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Abstract

Modern computational statistics is turning more and more to high-dimensional optimization to

handle the deluge of big data. Once a model is formulated, its parameters can be estimated by

optimization. Because model parsimony is important, models routinely include nondifferentiable

penalty terms such as the lasso. This sober reality complicates minimization and maximization.

Our broad survey stresses a few important principles in algorithm design. Rather than view these

principles in isolation, it is more productive to mix and match them. A few well chosen examples

illustrate this point. Algorithm derivation is also emphasized, and theory is downplayed,

particularly the abstractions of the convex calculus. Thus, our survey should be useful and

accessible to a broad audience.
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Introduction

Modern statistics represents a confluence of data, algorithms, practical inference, and

subject area knowledge. As data mining expands, computational statistics is assuming

greater prominence. Surprisingly, the confident prediction of the previous generation that

Bayesian methods would ultimately supplant frequentist methods has given way to a

realization that Markov chain Monte Carlo (MCMC) may be too slow to handle modern data

sets. Size matters because large data sets stress computer storage and processing power to

the breaking point. The most successful compromises between Bayesian and frequentist

methods now rely on penalization and optimization. Penalties serve as priors and steer

parameter estimates in realistic directions. In classical statistics estimation usually meant

least squares and maximum likelihood with smooth objective functions. In a search for

sparse representations, mathematical scientists have introduced nondifferentiable penalties

such as the lasso and the nuclear norm. To survive in this alien terrain, statisticians are being
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forced to master exotic branches of mathematics such as convex calculus [39, 40]. Thus, the

uneasy but productive relationship between statistics and mathematics continues, but in a

different guise and mediated by new concerns.

The purpose of this survey article is to provide a few glimpses of the new optimization

algorithms being crafted by computational statisticians and applied mathematicians.

Although a survey of convex calculus for statisticians would certainly be helpful, our

emphasis is more concrete. The truth of the matter is that a few broad categories of

algorithms dominate. Furthermore, difficult problems require that several algorithmic pieces

be assembled into a well coordinated whole. Put another way, from a handful of basic ideas,

computational statisticians often weave a complex tapestry of algorithms that meets the

needs of a specific problem. No algorithm category should be dismissed a priori in tackling

a new problem. There is plenty of room for creativity and experimentation. Algorithms are

made for tinkering. When one part fails or falters, it can be replaced by a faster or more

robust part.

This survey will treat the following methods: (a) block descent, (b) steepest descent, (c)

Newton’s method, quasi-Newton methods, and scoring, (d) the MM and EM algorithms, (e)

penalized estimation, (f) the augmented Lagrangian method for constrained optimization,

and (g) acceleration of fixed point algorithms. As we have mentioned, often the best

algorithms combine several themes. We will illustrate the various themes by a sequence of

examples. Although we avoid difficult theory and convergence proofs, we will try to point

out along the way a few motivating ideas that stand behind most algorithms. For example, as

its name indicates, steepest descent algorithms search along the direction of fastest decrease

of the objective function. Newton’s method and its variants all rely on the notion of local

quadratic approximation, thus correcting the often poor linear approximation of steepest

descent. In high dimensions, Newton’s method stalls because it involves calculating and

inverting large matrices of second derivatives.

The MM and EM algorithms replace the objective function by a simpler surrogate function.

By design, optimizing the surrogate function sends the objective function downhill in

minimization and uphill in maximization. In constructing the surrogate function for an EM

algorithm, statisticians rely on notions of missing data. The more general MM algorithm

calls on skills in inequalities and convex analysis. More often than not, concrete problems

also involve parameter constraints. Modern penalty methods incorporate the constraints by

imposing penalties on the objective function. A tuning parameter scales the strength of the

penalties. In the classical penalty method, the constrained solution is recovered as the tuning

parameter tends to infinity. In the augmented Lagrangian method, the constrained solution

emerges for a finite value of the tuning parameter.

In the remaining sections, we adopt several notational conventions. Vectors and matrices

appear in boldface type; for the most part parameters appear as Greek letters. The

differential df(θ) of a scalar-valued function f(θ) equals its row vector of partial derivatives;

the transpose ▿f(θ) of the differential is the gradient. The second differential d2f(θ) is the

Hessian matrix of second partial derivatives. The Euclidean norm of a vector b and the

spectral norm of a matrix A are denoted by ∥b∥ and ∥A∥, respectively. All other norms will
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be appropriately subscripted. The nth entry bn of a vector b must be distinguished from the

nth vector bn in a sequence of vectors. To maintain consistency, bni denotes the ith entry of

bn. A similar convention holds for sequences of matrices.

Block Descent

Block relaxation (either block descent or block ascent) divides the parameters into disjoint

blocks and cycles through the blocks, updating only those parameters within the pertinent

block at each stage of a cycle [21]. For the sake of brevity, we consider only block descent.

In updating a block, we minimize the objective function over the block. Hence, block

descent possesses the desirable descent property of always forcing the objective function

downhill. When each block consists of a single parameter, block descent is called cyclic

coordinate descent. The coordinate updates need not be explicit. In high-dimensional

problems, implementation of one-dimensional Newton searches is often compatible with fast

overall convergence. Block descent is best suited to unconstrained problems where the

domain of the objective function reduces to a Cartesian product of the subdomains

associated with the different blocks. Obviously, exact block updates are a huge advantage.

Constraints can present insuperable barriers to coordinate descent because parameters get

locked into place. In some problems it is advantageous to consider overlapping blocks.

Example 0.1. Nonnegative Least Squares

For a positive definite matrix A = (aij) and vector b = (bi), consider minimizing the quadratic

function

subject to the constraints θi ≥ 0 for all i. In the case of least squares, A = XtX and b = −Xty
for some design matrix X and response vector y. Equating the partial derivative of f(θ) with

respect to θi to 0 gives

Rearrangement now yields the unrestricted minimum

Taking into account the nonnegativity constraint, this must be amended to
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at stage n + 1 to construct the coordinate descent update of θi.

Example 0.2. Matrix Factorization by Alternating Least Squares

In the 1960s Kruskal [47] applied the method of alternating least squares to factorial

ANOVA. Later the subject was taken up by de Leeuw and colleagues [32]. Suppose U is a m

× q matrix whose columns u1, … , uq represent data vectors. In many applications it is

reasonable to postulate a reduced number of prototypes v1, … , vp and write

for certain nonnegative weights wkj. The matrix W = (wkj) is p × q. If p is small compared to

q, then the representation U ≈ VW compresses the data for easier storage and retrieval.

Depending on the circumstances, one may want to add further constraints [24]. For instance,

if the entries of U are nonnegative, then it is often reasonable to demand that the entries of V
be nonnegative as well [55, 68]. If we want each uj to equal a convex combination of the

prototypes, then constraining the column sums of W to equal 1 is indicated.

One way of estimating V and W is to minimize the squared Frobenius norm

No explicit solution is known, but alternating least squares offers an iterative attack. If W is

fixed, then we can update the ith row of V by minimizing the sum of squares

Similarly, if V is fixed, then we can update the jth column of W by minimizing the sum of

squares

Thus, block descent solves a sequence of least squares problems, some of which are

constrained.

Steepest Descent

The first-order Taylor expansion
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of a differentiable function f(θ) around θ motivates the method of steepest descent. In view

of the Cauchy-Schwarz inequality, the choice

minimizes the linear term df(θ)γ of the expansion over the sphere of unit vectors. Of course,

if ▿f(θ) = 0, then θ is a stationary point. The steepest descent algorithm iterates according to

(1)

for some scalar s > 0. If s is sufficiently small, then the descent property f(θn+1) < f(θn)

holds. The most sophisticated version of the algorithm determines s by searching for the

minimum of the objective function along the direction of steepest descent. Among the many

methods of line search, the methods of false position, cubic interpolation, and golden section

stand out [53]. These are all local search methods, and unless some guarantee of convexity

exists, confusion of local and global minima can occur.

The method of steepest descent often exhibits zigzagging and a painfully slow rate of

convergence. For these reasons it was largely replaced in practice by Newton’s method and

its variants. However, the sheer scale of modern optimization problems has led to a re-

evaluation. The avoidance of second derivatives and Hessian approximations is now viewed

as an virtue. Furthermore, the method has been generalized to nondifferentiable problems by

substituting the forward directional derivative

for the gradient [84]. Here the idea is to choose a unit search vector ν to minimize dνf(θ). In

some instances this secondary problem can be attacked by linear programming. For a

convex problem, the condition dνf(θ) ≥ 0 for all ν is both necessary and sufficient for θ to be

a minimum point. If the domain of f(θ) equals a convex set C, then only tangent directions ν

= μ−θ with μ ∈ C come into play.

Steepest descent also has a role to play in constrained optimization. Suppose we want to

minimize f(θ) subject to the constraint θ ∈ C for some closed convex set. The projected

gradient method capitalizes on the steepest descent update (1) by projecting it onto the set C

[35, 56, 79]. It is well known that for a point x external to C, there is a closest point PC(x) to

x in C. Explicit formulas for the projection operator PC(x) exist when C is a box, Euclidean

ball, hyperplane, or halfspace. Fast algorithms for computing PC(x) exist for the unit

simplex, the l1 ball, and the cone of positive semidefinite matrices [27, 62].

Choice of the scalar s in the update (1) is crucial. Current theory suggests taking s to equal

r/L, where L is a Lipschitz constant for the gradient ▿f(θ) and r belongs to the interval (0, 2).

In particular, the Lipschitz inequality
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is valid for L = supθ ∥d2f(θ)∥, whenever this quantity is finite. In practice, the Lipschitz

constant L must be estimated. Any induced matrix norm ∥ · ∥† can be substituted for the

spectral norm ∥ · ∥ in the defining supremum and will give an upper bound on L.

Example 0.3. Coordinate Descent versus the Projected Gradient Method

As a test problem, we generated a random 100 × 50 design matrix X with i.i.d. standard

normal entries, a random 50 × 1 parameter vector θ with i.i.d. uniform [0,1] entries, and a

random 100 × 1 error vector e with i.i.d. standard normal entries. In this setting the response

y = Xθ + e. We then compared coordinate descent, the projected gradient method (for L

equal to the spectral radius of XtX and r equal to 1.0, 1.75, and 2.0), and the MM algorithm

explained later in Example 0.6. All computer runs start from the common point θ0 whose

entries are filled with i.i.d. uniform [0,1] random deviates. Figure 1 plots the progress of

each algorithm as measured by the relative difference

(2)

between the loss at the current iteration and the ultimate loss at convergence. It is interesting

how well coordinate descent performs compared to projected gradient descent. The slower

convergence of the MM algorithm is probably a consequence of the fact that its

multiplicative updates slow down as they approach the 0 boundary. Note also the

importance of choosing a good step size in the projected gradient algorithm. Inflated steps

accelerate convergence, but excessively inflated steps hamper it.

Variations on Newton’s Method

The primary advantage of Newton’s method is its speed of convergence in low-dimensional

problems. Its many variants seek to retain its fast convergence while taming its defects. The

variants all revolve around the core idea of locally approximating the objective function by a

strictly convex quadratic. At each iteration the quadratic approximation is optimized subject

to safeguards that keep the iterates from overshooting and veering toward irrelevant

stationary points.

Consider minimizing the real-valued function f(θ) defined on an open set S ⊂ Rp. Assuming

that f(θ) is twice differentiable, we have the second order Taylor expansion

for some α on the line segment [θ, γ]. This expansion suggests that we substitute d2f(θ) for

d2f(α) and approximate f(γ) by the resulting quadratic. If we take this approximation

seriously, then we can solve for its minimum point γ as
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In Newton’s method we iterate according to

(3)

for step length constant s with default value 1. Any stationary point of f(θ) is a fixed point of

Newton’s method.

There is nothing to prevent Newton’s method from heading uphill rather than downhill. The

first order expansion

makes it clear that the descent property holds provided s > 0 is small enough and the Hessian

matrix d2f(θn) is positive definite. When d2f(θn) is not positive definite, it is usually replaced

by a positive definite approximation Hn in the update (3).

Backtracking is crucial to avoid overshooting. In the step-halving version of backtracking,

one starts with s = 1. If the descent property holds, then one takes the Newton step.

Otherwise,  is substituted for s, θn+1 is recalculated, and the descent property is rechecked.

Eventually, a small enough s is generated to guarantee f(θn+1) < f(θn).

In the next two examples we adopt standard statistical language. The outcome of a statistical

experiment is summarized by a loglikelihood L(θ). Its gradient ▿L(θ) is called the score, and

its second differential d2L(θ), after a change in sign, is call the observed information. In

maximum likelihood estimation, one maximizes L(θ) with respect to the parameter vector θ.

Example 0.4. Newton’s Method for Binomial Regression

Consider binomial regression with m independent responses y1, … , ym. Each yi represents a

count between 0 and ki with success probability πi(θ) per trial. The loglikelihood, score, and

observed information amount to

Because E(yi) = kiπi(θ), the observed information can be approximated by
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Because we seek to maximize rather than minimize L(θ), we want −d2L(θ) to be positive

definite. Fortunately, both approximations fulfill this requirement. The second

approximation leads to the scoring algorithm discussed later.

Example 0.5. Poisson Multigraph Model

In a graph the number of edges between any two nodes is 0 or 1. A multigraph allows an

arbitrary number of edges between any two nodes. Multigraphs are natural structures for

modeling the internet and gene and protein networks. Here we consider a multigraph with a

random number of edges Xij connecting every pair of nodes {i, j}. In particular, we assume

that the Xij are independent Poisson random variables with means μij. As a plausible model

for ranking nodes, we take μij = θiθj, where θi and θj are nonnegative propensities [72]. The

loglikelihood of the observed edge counts xij = xji amounts to

The score vector has entries

and the observed information matrix has entries

For p nodes the matrix −d2L(p) is p × p, and inverting it seems out of the question when p is

large. Fortunately, the Sherman-Morrison formula comes to the rescue. If we write −d2L(θ)

as D + 11t with D diagonal, then the explicit inverse

is available. This makes Newton’s method trivial to implement as long as one respects the

bounds θi ≥ 0. More generally, it is always cheap to invert a low-rank perturbation of an

explicitly invertible matrix.
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In maximum likelihood estimation, the method of steepest ascent replaces the observed

information matrix −d2L(θ) by the identity matrix I. Fisher’s scoring algorithm makes the

far more effective choice [67] of replacing the observed information matrix by the expected

information matrix J(θ) = E[−d2L(θ)]. The alternative representation J(θ) = Var[▿rL(θ)] of

J(θ) as a variance matrix demonstrates that it is positive semidefinite. Usually it is positive

definite as well and serves as an excellent substitute for −d2L(θ) in Newton’s method. The

inverse matrices  and  immediately supply the asymptotic variances and

covariances of the maximum likelihood estimate  [73].

The score and expected information simplify considerably for exponential families of

densities [8, 11, 36, 44, 63]. Recall that the density of a vector random variable Y from an

exponential family can be written as

(4)

relative to some measure ν [25, 73]. The function h(y) in equation (4) is the sufficient

statistic. The maximum likelihood estimate of the parameter vector θ depends on an

observation y only through h(y). Predictors of y are incorporated into the functions β(θ) and

γ(θ). If γ(θ) is linear in θ, then J(θ) = −d2L(θ) = −d2β(θ), and scoring coincides with

Newton’s method. If in addition J(θ) is positive definite, then L(θ) is strictly concave and

possesses at most a single local maximum, which is necessarily the global maximum.

Both the score vector and expected information matrix can be expressed succinctly in terms

of the mean vector μ(θ) = E[h(y)] and the variance matrix Σ(θ) = Var[h(y)] of the sufficient

statistic. Standard arguments show that

These formulas have had an enormous impact on nonlinear regression and fitting

generalized linear models. Applied statistics as we know it would be nearly impossible

without them. Implementation of scoring is almost always safeguarded by step halving and

upgraded to handle linear constraints and parameter bounds. The notion of quadratic

approximation is still the key, but each step of constrained scoring must solve a quadratic

program.

In parallel with developments in statistics, numerical analysts sought substitutes for

Newton’s method. Their e orts a generation ago focused on quasi-Newton methods for

generic smooth functions [23, 65]. Once again the core idea was successive quadratic

approximation. A good quasi-Newton method: (a) minimizes a quadratic function f(θ) from

Rp to R in p steps, (b) avoids evaluation of d2f(θ), (c) adapts readily to simple parameter

constraints, and (d) exploits inexact line searches.
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Quasi-Newton methods update the current approximation Hn to the second differential

d2f(θ) of an objective function f(θ) by a rank-one or rank-two perturbation satisfying a secant

condition. The secant condition captures the first-order Taylor approximation

If we define the gradient and argument differences

then the secant condition reads Hn+1dn = gn. Davidon [19] discovered that the unique

symmetric rank-one update to Hn satisfying the secant condition is

where the constant cn and the vector vn are determined by

When the inner product (Hndn − gn)tdn is too close to 0, there are two possibilities. Either

the secant adjustment is ignored, and the value Hn is retained for Hn+1, or one resorts to a

trust region strategy [65].

In the trust region method, one minimizes the quadratic approximation to f(θ) subject to the

spherical constraint ∥θ − θn∥2 ≤ r2 for a fixed radius r. This constrained optimization

problem has a solution regardless of whether Hn is positive definite. Working within a trust

region prevents absurdly large steps in the early stages of minimization. With appropriate

safeguards, some numerical analysts [18, 45] consider Davidon’s rank-one update superior

to the widely used BFGS update, named after Broyden, Fletcher, Goldfarb, and Shanno.

This rank-two perturbation is guaranteed to maintain positive definiteness and is better

understood theoretically than the symmetric rank-one update. Also of interest is the DFP

(Davidon, Fletcher, and Powell) rank-two update, which applies to the inverse  of Hn.

Although the DFP update ostensibly avoids matrix inversion, the consensus is that the BFGS

update is superior to it in numerical practice [23].

The MM and EM Algorithms

The numerical analysts Ortega and Rheinboldt [66] first articulated the MM principle; de

Leeuw [20] saw its potential and created the first MM algorithm. The MM algorithm

currently enjoys its greatest vogue in computational statistics [41, 54, 90]. The basic idea is

to convert a hard optimization problem into a sequence of simpler ones. In minimization the

MM principle majorizes the objective function f(θ) by a surrogate function g(θ ∣ θn)

Lange et al. Page 10

Int Stat Rev. Author manuscript; available in PMC 2014 September 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



anchored at the current point θn. Majorization combines the tangency condition g(θn ∣ θn) =

f(θn) and the domination condition g(θ ∣ θn) ≥ f(θ) for all θ. The next iterate of the MM

algorithm is defined to minimize g(θ ∣ θn). Because

the MM iterates generate a descent algorithm driving the objective function downhill.

Strictly speaking, the descent property depends only on decreasing g(θ ∣ θn), not on

minimizing it. Constraint satisfaction is automatically enforced in finding θn+1. Under

appropriate regularity conditions, an MM algorithm is guaranteed to converge to a local

minimum of the objective function [52]. In maximization, we first minorize and then

maximize. Thus, the acronym MM does double duty in the forms majorize-minimize and

minorize-maximize.

When it is successful, the MM algorithm simplifies optimization by: (a) separating the

variables of a problem, (b) avoiding large matrix inversions, (c) linearizing a problem, (d)

restoring symmetry, (e) dealing with equality and inequality constraints gracefully, and (f)

turning a nondifferentiable problem into a smooth problem. The art in devising an MM

algorithm lies in choosing a tractable surrogate function g(θ ∣ θn) that hugs the objective

function f(θ) as tightly possible.

The majorization relation between functions is closed under the formation of sums,

nonnegative products, limits, and composition with an increasing function. These rules

allow one to work piecemeal in simplifying complicated objective functions. Skill in dealing

with inequalities is crucial in constructing majorizations. Classical inequalities such as

Jensen’s inequality, the information inequality, the arithmetic-geometric mean inequality,

and the Cauchy-Schwartz prove useful in many problems. The supporting hyperplane

property of a convex function and the quadratic upper bound principle of Böhning and

Lindsay [5] also find wide application.

Example 0.6. An MM Algorithm for Nonnegative Least Squares

Sha et al [81] devised an MM algorithm for Example 0.1. The diagonal terms  they

retain as presented. The off-diagonal terms aijθiθj they majorize according to the sign of the

coefficient aij. When the sign of aij is positive, they apply the majorization

which just a rearrangement of the inequality

with equality when x = xn and y = yn. When the sign of aij is negative, they apply the

majorization
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which is just a rearrangement of the simple inequality z ≥ 1 + ln z with z = xy/(xnyn). The

value z = 1 gives equality in the inequality. Both majorizations separate parameters and

allow one to minimize the surrogate function parameter by parameter. Indeed, if we define

matrices A+ and A− with entries max{aij, 0} and −min{aij, 0}, respectively, then the

resulting MM algorithm iterates according to

All entries of the initial point θ0 should be positive; otherwise, the MM algorithm stalls. The

updates occur in parallel. In contrast, the cyclic coordinate descent updates are sequential.

Figure 1 depicts the progress of the MM algorithm on our nonnegative least squares

problem.

Example 0.7. Locating a Gunshot

Locating the time and place of a gunshot is a typical global positioning problem [82]. In a

certain city m sensors located at the points x1, … , xm are installed. A signal, say a gunshot

sound, is sent from an unknown location θ at unknown time α and known speed s and

arrives at location j at time yj observed with random measurement error. The problem is to

estimate the vector θ and the scalar α from the observed data y1, … , ym. Other problems of

this nature include pinpointing the epicenter of an earthquake and the detonation point of a

nuclear explosion. This estimation problem can be attacked by a combination of block

descent and the MM principle.

If we assume Gaussian random errors, then maximum likelihood estimation reduces to

minimizing the criterion

The equivalence of the two representations of f(θ, α) shows that it suffices to solve the

problem with speed s = 1. In the remaining discussion we make this assumption. For fixed θ

estimation of α reduces to a least squares problem with the obvious solution

.
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To update θ with α fixed, we rewrite f(θ, α) as

The middle terms −2(yj − α)∥θ − xj∥ are awkward to deal with in minimization. Depending

on the sign of the coefficient −2(yj −α), we majorized them in two different ways. If the sign

is negative, then we employ the Cauchy-Schwarz majorization

If the sign is positive, then we employ the more subtle majorization

To derive this second majorization, note that  is a concave function on (0, ∞). It

therefore satisfies the dominating hyperplane inequality

Now substitute ∥θ − xj∥
2 for u. These maneuvers separate parameters and reduce the

surrogate to a sum of linear terms and squared Euclidean norms. The minimization of the

surrogate yields the MM update

of θ for α fixed. The condition α > yj in this update is usually vacuous. By design f(θ, α)

decreases after each cycle of updating α and θ.

The celebrated expectation-maximization (EM) algorithm is one the most potent

optimization tools in the statistician’s toolkit [22, 59]. The E step in the EM algorithm

creates a surrogate function, the Q function in the literature, that minorizes the loglikelihood.

Thus, every EM algorithm is an MM algorithm. If y is the observed data and x is the

complete data, then the Q function is defined as the conditional expectation

where f(x ∣ θ) denotes the complete data loglikelihood, upper case letters indicate random

vectors, and lower case letters indicate corresponding realizations of these random vectors.
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In the M step of the EM algorithm, one calculates the next iterate θn+1 by maximizing Q(θ ∣

θn) with respect to θ.

Example 0.8. MM versus EM for the Dirichlet-Multinomial Distribution

When multivariate count data exhibit over-dispersion, the Dirichlet-multinomial distribution

is preferred to the multinomial distribution. In the Dirichlet-multinomial model, the

multinomial probabilities p = (p1, … , pd) follow a Dirichlet distribution with parameter

vector α = (α1, … , d) having positive components. For a multivariate count vector x = (x1,

… , xd) with batch size , the probability mass function is accordingly

(5)

where Δd is the unit simplex in d dimensions, ∣α∣ equals , and 

denotes a rising factorial. The last equality in (6) follows from the factorial property Γ(a

+1)/Γ(a) = a of the gamma function. Given independent data points x1, … , xm, the

loglikelihood is

The lack of concavity of L(α) may cause instability in Newton’s method when it is started

far from the optimal point. Fisher’s scoring algorithm is computationally prohibitive because

calculation of the expected information matrix involves numerous evaluations of beta-

binomial tail probabilities. The ascent property makes EM and MM algorithms attractive.

In deriving an EM algorithm, we treat the unobserved multinomial probabilities pj in each

case as missing data. The complete data likelihood is then the integrand in the integral (5). A

straightforward calculation shows that p possesses a posterior Dirichlet distribution with

parameters α1 + xi1 through αd + xid for case i. If we now differentiate the identity

with respect to αj, then the identity
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emerges, where Ψ(z) = Γ’(z)/Γ(z) is the digamma function. It follows that up to an irrelevant

additive constant the surrogate function is

Maximizing Q(α ∣ αn) is non-trivial because involves it special functions and intertwining of

the αj parameters.

Directly invoking the MM principle produces a more malleable surrogate function. Consider

the logarithm of the third form of the likelihood function (5). Applying Jensen’s inequality

to ln(αj + k) gives

Likewise, applying the supporting hyperplane inequality to −ln(∣α∣ + k) gives

Overall, these minorizations yield the surrogate function

which completely separates the parameter αj. This suggests the simple MM updates

The positivity constraints are always satisfied when all initial values α0j > 0. Parameter

separation can be achieved in the EM algorithm by a further minorization of the lnΓ(∣α∣)

term in Q(α ∣ αn). This action yields a viable EM-MM hybrid algorithm. The reference [92]

contains more details and a comparison of the convergence rates of the three algorithms.
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Finally, let us mention various strategies for handling exceptional cases. In the MM

algorithm it may be impossible to optimize the surrogate function g(θ ∣ θn) explicitly. There

are two obvious remedies. One is to institute some form of block relaxation in updating g(θ ∣

θn) [61]. There is no need to iterate to convergence since the purpose is merely to improve

g(θ ∣ θn) and hence the objective function f(θ). Another obvious remedy is to optimize the

surrogate function by Newton’s method. It turns out that a single step of Newton’s method

suffices to preserve the local rate of convergence of the MM algorithm [50]. The ascent

property is sacrificed initially, but it kicks in as one approaches the optimal point. In an

unconstrained problem this variant MM algorithm can be phrased as

where the substitution of ▿f(θn) for ▿g(θn ∣ θn) is justified by the tangency and domination

conditions satisfied by g(θ ∣ θn) and f(θ).

A more pressing concern in the EM algorithm is intractability of the E step. If f(X ∣ θ)

denotes the complete data likelihood, then in the stochastic EM algorithm [43, 75, 87] one

estimates the surrogate function by a Monte Carlo average

(6)

over realizations xi of the complete data X conditional on the observed data Y = y and the
current parameter iterate θn. Sampling can be done by rejection sampling, importance

sampling, Markov chain Monte Carlo, or quasi-Monte Carlo. The next iterate θn+1should
maximize the average (6). The sample size mshould increase as the iteration count
nincreases. Determining the rate of increase of m and setting a reasonable convergence

criterion are both subtle issues. The ascent property of the EM algorithm fails because of the

inherent sampling noise. The combination of slow convergence and Monte Carlo sampling

makes the stochastic EM algorithm unattractive in large-scale problems. In smaller problems

it fills a useful niche.

The stochastic EM algorithm generalizes the Robbins-Monro algorithm [76] for root finding

and the Kiefer-Wolfowitz algorithm [46] for function maximization. In unconstrained

maximum likelihood estimation, one seeks a root of the likelihood equation, so both

methods are relevant. Under suitable assumptions, the Kiefer-Wolfowitz algorithm

converges to a local maximum almost surely. Since this cluster of topics is tangential to our

overall emphasis on deterministic methods of optimization, we refer readers to the books

[13, 49, 75] for a fuller discussion.

Penalization

Penalization is a device for imposing parsimony. For purposes of illustration, we discuss two

penalized estimation problems of considerable utility in applied statistics. Both of these

examples generate convex programs with nondifferentiable objective functions. In the
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interests of accessibility, we will derive estimation algorithms for both problems without

invoking the machinery of convex analysis.

Example 0.9. Lasso Penalized Regression

Lasso penalized regression has been pursued for a long time in many application areas [14,

16, 26, 80, 83, 85]. Modern versions consider a generalized linear model where yi is the

response for case i, xij is the value of predictor j for case i, and θj is the regression coefficient

corresponding to predictor j. When the number of predictors p exceeds the number of cases

m, θ cannot be uniquely estimated. In an era of big data, this quandary is fairly common.

One remedy is to perform model selection by imposing a lasso penalty on the loss function

l(θ). In least squares estimation

For a generalized linear model [69], l(θ) is the negative loglikelihood of the data. Lasso

penalized estimation minimizes the criterion

where the nonnegative weights wj and the tuning constant ρ > 0 are given. If θj is the

intercept for the model, then its weight wj is usually set to 0. For the remaining predictors

the choice wj = 1 is reasonable provided the predictors are standardized to have mean 0 and

variance 1. To improve the asymptotic properties of the lasso estimates, the adaptive lasso

[95] defines the weights  for any consistent estimate  of θj In a Bayesian context,

imposing a lasso penalty is equivalent to placing a Laplace prior with mean 0 on each θj.

The elastic net [96] adds a ridge penalty  to the lasso penalty.

The primary difference between lasso and ridge regression is that the lasso penalty forces

most parameters to 0 while the ridge penalty merely reduces them. Thus, the ridge penalty

relaxes its grip too quickly for model selection. Unfortunately, the lasso penalty tends to

select one predictor from a group of correlated predictors and ignore the others. The elastic

net ameliorates this defect. To overcome severe shrinkage, many statisticians discard

penalties after the conclusion of model selection and re-estimate the selected parameters.

Cross-validation [37] and stability selection [60] are effctive in choosing the penalty tuning

constant and the selected predictors, respectively.

Coordinate descent works particularly well when only a few predictors enter a model [29,

89]. Consider what happens when we visit parameter θj and the loss function is the least

squares criterion. If we define the amended response , then the

problem reduces to minimizing
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Now divide the domain of θj into the two intervals (−∞, 0] and [0, ∞). On the right interval,

elementary calculus suggests the update

This is invalid when it is negative and must be replaced by 0. Likewise, on the left interval,

we have the update

unless it is positive. On both intervals, shrinkage pulls the usual least squares estimate

toward 0. In underdetermined problems with just a few relevant predictors, most parameters

never budge from their starting values of 0. This circumstance plus the complete absence of

matrix operations explains the speed of coordinate descent. It inherits its numerical stability

from the descent property enjoyed by any coordinate descent algorithm.

With a generalized linear model, say logistic regression, the same story plays out. Now,

however, we must institute a line search for the minimum on each of the two half intervals.

Newton’s method, scoring, and even golden section search work well. When f(θ) is convex,

and θj = 0, it is prudent to check the forward directional derivatives dejf(θ) and d−ejf(θ) along

the current coordinate direction ej and its negative. If both forward directional derivatives

are nonnegative, then no progress can be made by moving off 0. Thus, a parameter parked at

0 is left there. Other computational savings are possible that make coordinate descent even

faster. For example, computations can be organized around the the linear predictor ∑jxijθj for

each case i. When θj changes, it is trivial to update this inner product. The references [88,

89] illustrate the potential of coordinate descent on some concrete genetic examples.

Example 0.10. Matrix Completion

The matrix completion problem became famous when the movie distribution company

Netflix offered a million dollar prize for improvements to its movie rating system [1]. The

idea was that customers would submit ratings on a small subset of movie titles, and from

these ratings Netflix would infer their preferences and recommend additional movies for

their consideration. Imagine therefore a very sparse matrix Y = (yij) whose rows are

individuals and whose columns are movies. Completed cells contain a rating from 1 to 5.

Most cells are empty and need to be filled in. If the matrix is sufficiently structured and
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possesses low rank, then it is possible to complete the matrix in a parsimonious way.

Although this problem sounds specialized, it has applications far beyond this narrow setting.

For example, filling in missing genotypes in genome scans for disease genes benefits from

matrix completion [15].

Following the references [9, 10, 58, 12], let Δ denote the set of index pairs (i, j) such that yij

is observed. The Lagrangian formulation of matrix completion minimizes the criterion

(7)

with respect to a compatible matrix X = (xij) with singular values σk. Recall that the singular

value decomposition

represents X as a sum of outer products involving a collection of orthogonal left singular

vectors ui, a corresponding collection of orthogonal right singular vectors vi, and a

descending sequence of nonnegative singular values σi. Alternatively, we can factor X in the

form UΣVt for orthogonal matrices U and V and a rectangular diagonal matrix Σ.

The nuclear norm ∥X∥nuc = ∑kσk plays the same role in low-rank matrix approximation that

the l1 norm ∥b∥1 = ∑k ∣bk plays in sparse regression. For a more succinct representation of

the criterion (7), we introduce the Frobenius norm

induced by the trace inner product tr(UVt) and the projection operator PΔ(Y) with entries

In this notation, the criterion (7) becomes

To derive an algorithm for estimating X, we again exploit the MM principle. The general

idea is to restore the symmetry of the problem by imputing the missing data [58]. Suppose

Xn is our current approximation to X. We simply replace a missing entry yij of Y by the

corresponding entry xnij of Xn and add the term  to the criterion (7). Since the

added terms majorize 0, they create a legitimate surrogate function and lead to an MM
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algorithm. One can rephrase the problem in matrix terms by defining the orthogonal

complement  of PΔ(Y) according to the rule . The matrix

 temporarily completes Y and yields the surrogate function

At this juncture it is helpful to recall some mathematical facts. First, the Frobenius norm is

invariant under left and right multiplication of its argument by an orthogonal matrix. Thus,

 depends only on the singular values of X. The inner product −tr(ZnXt)

presents a greater barrier to progress, but it ultimately succumbs to a matrix analogue of the

Cauchy-Schwarz inequality. Fan’s inequality [6] says that

for the ordered singular values ωk of Zn. Equality is attained in Fan’s inequality if and only

if the right and left singular vectors for the two matrices coincide. Thus, in minimizing g(X ∣

Xn) we can assume that the singular vectors of X coincide with those of Zn and rewrite the

surrogate function as

Application of the forward directional derivative test

for all tangent directions ν identifies the shrunken singular values

as optimal. In practice, one does not have to extract the full singular value decomposition of

Zn. Only the singular values ωk > ρ are actually relevant in constructing Xn+1

In many applications the underlying structure of the observation matrix Y is corrupted by a

few noisy entries. This tempts one to approximate Y by the sum of a low rank matrix X plus

a sparse matrix W. To estimate X and W, we introduce a positive tuning constant λ and

minimize the criterion
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by block descent. We have already indicated how to update X for W fixed. To minimize f(X,

W) for X fixed, we set wij = 0 for any pair (i, j) ∉ Δ. Because the remaining W parameters

separate in f(X, W), the shrinkage updates

are trivial to derive.

Augmented Lagrangians

The augmented Lagrangian method is one of the best ways of handling parameter

constraints [38, 65, 70, 77]. For the sake of simplicity, we focus on the problem of

minimizing f(θ) subject to the equality constraints gi(θ) = 0 for i = 1, … , q. We will ignore

inequality constraints and assume that f(θ) and the gi(θ) are smooth. At a constrained

minimum the classical Lagrange multiplier rule

(8)

holds provided the gradients ▿gi(θ) are linearly independent. The augmented Lagrangian

method optimizes the perturbed function

with respect to θ. It then adjusts the current multiplier vector λ in the hope of matching the

true Lagrange multiplier vector. The penalty term  punishes violations of the equality

constraint gi(θ) = 0. At convergence the gradient ρgi(θ)▿gi(θ) of  vanishes, and we

recover the standard multiplier rule (8). This process can only succeed if the degree of

penalization ρ is sufficiently large.

Thus, we must either take ρ initially large or gradually increase it until it hits the finite

transition point where the constrained and unconstrained solutions merge. Updating λ is

more subtle. If θn furnishes the unconstrained minimum of , then the stationarity

condition reads
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The last equation motivates the standard update

The alternating direction method of multipliers (ADMM) [30, 33] minimizes the sum f(θ) +

h(γ) subject to the affine constraints Aθ + Bγ = c. Although the objective function is

separable in the block variables θ and γ, the affine constraints frustrate a direct attack.

However, the problem is ripe for a combination of the augmented Lagrangian method and a

single round of block descent per iteration. The augmented Lagrangian is

Minimization is performed over θ and γ by block descent before updating the multiplier

vector λ via

Introduction of block descent simplifies the usual augmented Lagrangian method, which

minimizes  jointly over θ and γ. This modest change keeps the convergence

theory intact [7, 28] and has led to a resurgence in the popularity of ADMM in machine

learning [4, 7, 12, 71, 74, 91].

Example 0.11. Fused Lasso

ADMM is helpful in reducing difficult optimization problems to simpler ones. The easiest

fused lasso problem [86] minimizes the criterion

The l1 penalty on the increments θi+1 −θi favors piecewise constant solutions. Unfortunately,

this twist on the standard lasso penalty renders coordinate descent inefficient. We can

reformulate the problem as minimizing the criterion  subject to the

constraint γ = Dθ, where
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In the augmented Lagrangian framework, updating θ amounts to minimizing

. It is straightforward to solve this least squares problem.

Updating γ involves minimizing , which is a standard lasso problem.

Thus, ADMM decouples the problematic linear transformation Dθ from the lasso penalty.

Algorithm Acceleration

Many MM and block descent algorithms converge very slowly. In partial compensation, the

computational work per iteration may be light. Even so, diminishing the number of iterations

until convergence by one or two orders of magnitude is an attractive proposition [3, 42, 48,

51, 78, 93]. In this section we discuss a generic method for accelerating a wide variety of

algorithms [93]. Consider a differentiable algorithm map θn+1 = A(θn) for optimizing an

objective function f(θ), and suppose stationary points of f(θ) correspond to fixed points of

A(θ). Equivalently, stationary points correspond to roots of the equation B(θ) = θ − A(θ) = 0.

Within this framework it is natural to apply Newton’s method

(9)

to find the root and accelerate the overall process. This is a realistic expectation because

Newton’s method converges at a quadratic rate in contrast to the linear rates of MM and

block descent algorithms.

There are two principal impediments to implementing algorithm (9) in high dimensions.

First, it appears to require evaluation and storage of the Jacobi matrix dA(θ), whose rows are

the differentials of the components of A(θ). Second, it also appears to require inversion of

the matrix I − dA(θ). Both problems can be attacked by secant approximations. Close to the

optimal point θ∞, the linear approximation

is valid. This suggests that we take two ordinary steps and gather information in the process

on the matrix M = A(θ∞). If we let v be the vector A ○ A(θn) − A(θn) and u be the vector

A(θn) − θn, then the secant condition reads Mu = v. In practice it is advisable to exploit

multiple secant conditions Mui = vi as long as their number does not exceed the number of

parameters p. The secant conditions can be generated one per iteration over the current and

previous q − 1 iterations. Let us represent the conditions collectively in the matrix form MU
= V for U = (u1, … , uq), and V = (v1, … , vq).
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The principle of parsimony suggests that we replace M by the smallest matrix satisfying the

secant conditions. If we pose this problem concretely as minimizing the criterion 

subject to the constraints MU = V, then a straightforward exercise in Lagrange multipliers

[52] gives the solution M = V(UtU)−1Ut. The matrix M has rank at most q, and the Sherman

Morrison formula yields that explicit inverse

Fortunately, it involves inverting just the q × q matrix UtU − UtV. Furthermore, the Newton

update (9) boils down to

The advantages of this procedure include: (a) it avoids large matrix inverses, (b) it relies on

matrix times vector multiplication rather than matrix times matrix multiplication, (c) it

requires only storage of the small matrices U and V, and (d) it respects linear parameter

constraints. Nonnegativity constraints may be violated. The number of secants q should be

fixed in advance, say between 1 and 15, and the matrices U and V should be updated by

substituting the latest secant pair generated for the earliest secant pair retained. If an

accelerated step fails the descent test, than one can revert to the ordinary MM or block

descent step.

Acceleration of non-smooth algorithms is more problematic [40]

For gradient descent and its generalizations [17] to non-smooth problems, Nesterov [64] has

suggested a potent acceleration. As noted by Beck and Teboulle [2], the accelerated iterates

in ordinary gradient descent depend on an intermediate scalar tn and an intermediate vector

φ according to the formulas

with initial values t1 = 1 and φ = θ0. In other words, instead of taking a steepest descent step

from the current iterate, one takes a steepest descent step from the extrapolated point φ,

which depends on both the current iterate θn and the previous iterate θn−1. This mysterious

extrapolation algorithm can yield impressive speed ups for essentially the same

computational cost as gradient descent.
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Discussion

The fault lines in optimization separate smooth from non-smooth problems, unconstrained

from constrained problems, and small-scale problems from large-scale problems. Smooth,

unconstrained, small-scale problems are easy to solve. Mathematical scientists are beginning

to tackle non-smooth, constrained, large-scale problems at the opposite end of the difficulty

spectrum. The most spectacular successes usually rely on convexity. We can expect further

progress because some of the best minds in applied mathematics, computer science, and

statistics have taken up the challenge. What is unlikely to occur is the discovery of a

universally valid algorithm. Optimization is apt to remain as much art as science for a long

time to come.

We have emphasized a few key ideas in this survey. Our examples demonstrate some of the

possibilities for mixing and matching the different algorithm themes. Although we cannot

predict the future of computational statistics with any certainty, the key ideas mentioned

here will not disappear. For instance, penalization is here to stay, the descent property of an

algorithm is always desirable, and quadratic approximation will always be superior to linear

approximation for smooth functions. As computing devices hit physical constraints, the

importance of parallel algorithms will also likely increase. This argues that block descent

and parameter separated MM algorithms will played a larger role in the future [94].

Although we have de-emphasized convex calculus, readers who want to devise their own

algorithms are well advised to learn this inherently subtle subject. There is a difference, after

all, between principled algorithms and ad hoc procedures.
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Figure 1.
Comparing the rate of convergence of three algorithms on a nonnegative least squares

problem. CD = coordinate descent, PG = projected gradient, and MM = majorize-minimize.
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