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Abstract

Oxanorbornadienes (ONDs) undergo facile Michael addition with thiols and then fragment by 

retro-Diels-Alder (rDA) reaction, a unique two-step sequence among electrophilic cleavable 

linkages. The rDA reaction rate was explored as a function of furan structure, with substituents 

at the 2- and 5-positions found to be the most influential and fragmentation rate to be inversely 

correlated with electron-withdrawing ability. Density functional theory calculations provided an 

excellent correlation with the experimentally measured OND rDA rates.
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Covalent linkages that are detachable on demand have been used for a variety of 

applications including drug delivery,1-2 proteomics,3 materials development,4-5 and solid 

phase synthesis.6-7 Bond fragmentation can be induced by a variety of different stimuli, 

such as heat, light, nucleophiles, acids, bases and enzymes.8 Oxanorbornadienes (ONDs) 

derived from electron-deficient alkynes are potent electrophiles that undergo Michael 

addition preferentially with thiols, and then fragment by retro-Diels-Alder (rDA) reaction, a 

unique two-step sequence among thiol-reactive linkages (Figure 1). The advantages of this 

system include mild cleavage conditions, highly tunable rates of fragmentation, and ease 

of synthesis. The rDA process of the thiol adduct gives furans and thiomaleates, whereas 

rDA cleavage of the starting OND occurs much more slowly in the absence of thiol.9 

Modifications of the OND structure can be made which change adduct stability toward rDA 

over a very wide range, with half-lives from minutes to months.9-11 We have used the OND 

system for drug cargo delivery12-13 and the generation of degradable hydrogels.14-15

The rDA rates of various mono- and 2,5-disubstituted OND have been previously 

reported.9-10 Here we describe the effects of different patterns of disubstitution on the 

furan component including variations in steric and electronic properties, pairing these with 

dimethylacetylenedicarbocxylate in an exploration of the bis(dimethylester) OND motif. 

Details of synthesis and characterization are provided in Supporting Information.

The results of these experiments are summarized in Figure 2. Similar to previously reported 

structures,9-11 these compounds were found to engage in rapid Michael addition with β-

mercaptoethanol to form the corresponding adducts. In each case, this step was completed 

within 10-15 minutes at millimolar concentrations at room temperature in organic solvent 

and with equimolar activating base. We then measured the rates of retro-Diels-Alder 

fragmentation to the furan and corresponding thiomaleate by 1H NMR. A representative 

example (1a) is shown in Figure 3, starting upon addition of excess β-mercaptoethanol and 

triethylamine. Following clean Michael addition, each adduct underwent a first-order rDA 
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process, chronicled by the integration of characteristic 1H NMR resonances followed by an 

excellent fit to natural log vs time plots.

The 2,3-substituted ONDs (1a-c) were found to undergo very slow fragmentation, with 

room-temperature half-lives ranging from 16 to 34 days for compounds with methyl or 

benzyl substituents at the 3-position. Limited exploration of other disubstitution patterns 

(2d = 2,4; 2e = 2,3) showed somewhat faster cycloreversion, with half-lives of 2-4 days. 

Bridgehead aromatic substitution produced strong acceleration of the rDA process, with 

half-lives of 2-14 hours for aromatic analogues 2f-2i. While steric effects can contribute,16 

electronics plays a significant role as indicated by the apparent linear correlation of relative 

rate with Hammett σ+ constant shown in the inset in Figure 2, with electron-donation 

stabilizing the Diels-Alder transition state.

Electronic effects at the bridgehead position were further explored with fluorinated OND 

derivatives 1j-1o. As expected, fluorination gave rise to more stable thiol adducts, with 

trifluoromethyl (2m) having a greater effect than difluoromethyl (2j and 2k, differing in the 

substituent at the other bridgehead position). While we did not make discrete comparisons to 

non-fluorinated analogues, the aryl-substituted compounds 2n and 2o were far more stable 

than other compounds having aryl-alkyl substitution at the bridgehead positions such as 7.10 

Most striking was the great stability of the 5-fluoro derivative 21, which gave negligible 

amounts of rDA cleavage products after one month at room temperature. Interestingly, 

5-cyclopropyl substitution provided enhanced stability relative to methyl (2p vs. 2q, 5, 6); an 

oxetane group did not have a noticeable effect (2q vs 6).

These structures were analyzed by density functional theory using the SMD(chloroform)-

M06-2X-D3/6-311+G(d,p) level of theory (a detailed description of computational methods 

is provided in the Supporting Information). We found an excellent correlation between 

observed and calculated energetics over three orders of magnitude in cycloreversion rate, 

as shown in Figure 4. To gain further insight into the observed reactivities, the parent 

unsubstituted system (16) was analyzed in detail, focusing on Hirshfeld charges in both the 

reactant and the transition state (Figure 5a). In the reactant a charge of +0.06 e was assigned 

to the furan part, while a much larger charge separation with +0.26 e on the furan was 

calculated for the transition state. The biggest positive charges were seen at positions 2 and 

5 of the furan, while positions 3 and 4 showed relatively low charges. Since stabilization 

of positive charges on the furan fragment should lead to a more stabilized transition state 

and therefore a lower reaction barrier, effects at the 2 or 5 positions of the furan should be 

stronger than at the 3 or 4 positions (Figure 5b).

Using CF3 and phenyl (Ph) as stabilizing and destabilizing substituents, respectively, the 

effect of substitution in all four possible positions was investigated (Figure 5c). As expected, 

substitution at the 3 and 4 position provided only marginal stabilization or destabilization in 

the free energy of activation of the rDA reaction. However, substitution at the 2 or 5 position 

led to strong reductions in barrier height for phenyl substitution and strong increases in 

activation energy for trifluoromethyl.
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A second important factor emerged in consideration of unsaturated carbon substituents such 

as Ph. When attached to furan positions 2 or 5, they are of course bound to a quaternary 

carbon in the oxanorbornadiene reactant. In the transition state, the conjugated system of 

the furan is mostly restored, allowing for additional stabilization by conjugation with the 

substituent. In contrast, such substituents in the 3 and 4 positions are already conjugated 

with an adjacent alkene in the reactant, leading to much less additional stabilization in the 

transition state. This difference is also reflected in the overall calculated driving force for 

rDA reactions: for example, the free energy of reaction for 9 (−6.8 kcal/mol) is significantly 

more favorable than for 11 (−2.7 kcal/mol).

In conclusion, density functional theory calculations were found to correlate well with 

experimental measurements of retro-Diels-Alder reactions of OND-thiol adducts over a wide 

range. These studies illuminated two electronic and orbital concepts for the control of OND 

rDA rates: the electronic nature of substituents which stabilize or destabilize positive charge 

at the furan 2 and 5 positions, and the ability of substituents to engage in π-overlap with the 

furan fragment, also much more important at the 2 and 5 positions. These insights can be 

used to design OND linkers for a variety of drug delivery and materials applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Michael addition of a free thiol onto OND followed by retro-Diels-Alder rearrangement to 

yield furan and thiomaleate.

De Pascalis et al. Page 6

Org Lett. Author manuscript; available in PMC 2022 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Structures of OND-thiol adducts explored in this study with corresponding rDA rates at 

room temperature in CDCl3. Experimental error in rate constants is ±10%. Compounds 3, 

4, and 5 are from reference 9. Compound 6 and 7 are from reference 10. (Lower left) 

Linear free energy relationship between relative rDA rate and σ+ parameter17 for 2f-2i. R 

= CH2CH2OH; all compounds were racemic. For compounds derived from 2,5-disubstituted 

furans, thiol addition occurs to either of two positions, as indicated. rDA rates for these 

compounds were measured for the mixture.
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Figure 3. 
Addition and rDA fragmentation reactions of OND 1a as followed by 1H NMR (CDCl3, 

25°C, showing 4.5-7.4 ppm).
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Figure 4. 
Observed half-life vs. calculated (DFT) activation energy for retro-Diels-Alder reactions; 

letter designations refer to the mercaptoethanol adducts of structures 2a-2q shown in Figure 

2.
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Figure 5. 
a) Analysis of Hirshfeld charges in the furan part of reactant 16 and transition state 16TS. 

Charges in electrons with hydrogens summed into heavy atoms. b) Predicted influence on 

retro Diels-Alder reactivity. c) Effect of stabilizing and destabilizing substituents on the free 

energy of activation for the retro-Diels-Alder reaction.
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