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· Abstract: The tunneling problem through multi­

dimensional fission barriers is studied 

on a simple two-dimensioan model. The 

uniform semi-classical approximation with 

complex classical trajectories is applied 

and the results are compared with an exact 

quantum-mechanical solution by a coupled 

channel calculation.· The ~es~lts show 

very good agreement. 
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1. Introduction 

The theoretical description of the fission process 

is one of the oldest problems in nuclear physics. It 

involves collective and single-particle aspects. Much 

work has been done to understand this process and many 

aspects have been clarified, but a unified theoretical 

description has not yet been given. \ve will not comment 

here on all the knowledge one has gained up to now in 

understanding this process, but refer to the literature, 

especially to the review article of M. Brack et al./1/ 

and the references given therein. 

Most theories start with a suitable choice of collect-

ive coordinates q 1 ••• qf. One of them ~s always the fission 

coordinate which corresponds at the beginning of·the fission 

process to some deformation parameter and goes over, after 

the fission process, into the distance between the separated 

fragments. However, to describe the essential behaviour 

of the nucleus during the fission process one needs further 

parameters to describe other collective degrees of free-

dome such as other deformations, the mass asymmetry, or 

the pairing correlations. 

The next step is then the determination of a collective 

• 
Hamiltonian in these variables. A fully quantum-mechani-

cal way to find such a Hamiltonian is to use the method 

of generator coordinates. Proposed by Hill and Wheeler/2/ 

and extended in the following years in many different ways 

/3-6/, it yields a collective quantum-mechanical Hamil-

tonian, which is quadratic in the momenta corresponding to 

the collective coordinates, and has the form: 

• 

• • 
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vrhere g = det (gik) and where gik (q1 •• qf) is the metric tensor 

of the curvelinear coordinates q 1 ••• qf. The inertial t~risor ·· 

Mik and the potential energy V depend on these doordinates~ 

Foll6wing ref/3-6/ one is in principle able to d~rive ~ik and 

v from a microscopic Hamiltonian.· However, up to now it ·is only 

for the case of anharmonic vibrations that one has calculated 

m~spararn~ters and potential energy surfaces in that wa~ 

For the fission process one usually uses a mixed microscopic-

macroscopic method. The energy surfaces are taken from the 

liquid drop model and shell corrections are added using the 

Strutinsky method /7 I .The mass parameters are obtained from 

the cranking formula. The energy surfaces calculated using 

this nethod are able to explain many features of the fission 

process. I--Iovrever, not much is known up to now about the 

mass parameters. Some calculations show a strong .dependence 

on the coordinates qi' a fact which certainly will influ­

ence the fission process. 

Once the mass parameters and the potential from such a mixed 

microscopic-macroscopic method are known, one has to requan-

tize the Hamiltonian. The same has to be done if one starts 

from the Adiabatic T.ime -Dependent Hartree-Fock approachj8,9/. 
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This requantization is certainly not unique and presents 

additional open problems, with which we will not be con-

cerned with in this paper. 

The third step in the solution of the fission problem is to 

solve the Schrodinger equation in the coordinates q 1 ••• qf 

which result~ fiom the Hamiltonian (1). In this papet we con-

sider only this part of the problem. ~Je assum0 to know a 

quantum mechanical Hamilton operator II in the coordinates {qi~ 

which corresponds to a classical Hamilton function H in the 

variables { qi} and the conjugate momenta [pi i : 

(2) 

So we are left with a multidimensional barrier penetration 

problem. This problem has been investigated by many groups 

introducing more or less drastic approximations. 

The oldest method used to calculate fission half lives 

is the one-dimensional WKB method /10/. In the multi­

dimensional energy surface a one-dimensional path is deter­

mined which usually goes along the bottom of the fission 

valley. The Schrodinger equation is transformed to a 

one-dimensional equation by using only a coordinate 

along this path. The penetrability is then obtained 

using the one-dimensional WKB formula: 

• 
- . 
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( 3) 

where 5
1 

and 5''· are the turning points determined by V(g) = E. 

For thick barriers and low energies this is an excellent 

approximation to theone<jimensional Schrodinger equation. For 

higher energies close to the barrier top this formula has been 

improved by P. Froman and N. Froman /11/ and Jeffreys /12/ 

so that one has a well-working method in the one-dimensional 

case. 

For the one-dimensional barrtPr penetration problem, ' 

eq.(3) can also be obtained by minimizing the classical action/13/ 
't /f 

,S - J p '4 (4) 

f 
between the turning points q' and q". This idea has been 

generalized by the Pauli-Strutinsk;y group/1/ to the multi­

dimensional case. They find the fission trajectory in the multi-

dimensional 
q" 

coordinate space by minimizing the action 
0' 

s = J ~;,;d9t. 
q' .. . 

= /1.2 2. ft .. d9i!Ji (£- vr~;) ti~ 
lj 'J ~6' ()ft . 

u' 

( 5) 

where r is some arbitrary parameter along a trajectory q(~. 

The variation includes all possible trajectories which con-

serve the energy along the varied path. 
I II 

fi and fJ are again 

the turning points defined by V(tr} = E. The tunneling probabi-



6. 

lity is then given in the usual way by 

p = 

The trajectory so obtained usually does not follow 

the steepest descent of the potential and does not lead 

through the extreme! points of the deformation energy. 
I 

It should also be noted that the entrance ( ; ) and exit 
' 

point (~ 11 ) are determined in such a way·that the action 

is also stationary against the variation of these end­

' points. G. , is. usually chosen to lie o. 5 MeV (zero point 

) b 
,..,.., 

energy a ove the bottom of the well; ~ has to lie on 

the energy c,ontour with the same energy. 

(6) 

The action determined by this method is a complex solut.ion of 

the classical Hamilton-Jacobi equation/13/. In that sense the 

corresponding trajectory is a classical trajectory. One 
t . 

problem is the mcrching of these trajectories under the barrier 

to the classical allowed trajectories for E > V \vhich corres-

pond to oscillations in the local minimum of the fissioning 

nucleus. In the method of Pauli and StrutinsX¥/1/there is no 

connection between the motion under the barrier and the motion 

outside of the barrier and therefore the problem of the zero-

point energy is not handled in a consistent way. 

' 
• 'I; 
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ln this paper we consider a method which was originally 

proposed in theoretical chemistry field by Miller /14-16/ · 

and by Marcus /17,18/, and which allows a consistent.' semi-

classical description of the multi-dimensional barrier. 

penetration problem. 

Using this method, one is able to calculate tran.si tion 

probabilities not only from the ground-state of the. fission-

ing nucleus to the ground state·of the separated system , 

but also to excited states, as well as all other transition 
'· 

probabilities starting from excited states. 

There exists a different attempt to solve the problem 

quantum-mechanically. H. Hofmann /19/ introduced an rhar,­

monic approximation for the potential perpendicular to the 

fission path. Adding the zero-point energy of this motion 

to the potential along the fission path, he decomposed the·· 

Hamiltonian in an adiabatic part and a remainder. The 

adiabatic part corresponds to a one-dimensional barrier 

penetration problem. Its solution yields "distorted" waves. 

The remainder is treated in the Distorted Wave Born,Appro-

ximation (DWBA) • As we will see shortly in a model cal-

culation, this method is certainly applicable for tran-

sit~ons from the ground state of the fissioning nucleus 

to the ground state of the separated system, but not for 

transitions between excited states where the coupling to 

other transitions is very strong. 
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In the present paper we investigate the problem on a 

simple two-dimensional model. This model is introduced 

and dis9ussed in section 2. In section 3 we give a method 

-
to find the exact fully quantum-mechanical solution. Since 

this method turns out to be too complicated as to be applic-

able for realistic fission barriers, we discuss a semi-

classical ppproximation in section 4. In section 5 finally 

both methods are compared • 

. Some aspects of this work were presented earlier in 

a review article for the Soviet Journal of Particles and 

Nuclei. 

2. The two-dimensional fission model. 

We start with the Hamil toni an ( 1) for tv1o dimensions (f=2) • 

In ref. 1~ it is shown that one can always find a coordinate 

transformation x = x (q 1 , q 2 ) 1 y = y (q 1 , q 2 ) '1.-lhich has the 

following properties: 

(i) The off-diagonal components of the inertial tensor ex-

pressed in the new coordinates vanish, 

(ii) The trajectory y=O defines a path of minimal energy. 

In this paper we go a step further and neglect the co-

ordinate dependence of the inertial parameters mx and my. 

This is certainly not fulfilled in a realistic fission pro- · 

cess. But since we do ·not know much about this dependence 

and are more interested in the methods to solve the barrier 

penetration problem, ·it is worthwhile to start 

. .. 

Lo 
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with tbe simplest case. On the other hand,· both methods 
• ~~ I 

which we describe in the next sections can . easily be gene-

ralized to include . . ~ coordinate dependence· in the in-

ertial parameters. We therefore start with the following 

Hamiltonian: 

A 

H + (7) 

ACcording to (ii) one has .;;- Vfx,;;)j = (); 
. . J=O' 

The potential along the fission valley V(x,y = 0) has in a 

typical case a shape like the one shown in fig. 1. Before 

fissioning the system sits in the local minimum at X = xo; 

X = xsc shall be the scission point (that is,. the place 
·.; ·-

where the nucleus breaks into two fragments) • The system:, 

in .order to fiss'ion, has to penetrate the potential barrier 

fro~ ~0 , to x 1 • 

. In order to be able to solve the problem, we· introduce 

further simplifications: 

(i) We assume that the y-motion, which is perpendicular 

to .the fission path, allows only bound states .• 

(ii) -V(x,y) shall be independent of x for· large positive 

and negative x-values. This is obviously not true for the 

potential in fig. 1. _This simplification allows us to cal­

culate only the penetrability through the u..o-dimensional· 

barrier. To get the decay probability (or the life time) 

one has to multiply with the frequency of the oscillations in 

x-direction in the local minimum x = x
0

• 
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This assumption is usually made in calculating fission half-

lives. However, up to no~ it has not yet been investigated if 

it is also possible for multi-dimensional problems. 

(iii) There shall be no coupling between the two degrees of 

freedom for \xl -? oo • 

The actual calculations were carried out with a barrier of 
. 2 . -2 -z Gaussian shape (f(z)=e ) or a~Eckard shape (f(z)=cosh (Z)) 

and a quadratic y-dependence with variable width: 

V(x, y) + ' 
(8) 

A non-zero value of the "coupling constant" ex allows the 

width of the valley to vary over the saddle, and by doing so 

couples the two degrees of freedom. Fig.2 shows such a potential 

surface for the Eckard barrier for the special case of 0< =0. 1 

and ·~ fc'/vo =0.1 (i.e. the frequency of the oscillator in the 
,.,;t 

asymptotic region is one tenth of the barrier height). 

Most of the calculations were carried out with a Gaussian 

barrier and the numerical values of the parameters were chosen 

so as to correspond to a typical fission case: 

m = 5oo MeV- 1 
vo = 7 MeV a = o. 185 

X 
(9) 

m = 4.7 MeV- 1 c = 5.1 MeV y 

This choice of m and c gives a frequency of about 1 MeV, 
y 

typical of,say, a gamma vibrational mode. The coordinates x 

,, 
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and y are dimensionless and correspond, for instance, 

to the deformation parameters f2 and e4 • 

In the asymptotic region <lxl~~> the two degrees of 

freedom decouple and the system finds itself.witha certain 

probability in a definite quantum state in the transverse 

harmonic degree of freedom. Our goal is, if initially 

(i.e. for x~ -eo) the system is in a state with a quantum 

number n (for the transversal degree of freedom) , to cal-,. 
culate the probability T~~ to find the system after the 

tunneling (i.e. for X-'II +oa) in a quantum staten~. Of 

course, there is also a probability R~p- for the system. 

to be reflected and to find itself at the end in a state 
1 at ~ p- x--r -oo. 
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3. Quantum Mechanical Solution 

In this section we will describe a full quantum-mechanical 

solution of the scattering problem for a Hamiltonian 

of the form given in eq.(7). The coordinate dependence of 

the inertial parameters is neglected for the sake of sim-

plicity. However, the method is not restricted to such 

cases. It can easily be extended for more general Hamil-

tonians. 

The Schrodinger equation we wish to solve is 

We expand the wave function in terms of a complete set 

of orthogonal functions in the coordinate y (for example, 

harmonic oscillator functions) : 

7j (x, ~) = ~ u" (x) fn (y). 

Substituting eq.(ll) in eq.(lO), multiplying from the left .. 
by <f.., (y) , and integrating over y , we find 

( 10) 

~2. d.2. 
d.x l U.,, (x) 

~~" 
/:_ u, (x) (12) 

with 

k t'l'1' (X) ( 13) 

Eq.(12) are coupled channel equations which have to be 

solved with proper boundary conditions. In the 
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asymptotic region (x --7 + oo) there is no coupling, and the 

potential may be written as 

+ 
·~ ( :±) 

y • 

(±) 
The eigenstates <f ,<y) define the ingoing and outcoming 

channels 

H(-) H 
'j ~}A; (y) ::: 

(-) 

E}A- tf~ Cy) 

In the following we use the indices 
J 

)1V 
I 

for the channels at 

for the channels at 

Let us express 

.the basis ~~ (y): 

(-) 

=L 
(-) 

<f,L4- d.,r- ~~ .., 

The matrices· dlt) 

is then -given by 

(x, y) = 

+00 and the indices 
I 

X~ }Aif"l··, 

X ~- 00. 

(-) (+) 
the asymptotic eigenstates 'fAA- I t{Jv 

(+) L_ 
(+) 

tf}J - c(,~ <f., .., 

are unitary • The wave function· (11) 

(+) 

d..,)) 
(-) 

c(,f" 

(+) 
<.p)) (y) · U 11 (x) 

(-) 
Cf,u.- (y) · U.., (x) • 

The boundary conditions which the wave function lj(x,y) 

has to fulfill are the following: 

in 

(i) for x ~ - oO one shall have in all open channels 

E < E) only outgoing waves, except in the channel ;Uo 
}'v 

( 14) 

(15) 

16) 

( 1 7) 
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where one has also an incoming wave with amplitude 1. In 

the closed channels (£ >E) there shall be only exponentially 
)4 

decreasing waves; 

(ii) for x ---+ +oo one shall have in the open channels 

only outgoing waves and in the closed channels only expo-

nentially decreasing waves. 

To assure that there are only outgoing waves for x ~ + oO, 

one integrates numerically the coupled equations (12) 

starting from x = + 00 with an outgoing wave in some channel ')) • 

If the channel.is closed, 

one starts with an_exponentially decreasing wave (instead 

of an outgoing wave) • Let ~~,.~(x ,y) be the solution of 

this integration. For x ~ + oo it is given by 

( 18) 

with ~v ~ ~~':·(E- f.~) for the open channels ( t)J < E) and 

~ = i}~~(E- E)' for 
)..> 1-.z. ~ 

the closed channels ( Ej) > E) • 

, For the numerical integration, the system of second-

order differential equations (12) is transformed into a 

system of first-order differential equations by introducing 

the derivations 1Y~(x): 

o{ 
~)..(.., (X) tr.., ( )() -

olx (19) 

c1 
'l)n (x) 1;; L_ k'~~· ( ){) U~· ( x) - lm"E ) - ~ u.Jx • ol')( 

1')' 

- . 
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The integration is performed by solving.the system (19) 

starting at :X = + co with 

(I>) 

1A,., (+ oo) -
.J (+) ikJJ X 
u.,l) e 

(v) . C+) ik,x 
v., cx.J -== i ~}} d.,~ · e . (2o> 

) 

At :X = - oo , the wave function 

can be written in the form: 

+ 
- i.k~ X) (-) 

b}Av e .. <.pfJ-- Cy). (21 > 

The coefficients 
( \>) 

values of 'U.., ( x) 

arv ,b~~ are evaluated from the 
(v) 

and '\! I') (x) for x-» - oo found by 

integrating numerically eq. (19). 

Using the unitarity relations for the coefficients 

d(-) one finds: 
np-

Q..uv'· - ~ 
-~ k,u.x ";'" _/(-)It ( (v) ~ . (v) ) _ ., e . L a. " -u I') c x) + . ,_ v., c ><) < 2 2 > 

.1.; 11'1 '}"- t.r< JJ )(-)-oo 

b~v - ~ 
x->·oo 

~ i ~~X ") ..J (-) * ( (v) ' . ( · .. Cv) .) , 
l e ~ u"'P 'U,., (x) - i~v v., (x) ( 23) 

~ (,&A.) 
(x,y) with the proper boundary 

"'!' 
The final solution 

conditions is a linear superposition of the fl4,.,dio"JS cp)J (x,y) 

( 24) 

where ,,the .coefficients Cy}'o are determined· from the 

boundary c.ondi tions 

(i) 
1_} lfo) 

(x ~ + oo) = only outgoing waves (25) 

(ii) 
'± (}'to) 

(x ~ - oo) 
i(lta.·X) (-) 

= e ro • tf ~ 
0 

( y) + out-

going waves. 
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The condition (i) is fulfilled by construction (all the ~~ 

fulfill it) condition (ii) determines cftYo : 

(26) 

That is,one finds c~~o by a complex matrix inversion 

, (27) 

Once known, one can evaluate with eqs.(24), 

(21), ·and (18) the transmission probability 

. ( 28) 

and the reflection probabil~ty 

--
l 

J ( b c ) fAJ<· I ( 29) 
I 

There are, however, some restrictions to the method 

just described to solve the exact coupled channel eqs.(l2), 

which _limit the usefulness of this method for practical 

calculations: 

_(i) For realistic energy surfaces many channels must 

be included in order to obtain convergence in the expansion (ll). 

This increases tremendously the amount of computer time. 

(ii) The exponentially growing solutions within the closed 

channels present a serious numerical problem. Practical cal-

culations are only possible if the closed channels can more 

.or less be neglected. In the present calculations at 

most two closed channels were included. If many closed 

channels are important, one has to apply more sophisticated 
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methods. One way to avoid these difficulties is to expand 

the wave function for the closed channels by bound state 

wave functions to make sure that they contain no exponen-

· tially increasing components. 

Another way is to choose different complete sets 

for different x-values. As an example, let us consider 

the potential (8}: 

V(x,y} = V(x} + ~ C(x} •. y 2 (30) 

It is an harmonic_oscillator potential for each value of x. 

The coupling is introduced by the x-dependence of the os-

cillator length 

b(x} = 

and the oscillator frequency 
~ 

( C ( x) / 'YYI y ) 
2 

W (x) -::. 

Instead of eq.(11) we now make the ansatz 

·lf. (x,y) -

where ~ ·h (~b) are properly normalized oscillator wave 

functions with the oscillator length b(x). 

Instead of eq. ( 12), one now finds 

V(x) + k w(x) (n+l)- I= ) 'U
0 

(x) 

"'. (L . ) d L \ · ., , (x d- u,.,,(x) 
I ~ X 

')) 

(3la) 

(3l.b) 

( 32) 

(33) 
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with +OO 

l·fc'J 
I {*(:,.).[.~ (~ ~.J{c))} (34) L (x} Yb(xJ Yl~' 

-DQ 
+oo 

-.. 
) cl. I ( ( ~(x)[;x~ (~·h., (:~))L35) KY!n 1 

(x) - :J ~) 
-oo 

Using the properties of the harmonic oscillator wave 

functions hn , one finally obtains 

Ln .. ' 
h' 

[ . c£ .. , 2 <?1/2 ~ 17)'> j - + ( 36) 
b 

,..,_, b')'{ 3 
l . 

k l1i'\ I - (t; . ;;- c( ... + 3 </)')I~:~ I 'n 1 > + <-n I ?..2-u~ z J·y/> j 
2 b/" { cf..,.,' + 2 < 'h 1 2 l- r'n / > J -b ()~ 

r 

Eq~(33) is then solved as described previously. 
,· 

, 
From eq.(34) one obtains a zeroth approximation by 

,.._ 

neglecting the coupling terms L and k In that case 

one has no mixing of the channels. For each channel one 

has·a one-dimensional barrier penetration problem. How.,-

ever, the form of the barrier is now modified by the x­

dependent oscillator energy 1; W(x) .(,., + ~) , as shown in 

fig. 3. The corresponding wave functions are usually 

( 3 7) 

called "adiabatic" states. In ref. 19 the adiabatic states 

were calculated by a one-dimensional WKB-approximation and 

the coupling treated in Born-approximation. It has also 

• 
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been pointed out by Maruhn and Greiner/20/ that in replacing 

the multidimensional barrier by_ the motion along a one-di- . 

mensional fission path, ohe has at least to correct for the 

change of the zero-point energy along that path. 

For our simple model described in chapter 2 we took into 

account as many channels as were necessary to obtain con-

vergence. For coupling constants I o< I < 0.15 at most two 

closed channels had to be included. · Up to this value of· 

the coupling constant the method previously described pro-

vides an exact quantum mechanical solution to which one 

can compare the semiclassical approximation, which we describe 

in the next section. 
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4~ The semiclassical theory 

4 .1. THE IN'l'EGRAL REPRESENTATION OF THE S-MATRIX 

As mentioned in the introduction, we assume that there 

exists a classical Hamilton function (eq.(2)) which describes 

the same system as the quantum-mechanical Hamilton operator 

(eq. (1)). For this case W.H. Miller jl4-16/and R.A. Marcus/17,18/ 

have derived semiclassical approximations for the quantum-

mechanical S-matrix. 

In this section we apply the method developed by Marcus/17,18/ 

to the two-dimensional barrier penetration problem defined 

in section 2. The Hamilton function depends on the fission 

coordinate x, the corresponding momentum p and on the 11 in­

terna.i .. degree of freedom y with its canonically conju­

gate momentum f~ . The correspondence between the quantum­

mechanical problem, where the ':1 -motion is quantized, and the 

classical theory is most easily achieved if an action variable 

J and an angle variable w- 13 ) is used for this degree of 

freedom. 

For our model (Chap .2, they are given by 

:z. 
1C 

( ((x) . ~ z + _!t_J J - <.J(x) 
( 38) 

-n-ty 

'l.J" 
I Arc.~ ( Py / ( w ()()·'My ·y)) ::: -

21C " 
From the classical Hamilton function in these coordinates 

H(p,J,x,w) the quantum-mechanical Hamiltonian is obtained 

by the substitutions 

t d (39) --
I • 

.. ...,_, 

. . .. 
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The constant describes the difference between the 

classical action variable J and the quantum-mechanical 

operator t; l_ 
i.~W'" 

It is different for different types of 

internal degreesof freedorn(2l/. For an harmonic oscillator 

1 (present case) it has the value ; 2 in the WKB limit. 

In the asymptotic region there is no coupling between 

the two degrees of freedom. The internal state is de-

scribed by the quantum number n, and for the x-motion one 

has a plane wave with the wave number 11.,, • The wave function 

is therefore given by 

i (:!: k,., ·X + :2Jcn·ur). 
(! 

The total energy is fixed and has the value 

1:::. +.c.~ 

where E., = 1;, 4J
0 

(n+ ~) is the internal energy. 

following Dirac /22/, one now makes the WKB ansatz for 

the wave function 

7j -
and substitutes this ansa tz into the Schrodinger equation. 

( 40) 

( 41) 

( 42) 

Expanding in tenr,s of It one obtains for the .lowest order 

in · 'h the Hamilton-Jacobi .. /13/ equation 

== E ( 43) 

which allows a determinat:im of the action rN. 
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To the next order in t one obtains a continuity equa-

tion for the amplitude 

d (A~ w) -
d'W' 

where the dots indicate 

X = 'dH 
ap 

A: 

(} 
(A 

2
• x) + ()x 

time Jerivatives 

w== 
'dH 
()J 

- o- ( 44) 

and are given by 

(45) 

From classical mechanics/13/one knows how to solve eq. (43). 
fi~ 

One has to ~ solutions of the classical equations of motion 

( 45) (classical trajectories) • The time derivative of 

liaHliltons characteristic function W is 

• p·x + J·w (46) 

Integrating eq.(46) with the, proper initial condition that 

for t<t
0 

(t
0 

being a time before any interaction takes 

place) one has an incoming wave in the channel ~ (see 

eq.(40)), one obtains 

t 

W' "' f ( f ·X + J W) dt' + f (~"p. X 
0 

+ ~n: [.) 0
{'11_.. + tJ} (47) 

to 
0 

W = W(t ) • The integrals are line integrals, 
0 

the integration being performed along the classical tra-

jectories which the system traces. "Classical" means that 

the trajectories are solutions of the classical equations 

of motion(44~. It is not necessary, however, that these be 

real solutions. In fact there are classically forbidden 

\ 
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regions which cannot be reached by real trajectories. 

The barrier penetration is an example of such a case. In 

order tofind trajectories reacning these regions, one has to 

use complex trajectories, as will be' discussed 

in the next section. Here we assume that we have found 

such solutions and discuss how to find an expression for 

the wave function which fulfills the proper boundary con-

ditions. 

Eq.(44) is a continuity equation. Integrating it over 

a tube spanned by classical paths. starting at a point x 0 

(A(x0
) ~ 1) we find 

A(x) 

with U" - X ( t.,) 

In the asymptotic region we therefore have the wave 

function 

)(~+00 

For negative x-values we have a superposition of the in-

coming and the reflected wave 

(48) 

( 49) 

co· <+l + (f / j~./ vxp(: 1.!- ire th i[).cso) 
Tj..E IL 

For the reflected wave one has to increase 

the phase by 1S'.2, when p changes from 

positive to negative (i.e. when x goes through a turning 

point) /21/. 
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Since we now have constructed a semiclassicai wave 

function, the next step is to obtain an expression for the 

S-matrix. The matrix elements of the s-matrix can be 

found from the asymptotic expressions 49 and 50 an~ are 

given by 

L 
h- g) 0 (+) sv?-1± - v ) lf')'Jv E (51) 

X-? oo )) 

anJ 

x~-oo 
(52) 

Once the S-rnatrix is kno"Ym, the transition probabilities 

for the system from an initial state J.L to a final 

state V are given by 

(53) 

Comparing eqs. (51) with (49) and (52) with (50), we find 

.after multiplying both sides by exp (- 2TI'inl) ur) and inte-

grating over the angle 'W" that 
!12. 

1km J du.r 
t-,oo 

~ i 

( 

11 I d ) :2. f Lllw) 
:rtJ d;; e ·. (54) 

with t 

11 = - j(x · p + w .j} d( + 
to . 

where the upper sign holds for transmitted and the lower 

sign for reflected waves. For the latter case an additional 

phase of has to be added to A 
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The final angle · ~ is a function of the initial angle 

'W d • Changing the integration variable from w to 'W 
0 

one obtains 

= f~tJ· ( ~; (56) 

t-"J 00 -1/ 
.2. 

The functions n(t) = JU)h~~ and p(t) are time independent 

for large t-values. However, the asymptotic 

values and depend on the initial angle 
o· 

W • Eq. (56) 

is the so-called integral representation of the S-matrix 

derived first by R.A. Marcus and coworkers/17,18/. It has 

been used recently in an exactly soluble model/23/and turned 

out to be very useful • Within this paper, however, we go 

one step further and apply the saddle-point approximation 

to the integral in e~. (56). 

4.2. THE SADDLE-POINT APPROXIMATIONS 

In deriving the semiclassical S-matrix (56), we used 

the WKB ansatz for the wave function, which decomposes it 

.into an amplitude and a rapidly oscillating phase. Both 

were calculated only for small values of "t . · 'l.herefore 

it seems .. consistent to apply the same argument once more 

and to use a saddle-point approximation for the integral (56) . 

This approximation uses the fact that the phase ei.Ll/li_ is 

rapidly oscillating and that there will be contributions to 

the integral (56) onlyfrom values 
0 

tV , for which the phase 
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becomes stationary, ( saddle points ) 

(57) 

There exist several approximations to an integral of the 

type ~6)which take into account only the values and certain 

derivatives of the integrand at the points of stationary 

phase. Three of them (the so-called primitive semiclassical 

approximation, the Airy- and the Bessel approximation) are 

consiJ.ered in the appendix. 

In order to find the saddle points, one has to find the solu-

tions of eq.(57). For this purpose we go back to the repre-

sentation· (55) and note that from (47) one has 

. (58) 

i )( ·k -.. ~ 

and for t --+ + oo 

dfl 
:: 

d-w 
The points of stationary phase are therefore given by the 

condition 

To find such stationary solutions, one has to solve the 
-

classical equations of motion 

• _e_ • (} 
V(>c,:J) X - ) p -'M)C ~X 

I 
Py • rJ 

V(x,:;) ~ - fy == --
my ) 

~y 

(59) 

(60) 

( 61) 



with the initial values X0 (large and negative), p0 

(given by energy conservation) , nr and uY
0 

, and to 

calculate the final "action" variable nf ( 1.J
0

) (quantum 
+ 

number function) • The stationary points of the phase 

27. 

are the points ur0 for which the quantum number function 

has the real integer value n~ • Usually eq. (60) has se-

veral solutions, which corresponds to different saddle 

points. 

The model considered in the present paper has a 

symmetry. The Hamiltonian does not change when changing 

y to -y • It is therefore sufficient to take into account 

only the range If w0 
is a solution of eq. ( 60) , 

0 

then 'Ul + 1/2 is also a solution, but from (54) and (56) 

one has 

0 )i ~ (1.J . 

For odd: values of ~- '»?).' the matrix element s~ 

vanishes (parity selection rule). For even values of ~~-~v 

one needs to take into account only the saddle points in 
... o . 

the interval · 0 ~ u.> ~ 1/2 and then multiply the resulting 

+ 
Here we have (eq. (61)) -written the equations of motions 

in cartesian coordinates y, Py· Obviously they have to 

( 62) 

. be .. ~ansformed into the action angle variables in the asymp-

. totic region in.order to impose the right boundary conditions. 

For our simple model we could have solved the equations of 

motion in action angle variables as well. This, however, 

often introduces numerical difficulties. 
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s-matrix elements by a factor 2. 

For our model one has always two saddle 

points in this interval : 'ZJ1 and 'Wz The corresponding 

angles are The phases Liz: at these points 

are (eq.(SSV 
+oo 

-J (x f + -w j) rit' (63) 

-oo 

and (with (59)) 

• ( 6 4) 

We therefore find from the appendix and eqs. (63) and (64) that 

· in the. primitive semiclassical approximation the s-matrix is 

given by 
2 

i Ll i (,..,», ""'") L_· 1 "~ +)JIJ) 
Svi'- - e (1 + (-) -

y ::J{•=w, i·=-1 ( 6 5) 

( ~+~) 

{YP, 
l, ~A r,;: • L12 f I+ c-) - e. + Pz. e - 2. 

where (i = 1,2) • 
(66) 

!Pi\ are the classical probabilities,and the purely classical 

s-matrix element would be VIP~ + VI p~ • The semiclassical 

approximation, however, takes into account the phases 



29. 

for the stationary trajectories and, for forbidden transi-

tions, allows the pi's to become complex. 

As discussed in the appendix, one has to consider very 

carefully whether a stationary solution has to be inclu-

ded in the sum (65). For classically forbidden processes 

only one of them has to be included. For the Airy- and the 

Bessel-uniform approximation it is not necessary to make 

such distinction. For the present tunneling problem we 

used the Bessel uniform approximation. With K =I nr- n~l 

one finds for the S-matrix element (eq.(A.8)) 

S,r - ± (l+t-t) (t1::~)~ t[ VI-(~/' ( fp: + fr:) JI q\67) 

+ 1- ( ~ - ~) J: (~)1 
2· 

where ~ is implicitly given by 

4.3. CLASSICALLY FORBIDDEN PROCESSES 

In.section 4.1 we considered a WKB-ansatz (42) for the 

wave function. The phase W was determined by the clas- · 

sical Hamilton-Jacobi equation (43). This equation was 

then solved by the method of characteristics by which one 

introduces a time parameter and trajectories obeying the 

classical ~quations of motion. As long as one regards 
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only real trajectories (i.e. real coordinates, momenta and 

times), it is obvious that there are certain regions of 

the phase space which cannot be reached (classically for-

bidden regions) • 

For the problem considered here there are two types 

of forbidden regions: 

(i) For the reflected trajectories there is only a 

finite time during which the system feels a coupling between 
'• 

the two degrees of freedom x and y • As long as the 

coupling strength ( c:x) is finite, there exist usually quan-

tum numbers nf which cannot be reached by real trajectories, 

i.e. for fixed n. the equation 
~ 

does not have for all values of n real solutions 0 
'Vol ' 

(69) 

even if they are energetically allowed. However, allowing 

complex initial values W 
0 

it is possible to find such 

trajectories with a real time path. Complex initial con­

ditions lead to a complex phase ~ , i.e. to an exponen-

tially decreasing probability (see eq.(65)). For real time 

paths, also 'W 
o* is a solution of (60), but as discussed 

in ref. 24, only the saddle point in the complex ~0-plane 

giving an exponentially decreasing contribution should be 

taken into account within the primitive semiclassical 

approach (eq.(65)) • 

Since the initial "phase" v,r 0 is not physically ob-



servable, one has no difficulties in allowing it to be 

complex. It is evident that one does not need complex 

trajectories, if the integral representation (56) for 

the S-matrix is used. For this case, using the analytic 

properties of the integrand, it is sufficient to inte­
o 

grate along the real interval 0 .. t.J ~ 1. 

(ii) The situation is completely different for the 

tunneling situation (E < V) • As long as one starts with 

real x- and p-values and uses real time increments only, 

it is not possible to find trajectories which end up, 

for t -+ oo, at the other side of the barrier (even allow-

ing complex initial angles 
0 . . 

~ ) • That means that, for 

such trajectories, the wave function vanishes on the 

right-hand side of the barrier .• To get tnere a non-

vanishing wave function, one has to allow for complex time 

paths. This has been studied in detail by W.H. Miller et 

al. (ref. 15) in the analytically soluble one-dimensional 

example of a symmetrical Eckard potential barrier. It is 

3L 

shown there that for certain time paths im the complex time 

plane one obtains a reflected wave, and for other paths 

one gets tunneling. For this analytically soluble model 

one knows the analytic structure of the function 4 and 

one therefore knows in which sheet of thd.s multivalued 

function one has to carry out the analytical continuation 

of the classical S-matrix. For the two-dimensional problem 

considered in the present paper one does not know the ana-

lytical structure and therefore it is not so straight-forward 

• 
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to find the tunneling trajectories which contribute to 

the s-matrix. For our problem, one could always find 

two such tunneling trajectories. Since the time incre-
. 0 *' 0 

ments are no longer real, -w... now differs from 'Wz. • 

Fig. 4 shows for a particular case the quantum number nf 

as a function of the initial angle cf>o = 2 7t W
0 

One 

observes that the quantum number function is rather "flat" 

and therefore the Bessel uniform approximation for the s-

matrix was used. 
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5. Results and Comparison 

We shall now present numerical results for the tunneling 

problem described by .the model Hamiltonian (eq .8) using the 

different methods discussed in the· last two sections. 

Fig.4 shows in its upper part the shape of the Gaussian 

barrier (parameters are those of eq.9) together with the adiabatic 

translational energies in the x-direction for the three y-vibra­

tional channels n=o, n=2, n=4. The total energy i~ chosen to be 

Etot = 6 MeV and the coupling strength is 0( =o. 1. That means we 

are dealing with a typical subfission barrier with - 5.5 MeV 

of excitation and 'V 1. 5 HeV below the classical barrier threshold. 

Higher n-channels are obviously closed, and odd n-channels are 

not coupled for parity reasons. 

The lower part of fig.5 shows the square of the wavefunction 

for an incident wave from the left in channel p=2 (i.e.fu 2 (V) (x) J2>. 

These results were obtained using the exact coupled channel 

quantum mechanical code described in section 3. In the coupled 

channel code, three open and one closed channel were included. 

Taking into account the fourth (closed channel) changes the 

results only in the fourth significant figure. We note the 

standing wave in the channel p. =2 on the left side of the barrier, 

as most of the flux.is elastically reflected. About lo- 5 is 

inelastically reflected in channel j!=4 and 1o -a in channelp.=o. 

To the right of the barrier V=o, 2 and 4 wav~s are transmitted 

-1o -15 -24 . . . at the 1o , 1o and 1o probab1l1ty levels respect1vely. 
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Fig.6 shows how the penetrabilities P~~ change with the 

coupling strength~ between~ =-o.15 and ~=+o.15. These values 

of ~correspond to a nattoo strong coupling between the two 

degrees of freedom. Larger values of ~were notconsidered, 

since in order to expand the ~avefunction eq.11, many more 

channels have to be included. From fig.6 we find that there 

is a vibrational"cooling" effect on the passage through the 

barrier, with v=O transmitted waves dominating regardless of 

the vibrational state incident on the barrier. Only in the 

case of very close to zero, (constant valley. width), will .. this 

cooling not occur. The reason for this effect is, that the tunneling 
\ 

pr.obability in a channel v with low vibrational quantum number 

has more energy available for the translational motion, which 

favours tunneling. As soon as the system - thro~gh the coupling 

of the two degrees of freedom - has moved into a vibration with 

lower vibrational energy its tunneling probability is much 

higher and ther~ore transitions to lower· ~-values are favoured. 

Obviously this is not a real cooling in the ~tatistical sense. 

The transition is completely reversible and the transition proba-

bili ty P from the channel }J- to the channel }J is equal to the 
)I~ 

transition probability Ppv • 

In the following we first discuss diagonal transitions. An 

obvious approximation to be tested by the coupled channel solution 

is the S~?lled vibrationally adiabatic approximation (QMad) , 

where one assumes that during the fission process the system 
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always stays in the same oscillator state~· We only allow 

the wave function in the y~direction to adjust adiabatically 

as the width of the valley changes along the path. In this 

case one neglects the right-hand side of eq. 33• Table 1 

shows the diagonal transition probabilities Prr' for the no­

coupling case ( o( = 0) obtained with the exact quantum-mecha-

nical code (QM) and for the vibrationally adiabatic approxim­

ation (QMad) • Since -for the model studied here the inertial 

tensor is coordinate-independent and diagonal, the one-di-:_ 

mensional WKB approximation (eq.3) and the least-action path 

method (eq.S) give the same result (also shown in table 1) 

and are independent of OG. • 

35. 

For of.. = 0.1 one· finds that the QMad calculation is quite 

-.good, ~on~iderably better than the WKB result. The main re9-son 

why the WKB result and the least-action path method give 

larger penetrabi'lity values is because they neglect the 

change of the zero-point energy in the y-motion, which in-

creases around the ba_rrier for positive 0( -values (the 

valley becomes narrower at the top of the barrier) , leaving 

less energy available in the fission degree of freedom to 

penetrate the barrier. 

Neither the WKB nor the least-action path method permit 

the calculation of off-diagonal transitions (that is, cases 

for which the final quantum number is different from the ini-

tial quantum number). This, however, is no difficulty in 

the semi-classical approach described in section 3. Table 2 
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shows a comparison between the uniform semi-classical 

approximation USCA (eq.(67)) and the exact QM calculations. 

For ~= 0 the USCA results are identical to the WKB re-

sults shown in table 1 (only the diagonal transitions are 

non-vanishing for 0( = 0). In fig. 6 the USCA results 

are shown by dots. The agreement between these USCA cal-

culations and the exact quantum-mechanical coupled channel 

calculations is very good, even. thoughthe model considered 

here is highly non-classical. 

Up to now we have discussed a Gaussian barrier. A 

barrier of the shape f(z) = cosh-2 (z) in eq.(S) (Eckard-

potential) can be treated analytically in the one-dimensional 

case. In the two-dimensional case this is no longer possible. 

However, in the so-called sudden limit the two-dimensional 

problem can be solved analytically. This limiting situation 

is obtained by letting my become very large and C very small 

so that C•m remains constant. In this case the system y . 

does not oscillate during the tunneling process. The de-

tails of the analytical solution are given in ref. 23, 

therefore we give only some results here. 

In the following the parameters 

-1 
mx = 500 MeV ; V

0 
= 7 MeV; a= 0.120 (70) 

were used. 

The constants C and my are not relevant in the sudden 

limit. We take the initial quantum number to be ~0 = 4 

because in this case one has both excitation and de-excit-

ation of.the oscillator, and the total energy to beE= 3.5 MeV. 
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Fig. 7 shows the exact quantum-mechanical probabili-

. · trans ref 1 ties for tunnel1ng P and for reflection P as a 
, . • YJAo' . . , rro 

function of the coupling strength o<. • For .0( = 0 the system 

remains in the oscillator state n = 4. with increasing~ 

transitions to other oscillator states can take place. For 

the reflected waves the population of the different .. channels 

oscillates with increasing ~ The corresponding semi-

classical solution shows that there.are always two tra-
. -.~ . 

jectories which contribute to the S-matrix with an ampli-

tude of the same order of magnitudes~ This produces an inter-

ference. For the transmitted waves no such oscillations 

occur. The reason is that only one of the two classical 

·trajectories contributes to the s~matrix. The other one 

has an amplitude which is smaller. by .several orders of 

magnitude. · 

For very small coupling constants the transition to 

states with higher n-quantum nwnbers are favoured because 

the matrix element which couples n with n + 2 is larger than 

the one which couples n ton- 2. But with increasing« 

the states with lower n-values are favoured because they 

see a lower barrier as discussed before. 

Tables 3 and 4 show the actual values of the trans-

mission and .reflection probabilities for the case of ex= 0.1 •. 

The exac::t quantum-mechanical solutions are compared with 

the differept semi-classical approximations discussed in 

section 4, namely. the primitive semi-classical (eq.(65)), 

the Bessel (eq.(67)), and the Airy (eq.(A.4)) approximation· 
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to the full integral (eq.(56)) which is given in the 

last column. The over-all agreement with the quantum­

mechanical results is excellent. 

6. Conclusion· 

In this paper we have investigated the tunneling through 

a two-dimensional fission barrier. A simple model was in­

troduced and treated in several ways:· 

(i) An exact quantum-mechanical solution of the problem 

is possible by a coupled-channel calculation. This method 

is general enough to be extended to.more complicated pro-· 

blems; however, difficulties arise in cases where too many 

closed channels have to be included in the calculation. 

(ii) The application of the uniform semi-classical 

approximation developed by W.H. Miller /14-16/ and R.A. 

Marcus /17,18/ to the fission problem is proposed and in­

vestigated in this model. There are always two complex 

classical trajectories which fulfill the right boundary 

conditions. The corresponding amplitudes are added cohe­

rently to obtain the S-matrix. In the limit of a sudden 

collision one can study the behaviour of both trajectories 

analytically. The result is that for the reflected waves 

both trajectories have amplitudes of the same order of 

magnitudes. This produces an oscillating dependence of 

the reflection probabilities on the coupling strength ~ 



'-

0 0 d ~~ 8 u .j ,..-. 

'') 7 ~') ~ 

39. 

For the transmitted waves one of the amplitudes is usually 

much larger than the rest. Therefore in this case an 

interference structure is not found. 

The agreement between the transition probabilities 

computed quantum-mechanically and semi-classically is very 

good. For diagonal transitions the most important effect 

resulting from the multi-dimensionality of the fission 

barrier seems to be the change of the barrier high due to 

the zero-point energy of the vibrational motion perpendicular 

to the fission path. If one takes_ this zero-point energy 

into account, the adiabatic approximation along a one-di-
,.' 

mensional· fission path seems to be satisfactory, at least 

as long as the coordinate dependence of the inertia tensor 

is ignored, and one is interested only in diagonal tran-

sitions. 

The least-action path method /1/ is able to include a 

coordinate-dependent inertia tensor. It is, however, not 

able to include the effects of zero-point motion perpendi-

cular to the fission path because it does not fulfill the 

right boundary conditions. Since it is very easy to in-

elude into the uniform semi-classical approximation also 

coordinate-dependent and non-diagonal inertial tensors, the 

latter seems to be an appropriate method to investigate 

multi-dimensional fission barriers, at least as long as the 

available total energy is not too close to the barrier top. 

Up to now there has been no experimental data which 



gives information about non-diagonal transition. Never­

theless, the USCA-method allows to calculate non-diagonal 

transition probabilities and the results agree well with 

the exact calculation. 
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A p p e n d i x 

We are interested in an approximate eval~ation of the inte-

gral 

= (A. 1) 

where is large over most of the interval (so that the inte-

Grand is rapidly oscillating) and has two sadd~es x 1 and x 2 

a) The socalled "primitive'' approximation is obtained when f 

is ~xpanded up to quadratic-terms around the points x
1 

and x
2 

separately. In this case I is decomposed into two 

parts and one gets 

-r-~ -

with f . = f ( x . ) ; g . = g Cx , ) 
l l l l 

+ 
(A.2) 

... 
·. ' 

In the classically accessible case both saddle.points are 

real .. For the classical forbidden cases'· [1o~~ver, 'the 

corresponding saddle points are complex. In applying this 

approximation one has to be therefore very careful and 

check the relative position and orientation of the saddles 

which may result that in some cases one has to take into 

account only one of them (see ref.24 and 23). 

b) The approximation (A.2) is dnly good if the two saddle 

points x
1 

and x
2 

are well teparated. When the' two saddle 
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points x1 and x2 are close together· one has to improve 

the prescription(A~)and one way is to map the phase f onto 

a cubic in such a way that the stationary points of f and 
. 18 24 25) 

the cubic correspond ' ' 

+ 1·u. + A --

In this way one obtains the Airy-uniform approximation 

c) The mapping (A~3) is·one of many possibilities. For the 

case of a functions f with the structure 

(A.3) 

(A. 4) 

(A. 5) 

for constant><. and rather "flat" f, Stine and Marcus 26 ) 

consider the mapping 

(A.6) 

from the interval 0 ~ x ~ 1 onto the interv~l - 1C ~ J .~ 4: The 

constants ~ and A are chosen so that the stationary phase 

points of f(x) in 0' x ~ 1 correspond to those of the new 

f~nction h(y) in the new domain. This leads to 

A-~·~ 

(A. 7) 

-. 
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For integer v~lues of this yields the s6 called Bessel 

uniform approximation 

I (A.8) 

JK 

The Bessel- and Airy~approximation is usually more compli-

cated to apply~than the primitive semiclassic~l approxima-

tion (eq.A.2), but they also are more general and have advan­

tages in the case of complex saddle point~. In refi 23 the 

three methods are compared in detail in a simple model. In 

order to decide which one to use, one has to investigate 

the behavio~r of the function f(x) in the integ~al (A.l). 

for complex saddle points (classically forbidden processes) 

this can be rather tedious, and in such cases it is often 

easier 'to evaluate the integral numcerically. 
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Table 1 

Comparison between the QM, QMad and WKB calculationsof the 

diagonal transi tionprobabili ties P}"j'-

0(. = 0 0( 

)J.-'J}A- QM QM 

0-+0 1. 67 ·1o- 5 1.40 1o 

2-+2 5.48 1o -13 2.67 1o 

4-+4 1 . 44 1o -22 4.66 1o 

= 0.. 1 

-5 

-13 

-23 

QMad 

1.40 

2.42 

3.62 

,. 
I 
I 

1o -5 

1o -13 

1o -23 

WKB 

1. 6o 1o -5 

5~21 1o -13 

1 . 34 1o -22 

. •.' 

. ~. ' 
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Table 2 

Comparison between the QM and the USCA transition probabilities- P 
. ~ 

oc = 0.1 

rv~>JA- 0'+ 0 0 ... 2 o .... 4 2~2 2c-+4 

! 
I 
I 
I 

-5 -11 -16 2.67 1o-13 -19 
IQM 1 . 4o 1 o 9. 3o 1 o 1 . o3 1 o 9.86 1o ·· 
I 

I 
USCA 1.44 1o -5 9.49 1o- 11 0.97 19 

-16 2.52 1o- 13 9.15 1o- 19 

------ -

( 

0(' = 0.01 

0 .... 0 o~2 

1.64 1o 
-5 1 . 22 10- 12 

. '-5 
1.56 1o 1 . 3o 1 o -1-2 

0"4 

1. 49 1 o- 20 

1.42 1o ... 20 

-- --

~ 
-....] 

0 

c 
.:;,.,.,,... ~ 

cz 
'~~ 

~ 

c 
(,,,,' 

.;;.r. 

.Jt~ 

-· 
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Table 3 

Transition probabilities PV~o 
-lo (in units of 1o ) in th~ 

sudden limit on.an.Eckard-shaped potential. The parameters are 

given in the text. p-
0 

= 4 

y QM Pr.Semicl. Bessel Airy Integral 

0 2.8 1 . 9 1.9 1.9 3 .o 

2 2. 6. 2.3 2.3 2.3 2.8 

4 2.2 2.0 2.o 2.0 2.3 

6 1.7 1.5 1 . 5 1 . 5 1.7 

8 1 . 2 1. 0 1 • 1 1.1 1.2 

1o o.]J o.6B o. 6~ . o. 0~ o.76 

12 o. 45 0. 42. 0.43 o. 4.3 o.~ 7 

Table 4 

Reflection probabilities P~~o .for the sudden limit on a~Eckard-

' 
shaped potential. The parameters are given in the text. ft

0 
= 4 

0 

2 

4 

6 

8 

1o 

12 

+ 

QM 

o.o41 

0.32 

o.o16 

o. 14 

o.22 

o. 15 

o.o65 

Pr.Semicl. 

o.o48+ 

o.35 

o.o19 

0. 11. 

o.oo1 

o.o79 

+ 0.33 

Bessel 

o.o39 

0.32 

o.o15 

o. 14 

o.23 

o. 15 

o.o68 

reflection is classically forbidden 

Airy Integral 

o.o4o o. o53 . 

0.35 o. 31 

o.o16 o.o16 

o. 14 0.13 

0.23 0.23 

o.15 o. 16 

o.o69 o.o69 

.. 
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Figure Captions 

Fig. 1 Schematic representation of a fission barrier~ Shown is 

the potential along the fission valley. 

Fig. 2 Potential energy surface V(x,y)/V (see eq.S) for the 
0 ' 

. . -2 
case of f(z)=cosh (z). The parameters are 0(=0.1 and 

h(C/m )112 =0.1·V . x is measured in units of the barrier 
y 0 

width a and y is measured in units of the oscillator length 

b=(h2/c m )114 . Also drawn is the probability distribution 
y . 

for the harmonic oscillator wave function, for the quantum 

states n=o and n=4. 

Fig. 3 The effective barrier for the adiabatic states n=o,2,4. 

Fig.4 

The lowest curve is the pure Gaussian barrier with the 

parameters of eq.(9). The other full lines include the 

x-dependent vibrational energy i\ (.J(x) ·'(n+1/2) ~ For the 

dashed lines the vibrational energy was taken to be con­

stant ~0 ·(n+1/2). Shown also is the total energy of 6MeV 
0 

used in the calculations to table 1 and 2 and fig.4,5 and 

6. 

Real and imaginary part of the quantum number function 

n,_U/J
0

) versus the real part of ;
0

((>0 =2TC"'). The various 

curves are labeled by the value of Ima~ (tp
0

). The para­

meters are given in eq.9 and the initial quantum number 

is n =3. One observes that there are two solutions to ,.. 
eq. 6o. 



So. 

Fig .. 5 Fission barrier and the ~uare of the quantum mechanical 

channel function u.,(x) for an incoming wave in the chan­

nel JL=2. The parameters are those of eq. (9), ~=o.1, 

E = 6 MeV. 

Fig. 6 Penetrabilitie.s P.,J.C. for different values of the coup­

ling constant « . The lines correspond to the quantum 

mechanical coupled channel calculations (soiid line for 

diagonal and broken lines for off-diagonal transitions) 

and the dots correspond to semiclassic~l calculations 

using the uniform Bessel-approximation. The parameters 

of the ~potential are given in eq.(9). 

Fig. 7 QuaBtum mechanical transition probabilities versus the 

coupling strength ~for several transitions for the sud­

den limit case; a) for the reflected waves, b) for the 

transmitted waves. The parameters are given in the text. 

. ' 
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