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ABSTRACT OF THE THESIS 

 

 

Real-time Battery Control Method for Microgrid Energy Management  

by 

Yun Xue 

Master of Science, Graduate Program in Electrical Engineering 

University of California, Riverside, December 2015 

Dr. Alfredo. Martinez-Morales, Co-Chairperson 

Dr. Matthew Barth, Co-Chairperson 

 

 

Renewable energy has been playing an increasingly important role worldwide 

recently. For 2012 and 2013, renewables contributed 19% to energy consumption and 22% 

to electricity generation [1]. In 2014, solar energy represented 36% of new generating 

capacity in the U.S., second only to natural gas [2]. Due to the intermittent nature of 

renewable sources, energy storage systems have been integrated into the architecture of 

Microgrid systems to make them more efficient and robust. Within a Microgrid system, 

the battery energy storage system (BESS) can be used to reduce the electricity cost by 

delivering energy during the On-Peak rate period and storing energy (i.e. charging) during 

the Off-Peak rate period. This thesis proposes a real-time battery control method to reduce 

the electrical bill in an energy intensive environment, and more effectively utilize a BESS 

within Microgrid testbed system at the College of Engineering Center for Environmental 



 vii 

Research and Technology (CE-CERT). The monthly electrical bill is based on the rate 

schedule time-of-use (TOU) for Large General and Industrial Service in the city of 

Riverside. Each month, this rate schedule has both demand charge (kW) and energy 

consumption (kWh) charge for three different rate periods: On-Peak, Mid-Peak, and 

Off-Peak. The real-time control method considers both rates for different rate periods 

separately. The main parts of the control method are the control algorithms, which 

comprise two model predictive control (MPC) algorithms, for the On-Peak rate period. 

The first algorithm is called the constant threshold MPC (CT-MPC) algorithm, and it is 

implemented in the system with the relatively stable solar generation and building load 

profiles in the winter season. This control algorithm can maintain the On-Peak demand 

below the constant threshold during the entire On-Peak rate period. The second one is 

called the adjusting demand threshold MPC (ADT-MPC) algorithm. The ADT-MPC 

algorithm fits a system with unpredictable solar generation and building load profiles. 

During the On-Peak rate period, by applying the ADT-MPC algorithm, the On-Peak 

threshold can be adjusted to optimized values. Both algorithms can maintain a low level 

of energy import from the external grid (i.e. Riverside Public Utilities grid) during the 

On-Peak rate period. For the other two rate periods, the Off-Peak and Mid-Peak control 

algorithms are also developed. With the real-time battery control method, the BESS 

continuously maintains the lowest demand and energy consumption for the entire day. 
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Chapter 1 Introduction to Microgrid 

 

    Microgrid definition by the Microgrid Exchange Group: 

    “A Microgrid is a group of interconnected loads and distributed energy 

resources within clearly defined electrical boundaries that acts as a single 

controllable entity with respect to the grid. A Microgrid can connect and 

disconnect from the grid to enable it to operate in both grid-connected or 

island-mode.” [3] 

    Based on the above definition, a Microgrid should have the ability to generate and 

distribute energy within its internal architecture, as well as being able to control different 

load components as a single intelligent network entity. Three basic components should be 

included in a Microgrid based on CIGRÉ C6.22 Definition Qualifiers: (1) generators, (2) 

storage devices, and (3) controlled loads.  

1.1 Generators: Renewable Energy Resources (RES) 

    An electric generator converts thermal, mechanical or other form of energy to 

electrical energy to drive in an external circuit (load). Generators can use conventional 

energy like fossil fuels or renewable energy such as sunlight, wind, tides and nuclear 

energy. 
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    Crude oil, coal and natural gas are three main conventional energy resources around 

the world. Due to their finite nature and detrimental impacts on the environment, 

renewable energy resources are promising as an alternative and sustainable forms of 

energy, for meeting society’s future energy needs. In 1981, the United Nations held a 

conference called “The United Nations Conference on New and Renewable Sources of 

Energy”. The conference raised the international attention on the exploration and 

utilization of renewable sources. Renewable energy is generally defined as energy that 

comes from resources that are naturally replenished on a human timescale [4].     

    Photovoltaic (PV) modules generate electricity directly from sunlight via the 

photovoltaic effect that occurs in semiconductors. Due to the semiconductor structure, the 

electrons are forced in one direction creating a flow of electrical current. Solar cells are not 

100% efficient because some of the light spectrum is reflected, some (infrared) of it is too 

weak to create electricity and some (ultraviolet) creates heat energy instead of electricity. 

The energy crisis in the 1970s trigged the beginning of major interest in using solar cells to 

produce electricity in homes and businesses, but prohibitive prices (nearly 30 times higher 

than the current price) made large-scale applications impractical and economically 

unfeasible. Research and development in the years to follow made PV devices more 

efficient and financially viable, and a trend of increasing performance and decreasing cost 

has continued to the present. [5] 



 3  

    From the Solar Energy Industries Association (SEIA) and Greentech Media(GTM) 

research “U.S. Solar Market Insight: Q3 2014”, since the third quarter of 2010, the average 

price of a PV panel has dropped by 63%. By the end of 2014, the U.S. should have over 20 

GW of cumulative solar electric capacity, roughly the same amount that is expected to be 

installed just from 2015 – 2016 [6]. 

1.2 Electrical Energy Storage (EES) 

    Based on the review of progress in electrical energy storage system [7], EES refers 

to a process of converting electrical energy from a power network into a form that can be 

stored for converting back to electrical energy when needed.  

    There are two main reasons for the importance of using EES in Microgrid 

architecture. First, the consumption of electricity is not uniformly distributed. In the 

mid-night and early morning the electricity load is much lower than during working 

hours, which means electricity can be stored during Off-Peak time and delivered during 

On-Peak rate period to achieve a higher electricity cost saving, stability and reliability of 

the Microgrid. Especially under a time-of-use (TOU) rate schedule in buildings, the 

controlled charging and discharging ESS allows for reducing the building load demand 

significantly. Both energy charge and demand charge can be drastically lowered. Second, 

one significant characteristic of renewable energy such as solar and wind energy is their 
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intermittency and variability. Energy storage systems are critically important to address 

and compensate for the intermittency and variability of renewable source. 

    From a review of energy storage technologies [8], six critical technologies can be 

used to effectively store electrical energy.  

a) Pumped Hydro Storage (PHS): water is pumped from a lower reservoir to an upper 

reservoir during low electricity consumption or high renewable energy generation, 

and reserve the process to activate the turbines to generate electricity when demand 

is high. Energy is stored as gravitational potential energy with water reservoirs. 

b) Compressed Air Energy Storage (CAES): air is compressed and stored under 

pressure in an underground storage carven during low power demand or high energy 

generation. During high electricity usage time, compressed air is heated and 

expanded in an expansion turbine driving a generator to produce electricity. Energy 

is stored as compressed (highly pressured) air. 

c) Battery Energy Storage System (BESS): battery banks are charged during the low 

electricity consumption period (such as midnight for office buildings) or high 

renewable energy generation time period and discharged during high electricity 

needs time. Energy is stored as electrochemical energy in batteries and flow batteries. 

d) Hydrogen-based Energy Storage System (HESS): hydrogen is produced by 

electrolysis and stored during low power demand or high renewable energy 
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generation. During high power demand, the hydrogen is re-electrified by fuel cells to 

produce electricity. Energy is stored as chemical energy in fuel cells. 

e) Flywheel Energy Storage System (FESS): the flywheel is accelerated by electric 

motor as charging process during low power demand or high renewable energy 

generation and decelerated to activate electric generation as discharge during high 

power demand. Energy is stored as kinetic energy in flywheels. 

f) Superconducting magnetic energy storage (SMES): the superconducting coil is 

charged by generating magnetic field through the flow of direct current (DC) in itself 

and discharged by transforming magnetic energy to electric energy. Energy is stored 

as magnetic field in inductors. 

g) Supercapacitor energy storage system (SESS): the supercapacitor also called 

ultracapacitor or electric double-layer capacitor, is charged by applying a voltage to it 

and causing both electrodes in the capacitor to generate electrical double-layers to 

store electric energy and discharged by releasing positive and negative ions to the 

electrolyte. There is no chemical reaction among charging or discharging process so 

little energy will be lose. Energy is stored as an electric field in capacitors. 

1.3 Inverter 

    A power inverter, or inverter, is an electronic device or circuitry that changes direct 

current (DC) to alternating current (AC) [9]. 
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    To a Microgrid system with power supplied by solar PV and from a BESS, at least two 

inverters are needed. One inverter is for the PV modules. The second is for the battery 

energy storage system. 

    For the PV modules, the inverter is needed for two main reasons. First and the basic 

reason is to convert the direct current (DC) output to alternative current (AC). Second, the 

relationship between the power generated by solar modules and solar irradiance, 

temperature and resistance is non-linear and complex. The power generated by PV arrays 

delivered from the modules is very sensitive to the point of operation, the inverter uses 

maximum power point tracking (MPPT) method to obtain the maximum power from PV 

modules [10]. The PV inverter can be turned on or off to manipulate solar generation into 

the grid, which makes the solar inverter as a controlled device in the system. 

    For the BESS, the inverter is needed for three reasons. First, like the PV inverter, the 

battery inverter converts DC input from batteries to AC output to the grid when batteries 

are discharged. The charger controller transfers AC input from the grid to DC output when 

batteries are charged. Second, the AC output from the inverter is synchronized with the 

utility system. Frequency and each phase of three phases are synchronized with the grid 

[11]. Third, the power to charge or discharge the batteries can be changed to any value, 

which makes the BESS a controllable load source to the grid.  
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1.4 Controlled Devices in a Microgrid System 

    As discussed in Section 1.3, inverters in a Microgrid system can be part of controlled 

devices. The PV inverter can control (modulate) the generation within the Microgrid. The 

battery inverter can control the power to charge or discharge the BESS. Air conditioners 

and air handles (AH) are the common building load that can be controlled by different 

smart controllers. Due to these controllable devices in Microgrid, different control methods 

can be designed to optimize the generation from renewable energy and management of 

energy storage system.  

    Figure 1-1 shows a controlled experiment on the Sustainable Integrated Grid Initiative 

(SIGI) Project at the College of Engineering Center for Environment Research & 

Technology (CE-CERT). This test was carried by controlling the air handles (AH) loads, 

the solar inverter and the BESS connected to the building (shown as CAEE building). The 

experiment was conducted on 9/19/14. 
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Figure 1-1 Controlled Devices Operation in Microgrid 

    In Figure 1-1, it can be observed that from 1:55 PM to 2:12 PM, the normal building 

load was about 225 kW, the solar inverter was off, and the batteries were charging at a rate 

of 100kW. Then, the PV inverter was turned on (2:13 PM) to let the PV panels deliver 

power to the grid. The building load started to decrease down to 150 kW. Around 2:16 PM 

the battery inverter was shut down and the net load became 50kW. At 2:18 PM, the battery 

inverter switched to discharge mode, discharging the batteries at a rate of 100kW. The 

building instantaneous net load dropped to -50 kW. As the last control action, some of the 

AHs were turned off in the building, further decreasing the net load to about -90 kW. Figure 

1-1 shows that by implementing series of controlling actions in the SIGI’s Microgrid 

testbed system, the building net load decreased from 225 kW down to -90 kW, indicating 
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that not only the net load could be reduced without impacting the activities of the building 

facility, but the Microgrid system was able to deliver power to the external grid. 

1.5 Conclusion 

In this chapter, three basic components --- generators, energy storage systems and 

controlled devices in the Microgrid are discussed. Due to the intermittent characteristics 

of renewable energy (such as solar and wind generation) integrated into a Microgrid as 

the generator, energy storage systems become important to make the Microgrid more 

reliable and efficient of energy utilization. Inverters and charger controllers are 

indispensable for any Microgrid to bring different electric instruments into unity by 

transforming the electric current from AC to DC or DC to AC.  

How to utilize the BESS to achieve the optimum electricity usage efficiency is a key 

topic for any Microgrid. In the following chapters, a real-time control algorithm for the 

operation of the BESS is developed and tested in the Microgrid testbed of SIGI Project 

located at CE-CERT. A detailed Microgrid structure with the three basic components of 

the SIGI is discussed in Chapter 2.  
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Chapter 2 Overview of the Sustainable Integrated Grid 

Initiative (SIGI) Project in CE-CERT 

 

    The Sustainable Integrated Grid Initiative (SIGI) project integrates photovoltaic, 

energy storage and a local utility for electrical transportation to implement a testbed for a 

smart grid system. The system will provide the University with renewable energy while 

serving as a platform to learn about how new technologies could be applied in the real 

world. 

    There are four primary components in the testbed: four megawatts (MW) of UCR 

integrated solar PV; two megawatts-hours (MWH) of battery energy storage; several level 

two electric vehicle charging stations and one level three fast charging station; an electric 

trolley route servicing the general UCR region [12]. The overall structure of the SIGI 

project is shown in Figure 2-1. 
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2.1 Structure and Layout of the Project 

2.1.1 The Overall Structure of the SIGI Project 

 

Figure 2-1 The Overall Structure of the SIGI Project 

1) Solar Farm  

    There are two solar farms in the system: one 3.5 MW PV system located at UCR west 

campus, another 0.5 MW PV system located at CE-CERT. The generation from PV 

modules goes to the local (the city of Riverside) power company’s distribution grid through 

inverters connected to the buildings. The weather stations collect data such as temperature, 

solar irradiance, wind direction, etc. All the data from PV modules and weather stations is 
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collected by data monitoring package. In CE-CERT, the Obvius AcquiSuite [13] package 

is used as the solar data monitoring system.  

2) Stationary Battery Banks  

    There are two stationary battery storage systems installed at UCR – one MWh system 

at the Winton Chung Hall (WCH) building of Bourns College of Engineering (BCOE) and 

a 0.5 MWh system at CE-CERT. The battery banks are charged from the grid when 

appropriate and deliver power back to the grid as needed. A Princeton inverter (model: 

GTIB-100) [14] works as a battery inverter; it converts DC to AC when the battery banks 

are discharged and the charger controller transfers AC to DC when the battery banks are 

charged. A Shark meter (model: Shark 100) [15] is a data-metering device that can 

measure different types of AC data. Arduino [16] is a microcontroller which provides 

different communication interfaces and sends data from the Princeton inverter and the 

Shark meter to the next data-logging component. An Orion Battery Management system 

(BMS) [17] is also included in the system. The BMS protects and manages individual 

battery health to ensure that the battery packs work safety and continuously.  

3) Mobile Battery Banks 

    A trailer mounted 0.5 MWh battery energy storage system has also been assembled at 

CE-CERT. This system is roughly the same as the stationary battery banks component at 

CE-CERT, except for the communication methods between data-logging devices. The 
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advantage of the mobile battery banks is its mobility that they can be plugged or unplugged 

into various buildings grids to contribute towards different building load requirements. 

4) Building Load Components 

    At CE-CERT, there are three different buildings with industrial electrical metering; the 

1084 building (B1084) has 100 kW PV panels, the1200 building (B1200) has 100 kW PV 

panels and 500 kWh battery storage and the 1086 building (B1086) has 200 kW PV panels. 

The Pulse meter [18] is a net-metering system that can measure the electricity usage (net 

load). For B1086, the building consumption is less than the solar generation for most of 

the day time. On a sunny day, the mobile battery banks may be charged from B1086 and 

deliver power to B1084 or B1200 if suitable plug points are available.  

5) Electric Trolley 

One of the diesel trolley of UCR was converted to an electric trolley as part of the 

SIGI project. It will receive energy from either the solar PV or the stationary BESS, and 

service the general UCR region. The battery status in the trolley will be sent through a 

cellular provider to the data-logging system.  

6) Server and EV Charger System 

    Several Level 2 chargers are located at the UCR campus and CE-CERT. One level 3 

charger for trolley is under construction at CE-CERT. The battery status and charging 

process are recorded from each charger and sent to a different server for later data analysis. 
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7) Data-logging System 

The solar data is sent and saved to the web-based software called Deck [19] for 

checking and monitoring solar data and displaying live solar data. The SIGI database is 

designed to display and restore the entire system data including solar generation, battery 

storage system and EV chargers.  

8) Control System for the BESS Component 

    The control system is designed to reduce the electricity cost by smartly controlling 

the stationary and mobile BESS on a daily basis. The control system receives the system 

real-time information from the SIGI database, and sends charging or discharging power 

value to the Princeton inverter to control the BESS. 

2.1.2 The Detailed Microgrid Structural Layout at CE-CERT  

All the work reported in this thesis was performed at the CE-CERT facilities. The 

detailed structure of the solar and the stationary BESS shown in Figure 2-1 is discussed in 

this section. 

1. Solar PV System 

    As shown in Figure 2-2, there are 14 combiner boxes in the 500 kW PV system. The 

output from multiple PV modules is connected in series to make a string, and a number of 

strings are combined to produce a single DC output. The combiner boxes are used to 

minimize wiring costs and losses. 
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Figure 2-2 The AcquiSuite System 

    In this system, there are 10 combiner boxes which combine 12 PV strings 

individually; there are 2 combiner boxes which combine 9 PV strings, and there is 1 

combiner box which combines 8 PV strings and 1 combiner box which combines 7 PV 

strings. Each PV string contains 14 PV modules in series. The DC generated by PV 

modules goes to solar inverters before being connected to the building AC grid. There are 3 

inverters in the system; two of them are 100 kW inverters and one is 260 kW inverter. The 

100 kW and 260 kW means that the inverter can continuously output 100 kW and 260 kW 

power respectively [20][21]. The inverter converts DC into usable AC. The power from 

the inverters is used directly by the buildings and excess power may be sent back to the 
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utility for later use by the buildings. The Shark Meter is a metering device; it monitors AC 

data from inverters and transmits the AC data to the next data-monitoring device 

AcquiSuite. The two AcquiSuites in the system acquire data from different devices and 

sensors. The AcquiSuite sends these data to a web-based software DECK to let users check 

different solar information or weather data. 

2. Stationary Battery System 

 

Figure 2-3 The Stationary Battery Energy Storage System Schematic 

    The main objective of this thesis is the optimal battery operation in the SIGI 

Microgrid testbed based on the rate of Schedule time-of-use (TOU) for Large General and 

Industrial Service rate in the city of Riverside. The stationary battery system schematic is 

shown in Figure 2-3. The Orion BMS is a battery management system that balances 

current and voltage for each individual battery cell to meet the requirements of protecting 

and managing the battery. The Princeton inverter converts DC to AC when discharges the 
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battery banks from the grid. Another important function for the inverter is controlling the 

charging or discharging rate for the BESS. The battery charger converts AC to DC when 

charges the battery banks. Arduino shield is a board that can be plugged on the Arduino 

Printed Circuit Board (PCB) to extend its capabilities. In the system, the shield is used to 

apply different communication interfaces, such as Modbus and controller area network 

(CAN) bus, between different devices. The Arduino is a data transmission 

microcontroller which can transfer various information through the shield. LabVIEW 

(short for Laboratory Virtual Instrument Engineering Workbench) is a system-design 

platform and development environment for a visual programming language from 

National Instruments [22]. The LabVIEW software works as the entire system controller 

which sends the charging/ discharging power value to the BESS. MATLAB (short for 

matrix laboratory) is a multi-paradigm numerical computing environment and 

fourth-generation programming language [23]. MATLAB works as an optimization 

controller to calculate the optimal power rate based on real time and historical data under 

real-time control algorithm. Detailed control algorithm is discussed in Chapter 3, 4 and 5. 

The Pulse Meter measures the net load and sends the net load information to the OPTO 

22 system and SIGI database. The OPTO 22 [24] is a building smart microcontroller 

device that can turn on or off the air conditioners and air handlers in the building based 

on a certain control strategy, for example, when the net load is larger than a scheduled 
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threshold the air handlers/conditions is turned off one by one. The SIGI database collects 

data from different system components to let users check or manipulate these data for 

analysis and control.     

2.2 Communication Between Different Components 

2.2.1 Communication Between Solar Related Components  

    As shown in Figure 2-3, most communication is based on Modbus & RS-485 network. 

The communication between DECK and AcquiSuite is through Ethernet.  

Communication on a Modbus network is initiated by a “Master” with a “Query” to a 

“Slave”. The “Slave” which is constantly monitoring the network for “Queries” will 

recognize only the “Queries” addressed to it and will respond either by performing an 

action (setting a value for example) or by returning a “response” [25]. Only the Master can 

initiate a query. Each Modbus Device must have a unique address. The Modbus protocol 

defines the format for the master’s query and the slave’s response. A simplified system’s 

Modbus communication is shown in Figure 2-4. 

 
 

Figure 2-4 Modbus Communication 
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2.2.2 Communication Between Stationary BESS Related Components 

1. CAN bus Communication 

    The CAN bus is the abbreviated form of controller area network. It is a vehicle bus 

standard designed to allow microcontrollers and devices to communicate with each other 

in applications without a host computer. CAN is a multi-master serial bus standard for 

connecting Electronic Control Units [ECUs] also known as nodes. CAN is a message 

broadcast system. Two or more nodes are required on the CAN network to communicate 

[26]. Unlike a traditional network such as USB or Ethernet, CAN does not send 

point-to-point data under the supervision of a central bus master; instead, many short 

messages like temperature are broadcast to the entire network, which provides for data 

consistency in every node of the system [27].  

    There are two CAN bus interfaces located in the Orion BMS. One is connected to 

the battery bank charger; the other is connected to the Arduino Shield. The BMS collects 

multiple types of data from the battery, such as cell voltages, current (Amperage), 

temperatures, total pack voltage and etc. from sensors in the BMS units. Then it 

calculates the state of charge (SOC), state of health (SOH), internal resistance and other 

important battery parameters [28]. Then through CAN network, the Arduino retrieves 

SOC, battery charge rate, pack current and voltage and etc. and sends them to the SIGI 
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database for further research. In this thesis, SOC of the battery banks and battery charge 

rate need to be collected for the calculation under MATLAB control algorithm.   

2. Modbus Communication 

The main mechanism of Modbus communication has been discussed in Section 

2.2.1. Figure 2-3 shows that the Modbus communication occurs amongst the Princeton 

inverter, the battery bank charger and the Arduino Shield. The Princeton inverter has a 

meter which measures DC information, and the Shark meter in the inverter measures AC 

information, such as voltage, current and the charge rate. The Arduino transmits power or 

kW information to the Princeton inverter to control the battery banks and also receives 

power from the inverter for checking the live battery status. It also completes any further 

calculations for the optimal battery operation.  

3. Ethernet Communication 

 

Figure 2-5 Data Flow of the Stationary Battery Energy Management System 
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Ethernet communication provides fast and remote management between different 

devices. A detailed data transmission is shown in Figure 2-5. 

The real-time battery control operation integrates various data into a coherent 

system. LabVIEW works as a control center as shown in Figure 2-5, and it communicates 

with various components through Ethernet. In LabVIEW, there are two kinds of control 

method: one is Schedule Control, the other is Real-Time Control. In Schedule Control, a 

default table is built where a day is separated into 96 intervals with 15-minutes per 

interval and each time interval has a preset power value. Time interval of 15 minutes is 

chosen as the power companies use a rolling 15-minute average to charge for various 

types of peak demand. The LabVIEW automatically runs in 24 hours in a day with 

different preset power values sent to the Arduino. The tables are built as Tables 1 and 2. 

Rate Period Time Power (kW) 

Off-Peak 
12:00 AM – 6:30 AM -30 

6:30 AM – 8:00 AM 0 

Mid-Peak 
8:00 AM – 4:45 PM 0 

4:45 PM – 5:00 PM 60 

On-Peak 
5:00 PM – 7:00 PM 60 

7:00 PM – 9:00 PM 40 

Off-Peak 

9:00 PM – 9:15 PM 40 

9:15 PM – 10:15 PM 0 

10:15 PM – 12:00 PM -30 

Table 1 Winter Time1 Schedule 

 

                                                 

1 Based on the TOU electricity rate schedule, winter time are the months of January, February, March, April, May, 

October, November and December. 
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Rate Period Time Power (kW) 

Off-Peak 12:00 AM – 3:45 AM -35 

3:45 AM – 8:00 AM -30 

Mid-Peak 8:00 AM – 11:45 PM 0 

11:45 PM – 12:00 PM 40 

On-Peak 12:00 PM – 6:00 PM 40 

Mid-Peak 6:00 PM – 6:15 PM 40 

6:15 PM – 11:00 PM 0 

Off-Peak 11:00 PM – 11:15 PM 0 

11:15 PM – 12:00 PM -35 

Table 2 Summer Time2 Schedule 

    For the winter schedule, the On-Peak rate period is from 5:00 PM to 9:00 PM, and 

the Mid-Peak rate period is from 8:00 AM to 5:00 PM; the rest is the Off-Peak rate period. 

While for the summer schedule, Off-Peak is from 11:00 PM to 8:00 AM and On-Peak 

starts at noon and lasts till 6:00 PM; the rest is the Mid-Peak rate period. In Tables 1 and 

2, the negative values mean that the battery is in charge mode and the positive values 

mean that the battery is in discharge mode. Tables 1 and 2 show that the batteries are 

charged during the Off-Peak rate period and discharged during the On-Peak rate period. 

Battery power delivery over the 6 hours On-Peak rate period in summer makes the 

battery discharge to 34% SOC, which requires more charging procedure to occur during 

the Off-Peak rate period. As electricity demand charges are calculated based on 15 

minutes moving average, to be on the safe side, the battery banks are programmed to start 

discharging 15 minutes prior to On-Peak start point and 15 minutes later than ending time. 

                                                 

2 Based on the TOU rate schedule, summer time are the months of June, July, August and September. 
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In real-time control algorithm, LabVIEW directly receives power from MATLAB control 

algorithm other than the Tables 1 and 2. MATLAB retrieves the real-time solar generation, 

SOC, Pulse Meter net load reading from SIGI database to implement the optimization 

function. Through Ethernet network, the SIGI database gathers all of the important 

information from the BESS, the solar PV generation and the building load usage. From 

the battery operations side, battery charge rate, SOC, battery current and voltage values 

are collected; from the solar PV side, SIGI database acquires various solar information 

through the Shark meters located in the solar inverters; for the building, the real-time 

building load is measured by Pulse Meter and is sent to the database.  

Through the Ethernet communication, the AcquiSuite sends various solar data to 

DECK for displaying and storing solar data. The OPTO 22 system can maintain the 

building load in certain threshold by controlling some of the AHs in the B1200. 

2.3 Conclusion 

    In this chapter, detailed structure of the SIGI Microgrid architecture and the 

communication between different components in the Microgrid system are fully 

discussed. The entire SIGI Microgrid can be divided into 8 different components as 

follows: the solar farm, the stationary BESS, the mobile BESS, the electrical loads of 

buildings, the electric trolley, the server and charger component, the data-logging 

component and the control system for the BESS. The control system for the Microgrid at 
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CE-CERT is the main focus of this thesis. A complete dataflow involving various 

instruments and components related to the control system is shown in Figure 2-5. A 

detailed MPC control algorithm in MATLAB is discussed in Chapter 3.    
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Chapter 3 MPC Method 

 

3.1 Introduction to MPC 

    Model Predictive Control (MPC) is an advanced method of process control that has 

been in use in the process industries such as chemical plants and oil refineries since 

1980s. In recent years, it has also been used in power system balancing model [29]. The 

term MPC does not designate a specific control strategy but rather an ample range of 

control methods which make explicit use of a model of the process to obtain the control 

signal by minimizing an objective function [30]. Due to the dynamic nature of real 

system, decision making should occur at each time step to adapt to the most updated 

situation. MPC algorithm consists of an optimization problem at each time instants which 

can be feed to the dynamic model.  

3.1.1 MPC Model 

    MPC algorithm consists of three parts: system model, predictive model and 

optimization problem.  

 System model 

Most dynamic model can be described as: 

 𝑥(𝑘 + 1) = 𝑔(𝑥(𝑘), 𝑢(𝑘)), 𝑥(0) =  𝑥0 (3-1) 

 𝑦(𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) (3-2) 
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𝑥(𝑘) is the state of the model, and it changes with time from initial state 𝑥0. 

(3-1) describes the evolution of the model state from initial time. The future state 

𝑥(𝑘 + 1) is affected by the input 𝑢(𝑘) and its past and current states 𝑥(𝑘). 𝑦(𝑘) is 

the output of the system. Both 𝑔(𝑥, 𝑢) and 𝑓(𝑥, 𝑢) can be nonlinear or linear 

which depends on the real system model. 

 Prediction model 

A model which describes the input to output behavior of the process, is needed. 

Mechanistic models derived from conservation laws can be used. Usually, however 

in practice simply data-driven linear models are used. ” [31] 

 Optimization problem 

 min 𝐶𝑂𝑆𝑇(𝒖(𝒌), 𝒙(𝒌)) (3-3) 

subject to 𝑢(𝑘) ≤  𝑢𝑖 ; 𝑖 = 𝑘, 𝑘 + 1, … … , 𝑁 + 𝑘 − 1; 

         𝑥(𝑘) ≤  𝑥𝑖; 𝑖 = 𝑘, 𝑘 + 1, … … , 𝑁 + 𝑘 − 1; 

        𝑦(𝑘) ∈ 𝑌𝑖 ; 𝑖 = 𝑘, 𝑘 + 1, … … , 𝑁 + 𝑘 − 1; 

where 𝑘 = 0,1, … … , 𝐿 − 1; 

    In the MPC model, the optimization function is calculated repeatedly from initial 

time, say 𝑘 = 0 to 𝑘 = 𝐿 − 1. At each time k, the goal is to find the optimized solution 

for (3-3) within a control horizon N and only apply the first index of the optimized 

solution. In both constraints and optimization function, future control inputs and future 
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plant responses are predicted using a system model and optimized. There are several 

ways to solve the optimization function according to different optimization function. If 

the function is linear or convex, convex optimization can be utilized; if it’s non-convex, 

neural network algorithm can be used. In the thesis, convex optimization is discussed in 

Section 3.1.3.  

3.1.2 The MPC Principles 

    MPC models have a prediction horizon M and a control horizon L, which always has 

𝐿 ≤ 𝑀. The detailed MPC principles is applied as follows [32]: 

(i) At time k, retrieve the system current information and solve an optimal control 

problem for (3-3) over a fixed future interval, applying the current and future 

constraints. 

(ii) Apply only the first index in the optimal control sequence. 

(iii) Go to next time 𝑘 + 1 and acquire the system most updated information for 

this current time which is 𝑘 + 1.  

(iv) Repeat the fixed horizon optimization at time 𝑘 + 1 over the future interval 

[𝑘 + 1, 𝑘 + 𝐿], the starting state is 𝑥𝑘+1. 

(v) Repeat for M times, say 𝑘 = 1, … … , 𝑀. 

After finishing the above steps, the output vector can be expressed by 

 𝒖𝑶𝑷𝑻 ≜ [𝑢1
𝑂𝑃𝑇𝑢2

𝑂𝑃𝑇 … … 𝑢𝑀
𝑂𝑃𝑇 ]𝑇 (3-4) 
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3.1.3 Convex Optimization 

A standard convex optimization problem is one of the forms “ 

                              minimize 𝑓0(𝑥) 

(3-5) 

 

subject to 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … … , 𝑚 

                                        ℎ𝑗(𝑥) = 𝑐𝑗 , 𝑗 = 1, … … , 𝑝, 𝑥 ∈ 𝐶 

where the functions 𝑓0, … … , 𝑓𝑚: 𝐑𝑛 → 𝐑 are convex, i.e., satisfy 

𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦) 

For all 𝑥, 𝑦 ∈ 𝐑𝑛 and all 𝑥, 𝑦 ∈ 𝐑 with α + β = 1, α ≥ 0, β ≥ 0.  

And ℎ𝑗(𝑥) = 𝑐𝑗 are affine, i.e., for any 𝑥1, 𝑥2 ∈ 𝐶 and 𝜃 ∈ 𝐑, 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝐶. 

In other words, C contains the linear combination of any two points in C. To be more 

general, a point 𝑥 ∈ 𝐶 of the form 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑘𝑥𝑘, where 𝜃1 + ⋯ + 𝜃𝑘 = 1, 

is an affine combination of the points 𝑥1, … , 𝑥𝑘. 

The inequalities 𝑓𝑖(𝑥) ≤ 𝑏𝑖 are called inequality constraints and the equations ℎ𝑖(𝑥) =

𝑐𝑖  are called the equality constraints.  

The set of points for which the objective and all constraint functions are defined, 

𝐷 = ⋂ 𝐝𝐨𝐦 𝑓𝑖 ∩ ⋂ 𝐝𝐨𝐦 ℎ𝑖

𝑝

𝑗=1

𝑚

𝑖=0

, 

is called the domain of the optimization problem (3-5). A point 𝑥 ∈ 𝐷 is feasible if it 

satisfies the constraints 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … … , 𝑚  and ℎ𝑗(𝑥) = 𝑐𝑗 , 𝑗 = 1, … … , 𝑝 . The 

problem (3-5) is feasible if there exists at least one feasible point, and infeasible 
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otherwise. The set of all feasible points is called the feasible set or the constraints set. 

The optimal value 𝑝∗ of the problem (3-5) is defined as 

𝑝∗ = inf  {𝑓0(𝑥) | 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … … , 𝑚, ℎ𝑗(𝑥) = 0, 𝑗 = 1, … … , 𝑝} .” (Boyd, 2004)[33] 

For the MPC problem, (3-4) can be described as 𝒖𝑶𝑷𝑻 ≜ [𝑝0
∗, 𝑝1

∗, … … , 𝑝𝐿−1
∗  ]𝑇. 

For a linear programming problem, the objective and constraint functions are linear: 

 minimize 𝑐𝑇𝑥                                 

(3-6) 

        subject to 𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖, 𝑖 = 1, … … , 𝑚. 

From (3-6), 𝑓𝑖(𝑥) ≜ 𝑎𝑖
𝑇𝑥, 𝑓0(𝑥) ≜ 𝑐𝑇𝑥, which always have 

𝑓𝑖(𝛼𝑥 + 𝛽𝑦) = 𝑎𝑖
𝑇(𝛼𝑥 + 𝛽𝑦) = 𝛼 ∙ 𝑎𝑖

𝑇𝑥 + 𝛽 ∙ 𝑎𝑖
𝑇𝑦 

= 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖(𝑦)          

and 𝑓0(𝛼𝑥 + 𝛽𝑦) =  𝛼𝑓0(𝑥) + 𝛽𝑓0(𝑦) . So linear functions are all convex and linear 

programing problem is the convex optimization problem.  

3.2 Introduction to the Model of the Real System’s MPC Algorithm  

    As discussed in Section 2.1.1, one 500kWh battery storage management system and 

one 100kW PV inverter were installed for B1200. Based on the real time solar generation 

and building usage, the battery is implemented to manage different demand for Off-Peak, 

Mid-Peak and On-Peak demand respectively and the building electricity usage for 

On-Peak and Mid-Peak time periods. 
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    For the controlling system, MPC algorithm is applied for controlling for the On-Peak 

rate period. As the experiments operated in B1200 for both summer and winter time, MPC 

can control the battery properly and decrease the electricity bill for several months. 

Especially for TOU building, with the help of battery management system, the electricity 

bill can be decreased for thousands of dollars. 

3.2.1 The Battery System Model 

The 500 kWh battery packs are from the Winton Global Energy Limited, and the type 

of batteries is WB-LYP1000AHC. From the company’s official site [34], the battery’s 

cycle of life can be found, which is when depth of discharge (DOD) is 80%, the cycles are 

more than 5000 times and when DOD is 70%, the cycles are more than 7000 times. To 

maintain the longest lifetime of the WCH battery, the battery packs are used the capacity 

between 40% SOC and 90% SOC at usual occasion, and the minimal SOC which can be 

used is 20%. When it reaches 20% SOC, the system will be shut down automatically to 

keep the stability of the whole system. 

To test the charging and discharging efficiency of the battery packs, several 

experiments have been done. Two experiments are selected shown in Figure 3-2 and 3-3 in 

different time period. For Figure 3-2, the experiment was done on a winter period day; the 

battery was discharged at 60 kW from 4:45 PM to 7:00 PM and then discharged at 40kW. 

And for Figure 3-3, the experiment was done on a summer period day; the battery was 
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discharged at 40 kW from 11:45 AM to 6:15 PM. In these two figures, the blue line is the 

actual SOC collected by the sensor, and the red line is the simulated SOC calculated by 

(3-7). The step decrease trend of the red line is due to the precision of data acquisition 

system. The minimal is 1% SOC. 

 

Figure 3-1 Discharging Efficiency Experiment for Winter Time 

 

Figure 3-2 Discharging Efficiency Experiment for Summer Time 
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Figure 3-3 Charging Efficiency Experiment 

    From the above three figures, it is clear to see that the discharging or charging process 

is an approximately linear process. And the charging efficiency 𝛼 is 1 and the discharging 

efficiency 𝛽 is 1.1 which is determined by large amount of experiments. 

 𝑏𝑐(𝑘 + 1) = 𝑏𝑐(𝑘) − 𝜖 ∙ 𝑝(𝑘) ∙ ∆𝑡 (3-7) 

where 𝑘 = 0,1, … … , 𝐿 and 𝑘 = 0 represents for the initial time of the control strategy. 

𝑏𝑐(𝑘) represents for the battery capacity at time k and 𝑏𝑐(0) is the battery capacity at 

initial time; 𝜖  is the battery charging/discharging efficiency; 𝑝(𝑘) is the charging or 

discharging power of the battery system, 𝑝(𝑘) = {
𝑝(𝑘)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 , 𝑝(𝑘) > 0, 𝜖 = 𝛽 

𝑝(𝑘)𝑐ℎ𝑎𝑟𝑔𝑒 ,       𝑝(𝑘) < 0, 𝜖 = 𝛼  
; ∆𝑡 

represents for the time interval of each time 𝑘. 

 𝐛𝐜𝐿×1 = 𝐛𝐜𝟎 𝐿×1 − 𝜖 ∙ A𝐿×𝐿 ∙ 𝐩𝐿×1 (3-8) 
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where is the battery capacity vector; is the 

battery capacity initial vector; is a lower triangular matrix; 

is the battery operation vector: at time k, how much power the battery 

will be discharged or charged. 

To be more specific, when it is a discharging process: 

 𝑏𝑐(1) = 𝑏𝑐(0) − 𝛽 ∙ 𝑝(1)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡                               

               𝑏𝑐(2) = 𝑏𝑐(1) − 𝛽 ∙ 𝑝(2)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡    

= (𝑏𝑐(0) − 𝛽 ∙ 𝑝(1)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡) − 𝛽 ∙ 𝑝(2)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 

                    = 𝑏𝑐(0) − 𝛽 ∙ 𝑝(1)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡 − 𝛽 ∙ 𝑝(2)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡 

⋯ ⋯ 

                      𝑏𝑐(𝐿) = 𝑏𝑐(𝐿 − 1) − 𝛽 ∙ 𝑝(𝐿 − 1)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡                                      

                                          = 𝑏𝑐(0) − 𝛽 ∙ 𝑝(1)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡 − ⋯ − 𝛽 ∙ 𝑝(𝐿 − 1)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡 
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 (3-9) 

𝐩𝒅𝒊𝒔 ≜ is the battery discharging power vector, which is the same as (3-4).   

3.2.2 Predictive Model 

1. Solar Generation Predictive Model 

    The solar generation prediction model is designed in two different methods: one is the 

System Advisor Model (SAM) and the other is based on several months of historical solar 

data.  

1) SAM solar generation production 

    SAM is developed by the National Renewable Energy Laboratory (NREL) and it 

makes performance predictions and cost of energy estimates for grid-connected power 

projects [35]. The thesis focuses on the performance predictions part, which is the solar 

production in this thesis. 

    In SAM’s interface, users can select different system information based on the real 

system. The key parameters are location and resource, PV modules, inverter type, the 

system size and the losses of different equipment. The location and resource determines the 

weather historical information which includes solar and wind resource. There are four 
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databases for solar resource: National Solar Resource Database (NSRDB), Solar and Wind 

Energy Resource Assessment Programme (SWERA), The ASHRAE International Weather 

for Energy Calculations Version 1.1 (IWEC) and the Canadian Weather for Energy 

Calculations (CWEC) [36]. In this thesis, NSRDB is selected for simulation and the time 

horizon for historical weather information is from year 1991 to 2005.  

Location and Resource Riverside, CA 

Module Zhongli Talesun 

TP 660P-240 

Inverter A PVP 260 kW 480V 

B/C PVP 100kW 480V 

Array A 14 modules per string 

87 strings in parallel 

B/C 14 modules per string 

33 strings in parallel 

Table 3 System Detailed Information 

Deratement Factor Value 

Module Age 1.00 

Array Soiling 0.93 

Module Nameplate Tolerance 1.00 

Module Mismatch 0.97 

DC Wiring Loss 0.97 

Shading 0.995 

Total 0.865 

Table 4 DC System Deratement Factors [37] 

According to the real Microgrid system of this thesis, the detailed information is listed 

in Table 3 and Table 4, monthly solar production can be predicted by SAM. In Figure 3-4 

and Figure 3-5, actual solar generation includes two years’ solar production, which is from 

January to June, it’s for the year 2015 and the rest is for the year 2014 (the most updated 

solar generation when the thesis is done).  
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Figure 3-4 SAM Solar Generation Prediction vs. Actual Solar Generation for a 260 kW Inverter 

 

Figure 3-5 SAM Solar Generation Prediction vs. Actual Solar Generation for a 100 kW Inverter 

    Figures 3-4 and 3-5 show that the SAM’s solar generation prediction can 

approximately provide the overall solar generation trend for the whole year with higher 

solar generation in the Summer time and lower solar generation in the Winter months. 
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Overall, the highest solar generation happens in the months when the days are long and 

sunny with the cooler ambient temperature (i.e. month of June). For most months, the 

deviation between SAM and actual generation is less than 15%. For the months of 

November, December and January, the deviation was higher than 20%, and can be mainly 

attributed to unpredictable weather events during these months. 

    Figure 3-6 shows the actual generation of the 260 kW inverter in the project for the 

months of November, December and January. All the solar generation data is from the 

DECK Monitoring system. The left side of Figure 3-6 represents the actual daily solar 

production versus the generation of one sunny day during the related month. The right side 

shows the related sunny day’s solar profile. From Figure 3-6 (a), the highest daily solar 

production in November was in 11/03/2014 which was 1160 kWh. From 3-6 (b), it is 

clear to see that the day was a sunny and clear day. Comparison between the daily solar 

generation and the generation from 11/03, most days in November were cloudy and 

generation in these days was much smaller than 1160 kWh. A similar situation can be 

observed for the months of December and January 2015, where weather fluctuates 

significantly throughout these months. 
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Figure 3-6 Daily Solar Generation vs. A Sunny Day Solar Generation for 260 kW Inverter. (a) November  

2014; (b) 11/03/2014; (c) December 2014; (d) 12/25/2014; (e) January 2015 (f) 01/21/2015 
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    From Figure 3-6 (e), it can be observed that on a sunny and clear day (01/21/2015), 

solar production was 966 kWh, while about half of the days in the month were cloudy. 

Figure 3-4 shows that the largest gap between the SAM solar generation prediction and 

actual solar generation is in the month of December. From Figures 3-6 (c) and 3-6 (d), the 

reasons can be concluded as follows: 1) The normal sunny day’s solar generation for this 

month was 868 kWh, while most days of this month the generation was smaller than 

12/25, which means most of the days weather conditions were cloudy or rainy; 2) From 

Figure 3-7, with comparison of the year 1991 to 2005, the average solar radiation was 

smaller than the average of these years which was the range for SAM’s weather database.  

 

Figure 3-7 24 Years Monthly Solar Radiation vs. 15 Years Average Solar Radiation for December 

    Figure 3-7 and Figure 3-8 show the recent years’ monthly solar radiation for 

December and January information. All the data is based on the weather station 044 U.C. 
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Riverside in California Irrigation Management Information System (CIMIS). The unit for 

solar radiation 1 𝐿𝑦/𝑑𝑎𝑦 = 0.484853 𝑊𝑎𝑡𝑡/𝑚2. In November, the average for 1991 – 

2005 is 253.33 𝐿𝑦/𝑑𝑎𝑦 and the in 2014 the average is 212 𝐿𝑦/𝑑𝑎𝑦. So the solar 

generation prediction from SAM is not accurate as the same situation. 

 

Figure 3-8 25 Years Monthly Solar Radiation vs. 15 Years Average Solar Radiation for January 

    From Figure 3-8, the radiation difference between 15 years average and year of 2015 is 

small while the prediction is not as accurate as expected. Meanwhile, the minimal time 

interval unit for SAM solar predication is 1 hour. So in real scenario of Microgrid real-time 

controller, SAM solar generation prediction is not dependable. 

2) Historical Data of Solar Generation 

    A comprehensive database was built for the SIGI Project for storing and monitoring the 

entire system. The detailed communication and parameters used for the controller the 
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database collecting has been discussed in Section 2.2.2. Users can download diversity of 

data like solar information, battery management information and OPTO 22 Reading (net 

metering) from the database.  

    The predictive solar generation model is chosen by averaging the historical solar 

information in the thesis.  

 

where n represents for the amount of data samples chosen; M represents for the amount 

of time intervals in the solar generation model. The principles for real time solar 

generation prediction are as follows: for any real time data , if , 

; else .  

 

Figure 3-9 Average Solar Generation in Different Months 

kPs
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    Figure 3-9 is the solar average generation in different months of Year 2015; the solar 

generation curves are shifted by day time saving on March 8th of this year and solar 

motion. It is clear to see that the solar generation increases with more sunshine duration. 

The average solar generation profile can be used as the solar prediction model for each 

month. 

2. Building Load Prediction Model 

    The B1200 load prediction model, is the same algorithm used for the solar generation 

prediction model, in which the model averages the historical building load data.  

 

The principles for real time load prediction are as following: for any real time data , 

if ,  

 

;  

else . 

    The above algorithm shows that when the actual load is larger than the average load 

only a small portion of the prediction model needs to be changed. In B1200, the 

unpredicted load always lasts less than 2 hours. Therefore, a value of hours is 

used by the building load predictive model.  

kPl

2T 
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Figure 3-10 Building Load Profile for B1200 

    Figure 3-10 shows the average workday building load for B1200, and it is also the 

load prediction model in the thesis.    

3.2.3 Optimization Model 

    The optimization is performed with regards to the electricity cost and it will always 

keep the cost as little as possible. The cost includes two parts: electricity energy cost 

which is the kWh cost and demand cost which is the kW cost. In the chapter, demand 

needs to be maintained below certain kW. At time slot k:  

         minimize   (3-10) 

         subject to:         (3-11) 

               (3-12) 

             (3-13) 

1 1 ( ) ( )T

L k L k t  price pex

1  1 1( ) =( ) t A ( )L k L k L k     0bc bc pd

10 ( )L k kpda ONE  pd

min 1 max( )L kONE bc bc ONE   bc
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                      (3-14) 

            
          

 (3-15) 

where: 

 is the electricity price for time period ; 

represents the power from external grid/utility to the building;  

 represents the battery capacity and represents for the battery            

capacity at time k; 

 represents the battery discharging power vector;  

represents the average discharging power at time k, which is  

 𝑝𝑑𝑎𝑘 =
(𝑏𝑐0)𝑘 − 𝑑𝑖𝑠𝑅𝑎𝑡𝑒 ∙ 𝑏𝑐𝑚𝑎𝑥

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒
 (3-16) 

disRate is the minimal SOC(%) allowed to reach. In the thesis, 𝑑𝑖𝑠𝑅𝑎𝑡𝑒𝑚𝑖𝑛 = 0.2 and 

as discussed before when the SOC reaches 20% the BMS will stop discharge. disRate 

will change during the operation time from 40% to 20%. Remaining time means the 

remaining control horizon time.  

 𝑝𝑑𝑎𝑚𝑎𝑥𝑘 =
(𝑏𝑐0)𝑘 − 0.2 ∙ 𝑏𝑐𝑚𝑎𝑥

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒
 (3-17) 

So, the other average discharging power 𝑝𝑑𝑎𝑚𝑎𝑥𝑘 is calculated by (3-17) to make sure 

during the control horizon, battery capacity can be remained at a SOC larger than 20%.   

 and  represent the prediction for the building load and solar generation 

for time period , where and  is the building load and solar 

10 ( )L k onDemand ONE  pex

1( )L kprice : 1k k L 

1( )L kpex

1( )L kbc  1( )L k0bc

1( )L kpd

kpda

: 1k k L 
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generation at time k; represents the interval’s length which is 5 minutes in the system;

; 𝑏𝑐𝑚𝑖𝑛 𝑎𝑛𝑑 𝑏𝑐𝑚𝑎𝑥 is the minimum and maximum capacity of the battery 

packs, respectively, where 𝑏𝑐𝑚𝑖𝑛 = 100 𝑘𝑊ℎ  and 𝑏𝑐𝑚𝑎𝑥 = 450 𝑘𝑊ℎ; onPeakini is the 

constant value of the initial On-Peak demand.  

    Formulas (3-11) to (3-13) represent the battery constraints. Formula (3-11) is the 

battery discharging process model constraint which has been discussed in Section 3.2.1. 

Formula (3-12) is the maximum battery discharging power constraint which sometimes 

can also be considered as the inverter size constraint. In this thesis,

kW which is the inverter size for the project, and pda is the 

average discharging power according to the remaining time and remaining battery 

capacity which can be seen as a tracking profile of future battery information. Formula 

(3-13) is the battery capacity constraint which always keeps battery capacity within a 

certain range to achieve the maximum lifetime of battery packs. Formula (3-14) is the 

power supply constraint that the power provided to the building should be the same as the 

building’s consumption. Formula (3-15) is the demand maintaining constraint; the 

optimization will always keep the demand below onPeakini.   

t

1,..,
max{ , } 100k k

k M
pdmax pd



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    The battery discharging power vector  can be solved by the above 

optimization problem. For each k, 𝒑𝒅𝑘 is a 𝐿 × 1 battery discharging power vector for 

the next L time slots, for which the optimized battery operation should be 𝒑𝒅𝑘. 

As mentioned above, under RPU’s TOU rate schedule, there are three rate periods: 

Off-Peak, Mid-Peak, On-Peak. The electricity cost in the Off-Peak time is the lowest while 

in the On-Peak time is the highest. Unlike other works and research in energy management 

of Microgrid systems, the BESS is charged or discharged depending on the renewable 

energy generation within each rate period. In this thesis, the control algorithm is designed 

to always charge the battery bank during Off-Peak time and discharging during On-Peak 

rate period. During control implementation, the time interval period is chosen to be 5 

minutes. The time interval period is chosen based on limitations posed by the net metering 

system are the quick operation of the battery system and a large variation of power in a very 

short time cause an imprecise reading of the actual net load. Considering the average solar 

generation and building load profile in Section 3.2.2, the B1200 needs the largest 

electricity consumption during On-Peak rate period which is always higher than solar 

generation in summer. In the winter half of the On-Peak rate periods are during the night 

time without sunshine. Additionally, the frequent cycling process of charging and 

discharging harms the Princeton inverter’s electronics. During this time, using the extra 

solar production to supplement the battery is mostly unrealistic. 

1( )L kpd
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3.2.4 MPC Model 

    According to the battery system model, the predictive model of solar generation and 

building load, and the optimization model of electricity cost, the actual system MPC 

principles about the system can be built as follows: 

i. For each On-Peak rate period in a single day, the time intervals can be divided into M, 

where , hour is the hours of On-Peak time: in summer, 

(from 12:00 to 18:00) and in winter  (17:00 to 21:00). The duration for each 

interval is 5 minutes; within 1 hour, there are 12 intervals. The control algorithm runs 

15 minutes before the On-Peak starting time and 15 minutes past the ending point. 

This will add six more intervals to the On-Peak rate period. 

ii. Set time horizon to 1 hour, which is and fetch the prediction model for solar 

generation and building load,  and  respectively. Additionally, 

fetch the electricity price  and set 𝑑𝑖𝑠𝑅𝑎𝑡𝑒 = 0.4.  

iii. At initial time, set time interval . 

iv. At time i=k, fetch real time solar generation , building load , battery capacity

and battery operation power of the battery system; additionally, the electricity 

price needs to be retrieved and the prediction information 

 and are updated. 

 

12 6M hour   6hour 

4hour 

12L

( ) 1M L price

0i 

kPs kPl

kbc kbp

( : 1)k k L price
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v. Calculate the average discharging power and average maximum discharging power 

from (3-16) and (3-17): 𝑎𝑘 =
𝑏𝑐𝑘−𝑑𝑖𝑠𝑅𝑎𝑡𝑒∙𝑏𝑚𝑎𝑥

𝑀−𝑘+1
 ; 𝑝𝑑𝑎𝑚𝑎𝑥𝑘 =

𝑏𝑐𝑘−0.2∙𝑏𝑚𝑎𝑥

𝑀−𝑘+1
when 

𝑝𝑑𝑎𝑘 ≤ 0, 𝑠𝑒𝑡 𝑑𝑖𝑠𝑅𝑎𝑡𝑒 = 0.35(0.3; 0.25; 0.2), recalculate 𝑝𝑑𝑎𝑘 untill 𝑝𝑑𝑎𝑘 > 0 . 

Update disRate. 

vi. Calculate optimization problem (3-10) with constraints (3-11) to (3-15). 

vii. Obtain the result and only use the first index of  to be the battery 

discharging operation:   

viii. Set ; then go back to step iv until .  

The prediction horizon should be L slots more than the overall control operation 

horizon because at time , the prediction model at this time should be 

 and  to achieve the final MPC result at this 

time. At the end, the battery operation can be solved as 

 

 

(3-18) 

3.3 Constant Threshold MPC (CT-MPC) Algorithm 

    As previously mentioned, the MPC algorithm will maintain the On-Peak demand to 

be within a certain range value. In the thesis, the method for keeping a stable On-Peak 

threshold is called constant threshold MPC (CT-MPC) algorithm. 

1( )L kpd 1( )L kpd

arg 1( ) ( ) (1)disch e L ki p pd

1i k  i M

i M
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    In the actual system, due to the unpredictable nature of solar generation and building 

load, there are times when the constraints of the optimization cannot be met. In particular, 

there are two practical scenarios where this is the case: (1) when the building load is 

significantly large such that  and (2) when the solar 

generation is large enough that . In both of these two scenarios, optimization 

from (3-10) to (3-15) cannot give any meaningful results. Therefore, it is required that the 

basic MPC principles are revised from step vi: to account for scenarios (1) and (2). The 

revision requires that, instead of calculating the optimization problem, a straightforward 

operation is implemented, depending on which scenarios is being handled. 

    For scenario (1), because of the high building load and low solar generation, the 

action of maintaining the demand below onPeakini should be the priority, and 

is calculated. If , the need to maintain the 

battery capacity above 20% SOC over the On-Peak rate period is also considered; so that

. At this situation, a new On-Peak demand will occur and the new 

onPeakini changes to ; else .  

    For scenario (2), it was first considered that charging for the most part was not 

allowed during the On-Peak rate time for the actual system. To be more adequate and 

flexible, the action of allowing charging process to take place is added to the operation of 

the system:  and , . In the actual system, 

k kPl Ps pda onPeakini  

k kPs Pl

th k kp Pl Ps onPeakini   th kp pdmax

( )discharge kk pdmaxp

k k konPeakini Pl Ps pdmax   ( )discharge thk pp

10k kPs Pl  90soc  ( 5)charge k kp Ps Pl   
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the calculation of battery operation occurs at the starting point of every five minutes; the 

optimization always occurs at 11:45, 11:50, ……., 18:10 in the summer time and at 16:45, 

16:50, ……, 21:10 in the winter time and lasts for 5 minutes. For the charging process, 

one extreme situation that could happen is when at the starting point of an interval, 

scenario (2) is satisfied but for the remaining 5 minutes is not. For these cases 10 kW is 

added to the constraint and 5 kW is subtracted in the charging power. This procedure 

ensures that the charging process will not jeopardize the On-Peak discharging process. 

The detailed procedure of the actual system during On-Peak battery operation is 

shown as a flowchart in Figure 3-11. 
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Figure 3-11 CT-MPC Algorithm Flowchart for the Microgrid 
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3.4 Simulation of CT-MPC Algorithm 

    In this section, the results from the MATLAB simulation and plots for the CT-MPC 

algorithm are discussed. All the data for solar generation and building load is based on 

the real-world measured data of the system stored in SIGI’s database for the winter time. 

Different scenarios about different solar generation and building load forecast are 

discussed in this section.   

3.4.1 Scenario 1: Ideal Forecast for Both Solar Generation and Building Load 

 

Figure 3-12 Net Load Demonstration in MPC/Schedule Operation Under Ideal Forecast Scenario  

 

Time of the Day 



 53  

 

Figure 3-13 Battery Operation and Storage in MPC/Schedule Operation Under Ideal Forecast 

    Figures 3-12 and 3-13 show the simulation of the net load and battery operation and the 

SOC of the battery banks under ideal forecast. The ideal forecast can be demonstrated as: 

  

are random vectors subject to uniform distribution and  denote the 

forecast error percentage of the building load and solar generation prediction. 

( ), and  kW. The MPC Operation uses the algorithm 

discussed in Section 3.3 and the Schedule Operation is based on Table 1. In this scenario, 

the time horizon is 1 hour; the operation horizon is 4.5 hours; and the prediction horizon 

is 5.5 hours: . 
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    As shown in Figure 3-12, the deviations are chosen as 5% between actual load and 

forecast load, actual solar generation and solar generation forecast. The negative net under 

the Schedule Operation indicates that the power provided by the Microgrid system is larger 

than the actual power needed by the system. The surplus energy is sent to the external grid 

under a very low electricity rate. In Figure 3-12, the blue line represents the net load using 

the MPC algorithm discussed in Section 3.3. Under this control algorithm, MPC 

operation can keep the energy coming from the external grid close to zero by managing the 

battery storage and solar generation and is able to keep the maximum net load below 

onPeakini. Because there is no-real-time information collected for the Schedule Control, 

the battery continuously discharges at a certain power value for the first two hours and the 

system sends a significant amount energy back to the external grid. In the following two 

hours, due to a decreasing solar generation the energy from external grid to the Microgrid 

increases.  

    Figure 3-13 is the simulated battery performance. From the Battery Operation graph, 

in MPC Operation, the battery is operated according to the real time building load and 

solar generation. In the first two hours, because of a higher solar generation the battery is 

discharged at a relative low level and for the next two hours battery is discharged a little 

bit higher. The battery storage decreases from 90% SOC to 43.7% under MPC Operation 

and down to 40.87% SOC under Schedule Operation. From the above two graphs, it is 
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clear that in Schedule Operation, the efficiency of utilizing the battery is much lower than 

MPC Operation. Although both of the two operations can maintain the On-Peak demand 

below onPeakini in this scenario, the On-Peak demand under MPC Operation is much 

smaller than one under Schedule Operation. 

3.4.2 Scenario 2: Matched Solar Generation Forecast, Mismatched Building Load 

Forecast 

    Figures 3-14 and 3-15 are the simulation for a sunny day. In this scenario, time horizon 

is 1 hour; operation horizon is 4.5 hours; and prediction horizon is 5.5 hours: 

. kW. 

 
Figure 3-14 Net Load Demonstration in MPC/Schedule Operation Based on the Data of 4/1/15 

12, 12 4 6 54L M     20onPeakini 
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Figure 3-15 Battery Operation and Storage in MPC/Schedule Operation Based on the Data of 4/1/15 

    Figure 3-14 is a summary of actual and predicted solar generation and building load 

profiles during On-Peak hours on April 4th 2015. From this graph, the solar generation and 

building load forecasts are calculated as described in Section 3.2.2. As the figure shows, 

the actual solar generation during the On-Peak rate period is smaller than the solar forecast. 

The deviation between these two data sets is small with the actual building load being 

larger than the forecast load for most time of the period. For this type of situation, the net 

load under MPC Operation can be maintained below onPeakini but under the Schedule 

Operation, the On-Peak demand can reach up to 31.59 kW.  

    Figure 3-15 shows the simulation for the battery storage system. Under MPC 

Operation, the battery packs are discharged based on the real time solar generation, 
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building load and the remaining battery capacity and eventually go down to 40% SOC. 

With the help of the battery storage system and CT-MPC control algorithm, the energy 

consumption and On-Peak demand are all controlled within a satisfactory range.  

3.4.3 Scenario 3: Matched Building Load Forecast, Mismatched Solar Generation 

Forecast 

 

Figure 3-16 Net Load Demonstration in MPC/Schedule Operation Based on the Data of 4/21/15 

Time of the Day 
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Figure 3-17 Battery Operation and Storage in MPC/Schedule Operation Based on the Data of 4/21/15 

Figures 3-16 and 3-17 show the simulation for a cloudy/rainy day in which the solar 

generation is much smaller than the solar generation forecast. In this scenario, the time 

horizon is 1 hour; the operation horizon is 4.5 hours; and the prediction horizon is 5.5 

hours: ; kW. The prediction profiles for the 

solar generation and building load are the same as Scenario 2. 

In Figure 3-16, the deviation between actual building load and the building load 

forecast is small, except for the first 10 minutes, and is taken to be a matched forecast for 

building load for this time period. Additionally the graph shows that the net load under 

MPC Operation is near zero during the last two hours. Because during the last two hours 

of this period, there is no solar generation; this scenario can be regarded as Scenario 1 
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(discussed above). During the first two hours, due to the uncertainty of solar generation, 

the building energy consumption cannot be maintained at zero. Since the CT-MPC 

algorithm prediction information is updated at each time slot k, the On-Peak demand can 

still be kept under onPeakini. The CT-MPC algorithm retrieves the Microgrid information 

each time slot and it can react to abnormal situations quickly. So, at about 16:50 a high 

load occurs, the MPC algorithm determines that a higher battery discharge is needed to 

let the net decrease while under Schedule Control, without the system real time 

information, a new On-Peak Demand 26.97 kW is reached. 

Figure 3-17 shows the simulation of the BESS information under CT-MPC and 

Schedule Operation. This figure clearly shows that a higher discharging value takes place 

at about 16:50, as response to maintain the On-Peak demand lower than onPeakini. At the 

end of the On-Peak rate period, the SOC is maintained in 40% and battery energy is 

distributed properly within the entire On-Peak rate period under MPC Operation.  

3.4.4 Scenario 4: Mismatched Forecast for Both Solar Generation and Building 

Load  

Scenario 4 combines the building load profile in Scenario 2 and the solar generation 

data in Scenario 3 with the prediction profiles of solar generation and building load. The 

time horizon and onPeakini are the same as of Scenario 2 and 3.  



 60  

 

Figure 3-18 Net Load Demonstration in MPC/Schedule Operation Under Mismatched Prediction 

 

Figure 3-19 Battery Operation and Storage in MPC/Schedule Operation Under Mismatched Prediction 
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    From Figure 3-18, it is clear to see that the difference between the actual data and the 

prediction data is large and deviates significantly. The On-Peak demand under MPC 

Operation is still below onPeakini but On-Peak demand under Schedule Operation 

reaches 31.59 kW. The net under MPC Operation is tightly kept near 20 kW during the 

entire On-Peak rate period, to avoid higher On-Peak demand.  

From Figure 3-19, at the end of the On-Peak rate period the SOC decreases to 39.6% 

under MPC Operation which is still in the controllable battery storage (the safety SOC is 

20%). With a higher building load and lower solar generation in winter time, the 

CT-MPC control algorithm can still work properly to achieve the user’s goal of 

maintaining a low kW demand and kWh electricity usage. It can achieve the highest 

utilization efficiency of the BESS during the entire On-Peak rate period. 

3.5 CT-MPC Control Algorithm Experiments Using the SIGI 

Microgrid as a Testbed System 

To test and demonstrate the effectiveness of the CT-MPC algorithm in controlling 

the battery energy storage, the CT-MPC control algorithm was ran on B1200 during the 

months of April and May (2015). During this two-month period, the CT-MPC algorithm 

was validated, and demonstrated that the BESS is able to maintain an optimized level of 

energy consumption (kWh) and On-Peak demand (kW) during winter rate period. The 

graphs below show a variety of experiments carried out over different days, each under a 
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different set of experimental conditions (scenarios). The actual solar generation and the 

net load data in these graphs are based on the measured actual experimental values during 

daily operation of B1200. The time horizon and onPeakini are the same as those defined 

for the simulation scenarios kW,   kW. 

3.5.1 Single Day Experiments Under Different Scenarios 

    Figures 3-20 to 3-25 are different experiments selected for representing different 

scenarios. Figures 3-20 and 21, Figures 3-22 and 23, Figures 3-24 and 25 solar generation 

and building load are in Scenario 1, Scenario 2, and Scenario 3, respectively (as 

described in the previous sections above). 

 

Figure 3-20 Solar Generation and Building Load in Scenario 1 Experiment on 5/14/15 
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Figure 3-21 Battery Operation and Storage in Scenario 1 Experiment 

 

Figure 3-22 Solar Generation and Building Load in Scenario 2 Experiment on 4/29 
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Figure 3-23 Battery Operation and Storage in Scenario 2 Experiment 

 

Figure 3-24 Solar Generation and Building Load in Scenario 3 Experiment 
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Figure 3-25 Battery Operation and Storage in Scenario 3 Experiment 

    During the two-month period in which the experiments were performed, it is not 

possible to have the experimental conditions for testing the CT-MPC control algorithm 

for Scenario 4.   

Compared to the simulation results, the net load under CT-MPC Operation is 

sometimes below 0 kW. This can be explained by two facts: (1) the CT-MPC algorithm 

operates at the initial time of every interval and the control operation is kept constant for 

a 5 minute- intervals; and, (2) the frequency of solar generation collected by the database, 

is 1 data value per minute, while the frequency of the net metering data is 20 data values 

per minute. The X-axis unit for Figures 3-20 to 3-25 above is 1 data value per 5 minutes. 

To handle this difference in data values per minute, different data types from the database 
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are all processed to 1 data value per 5 minutes by averaging the values. Therefore a 

negative value for the net load under MPC Operation is possible to occur.  

In Figure 3-20, it is clear to see that the net load was tightly controlled below 

onPeakini and most of the time it was around a zero net load value, which shows that no 

power needs to be supplied from the external grid. Alternately, under Schedule Operation, 

the net load is always below 0 kW during the first two hours and around 20 kW during 

the last two hours. Although the Schedule Control can also maintain the On-Peak demand 

below onPeakini, a significant amount of energy produced by the SIGI Microgrid was 

unnecessarily injected into the external grid. In Figure 3-21, the observed step-like trend 

of battery operation, is the result of the 5-minute time intervals that kept operation 

constant at a certain value. At the end of the On-Peak rate period, the remaining SOC 

under MPC Operation is 48.6%. In Scenario 1, the MPC Operation can maximize the 

utilization of the battery capacity to achieve the minimum electricity consumption (kWh) 

and the On-Peak demand (kW).  

In Figure 3-22, the actual building load is a little bit higher than the load forecast. 

The net load under MPC Operation is maintained below onPeakini while the On-Peak 

demand under Schedule Operation reaches a value of 21.4 kW. Similar to the situation 

show in Figure 3-20, under Schedule Operation the first two hours of operation, the SIGI 

Microgrid sent all surplus energy to the external grid, but the next two following hours, as 
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less battery storage capacity was left much more energy was bought from the external 

grid to meet the Microgrid electricity needs. In Figure 3-23, both of the two operation 

methods used the same battery storage, but clearly less external energy was used under 

MPC Operation than Schedule Operation. 

In Figures 3-24 and 3-25, due to low solar generation in the first two hours, less 

energy was sent back to the external grid under Schedule Operation. Because of the lack 

of real time information about the system high demand can easily occur under Schedule 

Operation. The demand for Schedule Operation reached 24.6 kW. While under MPC 

Operation, with the real time solar generation and building load the algorithm can always 

make the best decision for each time interval. The net load was tightly maintained below 

onPeakini and the energy consumption from the external grid was as small as possible. 

With the same amount of battery energy capacity used under these two methods, 

CT-MPC Operation can save much more money than Schedule Operation. 

3.5.2 One-Week Long Experiments 

Figures 3-26 to 3-29 show the performance of the net load under the CT-MPC 

control algorithm. The performance is shown over the length of a full-week. In the 

CT-MPC operation, the prediction method for solar generation and building load is based 

on the content in Section 3.2.2 and the time horizon for each MPC optimization problem 
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is 1 hour; the control time horizon is 4.5 hours; and the prediction horizon is 5.5 hours: 

. The constant On-Peak demand is kW.  

 

Figure 3-26 April Week 4 Net Load Under MPC Algorithm 

 

Figure 3-27 April Week 5 Net Load Under MPC Algorithm 
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Figure 3-28 May Week 3 Net Load Under MPC Algorithm 

 

Figure 3-29 May Week 4 Net Load Under MPC Algorithm 

    The four figures represent four independent weeks of battery operation in April and 

May. All days shown in the graph are workdays from Monday to Friday and the On-Peak 

rate period is from 17:00 to 21:00. From Figure 3-26 to Figure 3-29, the net load for these 
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days was tightly kept below onPeakini and most days the net is near zero. At 21:15 each 

day, battery stopped discharging so the net load increased to a high level. With 

continuously experiments for different days, it is validated that the MPC control 

algorithm proposed by the thesis can control the battery system efficiently to maintain 

certain On-Peak demand and the lowest electricity consumption in winter time. 

3.6 Conclusion  

After several simulations and experiments, the CT-MPC control algorithm discussed 

in this chapter can meet the needs of demand load peak shaving (On-Peak electricity 

money saving). It is clear to see that even if the starting forecast model for solar 

generation or building load is not accurate the continuous updating of the prediction after 

each 5-minute time interval, allow the CT-MPC Operation to work in satisfactory manner. 

The forecast model accuracy will not affect the result of MPC algorithm too much so the 

simplicity of developing and solving the forecast model decreases.  

In the winter time, the characteristics of solar generation and building load are 

relatively stable for most of the days therefore the forecast model can adjust well. 

Additionally, there are only 4 hours of the On-Peak rate periods so the 250 kWh battery 

storage (40% --- 90% SOC) is capable to maintain a relatively low On-Peak demand even 

with Schedule Operation for most of the days. The CT-MPC algorithm proposed can 

make the largest efficiency of utilization of battery storage system. While during the 
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summer tine from June 1st to August 31st, the On-Peak rate period is from 12:00 to 18:00. 

The overall On-Peak time horizon increases to 6 hours and the uncertainty of the solar 

generation and the building load becomes much larger than the winter time. So a novel 

revised ADT-MPC algorithm has been developed and is discussed in Chapter 4. 
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Chapter 4 Adjusting Demand Threshold MPC 

Algorithm (ADT - MPC Algorithm) 

 

Since B1200 is a research laboratory building, there are many experiments 

conducted with unpredictable equipment loads during working hours. During the winter 

time solar generation gradually decreases through the On-Peak rate periods (5 PM – 9 

PM) as the sun sets and eventually goes to zero in the last two hours. The influence of 

inconsistent solar generation during winter On-Peak rate periods is reduced relative to 

summer On-Peak rate periods (12 AM – 6 PM) conditions. The forecast horizon of solar 

generation covers the entire On-Peak rate period in the summer time which clearly 

increases the uncertainty of the solar generation prediction. In this chapter, the same 

forecast method as discussed in Section 3.2.2 is used, but the onPeakini will not be 

constant during the On-Peak rate period. The onPeakini will adjust to a more appropriate 

value to compensate for high load or low solar generation conditions. 

4.1 The Principles of Adjusting Demand Threshold MPC Algorithm 

    In the winter CT-MPC algorithm, the prediction horizon for each optimization step 

is 1 hour due to the On-Peak time solar generation and building load performance having 

a relatively stable pattern. The algorithm does not require much forecast information. The 

only future operation constraints are  and . The summer time prediction kpda kpdmax
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pattern is not as stable as winter time; the algorithm is more dependent on system forecast 

information. During the more variable summer On-Peak, the forecast model should 

contain all the information within the On-Peak rate periods and the forecast horizon 

increases to 6.5 hours. 

According to the basic MPC principles discussed in Section 3.1.2, the prediction 

horizon extends beyond the actual control horizon. For example, if the control horizon is 

M and operation prediction horizon is L, when time interval , the forecast window 

should be from . As L increases, the forecast accuracy decreases. Since 

the control horizon is M, it is redundant to take all the prediction till into 

consideration to obtain the best solution for the current time. For example, the M + 1 time 

is beyond the On-Peak rate period, in time interval i = M, the BMS should only consider 

the current time system information to get the optimum solution. To consider the whole 

control horizon, the descending forecast horizon should be included. 

In the summer time, from Equation (3-16) kW 

provides an initialization value. The B1200 has the largest summer On-Peak building 

load. As the CT-MPC algorithm illustrated in Figure 3-9, the worst situation will happen 

when is always satisfied and decreases over time. In 

this situation the battery capacity should be kept above 40% SOC, resulting in the 

On-Peak demand threshold increasing to a new level. 

i M

1: 1M M L  

1M L 

1

(0.9 0.4)
38.46

6.5

bmax
pda

 
 

k k kPl pda Ps onPeakini   kpda
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    The new ADT-MPC algorithm should consider both the descending prediction 

horizon and the adjusting peak demand. The adjusting demand is based on the change of 

SOC which is the deviation between actual change and predicted change. In this thesis, it 

is called tracking .  

As discussed before in Chapter 3, at time slot i = k, only the first index at each 

optimization result vector will be used. To implement , the  vector is used 

to record the predicted discharging power at time slot k + 1:  

 

which has   

If the optimization problem (3-10) with constraints from (3-11) to (3-15) can be solved, 
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(4-1) 

 when (∆SOCk ≤  ε && node == 1) or ∆SOC ≤ −5 (4-2) 

 

 𝑜𝑛𝑃𝑒𝑎𝑘 = max(max(𝑝𝑒𝑥) , 𝑜𝑛𝑃𝑒𝑎𝑘𝑖𝑛𝑖) − [
∆𝑆𝑂𝐶/100 × 𝑏𝑚𝑎𝑥

𝑘 − 𝑡 + 1
] (4-3) 

The term pex in Formula (4-3) refers to the historical net load vector in a month. Under 

TOU electricity rate demand is charged for one-time peak 15 minute demand during the 

whole month. When a higher load happens in previous days the best control algorithm 

should keep other days’ net load below the peak load. For example, after three days of 

operation, max(𝑝𝑒𝑥) should be the peak net load in these three days. Then reset 

.  

The detailed principles are shown as follows: 

i. For each On-Peak rate period of a day, time intervals can be divided into M, where 

, hour is the hours of On-Peak time: in summer, which is 

from 12:00 to 18:00; the time slot for each interval is 5 minutes; within 1 hour, there 

are 12 time slots. The control algorithm runs 15 minutes before the On-Peak starting 

point and 15 minutes beyond the actual ending point resulting in 6 more time 

intervals. 

  arg( 1) 1
( ) 1 1 ( ( : ) ( : ))

/100
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k disch ek t
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SOC SOC i t k t k

bmax  



        pd pd

0SOC 

12 6M hour   6hour 
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ii. At initial time, set time interval . Also get the prediction model for solar 

generation and building load,  and  respectively; get electricity price 

. Set 𝑑𝑖𝑠𝑅𝑎𝑡𝑒 = 0.4  and onPeak = onPeakini. 

iii. At time i=k, set optimization operation horizon . Retrieve real time 

solar generation , building load , battery capacity and battery operation 

power of the battery system; and meanwhile get the electricity price 

and update prediction information  and . 

iv. Calculate the average discharging power from (3-16): 𝑝𝑑𝑎𝑘 =
𝑏𝑐𝑘−𝑑𝑖𝑠𝑅𝑎𝑡𝑒∙𝑏𝑚𝑎𝑥

𝑀−𝑘+1
 and 

maximum average discharging power from (3-17): 𝑝𝑑𝑎𝑚𝑎𝑥𝑘 =
𝑏𝑐𝑘−0.2∙𝑏𝑚𝑎𝑥

𝑀−𝑘+1
; when 

𝑝𝑑𝑎𝑘 ≤ 0, 𝑠𝑒𝑡 𝑑𝑖𝑠𝑅𝑎𝑡𝑒 = 0.35(0.3; 0.25; 0.2),recalculate  𝑝𝑑𝑎𝑘 until 𝑝𝑑𝑎𝑘 > 0 . If  

 or  is larger than 100 kW, set them equal to 100 kW. Update 

disRate. 

v. If solar generation is large enough where ,  and 

; else 

go to next step.   

vi. Calculate optimization problem (3-10) with constraints (3-11) to (3-15) and obtain 

the result . Now . Set 

. If no result from optimization problem when the constraints cannot 

be satisfied in this time period, now set , 

0i 
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 to keep the maximum 

discharging power less than the inverter size; at this time, also need to check 

, if not, .  

 , in these two 

situations, ; if ,set 

.  

vii. Calculate  by (4-1). 

viii. If , set  

  (4-4) 

and reset . This step shows that if MPC can be successfully solved over an hour,    

On-Peak threshold value should be chosen as the previous maximum net load or 

onPeakini; then the future onPeak should be increased upon (4-4) rather than the 

previous caculated onPeak value.  

ix. If (4-2) is satisfied, calculate new On-Peak demand threshold by (4-3), record t = k 

and reset ; else go to x.     

x. Set ; then go back to step iv until .  
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xi. For each new day in the month: check new maximum net load and set 

. Then go back to ii. 

4.2 Simulation of ADT - MPC Algorithm Under Different Scenarios 

In this section, the influence of different parameters chosen in ADT – MPC 

algorithm will be discussed. Different values of ε  and onPeakini in ADT-MPC 

principles and the algorithm’s sensitivity to forecast model is elaborated and simulated in 

this section.  

4.2.1 Scenario 1: Different Actual Building Load or Solar Generation Profile 

Simulations under different actual load and solar generation profile are discussed in 

this section. 

 

Figure 4-1 Net Load Simulation Under Ideal Forecast 

max( ,max( ))onPeakini onPeakini pex
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Figure 4-2 Battery Operation and Storage Simulation Under Ideal Forecast 

 
Figure 4-3 Net Load Simulation Under Normal Days 
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Figure 4-4 Battery Operation and Storage Simulation Under Normal Days 

 
Figure 4-5 Net Load Simulation Under Period High Load 
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Figure 4-6 Battery Operation and Storage Simulation Under Period High Load 

 
Figure 4-7 Net Load Simulation Under Cloudy Day 
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Figure 4-8 Battery Operation and Storage Simulation Under Cloudy Day 

 
Figure 4-9 Net Load Simulation Under Period High Load W/O Solar Generation 
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Figure 4-10 Battery Operation and Storage Simulation Under High Load W/O Solar Generation 

 

    The prediction models use the profiles of solar generation and building load shown 

in Figure 4-1. The ε in Formula (4-2) is equal to -2 and kW. The 

Figures from 4-1 to 4-10 are the simulations for different loads or solar generation 

conditions. In Figures 4-1 and 4-2, the prediction model is chosen by the actual building 

load and solar generation profile. Under an ideal forecast prediction situation as in Figure 

4-1, the net load can be maintained at zero net. During the first two hours, solar 

generation is always larger than the building load. So in these two hours and 

net is negative. In the next 4 hours because of the remaining battery capacity, when solar 

generation is decreasing the net load can be minimized. During the entire rate period, the 

threshold stays at onPeakini, resulting from the sufficient solar generation. From Figure 

20onPeakini 

0SOC 
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4-2, it is clear to see the discharging power (active power) increasing with decreasing 

solar generation. Because of sufficient solar generation on this typical summer day, there 

is excess battery capacity remaining and this capacity can be used during the Mid-Peak 

rate period. 

    Figures 4-3 and 4-4 show simulations based on a normal day operation in B1200. 

The solar generation and load data is from the actual data on 6/17/15. In summer time, 

there is sufficient solar generation during most days of the month in Southern California. 

In a day the solar generation is sometimes affected by clouds. So in Figure 4-3， there is a 

decrease of solar generation between 14:45 and 15:45. The load profile of this day 

behaves randomly (increasing and decreasing throughout), but the building load is 

maintained at about 90 kW during most of the On-Peak rate period. From the load 

prediction graph in Figure 4-1, the building load on this day is higher than the prediction 

load profile. This is a common situation in real world experiments. The simulated net 

load in this situation can still be maintained near zero so the energy consumption from 

external grid is zero during the On-Peak rate period. In Figure 4-4 the battery is 

discharged according to the actual load and solar information. Due to the sufficient solar 

generation during this day, there is more than 10% SOC left for the Mid-Peak rate period. 

The demand threshold does not change in this situation.  
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    Figures 4-5 and 4-6 show another real world load profile. The data is based on 

7/15/15 for B1200. In Figure 4-5, there is a very large building load around 12:45 AM 

that lasts for about 2 hours. This figure shows another common situation in an actual 

building where very high loads happen intermittently, and are very difficult to predict. In 

this condition, the simulated net goes up till near the threshold value and cannot be 

maintained near 0. There are two changes of the demand threshold: first occurs at 

and the time is 16:15, and the second is at at 17:15. When , the constraints 

of the optimization problem cannot be met and . And based 

on Formula (4-3), onPeak increases to kW. When 

, is met so onPeak is changed based on Formula (4-4). Since the previous 

maximum net load was 21.84 kW, kW is the updated value used for the 

new On-Peak threshold. From Figure 4-6, the battery is discharged at a much higher rate 

during the high load time and the SOC goes down to 37.97%. From these two graphs, it is 

clear to see that without a BESS, the peak demand for this day could reach 82.63 kW. 

With the help of the BESS the peak demand is decreased by 60.79kW. 

    Figures 4-7 and 4-8 are generated under a cloudy weather condition. The solar and 

building load data for these two graphs are from 6/9/15. The solar generation during this 

day is very low but the building load is at a high level compared to the forecast load 

profile in Figure 4-1. In this condition, the battery should provide more energy to 
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maintain a low On-Peak demand value. From Figure 4-7, the On-Peak threshold increases 

sequentially three times, from 20 kW to 39.32 kW at . These 

increases are due to insufficient results from the optimization problem:  

when , kW;  

when , kW;  

when , kW.  

    In Figure 4-8, the battery is discharged to 34.44% SOC which is still within the 

safety 20% SOC. Without the BESS, the maximum net load would have reached an 

On-Peak demand value of 82.44 kW. With the help of the BESS contribution, the demand 

is decreased by 43.12 kW.  

    Figures 4-9 and 4-10 show a simulation of a system with no PV generation. The 

building load in Figure 4-9 is the same as Figure 4-5, which is much larger than the 

prediction model. Under this scenario, all the energy saving operation available should be 

deployed by the battery storage system. In Figure 4-9, the initial On-Peak threshold was 

chosen at 50 kW. Three adjustments create a final threshold of 101.88 kW. From Figure 

4-10, it can be seen that the battery is discharged at a higher rate during the high load 

time period and the rate is reduced as the load decreases in the last three hours. The peak 
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net load occurs between 13:45 to 14:45; after the peak net load the algorithm reduces the 

discharging rate (battery power) to steadily maintain the SOC within 40%. 

4.2.2 Scenario 2: Different Choice of  

    From the constraint (4-2) is a key factor for the time and range of the deviation to 

change . In this section, the influence of the parameter  to onPeak will be fully 

discussed.  

    The solar generation and building load profiles are based on actual data from 6/9/15 

which is also shown in Figure 4-7. It is a cloudy day and as expected solar generation is 

much lower than in sunny days. The prediction profiles are the same as Scenario 1 with

kW.  

 

Figure 4-11 Net Load and Threshold Comparison Between Different ε 
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Figure 4-12 Remaining SOC Comparison Between Different ε 

    Figure 4-11 compares simulated net load and threshold between different . In 

these four graphs peak net demand is reduced by more than 40 kW when comparing to a 

non-battery storage system with the On-Peak demand of 82.44 kW. From these four 

graphs it is clear to see smaller  responds more rapidly to change of . If  

is smaller, the algorithm reacts to system dynamics changes more quickly and vice versa. 

A shorter response time, caused by a small value of , influences the accuracy of 

adjusting threshold. Meanwhile a large  value increases the time to adjust to a new 

threshold which uses more battery capacity to maintain the previous low load. In Figure 

4-12 the SOC left by is the lowest, among the four specified values, and is 

the highest. While , yield similar results in the simulation. There is no 
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simulation for  because from Formula (4-3) the threshold changes once it reaches

. The net demand under the four conditions is increasing as  decreases. 

So the tradeoff is between the system’s sensitivity and battery storage.  

4.2.3 Scenario 3: Different Choice of Initial Threshold onPeakini  

    The other key factor of how and when to change is the initial demand value 

onPeakini. In this section, different onPeakini will be chosen to simulate its effect, while 

maintaining in solar generation and building load profiles the same. The influence of the 

parameter onPeakini on onPeak is fully discussed in this section. 

5 

5kSOC   

onPeak

 

Figure 4-13 Net Load and Threshold Comparison Between Different Initial Thresholds 
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Figure 4-14 Remaining SOC Comparison Between Different Initial Thresholds 

    The actual solar generation and building load profiles are the same as in Figure 4-7, 

and the prediction profiles are the same as Scenario 1 with . In Figure 4-13, the 

solid line represents the simulated net load and the dashed line represents the adjusting 

threshold trend. The On-Peak thresholds in Figures 4-13 increase from 10 kW to 40 kW. 

An initial threshold kW combined with low solar generation causes the 

threshold to rise quickly in the first few hours and eventually reaches 45.74 kW. When 

kW the net load is kept within the On-Peak threshold instead of zero net load due 

to the limited solar generation of the day. When kW, the threshold adjusts 1 

hour later than when kW and eventually adjusts to 39.32 kW. When 
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kW the threshold adjusts three times during the rate period and eventually adjusts to 

40.37 kW. The first increase of the threshold line is caused by constraint (4-2) and the 

second decrease is by the constraint of (4-3) and the last is also caused by constraint (4-2). 

The net load is tightly maintained near the threshold. The fourth graph shows that when 

kW the net load can be maintained below 40 kW. Only one adjustment of 

threshold occurs before 15:45, and then re-adjusts to a new threshold according to 

Formula (4-3). The threshold for is maintained at 40 kW. 

    In Figure 4-14, when in both the remaining battery 

capacity decreased to nearly the same values and the largest battery capacity is used. 

When kW the least battery capacity is used. All of scenarios are maintained the 

remaining capacity above 20% SOC. Compared to a system without a battery storage 

system, the net demand of On-Peak rate period decreases to about 40 kW from 82.44kW. 

    With the comparison of different initial thresholds the final threshold can always be 

adjusted to an optimum value. If the initial threshold is too small for a system the 

adjustment operates quickly but the battery storage will be used more due to the small 

initial threshold. If the initial threshold is chosen properly from the start, the system will 

behave better with less adjustments during one cycle. The experiments above shows that 

although different  were selected all achieve the goals of cost saving and maintaining 

SOC over 20%.  
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    From Section 4.2.2 and 4.2.3, both  and  will affect the threshold adjustment 

during the time period resulting in small variations to SOC. Therefore, even in a system 

without comprehensive information about renewable energy generation and building load 

profile, or a system with unpredictable and uncommon situation for loads or energy 

generation, the adjustment of On-Peak threshold can always maintain the relatively 

minimal energy consumption and net demand. In this thesis, the proper choice for 

kW,  and they are used in week-long simulations.   

4.2.4 Weekly Simulations 

    In this section, the ADT-MPC will be implemented under different scenarios of 

actual solar generation and building load profiles.  

 

Figure 4-15 Net Load and Threshold Adjustment Under ADT - MPC Algorithm in Week 1 of June  
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Figure 4-16 Battery Operation and Storage Under ADT - MPC Algorithm in Week 1 of June 

 

Figure 4-17 Net Load and Threshold Adjustment Under ADT - MPC Algorithm in Week 2 of June 
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Figure 4-18 Battery Operation and Storage Under ADT - MPC Algorithm in Week 2 of June 

 

Figure 4-19 Net Load and Threshold Adjustment Under ADT - MPC Algorithm in Week 3 of June 
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Figure 4-20 Battery Operation and Storage Under ADT - MPC Algorithm in Week 3 of June 

 

Figure 4-21 Net Load and Threshold Adjustment Under ADT - MPC Algorithm in Week 4 of June 
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Figure 4-22 Battery Operation and Storage Under ADT - MPC Algorithm in Week 4 of June 

Figure 4-15 through Figure 4-22 are the simulations for all the weekdays over a full 

month’s period. The prediction model for these simulations is the same as Scenario 1. 

From these graphs, the solar generation in most days is large enough so that at the end of 

On-Peak rate period, the remaining SOC is larger than 40%. The remaining battery 

capacity left is used during the Mid-Peak control algorithm discussed in Chapter 5. The 
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happens on 6/9 and the peak demand for this day is 40.37 kW. The occurrence of one 

high peak early in the week results in the On-Peak threshold staying at 40.37 kW.  

 

6/22 6/23 6/24 6/25 6/26
0

20

40

60

80
Week 4 Battery Discharging 

A
c
ti
v
e
 P

o
w

e
r 

[k
W

]

6/22 6/23 6/24 6/25 6/26
50

60

70

80

90
Week 4 Battery Storage

S
O

C

30iTh 

Date 

Date 



 97  

In these figures, with simulations under different situations of solar generation and 

building load, the ADT-MPC algorithm has been validated to work properly.   

4.2.5 Validation of ADT-MPC Algorithm 

 
Figure 4-23 Experiment of ADT-MPC Algorithm Operated on 7/31/15 
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7/31/15. In Figure 4-23, the prediction for solar and building load combined with the real 

time solar and building load is shown. It is obvious from the graph that the building load 

forecast is smaller than the actual building load, while the actual solar generation is 

smaller than the predicted solar generation. The initial kW is eventually 

adjusted to 38.88 kW. 
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Figure 4-24 Battery Operation and Storage Under Experiment of 7/31/15 

    From Figure 4-24, with the large need for battery operation, the remaining SOC was 

still kept near 40% through the end of On-Peak rate period. In this experiment the 

ADT-MPC algorithm works properly adjusting the threshold to a suitable value 

dynamically and effectively minimizes the net load throughout the On-Peak rate period.   

4.3 Comparison between ADT-MPC Algorithm and CT-MPC 

Algorithm 

    In this section, two different scenarios are simulated for comparing the ADT-MPC 

and CT-MPC algorithms. One scenario is a cloudy day with a reduced solar generation; 

the second scenario is a day with a large building load. 
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Figure 4-25 Net Load Comparison on a Cloudy Day 

 

Figure 4-26 Battery Operation and Storage Comparison on a Cloudy Day 
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    Figure 4-25 is the net load comparison between ADT-MPC algorithm and CT-MPC 

algorithm. The prediction model used to simulate is the same as Figure 4-1 and the initial 

threshold is 20 kW. In the graph, the net load threshold has been adjusted to 39.32 kW 

under ADT-MPC operation while it is kept below 20 kW under CT-MPC operation. 

    From Figure 4-26, the first two hours of the battery operations are similar due to 

similar demand threshold. Subsequently, the threshold in ADT-MPC algorithm is adjusted 

to a higher level due to low solar generation. Eventually the remaining SOC for ADT-MPC 

is 34.44% while it drops to the lowest level 20% in CT-MPC algorithm. 

 

Figure 4-27 Net Load Comparison on a Large Building Load Day 
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Figure 4-28 Battery Operation and Storage Comparison on a Large Building load day 

    Figures 4-27 and 4-28 show the simulation under an increased building load scenario. 

The prediction model used to simulate is the same as Figure 4-1 and the initial threshold is 

20 kW. In Figure 4-27, the building load is very large for the first one and half hours. The 

maximum net load is 21.84 kW for ADT-MPC and 26.12 kW for CT-MPC operation. The 

changing threshold value in CT-MPC is due to the maximum discharging power based on 

Formula (3-17). If the load is larger than the load in Figure 4-27, a higher net demand will 

appear. In Figure 4-28, the final SOC for these two algorithms are similar to each other.  

4.4 Conclusion 

    In this chapter, detailed ADT-MPC principles are discussed, and the ADT-MPC 

control algorithm is simulated under different scenarios on the days of the summer time. 
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With longer On-Peak time period and more fluctuating solar generation and building load 

than the winter time, the ADT-MPC algorithm can adjust the On-Peak threshold timely to 

maintain the lowest On-Peak demand and electricity consumption from the external grid. 

    After the full discussion of the On-Peak rate time control algorithm in Chapters 3 

and 4, to fulfill the real-time battery control management, the control algorithms for the 

Off-Peak and Mid-Peak rate time control algorithms are needed. Therefore, in Chapter 5, 

both of the algorithms are fully discussed.  
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Chapter 5 One-Day Control Algorithm and Cost 

Efficiency Analysis 

 

5.1 Off-Peak Time Control Algorithm 

    During working days, the Off-Peak rate period is from 11 PM to 8 AM in the 

summer time, and from 10 PM to 8 AM in the winter time. Throughout the year, 

weekends and Holidays are in the Off-Peak rate period. During the Off-Peak rate period, 

the electricity rate is the lowest and electricity consumption in the building is also the 

lowest and relatively stable. During the Off-Peak rate period, the control algorithm is set 

to charge the battery to 90% SOC and maintain the Off-Peak demand below a certain 

value offSch. With the Schedule Operation in Tables 1 and 2, the BESS can be fully 

charged from 40% SOC to 90% SOC during the Off-Peak rate period in most days of the 

month. In some cases, the BESS will be used down to 20% SOC during On-Peak 

operation, or in some other cases the building load during Off-Peak time is much higher 

than normal. As a result, the BESS will not be able to fully charge during Off-Peak rate 

period. To resolve these issues, a new method is proposed in the thesis. By adjusting the 

offSch value, the battery is ensured to be fully charged during the Off-Peak rate period, 

while maintaining the Off-Peak demand as small as possible. The detailed algorithm and 

flowchart is shown in Figure 5-1. The Off-Peak rate period is divided into 𝑀𝑜𝑓𝑓 slots 
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and each slot is a 5 minutes interval. The charging process starts 15 minutes after the start 

of the Off-Peak rate period and 15 minutes before the end of the period.  

 
 

Figure 5-1 Off-Peak Control Flowchart 
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Figure 5-2 Adjusting OffSch Simulation Under high Off-Peak Load Situation 

 

Figure 5-3 Actual Load vs. Average Load 
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    Figures 5-2 and 5-3 show a simulation for the algorithm adjusting offSch. The actual 

building load in Figure 5-3 is based on the actual building load profile from B1200 on 

6/8/15--- 6/9/15. The average load curve, averages all of June’s workdays’ Off-Peak 

building load values. It is obvious that the building load is much higher than the monthly 

average Off-Peak building load. In Figure 5-2, Charging power refers to and 

Average pca refers to ; . During the first hour, , 

offSch increases rapidly. Over the next few hours, the battery is charged relatively stable 

near . At last 92.25AToff  kW; if there’s no adjusting method and the battery is 

only charged with Schedule Control, eventually 97.7SCHoff  kW.  

 

Figure 5-4 Adjusting OffSch Experiment on 7/20/15 --- 7/21/15 
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Figure 5-5 MPC Operation vs. Schedule Operation Comparison 

    Figure 5-4 and 5-5 is one experiment operated during the Off-Peak rate period on 

7/20—7/21. The entire data shown in the graphs is based on the actual measurements 

taken during the experiment. The initial SOC was 30%. From Figure 5-4, the Off-Peak 

threshold adjusted from an initial value of 90 kW to a final value of 100 kW. The net load 

was larger than the building load due to the battery charging process. From the 

comparison between the two operations in Figure 5-5, the battery was fully charged to 90% 

SOC under Adjusting Threshold Operation while only up to 81.5% SOC by the Schedule 

Operation. Meanwhile, the maximum net load kW under Schedule 

Operation and kW under Adjusting Threshold Operation with 5 minute 

average. If the net load is chosen by a 15-minutes moving average, the difference 
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between  and   will be smaller. Therefore while maintaining a similar 

Off-Peak demand, Adjusting Threshold Operation can also ensure a battery charging 

status and make the battery fully charged during Off-Peak time. 

5.2 Mid-Peak Time Control Algorithm 

    In the winter time Mid-Peak is from 08:00 to 17:00, and in the summer time 

Mid-Peak rate period is from 08:00 to 12:00 and 18:00 to 23:00. In the winter time, the 

Mid-Peak time is during working hours and much of the solar generation can be used to 

support the building’s electricity consumption. Additionally, the BESS can be fully used 

during On-Peak period so during Mid-Peak time in winter there’s no specific control 

algorithm. In the summer time, one concise control algorithm is proposed as following: 

for the first Mid-Peak period from 08:00 to noon, 10% SOC (from 90% to 80%) of the 

battery capacity is allowed to be discharged during this time for avoiding high Mid-Peak 

demand. For the second period, the remaining battery capacity left from the On-Peak rate 

period, is uniformly distributed over this period. When there’s high building load, the 

algorithm decides larger discharge rate to maintain the scheduled Mid-Peak demand. In 

the second Mid-Peak period, the battery is allowed to discharge down to 20% SOC.  

The detailed control algorithms are demonstrated in Figures 5-6 and 5-7. 

SCHoff AToff
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Figure 5-6 First Mid-Peak Period Control Algorithm Flowchart 
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Figure 5-7 Second Mid-Peak Period Control Algorithm Flowchart 
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5.3 One-Day Experiment with Three Different Time Periods Control 

Algorithm 

 

Figure 5-8 Battery One-Day Operation on 7/28/15 

    Figure 5-8 shows the result of a full-day experiment conducted on 7/28/15. The three 

different shaded areas show the three different rate periods during a 24-hour period. The 

experiment was carried out on a regular working Tuesday. The solar generation and 

building load are relatively similar to the average prediction model. The demand for this 

day is kW, kW and kW. From the graph it is 

clear to see that the battery was charged during the Off-Peak rate period and then 

discharged during the On-Peak and the second Mid-Peak rate periods. Due to the sufficient 

solar generation the SOC was around 60% in the end of On-Peak rate period and the net 

load during the entire On-Peak rate period is near 0 kW with the lowest electricity 

90offSch  60midSch  30onPeakini 



 112  

consumption from the external grid. For each rate period the net demand is tightly kept 

below the scheduled demand values.     

5.4 Cost Efficiency 

5.4.1 Comparison Between Different System 

    In this chapter the electricity cost is calculated for different systems arrangements: 

B1200 without solar PV generation or BESS; B1200 only with solar PV generation; B1200 

with solar generation and a BESS, both with the thesis proposed controller system, and 

with a schedule controller system. The schedule controller is based on Tables 1 and 2. Two 

months electricity cost are chosen for both the winter season and the summer season.  

System Comparison 
Energy kWh 

Savings($) 

Load Demand Savings($) Total 

($) On-Peak Mid-Peak Off-Peak 

Real vs. Schedule 209.65 105.92 17.24   6.19 339.00 

Real vs. No Battery 104.38 381.12 17.24 -33.10 469.64 

Real vs. No PV or Battery 1182.82 584.56 126.26 -27.21 1866.43 

Table 5 June 2015 Electricity Cost Comparison for Different System Architectures 

    Table 5 is the electricity cost comparison based on the actual data for workdays in June 

(summer season). In the table, the term ‘real’ refers to the one-day control algorithm 

proposed in the thesis, and it is based on the real world data obtaining from the one-day 

control algorithm. All the data excludes the day when the system worked improperly (no 

control). Due to the large solar generation in the summer time, the energy (kWh) usage 

under schedule control is larger than the system without BESS, because the large battery 
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storage is sent back to the external grid during the On-Peak rate period, while the charging 

process is still undergoing. This is the reason why the savings for schedule control is larger 

than the system without BESS. In the Load Demand Savings section, with one-day control 

algorithm, savings are achieved in all three different rate periods compared to the schedule 

operation. Compared to the no-battery situation, the largest saving is in the On-Peak 

demand saving. And with the operation of charging during Off-Peak rate period and 

discharging during On-Peak and Mid-Peak rate period the shift of energy consumption 

saves a lot of money. The biggest cost difference is between the real and a system without 

solar PV and BESS. Enough electrical energy is produced by PV modules and most of the 

savings comes from the solar generation. The other important saving comes from demand 

decreasing. The On-Peak demand saving is approaching 1/3 of total saving. 

Different Situation 
Energy kWh 

Savings($) 

Load Demand Savings($) Total 

($) On-Peak Mid-Peak Off-Peak 

Real vs. Schedule 84.26 59.5 0 14.6 158.36 

Real vs. No Battery 97.44 472.3 24.84 -24.7 594.58 

Real vs. No PV or Battery 953.7 585.65 115.44 -24.7 1630.09 

Table 6 May 2015 Electricity Cost Comparison for Different System Architectures 

    Table 6 is the electricity cost comparison based on the real data for workdays in May 

(winter season). During this season, the CT-MPC control algorithm was applied. 

Comparing with the Schedule Control in the summer season, because there’s less solar 

generation and the relatively stable load profile during the On-Peak rate period, Schedule 

Control can achieve better performance. Therefore the cost difference between real and 
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schedule is smaller than in Table 5. As mentioned before, in the winter season no specific 

control algorithm was used during the Mid-Peak rate period. This results in the difference 

between the Mid-Peak demand costs savings equal to 0. When comparing with the 

no-battery system, the On-Peak demand savings is the greatest because during the On-Peak 

time the solar generation decreases as the time goes on. Most of the energy comes from the 

battery storage system. When comparing to the system without PV and battery storage 

system, most energy (kWh) saving is from solar generation and the On-Peak demand 

saving is about 1/3 of total saving. 

    With the controller proposed in the thesis the electricity cost saving is significant 

comparing to other systems architectures.     

5.4.2 Actual On-Peak Demand on Monthly Electrical Bill 

 
 

Figure 5-9 2012−2015 B1200 On-Peak Demand in Electrical Bill 
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Figure 5-9 shows the On-Peak demand in the electrical bills over four years. The 

battery storage system was implemented in October 2014. The battery was operated 

manually in the first two months and controlled automatically by the Schedule Operation 

from December to March and from April till now it is operated by the two proposed MPC 

algorithms. The manual operation was done by the students at CE-CERT. They kept 

monitoring the system and manually changed the values of discharging power during 

On-Peak time. The Schedule Operation is based on Table 1 and the BESS was 

automatically controlled by the LabVIEW program. It is clearly seen that in the first two 

months the net load was the lowest and later on the net load was higher than the net load in 

the first two months because during automate control operation sometimes the system 

undertook the communication failure between the Arduino and the Princeton 

inverter/LabVIEW program or the LabVIEW program was not working. All these issues 

will lead to the control system temporarily losing efficacy. The May’s On-Peak demand 

happened on a day when the LabVIEW program closed and the June’s On-Peak Demand 

happened on a day when the control system had a communication issue between the 

Arduino and the Princeton inverter. But in comparison with the last two to three years, the 

On-Peak demand has been decreased with the help of the battery storage system. 
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5.5 Conclusion 

    In this chapter, the Off-Peak and Mid-Peak rate period control algorithms are fully 

discussed and tested. With the combination of three different rate time control algorithms, 

a one-day control strategy is developed and implemented in the actual system. Based on 

the real-time solar generation and building load, the real-time control (one-day) strategy 

can achieve satisfactory performance compared to three different situations, such as the 

normal building without solar generation or BESS, B1200 only with solar generation and 

B1200 under Schedule Control in different seasons. At a glance of the four-year On-Peak 

demand in the electrical bill, the reduction of the On-Peak demand is apparent for each 

month. Therefore with the help of the BESS under the real-time control algorithm, the 

electricity cost can reduce significantly for each month.  
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Chapter 6 Conclusions and Future Work 

 

6.1 Conclusions 

    In this thesis, the real-time battery control management for a Microgrid is developed 

by combining the Off-Peak, Mid-Peak and On-Peak control algorithms. Different 

simulations and experiments were performed under various scenarios of solar generation 

and building load profiles. 

    In Chapter 1, an introduction of a Microgrid system is discussed. Three key factors 

in the Microgrid system are generators, electrical energy storage system (ESS) and 

controlled loads.  

    In Chapter 2, the hardware infrastructure and the communication architecture of the 

SIGI Microgrid testbed are fully introduced. For the B1200, the Microgrid system is 

mainly comprised of 100 kW of solar PV generation, 500 kWh of stationary battery 

energy storage and the real-time battery control strategy developed in the thesis. Within 

the battery control system, different types of data communicate with each other through 

one of three communication protocols: Modbus, CAN bus and Ethernet.     

    In Chapter 3, detailed principles of the MPC algorithm and its application to SIGI’s 

battery control system during On-Peak rate period are discussed. In the control system, 

there are three main components in the MPC problem, which are the battery system 
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model, the predictive model of the solar generation and the building load for B1200, and 

the optimization model. With the combination of these three models, constant threshold 

MPC (CT-MPC) algorithm is developed. The CT-MPC algorithm can maintain the 

On-Peak demand below a constant threshold and minimize the electricity usage from the 

external grid in a situation with relative stable solar generation and building load, such as 

in the winter time when the On-Peak time is from 5 PM to 9 PM. 

    In Chapter 4, the adjusting demand threshold MPC (ADT-MPC) algorithm is 

developed and demonstrated. In the summer time, the On-Peak rate period changes to 12 

AM to 6 PM (overlapping with regular working hours). The solar generation and the 

building load profiles fluctuate significantly more than in the winter time. Under these 

situations, the On-Peak demand threshold will adjust to the optimum value during the 

entire On-Peak rate periods based on the ADT-MPC algorithm. The ADT-MPC control 

algorithm has the advantage of the motility to any system even the ones without 

comprehensive historical energy generation or building load profiles. 

    In Chapter 5, the control algorithms for the Off-Peak and Mid-Peak rate periods are 

discussed. During the Off-Peak rate period, the two tasks for the Off-Peak algorithm are 

to fully charge the BESS and maintain low Off-Peak demand. Two different control 

algorithms are developed for each of the two different Mid-Peak rate periods. The tasks 

for these two algorithms are to maintain the Mid-Peak demand below the scheduled value 
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and utilize the remaining available battery energy capacity (down to 40% SOC). After the 

analysis of the cost savings comparing different system architectures and the last 

four-year electrical bills, the electricity cost is reduced significantly with the 

implementation of the BESS and the real-time control strategy.  

6.2 Future work 

    As discussed in Section 2.1, one 500 kWh mobile BESS is also available as part of 

the SIGI architecture. The functionality of the mobile BESS system is the same as the 

stationary BESS, except for the communication protocols which allow the mobile BESS 

to communicate over a wireless network. Therefore, the real-time control system can 

utilize these two BESSs as a coherent system in the future battery operation.     

    As discussed in Section 2.2.2, the OPTO 22 system can control AH system in B1200 

intelligently and maintain the net load below a certain threshold. Right now, the proposed 

algorithm can only control the battery system to supplement certain power to the grid. In 

the ADT-MPC and Off-Peak control algorithms, the thresholds adjust over the rate period. 

The new threshold could be sent to the OPTO 22 system in the future to further reduce 

the demand for different rate periods.  

    As discussed in Chapter 3 and 4, the CT-MPC and ADT-MPC algorithms are not 

fully dependent on the accuracy of the prediction model. In Figures 3-12 and 4-1, it is 

easy to see that better performance can be achieved with more accurate predictions. In the 
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future, more attention should be paid to building a more sophisticated predictive model 

for renewable energy generation and building load.   

    As discussed in Sections 5.1 and 5.2, the Off-Peak and Mid-Peak control algorithms 

are developed in a straightforward manner, especially the Mid-Peak control algorithm. In 

the future work, elaborated control algorithms can be developed for both rate periods. 

    As discussed in Section 5.4.2, the control system experience failure instances, such 

as communication issues between the Arduino microcontroller and the LabVIEW 

software. This kind of failure has negative impact on the demand control within one 

month. Right now one standing issue is when the battery is discharged to 20% SOC, the 

Arduino sends a command to turn off the inverter; the inverter stays shutdown until it is 

manually reset. The command from the Arduino does not control the inverter at all. The 

only method to re-start communication between the two is to turn on the inverter 

manually. Therefore, within an automated system, a powerful alert function should be 

developed in the future to allow users to become readily aware of the break in 

communication and can manually solve the issues.    
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