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Abstract: The Dark Energy Spectroscopic Instrument (DESI) will provide unprecedented
information about the large-scale structure of our Universe. In this work, we study the
robustness of the theoretical modelling of the power spectrum of Folps, a novel effective field
theory-based package for evaluating the redshift space power spectrum in the presence of
massive neutrinos. We perform this validation by fitting the AbacusSummit high-accuracy
N -body simulations for Luminous Red Galaxies, Emission Line Galaxies and Quasar tracers,
calibrated to describe DESI observations. We quantify the potential systematic error budget
of Folps finding that the modelling errors are fully sub-dominant for the DESI statistical
precision within the studied range of scales. Additionally, we study two complementary
approaches to fit and analyse the power spectrum data, one based on direct Full-Modelling fits
and the other on the ShapeFit compression variables, both resulting in very good agreement
in precision and accuracy. In each of these approaches, we study a set of potential systematic
errors induced by several assumptions, such as the choice of template cosmology, the effect of
prior choice in the nuisance parameters of the model, or the range of scales used in the analysis.
Furthermore, we show how opening up the parameter space beyond the vanilla ΛCDM model
affects the DESI observables. These studies include the addition of massive neutrinos, spatial
curvature, and dark energy equation of state. We also examine how relaxing the usual Cosmic
Microwave Background and Big Bang Nucleosynthesis priors on the primordial spectral index
and the baryonic matter abundance, respectively, impacts the inference on the rest of the
parameters of interest. This paper pathways towards performing a robust and reliable analysis
of the shape of the power spectrum of DESI galaxy and quasar clustering using Folps.
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1 Introduction

In the coming decade, large-scale structure (LSS) cosmological probes are poised to sig-
nificantly advance our understanding of the Universe. The wealth of data expected from
spectroscopic surveys, such as the Dark Energy Spectroscopic Instrument1 (DESI) [1–4],
combined with data from cosmic microwave background (CMB) experiments [5–7] and galaxy
photometric and spectroscopic surveys [8–10], holds promise not only for the precise mea-
surement of cosmological parameters but also for addressing fundamental open questions
in physics. These questions include elucidating the nature of dark energy, determining the
absolute mass scale of neutrinos, testing gravitational theories at cosmological scales, and
potentially detecting primordial non-Gaussianities, among others. However, as data accuracy
and precision improve, it is essential to refine theoretical models of structure formation to
meet the standards demanded by new observations.

Spectroscopic galaxy surveys, which measure the redshifts and angular positions of
galaxies in the sky, stand out as one of the most powerful tools for studying the properties
of our Universe. These surveys probe several key physical phenomena. These include the
baryon acoustic oscillations (BAO) [11, 12], which result from baryonic fluctuations in the
primordial plasma that froze out after photons decoupled, and the redshift-space distortions
(RSD) [13, 14], introducing anisotropies in the observed galaxy distribution due to the Doppler
effect induced by their peculiar velocities. A key complication in extracting cosmological
information from the LSS arises from our inability to directly observe dark matter. Instead,
we study its effects indirectly using biased tracers such as galaxies and the Lyman-α forest.
Additionally, non-linearities of the gravitational collapse become relevant at late times, so we
must consider models beyond linear order, such as perturbation theory (PT) [15] and effective
field theory (EFT) [16–20]. Recently, these techniques have yielded some of the tightest
constraints to date on cosmological parameters, drawing exclusively from data collected by
galaxy surveys, as presented in [21, 22], among many other studies.

To extract cosmological information from data, there are two main kind of methods:
Compressed and Direct approaches. In the compressed approach, a template power spectrum
is constructed based on a fixed cosmology, which is then adjusted by a set of compressed
parameters (such as dilation parameters, fσ8, · · · ) to fit the data. These parameters
effectively condense the information of the power spectrum data vector, allowing, in principle,
for the estimation of cosmological parameters within a specific cosmological model. This
approach has the benefit that the step of compressing the clustering information is cosmology-
independent. The assumption of the cosmological model only enters when converting from
compressed to cosmological parameters, avoiding the need for re-fitting when testing different
cosmological models. The most popular compressed approaches are the Standard (or Classic)
and ShapeFit [23]. The Standard compressed analysis was previously used in the Baryon
Oscillation Spectroscopic Survey (BOSS, [24, 25]) and extended BOSS (eBOSS, [26, 27])
collaborations and focused on extracting cosmological information from BAO and RSD
by introducing the scaling parameters α∥,⊥ and the product of the logarithmic growth of
structure, f , and the amplitude of the dark matter field fluctuations smoothed by a scale

1https://www.desi.lbl.gov/.
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of 8 h−1 Mpc, σ8. The ShapeFit approach aims to bridge the gap between the constraining
power of the standard compressed and direct-fitting analyses. ShapeFit partially covers this
gap by adding two shape parameters that extract additional information from the broadband
slope of the power spectrum. The direct-fit methodology, also known as Full-Modelling,
directly compares the model to the data, varying the underlying cosmological parameters
used to generate a new linear power spectrum in each iteration of the posterior exploration.
The Full-Modelling analysis simultaneously captures the BAO and RSD signals, as well as
the rest of large-scale cosmological information contained in the shape of the power spectrum,
for an assumed cosmological model, reaching a similar constraining power as the Planck
experiment for some cosmological parameters [21, 22, 28–38].

The present work examines the error budget associated with Full-Modelling and com-
pressed (ShapeFit) methodologies, resulting from the theoretical Modelling of the full-shape
power spectrum using the Folps2 code [39]. To do this, we use the AbacusSummit high-
accuracy N -body simulations targeted to produce DESI galaxy mocks in three redshift bins:
Luminous Red Galaxy (LRG) at z = 0.8, Emission Line Galaxy (ELG) at z = 1.1, and Quasar
(QSO) at z = 1.4. The simulations consist of 25 independent realizations per tracer, each with
a cubic box volume of 8 h−3Gpc3, for a total physical volume of 200 h−3Gpc3 per tracer.

In this study, we explore various configurations encompassing a broad spectrum of setups.
These configurations include varying the maximum wave-number kmax utilized in fitting
procedures, the use of the hexadecapole in addition to the monopole and quadrupole of
the power spectrum multipoles, the effect of imposing priors on nuisance parameters, the
assumption of coevolution for the bias paramters, and the utilization of approximations to
accelerate computations. Additionally, we investigate the effect of opening the parameter
space on models beyond ΛCDM, such as those involving massive neutrinos, dark energy (via
the wCDM parametrization), curvature, variation of the spectral index, ns, and variation
of the baryon abundance ωb.

Our findings reveal that both the ShapeFit and Full-Modelling methodologies yield very
similar results for the vanilla ΛCDM model with fixed ns and baryon abundance with a Big
Bang Nucleosynthesis (BBN) prior inspired by [40, 41], albeit exhibiting some variations for
the extended models. Moreover, we observe that all fitted parameters fall within 1 or 2-σ of
the true simulation values, even for the largest volume considered, 200 h−3Gpc3. Importantly,
our results show significant agreement with those obtained by other DESI groups employing
PyBird3 and velocileptors,4 as presented in refs. [42] and [43], respectively. Detailed
comparisons between the three utilized codes/pipelines for Fourier space Full-Shape analysis
within DESI are presented in the companion paper [44], as well as the configuration space
analysis performed using the code gsm-eft5 [45].

This work provides support to the Full-Shape analysis from galaxies and quasars [46] of the
DESI Data Release 1 [47] within the broader context of the DESI Year 1 main studies [48–53].

The rest of the paper is organized as follows. We begin by describing the simulations
used throughout the work in section 2. We describe the theoretical Modelling in section 3

2https://github.com/henoriega/FOLPS-nu. JAX implementation: https://github.com/cosmodesi/folpsax.
3https://github.com/pierrexyz/pybird.
4https://github.com/sfschen/velocileptors.
5https://github.com/alejandroaviles/gsm.
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and the Folps pipeline in section 4. In section 5, we describe the different methodologies
for extracting information from galaxy clustering, namely Full-Modelling, Standard, and
ShapeFit. In section 6 we present the results for different settings on the maximal scale
of the wave-number, priors on nuisance parameters. Based on these results, we define our
baseline settings. In section 7 we explore extension to the baseline analysis. Finally, in
section 8 we present our conclusions.

The reader interested in the main results of this paper can skip directly to section 5,
section 6 and section 7.

2 Datasets from mock catalogues

In this section, we introduce the mock catalogues used to generate the data power spectrum
multipoles and covariance matrices, which will serve us to study the systematic effects of the
pipeline and methodologies. To generate the data multipoles, we use N -body simulations
that provide a robust and highly accurate representation of the clustering, but reproducing
them is computationally expensive. In contrast, to estimate the covariance matrix, we turn
to fast mocks that are computationally efficient and have the capacity to provide an accurate
representation of gravitational evolution up to intermediate scales.

2.1 High-precision mocks

We use synthetic data obtained from the AbacusSummit6 high-accuracy N -body simula-
tions [54], produced with the Abacus N -body code [55]. These simulations were designed to
meet (and exceed) the requirements set by the DESI cosmological simulations [54]. Further,
as mentioned in the Introduction, the companion paper [44] shows a remarkable agreement
between Folps, velocileptors and PyBird codes, as well as the simulations, which persists
even when considering the full available volume.

Most of these AbacusSummit simulations consist of cubic boxes with a volume of
8 h−3Gpc3 and 69123 total particles, resulting in an individual particle mass of approximately
2 × 109 h−1M⊙. The suite of simulations includes 97 cosmological models, including the
Planck 2018 model and variations, as outlined in [54]. Our analysis focuses on three types of
tracers: LRGs at a redshift of z = 0.8, ELGs at z = 1.1, and QSOs at z = 1.4,7 which consist
of a collection of 25 realizations for each tracer, with each realization adopting the fiducial
cosmology provided by Planck 2018 : {h = 0.6736, ωcdm = 0.1200, ωb = 0.02237, ln(1010As) =
3.0364, ns = 0.9649, Mν = 0.06 eV, w0 = −1}. Each individual realization has a volume of
8 h−3Gpc3, and the k-bins have a spacing of ∆k = 0.005 hMpc−1. Consequently, the total
volume reaches 200 h−3Gpc3, ensuring remarkably small statistical errors and fulfilling the
desired statistical precision of DESI mocks. During the analyses, to reduce sample variance
‘noise’, we fit the average of the 25 realizations.8

6https://abacussummit.readthedocs.io.
7Halos are chosen by employing CompaSO as detailed in [56]. Additionally, the mock catalogs are

generated using Halo Occupation Distribution (HOD) models calibrated to the data for each tracer, as
described in [57, 58].

8In contrast to the DESI-galaxy BAO analysis in [49, 59], in this work we refrain from employing the
control variate technique designed to mitigate the noise stemming from sample variance [60, 61].
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2.2 Covariance matrix

We employ the Effective Zel’dovich mocks (EZmocks) to estimate the covariance matrices.
These mocks consist of 1000 independent synthetic realizations for LRG, ELG galaxies, and
QSOs. As the name indicates, these mocks are generated using fast techniques based on
the Zel’dovich approximation [62], as presented in [63, 64]. The advantage of these mocks
lies in their computational efficiency compared to N -body simulations while still providing
a good approximation to the two- and three-point statistics up to mildly non-linear scales.
Thus, they serve as a cheap and reliable method for generating extensive mock catalogues,
enabling the estimation of reliable covariance matrices via

Covℓ,ℓ′(ki, kj) = 1
Nm − 1

Nm∑
n=1

[
Pℓ,n(ki) − µℓ(ki)

][
Pℓ′,n(kj) − µℓ′(kj)

]
, (2.1)

where µℓ indicates the mean power spectrum,

µℓ(k) ≡ 1
Nm

Nm∑
n=1

Pℓ,n(k), (2.2)

while Nm is the number of mock realizations and Pℓ,n(k) denotes the power spectrum multipole
of the n-th mock. We opt to follow the procedure of correcting the covariance by recipe
provided by [65]. Although this approach does not guarantee obtaining an unbiased posterior
on the parameters of the model (only an unbiased estimate of the inverse covariance), for
the precision of the settings here (i.e. 1000 realizations, a data vector of 72 elements, which
only corrects the amplitude of the covariance by 8%) other more precise approaches [66–68]
only represent minor corrections on the posteriors of the parameters. Thus, we scale the
inverted covariance matrix by,

Cov−1
ℓ,ℓ′ Hartlap = Nm − nb − 2

Nm − 1 Cov−1
ℓ,ℓ′ , (2.3)

where nb is the number of data bins.
The volume of each simulation is V1 = 8 h−3Gpc3. In this work we re-scale the covariance

by factors 1/5 and 1/25, the latter being the maximum available by the simulations, to
have a total volume

V5 = 40 h−3Gpc3, (2.4)
V25 = 200 h−3Gpc3. (2.5)

Throughout this paper, we primarily work with volumes of V5 and V25, as well as the
minimal volume of V1 = 8 h−3Gpc3 for a few selected tests. One primary motivation for
utilizing a volume larger than the DESI physical volume is to detect potential systematic
errors in the model above the usual statistical noise (∼ 2σ) of the DESI Year-1 or Year-5
datasets, DESI-Y1 or DESI-Y5, respectively. Under the assumption of a perfectly unbiased
model, we establish that sample variance fluctuations of a simulation of volume Vsim can
typically produce noise-shifts which falls within a range of 2σsim. This difference should not
exceed the comfort limit of DESI, denoted as 1

nσDESI, with 1/n being the fractional threshold

– 5 –
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which defines when a systematic becomes relevant given your statistical precision. We estimate
that n should be at least 3, but preferably ≥ 5. Thus, we establish that our simulations should
have a volume such that, 2σsim ≤ 1

nσDESI. Hence, the optimal effective volume of simulations
is given by Vsim = (2n)2 VDESI; for the DESI Y5 volume, estimated around 5 h−3Gpc3 for a
given tracer, we get that Vsim ≃ 180 h−3Gpc3, for the conservative choice of n = 3; while for
the DESI Y1 volume, estimated to be 1/5 of the DESI Y5, we obtain Vsim ≃ 40 h−3Gpc3.
These numbers motivate the choices of volumes for re-scaling the covariance provided above.

Despite potential uncertainties about the accuracy of simulations for V = 200 h−3Gpc3,
ref. [44] compares different Modelling approaches with these simulations, finding remarkable
agreements between the models and with the simulations, even for the largest volume. This
suggests that both the models and AbacusSummit simulations are reliable, even in these
extreme scenarios, despite the expected systematic errors.

3 Redshift space power spectrum modelling

In redshift space, the position of a galaxy located at an Eulerian real space coordinate x is
distorted because of its peculiar velocities v relative to the Hubble flow, such that it appears
to be located at a redshift space coordinate s. The map between these coordinates is given by

s(x) = x + n̂ · v(x)
aH

n̂. (3.1)

We have adopted the distant observer approximation on which n̂ is a unit vector in the
direction of the sample of the observed survey, instead of the direction of each individual
galaxy x̂. Under the above coordinate transformation, the galaxy number density fluctuation
in redshift space, δs, is given by

(2π)3δD(k) + δs(k) =
∫

d3x (1 + δg(x)) eik·s(x), (3.2)

where δg is the real space galaxy number density fluctuation, and δD is the 3-dimensional
Dirac delta function. Using the momentum expansion approach presented in [69, 70], the
power spectrum can be written as

(2π)3δD(k) + Ps(k) =
∞∑

m=0

(−i)m

m! (kµ)mΞ̃(m)(k) (3.3)

with µ ≡ k̂ · n̂ the angle cosine of the wave-number and the line of sight direction, and Ξ̃(m)

is the velocity weighted density momentum of degree m,

Ξ̃(m)(k) = 1
(aH)m

∫
d3x e−ik·x ⟨

(
1 + δg(x2)

)(
1 + δg(x1)

)
(n̂ · ∆v)m⟩, (3.4)

with x = x2 − x1 and ∆v = v(x2) − v(x1). Each one of these moments can be brought
into the integral form [71]

Ξ̃(m)(k) =
∑

n

∫
d3p (p̂ · n̂)nS(m)

n (k, p), (3.5)

– 6 –
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for some rotational invariant functions S
(m)
n (k, p) ≡ S

(m)
n (k, p, x) with x ≡ k̂ · p̂. Then,

one can expand [71, 72]∫
d3p

(2π)3 (p̂ · n̂)nS(m)
n (k, p) =

n∑
m=0

µm
∫

d3p

(2π)3 Gnm(x)S(m)
n (k, p, x) (3.6)

with

Gnm(x) =
n∑

ℓ=0

(1 + (−1)ℓ+n)(2ℓ + 1)
2(1 + ℓ + n)

(
ℓ

m

)(
2ℓ

ℓ

)(
ℓ+m−1

2
ℓ

)

× 3F2

(1 − ℓ

2 , − ℓ

2 ,
1
2(−1 − ℓ − n); 1

2 − ℓ,
1
2(1 − ℓ − n); 1

)
Lℓ(x), (3.7)

where 3F2(a; b; z) is the generalized hypergeometric function of the kind (p = 3, q = 2) [73],
and Lℓ(x) is the Legendre polynomial of degree ℓ. Equation (3.6) allows us to write the
power spectrum in eq. (3.3) as

Ps(k, µ) =
∞∑

m=0

m∑
n=0

µ2nfmImn(k) (3.8)

with f the linear growth rate and Imn(k) a set of functions that only depend on the wave-
number k. To obtain the one-loop power spectrum, one must truncate the sum at m = 4
(m > 4 gives higher than one-loop terms, as can be read from eq. (3.4)). The leading order,
tree-level expansion reduces to the Kaiser power spectrum [13], while the one-loop pieces
of functions Imn(k) can be written either as [71]

Imn(k) =
∫

d3p Kmn(k, p)PL(|k − p|)PL(p), (3.9)

or

Imn(k) = PL(k)
∫

d3p Kmn(k, p)PL(p), (3.10)

that we call P22-type and P13-type, respectively, since they have the form of the contributions
P22 and P13 to the one-loop real space power spectrum [15]. In the case of Einstein-de Sitter
evolution, or more precisely when f(a) = Ω1/2

m (a), the kernels Kmn are known analytically,
and the integrals can be solved via standard methods in perturbation theory. In particular,
the Folps code uses Fast Fourier Transform in logarithmic spaced intervals (FFTLog) [74–80]
to speed up these computations (see section 4 and appendix C).

Keeping only up to one-loop corrections one obtains

Ps(k, µ) = Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) + ATNS(k, µ) + D(k, µ), (3.11)

where ATNS is the standard function “A” in the Taruya-Nishimichi-Saito (TNS) model (see
eqs. (19) and (A3) of [81]) constructed out of three-point correlators, and D(k, µ) is given
by eq. (3.42) of [39], which is constructed from four-point correlators and hence by only
linear fields at one-loop.

We adopt the definition

θ(x) = −∇ · v(x)
aHf

(3.12)

– 7 –
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for the divergence of the velocity, and hence, Pδδ, Pδθ and Pθθ are the density-density, density-
velocity and velocity-velocity one-loop power spectra, respectively. With the definition of
equation (3.12), the velocity and density fields become equal at the linear order, i.e. δ(1) = θ(1).
This holds true for the ΛCDM cosmology, where neutrinos are approximated as massless, and
hence, the growth rate becomes only a function of time. This is a reasonable approximation
when the total sum of their masses is small. Indeed, for a total neutrino mass of 0.06 eV,
using Einstein-de Sitter kernels produces results that are almost indistinguishable from those
obtained using the full theoretical framework [82, 83].

3.1 Bias, effective field theory and shot noise

At large scales, galaxies are biased tracers of the combined cold dark matter plus baryons
field, and not the total matter field which also includes the massive neutrinos [84]. To relate
galaxy and matter (cold+baryonic, cb) overdensities we use the biasing prescription of [17],
which after renormalization yields the equations [85]

Pδδ(k) = b2
1P 1-loop

cb,δδ (k) + 2b1b2Pb1b2(k) + 2b1bs2Pb1bs2 (k) + b2
2Pb2

2
(k)

+ 2b2bs2Pb2bs2 (k) + b2
s2Pb2

s2
(k) + 2b1b3nlσ

2
3(k)P L

cb,δδ(k), (3.13)

Pδθ(k) = b1P 1-loop
cb,δθ (k) + b2Pb2,θ(k) + bs2Pbs2 ,θ(k) + b3nlσ

2
3(k)P L

cb,δθ(k), (3.14)

Pθθ(k) = P 1-loop
cb,θθ (k), (3.15)

which enter into eq. (3.11). Notice the renormalization process requires the presence of shot
noise and EFT counterterms introduced below. Expressions for all the functions PXY can be
found in several articles (e.g. [17, 86]), although these can differ a little bit in the definitions.
Here, we use eqs. (3.43)–(3.49) of [71]. Further, the function σ2

3, which accompanies the
third-order non-local bias parameter b3nl, is given by

σ2
3(k) = 105

16

∫
d3p

(2π)3 PL(p)
[
S2(p, k − p)

(2
7S2(−p, k) − 4

21

)
+ 8

63

]
, (3.16)

with S2(k1, k2) = k̂1 · k̂2 − 1/3.
On the other hand, the functions ATNS and D are affected by the linear bias in the

following way,

ATNS(k, µ; f) → b3
1ATNS(k, µ; f/b1), (3.17)

D(k, µ; f) → b4
1D(k, µ; f/b1). (3.18)

While the identification of the biased function D is exact, ATNS is also modified in the
presence of second-order local bias and tidal bias. However, these effects are subdominant
in comparison to those in the PXY spectra, so we keep them out for simplicity. They can
be added using the complete expression for the biased ATNS that can be found in eq. (A.9)
of appendix A.1 of [71].

The power spectrum presented in the preceding subsection, along with various summary
statistics, originates from the theory of fluid equations for cold dark matter. Nevertheless,
the underlying theory that governs a collection of particles subject to gravitational attraction
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is described by the Boltzmann equation. However, the fluid approximation loses its validity
beyond a specific scale determined by the velocity dispersion and the breakdown of the
single-stream approximation. Consequently, we expect our theory to remain applicable only
well beyond this scale. Furthermore, while small scales evade a perturbative description,
understanding their impact on larger scales through backreaction effects is essential for
uncovering a wealth of cosmological information. To accommodate these effects, the standard
procedure involves the regularization of loop integrals with a cutoff scale. Additionally, a
series of counterterms are introduced to eliminate the cutoff scale dependence from the final
expressions.9 This framework, known as Effective Field Theory(ies) for Large Scale Structure
(EFT), was initially proposed in [16–18] and has since been further developed in subsequent
papers; see [87] for a recent review.

Finally, one has to account for the stochastic noise associated with the discreteness
of observations and the finiteness of the number of galaxies in a sample. Hence, our final
expression for the EFT power spectrum is

P EFT
s (k, µ) = Ps(k, µ) + (α0 + α2µ2 + α4µ4)k2PL(k) + Pshot

(
αshot

0 + (kµ)2αshot
2

)
, (3.19)

with Ps the redshift space perturbation theory power spectrum given in eq. (3.11), while
α0,2,4 are the EFT counterterms, and Pshot is a constant that its value can be fixed at choice.
For example, it can be instructive to set it to the inverse of the number density of galaxies,
1/n̄, and since the constant part of the shot noise is given by Pshot × αshot

0 , the parameter
αshot

0 ̸= 1 quantifies the departure from a Poissonian noise. This can be helpful to impose a
Gaussian prior around the Poisson noise since we expect αshot

0 to be of order unity.

3.2 IR-resummations and multipoles

The smearing and degradation of the BAO oscillations [88–91] is not described by SPT, though
it is well captured by LPT even at its lower order, the Zeldovich approximation [20, 34, 59, 92–
94]. In order to model them, we utilize IR-resummation methods [20, 95]. Specifically, we
adopt the approach outlined in [29, 96, 97], which involves splitting the linear power spectrum
into two components as PL = Pnw + Pw: the non-wiggle power spectrum (Pnw), devoid of
the Baryon Acoustic Oscillations (BAO), and the wiggle component (Pw). We construct the
one-loop IR-resummed EFT redshift-space power spectrum as [97]

P IR
s (k, µ) = e−k2Σ2

tot(k,µ)P EFT
s (k, µ) +

(
1 − e−k2Σ2

tot(k,µ))P EFT
s,nw (k, µ)

+ e−k2Σ2
tot(k,µ)Pw(k)k2Σ2

tot(k, µ). (3.20)

The full component, denoted as P EFT
s (k, µ), corresponds to the one-loop power spectrum

calculated using equation (3.19). On the other hand, the non-wiggle part, represented as
P EFT

s,nw (k, µ), is also obtained using equation (3.19), but with the non-wiggle linear power
spectrum Pnw as the input. The function Σ2

tot is defined by

Σ2
tot(k, µ) =

[
1 + fµ2(2 + f

)]
Σ2 + f2µ2(µ2 − 1)δΣ2, (3.21)

9In practice we do not regularize the integrals since we use FFTLog. This is allowed because the loop
integrals do converge, and UV modes yield only small contribution. This approach, which is the most common
in the literature, becomes equivalent to a re-scaling of the EFT counterterms.
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with

Σ2 = 1
6π2

∫ kIR

0
dp Pnw(p) [1 − j0 (p ℓBAO) + 2j2 (p ℓBAO)] , (3.22)

δΣ2 = 1
2π2

∫ kIR

0
dp Pnw(p)j2 (p ℓBAO) , (3.23)

where jn is the spherical Bessel functions of degree n, and ℓBAO ≈ 105 h−1Mpc is the BAO
scale. The wave-number kIR represents a transition scale between long and short modes, and
it is somewhat arbitrary; however, the final results exhibit weak dependence on it as long
as kIR ≳ 0.1 h Mpc−1, as shown in figure 22 of appendix C.

Equation (3.20) is our ultimate model for the power spectrum. To fit the data, we take
its monopole, quadrupole and hexadecapole from

Pℓ(k) = 2ℓ + 1
2

∫ 1

−1
dµ P IR

s (k, µ)Lℓ(µ), (3.24)

where Lℓ are the Legendre polynomial of degree ℓ.

4 FOLPS code

To compute the multipoles of the redshift space power spectrum we use Folpsν (Fast One
Loop Power Spectrum in the presence of massive neutrinos) [39].10 Folps is a code written
entirely in Python with the aid of built-in numpy and scipy functions [98, 99]. It computes
the multipoles of the IR-resummed power spectrum of eq. (3.24) in a fraction of second.11

The code can run in three different setups: Full-Modelling, Standard, and ShapeFit fits.
Broadly speaking, the former involves a direct-fitting of cosmological parameters to the data.
On the other hand, the Standard and ShapeFit approaches employ two-step methodologies.
In the first step, information from clustering is compressed into a set of parameters, which
are subsequently used to infer the cosmological parameters. Section 5 explores in detail
each of these methodologies.

The general pipeline of the Folps code consists of the following steps:

1. It receives as input the linear matter power spectrum of the cb field, and the set of
cosmological parameters: Ωm, h, and Mν , all of which are required for beyond Einstein-
de Sitter (EdS) kernels, as explained below in section 4.1. Note that the growth rate f

can be treated as a derived parameter of the model.12 Additionally, one needs to feed
the code with biases, counterterms and stochastic parameters,

{b1, b2, bs2 , b3nl, α0, α2, α4, αshot
0 , αshot

2 }. (4.1)

2. The code extrapolates the input linear matter power spectrum and computes the
non-wiggle linear power spectrum using the fast sine transform method presented
in [29, 100].

10https://github.com/henoriega/FOLPS-nu. JAX implementation: https://github.com/cosmodesi/folpsax.
11In a standard personal computer, this time is about ∼ 0.2 sec, using NFFT = 128. We refer the reader to

appendix C or figure 9 of [39].
12As it will be explicitly described in section 5, f is a derived parameter in the case of the direct-fit approach

but is treated as a free parameter for the case of the compressed fit approach.
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3. It computes the EFT power spectrum, given by eq. (3.19), where the loop integrals of
the form (3.9) and (3.10) are calculated using FFTLog methods [29, 75–80]. This is
done separately for the regular linear power spectrum and for the linear power spectrum
with the wiggles removed, and thereafter mixed together in the IR-resummed power
spectrum of eq. (3.20) [97].

4. Finally, it calculates the Legendre multipoles using the integral in eq. (3.24).

In practice, eq. (3.24) includes scaling parameters to account for the distance dilation of
scales of the measured power spectrum along and across the line of sight. This dilation is
caused by the — a priori — unknown mapping between redshift-to-distances in a catalogue
provided in terms of angles and redshifts. This is the case for analyses of real data (or
synthetic data mimicking observational effects, e.g., a simulated lightcone), where the power
spectrum is computed by assuming a fiducial cosmology to transform redshifts and angles
into Cartesian distances, which does not necessarily match the true cosmology. Conversely,
for analyses of simulated data where the positions are given in physical Cartesian coordinates
(for e.g., a cubic mock), there is no such dilation. However, in the direct-fit analysis, it is
also common to include these scaling parameters to fully mimic the effect on the parameter
space expected from actual catalogues. On the other hand, the Standard compressed fits
and ShapeFit compressed fits setups naturally include these dilation parameters among their
compressed set of parameters, as we will discuss in more detail in section 5.

Folps incorporates the option to reduce the dimensionality of the parameter space
within a Markov Chain Monte Carlo (MCMC) pipeline by analytically marginalizing over
some nuisance parameters. Then, the above flowchart is slightly modified, as explained
in appendix A.

Finally, the code fixes the parameters related to IR-resummations to ℓBAO = 104 h−1Mpc
and kIR = 0.4 h Mpc−1. In appendix C we explore the robustness of the code by changing
these setups.

4.1 Beyond Einstein-de Sitter kernels

In the presence of additional physical scales, such as the neutrino mass, the linear growth
function D+ and growth rate f are no longer scale-independent. This implies that EdS, or
more generally ΛCDM, kernels are no longer strictly correct. Folps uses the fkPT method
introduced in [39, 83, 101] for dealing with the new scale introduced by the neutrino mass.

The main difference from the standard EdS treatment comes from the fact that linear
velocities and overdensities relate non-locally in the presence of massive neutrinos. Indeed,
in Fourier space we have [82]

θ(1)(k, t) = f(k, t)
f0(t) δ(1)(k, t) (4.2)

where f(k, t) is the time- and scale-dependent linear growth rate, and f0 is a very large scale
limit, where neutrinos behave as cold dark matter. This linear relation is inherited to PT
velocity kernels Gn. The most easy to grasp phenomenon is the advection of large-scale
velocity fields: e.g., at second order, the velocity field receives corrections from the large-scale
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Lagrangian displacements Ψ, such that θ(2)(x) ∋ θ(1)(x + Ψ) − θ(1)(x) = Ψ(1)
i (x)∂iθ

(1)(x) =
∂i
[
∇−2δ(1)(x)

]
∂iθ

(1)(x). Transforming to Fourier space, symmetrizing over outward wavevec-
tors and using eq. (4.2), we obtain the contribution to the second order G2 kernel

1
2

(
f(k1)

f0

k1
k2

+ f(k2)
f0

k2
k1

)
∈ G2(k1, k2). (4.3)

The full expressions for G2 and G3 “fk-kernels” and corresponding modifications to the
standard FFTLog method can be found in [39, 83].

We compute the factor f(k)/f0 using the approximation of Hu-Eisenstein presented
in [102], while to isolate f(k) we obtain f0 by solving the growth function differential equation
in the limit k = 0. It turns out that the shape of f(k) changes very little with redshift, and only
the overall normalization given by f0 is relevant. When performing a joint analysis of tracers,
we exploit this fact and compute the linear power spectrum and loop corrections at a single
redshift, and then re-scale them with the linear growth function at large scales D+(k → 0, z).

The above formalism seems very cumbersome and the differences in the results using EdS
are indeed very small for mν ∼ 0.06 eV. However, when neutrino masses are sampled over
wider ranges, the differences may be important, as we explore in section 7.4. Furthermore,
the implementation of fk-kernels is straightforward and computationally efficient. This is
because with the FFTLog formalism, we transform the evaluation of the loop integrals Imn

from eq. (3.8), into matrix multiplications of the form P22-type or P13-type, depending on
whether they arise from P22-type or P13-type loop integrals [39, 80]. This formalism allows us
to significantly speed up the loop computations compared to the usual direct integration,
where calculations are performed with brute force. This is made possible by employing
highly optimized algorithms for matrix multiplication, which are commonly found in standard
numerical libraries. To incorporate effects beyond EdS, the code only requires computing
2 × 26 P22-type matrix multiplications in the FFTLog formalism, in contrast to the total of
2 × 24 matrix multiplications of this type needed for EdS kernels.13 Similarly, the number
of operations for the computationally less expensive P13-type contributions increases from
2 × 7 to 2 × 11 when including effects beyond EdS. Therefore, the time saved when using
EdS kernels is negligible [39].

5 Extracting cosmological information from galaxy clustering

So far we have described the details of how Folps models the non-linear galaxy power spectrum
given a set of free nuisance parameters (see eq. (4.1)), and given the linear cdm+baryon
power spectrum, P cb

L (k), which the codes take as input for evaluating the one-loop integrals as
described in section 3. The information in terms of cosmological parameters can be essentially
extracted in two approaches: performing a direct-fit, or performing a fit in terms of compressed
parameters. On one hand, the direct-fit approach starts assuming a cosmological model (for
eg., ΛCDM, ωΛCDM, kΛCDM, . . .) with a set of free cosmological parameters, Ω (typically
Ωm, h, As, . . .), and a set of informative priors — flat or Gaussian — that may be applied on
those parameters that are not very well constrained by the data (typically Ωb, ns, τ , . . .). From

13The factor of 2 appears because we have to perform matrix multiplications for power spectra with and
without wiggles.
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this given set of parameters of the model, the full P cb
L (k|Ω) is inferred through a Boltzmann

code (in this case CLASS14 [103]), and the full non-linear power spectrum is computed
(given a set of nuisance parameters), compared to the data, and eventually the posteriors of
the parameters of the models extracted. On the other hand, the compressed parameter fit
approach relies on defining the linear power spectrum function, from a fixed-template linear
power spectrum — evaluated at some reference cosmology — plus a set of free parameters
p which modify that template and the redshift-space and non-linear terms. Similar to the
direct-fit case, the posteriors of the compressed parameters p, as well as the rest of the
nuisance parameters, are extracted by comparing the non-linear power spectrum to the data.

It is important to note that in both approaches the form of the linear power spectrum
is changed, either by Ω or by p, and the difference between the two is the type of freedom
that each approach provides to the linear power spectrum. Once a model is assumed, the
compressed set of p parameters can be mapped to the parameters of the model Ω and
vice-versa. However, depending on the specific choice of the parametrization p and the details
of the model which Ω describe, this mapping may not be invertible. The p parametrization
may not be lossless (hence the Ω parameters may contain more information than p), but
internal model priors can also add information not contained by p. This was explored for
the first time in [104] for a vanilla ΛCDM model.

As we will see in this section, in the direct-fit approach the power spectrum shape changes
in tandem with the Alcock-Paczynski effect and the growth rate in a highly constrained
manner. In the compressed parameter approach instead, the power spectrum shape is in
general less tight to these physical effects, and therefore both approaches will be making
fairly different assumptions at the fitting step. However, at the interpretation step, one
can end up imposing equivalent physical conditions, which should bring both approaches
to retrieve similar results.

Finally, we highlight that each of these approaches has its own advantages and disad-
vantages. Importantly the two approaches address slightly different questions. What can
the data tell us about the parameters of a model (assuming this is the actual model for
the data being analysed), for the direct-fits? What are the model-agnostic features that
the data constrain, and how do these features relate to the parameters of a given model,
for the compressed type of fits?

Below we describe in more detail how these different types of fits are performed. In
table 1, we classify and summarize the methodological aspects of each of these types of fits.

5.1 Full-Modelling analysis

The Full-Modelling or direct-fit approach aims to extract all the cosmological information
contained by the full shape of the power spectrum. This includes not only the BAO and RSD
but also the rest of the features contained by the shape such as the large-scale amplitude, its
slope or the turnaround peak. Each of these features encodes different physical processes at
different epochs: recombination epoch for the BAO, late-time physics for the RSD, matter-
radiation equality for the turnaround, etc. Thus, in this approach it is not easy to isolate the
constraints coming from the different pieces contained within ΛCDM-like models.

14https://lesgourg.github.io/class_public/class.html.
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In the literature, we can find implementations of the Effective Field Theory [18–20, 105]
on extracting cosmological information from spectroscopic surveys (such as BOSS and eBOSS)
employing the Full-Modelling approach [21, 22]. In this approach, the linear shape of the
power spectrum changes as the code explores the posterior of the parameters of interest.
This requires calling in each step of the analysis, an Einstein-Boltzmann code to generate the
linear power spectrum, and a non-linear code, Folps in our case, to evaluate the high-order
loop corrections to eventually produce the non-linear power spectrum, which makes the whole
analysis very time-consuming. This issue is notably mitigated by using efficient methods such
as FFTLog [75], which boosts the performance of the one-loop order calculations, and an
analytic marginalization over some of the nuisance parameters, which significantly reduces
the number of necessary steps for reaching convergence. These points are described in more
detail in section 4 and appendix A. Furthermore, one can always expedite computational
performance even more by emulating the linear and non-linear power spectra, as used e.g.
in [42, 43] and [45], using Taylor series emulators and neural network accelerators, respectively.

In the iteration process described above, the parameters sensitive to the background
cosmology (such as Ωi, with i = m, Λ, k, . . .) change. These parameters determine the
redshift-to-distance conversion of the data catalogue, where the positions are given in terms
of redshift and two angles, into the physical catalogue, where the positions are given in
Cartesian comoving coordinates, and from which the power spectrum is computed. To avoid
recomputing the power spectrum in each step, it is common to fix the cosmology at which
the data catalogue is converted into the physical catalogue and the power spectrum measured.
This means that the power spectrum is computed in terms of the ‘observed’ wave vectors
k’s, instead of the true wave vectors k′’s. If we decompose the 3D wave-vector on modes
along and across the line-of-sight, k∥ and k⊥, respectively, we can write,

k′
∥ = k∥/q∥ , and k′

⊥ = k⊥/q⊥, (5.1)

where true and observed wave-vectors are related by the scaling parameters q∥,⊥. These
parameters can be inferred by knowing the cosmology at which the physical catalogue has
been generated (referred to as ‘fiducial’ cosmology) and the explored cosmology at each step
of the posterior exploration, Ω. These parameters are then the ratio of the Hubble distance,
DH(z) = c/H(z) and the angular diameter distance, DA(z) at the redshift z of the sample,

q∥(z, Ω) = DΩ
H(z)

Dfid
H (z)

, q⊥(z, Ω) = DΩ
A (z)

Dfid
A (z)

. (5.2)

These parameters can then be used to express the theory power spectrum in terms of the
observed wave-vectors and compare them to the data. Before doing so, it is convenient to
write the parallel and perpendicular components of the wave-vectors as the k-modulus and
the cosine of the line-of-sight variables, (k∥, k⊥) → (k, µ),

k′ = k

q⊥

[
1 + µ2

(
F −2 − 1

)]1/2
, µ′ = µ

F

[
1 + µ2

(
F −2 − 1

)]−1/2
, (5.3)

where F ≡ q∥/q⊥ is the Alcock-Paczyński (AP) parameter. With all this, we can write
the theory power spectrum as a function of the observed wave-vectors for each value of
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the explored Ω parameters as,

Pℓ(k) = 2ℓ + 1
2q2

⊥q∥

∫ 1

−1
dµ P th.

s

(
k′(k, µ), µ′(µ)

)
Lℓ(µ), (5.4)

where P th.
s stands for any model used for the theoretical power spectrum in redshift space,

in this case, the one given by eq. (3.20). The pre-factor 1/(q2
⊥q∥) accounts for the isotropic

change in volume when normalizing the true volume, given by the k′’s, in terms of the
observed volume, given by the k’s.

5.2 Standard compression analysis

The Standard Compression technique focuses on extracting cosmological information from two
features imprinted in the P (k) data vector: the BAO and the RSD. The BAO information
is contained in the oscillatory feature of the power spectrum, Pw. Ideally, to extract that
information one just needs to measure the position of the BAO peak in the data power
spectrum relative to some known BAO pattern used as a reference, P ref

w ,

Pw(k) = P ref
w (k/s), (5.5)

where P ref
w is the fixed-template at the reference cosmology for the oscillatory component

of the power spectrum. In this case, s is just the ratio of sound horizon scales at the drag
epoch, of the cosmology of the data and the reference cosmology, s = rd/rref

d .15 Note that
the arbitrary choice of this reference cosmology should not impact the determination of rd:
choosing a template whose cosmology has a low/high rref

d is compensated by obtaining a
high/low best-fit value of s. Only a mismatch in the shape and amplitude of the wiggles (not
their position) between data and template could in principle produce a bad fit to the data
and a systematic shift on s, although this could be mitigated by adding extra parameters
that enable the template to be modified for those features. We will come back to this
question later in section 5.6.

As for the Full-Modelling case, the data power spectrum is expressed as a function of
the observed wave-vector and we must account for this in the theory model. Unlike for the
Full-Modelling approach, the parameters that describe the scaling between true and observed
wave-vectors, q∥ and q⊥ are free parameters of the model in the compressed analysis approach,
and therefore their best-fit values represent the ratio between the distances expressed in the
true underlying cosmology and the fiducial cosmology of the catalogue,16

q∥(z) = DH(z)
Dfid

H (z)
, q⊥(z) = DA(z)

Dfid
A (z)

. (5.6)

At this point, we note that the q’s re-scale the full theory power spectrum, and s re-scales
the isotropic wiggle power spectrum such that,

P (k, µ) = P ref
nw (k′(k, µ), µ′(µ)) + P ref

w (k′(k, µ)/s, µ′(µ)) (5.7)
15Note that if P ref(k) is expressed in units of h−1Mpc then rd must also be expressed in the same units in

order to account for the shift in k due to the ratio between h/href .
16Note that since the comoving distances physical catalogues are given in units of h−1Mpc one does not

need to assume any fiducial value for hfid to transform from data to physical catalogue. Consequently, the
inferred q’s are independent of hfid as the h value in both DH,A true and fiducial distances is the same and
cancel out. Thus, Hfid stands for 100hdataE(Ωfid) km/s/Mpc.
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In this case the amplitude of the P ref
nw is parametrized through another two parameters f(z)

and σ8(z). In particular, f(z) accounts for the effect of RSD, whereas σ2
8(z) is related to

the amplitude of the linear power spectrum at a given redshift. The linear Kaiser terms
will only depend on f(z)σ8(z), whereas higher-order loop terms (see eqs. (3.9)–(3.15)) will
display a combined dependence of f(z) and σ8(z) at different powers. Certainly, the P (k)
function of eq. (3.8) displays a very strong correlation between f(z) and σ8(z) but a weak
constraining power on those parameters individually. In this scenario is convenient to consider
the re-parametrization {f(z), σ8(z)} → {f(z)σ8(z), σ8(z)}. In this parametrization, σ8(z)
shows an extremely weak constraining power, and fixing it to a fiducial value does not impact
in a significant way the results. We highlight that since f(z)σ8(z) does vary within the
analysis, fixing σ8(z) only fixes effectively the part of σ8(z) beyond a power of the Kaiser
term: fmσn

8 → (fσ8)m(σ8)n−m
fixed .

In practice since P ref
nw is very close to a power-law, Pnw(k) ∼ k−n, a shift in the amplitude

of Pnw is perfectly compensated by a shift in the argument. This implies that the isotropic shift
from k′ → k given by eq. (5.3) is indistinguishable from a shift of k → k/s. Although in reality,
Pnw(k) is not a power law, it has been shown that almost all the constraining power on the q’s
comes from the wiggle part of the power spectrum. Thus the following approximation holds,

P (k, µ) ≃ P ref(k′(k, µ)/s, µ′(µ)). (5.8)

For simplicity, one could choose the reference cosmology of the template to be equal to the
fiducial cosmology used to generate the physical catalogue. In that case, the above expression
consists of a re-scaling of k∥ and k⊥ (or k and µ), by,

k′
∥ = k∥/α∥, and k′

⊥ = k⊥/α⊥, (5.9)

with the scaling parameters given by,17

α∥ = DH(z)/rd

Dfid
H (z)/rfid

d

, α⊥ = DA(z)/rd

Dfid
A (z)/rfid

d

. (5.10)

From these expressions, one can analogously write the expressions of eq. (5.3) just changing
q∥, ⊥ by α∥, ⊥. With all this, we write the theory power spectrum in terms of the observed
wave-vectors as,

Pℓ(k) = 2ℓ + 1
2α2

⊥α∥

∫ 1

−1
dµ P th.

s

(
k′(k, µ), µ′(µ)

)
Lℓ(µ), (5.11)

where P th.
s is computed from the fixed linear power spectrum template at the cosmology of

reference (chosen to be equal to the fiducial one) which includes f(z)σ8(z) as a free parameter.
Since this template does not change in each iteration (only the parameters {α∥, α⊥, fσ8})
the loop integrals of eqs. (3.9)–(3.10) can be pre-computed which boosts the efficiency of this
approach. Finally, it is worth noting that the above expression re-scales the volume of the

17The eq. (5.10) is valid when the reference cosmology of the template coincides with the fiducial cosmology
used to convert the redshift-to-distance when creating the physical catalogue. When the reference and fiducial
cosmologies differ, the sound horizon scale at the drag epoch should be expressed in terms of the reference
cosmology, rref

d .
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power spectrum as 1/(α∥α2
⊥). This term is not fully correct, as the BAO shift (represented

by the s parameter) does not change the scale of the observed wave-modes. Therefore this
pre-factor should in fact read as, (rfid

d /rd)/(α∥α2
⊥). However, as far as the fiducial choice

of the template has a rfid
d value reasonably close to the actual rd this mismatch in volume

will be re-absorbed by other bias or nuisance parameters.
At this point, it is worth mentioning that the inferred σ8 parameter (as part of fσ8)

corresponds to the fluctuations of the linear power spectrum smoothed by a top-hat function
at a scale of 8 Mpc/href . It is then the template which provides a ‘standard amplitude’ to
measure the data, in a similar fashion to the standard ruler rd for the BAO peak measurements.
In order to make the notation clearer we follow [23] (see eq. 2.9) and refer to σs8 to the
measured amplitude at the fiducial cosmology of the template and reserve the σ8 to denote
the usual amplitude fluctuations smoothed by 8 Mpch−1 in the cosmology of the data. Later
in section 5.4 we will discuss the actual relation between σ8 and σs8 in the light of ShapeFit.

In summary, the standard compression analysis employs a fixed template to compress the
BAO and RSD information into the parameters {α∥, α⊥, fσ8}, allowing us to drastically reduce
the computational time during the parameter inference process because the linear power spec-
trum and the non-linear corrections (which are the most expensive pieces) are computed only
once for the reference cosmology. This is because, in this analysis, the cosmological parameters
are fixed to the reference cosmology, while the compression parameters are constrained.

The constraints on the compressed parameters could be interpreted in terms of the
cosmological parameters. This procedure is presented in section 5.4 and essentially consists
of using eqs. (5.10) in combination with Ωm(z) = f(z)γ to obtain constraints on ΛCDM-like
parameters.

5.3 ShapeFit compression analysis

Standard compression analysis has proven to be a powerful tool for extracting and analyzing
information from BOSS and eBOSS surveys [106–110]. It perfectly compresses the most
relevant information contained by LSS galaxy catalogues, which is the BAO as the standard
ruler and the RSD as a probe of gravity. However, it completely ignores the information
contained by the transfer function. This limitation is historically mitigated by combining the
LSS galaxy catalogue with CMB anisotropic experiments, such as WMAP or Planck. The
latter are not sensitive to late-time effects such as the galaxy BAO or RSD but are extremely
good at constraining the shape of the linear matter power spectrum. However, when the LSS
analysis is considered alone (or with just a few CMB priors) the Standard Compression is not
lossless, and the constraints significantly differ from those retrieved by the Full-Modelling
analysis. This limitation has been recently addressed by [23], in which the authors propose a
two-parameter extension to the standard compression that improves the constraining power of
the standard compression approach. In [23, 111] the authors show that for the ΛCDM model
and for a volume of few h−3Gpc3 this compression is close to being lossless. In addition,
under a tight prior on ωb the compression has shown also to be lossless for ΛCDM for volumes
of few hundred h−3Gpc3 [104]. In section 7, this methodology is tested for several cases,
such as relaxing the prior on ωb and ns, as well as for models beyond ΛCDM.
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ShapeFit relies on the same main idea as the standard compression, consisting of taking
a linear power spectrum template evaluated at a reference cosmology and introducing a set
of variables that modify the form of that power spectrum template. In addition to the BAO-
wiggle modification (parametrized by {α∥, α⊥}), and the anisotropic amplitude modification,
ShapeFit introduces a novel modification of the broadband shape of the linear power pivoting
at a certain scale. Such modification aims to capture information both from matter-radiation
equally epoch, as well as the spectral index of the primordial power spectrum [23],

P ′
L(k) = P ref

L (k) exp
{

m

a
tanh

[
a ln

(
k

kp

)]
+ n ln

(
k

kp

)}
, (5.12)

where a and kp are fixed to the values a = 0.6 and kp = 0.03 href Mpc−1 ≈ π/rref
d (although

other values could also be chosen). The hyperbolic tangent is chosen as a generic sigmoid
function between two regimes where k → 0 and k → ∞, as it was shown in figure 4 of [23].
The parameters m and n are freely varied. The m parameter (or Shape) is the maxim
slope at the pivot scale kp and has a physical relation with the matter-radiation equality
epoch. Under certain assumptions for a ΛCDM model, this parameter is related to Ωmh2.
Conversely, the n parameter controls the power-law index of the power spectrum at large
k values and is related to the primordial spectral index parameter ns. As we will discuss
later, in section 7.3, both m and n present an extremely high anticorrelation, such that one
of them can be fixed (for e.g., n = 0) and proceed just with one ShapeFit parameter m. In
the cosmology interpretation step (when one goes from p variables to Ω) one takes ns to
be fixed (at the value of the chosen reference template, P ref , or alternative, interpret m as
if it were m − n being varied and m + n being fixed to zero).

Hence, ShapeFit allows an extension of the Standard Compressed set of parameters
which allows access to the BAO and RSD information, but also to early-time physics features
through the m and n parameters. In its full extension, the ShapeFit compression set of
parameters consists of {α∥, α⊥, fσs8, m, n} per redshift bin, although in many cases n will
be kept fixed to zero. In appendix B we discuss some details on how the ShapeFit template
variation of eq. (5.12) is included in Folps.

5.4 Interpreting compressed parameters in terms of cosmological parameters

We have already presented the compressed step for both the Standard and ShapeFit analyses,
in which clustering information is condensed into the parameters {α⊥, α∥, fσs8, m, n}.18 To
interpret these results in terms of cosmological parameters, we need to perform an additional
inference step. In this step, the parameters to be fitted will be the cosmological parameters
of a given model, typically {h, ωb, ωcdm, As} for the ΛCDM model. Note, however, that the
assumption of the cosmological model is done a posteriori, i.e. after the multipole data has
been fitted during the compression step. Therefore, this inference step does not depend on
the perturbative model. Furthermore, the same set of compressed data-vector parameters
can be mapped into several models within the same family of models (e.g., ΛCDM, wΛCDM,
kΛCDM, etc.) without needing to re-fit the data Pℓ(k). In this sense, the compressed set

18The parameters m and n enter in the ShapeFit analysis via the eq. (5.12). They are not considered in the
Standard analysis.
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Compressed Fits Direct-Fit
Analysis aspects Standard ShapeFit Full-Modelling
Source of
information

BAO and RSD BAO, RSD and
slope of P (k)

Full-shape of P (k)

Parameters being
varied

{α⊥, α∥, fσ8} {α⊥, α∥, fσs8, m, n} Model parameters
e.g., {h, Ωm, As}

Linear PL(k) Fixed (only amplitude
variation through σ8)

Changes via
eq. (5.12)

Varies according to
the model parameters

Non-linear
corrections

Computed only
once at P ref

L

Computed via (B.1) Computed using the
PL of the model

Scaling parameters Free parameters
(α∥, α⊥)

Free parameters
(α∥, α⊥)

Derived parameters (q∥, q⊥)
calculated via eq. (5.2)

Table 1. Summary of methodological aspects of the Standard, ShapeFit, and Full-Modelling fits.

of parameters, {α⊥, α∥, fσs8, m, n}, are model-agnostic, as they are valid for a wide family
of cosmological models.

To accomplish the interpretation in terms of cosmological parameters, we need to
extract the mean and covariance matrix from the compressed parameters obtained earlier.
These extracted values will be used as the “data-vector” and the corresponding covariance
matrix, which we denote as pmean and Covp, respectively. After selecting our cosmological
model, during the inference process, we calculate, at each step, the expected compressed
parameters pΩ = {α⊥, α∥, fσs8, m, n}exp as a function of the cosmological parameters Ω =
{h, ωcdm, As, . . .} of the chosen model. Subsequently, we extract the posterior distributions
of the cosmological parameters. At this stage, we assume that the compressed parameters
follow a Gaussian distribution, and the likelihood function L can be expressed as,

L = exp
[
(pΩ − pmean) Cov−1

p (pΩ − pmean)T
]
. (5.13)

The interpretation of the scaling parameters α⊥,∥ is the same for both Standard and ShapeFit
analyses, and is given by eq. (5.10). However, the interpretation of fσ8 is slightly different
in ShapeFit since the parameter σ8 becomes a function of the compressed parameter m

according to eq. (5.12). We refer to this parameter as fσs8, and the interpretation is provided
by19 [23, 112]

fσs8 = fσref
s8 A1/2 × exp

{
m

2a
tanh

[
a ln

(
rref

d [ h−1Mpc]
8 h−1Mpc

)]}
, (5.14)

19Note that equations (5.14)–(5.17) include the ‘ref’ label, which indicates the reference template cosmology.
This cosmology may differ from the fiducial cosmology used in constructing the physical catalogue. The
implications of using different template cosmologies will be further explored in section 5.6. However, the
results presented in sections 6 and 7 are based on fixing the template cosmology to the fiducial cosmology
of simulations.
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with A = Asp/Aref
sp , where Asp represents the fluctuation amplitude given by

Asp = 1
s3 PL,nw

(
kp

s
, Ω
)

, s = rd
rref

d
, (5.15)

where a = 0.6 and kp = 0.03 href Mpc−1. Meanwhile, the effective ShapeFit parameter m

that controls the slope of the power spectrum can be interpreted in terms of cosmological
parameters as [23]

m = d

d ln k

ln

 PL,nw
(

kp

s , Ω
)

/PR(kp, Ω)

PL,nw
(

kp

s , Ωref
)

/PR(kp, Ωref)

∣∣∣∣∣∣
k=kp

, (5.16)

with PR(k) = As (k/kp)ns−1 the primordial power spectrum, which is given in terms of the
global amplitude As and the spectral index ns. For most of the tests, we set the ShapeFit
parameter n to zero during the compression step due to its strong degeneracy with m, as
presented in section 7.3. In this case, when interpreting the results in terms of the cosmological
parameters, we should keep the spectral index fixed to its reference value nref

s . When varying
the power spectrum spectral index in the analysis, the shaft variable n is related to ns by

n = ns − nref
s . (5.17)

5.5 Comparison of Standard, ShapeFit and Full-Modelling approaches

Here we compare the performance of the three fitting methods discussed earlier. To do this,
in figure 1 we show the fittings to synthetic AbacusSummit LRG mocks with a total volume
of 200 h−3Gpc3. In the left panel, we vary the compressed parameters for both Standard and
ShapeFit compression analyses, observing quite similar contours and marginalized posterior
distributions for the common parameters. Both approaches successfully recover the expected
parameters within 68% limits, corresponding to {α⊥,∥ = 1.0, fσs8 = 0.4501, m = 0.0}.
For this test, we set the reference template cosmology to the true value of the simulation.
The systematic effects introduced by the choice of the reference cosmology are addressed
below in section 5.6.

The right panel of figure 1 displays the result when interpreting the compressed parameters
in terms of the ΛCDM cosmology. We also include the results obtained with the direct
Full-Modelling analysis. For all three methods, we vary the cosmological parameters ωcdm,
h and ln(1010As) using flat priors, and ωb with a very restrictive Gaussian prior around
the value on the simulations, while the spectral index ns is kept fixed. We notice the
performance for this setting is quite similar for the cases of Full-Modelling and ShapeFit,
outperforming the Standard approach. The Standard analysis has limited power compared
to other methods because it only relies on information from the BAO peak position and
RSD. On the other hand, ShapeFit provides additional information from the broadband
slope power spectrum, while Full-Modelling extracts information from the full-shape of the
spectra. For this reason, throughout the rest of the paper, we will only focus on the ShapeFit
and Full-Modelling methods.
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Figure 1. Comparison of the Standard (gray), ShapeFit (orange), and Full-Modelling (blue) posteriors
when fitting the monopole and quadrupole of the LRG AbacusSummit mocks. The left panel shows
2D contours of compressed parameters for the Standard and ShapeFit approaches. Meanwhile, the
right panel compares the cosmological parameters for compressed and direct-fits. We use the range of
k = [0.02, 0.18] h−1Mpc and the maximum available volume by the simulations, V25 = 200 h−3Gpc3.
Black-dashed lines represent the expected values.

5.6 Effect of the reference template in ShapeFit

ShapeFit builds upon the same fundamental concept as standard compressed analysis, which
involves defining a linear power spectrum fixed template that is evaluated at a reference
cosmology. This reference cosmology is usually assumed to be close to the values reported by
previous observations. However, in realistic analyses, the assumed reference cosmology may
differ from the actual cosmology of the Universe. This can lead to differences between the
observed spectra from the data and those obtained from the fixed template. To address this
issue, ShapeFit introduces a set of parameters that modify the power spectrum template,
enabling it to capture cosmological information of the clustering, as outlined in section 5.
At this point, we ask ourselves: what happens if the reference template cosmology is very
different from the true cosmology? What impact does it have on the cosmological parameters?

Here we explore the impact of varying the reference template cosmology on ShapeFit by
changing it relative to the known true cosmology of the simulations. To accomplish this, we
utilize the LRG cubic mocks with a volume of V = 8 h−3Gpc3 and conduct fits by incrementing
the parameters h, wcdm, and As by +3% and +10% relative to the true cosmology. The
differences in terms of the compressed (cosmological) parameters are presented in the top
(bottom) panel of figure 2, where we define ∆α⊥,∥ = αobs

⊥,∥ − αexp
⊥,∥, with the labels ‘obs’ and

‘exp’ referring to the observed and expected values of the parameters, respectively. Similarly,
these definitions apply to the other parameters.

From the figure, we can infer that as the reference template deviates further from the
true cosmology, the bias in the results becomes more pronounced. These differences are
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Fits on LRGs with V1 = 8 h−3Gpc3

−0.03 0.00

∆α⊥

−0.05 0.05

∆α‖

−0.05 0.05

∆ fσ ref
s8A

1/2

−0.1 0.0 0.1

∆m

Ωref = Ωtrue Ωref = Ωtrue + 3% Ωref = Ωtrue + 10%

0.66 0.68 0.70

h
0.11 0.12 0.13

ωcdm

2.8 3.0 3.2

ln(1010As)

Ωfid = Ωtrue Ωfid = Ωtrue + 3% Ωfid = Ωtrue + 10%

Figure 2. Influence on the compressed parameters (top panel) and on the cosmological parameters
(bottom panel) caused by the choice of the reference cosmology used to create the fixed template
for the ShapeFit analysis. We compare the results when the reference cosmology corresponds to
the true cosmology of the simulations (solid orange line) and when the cosmological parameters h,
ωcdm, and As are biased with respect to the true simulation values by a factor of +3% (dash-dotted
purple line) and +10 % (solid blue line), simultaneously in h, ωcdm and As. We use the range of
k = [0.02, 0.18] h−1Mpc and fit it to the LRG cubic box with V1 = 8 h−3Gpc3. The black dashed lines
represent the expected values for each parameter.

primarily driven by the ShapeFit parameter m, which significantly affects wcdm since both
parameters control the slope of the power spectrum. In contrast, the differences for h and
As are minimal (even for the case of the template with +10% shifts), as expected from the
compressed ∆α′s and ∆fσref

s8 A1/2. This suggests that the BAO peak position and RSD are
minimally impacted by the reference cosmology.

The main motivation for using the LRG tracer and volume V = 8 h−3Gpc3 is that, as will
be shown in section 6, the LRG tracer produces the smallest systematic errors, allowing for a
clearer visualization of the effect introduced purely by the choice of the reference template
cosmology. Additionally, V = 8 h−3Gpc3 represents the minimum volume allowed by the
simulations, so it is expected that for larger volumes and when combining different tracers
and redshift bins, the systematic error introduced by the choice of the reference cosmology
will be more pronounced. This allows us to determine how relevant this systematic error
in ShapeFit will be for future observations.
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It is important to note that the systematic effect shown in figure 2 is solely associated
with the choice of the reference template cosmology in ShapeFit. This systematic effect is
not present in Full-Modelling because it iteratively varies the template as a function of the
cosmological parameters. However, both ShapeFit and Full-Modelling are affected by an
additional systematic introduced by the fiducial cosmology used to convert from redshift to
distances when generating the physical catalogue. However, the latter effect is beyond the
scope of this work and will be examined in a separate study [113, 114].

6 Baseline analysis

In this section, we establish our baseline configurations, including the range of wave-numbers
utilized, chosen parameters, and priors. We perform MCMC runs and present the findings
of these baseline analyses employing a simplified ΛCDM model. Subsequently, in section 7,
we explore models that extend beyond these established settings.

6.1 k-range

First, we study the dependence on the maximal wave-number for ShapeFit and Full-Modelling
analyses. In these tests, we keep the minimal wave-number fixed at kmin = 0.02 h Mpc−1,
while varying the upper limit across the values of 0.12 ≤ k [ h Mpc−1] ≤ 0.22. These analyses
involve fitting the monopole and quadrupole of our model to the LRG, ELG, and QSO
datasets, using the full re-scaled covariance, corresponding to a volume of V25 = 200 h−3Gpc3.
The results are presented in figure 3, illustrating the compressed ShapeFit parameters on the
left and the cosmological parameters obtained through the direct Full-Modelling approach on
the right, where the color of the symbol stands for the type of tracer, and indicated. The
horizontal dotted lines represent the expected values. We observe that QSO datasets tend
to have more significant systematics and larger error bars compared to the LRG and ELG
samples. The larger error bars are due to the low number density of objects in the QSO
catalog, compared to the ELG and LRGs, resulting in a shot-noise-dominated sample, with a
smaller effective volume, but also limiting the range at high-k.

From figure 3, we observe that at higher wave-numbers, we obtain tighter constraints
but also larger systematic biases in some parameters. This is because small scales are
primarily influenced by non-linear effects, complicating the model description, and these
effects become more pronounced in a larger volume. Our tests show that for the range of
scales kmax = 0.16 − 0.20 h Mpc−1, we are able to recover the parameters around the 68%
confidence limits, but overall, kmax = 0.18 h Mpc−1 seems to have a better performance
with smaller standard deviations and systematic errors. Therefore, this will be employed
as the optimal maximum wave-number for our analysis, and hereafter our default choice
unless otherwise stated.

6.2 Priors on nuisance parameters

We now turn our attention to choosing the parameters to be varied and their priors. We
will use two different settings. The first one is the simplest implementation which consists
of assuming coevolution for the bias parameters and letting flat, uninformative prior in the
rest of the nuisances. We call this choice Minimal Freedom (from now on Min.F.), and we

– 23 –



J
C
A
P
0
1
(
2
0
2
5
)
1
3
6

Fits with: V25 = 200 h−3Gpc3; ℓ = 0, 2; Min. F.
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Figure 3. Dependence on the maximal wave-number kmax for ShapeFit (left panel) and the direct
Full-Modelling (right panel) analyses. We fix kmin = 0.02 h−1Mpc and consider the monopole and
quadrupole with the full covariance of V = 200 h−3Gpc3 for LRGs (z = 0.8), ELGs (z = 1.1), and
QSOs (z = 1.4). We set the non-local biases bs2 and b3nl to their coevolution prediction given by
eqs. (6.1); however, this condition will be later relaxed in section 6.2. The dotted lines represent
the expected values for the simulations, while the grey shadow indicates the optimal maximum
wave-number choice for our analysis.

already used it to generate the results shown in figures 1 and 3. That is, we fix bs2 and b3nl
to their values obtained from coevolution theory [85, 115, 116]

Min.F.: bs2 = −4
7(b1 − 1) and b3nl = 32

315(b1 − 1). (6.1)

We employ coevolution theory for describing the clustering of galaxies, although strictly is only
valid for halos fulfilling a local Lagrangian bias. We consider as a reasonable approximation
that both haloes and galaxies should have similar properties in terms of the locality of their
bias. We already showed for the LRG and ELG AbacusSummit mocks in figure 3, that
was indeed a very good approximation. The bottom left panel of table 2 summarizes all
the nuisance parameters in Min.F. and their priors.

We want to investigate how relaxing the coevolution assumption impacts the constraints
on the compressed and cosmological parameters. To this end, we adopt different Gaussian
priors N (coev, N × coev) with the mean given by the coevolution value in eq. (6.1) and
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Parameter type Range Parameter type Range
Compressed Cosmological

α⊥ U [0.8, 1.4] h U [0.5, 0.9]
α∥ U [0.8, 1.4] ωcdm U [0.05, 0.2]

fσs8 U [0.0, 1.0] ωb N (0.02237, 0.00037)
m U [−3.0, 3.0] ln(1010As) U [2, 4]

Nuisances Min. F. Nuisances Max. F.
b1 U [10−5, 10] b1 U [10−5, 10]
b2 U [−50, 50] b2 U [−50, 50]
bs2 Fixed to coev. bs2 Uninformative*
b3nl Fixed to coev. b3nl Uninformative*

Table 2. Priors on compressed (used for ShapeFit), cosmological (used for Full-Modelling), and
bias parameters for minimal and maximal freedom settings (Min.F. and Max.F, respectively). We
adopt also uninformative priors on EFT counterterms α0, α2 and α4 (when the hexadecapole is
considered) and in stochastics αshot

0 and αshot
2 . Still, we marginalize analytically over these parameters

as explained in appendix A. The neutrino mass is fixed to Mν = 0.06 eV. The asterisks accompanying
Uninformative indicate that these priors are in practice Gaussian, but sufficiently wide so they do not
alter the results from truly uninformative-flat priors, as illustrated in figure 6.

with standard deviation equals to N times that same coevolution value. These prior choices
can be interpreted as giving a slight preference for the coevolution setting, but departing
out of it as N grows. At some point, the standard deviation of the priors is sufficiently
large so they become uninformative.

In figures 4 and 5 we show 1-dimensional marginalized posteriors when applying the
above priors to bs2 (top panel) and to b3nl (bottom panel), for ShapeFit and Full-Modelling,
respectively. We consider the case of the LRG AbacusSummit mocks. This analysis reveals
that the posteriors exhibit high sensitivity to restrictive priors applied to the third-order bias
b3nl, whereas the discrepancies arising from bs2 are comparatively less pronounced. Further, we
show that for scaling factors N = 12 for bs2 , and N = 6 for b3nl, we recover the uninformative
priors with high precision. We then take this choice as our Max.F. case for LRG (in table 2,
we indicate this with an asterisk mark). We can, instead, simply let vary non-local biases over
flat priors with large enough intervals. However our option of Max.F. have better convergence
properties when sampling the parameters with MCMC, while the difference of the posteriors
between this option and the true Max.F. (which has uninformative priors) are negligible.
This behaviour is illustrated in figure 6, where we compare between Min.F., Max.F. and
uninformative priors. This analysis is repeated for QSO and ELG datasets, such that we can
guarantee that the all our chains attain convergence and our priors are indeed uninformative,
and that the choice of Gaussian priors is not affecting the posterior distribution. In table 2,
we summarize the parameters and their priors for Max.F.

The effects of priors have been warned in [36, 117, 118]. The choice of priors on nuisance
parameters may affect the inference of cosmological parameters, which would indicate that
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Figure 4. The impact on the ShapeFit compressed parameters when altering the non-local bias
setups on the LRGs AbacusSummit sample. The top panel and bottom panel display the impact of
relaxing the coevolution condition (navy) on bs2 and b3nl, respectively. The options explored are to
leave the remaining bias non-local bias term with an uninformative prior or with Gaussian priors with
mean values derived from coevolution and standard deviations σ set as multiples of the coevolution
values, as indicated. We re-scale the covariance by the factor 1/25, hence the effective volume of the
sample is V = 200 h−3Gpc3 and fit the data over the interval k = [0.02, 0.18] h Mpc−1.

the posteriors are dominated by the priors and not by the data. Prior weights or projection
effects, for example, can explain some of the discrepancies found for different analyses of
BOSS data [118]. In this work our main results adopt uninformative priors. However, for
illustration, in figure 7 (left panel on ShapeFit parameter; right panel on Full-Modelling
parameters) we show the impact of adopting more tight restrictions on our baseline settings, a
practice commonly adopted in numerous studies within this field. First, for each counterterm
αi, we choose a family of Gaussian priors all centred with mean ᾱi = 0 and standard
deviations σαi = N × mean; that is, a factor N times the mean values found in the case of
uninformative priors obtained from a previous analysis. We repeat these experiments, but
using Gaussian priors centered at the mean values, ᾱi = means, not surprisingly, showing even
better constraints. This analysis shows that one can obtain tighter constraints on cosmological

– 26 –



J
C
A
P
0
1
(
2
0
2
5
)
1
3
6

0.67 0.68

h
0.116 0.120 0.124

ωcdm

3.00 3.05 3.10

ln(1010As)

FM, V25 : Priors on bs2 (keeping b3nl fixed to coev.)

bs2 : Fixed to coev. bs2 : N (coev, 3× coev) bs2 : N (coev, 12× coev) bs2 : Uninformative prior

0.67 0.68

h
0.115 0.120 0.125

ωcdm

2.95 3.00 3.05 3.10

ln(1010As)

FM, V25 : Priors on b3nl (keeping bs2 fixed to coev.)

b3nl : Fixed to coev. b3nl : N (coev, 1× coev) b3nl : N (coev, 6× coev) b3nl : Uninformative prior

Figure 5. The impact on the Full-Modelling parameters when altering the non-local bias setups on
the LRGs AbacusSummit. Same notation as in figure 4.

parameters by choosing ad hoc priors. One can argue that EFT counterterms are expected to
operate above a non-linear scale kNL, such their contributions c(k/kNL)2PL(k) should have
a parameter c of order unity. In this sense, it is reasonable to impose a prior c ∼ N (0, 1).
However, although the above argument may sound compelling, the choice of the non-linear
scale kNL is arbitrary and the posterior distributions can be very sensitive to this value. That
is, the results may become highly prior dependent, which has now translated to the specific
chosen value for kNL. For this reason, in this work, we rely only on uninformative priors.20

However, we foresee situations where imposing informative priors may be necessary
to obtain some results. This happens, for example, for the w0waCDM model where the
equation of state, in addition to being degenerate with As, becomes highly degenerate with

20A possible approach is to estimate the running of the EFT counterterms by varying the UV regularization
scale (see [19] for a measurement of the running of the dark matter speed of sound). From this, one can
estimate the variation of c/k2

NL, and by setting c equal to unity, determine the value of kNL. However, this
method is model-dependent and can be very sensitive to the value of the cosmological parameters.
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Figure 6. Posteriors corresponding to the LRG AbacusSummit mocks, for the ShapeFit (left panel)
and Full-Modelling (right panel) analysis for the Maximal (red) and Minimal Freedom (blue) setups,
as defined in table 2. We additionally display the contours for the choice of completely uninformative
priors in gray demonstrating that it matches quite accurately with the Max. F. setting.

the scale-independent piece of the shot noise in the absence of external data. In this case, an
uninformative prior in αshot

0 simply wipes out any constriction on w0 and wa. To gain some
information in this extreme situation one may want to assume a physical (and informative)
Gaussian prior on the shot noise parameter centered around the Poissonian prediction with
a moderate variance. However, we must bear in mind that the information on cosmology
will be informed by the arbitrary choice of this variance.

6.3 Baseline analysis results

Having discussed the nuisance parameters and their priors, we are now in a position to fix a
baseline analysis. This serves as an anchor from which we think analysis beyond it should be
compared. The baseline analysis considers the compressed and cosmological parameters,

SF: {α∥, α⊥, fσs8, m}.

FM: {ωcdm, ωb, h, ln(1010As)}.

Meanwhile, for the nuisance parameters, we use two different setups: 1) Min.F., which
contains all the parameters consistent with local Lagrangian biases and uses the coevolution
relations given by eqs. (6.1) for tidal and non-local third-order biases. 2) Max.F., which
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Figure 7. The impact on ShapeFit compressed parameters (left panel) and cosmological parameters
obtained with the direct Full-Modelling approach (right panel) when using Gaussian priors on the
counterterm α0, α2 and stochastic parameters αshot

0 , αshot
2 . The Gaussian priors are centered at zero

with a variance that goes from 0.2× up to 30× the mean value of that parameter given in table 6,
represented by the orange, purple, blue and green symbols. Alternatively, the black crosses represent
the effect of shifting the center of the Gaussian prior from zero to the mean values given by table 6 and
keeping the same variance as in the overlapping color symbol. The navy star represents the effect of
setting a flat and uninformative prior in each of these parameters. The vertical dotted lines display the
expected value for each parameter. For all the cases bs2 and b3nl are kept to their coevolution prediction.

contains all the parameters included in the full one-loop expansion.

Min.F.: {b1, b2, α0, α2, αshot
0 , αshot

2 }.

Max.F.: {b1, b2, bs2 , b3nl, α0, α2, αshot
0 , αshot

2 }.

Furthermore, in the baseline analysis, all the parameters have uninformative priors, except
for ωb for which a Gaussian prior is chosen, as summarized in table 2.

In figure 8 we show a corner plot of the posteriors of our fittings to the AbacusSummit
mocks. The top panels correspond to the volume V5 = 40 h−3Gpc3, while the bottom
panels to the maximum volume allowed by the simulations V25 = 200 h−3Gpc3. The left
panels display the ShapeFit analysis once we have converted the compressed to cosmological
parameters, whereas the right panels display the Full-Modelling fits. In all these cases we
have adopted the Max.F. setup. Table 3 display the corresponding numerical results on which
we report the mean and 68% confidence interval (c.i.) of the 1-dimensional marginalized
posterior. Additionally, this table also reports the results under the Min.F. setup.

The way the different tracers are combined is the following. In Full-Modelling, we sample
cosmological parameters as usual and calculate power spectrum multipoles using different sets
of nuisance parameters for each redshift bin. In ShapeFit, we compress parameters separately
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for each tracer and then combine them during interpretation in terms of cosmological
parameters. In both cases, the likelihood is computed from the combined datasets, following
L = LLRG + LELG + . . ., which does not assume correlation across z-bins. In fact, we expect
that the z-bins that arise from the same initial conditions (same realization index) present a
certain correlation across them. However, since the redshift snapshots are non-contiguous, and
the bias of the tracers is very distinct, for simplicity we approximate them to be uncorrelated.
The only potential effect of doing so is to slightly underestimate the true posteriors, which
would result in enlarging the systematic errors (hence our systematic budget would only be
more conservative). By comparing the offsets on the parameters on the individual tracers,
and in the combined sample (see figure 8 and table 3) we do not particularly see significant
differences, suggesting that our z-independent approximation is reasonable.

We have performed separate fittings to LRGs, ELGs, QSOs, and the joint analysis includes
the three tracers. We also performed the joint analysis including only LRGs and ELGs
and obtain results very similar the full, three tracers, joint analyisis. To avoid cluttering,
we do not plot these results.

Figure 9 displays the Full-Modelling and ShapeFit-inferred posteriors on the ΛCDM
parameters for better visualization. Both panels display the results on the combined LRG +
ELG+QSO analysis for the Min.F. and Max.F. setups, in the left and right panels, respectively.

From table 3 and figure 9 we notice that in some configurations, the ShapeFit analysis
yields tighter constraints on some cosmological parameters. This is counter-intuitive since
by construction one expects the ShapeFit analysis to be, at most, as constraining as the
Full-Modelling one. Notice, however, that the posterior for the shape parameter m is in
general not Gaussian, and not even symmetric, as can be seen in the figure 4. In general, this
is true for all compressed parameters, but more evident for m. However, these distributions
are treated, for simplicity, as if they were Gaussian in the conversion step to cosmological
parameters. Therefore, this approximation in the posterior of m can yield some situations
in which the ShapeFit analysis seems more constraining than the Full-Modelling one. To
avoid this, instead of performing a Gaussian approximation, we could take the full posterior
surface of the compressed parameter distribution in the interpretation.

Other differences can be seen in the profile of the posteriors, particularly in those for
ln(1010As). In the Full-Modelling fits, the posterior is clearly asymmetric with pronounced
right tails; see, e.g. the left panel of figure 9. A similar behaviour is observed in [43], which
uses Lagrangian PT with velocileptors code, hinting that this is a property of the data
itself. However, this feature is completely lost in the ShapeFit analysis, where the posteriors
are highly symmetric.

In figure 10 we present 1-dimensional plots comparing the ShapeFit and Full-Modelling
approaches for all considered tracers using both Max.F and Min.F., and volumes V5 and V25.
The majority of configurations/parameters show very similar constraints, except for a few of
them. Differences in this case are more evident in ωcdm and ln(1010As) for LRGs, where the
constrictions given by ShapeFit are considerably tighter in the Max.F setup.

As stated above, in table 3, we present the posterior means along with their corresponding
0.68 c.i. for the FM and SF analyses. Additionally, we assess the accuracy of recovering
the cosmological parameters as quantified by ∆Ω/σΩ. Here, ∆Ω = |Ωmean

i − Ωsimulations
i |,

the difference between the mean of the 1-dimensional marginalized posterior distribution
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Figure 8. Baseline Analyses. Contour plots for the posterior distributions computed with the
ShapeFit (left) and Full-Modelling (right) analyses for the volumes of V5 = 40 h−3Gpc3 (top) and
V25 = 200 h−3Gpc3 (bottom), comparing the constraints on the cosmological parameters of the LRG
(z = 0.8) in orange, ELG (z = 1.1) in green, QSO (z = 1.4) tracers in gray. We also plot the constraints
of the joint LRG + ELG + QSO analysis.

of parameter Ωi and its value on the mocks. Meanwhile, σΩ corresponds to the standard
deviation of such a parameter. In all our cases, all the parameters fall within 1σ of their
true values. Specifically, for the Max.F. parameter in the volume V5, which is the least
statistically restrictive configuration we consider, all the parameters are within 0.6σ. Our
least accurate estimations are observed in QSO mocks, which constitute the data that exhibit
the highest level of scattering, in particular, we quote here the Min.F. case on which we
find a maximum deviation of 0.9σ.
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(z = 0.8) + ELG (z = 1.1) + QSO (z = 1.4). The left panel corresponds to the Min. F. setting, while
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Figure 10. Baseline Analyses. Constraints on cosmological parameters obtained from the compressed
ShapeFit (in orange) and direct Full-Modelling (in blue) analyses using both Min. F. (solid lines) and
Max. F. (dashed lines) settings, as presented in table 3. The left panel displays the results based on a
covariance matrix scaled to match a volume of V5 = 40 h−3Gpc3, while the right panel is scaled to
V25 = 200 h−3Gpc3. We compare the constraints of the LRG (z = 0.8), ELG (z = 1.1), QSO (z = 1.4)
tracers, as well as the combined LRG + ELG and ALL = LRG + ELG + QSO sets.
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LRG ELG QSO LRG+ELG+QSO
68% c.i. ∆Ω/σΩ 68% c.i. ∆Ω/σΩ 68% c.i. ∆Ω/σΩ 68% c.i. ∆Ω/σΩ

FM,Min F.V25:

h 0.6741 ± 0.0036 0.15 0.6744 ± 0.0035 0.24 0.6780 ± 0.0048 0.92 0.6738+0.0031
−0.0030 0.05

ωcdm 0.1197+0.0018
−0.0015 0.19 0.1198+0.0014

−0.0012 0.16 0.1182+0.0022
−0.0017 0.88 0.1196 ± 0.0010 0.44

ln(1010As) 3.032+0.017
−0.022 0.20 3.021+0.010

−0.015 1.07 3.022+0.022
−0.032 0.48 3.028+0.008

−0.010 0.87

SF,Min F.V25:

h 0.6747+0.0034
−0.0035 0.31 0.6752 ± 0.0034 0.46 0.6779+0.0042

−0.0043 0.98 0.6751 ± 0.0031 0.49
ωcdm 0.1197+0.0015

−0.0014 0.21 0.1197 ± 0.0012 0.24 0.1185+0.0016
−0.0018 0.85 0.1195 ± 0.0010 0.45

ln(1010As) 3.038+0.020
−0.018 0.08 3.030 ± 0.014 0.45 3.029+0.029

−0.028 0.26 3.032 ± 0.011 0.37

FM,Max F.V25:

h 0.6748+0.0040
−0.0043 0.28 0.6747+0.0037

−0.0036 0.31 0.6775+0.0050
−0.0049 0.78 0.6744 ± 0.0033 0.23

ωcdm 0.1209+0.0024
−0.0028 0.34 0.1213+0.0019

−0.0021 0.64 0.1188+0.0026
−0.0032 0.40 0.1205 ± 0.0015 0.34

ln(1010As) 3.025+0.038
−0.035 0.31 3.020 ± 0.025 0.65 3.032+0.044

−0.043 0.10 3.030 ± 0.018 0.34

SF,Max F.V25:

h 0.6745+0.0036
−0.0040 0.22 0.6752+0.0035

−0.0036 0.44 0.6775+0.0050
−0.0049 0.77 0.6749 ± 0.0032 0.40

ωcdm 0.1203+0.0021
−0.0022 0.14 0.1210+0.0018

−0.0019 0.54 0.1192+0.0032
−0.0031 0.24 0.1205 ± 0.0014 0.34

ln(1010As) 3.041+0.028
−0.026 0.16 3.037 ± 0.024 0.04 3.039+0.041

−0.040 0.06 3.039 ± 0.017 0.18

FM,Min F.V5:

h 0.6744+0.0050
−0.0049 0.17 0.6753 ± 0.0048 0.34 0.6793+0.0087

−0.0085 0.66 0.6750 ± 0.0039 0.37
ωcdm 0.1191+0.0032

−0.0028 0.31 0.1193+0.0028
−0.0023 0.25 0.1172+0.0039

−0.0034 0.74 0.1193 ± 0.0016 0.41
ln(1010As) 3.040+0.037

−0.048 0.08 3.028+0.021
−0.034 0.26 3.029+0.051

−0.057 0.13 3.032+0.017
−0.021 0.20

SF,Min F.V5:

h 0.6739+0.0047
−0.0051 0.06 0.6753 ± 0.0049 0.34 0.6779 ± 0.0085 0.50 0.6749+0.0040

−0.0034 0.35
ωcdm 0.1191+0.0023

−0.0027 0.38 0.1194 ± 0.0021 0.30 0.1180 ± 0.0031 0.63 0.1190+0.0016
−0.0015 0.66

ln(1010As) 3.048 ± 0.040 0.30 3.035 ± 0.026 0.05 3.042+0.054
−0.055 0.11 3.042 ± 0.021 0.25

FM,Max F.V5:

h 0.6753 ± 0.0056 0.30 0.6754+0.0048
−0.0050 0.36 0.6787+0.0090

−0.0089 0.57 0.6748 ± 0.0042 0.29
ωcdm 0.1212+0.0045

−0.0052 0.24 0.1225+0.0038
−0.0044 0.59 0.1201+0.0053

−0.0070 0.01 0.1211+0.0028
−0.0027 0.40

ln(1010As) 3.023+0.073
−0.066 0.19 3.011+0.055

−0.054 0.46 3.008+0.094
−0.086 0.31 3.024 ± 0.035 0.34

SF,Max F.V5:

h 0.6740 ± 0.0053 0.07 0.6749+0.0051
−0.0050 0.25 0.6769 ± 0.0089 0.37 0.6748+0.0039

−0.0040 0.30
ωcdm 0.1200+0.0033

−0.0037 0.01 0.1222+0.0035
−0.0041 0.58 0.1206+0.0056

−0.0062 0.10 0.1208+0.0024
−0.0023 0.32

ln(1010As) 3.049+0.053
−0.049 0.25 3.037+0.054

−0.045 0.02 3.041+0.091
−0.081 0.05 3.044+0.033

−0.034 0.22

Table 3. Baseline Analyses. 1-dimensional posterior means and 68% confidence interval (c.i.) for
Full-Modelling (FM) and ShapeFit (SF), and volumes V5 and V25. We also show the deviation from
the value of the simulations ∆Ω/σ.

7 Beyond baseline analyisis

In this section, we explore some extensions to the baseline analysis: such as including the
hexadecapole (section 7.1), relaxing the prior on the baryon density (section 7.2), letting
the spectral index parameter-free (section 7.3), allowing the total neutrino mass to vary
(section 7.4), relaxing the flatness assumption on the spatial curvature parameter (section 7.5),
and treating the equation of state of dark energy as a free parameter of the model (section 7.6).
We maintain the same settings and priors as in the baseline analysis, as defined in table 2, and
perform the analysis on the LRG sample with the V5 = 40 h−3Gpc3 and V25 = 200 h−3Gpc3

scaling-covariance choices.
The results are summarized in tables 4 and 5, for the V25 and V5 choices, respectively.
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Figure 11. Including the Hexadecapole. Comparison of the posterior distributions when fitting the
monopole and quadrupole (ℓ = 0, 2) and when including the hexadecapole (ℓ = 0, 2, 4) in the analysis.
The left panel displays the constraints on the compressed ShapeFit parameters, while the right panel
compares the constraints obtained on the ΛCDM parameters for the ShapeFit and Full-Modelling
analyses. Both cases fit the LRG sample, assume the Min.F. setup and scale the covariance matrix
with the V25 volume, as indicated.

7.1 Including the hexadecapole

As an extension to section 6, we examine the effect of including the next non-zero multipole
in the expansion, the hexadecapole, which is also fitted up to kmax = 0.18 hMpc−1.

In the left panel of figure 11, we compare the constraints on the compressed ShapeFit
parameters when fitting the monopole and quadrupole (orange lines) and when including
the hexadecapole (green lines) in the fit. With the addition of the hexadecapole, the α

parameters, and fσs8 tend to shift slightly closer to their true values. Furthermore, the
inclusion of the hexadecapole results in a reduction of about 20% in the α∥ error bar. A
similar behavior is presented in figure 7 of [104]. In this analysis, which improves upon [104]
by accounting for the inhomogenous mode sampling in the hexadecapole (eqs. 40, 41) of [109]),
we find that α∥ is correctly recovered, confirming that the shift seen in [104] was indeed
due to this mode- sampling affect.

The right panel of figure 11 compares the constraints on the cosmological parameters
for ShapeFit (orange lines) and Full-Modelling (blue lines), considering both the inclusion
and exclusion of the hexadecapole. For ΛCDM the effect of adding the hexadecapole is very
mild (≲ 3% reduction on the error bars, see table 4): the internal priors of the 3-parameters
ΛCDM model make the anisotropic information carried by the hexadecapole fully redundant
with that of the quadrupole. However, as we will see in section 7.5 and section 7.6, this
might be not the case for cosmologies beyond ΛCDM, where including the hexadecapole
could improve the constraining power because the internal model priors change.
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7.2 Dependence on the ωb prior

In the baseline analysis we have applied a Gaussian prior on the baryon density centered
on the true underlying value of the AbacusSummit simulations and with a very narrow
width given by BBN observations. In this section, we study the impact of relaxing this
assumption. We focus on two different priors scenarios: one with a less restrictive Gaussian
prior represented by ωb = N (0.02237, 0.001), and another with a uniform prior given by
ωb ∈ U(0.01, 0.04). The results for the volume V25 = 200 h−3Gpc3 are presented in figure 12
and table 4, while results with V5 = 40 h−3Gpc3 are summarized in table 5.

Figure 12 shows that for both ShapeFit (top panel) and Full-Modelling (bottom panel) the
constraining power on h is reduced by approximately a factor of 2 when transitioning from the
BBN to the less restrictive Gaussian prior with width σ = 0.001 (purple and red contours). In
fact, the ability to determine h is directly related to the ability to infer the sound horizon scale,
rd (and thus calibrate the distances in our analysis). This happens because the baryon density
is a key ingredient to determining rd (given the early-time physics of the photon-baryon
plasma, see eq. (C.1)). Thus, increasing the uncertainty on ωb, translates into increasing
the uncertainty on rd and consequently on h. In the case of the Full-Modelling analysis,
some information on ωb is extracted from the amplitude of the BAO wiggles, and therefore,
the system is not completely blind to rd in the absence of ωb priors (as for the ShapeFit
analysis). This helps to diminish the uncalibration of the system and to partially mitigate the
degeneration between h and ωb. This is clearer when adopting a uniform prior (green and grey
contours). For the Full-Modelling analysis the constraining power on h decreases by a factor
of ∼ 3.5 with respect to the baseline analysis, while for ShapeFit, without an informative prior
on ωb the analysis can’t inform at all on rd values by construction, which causes almost flat
posteriors on the variables that require physical distances (h and ωcdm). However, Ωm is still
informed through the AP effect on the BAO peak position (radial BAO relative to angular
BAO), as the uncalibrated expansion history is sensitive to the background variables [23].

This limitation of ShapeFit with respect to the Full-Modelling analysis has no practical
impact. In the case of the absence of a ωb prior, the Full-Modelling is not able to provide
competitive results on h, and once a BBN or CMB prior on ωb is added, the extra information
on rd from the amplitude of the BAO wiggles become irrelevant.

7.3 Impact of varying ns

We explore now the impact of varying the spectral index ns while keeping the BBN prior
on ωb in both the ShapeFit and Full-Modelling analyses. We compare this extension to
our baseline results, where the spectral index was set to the value from simulations. To do
so, it was necessary to recompute the pipeline from the beginning in both the compressed
ShapeFit and direct Full-Modelling analyses. For the ShapeFit, we include the additional
compressed parameter n, presented in eq. (5.12). Then, we convert the set of compressed
parameters {α⊥, α∥, fσs8, m, n} into the cosmological parameters {h, ωcdm, ωb, As, ns} by
using the prescription outlined in section 5.4. On the other hand, for the Full-Modelling
analysis, we simply allow the spectral index to be a free parameter of the model. In both
analyses, we use uninformative prior on the spectral index, given by ns ∈ U(−4, 4). The
results are displayed in figure 13 and tables 4 and 5.
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Figure 12. Dependence on the ωb prior. Impact on the posterior distributions of the cosmological
parameters when relaxing the prior on the baryon abundance ωb with respect to the baseline analysis,
where ωb = N (0.02237, 0.00037). We explore a weaker Gaussian prior of ωb = N (0.02237, 0.001), and
a uniform prior ωb ∈ U(0.01, 0.04). On the top panel, are for the compressed ShapeFit, and the bottom
panel, for the direct Full-Modelling.
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Figure 13. Impact of varying ns. Comparison of the posterior distributions between the baseline
analysis and an extended analysis where the spectral index ns is relaxed to be a free parameter with a
flat prior ns ∈ U(−4, 4). We present this comparison for the ShapeFit and the Full-Modelling analyses.
For ShapeFit, it was necessary to include the two shape parameters m and n during the compression
stage, following equation (5.12). Subsequently, they were transformed into cosmological parameters
using equations (5.16) and (5.17). The top right box shows the strong anticorrelation between m and n.
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The parameters ns and wcdm are somewhat degenerate because they both affect the slope
of the power spectrum after the turnaround [119, 120]. Therefore, when ns is treated as a
free parameter, a degeneracy with wcdm emerges, as evidenced in figure 13. This degeneracy
worsens the constraint on wcdm, which in turn, due to its degeneracy with As, negatively
impacts the measurement of As. We also note that ns has a relatively small impact on h,
which primarily depends on the ωb prior, as shown in section 7.2.

The upper right panel in figure 13 shows the strong anti-correlation between the ShapeFit
parameters m and n. This can be seen by expanding eq. (5.12) with n = −m around k = kp,

exp
{

m

a
tanh

[
a ln

(
k

kp

)]
− m ln

(
k

kp

)}
= 1 + 1

3a2m

(
1 − k

kp

)3

+ · · · , (7.1)

showing a second-order degeneracy between n and m. This degeneracy could potentially be
the reason behind the poor constraining power of ns in ShapeFit. The degeneracy between n

and m directly affects the measurements of ns through eq. (5.17), and consequently, ωcdm and
As are also affected. In Full-Modelling, this effect is less pronounced because Full-Modelling
extracts additional information that helps break the degeneracy between ns and wcdm.

7.4 Impact of varying Mν

Neutrinos are the most abundant massive elementary particles in our Universe and play a
fundamental role in nature, ranging from the smallest to the largest scales in the Universe.
We know from neutrino oscillation experiments that they have non-zero masses [121–123].
These observations have led to the identification of two different neutrino mass splitting
patterns known as the normal hierarchy, where the smaller mass split occurs between the first
and second lightest masses, and the inverted hierarchy, where the smaller mass differences
occur between the heaviest masses. While these experiments provide insights into mass-
squared differences, they cannot directly measure individual masses or, equivalently, the
neutrino mass scale. They however, establish lower limits on the sum of the neutrino masses:
Mν =

∑
i mνi > 0.06 eV for the normal hierarchy and Mν > 0.1 eV for the inverted hierarchy.

Nevertheless, alternative methods are needed to determine the total neutrino mass and
distinguish between their mass hierarchies.

The LSS offers an alternative approach to placing constraints on the sum of neutrino
masses. This is achieved through indirect measurements of the features that neutrinos
imprint in cosmic structures, as first noticed in [124]. One of the most relevant features
is the introduction of an additional scale, known as the free-streaming scale of neutrinos
kfs.21 This scale plays a significant role in clustering because, on distance scales smaller than
kfs, the large velocity dispersion of neutrinos prevents them from clustering together with
the CDM-baryon fluid, resulting in the washout of small-scale perturbations. This effect is
manifested as a suppression in the power spectrum in regions where k > kfs, allowing to
extract information about the total neutrino mass. Neutrinos also impact other observables,
such as the CMB, and hence the more stringent constraints to their mass will come from
combined analyses; see [125, 126] for a review of neutrinos in cosmology.

21For realistic neutrino masses, this scale is currently around 0.1 h Mpc−1, at the onset of non-linear scales.
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To date, the Planck 2018 legacy data have placed rigorous limits on the neutrino mass
through CMB temperature and polarization anisotropies, yielding

∑
i mν,i ≲ 0.26 eV (95% c.i.).

This limit tightens to 0.12 eV when combined with additional probes such as CMB-lensing,
and BAO, among others [127].

Here we evaluate the ability of the Full-Modelling analysis to recover the total neutrino
mass in a controlled scenario, where we already know the true value used in the simulations;
see also [39, 83]. In this case, we exclusively present this test utilizing the Full-Modelling
approach, while the results for the ShapeFit will be detailed in future research. For this test,
we allow the total neutrino mass to vary within the wide flat range Mν ∈ U(0, 5) eV. We
utilize one massive and two massless neutrino states. Other than that, the settings remain
the same as for the baseline analysis, where the total neutrino mass and the ultra-relativistic
species are fixed to Mν = 0.06 eV and Nur = 2.0328, respectively [54, 55]. The results are
shown in figure 14 and table 4.

Our first observation is that the total neutrino mass has a minimal impact on the
measurements of h, as also noticed in [21, 128]: while for the CMB data Mν and h are
highly degenerate, for clustering alone this seems not to be the case. Additionally, we
observe that the total neutrino mass exhibits an expected degeneracy with the primordial
power spectrum amplitude As, worsening considerably the constraints of this parameter and
ωcdm. However, we see below that this degeneracy can be broken by adding more tracers.
Another interesting finding is that the total neutrino mass exhibits a weak dependence on
the tidal bias parameter bs2 and the non-local third order bias parameter b3nl, demonstrating
robustness in the constraints on the total neutrino mass under both the minimal freedom
and maximal freedom cases.

One of the most important features of Folps is its accurate treatment of the scale
dependence linear growth introduced by the massive neutrinos via the fkPT method [39, 83,
101]. Here, we compare the neutrino mass constraints by switching between fk- and EdS-
kernels in Folps, both of which are included in our code [39].22 In particular, we estimate how
large are the differences compared to DESI Y1 and DESI Y5 error bars. For this purpose, we
employ noiseless synthetic data generated with an EFT model at the DESI fiducial cosmology
and a set of given nuisance parameters. The synthetic data presented here are produced with
a distinct code from Folps, namely velocileptors. Nonetheless, based on the findings
of [44, 45] where it is shown that for a single redshift the difference between using EdS and
fk-kernels is consistent, we don’t expect difference when employing any EFT code.

Figure 15 shows the estimated differences in cosmological parameters between EdS- and
fk-kernels for data mimicking DESI Y1 (solid lines) and DESI Y5 (dot-dashed lines). In
general, all the parameters are recovered within 1σ, with essentially no differences in h, ωcdm,
and As, hence we only report the constraints on Mν . The 95% limits estimated for the
neutrino mass using the noiseless data are, for DESI Y1,

DESI Y1: Mν < 0.368 eV (EdS-kernels), (7.2)
DESI Y1: Mν < 0.323 eV (fk-kernels), (7.3)

22To do this, the code simply sets f(k, z) = f0 ≡ f(k = 0, z).
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Figure 14. Impact of varying Mν . Comparison of the posterior distributions between the ΛCDM
baseline analysis (configured as described in table 2) and an extended analysis where the total
neutrino mass Mν is relaxed to be a free parameter with a flat prior of Mν ∈ U(0, 5) eV. We present
this comparison for the Full-Modelling analysis, showing that the constraint on Mν remains largely
unaffected by the tidal bias bs2 and the non-local bias b3nl, included as free parameters of the model
in the maximal freedom case.

while for DESI Y5,

DESI Y5: Mν < 0.170 eV (EdS-kernels), (7.4)
DESI Y5: Mν < 0.149 eV (fk-kernels). (7.5)

This represents an enhanced constraining power of around 14% when switching from the
usual EdS- to our fk-kernels. A similar effect in the mean and error bars of the posterior
distribution was previously obtained with simulations in [39], showing the reliability of the
fkPT method. The observed differences in neutrino mass constraints are potentially relevant
for extracting neutrino mass information through full-shape analyses.
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Figure 15. Impact of varying Mν . Comparison of the 1-dimensional marginalized posterior distri-
bution for the total neutrino mass Mν (top panel) and the other cosmological parameters (bottom
panel) resulting from the fitting of the synthetic data for DESI Y1 and DESI Y5 redshift bins with
corresponding analytical covariance matrices.

7.5 Curvature: kΛCDM

Recent studies have drawn attention to a potential tension in early Universe curvature
constraints [129–133]. So, it’s useful to compare these results using new approaches like the
PT/EFT of LSS. In this section, we relax the assumption that the Universe is globally flat
and let the curvature parameter Ωk to vary freely. We use a uniform prior, Ωk ∈ U(−0.2, 0.2),
while keeping the other parameter settings as in the baseline analyses. Using both Full-
Modelling and ShapeFit methods, we obtained constraints showing that the curvature is well
centered at Ωk = 0, recovering the simulations’ settings. We present these results in figure 16
and tables 4 and 5, for volumes V25 = 200 h−3Gpc3 and V5 = 40 h−3Gpc3, respectively. It’s
interesting that for the kΛCDM cosmological model, Full-Modelling and ShapeFit give similar
results, though ShapeFit contours are a bit smaller. We find that dropping the flatness
assumption introduces correlations among Ωk, h, and As, weakening the constraints on these
parameters but does not affect wcdm much. This is expected because the curvature does not
affect the shape of the power spectrum at the scales of interest: it only enters through the
background evolution. Additionally, we included the hexadecapole in the analysis, improving
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Figure 16. Curvature kΛCDM. Comparison of the posterior distributions between Full-Modelling
and ShapeFit for the extended kΛCDM model, where the curvature parameter Ωk is a free parameter
of the model with a flat prior Ωk ∈ U(−0.2, 0.2). Solid lines represent fits to the monopole and
quadrupole, while dash-dotted lines include the hexadecapole. All other settings remain consistent
with the baseline ΛCDM analysis as outlined in table 2.

the constraints on Ωk, h, and As. For these parameters, the error bars are reduced by about
12–20% in both the Full-Modelling and ShapeFit fitting methods.

7.6 Dark energy: wCDM

The ΛCDM model is the most successful cosmological model to date, supported by numerous
observations. However, there are still some fundamental questions that remain unanswered,
such as the nature of dark matter or dark energy. In order to address these questions, there
has been a considerable improvement in observational instruments in recent times, leading
to a larger number of very accurate observations.
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Figure 17. Dark Energy wCDM. Comparison of the posterior distributions between the baseline
ΛCDM and the extended wCDM model, where w is a free parameter of the model with a flat prior
w ∈ U(−1.8, −0.3). All other settings remain consistent with the baseline ΛCDM analysis as outlined
in table 2.

On the theoretical side, there have also been numerous extensions to the standard
ΛCDM model that aim to address more fundamental questions. In this section, we will focus
on one of these simplest extensions, known as the wCDM model. Here, the dark energy
component is described as a barotropic fluid with an equation of state given by P = wρ,
with P and ρ the pressure and density of the dark energy and w a constant. Hence, under
this parametrization, the energy density of the dark energy dilutes with the scale factor of
the Universe as ρ ∝ a−3(1+w). We will assume, following standard practice, that fluctuations
in dark energy density are negligible. Although w can take arbitrary values, it only affects
the background evolution of the Universe. We allow the equation of state to vary as a free
parameter of the model within the flat range of w ∈ U(−1.8, −0.3), while keeping the same
settings as in the ΛCDM baseline analysis, which is presented in table 2. We consider the
case of the maximum volume available V25 = 200 h−3Gpc3.

In figure 17 and tables 4 and 5, we present the results for the wCDM cosmology for
volumes V25 and V5, and compare them with the baseline ΛCDM model. The results are
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Figure 18. Dark Energy wCDM. Comparison of the 1-dimensional marginalized posterior distributions
between the compressed ShapeFit and direct Full-Modelling fits within the extended wCDM model.
This figure serves as an extension of figure 17, illustrating the contrast in constraints when incorporating
(dot-dashed lines) or omitting (solid lines) the hexadecapole in the fits.

presented for both compressed ShapeFit and direct Full-Modelling analyses. Introducing
w affects the measurements of h and As, due to expected degeneracies, but has a small
impact on the constraints for ωcdm. Introducing w shifts the mean to slightly higher (lower)
values for h (As). Additionally, the constraining power on h and As worsens by a factor
of around 2, compared to the ΛCDM case.

Comparing the ShapeFit and Full-Modelling results, we notice that both approaches
provide similar contours and 1-dimensional posterior distributions. However, ShapeFit tends
to have slightly tighter constraints with more symmetrical distributions.

We further study the impact of adding the hexadecapole power spectrum to the data
vector. In figure 18 we highlight the contrast in constraining power between the inclusion and
exclusion of ℓ = 4 in the fits. We find that the constraints on the cosmological parameters are
in general slightly better both in precision and accuracy when including the hexadecapole,
which seems particularly evident for As. The error bars for w, h, and As are reduced by
approximately 9–20% in both the Full-Modelling and ShapeFit cases.

8 Conclusions

The cosmological LSS contains a wealth of valuable information encoded in the distribution
of matter, serving as a powerful observational tool to constrain the cosmological parameters
governing our Universe. DESI is currently embarking on the creation of the largest map
of the Universe to date, offering us the opportunity to test our cosmological theories with
unprecedented precision. However, this endeavor presents a challenge on the theoretical front,
demanding more accurate and comprehensive models to extract the maximal cosmological
information from the galaxy catalogues. In anticipation of the DESI Year-1 data release, as
well as forthcoming releases, we investigate the systematic errors introduced by the full-shape
analyses of the galaxy power spectrum using the Folps code and pipelines for both the
Full-Modelling (or direct-fit) and the compressed ShapeFit methods.
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FM SF
68% c.i. ∆Ω/σΩ 68% c.i. ∆Ω/σΩ

Baseline, V25:

h 0.6741 ± 0.0036 0.15 0.6747+0.0034
−0.0035 0.31

ωcdm 0.1197+0.0018
−0.0015 0.19 0.1197+0.0015

−0.0014 0.21
ln(1010As) 3.032+0.017

−0.022 0.20 3.038+0.020
−0.018 0.08

Hexadecapole, V25:

h 0.6736 ± 0.0037 0.01 0.6740 ± 0.0035 0.13
ωcdm 0.1195+0.0018

−0.0014 0.33 0.1194 ± 0.0014 0.45
ln(1010As) 3.040+0.014

−0.024 0.17 3.048 ± 0.020 0.56

ωb (flat prior), V25:

ωb 0.0211+0.0012
−0.0016 0.92 — —

h 0.664+0.011
−0.014 0.77 — —

ωcdm 0.1171 ± 0.0033 0.87 — —
ln(1010As) 3.036+0.015

−0.027 0.01 3.011+0.070
−0.12 0.26

Varying ns, V25:

ns 0.954 ± 0.013 0.87 0.973 ± 0.024 0.36
h 0.6754 ± 0.0039 0.47 0.6740 ± 0.0045 0.09
ωcdm 0.1216 ± 0.0029 0.56 0.1179 ± 0.0063 0.33
ln(1010As) 3.011 ± 0.034 0.76 3.051 ± 0.048 0.31

νΛCDM, V25:

Mν 0.106+0.049
−0.089 0.67

h 0.6742 ± 0.0035 0.16
ωcdm 0.1207+0.0019

−0.0023 0.35
ln(1010As) 3.042+0.024

−0.028 0.21

kΛCDM (ℓ = 0, 2), V25:

Ωk −0.008 ± 0.015 0.52 −0.006+0.012
−0.015 0.42

h 0.6765 ± 0.0063 0.46 0.6765 ± 0.0053 0.54
ωcdm 0.1197+0.0017

−0.0013 0.20 0.1198 ± 0.0014 0.17
ln(1010As) 3.009 ± 0.049 0.56 3.019 ± 0.046 0.37

kΛCDM (ℓ = 0, 2, 4), V25:

Ωk −0.006 ± 0.012 0.49 −0.003 ± 0.011 0.25
h 0.6755 ± 0.0054 0.36 0.6750 ± 0.0047 0.29
ωcdm 0.1196+0.0017

−0.0013 0.28 0.1195 ± 0.0014 0.33
ln(1010As) 3.022+0.038

−0.043 0.35 3.037 ± 0.040 0.36

wCDM (ℓ = 0, 2), V25:

w −1.019 ± 0.034 0.56 −1.016 ± 0.033 0.50
h 0.6780 ± 0.0080 0.55 0.6783 ± 0.0079 0.60
ωcdm 0.1197+0.0016

−0.0013 0.19 0.1198 ± 0.0013 0.17
ln(1010As) 3.015+0.031

−0.037 0.61 3.024 ± 0.034 0.35

[-5pt] wCDM (ℓ = 0, 2, 4), V25:

w −1.014+0.029
−0.026 0.49 −1.008 ± 0.028 0.30

h 0.6766 ± 0.0070 0.43 0.6759 ± 0.0070 0.33
ωcdm 0.1197+0.0017

−0.0012 0.20 0.1195 ± 0.0014 0.35
ln(1010As) 3.027+0.027

−0.034 0.30 3.040 ± 0.031 0.12

Table 4. Beyond baseline Analyses — V25. 1-dimensional posterior means and 0.68 c.i. for Full-
Modelling (FM) and ShapeFit (SF) using the MinF bias setup. We also show the deviation from the
value of the simulations ∆Ω/σ. The em dash “—” indicates inconclusive results, as the posterior
distribution saturates the prior for that parameter.
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FM SF
68% c.i. ∆Ω/σΩ 68% c.i. ∆Ω/σΩ

Baseline, V5:

h 0.6744+0.0050
−0.0049 0.17 0.6739+0.0047

−0.0051 0.06
ωcdm 0.1191+0.0032

−0.0028 0.31 0.1191+0.0023
−0.0027 0.38

ln(1010As) 3.040+0.037
−0.048 0.08 3.048 ± 0.040 0.30

Hexadecapole, V5:

h 0.6741 ± 0.0048 0.11 0.6738 ± 0.0048 0.04
ωcdm 0.1190+0.0030

−0.0026 0.36 0.1188 ± 0.0022 0.52
ln(1010As) 3.045+0.030

−0.046 0.24 3.058+0.043
−0.036 0.55

ωb (flat prior), V5:

ωb 0.0222+0.0024
−0.0046 0.06 — —

h 0.672+0.022
−0.037 0.04 — —

ωcdm 0.1188+0.0059
−0.0094 0.16 — —

ln(1010As) 3.038+0.034
−0.048 0.04 3.018+0.081

−0.11 0.19

Varying ns, V5:

ns 0.947 ± 0.030 0.59 0.970+0.047
−0.054 0.17

h 0.6760 ± 0.0057 0.41 0.6751+0.0075
−0.0084 0.19

ωcdm 0.1222+0.0056
−0.0065 0.36 0.121+0.012

−0.014 0.16
ln(1010As) 3.006 ± 0.073 0.82 3.052+0.090

−0.12 0.14

νΛCDM, V5:

Mν 0.175+0.073
−0.15 0.42

h 0.6750+0.0053
−0.0047 0.28

ωcdm 0.1221+0.0034
−0.0050 0.50

ln(1010As) 3.056+0.038
−0.052 0.44

kΛCDM (ℓ = 0, 2, 4), V5:

Ωk −0.014 ± 0.025 0.55 −0.002 ± 0.024 0.07
h 0.679 ± 0.010 0.55 0.6744 ± 0.0082 0.09
ωcdm 0.1193+0.0029

−0.0025 0.25 0.1190 ± 0.0024 0.44
ln(1010As) 3.001 ± 0.085 0.17 3.049 ± 0.086 0.17

wCDM (ℓ = 0, 2, 4), V5:

w −1.036 ± 0.061 0.60 −1.014 ± 0.059 0.14
h 0.682 ± 0.014 0.61 0.677+0.012

−0.014 0.23
ωcdm 0.1194+0.0030

−0.0026 0.21 0.1190+0.0021
−0.0026 0.44

ln(1010As) 3.017+0.056
−0.070 0.31 3.043 ± 0.063 0.10

Table 5. Beyond baseline Analyses — V5. 1-dimensional posterior means and 0.68 c.i. for Full-
Modelling (FM) and ShapeFit (SF) using the MinF bias setup. Same notation as in table 4.
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Our analysis employs mocks created from the AbacusSummit set of simulations, com-
prising three tracers: LRGs, ELGs, and QSOs, distributed at redshifts z = 0.8, z = 1.1, and
z = 1.4, respectively. These simulations consist of 25 realizations, each with a volume of
8 h−3Gpc3. We conduct our analyses using volumes V = 8, 40 and 200 h−3Gpc3. Despite
potential doubts about the reliability of the simulations at the largest volume (200 h−3Gpc3),
we opt to use it due to significant agreements between theory and simulation in our baseline
analysis, where all estimated parameters fall well within the 1σ limits. Thus, it proves
valuable to test theoretical models in such a demanding scenario.

We explore the optimal range of wave-numbers to include in the analyses, finding
optimal results for the interval k ∈ (0.01, 0.18) h Mpc−1, with similar outcomes when
kmax = 0.2 h Mpc−1. We find that systematics in the standard ΛCDM model are sub-
dominant compared to the statistical errors expected from DESI Year-1 data. Additionally,
we bring attention to different priors commonly used in the literature, cautioning against
Gaussian priors that can significantly impact the posterior distribution of the parameter
space without necessarily having a strong physical motivation. We also examine the inclusion
of the hexadecapole alongside the monopole and quadrupole, finding slight improvements in
constraints for some models beyond the vanilla ΛCDM, particularly for wCDM and kΛCDM.

Furthermore, we compare the effects of the restrictive BBN prior on the baryon abundance,
finding that the direct-fit approach can constrain it while compressed methods cannot. This
is likely due to the ability of Full-Modelling to accurately capture the relative amplitude of
the power spectrum wiggles, a capability lacking in ShapeFit. We also investigate the impact
of freeing ns, finding tighter and more accurate parameter estimations for Full-Modelling
compared to ShapeFit, attributed to a strong degeneracy between the m and n parameters
of ShapeFit, hindering their independent variation and resulting in poor constraints on
ωm and ns. On the other hand, we find that ShapeFit constrains better the dark energy
models, which seems to be more evident for less constrictive data, in our case for smaller
volumes in the simulations.

We further introduce the neutrino mass as an additional parameter. We find that the
well-known degeneracy between Mν and h from CMB data seems to disappear. However, and
expected degeneracy with the overall power spectrum amplitude worsens the constraints of
ωcdm and As. Notably, we observe that the constraints on Mν show limited sensitivity to the
tidal bias parameter bs2 and the third-order bias parameter b3nl demonstrating robustness in
the constraints on Mν under the minimal and maximal freedom setups.

Our findings reveal that both minimal and maximal freedom setups yield consistent
results for LRGs and ELGs, suggesting that the bias for these HODs is very close to being
local in Lagrangian space. However, for QSOs, there are indications that the minimal freedom
setup may not be sufficient, and maximal freedom may be required.

Finally, we explore the impact of the assumed template cosmology on ShapeFit by
analyzing the LRGs within the conservative volume of 8 h−3Gpc3. We find that the influence
of the template cosmology on ShapeFit is relatively minor, especially for DESI Year-1.
However, for larger volumes, the impact of the template cosmology on ShapeFit may become
more significant, requiring further investigation. The differences we observe are primarily
driven by the effective shape parameter introduced by ShapeFit, with BAO and RSD being
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minimally affected by the choice of template cosmology. For changes in the template of less
than 3%, the errors with respect to the true cosmology remain below ∼ 0.2σ. However, with
a 10% change, the errors can increase, reaching up to ∼ 0.6σ in the worst-case scenario.
However, such a large change in the template would raise warning flags through the scaling
parameters deviating from unity in some redshift bins.

In this work, we have shown that the novel effective field theory-based package to
efficiently evaluate the redshift space power spectrum in the presence of massive neutrinos,
Folpsν, has the required robustness and accuracy to be used in both full modelling and
compressed variables (ShapeFit) cosmological analyses of DESI galaxy and quasars catalogs.

9 Data availability

Data from the plots in this paper are available on Zenodo as part of DESI’s Data Management
Plan (DOI: https://zenodo.org/records/11625735). The data used in this analysis will be
made public along the Data Release 1 (details in https://data.desi.lbl.gov/doc/releases/)
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A Analytical marginalization

The formalism presented here enables a significant reduction in computational time, not on
the side of model evaluation, but rather in the process of exploring the posterior distributions.
We can further reduce computational time by analytically marginalizing over some nuisance
parameters of the model. Typically, our focus lies in analyzing the probability distribution of
the cosmological parameters and a few select nuisances, such as the linear bias b1. Nevertheless,
numerous other nuisance parameters are often of little interest to us. Hence, by marginalizing
over these nuisance parameters, we effectively reduce the dimensionality of the parameter
space, which facilitates the exploration of posterior distributions when employing efficient
sampling algorithms.

We start by classifying the nuisance parameters of the model into two types, the bias b =
{b1, b2, bs2 , b3nl}, and the stochastic and counterterm parameters α = {α0, α2, α4, αshot

0 , αshot
2 }.

The latter has the property that they are linear-order parameters at the level of the power
spectrum model P (k). This feature allows to split the model prediction as

P (k) =
∑

i

αi Pαi(k) + Pb(k), (A.1)

where Pαi represents the stochastic and counterterm contributions, while Pb refers to the
remaining contributions to the power spectrum. Note that the split in equation (A.1) is an
exact expression, rather than an approximation. As the next step, we marginalize over the
linear-order nuisance parameters α of the model, causing the likelihood function L to become

L(PD|Pb) =
∫

dαi L(PD|{Pb, Pαi})P(αi), (A.2)

where PD represents the data vector and P(αi) denotes the priors for the linear-order nuisances
parameters, which for simplicity are assumed to be Gaussians, following

P(αi) = 1√
2πσ2

i

exp
[
−1

2

(
αi − µi

σi

)2
]

, (A.3)

centered in µi with standard deviation given by σi. To introduce uninformative priors we
should take standard deviations with sufficiently large values, as presented in figure 7.
The unmarginalized likelihood function L(PD|{Pb, Pαi}) is given by

L(PD|{Pb, Pαi}) = exp

−1
2

(∑
i

αi Pαi + Pb − PD

)T

Cov−1

∑
j

αj Pαj + Pb − PD

 ,

(A.4)
where Cov denotes the covariance matrix defined in equation (2.1). Putting all the pieces
together into equation (2.1), we find

L(PD|Pb) =
∫

dαi exp

−1
2
∑
i,j

αiαjAij +
∑

i

αiBi + C0

 , (A.5)
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with

Aij = P T
αi

Cov−1 Pαj + δij

σiσj
, (A.6)

Bi = −P T
αi

Cov−1 ∆P + µi

σ2
i

, (A.7)

C0 = −1
2

(
∆P T Cov−1 ∆P + µ2

σ2

)
, (A.8)

where ∆P ≡ Pb − PD is the residual between the contributions of non-linear order parameters
from the model and the data vector. Finally, using the multivariate Gaussian integral, we
found that the marginalized log-likelihood L takes

L = C0 + 1
2Bi · A−1

ij · Bi − 1
2 ln [det(Aij)] . (A.9)

We have transformed the original likelihood function given by equation (A.4), into a more
complicated form, the equation (A.9). Although it may appear at first glance to be a process
with no advantages, as the new likelihood is more computationally expensive compared to
the original one, in practice, it is quite different because we have eliminated the parameters
α = {α0, α2, α4, αshot

0 , αshot
2 } from the exploration of posteriors, and when we use MCMC

methods, the chains tend to converge much more quickly in the case where marginalization is
employed. This process reduces drastically the number of steps required for the convergence
of chains. Moreover, we have to recall that no additional assumptions were made to perform
the marginalization presented above. Hence, the information of the remaining parameters, i.e.,
the ones we are interested in, is not degraded by this analytical marginalization process [134].

Figure 19 shows that our analytical marginalization implementation works excellent,
showing identical posterior results as without using it. To perform this plot, we have assumed
uniformative priors which are obtained in the limit of infinite Gaussian widths σi in eqs. (A.6)–
(A.8).23 In table 6, we provide the statistics with the mean and a 68% confidence intervals,
for both cosmological and bias parameters. The table reveals the consistency between results
obtained with and without analytical marginalization. Additionally, we also present the
means obtained in each scenario (with and without marginalization) for the marginalized
linear-order nuisance parameters, demonstrating consistent findings across both approaches.

B ShapeFit implementation in FOLPS

In practice, ShapeFit employs a fixed template to determine the linear power spectrum
P ref

L (k) and the non-linear corrections (i.e., the P22-type and P13-type loop integrals) at
the reference cosmology. As we explore compressed parameters, the reference linear power
spectrum is then transformed into P ′

L(k) as a function of the ShapeFit parameters m and n,
according to equation (5.12). Consequently, the non-linear contributions need to be expressed
in terms of these ShapeFit parameters. This means that the P22-type and P13-type loop

23We have also tested the consistency between using or not analytical marginalization for the compressed
Standard and ShapeFit analyses. However, due to space constraints, we decided to present only the results
obtained from the direct Full-Modelling analysis.
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Figure 19. Comparison of the constraints for the Full-Modelling analysis with and without analytical
marginalization over the linear-order nuisances parameters α = {α0, α2, αshot

0 , αshot
2 }. Here we set

α4 = 0 because we are only fitting the monopole and quadrupole. These results correspond to the
baseline analysis with V25 = 200 h−3Gpc3 and minimal freedom case.

integrals should be evaluated as functions of m and n. To make this latter process faster, the
standard implementation of ShapeFit approximates the non-linear contributions obtained
from the fixed template via [23]

Imn(k) =
(

P ′
L(k)

P ref
L (k)

)2

Iref
mn(k), (B.1)

with Imn the pure one-loop pieces of the functions entering eq. (3.8). Within this imple-
mentation, the one-loop contributions are computed only once at the reference cosmology,
denoted as Iref

mn, instead of computing them at each trial cosmology. That is, for a P22-type
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Parameter Without marginalizing Marginalizing
h 0.6742 ± 0.0035 0.6741 ± 0.0036

ωcdm 0.1197+0.0017
−0.0014 0.1196+0.0018

−0.0013

ωb 0.0223 ± 0.00037 0.0223 ± 0.00037
ln(1010As) 3.0336+0.013

−0.023 3.0325+0.013
−0.023

b1 2.0030+0.032
−0.017 2.0047+0.031

−0.017

b2 0.1014+0.80
−0.56 0.1190+0.69

−0.60

α0 7.6187 7.1394
α2 −47.1230 −46.2287

αshot
0 0.0192 0.0071

αshot
2 −9.0170 −9.2193

Table 6. Comparison of the means and 0.68 c.i. obtained for the cosmological and bias parameters
when marginalizing or not over the counterterm and stochastic parameters. We also display the means
on the counterterms and stochastic parameters obtained in each case, showing consistent results
between them. The counterterm α4 was set to zero because, for this test, we only fitted the monopole
and quadrupole.

one-loop contribution, we approximate

IP22-type
mn (k) =

(
P ′

L(k)
P ref

L (k)

)2 ∫
d3p Kmn(k, p)P ref

L (|k − p|)P ref
L (p) (B.2)

and similar for a P13-type one. Thereafter, the power spectrum multipoles are computed in
the same way as the standard approach, following eq. (5.11).

The use of this approximation is an additional ingredient that may be useful for a faster
estimation of parameters. However, it is not necessary and one can compute directly the loop
integrals using the trial power spectrum. To test the validity of eq. (B.1), we compare the
compressed parameters obtained with and without using the approximation. In figure 20 we
exclusively display the results for the LRG using the baseline settings, where the ShapeFit
parameter n is set to zero. We decide to show the particular case of V1 = 8 h−3Gpc3 because
of its allowance for larger values on the slope parameter m, where the transformed ShapeFit
power spectrum P ′

L(k) exhibits a larger departure from the reference power spectrum P ref
L (k),

and thus the approximation is more likely to fail. The top panel of figure 20 illustrates the
special case where the reference cosmology aligns with the cosmology of the simulations, while
the bottom panel depicts the case where they differ. The results are in excellent agreement,
indicating that the approximation works very well. It should be noted that even for the
biased cosmology case (bottom panel of figure 20) the approximation is still accurate, showing
that eq. (B.1) is reliable regardless of the reference cosmology used for the template.

Finally, although we only present results for the LRG with V1 = 8 h−3Gpc3, we also
examined the approximation for the other tracers and using the full volume V25 = 200 h−3Gpc3,
obtaining very good agreement across all cases. Consequently, for the level of precision
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ShapeFit, V1 = 8 h−3Gpc3: Ωref = Ωtrue
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ShapeFit, V1 = 8 h−3Gpc3: Ωref = Ωtrue + 10% in h, ωcdm, As
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Approximate loop contributions Full loop contributions

Figure 20. 1D marginalized posterior distributions for the ShapeFit compressed parameters when
using the approximate loop contributions given by eq. (B.1) (solid lines) and when computing the
full loop contributions from equations (3.9) and (3.10) at each step during the likelihood evaluation
(dash-dotted lines). Here we use the LRG catalogues of the simulations AbacusSummit, and the
volume V1 = 8 h−3Gpc3. In the top panel, we display the results when the reference cosmology used to
create the fixed template coincides with the cosmology of the simulations, and on the bottom, we show
the results when using a reference cosmology biased with respect to the true values of simulations.
Specifically, for the latter case, the reference cosmology is increased by 10% in the cosmological
parameters h, ωcdm, and As.

demanded by any realistic survey, the effects of using or not the approximation of eq. (B.1)
are negligible. Hereafter, in this work, we adopt this approximation to compute the loop
contributions.

C Testing the settings on FFTLog and IR-resummations

In this appendix, we present a couple of tests changing some settings of the Modelling. The
tests presented here are conducted using the LRGs tracer with the volume V25 = 200 h−3Gpc3,
that produce the smaller statistical errors. Therefore, any differences in the model are more
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ωcdm
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ln(1010As)

fkpt Folps (NFFTLog = 128) Folps (NFFTLog = 256)

Figure 21. Comparison of the 1-dimensional marginalized posterior distributions for the cosmological
parameters using two different values for the number of sampling points in the FFTLog formalism,
the default NFFTLog = 128 (dotted blue line) and an increased NFFTLog = 256 (solid black line).
Additionally, we compare Folps against another perturbation theory code known as fkpt (dash-dot
green line), showing that both codes are in accord.

likely to arise in this volume. Thus, these tests provides us a good inside of the systematic
effects introduced by the model when some of its settings are changed. For these tests, we
followed the Full-Modelling prescription presented in the baseline analysis for the Min.F.
case, as detailed in table 2.

We start by studying the impact caused by the number of sampling points NFFTLog used
when employing the FFTLog formalism to decompose the linear real space power spectrum
into a series of power laws, see eq. (4.1) of [39]. In figure 21, we present the 1-dimensional
marginalized posterior distributions of the cosmological parameters using both the default
value of NFFTLog = 128 and a higher value of NFFTLog = 256, showing that both cases
yield very similar results. Therefore, the default value of NFFTLog = 128 not only achieves
good accuracy but also exhibits excellent computational speed, as shown in figures 8 and
9 of [39]. Additionally, in the figure we present the results obtained using a code called
fkpt [101],24 which is based on perturbation theory for ΛCDM and modified gravity theories
using fk-kernels [39, 71]. For this comparison, the effects of modify gravity are not taken
into account. The code is very similar to Folps, with the difference that loop integrals are
not integrated using FFTLog methods, but instead it employs a brute force approach. We
observe that fkpt and Folps codes are in very good agreement, especially for As and ωcdm,
while there are still some small differences in the parameter h. However, these differences
are inside 1σ fluctuations and they are not significant for the chosen volume.

The second test we perform in this appendix investigates the impact caused by the cutoff
scale kIR introduced in eqs. (3.21)–(3.23) when performing the IR-resummations. We compare
the 1-dimensional marginalized posterior distributions for the cosmological parameters when
using the default value of kIR = 0.4 h Mpc−1 (dotted blue line) with the results obtained
for different values of kIR, as presented in figure 22. From the figure, we observe that the

24https://github.com/alejandroaviles/fkpt.
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Figure 22. 1-dimensional marginalized posterior distributions for the cosmological parameters under
changes in the IR-resummation settings introduced in equations (3.21)–(3.23). We explore the effects
of varying the separation scale kIR and also compare the approximation of keeping the BAO peak
scale fixed at ℓBAO ≃ 104 h−1Mpc and varying it as a function of the cosmological parameters through
ℓBAO = rd during the likelihood evaluation.

effects on the cosmological parameters caused by varying kIR are minimal, even when taking
kIR = 0.05 h Mpc−1 where we observe some differences, mainly in As. However, the results
are still in accord within 1σ fluctuations. We have to keep in mind that this test was done
using V25. For smaller volumes, the results would likely coincide even more.

For the default value kIR = 0.4 h Mpc−1, we also compare the effect of keeping the BAO
scale ℓBAO ≃ 104 h−1Mpc fixed (dotted blue line) or varying it (dashed red line) during the
likelihood evaluation as a function of the cosmological parameter through ℓBAO = rd, with
the sound horizon scale at the drag epoch rd given by the approximation [135]

rd =
55.154 exp

[
−72.3 (ων + 0.0006)2

]
ω0.25351

cb ω0.12807
b

Mpc. (C.1)

From figure 22, we can observe whether the results of keeping the BAO scale fixed or not
are indistinguishable. Therefore, the approximation of keeping the BAO scale fixed is quite
good, at least for the baseline analysis, where the baryon abundance is included via a narrow
BBN prior, and the total neutrino mass is fixed to its fiducial value.
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