

v`
e

= e,

as then, for all x(t0) ∈ Rn and z̄ ∈ R, and the above discussion, we would have

lim
t→∞

x(t) = lim
t→∞

n∑
`=0

µ`Ψ(t, t0)

v`
e

=
n∑
`=0

µ`e= z̄e.

Let x(t0) = v` and z̄ = 1. Let α(t) =B(t)e and ui(t) = αi(t)(1−xi(t)) for i ∈ [n]. Since

x(t0)≤ e and z̄ = 1, Lemma 7 implies that x(t)≤ e for t≥ t0, and hence, ui(t)≥ 0 for all i ∈ [n]

and t≥ t0.

41



For now assume that, except the first row, all other rows of B(t) are zero, i.e., bij(t) = 0

(and hence, αi(t) = 0) for i 6= 1, for all t≥ t0. Let Φ(t, τ) be the transition matrix associated with

the process L[A(t)]. We can write (3.7) as

x(t) = x(t0) +

∫ t

t0

L[A(τ)]x(τ) +u1(τ)e1 dτ. (3.8)

Therefore, from (3.5), any solution x(t) to (3.8), satisfies

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)u1(τ)e1 dτ (3.9)

= Φ(t, t0)x(t0) +

∫ ∞
t0

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ,

where

1(a,b](τ) =


1 τ ∈ (a,b]

0 otherwise
.

Now, we show that we can take the limit into the integral, i.e.,

lim
t→∞

∫ ∞
tq

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ =

∫ ∞
tq

lim
t→∞

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ

for some tq ≥ t0, which will result in limt→∞x(t) = x̄e for some x̄ ∈ [0,1]. From (3.9), we can

write

liminf
t→∞

x(t)≥ liminf
t→∞

Φ(t, t0)x(t0) + liminf
t→∞

∫ ∞
t0

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ

(a)
≥ liminf

t→∞

∫ ∞
t0

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ

(b)
≥
∫ ∞
t0

liminf
t→∞

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ

(c)
≥
∫ ∞
tq

u1(τ)qe dτ, (3.10)
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where (a) follows from the fact that Φ(t, t0) is a non-negative matrix and x(t0)≥ 0e, (b) follows

from Fatou’s Lemma (cf. Theorem 2.18 in [21]) and the fact that 1(t0,t](τ)u1(τ)Φ(t, τ)e1 is

non-negative, and (c) holds as the first coordinate is q∗, and hence, there exists q > 0 such that

liminft→∞Φ(t, τ)e1 ≥ qe for all τ ≥ tq. Since, liminft→∞x(t) is bounded, and q > 0, (3.10)

implies that

∞>
1

q
liminf
t→∞

x(t)≥
∫ ∞
tq

u1(τ)e dτ. (3.11)

On the other hand, since Φ(t, τ)≤ eeT , we have

∫ ∞
tq

u1(τ)e dτ ≥
∫ ∞
tq

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ.

Hence, we have

lim
t→∞

∫ ∞
t0

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ

= lim
t→∞

∫ tq

t0

u1(τ)Φ(t, τ)e1 dτ + lim
t→∞

∫ ∞
tq

1(t0,t](τ)u1(τ)Φ(t, τ)e1 dτ

(a)
=
(

lim
t→∞

Φ(t, tq)
)∫ tq

t0

u1(τ)Φ(tq, τ)e1 dτ +

∫ ∞
tq

lim
t→∞

(
1(t0,t](τ)u1(τ)Φ(t, τ)e1

)
dτ

(b)
= eπT (tq)(x(tq)−Φ(tq, t0)x(t0)) +

∫ ∞
tq

u1(τ)π1(τ)e dτ,

where (a) follows from the Dominated Convergence Theorem (cf. Theorem 2.24 [21]), and (b)

follows from (3.9) for t= tq and Lemma 8. This and (3.9) imply that there exists x̄ ∈ [0,1] such

that limt→∞x(t) = x̄e. If x̄ < 1, then let ε = 1−x̄
2 and tε ≥ tq be such that x1(t)≤ x̄+ ε for all
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t≥ tε. Then, from (3.11), we have

∞>

∫ ∞
tq

α1(τ)(1−x1(τ)) dτ

≥
∫ ∞
tε

α1(τ)(1−x1(τ)) dτ

≥
∫ ∞
tε

α1(τ)(1− x̄− ε) dτ

=
1− x̄

2

∫ ∞
tε

α1(τ) dτ.

which contradicts the assumption
∫∞
s α(τ)dτ =∞ for all s ≥ t0. Therefore, x̄ = 1 which

concludes the proof for the case bij(t) = 0 for i > 1, all j, and all t≥ t0. In other words, so far,

we have proved that

lim
t→∞

Ψ(t, t0)

x(t0)

1

= e, (3.12)

where Ψ(t, τ) is the transition matrix of the dynamics

x(t) = x(t0) +

∫ t

t0

L[[A(τ),α1(τ)e1]]

x(τ)

1

 dτ.

For the general case bij(t)≥ 0, we can write the dynamics as

x(t) = x(t0) +

∫ t

t0

L[[A(τ),α1(τ)e1]]

x(τ)

1

+λ(τ) dτ,
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where λ(t) =
∑n

i=2ui(t)ei. From (3.5), we have

lim
t→∞

x(t) = lim
t→∞

Ψ(t, t0)

x(t0)

1

+

∫ t

t0

Φ(t, τ)λ(τ) dτ

≥ lim
t→∞

Ψ(t, t0)

x(t0)

1

 ,
which is implied by the fact that Φ(t, τ) and λ(t) are non-negative. Finally, x(t)≤ e and (3.12)

complete the proof.

Using an induction on m and the following result, we will show the main result.

Lemma 10. Consider a Laplacian process

A(t) =

A(t) B(t)

0eeT Â(t)

 .
where all the coordinates of L[A(t)] are q∗, and Â(t) is ergodic. The Laplacian process {A(t)}

is ergodic if its directed infinite flow graph has a spanning directed rooted tree.

Proof: Let z(t) be driven by {A(t)} with an initial condition z(t0), and suppose that

A(t) and A(t) are n× n and N ×N , respectively. Let x(t) , [z1(t), . . . , zn(t)] and y(t) ,

[zN−n+1, . . . , zN (t)], respectively. Because x(t) does not contribute to the dynamics of y(t), and

Â(t) is ergodic, we have limt→∞ y(t) = z̄e for some z̄. Set sε ≥ t0 such that

sup
τ∈[sε,∞)

‖y(τ)− z̄e‖∞ <
ε

2
. (3.13)
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Let w(t) be defined by

w(t) = w(sε) +

∫ t

sε

A(τ)w(τ) +B(τ)z̄e dτ, (3.14)

with the initial time sε and the initial condition w(sε) = x(sε). Since the directed infinite flow

graph has a spanning directed rooted tree, we have
∫∞
s eTkB(τ)e dτ =∞ for all s≥ t0. Because

of this and the fact that the coordinates of L[A(t)] are q∗, Lemma 9 implies limt→∞w(t) = z̄e.

Set tε ≥ sε such that

sup
τ∈[tε,∞)

‖w(t)− z̄e‖∞ <
ε

2
. (3.15)

Let v(t) be driven by

v(t) = v(sε) +

∫ t

sε

A(τ)v(τ) +B(τ)(y(τ)− z̄e) dτ (3.16)

with the initial condition v(sε) = 0e. Because the block [A(t),B(t)] is a Laplacian matrix, Lemma

7 implies

‖v(t)‖∞ ≤ max
sε≤τ<t

‖y(τ)− z̄e‖∞ <
ε

2
. (3.17)

Adding (3.14) and (3.16), we have

w(t) +v(t) = w(sε) +v(sε) +

∫ t

sε

A(τ) [w(τ) +v(τ)] +B(τ)y(τ) dτ.

Also, we have x(sε) = w(sε) + v(sε). Therefore, we have x(t) = w(t) + v(t) for sε ≤ t, and
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hence, for tε ≤ t

‖x(t)− z̄e‖∞ = ‖w(t)− z̄e+v(t)‖∞

≤ ‖w(t)− z̄e‖∞+‖v(t)‖∞

≤ ε

2
+
ε

2
= ε,

which follows from (3.15) and (3.17). This is true for every ε > 0, and hence, we have

limt→∞x(t) = z̄e.

To use Lemma 10 in the proof of the main theorem, we need to identify q∗ coordinates in

P∗-processes, which is established in the following result.

Lemma 11. Let {Q(t)} be an `× ` Laplacian process in the class P∗. Then, there is a per-

mutation of indices in [`] such that the permuted process {Q̂(t)} can be written as the block

matrix form Q̂(t) = [Q̂ij(t)]m×m such that all coordinates of L[Q̂ii(t)] are q∗ for i ∈ [m], and

‖Q̂ij(t)‖∞ is integrable for i 6= j ∈ [m].

The proof of this result is provided in Appendix.

Proof of Theorem 3: Without loss of generality we can assume that the diagonal ma-

trices L[Aii(t)] are q∗ for all i ∈ [m], otherwise, by Lemma 11, we can rename the indices

of [Aij(t)]m×m such that the resulting process has a block-matrix form [Ãij(t)]m̃×m̃ with q∗

diagonal blocks. Since renaming the indices that are associated with a block (shuffling rows and

columns associated with that block, accordingly) does not affect the sum of the lower diagonal

elements, the lower diagonal blocks ‖Ãij(t)‖∞ are integrable for i > j. Also, having a spanning

directed rooted tree is invariant under permuting the vertices and hence, we can work with the

matrix [Ãij(t)]m̃×m̃ and we can as well assume that the original process [Aij(t)]m×m has this

property.

Also, since ‖Aij(t)‖∞ is integrable for i > j, from Proposition 1 in [8], setting Aij(t) = 0
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for i > j and t≥ t0 will not affect the ergodic properties of the process. Therefore, again, without

loss of generality, we assume that Aij(t) = 0 for all blocks i > j and t≥ t0. We use induction

on m to prove the theorem. The result is true for m = 1 as the process has a q∗-coordinate

and hence, by Lemma 8, it is ergodic. Now assume that Â(t) , [Âij(t)](m−1)×(m−1), where

Âij = Ai+1j+1(t), is ergodic for m> 1. Then

A(t) =

A11(t) C(t)

0eeT Â(t)

 ,
where C(t) = [A1j(t)]1×m. Note that Â(t) is ergodic and all the coordinates in L[A11(t)] are q∗,

and hence, by Lemma 3.5, we conclude the proof.

3.4 Proof of the Minor Results

In this section, we provide the proof of the minor result of this chapter, i.e., the lemmas

related to the implications of the main result and some other lemmas in the proof of the main

result. The following lemma is used in the proof of Lemma 5.

Lemma 12 ([37]). For a Laplacian process {A(t)} with the transition matrix Φ(t, τ) = [φij(t, τ)],

(a) if
∫ t
τ A(s) ds≤M , then φii(t, τ)≥ β(M) for some β(M)> 0, and

(b) if in addition
∫ t
τ A(s) ds is cut-balanced with parameter K, then Φ(t, τ) is cut-balanced with

parameter α(K,M) for some α(K,M)> 0.

For the proof of this lemma, see the proof of Lemma 8 in [37], noting that cut-balanced

assumption is not used for the proof of Lemma 8-(a) in [37].
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Lemma 13. Let {A(t)} and {Z(t)} with transition matrices ΦA(t, τ) and ΦZ(t, τ), respectively,

be an `1-approximation of each other. Then, we have

lim
τ→∞

sup
t∈[τ,∞)

‖ΦA(t, τ)−ΦZ(t, τ)‖∞ = 0.

Proof: Let

r(τ) ,
∫ ∞
τ
‖A(s)−Z(s)‖∞ ds.

From Lemma 6 in [8], we have

‖ΦA(t, τ)−ΦZ(t, τ)‖∞ ≤
∫ t

τ
‖A(s)−Z(s)‖∞ ds.

Thus, for all t, we have ‖ΦA(t, τ)−ΦZ(t, τ)‖∞ ≤ r(τ), and hence, supt∈[τ,∞) ‖ΦA(t, τ)−

ΦZ(t, τ)‖∞ ≤ r(τ). Since, {A(t)} and {Z(t)} are an `1-approximation of each other, we have

limτ→∞ r(τ) = 0, which completes the proof.

Proof of Lemma 5: Let Φ(t, τ) be the transition matrix of {A(t)} and letH(s) = [hij(s)] =

Φ(ts, ts−1) where {ts} is the sequence defined in Definition 11. Since A(t) satisfies Definition 11

for all s ∈ N, Lemma 12-(b) implies that H(s) is cut-balanced with parameter α for some α > 0.

Thus, from Lemma 9 in [71], we know that there exists a stochastic vector sequence {θ(t)} such

that

θT (s+ 1)H(s+ 1) = θT (s) (3.18)

and θ(s)≥ pe for all s≥ 0 and for some p > 0. From (3.18), we have

θT (s+κ)
s+κ∏
ι=s+1

H(ι) = θT (s).
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Since e≥ θ(s+κ), θ(s)≥ pe, we can conclude

eT
s+κ∏
ι=s+1

H(ι)≥ θT (s+k)
s+κ∏
ι=s+1

H(ι)≥ peT .

Suppose that t≥ ts+κ ≥ ts ≥ τ , where s, min{ŝ|tŝ ≥ τ} and κ, max{κ̂|t≥ ts+κ̂}. Thus, we

can write

Φ(t, τ) = Φ(t, ts+κ)

[
s+κ∏
ι=s+1

H(ι)

]
Φ(ts, τ). (3.19)

By Definition 11, we have
∫ t
ts+κ

A(s) ds,
∫ ts
τ A(s) ds≤M . Hence, Lemma 12-(a) implies

φii(t, ts+κ),φii(ts, τ)≥ β(M)> 0.

Therefore, from (3.19), we have eTΦ(t, τ)≥ β2(M)peT .

Proof of Lemma 6: Let A(t) and Z(t) have transition matrices ΦA(t, τ) and ΦZ(t, τ),

respectively. Since {A(t)} is a class P∗ process, there exists p > 0 such that eTΦZ(t, τ)≥ peT for

all t0 ≤ τ ≤ t. Since, {A(t)} and {Z(t)} are an `1-approximation of each other, from Lemma 13,

there exists τp such that for all τp ≤ τ ≤ t

eTΦZ(t, τ)≥ p

2
eT .

Also, from Lemma 12-(a) φii(t, τ)≥ p′ for some p′ > 0 and all t0 ≤ τ ≤ t≤ τp, where ΦZ(t, τ) =

[φij(t, τ)]. Thus, we have

eTΦZ(t, τ)≥ pp′

2
eT
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for all t0 ≤ τ ≤ t.

Proof of Lemma 8: If {A(t)} is an ergodic Laplacian process, we have liminft→∞Φ(t, τ)ei =

pi(τ)e. Moreover, because Φ(t, τ) is stochastic, we have
∑

i pi(τ) = 1, which implies maxi pi(τ)≥
1
n . Therefore, letting k(τ) ∈ argmaxi pi(τ) completes the proof of the necessary condition.

For the sufficient condition, consider a sequence (ts)s∈N of increasing times with t1 = τ

and lims→∞ ts =∞ such that the condition

Φ(ts+1, ts)ek(ts) ≥
q

2
e

holds. Finally, classical results in the study of inhomogeneous Markov chains, such as Theorem 4

in [15], imply that

lim
t→∞

Φ(t, τ) = lim
s→∞

Φ(ts+1, ts) · · ·Φ(t2, t1) = eπT (τ)

for some π(τ), which means that the process {A(t)} is ergodic and the proof is complete.

Proof of Lemma 11: Let z(t) be driven by {Q(t)}. Suppose the undirected infinite flow

graph of Q(t) has m connected subgraphs with agent sets V1, . . . ,Vm, where V1∪·· ·∪Vm = [`].

From Theorem 6 in [6]1, if Q(t) is in class P∗, then

lim
t→∞

zi(t) = z̄j , for some z̄j ∈ R,∀i ∈ Vj ,∀j ∈ [m]. (3.20)

Consider a permutation r : [`]→ [`] such that

r(Vj) =

{
j−1∑
k=1

|Vk|+ 1,

j−1∑
k=1

|Vk|+ 2, . . . ,

j∑
k=1

|Vk|

}
,

1The theorem in [6] is not numbered, but it appears between Theorem 5 and Theorem 7.
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where r(S) = {r(i) | i ∈ S}. Apply this permutation to convert Q(t) into Q̂(t) = [Q̂ij(t)]m×m

where size of Q̂ij(t) is |Vi| × |Vj |, for i, j ∈ [m]. From (3.20), we have limt→∞ΦQ̂(t, τ) =

[Γij(τ)]m×m where Γij(τ) = eπTij(τ) for some vector πij(τ) ∈ R|Vj | and i, j ∈ [m]. Let C(t)

be the minimal `1-approximation of Q̂(t) with the transition matrix ΦC(t, τ) = [Λij(τ)]m×m.

For i and j that are not connected in C(t), zi(t) has no contribution in zj(t), and we have

Λij(τ) = 0eeT for i 6= j ∈ [m]. Since, {Q̂(t)} and {C(t)} are an `1-approximation of each other,

from Lemma 13, there exists τp such that for all τp ≤ τ , Γij(τ)≤ p
2`ee

T for i 6= j ∈ [m]. Because

Q̂(t) is in class P∗, we have

lim
t→∞

eTΦQ̂(t, τ)≥ peT

for some p > 0. Hence, for τ ≥ τp, we conclude Γii(τ)≥ p
2|Vi|ee

T , for i ∈ [m], and the proof is

complete.

Chapter 3, in full, is a reprint of the material as it appears in A. Aghajan and B. Touri,

Ergodicity of continuous-time distributed averaging dynamics: A spanning directed rooted tree

approach, being accepted for publication in IEEE Transactions on Automatic Control. The

dissertation author was the primary investigator and author of this paper.
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Part II

Distributed Optimization Over Dependent

Random Networks
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Chapter 4

Averaging-Based Distributed Optimization

Solvers

In this chapter, we study distributed optimization over random networks, where the

randomness is not only time-varying but also, possibly, dependent on the past. Under the

standard assumptions on the local objective functions and step-size sequences for the gradient

descent algorithm, we show that the averaging-based distributed optimization solver at each node

converges to a global optimizer almost surely if the weight matrices are row-stochastic almost

surely, column-stochastic in-expectation, and satisfy certain connectivity assumptions.

The structure of this chapter is as follows: In Section 4.1, we formulate the problem of

interest, and in Section 4.2 we state the main result of this chapter, which is Theorem 4. In Section

4.3, we discuss some immediate consequences of the main result. To assist the readability of

this chapter, we provide a sketch of the proof of Theorem 4, in Section 4.4. To prove the main

result, first we study the behavior of the distributed averaging dynamics over random networks in

Section 4.5. Then, in Section 4.6, we extent this analysis to the dynamics with arbitrary control

inputs. Finally, the main result, i.e. Theorem 4, is proved in Section 4.7. The lemmas that can be

considered roughly general and stand-alone results that are not tied to the specific assumptions
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related to Theorem 4, are proved in Section 4.8.

4.1 Problem Formulation

Consider a communication network with n nodes or agents such that node i has the cost

function fi : Rm→ R. Let F (z) ,
∑n

i=1 fi(z). The goal of this chapter is to solve

arg min
z∈Rm

F (z) (4.1)

distributively with the following assumption on the objective function.

Assumption 1 (Assumption on the Objective Function). We assume that:

(a) fi is a convex function over Rm for all i ∈ [n].

(b) The optimizer set Z , argminz∈Rm F (z) is non-empty.

(c) The subgradients of fi are uniformly upper bounded, i.e., for all g ∈ ∇fi(z), ‖g‖ ≤ Li for

all z ∈ Rm and all i ∈ [n]. We let L,
∑n

i=1Li.

In this chapter, we are dealing with the dynamics of the n agents estimates of an optimizer

z∗ ∈ Z which we denote them by xi(t) for all i ∈ [n]. Therefore, we view x(t) as a vector of n

elements in the vector space Rm. One can think of x(t) as an n×m matrix.

A distributed solution of (4.1) was first proposed in [45] using the following deterministic

dynamics

xi(t+ 1) =
n∑
j=1

wij(t+ 1)xj(t)−α(t)gi(t)

for1 t ≥ 0, initial conditions xi(0) ∈ Rm for all i ∈ [n], where gi(t) ∈ Rm is a subgradient of
1The dynamics work for any initial time t0, but since it does not make any difference, in this chapter, we set the

initial to be zero.
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fi(z) at z = xi(t) for i ∈ [n], and {α(t)} is a step-size sequence (in [45] the constant step-sizes

variation of this dynamics was studied). We simply refer to this dynamics as the averaging-based

distributed optimization solver. We can compactly write the above dynamics as

x(t+ 1) =W (t+ 1)x(t)−α(t)g(t), (4.2)

where, g(t) = [g1(t), . . . ,gn(t)]T is the vector of the sub-gradient vectors and matrix multiplica-

tion should be understood over the vector-field Rm, i.e.,

[W (t+ 1)x(t)]i ,
n∑
j=1

wij(t+ 1)xj(t).

In distributed optimization, the goal is to find distributed dynamics xi(t)s such that limt→∞xi(t) =

z where z ∈ Z for all i ∈ [n].

4.2 Main Result

In this section, we discuss the main result of this chapter. The proof of the result is

provided in the subsequent sections. In this chapter, we consider the random variation of (4.2),

i.e., when {W (t)} is a chain of random matrices. This random variation was first studied in

[33] where to ensure the convergence, it was assumed that this sequence is doubly stochastic

almost surely and i.i.d.. This was generalized to random networks that is Markovian in [34].

The dynamics (4.2) with i.i.d. weight matrices that are row-stochastic almost surely and column-

stochastic in-expectation was studied in [41]. A special case of [41] is the asynchronous gossip

algorithm that was introduced in [42]. In this chapter, we provide an overarching framework for

the study of (4.2) with possibly dependent random weight matrices that are row-stochastic almost

surely and column-stochastic in-expectation. The following assumption highlights the technical

requirements for the random weight matrix sequences.
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Assumption 2 (Stochastic Assumption). We assume that the weight matrix sequence {W (t)},

adapted to a filtration {F(t)}, satisfies

(a) For all t≥ 0, W (t) is row-stochastic almost surely.

(b) For every t > 0, E[W (t) | F(t− 1)] is column-stochastic (and hence, doubly stochastic)

almost surely.

Similar to other works in this domain, our goal is to ensure that limt→∞xi(t) = z almost

surely for some optimal z ∈ Z for all i ∈ [n]. To reach such a consensus value, we need to

ensure enough flow of information between the agents, i.e., the associated graph sequence of

{W (t)} satisfies some form of connectivity over time. More precisely, we assume the following

connectivity conditions.

Assumption 3 (Conditional B-Connectivity Assumption). We assume that for all t≥ 0

(a) Every node in G(W (t)) has a self-loop, almost surely.

(b) There exists an integer B > 0 such that the random graph GB(t) = ([n],EB(t)) where

EB(t) =

(t+1)B⋃
τ=tB+1

E(E[W (τ)|F(tB)])

has a spanning rooted tree almost surely.

In deterministic distributed optimization, the connectivity condition for time-invariant

networks is that E(W ) has a spanning rooted tree, which is generalized to
⋃(t+1)B
τ=tB+1E(W (τ))

having a spanning rooted tree2 for time-varying networks. In random setting, the connectivity

condition for i.i.d. random networks is that E(E[W ]) has a spanning rooted tree. A natural

generalization of this condition to dependent random networks is that
⋃(t+1)B
τ=tB+1E(E[W (τ)|F(τ−

2Note that W (t)s need to doubly stochastic too, which means W (t)s are strongly connected.
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1)]) has a spanning rooted tree almost surely. We further generalize this condition to Assumption 3-

(b). This is due to the following lemma which is proved in Appendix.

Lemma 14. If the random graph with the vertex set [n] and the edge set

(t+1)B⋃
τ=tB+1

Eγ(E[W (τ)|F(τ −1)]),

has a spanning rooted tree almost surely, then from some γ ≥ γ̃ > 0, the random graph with the

vertex set [n] and the edge set

(t+1)B⋃
τ=tB+1

E γ̃(E[W (τ)|F(tB)]),

has a spanning rooted tree almost surely.

Finally, we assume the following standard condition on the step-size sequence {α(t)}.

Assumption 4 (Assumption on Step-size). For the step-size sequence {α(t)}, we assume that

0< α(t)≤Kt−β for some K,β > 0 and all t≥ 0, limt→∞
α(t)
α(t+1) = 1, and

∞∑
t=0

α(t) =∞ and
∞∑
t=0

α2(t)<∞. (4.3)

The main result of this chapter is the following theorem.

Theorem 4. Under the Assumptions 1-4 on the model and the dynamics (4.2), limt→∞xi(t) = z∗

almost surely for all i ∈ [n] and all initial conditions xi(0) ∈ Rm, where z∗ is a random vector

that is supported on the optimal set Z .
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4.3 Implications

Before continuing with the technical details of the proof, let us first discuss some of the

higher-level implications of this result:

4.3.1 Gossip-based sequential solvers

Gossip algorithms, which were originally studied in [9, 3], have been used in solving

distributed optimization problems [42, 31]. In gossip algorithms, at each round, a node randomly

wakes up and shares its value with all or some of its neighbors. However, it is possible to leverage

Theorem 4 to synthesize algorithms that do not require choosing a node independently and

uniformly at random or use other coordination methods to update information at every round. An

example of such a scheme is as follows:

Example 5. Consider a connected undirected network3 G = ([n],E). Consider a token that is

handed sequentially in the network and initially it is handed to an arbitrary agent `(0) ∈ [n] in

the network. If at time t≥ 0, agent `(t) ∈ [n] is in the possession of the token, it chooses one of

its neighbors s(t+ 1) ∈ [n] randomly and by flipping a coin, i.e., with probability 1
2 shares its

information to s(t+ 1) and passes the token and with probability 1
2 keeps the token and asks for

information from s(t+ 1). It means

`(t+ 1) =


`(t), with probability 1

2

s(t+ 1), with probability 1
2

.

Finally, the agent `(t+ 1), who has the token at time t+ 1 and is receiving the information, does

x`(t+1)(t+ 1) =
1

2
(xs(t+1)(t) +x`(t)(t))−α(t)g`(t+1)(t).

3The graphs do not need to be time-invariant, and this example can be extended to processes over underlying
time-varying graphs.
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For the other agents i 6= `(t+ 1), we set

xi(t+ 1) = xi(t)−α(t)gi(t).

Let F(t) = σ(x(0), . . . ,x(t), `(t)), and the weight matrix W (t) = [wij(t)] be

wij(t) =



1
2 , i= j = `(t)

1
2 , i= `(t), j ∈ {s(t), `(t−1)}\{`(t)}

1, i= j 6= `(t)

0, otherwise

,

which is the weight matrix of this scheme. Note that E[W (t)|F(t− 1)] = V (`(t− 1)) where

R(h) = [rij(h)] with

rij(h) =



3
4 , i= j = h

1
4δi
, i= h,(i, j) ∈ E

1
4δi
, j = h,(i, j) ∈ E

1, i= j 6= h

0, otherwise

,

where δi is the degree of the node i. Note that the matrix E[W (t)|F(t−1)] is doubly stochastic,

satisfies Assumption 3-(a), and only depends on `(t−1). Now, we need to check whether {W (t)}
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satisfies Assumption 3-(b). We have

E[W (t+n)|F(t)] = E[E[W (t+n) | F(t+n−1)] | F(t)]

= E[R(`(t+n−1)) | F(t)]

= E

[
n∑
i=1

R(`(t+n−1))1{`(t+n−1)=i}

∣∣∣∣F(t)

]

=
n∑
i=1

E[R(i)1{`(t+n−1)=i} | F(t)]

=
n∑
i=1

R(i)E[1{`(t+n−1)=i} | F(t)].

If the network is connected, starting from any vertex, after n−1 steps, the probability of reach-

ing any other vertex is at least (2∆)−(n−1) > 0, where ∆ , maxi∈[n] δi. Therefore, we have

E[1{`(t+n−1)=i}|F(t)] > 0 for all i ∈ [n] and t, and hence, Assumption 3-(b) is satisfied with

B = n.

4.3.2 Robustness to link-failure

Our result shows that (4.2) is robust to random link-failures. Note that the results such as

[33] will not imply the robustness of the algorithms to link failure as it assumes that the resulting

weight matrices remain doubly stochastic. To show the robustness of averaging-based solvers,

suppose that we have a deterministic doubly stochastic sequence {A(t)}, and suppose that each

link at any time t fails with some probability p(t)> 0. More precisely, let B(t) be a failure matrix

where bij(t) = 0 if a failure on link (i, j) occurs at time t and otherwise bij(t) = 1 and we have

E[bij(t)|F(t−1)] = 1−p(t), (4.4)
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for i, j ∈ [n]. For example, if B(t) is independent and identically distributed, i.e.,

bij(t) =


0, with probability p

1, with probability 1−p
,

then B(t) satisfies (4.4). Define W (t) = [wij(t)] as follows

wij(t) ,


aij(t)bij(t), i 6= j

1−
∑
6̀=iai`(t)bi`(t), i= j

.

Note that W (t) is row-stochastic, and since A(t) is column-stochastic, E[W (t)|F(t− 1)] is

column-stochastic. Thus, Theorem 4, using W (t), translates to a theorem on robustness of

the distributed dynamics (4.2): as long as the connectivity conditions of Theorem 4 holds, the

dynamics will reach a minimizer of the distributed problem almost surely. For example, if the link

failure probability satisfies p(t)≤ p̄ for all t and some p̄ < 1, our result implies that the result of

Proposition 4 in [47] (for unconstrained case) would still hold under the above link-failure model.

It is worth mentioning that if {A(t)} is time-varying, then E[W (t)] would be time-varying and

hence, the previous results on distributed optimization using i.i.d. row-stochastic weight matrices

that are column-stochastic in-expectation [41] would not imply such a robustness result.

4.4 Theorem 4: Sketch of Proof

Here, we provide the sketch of the proof of the main result (Theorem 4) to assist with its

readability. We can divide the proof into two main steps:

I. We show that limt→∞ x̄(t) = z∗ almost surely, where x̄, 1
ne

Tx is the average of x(t) and

z∗ is a random vector whose support lies on the optimizer set Z .
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II. We show that almost surely limt→∞ ‖xi(t)− x̄(t)‖= 0 for all i ∈ [n].

To show Step I, we fix a z ∈ Z and use the Lyapunov (like) function V (t) = ‖x̄(t)− z‖2. In

Lemma 26, we show that this Lyapunov function satisfies

E [V (t+ 1)|F(t)]≤ V (t)− b(t) + c(t), (4.5)

where

b(t) ,−2α(t)

n
(F (x̄(t))−F (z)), and

c(t) , α2(t)
L2

n2
+

n∑
i=1

‖xi(t)− x̄(t)‖2 +
4α(t)

n

n∑
i=1

Li‖xi(t)− x̄(t)‖. (4.6)

To analyze (4.5), we apply Robbins-Siegmund Theorem [59], which plays a key role in the proof

of the above Step I.

Theorem 5 (Robbins-Siegmund Theorem [59]). Suppose that a non-negative random process

{Ṽ (t)} (adapted to a filtration {F̃(t)}) satisfies

E
[
Ṽ (t+ 1)

∣∣∣F̃(t)
]
≤ (1 + ã(t))Ṽ (t)− b̃(t) + c̃(t), (4.7)

where ã(t), b̃(t), c̃(t) ≥ 0 almost surely for all t. Then if
∑∞

t=0 ã(t) <∞ and
∑∞

t=0 c̃(t) <∞

almost surely, limt→∞ Ṽ (t) exists and
∑∞

t=0 b̃(t)<∞ almost surely.

Note that in (4.6), b(t), c(t)≥ 0 for all t. To apply the Robbins-Siegmund result for (4.5),

we need to prove that
∑∞

t=0 c(t)<∞, almost surely. Since
∑∞

t=0α
2(t)<∞, we need to establish

∞∑
t=0

‖xi(t)− x̄(t)‖2 <∞
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and
∞∑
t=0

α(t)‖xi(t)− x̄(t)‖<∞,

almost surely, for all i ∈ [n]. To establish this, in Lemma 22, we find an upper bound on the

diameter of x(t), i.e. d(x(t)), which is defined in (4.15). Combining ‖xi(t)− x̄(t)‖ ≤ d(x)

(Lemma 16-(e)) and Lemma 22, we arrive at

E
[
‖xi(t)− x̄(t)‖2

]
≤Mα2(t), (4.8)

for some constant M > 0.

While in (4.8), we show that xi(t) converges to x̄(t) (in second moment) with the

convergence rate α2(t), to prove Step II, we need to show that it converges to x̄(t) almost

surely. However, we provide a stronger result and in Lemma 24, we show that

‖xi(t)− x̄(t)‖/ M̂α(t), (4.9)

for some constant M̂ > 0.

To show (4.8) and (4.9), we study the conditional expectation of the diameter of x(t). To

do so, we derive

E[d(x(t))|F(τ)]≤ E[diam(Φ(t, τ))|F(τ)]d(x(τ)) (4.10)

+ L̃
t−1∑
s=τ

E[diam(Φ(t,s+ 1))|F(τ)]α(s),

from the main dynamics (4.2) for some constant L̃ > 0 where diam(A) is the diameter of the

matrix A and defined in (4.13). Therefore, we need to investigate E[diam(Φ(t, τ))|F(τ)] for all

64



t≥ τ . In Lemma 19, we show that E[diam(Φ(t, τ))|F(τ)] exponentially goes to zero, i.e.,

E[diam(Φ(t, τ))|F(τ)]≤ Cλt−τ . (4.11)

To prove (4.11), in Lemma 17, we show that for a large enough T , E[diam(Φ(T,τ))|F(τ)]≤ 1−θ

for some θ > 0 (Lemma 17 is based on Λ(·) which is defined in (4.14). Note that from Lemma 16-

(c), we have diam = 1−Λ). The main challenge to prove Lemma 17 is to show that the probability

of the event {diam(Φ(T,τ))≤ 1− θ̃} for some θ̃ > θ is away form zero, which is possible due to

Assumption 3 (and Assumption 2-(a)). Using (4.11), in Lemma 22, we prove (4.8) and complete

the proof of Step I.

To prove Step II, using Assumption 4 (α(t)≤Kt−β), first we simplify (4.10) to

E[d(x(t))|F(τ)]≤ E[diam(Φ(t, τ))|F(τ)]d(x(τ)) + K̃τ−β,

for some K̃ > 0. However, since
∑∞

τ=0 τ
−β is not necessarily summable, we cannot use the

standard Robbins-Siegmund Theorem [59] to argue d(x(t))→ 0 based on this inequality. We

will use the facts that E[diam(Φ(t, τ))|F(τ)]< 1 if t− τ is large enough, and diam(Φ(t, τ))≤ 1

for all t≥ τ ≥ t. This leads us to prove a martingale-type result in Lemma 23, which helps us to

prove (4.9) (in Lemma 24). This step completes the proof of Step II.

4.5 Autonomous Averaging Dynamics

To prove Theorem 4, we need to study the time-varying distributed averaging dynamics

with a particular control input (gradient-like dynamics). To do this, first we study the autonomous

averaging dynamics (i.e., without any input) and then, we use the established results to study the

controlled dynamics.
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For this, consider the time-varying distributed averaging dynamics

x(t+ 1) =W (t+ 1)x(t), (4.12)

where {W (t)} satisfying Assumption 3. Defining transition matrix

Φ(t, τ) ,W (t) · · ·W (τ + 1),

and Φ(τ,τ) = I , we have x(t) = Φ(t, τ)x(τ). Note that since W (t)s are row-stochastic matrices

(a.s.) and the set of row-stochastic matrices is a semi-group (with respect to multiplication), the

transition matrices Φ(t, τ) are all row-stochastic matrices (a.s.).

We say that a chain {W (t)} achieves consensus for the initial time 0 if for all i

lim
t→∞
‖xi(t)− x̃‖= 0,

almost surely, for all choices of initial condition x(0) ∈ (Rm)n in (4.12) and some random vector

x̃= x̃x(0). It can be shown that an equivalent condition for consensus is to have limt→∞Φ(t,0) =

eπT (0) for a random stochastic vector π(0) ∈ Rn, almost surely.

For a matrix A= [aij ], let

diam(A) = max
i,j∈[n]

1

2

n∑
`=1

|ai`−aj`|, (4.13)

and the mixing parameter

Λ(A) = min
i,j∈[n]

n∑
`=1

min{ai`,aj`}. (4.14)

Note that for a row-stochastic matrix A, diam(A) ∈ [0,1]. For a vector x = [xi] where xi ∈ Rm
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for all i, let

d(x) = max
i,j∈[n]

‖xi−xj‖∞, (4.15)

where ‖·‖ is `∞ norm. For convenience and due to the frequent use of `∞ norm in this chapter, we

use ‖·‖ to denote the `∞ norm ‖x‖,maxi∈[m] |xi|. Note that d(x)≤ 2maxi∈[n] ‖xi‖. Also, if we

have consensus, then limt→∞d(x(t)) = 0 and limt→∞diam(Φ(t,0)) = 0 and in fact, the reverse

implications are true [15], i.e., a chain achieves consensus if and only if limt→∞d(x(t)) = 0 for

all x(0) ∈ (Rm)n or limt→∞diam(Φ(t,0)) = 0.

The following results relating the above quantities are useful for our future discussions.

Lemma 15 ([23, 61]). For n×n row-stochastic matrices A,B, we have

diam(AB)≤ (1−Λ(A))diam(B).

Lemma 16. For any n×n row-stochastic matrices A,B, we have

(a) d(Ax)≤ diam(A)d(x) for all x ∈ (Rm)n,

(b) d(x+y)≤ d(x) + d(y) for all x,y ∈ (Rm)n,

(c) diam(A) = 1−Λ(A),

(d) diam(AB)≤ diam(A)diam(B), and

(e)
∥∥∥xi−∑n

j=1πjxj

∥∥∥≤√nd(x) for all i∈ [n], x∈ (Rm)n, and any stochastic vector π ∈ [0,1]n

(i.e.,
∑n

i=1πi = 1).

Proof: The proof is provided in Appendix.
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It is worth mentioning that similar results to Lemma 16 were established in [14] for m= 1,

and Lemma 16 extends those results to m> 1. In [14], it was shown that the semi-norm of a

matrix A induced by d(·) is equal to 1−Λ(A) for m= 1.

The main goal of this section is to obtain an exponentially decreasing upper bound (in

terms of t1− τ1 and t2− τ2) on E[diam(Φ(t2, τ2))diam(Φ(t1, τ1)) | F(τ1)].

Using this result and a proper connectivity assumption (Assumption 3), we can show that

the transition matrices Φ(t,s) become mixing in-expectation for large enough t > s.

Lemma 17. Under Assumption 2-(a) and 3, there exists a parameter θ > 0 such that for every

s≥ 0, we have almost surely

E[Λ(Φ((n2 + s)B,sB)) | F(sB)]≥ θ.

Proof: Fix s≥ 0. Let T be the set of all collection of edges E such that the graph ([n],E)

has a spanning rooted tree, and for k ∈ [n2],

EB(k) ,
(s+k)B⋃

τ=(s+k−1)B+1

E (E[W (τ)|F((s+k−1)B)]).

For notational simplicity, denote F(sB) by F and F((s+ k)B) by Fk for k ∈ [n2]. Let V =

{ω | ∀k EB(k) ∈ T}. From Assumption 3, we have P (V ) = 1. For ω ∈ V and k ≥ 1, define the

random graph ([n],Tk) on n vertices by

Tk =


Tk−1, if Tk−1 ∈ T

Tk−1∪{uk}, if Tk−1 6∈ T
,
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with T0 = ∅, where

uk ∈ EB(k)∩T k−1, (4.16)

and T k is the edge-set of the complement graph of ([n],Tk). Note that since EB(k) has a spanning

rooted tree, if Tk−1 6∈ T, then EB(k) should contain an edge that does not belong to Tk−1, which

we identify it as uk in (4.16). Hence, Tk is well-defined. Since there are at most n(n−1) potential

edges in a graph on n vertices, Tn2 has a spanning rooted tree for ω ∈ V .

For k ∈ [n2], let

DB(k) ,
(s+k)B⋃

τ=(s+k−1)B+1

Eν(W (τ)),

for some fixed 0< ν < γ, and

H(k) ,
k⋃
τ=1

DB(τ).

Consider the sequences of events {Uk} defined by

Uk , {ω ∈ V | Tk ⊂H(k)} ,

for k ≥ 1, and U0 = V . Note that if Tk−1 ∈ T, then Tk−1 ⊂H(k−1) implies Tk ⊂H(k), and if

Tk−1 6∈ T, then Tk−1 ⊂H(k−1) and uk ∈ DB(k) imply Tk ⊂H(k). Hence,

1{Uk} ≥ 1{Uk−1}1{Tk−1 6∈T}1{uk∈DB(k)}+ 1{Uk−1}1{Tk−1∈T} (4.17)

holds for k ≥ 1.
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On the other hand, from Tower rule (see e.g., Theorem 5.1.6 in [20]), we have

E[1{Uk−1}1{Tk−1 6∈T}1{uk∈DB(k)} | F ] = E[1{Uk−1}1{Tk−1 6∈T}E[1{uk∈DB(k)}|Fk−1] | F ]. (4.18)

Let uk(ω) = (jk(ω), ik(ω)). Since uk ∈ EB(k), there exists (s+k−1)B < τk ≤ (s+k)B such

that

uk ∈ E (E[W (τk)|Fk−1]),

and, we have

E[(1−ν)1{1−wikjk (τk)≥1−ν}|Fk−1]≤ E[1−wikjk(τk)|Fk−1]≤ 1−γ. (4.19)

Therefore,

E[1{uk∈DB(k)} | Fk−1]≥ E[1{uk∈Eν(W (τk))} | Fk−1]

= E[1{wikjk (τk)>ν} | Fk−1]

= 1−E[1{wikjk (τk)≤ν} | Fk−1]

= 1−E[1{1−wikjk (τk)≥1−ν} | Fk−1]

≥ 1− 1−γ
1−ν

, p > 0,

which holds as ν < γ. This inequality and (4.18) imply that

E[1{Uk−1}1{Tk−1 6∈T}1{uk∈DB(k)} | F ]≥ pE[1{Uk−1}1{Tk−1 6∈T} | F ].
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Therefore, (4.17) implies

E[1{Uk}|F ]≥ pE[1{Uk−1}1{Tk−1 6∈T}|F ] +E[1{Uk−1}1{Tk−1∈T}|F ]

≥ p
(
E[1{Uk−1}1{Tk−1 6∈T}|F ] +E[1{Uk−1}1{Tk−1∈T}|F ]

)
= pE[1{Uk−1}|F ],

and hence E[1{Uk}|F ]≥ pk. Finally, since Tn2 has a spanning rooted tree, from Lemma 1 in [33],

we have

Λ(W (n2B,ω) · · ·W (n(n−1)B+n−1,ω) · · ·W (1,ω))≥ νn
2B,

for ω ∈ Un2 . Therefore, we have

E
[
Λ(Φ((n2 + s)B,sB))

∣∣F(sB)
]
≥ νn

2BE[1{Un2} | F ]≥ νn
2Bpn

2

, θ > 0,

which completes the proof.

Finally, we need the following result, which is proved in Appendix, to prove the main result of

this section.

Lemma 18. For a non-negative random process {Y (k)}, adapted to a filtration {F(k)}, let

E[Y (k)|F(k−1)]≤ a(k)

for K1 ≤ k ≤K2 almost surely, where K1 ≤K2 are arbitrary positive integers and a(k)s are

(deterministic) scalars. Also, consider the σ-algebra F̃ such that F̃ ⊆ F(k) for all K1−1≤ k <
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K2. Then,we have almost surely

E

 K2∏
k=K1

Y (k)

∣∣∣∣∣∣F̃
≤ K2∏

k=K1

a(k).

Now, we are ready to prove the main result for the convergence rate of the autonomous

random averaging dynamics.

Lemma 19. Under Assumption 2-(a) and 3, there exist 0< C and 0≤ λ < 1 such that for every

0≤ τ1 ≤ t1 and 0≤ τ2 ≤ t2 with τ1 ≤ τ2, we have almost surely

E[diam(Φ(t2, τ2))diam(Φ(t1, τ1))|F(τ1)]≤ Cλt1−τ1λt2−τ2 .

Proof: First, we prove

E[diam(Φ(t, τ))|F(τ)]≤ C̃λ̃t−τ , (4.20)

for some 0< C̃ and 0≤ λ̃ < 1. Let s, d τB e and K , b t−sB
n2B
c. Note that

diam(Φ(t, τ)) = diam

(
Φ(t,sB+Kn2B)

[
K∏
k=1

Φ(sB+kn2B,sB+ (k−1)n2B)

]
Φ(sB,τ)

)
(a)
≤ diam(Φ(t,sB+Kn2B))diam(Φ(sB,τ))[

K∏
k=1

diam(Φ(sB+kn2B,sB+ (k−1)n2B))

]
(b)
≤

[
K∏
k=1

(1−Λ(Φ(sB+kn2B,sB+ (k−1)n2B)))

]
,

where (a) follows from Lemma 16-(d), and (b) follows from the fact that diam(A)≤ 1 for all
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row-stochastic matrices A and Lemma 16-(c). Therefore, we have

E[diam(Φ(t, τ))|F(τ)]≤ E

[
K∏
k=1

(1−Λ(Φ(sB+kn2B,sB+ (k−1)n2B)))

∣∣∣∣∣F(τ)

]
(a)
≤ (1− θ)K

≤ C̃(1− θ)
t−τ
n2B ,

where C̃ = (1− θ)−1− 1
n2 and (a) follows from Lemma 17 and 18 with

Y (k) = 1−Λ(Φ(sB+kn2B,sB+ (k−1)n2B)),

and F̃ = F(τ). Since θ > 0, we have λ̃, (1− θ)
1

n2B < 1.

To prove the main statement, we consider two cases:

(i) intervals (τ1, t1] and (τ2, t2] do not have an intersection, and

(ii) (τ1, t1] and (τ2, t2] intersect.

For case (i), since the two intervals do not overlap, we have t1 ≤ τ2, and hence, Tower rule implies

E[diam(Φ(t2, τ2))diam(Φ(t1, τ1))|F(τ1)]

= E
[
E[diam(Φ(t2, τ2))|F(τ2)]diam(Φ(t1, τ1))

∣∣∣∣F(τ1)

]
≤ C̃λ̃t1−τ1C̃λ̃t2−τ2 ,

which follows from (4.20). For case (ii), let us write the union of the intervals (τ1, t1] and (τ2, t2]

as disjoint union of three intervals:

(τ1, t1]∪ (τ2, t2] = (s1, s2]∪ (s2, s3]∪ (s3, s4],
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for s1 ≤ s2 ≤ s3 where (s2, s3] , (τ1, t1]∩ (τ2, t2], (s1, s2]∪ (s3, s4] , (τ1, t1]4(τ2, t2]. Using

this, it can be verified that

E[diam(Φ(t2, τ2))diam(Φ(t1, τ1))|F(τ1)]

(a)
≤E[diam(Φ(s4, s3))diam2(Φ(s3, s2))diam(Φ(s2, s1))|F(τ1)]

(b)
≤E[diam(Φ(s4, s3))diam(Φ(s3, s2))diam(Φ(s2, s1))|F(τ1)]

(c)
≤ C̃λ̃s2−s1C̃λ̃s3−s2C̃λ̃s4−s3

= C̃λ̃s2−s12C̃
√
λ̃

2(s3−s2)
C̃λ̃s4−s3

≤ C̃3
√
λ̃
t1−τ1√

λ̃
t2−τ2

,

where (a) follows from Lemma 16-(d), (b) follows from diam(A) ≤ 1 for all row-stochastic

matrices A, and (c) follows from (4.20) and Lemma 18. Letting C , max{C̃2, C̃3} and λ,
√
λ̃,

we arrive at the conclusion.

4.6 Averaging Dynamics with Gradient-Flow Like Feedback

In this section, we study the controlled linear time-varying dynamics

x(t+ 1) =W (t+ 1)x(t) +u(t). (4.21)

Note that the feedback u(t) =−α(t)g(t) leads to the dynamics (4.2). The goal of this section is

to establish bounds on the convergence-rate of d(x) (to zero) in-expectation and almost surely for

a class of regularized input u(t).

We start with the following two lemmas.
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Lemma 20. For dynamics (4.21) and every 0≤ τ ≤ t, we have

d(x(t))≤ diam(Φ(t, τ))d(x(τ)) +
t−1∑
s=τ

diam(Φ(t,s+ 1))d(u(s)). (4.22)

Proof: Note that the general solution for the dynamics (4.21) is given by

x(t) = Φ(t, τ)x(τ) +
t−1∑
s=τ

Φ(t,s+ 1)u(s). (4.23)

Therefore, using the sub-linearity property of d(·) (Lemma 16-(b)), we have

d(x(t))≤d(Φ(t, τ)x(τ)) +
t−1∑
s=τ

d(Φ(t,s+ 1)u(s))

≤diam(Φ(t, τ))d(x(τ)) +
t−1∑
s=τ

diam(Φ(t,s+ 1))d(u(s)),

where the last inequality follows from Lemma 16-(a).

Lemma 21. Let {β(t)} be a positive (scalar) sequence such that limt→∞
β(t)
β(t+1) = 1. Then for

any θ ∈ [0,1), there exists some M > 0 such that

t−1∑
s=τ

β(s)θt−s ≤Mβ(t),

for all t≥ τ ≥ 0.

Proof: The proof is provided in Appendix.

To prove the main theorem, we need to study how fast E[d(x(t))] and E[d2(x(t))] ap-
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proach to zero when the diameter of the control input d(u(t)) goes to zero. Since

E[d2(x(t))]≥ E2[d(x(t))],

it suffice to study convergence rate of E[d2(x(t))].

Lemma 22. Under Assumptions 2-(a), 3, and 4, if almost surely d(u(t))< qα(t) for some q > 0,

then we have,
E[d2(x(t))]

α2(t)
≤ M̂

for some M̂ > 0 and all t≥ 0.

Proof: Taking the square of both sides of (4.22), for t > τ ≥ 0, we have

d2(x(t))≤ diam2(Φ(t, τ))d2(x(τ)) + 2diam(Φ(t, τ))d(x(τ))
t−1∑
s=τ

diam(Φ(t,s+ 1))d(u(s))

+
t−1∑
s=τ

t−1∑
`=τ

diam(Φ(t,s+ 1))d(u(s))diam(Φ(t, `+ 1))d(u(`)).

Taking the expectation of both sides of the above inequality, and using d(u(t))< qα(t) almost
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surely, we have

E[d2(x(t))]≤ E[diam2(Φ(t, τ))d2(x(τ))]

+ 2
t−1∑
s=τ

E
[
diam(Φ(t, τ))d(x(τ))diam(Φ(t,s+ 1))d(u(s))

]
+
t−1∑
s=τ

t−1∑
`=τ

E
[
diam(Φ(t,s+ 1))d(u(s))diam(Φ(t, `+ 1))d(u(`))

]
≤ E

[
E[diam2(Φ(t, τ))|F(τ)]d2(x(τ))

]
+ 2

t−1∑
s=τ

E
[
E[diam(Φ(t, τ))diam(Φ(t,s+ 1))|F(τ)]d(x(τ))

]
α(s)q

+
t−1∑
s=τ

t−1∑
`=τ

E[diam(Φ(t,s+ 1))diam(Φ(t, `+ 1))]α(s)α(`)q2.

Therefore, from Lemma 19, we have

E[d2(x(t))]≤ Cλ2(t−τ)E[d2(x(τ))] +
2Cq

λ
λt−τE[d(x(τ))]

t−1∑
s=τ

λt−sα(s)

+
Cq2

λ2

t−1∑
s=τ

t−1∑
`=τ

α(s)α(`)λt−sλt−`

≤ Cλ2(t−τ)E[d2(x(τ))] +
2CqM

λ
λt−τE[d(x(τ))]α(t) +

Cq2M2

λ2
α2(t),

where the last inequality follows from Lemma 21 and the fact that

t−1∑
s=τ

t−1∑
`=τ

α(s)α(`)λt−sλt−` =

(
t−1∑
s=τ

α(s)λt−s

)2

.

Dividing both sides of the above inequality by α2(t) and noting

α(τ)

α(t)
λt−τ =

t−1∏
κ=τ

α(κ)

α(κ+ 1)
λ,
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we have

E[d2(x(t))]

α2(t)
≤ CE[d2(x(τ))]

α2(τ)

(
t−1∏
κ=τ

α(κ)

α(κ+ 1)
λ

)2

+ 2
CqM

λ

E[d(x(τ))]

α(τ)

(
t−1∏
κ=τ

α(κ)

α(κ+ 1)
λ

)
+
Cq2M2

λ2
.

Since limτ→∞
α(τ)
α(τ+1) = 1, for any λ̂ ∈ (λ,1), there exists τ̂ such that for τ ≥ τ̂ , we have

µ(τ)

µ(τ + 1)
λ≤ λ̂.

Therefore,

E[d2(x(t))]

α2(t)
≤ CE[d2(x(τ))]

α2(τ)
λ̂2(t−τ) +

2CqM

λ

E[d(x(τ))]

α(τ)
λ̂t−τ +

Cq2M2

λ2
.

Taking the limit of the above inequality, we get

limsup
t→∞

E[d2(x(t))]

α2(t)
≤ lim
t→∞

C
E[d2(x(τ))]

α2(τ)
λ̂2(t−τ) + lim

t→∞

2CqM

λ

E[d(x(τ))]

α(τ)
λ̂t−τ +

Cq2M2

λ2

=
Cq2M2

λ2
.

As a result, there exists an M̂ > 0 such that E[d2(x(t))]
α2(t)

≤ M̂ .

To prove the main theorem, we also need to show that d(x(t)) converges to zero almost

surely (as will be proved in Lemma 24). To do so, we apply the following result, which is proved

in Appendix.

Lemma 23. Suppose that {D(t)} is a non-negative random (scalar) process such that

D(t+ 1)≤ a(t+ 1)D(t) + b(t), almost surely (4.24)
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where {b(t)} is a deterministic sequence and {a(t)} is an adapted process (to {F(t)}), such that

a(t) ∈ [0,1] and

E[a(t+ 1) | F(t)]≤ λ̃,

almost surely for some λ̃ < 1 and all t≥ 0. Then, if

0≤ b(t)≤Kt−β̃

for some K,β̃ > 0, we have limt→∞D(t)tβ = 0, almost surely, for all β < β̃.

Now, we are ready to show the almost sure convergence limt→∞d(x(t)) = 0 (and more)

under our connectivity assumption and a regularity condition on the input u(t) for the controlled

averaging dynamics (4.21).

Lemma 24. Suppose that {W (t)} satisfies Assumption 2-(a) and 3. Then, if d(u(t)) < qt−β̃

almost surely for some q ≥ 0, we have limt→∞d(x(t))tβ = 0, almost surely, for β < β̃.

Proof: From inequality (4.22), we have

d(x(k))≤ diam(Φ(k,τ))d(x(τ)) +
k−1∑
s=τ

diam(Φ(τ,s+ 1))d(u(s))

(a)
≤ diam(k,τ))d(x(τ)) +

k−1∑
s=τ

qs−β̃

≤ diam(Φ(k,τ))d(x(τ)) + (k− τ)qτ−β̃, (4.25)

where (a) follows from diam(Φ(., .))≤ 1. Let C > 0 and λ ∈ [0,1) be the constants satisfying

the statement of Lemma 19. Since λ < 1, for T = d| logC
logλ |e+ 1, we have λ̃ , CλT < 1. Then,

Lemma 19 implies that

E[diam(Φ(T (t+ 1),T t))|F(Tt)]≤ CλT = λ̃ < 1. (4.26)
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Let D(t) , d(x(Tt)). From inequality (4.25), for τ = Tt and k = T (t+ 1), we have

D(t+ 1)≤ diam(Φ(T (t+ 1),T t))D(t) +T 1−β̃qt−β̃.

Taking conditional expectation of both sides of the above inequality given F(Tt), we

have

E[D(t+ 1)|F(Tt)]≤ E[diam(Φ(T (t+ 1),T t))|F(Tt)]D(t) +T 1−β̃qt−β̃.

By letting a(t+ 1) , diam(Φ(T (t+ 1),T t)) and b(t) , Tqt−β̃ , we are in the setting of Lemma

23. Therefore, by Inequality (4.26) and diam(Φ(T (t+ 1),T t))≤ 1, the conditions of Lemma 23

hold, and hence,

lim
t→∞

D(t)tβ = 0 (4.27)

almost surely.

On the other hand, letting τ = T
⌊
k
T

⌋
in (4.25) we have

d(x(k))≤D
(⌊

k

T

⌋)
+T 1−β̃q

⌊
k

T

⌋−β̃
. (4.28)

Note that y−1≤ byc ≤ y. Therefore,

kβ =

(
T

(
k

T

))β
≤
(
T

(⌊
k

T

⌋
+ 1

))β
.

Similarly, ⌊
k

T

⌋−β̃
≤
(
k−T
T

)−β̃
.
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Therefore, using these inequalities and (4.28), we get

lim
k→∞

d(x(k))kβ ≤ lim
k→∞

D

(⌊
k

T

⌋)
kβ +T 1−β̃q

⌊
k

T

⌋−β̃
kβ

≤ lim
k→∞

D

(⌊
k

T

⌋)(
T

(⌊
k

T

⌋
+ 1

))β
+Tq(k−T )−β̃kβ

= 0,

where the last equality follows from (4.27) and β̃ > β.

4.7 Convergence Analysis of the Main Dynamics

Finally, in this section, we will study the main dynamics (4.2), i.e., the dynamics (4.21)

with the feedback policy ui(t) =−α(t)gi(t) where gi(t) ∈∇fi(xi(t)). Throughout this section,

we let x̄, 1
ne

Tx for a vector x ∈ (Rm)n,

First, we prove an inequality (Lemma 26) which plays a key role in the proof of Theorem

4 and to do so, we make use of the following result which is proven as a part of the proof of

Lemma 8 (Equation (27)) in [43].

Lemma 25 ([43]). Under Assumption 1, for all v ∈ Rm, we have

n〈ḡ(t), x̄(t)−v〉 ≥ F (x̄(t))−F (v)−2
n∑
i=1

Li‖xi(t)− x̄(t)‖.

Lemma 26. For the dynamics (4.2), under Assumption 1 and 2, for all v ∈ Rm, we have

E[‖x̄(t+ 1)−v‖2|F(t)]≤ ‖x̄(t)−v‖2 +α2(t)
L2

n2
+

n∑
i=1

‖xi(t)− x̄(t)‖2

− 2α(t)

n
(F (x̄(t))−F (v)) +

4α(t)

n

n∑
i=1

Li‖xi(t)− x̄(t)‖.
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Proof: Multiplying 1
ne

T from left to both sides of (4.2), we have

x̄(t+ 1) =W (t+ 1)x(t)−α(t)ḡ(t)

= x̄(t)−α(t)ḡ(t) +W (t+ 1)x(t)− x̄(t),

where W (t) , 1
ne

TW (t). Therefore, we can write

‖x̄(t+ 1)−v‖2 = ‖x̄(t)−v−α(t)ḡ(t) +W (t+ 1)x(t)− x̄(t)‖2

= ‖x̄(t)−v‖2 +‖α(t)ḡ(t)‖2 +‖W (t+ 1)x(t)− x̄(t)‖2

−2α(t)
〈
ḡ(t),W (t+ 1)x(t)−v

〉
+ 2
〈
x̄(t)−v,W (t+ 1)x(t)− x̄(t)

〉
.

Taking conditional expectation of both sides of the above equality given F(t), we have

E[‖x̄(t+ 1)−v‖2|F(t)] = ‖x̄(t)−v‖2 +‖α(t)ḡ(t)‖2 +E
[
‖W (t+ 1)x(t)− x̄(t)‖2|F(t)

]
−2α(t)

〈
ḡ(t),E

[
W (t+ 1)x(t)−v|F(t)

]〉
+ 2
〈
(x̄(t)−v),E

[
W (t+ 1)x(t)− x̄(t)|F(t)

]〉
=‖x̄(t)−v‖2 +‖α(t)ḡ(t)‖2 +E

[
‖W (t+ 1)x(t)− x̄(t)‖2|F(t)

]
−2〈α(t)ḡ(t), x̄(t)−v〉 .

The last equality follows from the assumption that, W (t+ 1) is doubly stochastic in-expectation

and hence,

E[W (t+ 1)|F(t)] =
1

n
eT ,

which implies

〈
ḡ(t),E

[
W (t+ 1)x(t)−v|F(t)

]〉
= 〈α(t)ḡ(t), x̄(t)−v〉 ,
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and

E
[
W (t+ 1)x(t)− x̄(t)|F(t)

]
= 0.

Note that W (t+ 1) is a stochastic vector (almost surely), therefore, due to the convexity of

norm-square ‖ · ‖2, we get

‖W (t+ 1)x(t)− x̄(t)‖2 ≤
n∑
i=1

W i(t+ 1)‖xi(t)− x̄(t)‖2

≤
n∑
i=1

‖xi(t)− x̄(t)‖2,

as W i(t+ 1)≤ 1 for all i ∈ [n]. Therefore,

E[‖x̄(t+ 1)−v‖2|F(t)]=‖x̄(t)−v‖2 +‖α(t)ḡ(t)‖2 +E
[
‖W (t+ 1)x(t)− x̄(t)‖2|F(t)

]
−2〈α(t)ḡ(t), x̄(t)−v〉

≤ ‖x̄(t)−v‖2 +‖α(t)ḡ(t)‖2 +
n∑
i=1

‖xi(t)− x̄(t)‖2

−2〈α(t)ḡ(t), x̄(t)−v〉 .

Finally, Lemma 25 and the fact that

‖ḡ(t)‖2 =
1

n2

∥∥∥∥∥
n∑
i=1

gi(t)

∥∥∥∥∥
2

≤ 1

n2

(
n∑
i=1

‖gi(t)‖

)2

≤ L2

n2
,

complete the proof.

Proof of Theorem 4: In order to utilize Robbins-Siegmund Theorem [59] and Lemma 26,

for all t≥ 0, let Lyapunov function V (t) , ‖x̄(t)− z‖2 where z ∈ Z and a(t) = 0, and consider

b(t) and c(t) which are defined in (4.6). First, note that a(t), b(t), c(t)≥ 0 for all t. To invoke the

Robbins-Siegmund result (4.7), we need to to prove that
∑∞

t=0 c(t) <∞, almost surely. Since
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∑∞
t=0α

2(t)<∞, it is enough to show that

∞∑
t=0

‖xi(t)− x̄(t)‖2 <∞

and
∞∑
t=0

α(t)‖xi(t)− x̄(t)‖<∞

almost surely, for all i ∈ [n]. From Lemma 16-(e) and Lemma 22, we have

E
[
‖xi(t)− x̄(t)‖

α(t)

]
≤ E [

√
nd(x(t))]

α(t)
≤
√
nM̂ <∞

for some M̂ > 0. Therefore, we have

lim
T→∞

E

[
T∑
t=0

α(t)‖xi(t)− x̄(t)‖

]
= lim
T→∞

E

[
T∑
t=0

α2(t)
‖xi(t)− x̄(t)‖

α(t)

]

= lim
T→∞

T∑
t=0

α2(t)E
[
‖xi(t)− x̄(t)‖

α(t)

]

≤
√
nM̂

∞∑
t=0

α2(t)<∞,

which is followed by Assumption 4. Similarly, using Lemma 22, there exists some M̂ > 0 such

that

E
[
‖xi(t)− x̄(t)‖2

]
α2(t)

≤
E
[
nd2(x(t))

]
α2(t)

≤ nM̂,
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for all t≥ 0, where the first inequality follows from Lemma 16 - (e). Therefore,

lim
T→∞

E

[
T∑
t=0

‖xi(t)− x̄(t)‖2
]

= lim
T→∞

E

[
T∑
t=0

α2(t)
‖xi(t)− x̄(t)‖2

α2(t)

]

≤ nM̂
∞∑
t=0

α2(t)<∞,

which is followed by Assumption 4. Therefore, using Monotone Convergence Theorem (see e.g.,

Theorem 1.5.5 in [20]), we have

E

[ ∞∑
t=0

α(t)‖xi(t)− x̄(t)‖

]
<∞, and

E

[ ∞∑
t=0

‖xi(t)− x̄(t)‖2
]
<∞,

which implies
∑∞

t=0α(t)‖xi(t)− x̄(t)‖<∞ and
∑∞

t=0 ‖xi(t)− x̄(t)‖2 <∞, almost surely.

Now that we showed that c(t) is almost surely a summable sequence, Robbins-Siegmund

Theorem implies that almost surely

lim
t→∞

V (t) = lim
t→∞
‖x̄(t)− z‖2 exists,

and
∞∑
t=1

α(t)(F (x̄(t))−F (z))<∞.

For z ∈ Z , let’s define

Ωz ,

ω
∣∣∣∣∣ lim

t→∞
‖x̄(t,ω)− z‖ exists,

∞∑
t=1

α(t)(F (x̄(t,ω))−F ∗)<∞

 ,

where F ∗ , minz∈Rm F (z). Per Sigmund-Robbins result, we know that P (Ωz) = 1. Now, let
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Zd ⊂Z be a countable dense subset of Z and let

Ωd ,
⋂
z∈Zd

Ωz.

Since Zd is a countable set, we have P (Ωd) = 1 and for ω ∈ Ωd, since

∞∑
t=1

α(t)(F (x̄(t,ω))−F ∗)<∞

and α(t) is not summable, we have

liminf
t→∞

F (x̄(t)) = F ∗.

This fact and the fact that F (·) is a continuous function implies that for all ω ∈ Ωd, we have

liminft→∞ ‖x̄(t,ω)− z∗(ω)‖ = 0 for some z∗(ω) ∈ Z . To show this, let {x̄(tk)} be a sub-

sequence that limk→∞F (x̄(tk,ω)) = F ∗ (such a sub-sequence depends on the sample path ω).

Since ω ∈ Ωd and

lim
t→∞
‖x̄(t,ω)− ẑ‖ exists

for some ẑ ∈ Zd, we conclude that {x̄(t,ω)} is a bounded sequences. Therefore, {x̄(tk,ω)}

is also bounded and it has an accumulation point z∗ ∈ Rm and hence, there is a sub-sequence

{x̄(tkτ ,ω)}τ≥0 of {x̄(tk,ω)}k≥0 such that

lim
τ→∞

x̄(tkτ ,ω) = z∗.

As a result of continuity of F (·), we have

lim
τ→∞

F (x̄(tkτ )) = F (z∗) = F ∗
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and hence, z∗ ∈ Z . Note that the point z∗ = z∗(ω) depends on the sample path ω.

Since Zd ⊆Z is dense, there is a sequence {q∗(s,ω)}s≥0 in Zd such that

lim
s→∞

‖q∗(s,ω)− z∗(ω)‖= 0.

Note that since ω ∈ Ωd, limt→∞ ‖x̄(t,ω)− q∗(s,ω)‖ exists for all s≥ 0 and we have

lim
t→∞
‖x̄(t,ω)− q∗(s,ω)‖= lim

t→∞
‖x̄(t,ω)− z∗(ω) + z∗(ω)− q∗(s,ω)‖

= liminf
t→∞

‖x̄(t,ω)− z∗(ω) + z∗(ω)− q∗(s,ω)‖

≤ liminf
t→∞

‖x̄(t,ω)− z∗(ω)‖+‖q∗(s,ω)− z∗(ω)‖

= ‖q∗(s,ω)− z∗(ω)‖.

Therefore, we have

lim
s→∞

lim
t→∞
‖x̄(t,ω)− q∗(s,ω)‖= 0. (4.29)

On the other hand, we have

limsup
t→∞

‖x̄(t,ω)− z∗(ω)‖= limsup
t→∞

‖x̄(t,ω)− q∗(s,ω) + q∗(s,ω)− z∗(ω)‖

≤ limsup
t→∞

‖x̄(t,ω)− q∗(s,ω)‖+‖q∗(s,ω)− z∗(ω)‖

=
(

lim
t→∞
‖x̄(t,ω)− q∗(s,ω)‖

)
+‖q∗(s,ω)− z∗(ω)‖.
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Therefore,

limsup
t→∞

‖x̄(t,ω)− z∗(ω)‖= lim
s→∞

limsup
t→∞

‖x̄(t,ω)− z∗(ω)‖

≤ lim
s→∞

lim
t→∞
‖x̄(t,ω)− q∗(s,ω)‖+ lim

s→∞
‖q∗(s,ω)− z∗(ω)‖

= 0, (4.30)

where the last equality follows by combining (4.29) and lims→∞ ‖q∗(s,ω)− z∗(ω)‖= 0. Note

that (4.30), implies that almost surely (i.e., for all ω ∈ Ωd), we have

lim
t→∞

x̄(t) = z∗(ω)

exists and it belongs to Z .

Finally, according to Assumption 1 and 4, we have

d(α(t)g(t))≤ 2Kt−βmax
i∈[n]

Li.

Therefore, from Lemma 24, we conclude that limt→∞d(x(t)) = 0 almost surely, and hence,

Lemma 16-(e) implies

lim
t→∞
‖x̄(t)−xi(t)‖= 0 almost surely.

Since we almost surely have limt→∞ x̄(t) = z∗ for a random vector z∗ supported in Z , we have

limt→∞xi(t) = z∗ for all i ∈ [n] almost surely and the proof is complete.

4.8 Proof of Required Lemmas

Proof of Lemma 14: Let T be the set of all collection of edges E such that the graph
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([n],E) has a spanning rooted tree, and

MB(t) ,
(t+1)B⋃
τ=tB+1

E (E[W (τ)|F(τ −1)]).

Let A = {ω | MB(t) ∈ T}. Since, MB(t) almost surely has a spanning rooted tee, we have

P (A) = 1. Since the cardinality of T is finite, there exists T (t) ∈ T such that

P (R(t))≥ P (A)

|T|
=

1

|T|
,

where R(t) = {ω | MB(t) = T (t)}. If (j(ω), i(ω)) ∈ E(E[W (τ) | F(τ −1)])(ω), then

E[wij(τ) | F(τ −1)](ω)> γ.

Therefore, from Tower identity for conditional expectation (e.g. Theorem 5.1.6. [20]), we have

E[wij(τ) | F(tB)] = E[E[wij(τ) | F(τ −1)] | F(tB)]

≥ E[E[wij(τ) | F(τ −1)]1R(t) | F(tB)]

≥ E[γ1R(t) | F(tB)]

= γP (R(t))≥ γ

|T|
,

and hence, (j(ω), i(ω)) ∈ E
γ
|T| (E[W (τ) | F(tB)])(ω) almost surely.

Proof of Lemma 16: For the proof of part (a), let x(k)
i be the kth coordinate of xi, and

define the vector y = [y(1), . . . ,y(m)]T where

y(k) =
1

2
(u(k) +U (k)),
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with u(k) = mini∈[n]x
(k)
i and U (k) = maxi∈[n]x

(k)
i . Therefore, for ` ∈ [n], we have

‖x`−y‖∞ = max
k∈[m]

|x(k)
` −y

(k)|

= max
k∈[m]

∣∣∣∣x(k)
` −

1

2
(u(k) +U (k))

∣∣∣∣
(a)
≤ max

k∈[m]

1

2

∣∣∣u(k)−U (k)
∣∣∣

=
1

2
d(x), (4.31)

where (a) follows from u(k) ≤ x
(k)
` ≤ U

(k). Also, we have

d(Ax) = max
i,j∈[n]

∥∥∥∥∥
n∑
`=1

ai`x`−
n∑
`=1

aj`x`

∥∥∥∥∥
∞

= max
i,j∈[n]

∥∥∥∥∥
n∑
`=1

ai`(x`−y)−
n∑
`=1

aj`(x`−y) +
n∑
`=1

(aj`−ai`)y

∥∥∥∥∥
∞

= max
i,j∈[n]

∥∥∥∥∥
n∑
`=1

(ai`−aj`)(x`−y)

∥∥∥∥∥
∞

where the last equality holds as A is a row-stochastic matrix and hence,
∑n

`=1(aj`−ai`) = 0.

Therefore,

d(Ax) = max
i,j∈[n]

∥∥∥∥∥
n∑
`=1

(ai`−aj`)(x`−y)

∥∥∥∥∥
∞

(a)
≤ max

i,j∈[n]

n∑
`=1

|ai`−aj`|‖x`−y‖∞

(b)
≤ max

i,j∈[n]

1

2
d(x)

n∑
`=1

|ai`−aj`|

≤ diam(A)d(x),

where (a) follows from the triangle inequality, and (b) follow from (4.31). For the part (b), we
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have

d(x+y) = max
i,j∈[n]

‖(x+y)i− (x+y)j‖∞

= max
i,j∈[n]

‖xi−xj +yi−yj‖∞

(b)
≤ max

i,j∈[n]
(‖xi−xj‖∞+‖yi−yj‖∞)

≤ max
i,j∈[n]

‖xi−xj‖∞+ max
i,j∈[n]

‖yi−yj‖∞

= d(x) + d(y),

where (b) follows from the triangle inequality.

For the proof of part (c), we have

diam(A) = max
i,j∈[n]

n∑
`=1

1

2
|ai`−aj`|

= max
i,j∈[n]

n∑
`=1

(
1

2
(ai`+aj`)−min{ai`,aj`}

)
(a)
= max

i,j∈[n]
1−

n∑
`=1

min{ai`,aj`}

= 1− min
i,j∈[n]

n∑
`=1

min{ai`,aj`}

= 1−Λ(A),

where (a) follows from the fact that A is row-stochastic. The proof of part (d) follows from part

(c) and Lemma 15.

For the part (e), due to the convexity of ‖ · ‖, we have

∥∥∥∥∥∥xi−
n∑
j=1

πjxj

∥∥∥∥∥∥≤
n∑
j=1

πj ‖xi−xj‖ ≤
n∑
j=1

πj
√
nd(x) =

√
nd(x).
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Proof of Lemma 18: We prove by induction on K2. By the assumption, the lemma is true

for K2 =K1. For K2 >K1, from Tower rule, we have

E

K2+1∏
k=K1

Y (k)

∣∣∣∣F̃
= E

E
K2+1∏
k=K1

Y (k)

∣∣∣∣F(K2)

∣∣∣∣F̃


= E

E [Y (K2 + 1)|F(K2)]

K2∏
k=K1

Y (k)

∣∣∣∣F̃


≤ E

a(K2 + 1)

K2∏
k=K1

Y (k)

∣∣∣∣F̃


≤
K2+1∏
k=K1

a(k).

Proof of Lemma 21: Consider τ̂ ≥ 0 such that θ̂ , supt≥τ̂
β(t)
β(t+1)θ < 1, and let

D(t) ,
t−1∑
s=τ

β(s)θt−s.

92



Dividing both sides by β(t)> 0, for t > τ̂ , we have

D(t)

β(t)
=

t−1∑
s=τ

β(s)

β(t)
θt−s

=
t−1∑
s=τ

t−1∏
κ=s

β(κ)

β(κ+ 1)
θ

≤
τ̂−1∑
s=τ

t−1∏
κ=s

β(κ)

β(κ+ 1)
θ+

t−1∑
s=τ̂

θ̂t−s

=
τ̂−1∑
s=τ

t−1∏
κ=s

β(κ)

β(κ+ 1)
θ+

t−τ̂∑
k=1

θ̂k

≤
τ̂−1∑
s=τ

t−1∏
κ=s

β(κ)

β(κ+ 1)
θ+

θ̂

1− θ̂
.

Let

M1 , sup
t>τ̂

sup
τ̂≥τ≥0

τ̂−1∑
s=τ

t−1∏
κ=s

β(κ)

β(κ+ 1)
θ+

θ̂

1− θ̂
.

Note that

lim
t→∞

t−1∏
κ=s

β(κ)

β(κ+ 1)
θ ≤ lim

t→∞
θ̂t−τ̂

τ̂−1∏
κ=s

β(κ)

β(κ+ 1)
θ = 0.

Therefore

sup
t≥τ

t−1∏
κ=s

β(κ)

β(κ+ 1)
θ <∞,

and hence, M1 <∞. Thus, D(t)≤max{M1,M2}β(t), where

M2 , max
τ̂≥t≥τ≥0

t−1∑
s=τ

β(s)

β(t)
θt−s,

and the proof is complete.
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Lemma 27. Consider a non-negative random process a(t) such that

E[a(t+ 1) | F(t)]≤ λ̃ almost surely,

for some λ̃ < 1 and all t≥ 0. For λ satisfying λ̃ < λ < 1, define the sequence of stopping-times

{ts}s≥0 by

ts , inf{t > ts−1|a(t)≤ λ},

with t0 = 0. Then, lims→∞(ts+1− ts)t−βs = 0 almost surely for all β > 0.

Proof: Let us define the martingale S(t) by

S(t) = S(t−1) +
(
1{a(t)>λ}−E[1{a(t)>λ}|F(t−1)]

)
,

where S(0) = 0. Noting |S(t+ 1)−S(t)| ≤ 1, from Azuma’s inequality (see e.g., Theorem 7.2.1

in [1]), we have

P (S(t+σ)−S(t)> σρ)≤ exp

(
−σ

2ρ2

2σ

)
, (4.32)

for all σ ∈ N and ρ ∈ (0,1). For θ > 0, let use define the sequences of events

Aθ(t) ,
{
ω
∣∣S(t+ bθtβc)−S(t)> bθtβcρ

}
.

From (4.32), we have

P (Aθ(t))≤ exp

(
−1

2
(θtβ−1)ρ2

)
,

implying
∑∞

t=1P (Aθ(t)) <∞ as exp
(
−tβ

)
≤ M

t2
for sufficiently large M (depending on β).

94



Therefore, the Borel–Cantelli Theorem (see e.g., Theorem 2.3.1 in [20]) implies that for all θ > 0

P ({Aθ(t) i.o.}) = 0.

For θ > 0, let the sequences of events

Bθ(t) ,

{
ω

∣∣∣∣ t̂− ttβ
> θ where t̂= inf{τ > t|a(τ)≤ λ}

}
.

We show that Bθ(t) ⊂ Aθ(t) for all t,θ. Fix a constant ρ ∈ (0,1) such that 1− λ̃
λ > ρ. Since

E[a(τ) | F(τ −1)]≤ λ̃, we have

E[λ1{a(τ)≥λ} | F(τ −1)]≤ E[a(τ) | F(τ −1)]≤ λ̃ < λ(1−ρ)

and hence,

E[1{a(τ)≥λ} | F(τ −1)]< 1−ρ. (4.33)

Let σ(t) , bθtβc. If t̂− t > θtβ , then

S(t+σ(t))−S(t) = σ(t)−
t+σ(t)∑
τ=t+1

E[1{a(τ)>λ}|F(τ −1)]

> σ(t)−σ(t)(1−ρ) = σ(t)ρ,

which follows from (4.33). Therefore, we have Bθ(t)⊂ Aθ(t), and hence, P ({Bθ(t) i.o.}) = 0

for all θ > 0.

Finally, by contradiction, we show that lims→∞(ts+1− ts)t−βs = 0. Since, if

lim
s→∞

(ts+1− ts)t−βs 6= 0
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almost surely, then limsups→∞(ts+1− ts)t−βs > 0 almost surely, and hence,

P

(
limsup
s→∞

(ts+1− ts)t−βs > ε

)
> 0

for some ε > 0. Therefore, P ({Bε(t) i.o.})> 0, which is a contradiction.

Proof of Lemma 23: Let ts , inf{t > ts−1|a(t)≤ λ} and t0 = 0 for some λ̃ < λ < 1, and

c(s) ,
ts+1−1∑
τ=ts+1

b(τ).

Also, define

A,

{
ω

∣∣∣∣ lim
s→∞

ts+1− ts
t
min{β̃−β,1}
s

= 0

}
.

Note that Lemma 27 implies P (A) = 1. On the other hand, using (4.24), we have

D(ts+1)≤D(ts)

ts+1∏
`=ts+1

a(`) +

ts+1−1∑
τ=ts

b(τ)

ts+1∏
`=τ+2

a(`)≤D(ts)λ+ c(s),

where the last inequality follows from a(t) ∈ [0,1] and a(ts+1)≤ λ. Letting R(t) =D(t)tβ , we

have

R(ts+1)≤
(
ts+1

ts

)β
R(ts)λ+ c(s)tβs+1.

Note that, for ω ∈ A, we have

lim
s→∞

ts+1

ts
= lim
s→∞

1 +
ts+1− ts

ts
= 1. (4.34)
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As a result, for any λ̂ ∈ (λ,1), there exists ŝ such that for s ≥ ŝ, we have
(
ts+1
ts

)β
λ ≤ λ̂, and

hence

R(ts+1)≤R(ts)λ̂+ c(s)tβs+1.

Therefore,

R(ts)≤ λ̂s−ŝR(tŝ) +
s−1∑
τ=ŝ

c(τ)tβτ+1λ̂
s−τ−1.

Taking the limits of the both sides, we have

limsup
s→∞

R(ts)≤ limsup
s→∞

λ̂s−ŝR(tŝ) +
s−1∑
τ=ŝ

c(τ)tβτ+1λ̂
s−τ−1 = lim

s→∞
c(s)tβs+1,

which is implied by Lemma 3.1-(a) in [51]. For ω ∈ A, we have

lim
s→∞

c(s)tβs+1

(a)
≤ lim

s→∞
K(ts+1− ts)

tβ̃s
tβs+1

= lim
s→∞

K(ts+1− ts)

tβ̃−βs

tβs+1

tβs

(b)
= lim

s→∞
K(ts+1− ts)

tβ̃−βs

= 0. (4.35)

where (a) follows from b(t)≤Kt−β̃ , and (b) follows from (4.34). Therefore, lims→∞R(ts) = 0.

Now for any t > 0 with ts ≤ t < ts+1, let σ(t) = s. By the definition of R(t), we have

R(t)≤
(

t

σ(t)

)β
R(tσ(t)) + c(σ(t))tβ

σ(t)+1
.
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Therefore, lims→∞R(ts) = 0 and Inequality (4.35) imply

limsup
t→∞

R(t)≤ lim
t→∞

(
t

σ(t)

)β
R(tσ(t)) + c(σ(t))tβ

σ(t)+1
= 0,

which is the desired conclusion as R(t) =D(t)tβ .

Chapter 4, in full, is a reprint of the material as it appears in A. Aghajan and B. Touri,

Distributed optimization over dependent random networks, being submitted for publication. The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Distributed Gradient-Tracking Algorithm

In this chapter, we study distributed gradient-tracking algorithm over a broad class of

dependent random networks, where similar to Chapter 4, the randomness is not only time-varying

but also possibly dependent on the past. For the strongly convex and smooth local objective

functions, we show that the distributed gradient-tracking algorithm at each node converges to a

global optimizer at a geometric rate almost surely if the weight matrices corresponding to the

optimizer are row-stochastic almost surely, and the weight matrices corresponding to the gradient

tracking are doubly stochastic almost surely, and satisfy a connectivity assumption over time.

Also, we show that column-stochasticity is necessary for the weight matrices corresponding to

the gradient. It is worth mentioning that to derive the main results, we study the linear dynamics

with non-negative random matrices. We find a new sufficient condition on the convergence of the

state values to zero for such dynamics, which is presented in Lemma 29.

This chapter is organized as follows: in Section 5.1, we first formulate the problem of

interest. Then, we state the main results of this chapter, which is a necessary condition (Theorem

6) in Section 5.2 and a sufficient condition (Theorem 7) in Section 5.3 for the convergence of the

distributed gradient-tracking algorithm to the optimizer of F (·) over dependent random networks.

In Section 5.3, after stating Theorem 7, we discuss implications of this theorem, and finally, we
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prove it.

5.1 Problem Formulation

Similar to Chapter 4, the goal of this chapter is to solve

arg min
z∈Rm

F (z) (5.1)

distributively where F (z) ,
∑n

i=1 fi(z) and the function fi : Rm→ R is the cost function of

node i. However, in this chapter, we assume that the functions are strongly convex and smooth.

More precisely, we consider the following assumption on the objective functions in this chapter.

Assumption 5 (Assumption on the Objective Function). We assume that:

(a) All fis are β-smooth functions over Rm.

(b) All fis are α-strongly convex functions over Rm.

As in the previous chapter, the goal is to find distributed dynamics xi(t)s such that

limt→∞xi(t) = z∗ for all i ∈ [n] where z∗ is a minimizer of F (·). In Chapter 4, we discussed

about averaging-based distributed optimization solvers, i.e.,

x(t+ 1) =W (t+ 1)x(t)−η(t)g(t), (5.2)

where {η(t)} is a step-size sequence, and {W (t)} is a sequence of doubly stochastic matrices.

If the objective function is β-smooth and α-strongly convex, the centralized variation of (5.2),

which is the gradient descent algorithm, geometrically converges to the minimizer with a properly

chosen constant step-size (see e.g., Theorem 2.1.15 in [48]). However, it was shown that the

dynamics (5.2) cannot converge to the minimizer with a constant step-size. Furthermore, Theorem
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6 in [49] proves that any dynamics similar to (5.2) cannot converge to the minimizer geometrically.

To remedy this, in [82, 49, 44], the following dynamics is proposed

x(t+ 1) =W x(t+ 1)x(t)−ηs(t), (5.3)

s(t+ 1) =W s(t+ 1)s(t) +g(t+ 1)−g(t), (5.4)

where both {W x(t)} and {W s(t)} are doubly stochastic sequences and

gi(t) ,∇fi(xi(t)) ∈ Rm,

for i ∈ [n]. Also, the geometric convergence rate of the dynamics (5.3)-(5.4) is established there.

Later, in [81] (time-invariant setting) and [60] (time-varying setting), it was shown that having a

row-stochastic sequence of {W x(t)} and a column-stochastic sequence of {W s(t)} is enough

for the convergence of the dynamics (5.3)-(5.4) to the minimizer.

5.2 Necessary Condition

In this chapter, we consider the random variation of (5.3)-(5.4), i.e., when {W x(t)} and

{W s(t)} are sequences of possibly (time-) dependent random matrices. This is motivated by our

study in Chapter 4, where we show that the doubly stochastic assumption is not necessary for the

averaging-based distributed optimization algorithm (5.2) for a broad class of random sequences

that are row-stochastic almost surely by only column-stochasticity in expectation (as opposed to

almost surely). This observation facilitates new algorithm designs for distributed optimization

and also implies robustness of (5.2) to a broad class of link failure. It is natural to conjecture

that a similar extension should hold for (5.3)-(5.4), i.e., for the algorithm/dynamics to work, it

is sufficient to have almost surely row-stochastic {W x(t)} and {W s(t)} that are only column

stochastic in-expectation. However, the following result shows the algorithm does not converge
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to the minimizer if eTW s(t) 6= eT for all t > 0 almost surely.

Theorem 6 (Necessary Condition). Consider the parameterized family of scalar quadratic

functions fi :R→R (i.e.,m= 1) defined by fi(z) = (z−ci)2 where ci ∈R and let z∗= 1
n

∑n
i=1 ci

be the minimizer of F (z) =
∑n

i=1 fi(z). If for all initial time t0 > 0, initial condition x(t0) ∈ Rn,

and c ∈ Rn, and some i ∈ [n], we have limt→∞xi(t) = z∗ for the dynamics (5.3)-(5.4), then

eTW s(t) = eT for all t > 0.

Proof: Let u(t) be the concatenation of x(t) and s(t), i.e.,

u(t) ,

x(t)

s(t)

 .
Noting g(t) = 2(x(t)− c), we have u(t+ 1) = Γ(t+ 1)u(t) where

Γ(t) =

 W x(t) −ηI

2W x(t)−2I W s(t)−2ηI

 .
Let Φ(t, τ) = [φij(t, τ)] be the transition matrix of Γ(t), and Φi(t, τ) be the ith row of Φ(t, τ).

Since limt→∞xi(t) = z∗ for all initial time τ > 0, we have

lim
t→∞

Φi(t, τ)u(τ) =
1

n

n∑
j=1

cj .

Therefore, noting

u(τ) ,

 x(τ)

2(x(τ)− c)

 ,
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we have

lim
t→∞

n∑
j=1

(φij(t, τ) + 2φij+n(t, τ))xj(τ)−
n∑
j=1

2φij+n(t, τ)cj =
1

n

n∑
j=1

cj . (5.5)

Since (5.5) holds for all initial time τ > 0, initial condition x(τ) ∈ Rn, and c ∈ Rn, therefore for

all j ∈ [n]

lim
t→∞

(φij(t, τ) + 2φij+n(t, τ)) = 0, and

lim
t→∞
−2φij+n(t, τ) =

1

n
,

and hence,

lim
t→∞

Φi(t, τ) =

[
1

n
, . . . ,

1

n︸ ︷︷ ︸
n

,− 1

2n
, . . . ,− 1

2n︸ ︷︷ ︸
n

]

=

[
1

n
eT ,− 1

2n
eT
]
,

for all τ > 0. Therefore

lim
t→∞

Φi(t, τ)Γ(τ) = lim
t→∞

Φi(t, τ −1),

implies

1

n
eT (−ηI)− 1

2n
eT (W s(τ)−2ηI) =− 1

2n
eT ,

and hence, we need to have eTW s(τ) = eT , which completes the proof.

Note that the above result holds for any given deterministic sequence of {W s(t)} (and
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{W x(t)}). Therefore, for almost sure convergence to z∗ for random {W x(t)} and {W s(t)}, we

should have eTW s(t) = eT for all t > 0 almost surely. This motivates the following assumption

on the stochasticity of the random weight matrix sequences.

Assumption 6 (Stochastic Assumption). We assume that {W x(t)} and {W s(t)} satisfy

(a) For all t > 0, W x(t) is row-stochastic almost surely.

(b) For all t > 0, W s(t) is doubly stochastic almost surely.

5.3 Sufficient Condition

Similar to other works in random networks, our goal is to ensure that limt→∞xi(t) = z∗

almost surely for all i∈ [n], where z∗ is the minimizer of F (·). To ensure this, the associated graph

sequences of {W x(t)} and {W s(t)} both need to satisfy the Conditional B-Connectivity condi-

tions, i.e., Assumption 3, which is introduced in Chapter 4. With these background information

and assumptions, we are ready to present the main result of this chapter.

Theorem 7 (Sufficient Condition). Suppose that the Assumptions 5-6 hold on the model and the

dynamics (5.3)-(5.4), and {W x(t)} and {W s(t)} satisfy Assumption 3. Then, as t→∞, xi(t)

converges geometrically to z∗ almost surely for all i ∈ [n] and all initial conditions xi(0) ∈ Rm,

where z∗ is the minimizer of F (·). More precisely, there exists 0 < ρ < 1 (independent of the

sample point/path) such that

lim
t→∞

‖xi(t)− z∗‖
ρt

<∞,

for all i ∈ [n] and all initial conditions xi(0) ∈ Rm.

5.3.1 Implications

Before proving the sufficient condition (Theorem 7), let us discuss an example of how

one can synthesize distributed and random dynamics that enables fast distributed optimization
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algorithms using our main result.

For this, consider a connected undirected network1 G = ([n],E). Consider a simple

link-failure model where each edge of the graph can be dropped independent of the past and other

edges. Let pij(τ) be the probability of link-failure of edge2 {i, j} at time τ where pij(τ)≤ p̄ for

some 1 > p̄, and all τ and {j, i} ∈ E. Define the time window ∆(t) , {tB+ 1, . . . ,(t+ 1)B},

and let Ni , {j ∈ [n] | (i, j) ∈ E} be the neighbors of node i ∈ [n]. To implement the distributed

gradient-tracking algorithm, we need to construct the matrix sequences {W x(τ)} and {W s(τ)}

satisfying Assumptions 6-3.

For constructing the sequence {W x(τ)}, for each t > 0, each node j ∈ [n] picks at least

one time instance τ ∈∆(t) and shares xj(τ) with one of its neighbors, which is chosen uniformly

randomly. Moreover, at any time τ ∈∆(t), any node ` ∈ [n] updates x` as follows

x`(τ + 1) =
1

|N x
` (τ)|

∑
j∈Nx` (τ)

xj(τ)−ηsi(τ),

where

N x
` (τ) , {`}∪{j | node j sends xj(τ) to node `}.

Therefore, for i, j ∈ [n] with i 6= j, we have

wxij(τ) =


1

|Nxi (τ)| , if j ∈N x
i (τ)

0, otherwise
,

and wxii(τ) = 1−
∑

j 6=iw
x
ij(τ).

Unlike W x(τ), W s(τ) needs to be doubly stochastic, and hence, there are more consider-

1The graphs do not need to be time-invariant, and this example can be extended to processes over underlying
time-varying graphs.

2Since the underlying graph is assumed to be undirected, the failed graphs are also assumed to be undirected.
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ations for constructing {W s(τ)}. To do so, in our algorithm, each node j ∈ [n] decides to request

information for at least one time instance τ ∈∆(t). In that case, j shares sj(τ) with a uniformly

and randomly chosen neighbor of itself, say node i ∈ [n], and requests si(τ) from i. In this case,

we say that j is submitting a request to i. Let

N s
i (τ) , {j | node j sends sj(τ) to node i and requests si(τ)}

denote all the nodes that submit requests to node i at time τ . Then, at time3 τ , node i picks

a uniformly chosen random node ji(τ) ∈ N s
i (τ) from the received requests and sends si(τ) to

ji(τ). For consistency, let ji(τ) = 0 if node i does not receive any request at time τ and let

T s(τ) = {i | ji(τ) 6= 0}. Let Rs(τ) be the collection of all nodes that submit a request at time τ

whose requests have been approved, i.e., Rs(τ) = {ji(τ) | i ∈ T s(τ)}. We simply refer to the

nodes in Rs(τ) as requesters and nodes in T s(τ) as responders. Then, at any time τ ∈∆(t), any

node ` ∈ [n] updates its gradient tracking information conditioned on one of the three cases

(i) ` ∈ (Rs(τ)\T s(τ))∪ (T s(τ)\Rs(τ)): Here, ` is a requester or a responder, but not both.

Let j ∈ [n] be the node that has requested information or responded to `s request. In this

case, we let

s`(τ + 1) =
2

3
s`(τ) +

1

3
sj(τ) +g`(τ + 1)−g`(τ).

(ii) ` ∈ Rs(τ)∩T s(τ): Here, ` is both a requester from a node i ∈ [n], and responding to a

request from node j ∈ [n]. In this case, we let

s`(τ + 1) =
1

3
(s`(τ) + sj(τ) + si(τ)) +g`(τ + 1)−g`(τ).

3The algorithm still works, even if node i chooses uniformly randomly τi from ∆(t) and only responds at τi, i.e.,
ji(τ) = 0 for all τ ∈∆(t)\{τi} and ji(τi) ∈ [n].

106



(iii) ` 6∈Rs(τ)∪T s(τ): In this case, ` is not requesting nor responding to any requests at time τ .

Here, we simply let

s`(τ + 1) = s`(τ) +g`(τ + 1)−g`(τ).

From the above update rule, it is clear that for any τ , s(τ + 1) can be written as of a

linear form of (5.4) for some row stochastic matrix W s(τ). Next we argue that this matrix is

also column stochastic. To show this, fix τ . Then for any node i ∈ [n], consider the sequence

of nodes i1, i2, . . . , iκ given by i`+1 , ji`(τ), where κ is the first time where either jiκ(τ) = 0 or

jiκ(τ) = i1. Note that jiκ(τ) 6= i` for 1 < ` < κ as otherwise, i` has responded to two requests

(from i`−1 and iκ) which is not possible in our algorithm. Then, depending on whether jiκ = 0 or

jiκ(τ) = i1, the induced block matrix by the nodes (indices) i1, . . . , iκ is of the form



2
3

1
3 0 · · · 0

1
3

1
3

1
3 · · · 0

0 1
3

1
3 · · · 0

...
...

... . . . ...

0 0 0 · · · 2
3


or



1
3

1
3 0 · · · 1

3

1
3

1
3

1
3 · · · 0

0 1
3

1
3 · · · 0

...
...

... . . . ...

1
3 0 0 · · · 1

3


, (5.6)

respectively. Therefore, the matrix Ws(τ) consists of induced block matrices of the form of (5.6),

and hence, it is doubly stochastic.

Since W x(t) is row-stochastic, and W s(t) is doubly stochastic, to check that this scheme

satisfies Theorem 7 conditions, we need to investigate whether they satisfy Assumption 3. First

note that although the process is potentially dependent, the weight matrices from current window

are independent of the ones from the past windows. Let γ , 1−p̄
3n2

. If at time τ ∈∆(t), node j
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sends xj(τ) to one of its neighbors, for all i ∈Nj , we have

E[wxij(τ)|F(tB)] = E[wxij(τ)] =
1−pij(τ)

|Nj ||N x
i (τ)|

≥ 1− p̄
n2

.

Therefore, Nj ∈ Eγ(E[W x(τ)|F(tB)]), and hence

(t+1)B⋃
τ=tB+1

Eγ(E[W x(τ)|F(tB)]) =

(t+1)B⋃
τ=tB+1

Eγ(E[W x(τ)]) = E.

Also, if at time τ ∈∆(t), node j is submitting a request by sending sj(τ) to one of its neighbors,

for all i ∈Nj , we have

E[wsij(τ) | F(tB)] = E[wsij(τ)] =
1−pij(τ)

3|Nj ||N s
i (τ)|

≥ 1− p̄
3n2

,

and hence, similarly,
⋃(t+1)B
τ=tB+1E

γ(E[W s(τ)|F(tB)]) = E. Therefore, since G = ([n],E) is

connected, the conditions of Theorem 7 are satisfied, and hence, x(t) converges to the minimizer

of F (·) with a geometric rate.

5.3.2 Proof of Theorem 7

In this section, we study the main dynamics (5.3)-(5.4) and prove Theorem 7. Throughout

this section, we let x̄, 1
ne

Tx and s̄, 1
ne

T s for vectors x,s ∈ (Rm)n,

To prove Theorem 7, we follow the method that is applied in Theorem 1 in [49]. How-

ever, this method needs to be extended as in our case, the matrices are time-varying and in

the time-varying setting, after each iteration, d(x(t)) does not necessarily decrease. In other

words, diam(Φ(t+ 1, t)) is not necessarily strictly less than 1. However, we show that with our

connectivity assumptions, diam(Φ(t, τ))< 1 for large enough t− τ , which adds complexity to

the proofs. To make arguments easier, we use the following trick: we put the contraction factor in
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the last corresponding matrix, which is possible due to the following lemma.

Lemma 28. For the dynamics (5.3)-(5.4), let

y(t) =


√
nd(s(t))

√
nd(x(t))

‖x̄(t)− z∗‖

 ,

and Φx(t, τ),Φs(t, τ) be the transition matrices associated with {W x(t)} and {W s(t)}, respec-

tively. Then, under Assumption 5, for any t≥ τ , we have

y(t)≤ Aη(t, τ)Ct−τ−1
η y(τ). (5.7)

where the matrix Aη(t, τ) is given by


diam(Φs(t, τ)) + 2βη

√
n 2β(1 +ηβ)

√
n 2ηβ2√n

η diam(Φx(t, τ)) 0

0 ηβ+ 1 λη

 , (5.8)

Cη is given by

Cη ,


1 + 2βη

√
n 2β(1 +ηβ)

√
n 2ηβ2√n

η 1 0

0 ηβ+ 1 λη

 (5.9)

and λη = max{|1−ηα|, |1−ηβ|}.

Proof: For notational convenience, we remove the subscript η from matrices Aη(t, τ) and

109



Cη in the proof. Consider the dynamics


u(k+ 1) = Cu(k) if t−1> k ≥ τ

u(k+ 1) = A(t, τ)u(k) if t−1 = k

, (5.10)

where u(τ) , y(τ). To prove the lemma, we show that y(k)≤ u(k) for t≥ k ≥ τ by induction

on k. Note that the assertion holds for k = τ as u(τ) = y(τ). We divide the proof into two parts:

i) t > k ≥ τ , and ii) k = t.

i) ttt >>> kkk ≥≥≥ τττ : The proof of this case follows the main proof idea of Theorem 1 in [49].

Here, we need to show

y(k+ 1)≤ Cy(k) (5.11)

that for all k in this range. In (5.11), we have three inequalities corresponding to each coordinate

of y(k). We show each inequality separately.

To establish the inequality for y3(k+ 1), multiply 1
ne

T from left to both sides of (5.4).

Since Ws(k) is doubly stochastic a.s., from Lemma 7-(a) in [49], we have

s̄(k+ 1) = s̄(k) + ḡ(k+ 1)− ḡ(k)

= ḡ(k+ 1). (5.12)
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Let W x(k) , 1
ne

TW x(k). Multiplying 1
ne

T from left to both sides of (5.3), we have

x̄(k+ 1) =W x(k+ 1)x(k)−ηs̄(k)

(a)
= W x(k+ 1)x(k)−ηḡ(k),

= x̄(k)−ηḡ(k) +W x(k+ 1)x(k)− x̄(k)

= (x̄(k)−η∇F (x̄(k))) + (η∇F (x̄(k))−ηḡ(k)) +
(
W x(k+ 1)x(k)− x̄(k)

)
,

where (a) follows from (5.12). Therefore, the triangle inequality implies

‖x̄(k+ 1)− z∗‖ ≤ ‖x̄(k)−η∇F (x̄(k))− z∗‖+η‖∇F (x̄(k))− ḡ(k)‖ (5.13)

+‖W x(k+ 1)x(k)− x̄(k)‖

≤ λη‖x̄(k)− z∗‖+η‖∇F (x̄(k))− ḡ(k)‖+‖W x(k+ 1)x(k)− x̄(k)‖,

where the last inequality follows from Lemma 10 in [49]. According to the definition of F (·) and

g(·), we have

‖∇F (x̄(k))− ḡ(k)‖=

∥∥∥∥∥
n∑
i=1

∇fi(x̄(k))−∇fi (xi(k))

n

∥∥∥∥∥
(a)
≤ β

n∑
i=1

‖xi(k)− x̄(k)‖
n

(b)
≤ β
√
nd(x(k)), (5.14)

where (a) follows form β-smoothness of fis and the triangle inequality, and (b) follows from
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Lemma 16-(e). Due to the convexity of norm ‖ · ‖, we have

‖W x(k+ 1)x(k)− x̄(k)‖ ≤
n∑
i=1

1

n

n∑
j=1

wxij(k+ 1)‖xi(k)− x̄(k)‖

(a)
≤ max

i∈[n]
‖xi(k)− x̄(k)‖

≤
√
nd(x(k)), (5.15)

where (a) follows from the fact that
∑n

i=1
1
n

∑n
j=1w

x
ij(k+ 1) = 1, which is because of row-

stochasticity of W x(k+ 1). Therefore, from (5.13)-(5.15), we get

‖x̄(k+ 1)− z∗‖ ≤ λη‖x̄(k)− z∗‖+ (ηβ+ 1)
√
nd(x(k)),

which proves (5.11) for y3(k).

To show the inequality for y2(k+ 1), by applying d(·) on (5.3), and using Lemma 16-(a)

and 16-(b), we get

d(x(k+ 1))≤ diam(W x(k+ 1))d(x(k)) +ηd(s(k))

≤ d(x(k)) +ηd(s(k)),

where the latter inequality follows from diam(W x(k+ 1)) ≤ 1. This simply shows that the

inequality in (5.11) holds for y2(k+ 1).

To show the inequality for the first coordinate, we apply d(·) on the dynamics (5.4). Then,

Lemma 16-(a), Lemma 16-(b), and diam(W s(k+ 1))≤ 1 imply

d(s(k+ 1))≤ d(s(k)) + d(g(k+ 1)−g(k)). (5.16)
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From the definition of d(·), we have

d(g(k+ 1)−g(k))≤ 2max
i∈[n]
‖gi(k+ 1)−gi(k)‖

(a)
≤ 2βmax

i∈[n]
‖xi(k+ 1)−xi(k)‖

(b)
= 2βmax

i∈[n]

∥∥∥∥∥∥
n∑
j=1

wxij(k+ 1)xj(k)−ηsi(k)−xi(k)

∥∥∥∥∥∥
(c)
≤ 2βmax

i∈[n]

n∑
j=1

wxij(k+ 1)‖xj(k)−ηsi(k)−xi(k)‖

(d)
≤ 2βmax

i∈[n]

n∑
j=1

wxij(k+ 1)(‖xj(k)−xi(k)‖+η‖si(k)‖)

(e)
≤ 2βmax

i∈[n]

n∑
j=1

wxij(k+ 1)
(√

nd(x(k)) +η‖si(k)‖
)

(f)
≤ 2β

(√
nd(x(k)) +ηmax

i∈[n]
‖si(k)‖

)
, (5.17)

where (a) follows from the β-smoothness of fi, (b) is derived from (5.3), (c) is due to the

convexity of norm, (d) follows from Triangle inequality, (e) is due to ‖v‖ ≤
√
n‖v‖∞ for

some vector v, and finally, (f) follows from the fact that W x(k+ 1) is a row-stochastic matrix.

Moreover, we have

‖si(k)‖= ‖si(k)− ḡ(k) + ḡ(k)−∇F (x̄(k)) +∇F (x̄(k))‖

≤ ‖si(k)− ḡ(k)‖+‖ḡ(k)−∇F (x̄(k))‖+‖∇F (x̄(k))‖
(a)
≤
√
nd(s(k)) +β

√
nd(x(k)) +‖∇F (x̄(k))‖

(b)
≤
√
nd(s(k)) +β

√
nd(x(k)) +β‖x̄(k)− z∗‖, (5.18)

where (a) follows from s̄(k) = ḡ(k) (from (5.12)), (5.14), and Lemma 16-(e), and (b) follows
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from the fact that z∗ is the minimizer of F (·), and hence ∇F (z∗) = 0, which implies

‖∇F (x̄(k))‖= ‖∇F (x̄(k))−∇F (z∗)‖ ≤ β‖x̄(k)− z∗‖.

Therefore, (5.17) and (5.18) imply

d(g(k+ 1)−g(k))≤ 2β(1 +ηβ)
√
nd(x(k)) + 2ηβ

√
nd(s(k)) + 2ηβ2‖x̄(k)− z∗‖. (5.19)

Combining (5.16) and (5.19), we have

d(s(k+ 1))≤ (1 + 2βη
√
n)d(s(k)) + 2β (1 +ηβ)

√
nd(x(k)) + 2ηβ2‖x̄(k)− z∗‖,

which proves the inequality (5.11) associated with the first row of C, and completes the proof

that (5.11) holds for t > k > τ .

ii) kkk === ttt: Again, we show each inequality corresponding to each coordinate of y(k) in

(5.11), separately. Since the third row of A(t, τ) and C are equal, the proof for the inequality

corresponding to y3(t) is similar to the case t > k ≥ τ .

To establish the inequality for y2(t), note that the dynamics (5.3) is a linear system with

input ηs(t) which implies

x(t) = Φx(t, τ)x(τ)−
t−1∑
r=τ

Φx(t,r+ 1)ηs(r).
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Therefore, Lemma 16-(a) and 16-(b) imply

d(x(t))≤ diam(Φx(t, τ))d(x(τ)) +
t−1∑
r=τ

diam(Φx(t,r+ 1))ηd(s(r))

≤ diam(Φx(t, τ))d(x(τ)) +
t−1∑
r=τ

ηd(s(r))

(a)
≤ diam(Φx(t, τ))

u2(τ)√
n

+
t−1∑
r=τ

η
u1(r)√
n

(b)
=
u2(t)√
n
,

where (a) follows from the induction hypothesis, i.e., d(s(r)) ≤ u1(r) for t− 1 > r ≥ τ and

u2(τ) = d(x(τ)), and (b) follows from the fact that based on (5.10), we have

u2(r+ 1) = ax(r+ 1)u2(r) +ηu1(r)

for t > r ≥ τ , where

ax(r) =


1, if t > r ≥ τ

diam(Φx(t, τ)), if r = t

.

To show the inequality for y1(t), noting that the dynamics (5.4) is a linear system with

input g(t+ 1)−g(t), we have

s(t) = Φs(t, τ)s(τ) +
t−1∑
r=τ

Φs(t,r+ 1)(g(r+ 1)−g(r)).
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Therefore, Lemma 16-(a) and 16-(b), and diam(Φs(t, τ))≤ 1 imply

d(s(t))≤ diam(Φs(t, τ))d(s(τ)) +
t−1∑
r=τ

d(g(r+ 1)−g(r))

(a)
≤ diam(Φs(t, τ))d(s(τ))

+
t−1∑
r=τ

2β(1 +ηβ)
√
nd(x(r)) + 2ηβ

√
nd(s(r)) + 2ηβ2‖x̄(r)− z∗‖

(b)
≤ diam(Φs(t, τ))

u1(τ)√
n

+
t−1∑
r=τ

2β(1 +ηβ)u2(r) + 2ηβu1(r) + 2ηβ2u3(r)

(c)
=
u1(t)√
n
,

where (a) follows from (5.19), (b) follows from the induction hypothesis, i.e., y(r)≤ u(r) for

t− 1 > r ≥ τ and u1(τ) =
√
nd(x(τ)), and (c) follows from the fact that based on (5.10), for

t > r ≥ τ , we have

u1(r+ 1) = as(r+ 1)u1(r) +
[
(1 +ηβ)u2(r) + 2ηβu1(r) + 2ηβ2u3(r)

]√
n,

where

as(r) =


1, if t > r ≥ τ

diam(Φs(t, τ)), if r = t

.

To prove Theorem 7, we need to prove that as t→∞, y3(t) converges to zero geomet-

rically (almost surely) where the dynamics y(t) satisfies (5.7). To do so, we study the random
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process u(t) which satisfies

u(t+ 1)≤Q(t+ 1)u(t), (5.20)

where Q(t+ 1) , Aη((t+ 1)K,tK)C
(K−1)
η is a random matrix. A classical way to prove that

limt→∞
‖u(t)‖∞

ρt
<∞, for some 0<ρ< 1, is to consider the Lyapunov function V (t) = uT (t)u(t).

However, since the largest eigenvalue of E[QT (t)Q(t)] is not necessarily less than 1, we cannot

apply this Lyapunov function for this random process. Instead in the following lemma, we exploit

the fact that u(t) is non-negative and use an alternative Lyapunov function to prove

lim
t→∞

‖u(t)‖∞
ρt

<∞.

Lemma 29. Consider a non-negative sequence ofN×N random matrices {Q(t)} that is adapted

to a filtration {F(t)} such that E[Q(t+ 1) | F(t)]≤M for some matrix M and all t. Let ρ and

π be the largest eigenvalue of M and the associated left eigenvector of M , respectively, and

assume that π is strictly positive. Then, for the non-negative random process u(t) satisfying

u(t+ 1)≤Q(t+ 1)u(t), we have limt→∞
‖u(t)‖∞

ρt
<∞ almost surely.

Proof: Let {u(t)} be a non-negative random process u(t) satisfying u(t+ 1) ≤ Q(t+

1)u(t) for all t≥ 0. Define the Lyapunov function

V (t) ,
πTu(t)

ρt
.

Since u(t) is a non-negative random process, V (t) is a non-negative random process. Thus, we
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have

E[V (t+ 1) | F(t)] = E
[
πTu(t+ 1)

ρt+1

∣∣∣∣F(t)

]
≤

E
[
πTQ(t+ 1)u(t) | F(t)

]
ρt+1

=
πTE [Q(t+ 1) | F(t)]u(t)

ρt+1

≤ πTMu(t)

ρt+1

=
ρπTu(t)

ρt+1

= V (t),

and hence, V (t) is a sub-martingale. Since, V (t) is non-negative, we have E[|V (t)|+] =E[V (t)]≤

E[V (0)]<∞. Therefore, Doob’s Martingale Convergence Theorem (see e.g., Theorem 5.2.8 in

[20]) implies that limt→∞V (t) exists, and it is less than infinity. Moreover, we have

∞> lim
t→∞

V (t) = lim
t→∞

N∑
i=1

πiui(t)

ρt
≥min

i∈N
πi lim
t→∞

‖u(t)‖∞
ρt

.

Finally, mini∈N πi > 0, implies limt→∞
‖u(t)‖∞

ρt
<∞.

Regarding (5.20) and Lemma 29, to prove limt→∞
‖u(t)‖∞

ρt
<∞, we need to find the

largest left eigenvalue and corresponding eigenvector of E[Aη((t+ 1)K,tK)C
(K−1)
η | F(tB)],

which is done in the following lemma.
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Lemma 30. Consider the matrices Cη (defined in (5.9)) and

Hη(θ) ,


θ+ 2βη

√
n 2β(1 +ηβ)

√
n 2ηβ2√n

η θ 0

0 ηβ+ 1 λη

 . (5.21)

Then, for any θ < 1 and k ≥ 0, there exist an η̃(θ,k)> 0 such that if η < η̃(θ,k), the largest left

eigenvalue of Hη(θ)C
k
η is real and strictly less than 1. Also, the left eigenvector associated to the

largest eigenvalue is strictly positive for η > 0.

Proof: First, note that for η > 0, Hη(θ) is an irreducible matrix. Therefore, since

Cη ≥ ληI , for k ≥ 0, Hη(θ)C
k
η is an irreducible matrix. Since Hη(θ)C

k
η is a non-negative matrix,

the Perron–Frobenius Theorem (see e.g., Chapter 8 in [38]) implies that the largest eigenvalue of

Hη(θ)C
k
η , denoted by ρ(θ), is a positive real number, and there is a strictly positive left eigenvector

(Perron eigenvector) associated with that. By induction, we can show that

Ck0 ,


1 2kβ

√
n 0

0 1 0

0 k 1

 .

Therefore, we have

H0(θ)Ck0 ,


θ (2kθ+ 2)β

√
n 0

0 θ 0

0 1 +kλη λη

 .

Since, the characteristic polynomial of H0(θ)Ck0 is c(ξ) = (θ− ξ)2(λη− ξ), the eigenvalues of

H0(θ)Ck0 are θ and λη. Therefore, since for 0 < η < max
{

2
α ,

2
β

}
, λη is strictly less than one,

we have ρ(0) < 1 for 0 < η < max
{

2
α ,

2
β

}
. Since, the elements of Hη(θ)C

k
η are continuous
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functions of η, and the eigenvalues of Hη(θ)C
k
η are continuous functions of its elements, ρ(η)

is a continuous function of η. Therefore, there exists an 0< η̃(θ,k)<max
{

2
α ,

2
β

}
such that if

0< η < η̃(θ,k), we have ρ(η)< 1.

Finally, we can present the proof of Theorem 7.

Proof of Theorem 7: Let K , n2B where B is given in Assumption 3. Considering

Lemma 28, we have

y((t+ 1)K)≤ Aη((t+ 1)K,tK)C
(K−1)
η y(tK),

From Lemma 17 and Lemma 16-(c), we have

E[Aη((t+ 1)K,tK)C
(K−1)
η | F(tK)]≤Hη(1− θ)C(K−1)

η ,

for some θ > 0. Therefore, Lemma 29 and 30 imply that for all 0< η < η̃(1−θ,K−1), we have

limt→∞
‖y(tK)‖∞
ρt(η)

<∞ for some ρ(η)< 1. Since, K is finite, and for tK < k < (t+ 1)K,

y(k)≤ Aη(k,tB)Ck−tK−1
η y(tK),

we have limk→∞
‖y(k)‖∞
ρk(η)

<∞. Finally, noting y3(k) = ‖x(k)− z∗‖ completes the proof.

Chapter 5, in full, is a reprint of the material as it appears in A. Aghajan and B. Touri,

Geometric convergence for distributed optimization over dependent random networks, being

prepared for publication. The dissertation author was the primary investigator and author of this

paper.
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Chapter 6

Conclusion and Future Research Direction

This thesis was on distributed averaging dynamics and its main application in distributed

optimization.

In the first part of the thesis, first we considered the discrete-time distributed averaging

dynamics. We showed that while having spanning rooted tree in the infinite graph is not sufficient

in general, it is necessary for ergodicity of products of inhomogeneous stochastic matrices.

In addition, we showed that if we consider the time-varying leader-follower dynamics among

groups of agents that the averaging dynamics restricted to each group is P∗, and the groups

are connected using a directed acyclic graph containing a spanning directed rooted tree (in the

directed infinite flow graph of the original process), then all agents’ values will converge to the

consensus value of the leading group. Then, we considered the continuous-time counterpart of

the time-varying leader-follower dynamics and showed that a similar sufficient condition for

consensus of time-varying continuous-time distributed averaging dynamics holds.

On this topic, closing the gap between the necessary and sufficient conditions for ergodicity

of both discrete-time and continuous-time distributed averaging dynamics is of interest for future

research direction.

In the second part of the thesis, we considered distributed optimization over dependent
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random networks. First, we considered convex objective functions and showed that the averaging-

based distributed optimization solving algorithm over dependent random networks converges to

an optimal random point if the underlying network structure is conditionally B-connected. To

do so, we established a rate of convergence estimate for the second moment of the autonomous

averaging dynamics over such networks and used that to study the convergence of the sample-

paths and second moments of the controlled variation of those dynamics. Then, we studied the

distributed gradient-tracking algorithm for a faster convergence rate for problems with smooth

and strongly convex objective functions. We proved that, under the conditional B-connectivity

condition, the distributed gradient-tracking algorithm converges geometrically to the optimal

point for strongly convex and smooth function.

A future research direction for this part is further extensions of the current work to

non-convex settings, accelerated algorithms, and distributed online learning algorithms.
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