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" Abstract: The tunneling problem through multi-
dlmen51onal fission barriers is studled
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complex classical trajectories is applied
and the results are compared with an exact
quantum-mechanical solution by a coupled
channel calculation. The results show

very good agreement.
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1. Introduction

The theoretical description of the fission process
is one of the oldest problems in nuclear physics. It
involves collective and single-particie'aspects. Muchr
work has been done to understand this process and many
aspects have)been clarified, but a unified theoreticel
description hes not yet been given. .We will not:comment
vhere on all the knowledge one has gained up to now in
understanding this process, but refer to the literature;
especially to the review article of M. Brack- et al. /l/
and the references given therein.

Most theories start with a suitable choice of collect-
ive coordinatesql.'..qf One of them is always the fission
coordlnate whlch corresponds at the beginning of the f1s51on
process to some deformation parameter and goes over, after
'the fission process, into the distance between the seperated
fragments; However,‘to describe the essential behaviour |
of the nucleus during the fission process one'needs further
parameters to describe other collective degrees of free-
dome such as ‘other deformations, the mass asymmetry, or
v the_palring correlations.

The next step is then the‘determination‘of.a collective
Hamiltonian in these variables. K fully quantum—mechani—'
cal way to find such a Hamiltonian is to use the method
of generator coordinates. Proposed by Hill and Wheeler/2/
and extended in the following years in many different ways
/3j6/,vit yields a collective quantum-mechanical Hamil-
tonian, which is quadratic in the momenta corresponding to

the collective coordinates, and has the form:



where g = det(gik) and where gik(qj..-qf)‘ls ?hé metr;cvtensor
of the curvelinear coordinates q1;,.qf. The inertial tensor -

Mik ‘
Following ref/3-6/ one is in principle able to derive Mik and

and the potential energy V depend on these coordinates.’

V from a microscopic Hamiltonian. However, up to nOW’itniS'only
for the case of anharmonic vibrations that one hqs-calculatéd

nwssparaméters and potential energy surfaées in that way. -

For the:fiésioh prdcess onevusually uses a mixed ﬁicroscépic—“
macroscopic method. The energy surfaces are taken frdm the
liguid d:op'hodel and shell corrections are added using the
Strutinsky method /7/.The mass parameters are obtained from:
the cranking formula. The energy surfaces calculated’using
this méthod are able to explain many features of thé fission
process.‘ﬁbwe§er, not much is known up to now about the

mass paraﬁétets. Some éalculation$ show é strongAdepehdencé
on théucéordinagéétqi, a fact which certainly wil; influ-

ence the fission process.

Once the mass parameters and the potential from such a mixed
microscopic-macroscopic method are known, one has to requan-
tize the Hamiltonian. The same has to be done if one starts

from the Adiabatic Time-Depéndent Hartree-Fock'approach/8,9/;



This requantization is certainly not unique and presents
additional open problems, with which we will not be con-

cerned with in this paper.

The third step in the solution of the fission pfoblem is to
solve the Schrddinger equation in the coordinates q1...qf
which resultsiffom the Hamiltonian (1). In this papefiwe conf.
sider only this'?art of the pfoblem. We assume to know a
quantum mechanidal Hamilton operator II in the coordinates {qii
- which corresponds £o a classical Hamilton function H in the

variables {qi} and the ¢onjugate momenta {pii

-4

H ( PAP;.Q,%) = 21‘2;. <M(‘i«q;)),3 P‘-PJ + V( chf)

So we are left with a multidimensional barrier penetration
problem. This problem has been invéstigated by many groups

introducing more or less drastic approximations.

The oldeét'method used tobcalculate fission half livés
is the one-dimensional WKB method /10/. In the multi-
dimensional enérgy‘surfaCe a one-dimensional path is deter-
mihed'which usually goes along the bottom of‘the fission
valley. The Schrddinger equation is transformed to a
one-dimensional equation by using only a coordinate
along this path. The penetrability is then obtained

using the one~dimensional WKB fofmula:



P - MP [-2 f[;s{e)(V(e)-E) '016‘} L (3)
S

where G/eumlvG”'are the turning points determined by V(6) = E.
For thick barriers and low energies this is an excelient
approximatién to thecxwﬂdimensional Schrddinger equation.'For.
‘higher energies close to the barrier top this fofmula has.been
improved by P. Fréman and H. Froman /11/ ahd Jeffreys /12/'
"so that one has a well-working method in thé one-dimensional
case. | m
For the ohe—diménsional barrier penetration'pfbﬁlem;;

eq. (3) can also be obtained by minimizing the classical action/13/

f/od? - | .<4)

between the turning points q' and g". This idea nas been
generallzed by the Pauli-Strutinsky group/l/to the multl-

dlmen51ona1 case. They find the fission trajectory in the mult1—

dlmensional coordinate space by minimizing the action

leb dg, = /)/.ZZ ;J :7‘——?(5-er)) e (s)

where ¢ 1s some arbitrary parameter along a trajectory a(e) .
The variation includes all possible tfajectories which con—
. / a .

. serve the enerqgy along the varied path. 6 and 6" are again

the turning points defined by Vﬂﬂ== E. The tunneling probabi-



lity‘is then given in the usual way by

p= | ei'sl = o218 _. (6)

The trajectory so obtained ﬁsually does not follow .
the steepest descent of the potential and does not iéad
through the extremel points of the deformation'ehergy.
It should also be noted that the entréncei(cl) and exit
point (") afe determined in suchva‘wéy'thét the\aétibn-
is also stationary against fhe variation of thesé end-
poin;s.: Gﬂfis,usually chosen to lie 0.5 MeV'(iexé point
energy) above the bdttom of the well; c” has to lie on

the energy contour with the séme energy.

The action determiﬁed by this method is é complex solution of
the ciassical Hamilton-Jacobi équation/13/ In that sense the
corresponding trajectory is a claésical trajectory. One
problem is fhe m&%hing of these trajectéries undér the barrier
to ﬁhekciéssical éllowed trajectories for E)'V) which corres-
pond to oscillationsjin thetlocal minimum of the fissioning

- nucleus. In the méthod of Pauli and Strﬁtinsky/l/thére is no.
connection between the motion uhder the barrier and the:motion
outéide of the barrier andvtherefore the probiem of the zero-

point energy is not handled in a consistent way.
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In this paper we consider a mefhod which was originally
proposed in theoretical chemistry field by Miller /14-16/"

and by Marcus /17,18/, and which allows a consistentfsemifv

| classical description of the multi-dimensional barrie:

penetratien problem.

Usihg this method, one is able to caiculate transition
pfobabilities not only from the groundstate of theAfissiOn-
ing nucleus to ;he ground state of the seperatedeeystem '
but’élsetto excited states, as well ae all oﬁher transition
probabilities starting»ftom excited states. o

There.exists a different attempt-to solve the problem

‘quantum-mechanically. H. Hofmann /19/ introduced an har-

monic approximation for the potential perpendidular.to the

_ fisSion”path.' Adding the zero-point energy of this motion

to the potential along the fission path he decomposed the
Hamiltoniah in an adiabatic part and a remainder. The
adiabatic part corresponds to a one—dimensional barrier
penetration.probiem. Its solution yields "distorted" waves.
The remainder is treated in the Distorted Wave Borﬁ\Appfo—
ximation (DWBA). As we will see shortly in a model cal-
culation, this method is certainly applicable for tran-
sitions from the ground state of the fissionihg nueleusv~

to the ground state of the separated system, but not for

| transitions between excited states where thé,coupling to

other transitions is very strong. .



VIn the present paper we investigate the problem on a
simple two-dimensional model. This model is introduced
and discussed in section 2. 1In section 3 wé give a method
to find the exact fully quantum-mechanicalvéolution. Since
this method turns out to be tdo complicated as to be applic-
able for realistic fissidn barriers, we discuss a semi-
classical approximation in section 4. In section 5 finally
~ both methods»are compared. |
Some aspects of this work were presented earlier in
a review grticle for the Soviet Journal of Particles and

Nuclei.

2. The two-dimensional fission model.

We start with the Hamiltonian (1) for two dimensions (f=2).
In ref. 1@ it  is shown that one can always find a coordinate
transformation x = x(q1, q2), y = y(q1, qz) which has the
following properties:

(1) The off-diagonal components ofvthe inertial ténsor ex-

pressed in the new coordinates vanish,

(i1) The trajectory y=O defines a path of minimal energy.

In this papér we go a step further and neglect the co-
o;dinate dependence of the inertial parameters m, and my.
This is certainly not fulfilled in a realistic fission pro-
cess. But since we do not knpw much about this depehdence

and are more interested in the methods to solve the barrier

penetration problem, it is worthwhile to start
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9.
with the simplest case. On the .other hand,*both methods
Which.we describe in the next sections can easilyzhe gene-
ralized to include . a coordinate dependence” in the in-

ertial parameters. We therefore start with the following

Hamiltonian:

my Ix?

R A , o
H - - 2 _,‘.‘;__...; + V(x,g) . (.7):.

According to (ii) one has 7; (X:J)/ 0.

Pl
The potential along'the fission'yalley V(r;y = O)'hashin a
typical case a shape like the one‘shown in fig. 1. Before
fissioning the system‘sits in the local(mininumiat.x'= xéfi
X = Xg shall be the scission point (that 1s,_the place
where the nucleus breaks into two fragments) ) The systemll
in order to fiSSion, has to penetrate the potential barrier

from:SOito xl.

In order'to be'able to solve the problem, we -\:introduce
further“simplifications: | |

(i) We assume that the y-motion, which is perpendicular
to the fis51on path, allows only bound states. |

(11) V(x,y) shall be independent of x for large positive
and negative,x—values. This. is obviously not true for the
potential.in fig. 1. This simplification'allows us to cal-
- culate only the penetrability through the go-dimensional-
barrier. To get the decay probability (or the life time)
one has to multiply with the frequency of the oscillations in_

-dlrection ‘in the local minimum X = X_.
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- This assumption is usually made in calculating fission half-
lives. However, up to now it has not yet been investigated if

it is also possible for multi-dimensional problems.

(iii) There shall be no coupling between the two degrees of

freedom for |x| » oo ,

The actual calculations wére carried out with a barrier of
.2 S - '
Gaussian shape (f(z)=e Z') or anEckard shape (f (z)=cosh 2(z))

and a quadratic y-dependence with variable width:

Vey) = Voo f(2) + $C (e af@) gt L ®

A A ndn—zero value of the "coupling constant" o« allows the
width of the~Valley to vary over the saddle, and by dqinq sb
couples tﬁe two degrees of freedom. Fig.2 shows such a poﬁéntial
surface for the Eckard barrier for the special case of 0(¥O;1
and -‘»‘fg/vo =0.1 (i.e. the frequency of the oscillator in the

asymptotic region is one tenth of the barrier height).

Most of the calcuiations were carried ogt with a Gaussian
barrier apd the nqmerical values of the parameters‘were chosen
so as to corréspond to a typicél fission cése:

m = 500 MeV_1 VO
m= 4.7 Mev™! ¢

= 7 MeV a = 0.185
’ (9)
- 5-1 MeV . .

This choice of my and C gives a frequency of about 1 MeV,

typical of ,say, a gamma vibrational mode. The coordinates x

™
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and yvaré dimensionless and correspond, for ins£ance;
 £0 the deformatidn pa#ameters 82 and 64‘._'

In thé asfmptotic region (lxlvuﬂ,the two degrees of
freéddm decouple and the system finds itself with-a Certain'
probability in a definite quantum state in the-t:ansversé'?'
haﬁmonic degree 6f freedom. Our goal is, if inipially
(i.e. for x= -éi)Aﬁhe system is in a state with a quantum :
nuﬁbér n, (for the transversal degree of freedom), té_cal-
culate the probability TWw.to find the system after the -
tunneling (i.e. for x-» +0) in a quantﬁm :sﬁaté'n,.” of
course, theré is alsd a‘probability R#F’ for the system
to be reflected and to find itself at the end in a state

#fatx?Fm.
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3. Quantum Mechanical Solution

In this section we will describe a full quaetum~mechanical
solution of the scattering problem for | a Hamiitonian
of the form given in eq.(7), The coordinate dependence of
ehe inertial parameters is neglected for the sake of sim-
plicity. However, the method is not restricted to such
cases. It can easily be extended for more general Hamil—
tonians. | | U

The Schrédinger equation we wish to sblve is

' - 1
.Ef + :Zz'sz 2”“
?Xl ' 7)1), —ayz

(E V(x y))f y(x,y) "‘_ (10)

We expand the wave functlon in terms of a complete set

of orthogonal functions in the coordinate y (for e*ample,

harmonic oscillator functions):

, ) = - ' (11
Yluy) = 22 u(0 @y, (1)
Substituting eq.(11) in eq.(10), multiplying f;om the left
, »
by qa(y), and integrating over y , we find
2
_E 4
Amy dxz

u, (x) + Z K,,n,(x) U (x) = uh(x) (12)

with
+00

K'h,h_, (x) = sﬂ [y} [.?m d)/ + V[x,y)fsﬁ(y) (13)

=

Eq.(12) are coupled channel equations which have to be

solved with proper boundary conditions. In the
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asymptotic region (x — :’oo) there is no couplj.ng, and the
potential may be written as

(+) g 4 o
H = .-—-E l + H . - ' . (14)

2rmy Ixt 4 *

, ) -
The eigenstates (.P (>1) define the ingoing and outcoming

channels
\ H<f> S T e |
y 6 = &9 ly) % (y &, ®,@4)  as

‘In.the following we use the indices YV ...
for_the chennels at X —> + 09  and the indices /“U“;“'
fer.the chennels at x = -o0o. o

Let us express the asymptotic eigenstates (.P(‘ (.f(ﬂ

‘the basis (en(y).

) < O ) ) ; o
G =L @=L L

: + |
The matrices é') are unitary . The wave function (11)

is then given by

»n

(p o(nﬂ G Cy) U ) v

/Ah

' — (+) (+) | | ' ,
. l.-// (X,Y) = 2—' dnv (PV (y) ’ uh(x) . . (17)

The boundary conditions which the wave function- QP(x,y)
has to fulfill are the following: .
(1) for x —» = o0 one shall have in all open channels

( §M1< E) only outgoing waves, except in the channel./uo
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where one has also an incoming wave With amp1itude 1. In
fhe closed channels (£M> E) there shall be only exponentially
decreasing waves;

(iif for x — +oone shall have in the open channels
only outgoing waves aﬁd in the closed channels only expo-
nentlally decrea51ng waves. i

To assure that there are only out901ng waves for x —» +00,
one 1ntegrates numerically the coupled equations (12)
starting from x = + 00 with an outgoing wave in some channel ¥,

If the channel is ciosed,

one starts with an exponentially decreasing wave (instead
of an'outgoiﬁg wave). Let v(x,y) Dbe thé solutiop of

this integratién. For x — + o0 it is given by .

: k o NS v
@ (xy) X + 0o (Pv (:7) e x‘ S € L2

Vlm‘(E €,) for the open channels ( £, < E) and
tJ’{;(q; ) for the closed channels ( &, > E).

- For the numerical integration, the system of second~.

with }{v

k.,

1l

ofder differential equations (12) is transformed into a
system of first-order differential equations by introducing

the derivations ﬂn(x):

w,(x) = v, (%)
(19)

lmx e
) = Z K (0 Uy (3) = 2 1, 00)

gl &)=



o
<
o
Loy
o
&

L ¥
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O

15.
The integration is performed by SOIVing'the system (19)
starting at x = + ©0 with |
: i Ry X
(v) +  thyXx ) (+) -
U (+°°) = d"v C N U (X) Z&’ d v (20)
At x = -00 , theiWaVe'functiOﬂ
can be written in‘the form: _
| = 1R, X _Ja X, .
- @ (x y) = Z_(Cl € * + b e )LP 21
Xy M x5-00 = \Muy My ,u
TheAcoefficients aPV 'bpv are evaluated from the
v (» ' (
- values of wu, (x) and (x) for x> -0 found by

-integrating numerically eq. (19).
Using the unitarity relations for the coefficients

al) oneffinds:

n}‘{ - )
v -Lh X <" I
)
= = d, )+ U, )
qu"" 4.X—7-°° ‘2 Zn- ('b( k (X) (.22)
T X OLAV NI Wy
Oy = Lo 2 dy, (1w, )= 5, W k) @

(F. : .
The final solution @f )(x,y) with the proper bo%pdary

conditions is a linear superposition of the f&ndiohs @, (x,y)

S o) ' B L0 :
’zip : Z‘ CV/uo @D e S | (24)

~where, the coefficients C are determined  from the

V/_‘o

’ boundary .conditions

f (po) I _ R ,
(i) ILZF o (x = +00) only outgoing waves ' (25)
' =) !

(}‘-o) ) . . ’
1) Y7 x> -00) = ot (%) (Pluo(y)-!-out-v

going waves. '
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The condition (i) is fulfilled by construction (all the i&

fulfill»it);_ condition (ii) determines 9#9o :

Z}; Q, Cy, = CS;A/, . (26)

That is,one finds cvpo by a complex matrix inversion

Cope = (),

Once Q{ po) is known, one can evaluate with eqs.(24),

(27)
(21), 'and (18) the transmission probability

Ve Mo Vue

T ‘=. , C'v}wlz _ l(o:‘)

.
I , (28)
and the reflection probability .
- 2 Hb -"‘)lkz (29)
KR#*‘M = J(b-c)W‘o[ = XL

| There are, however, some restrictions to the methdd»
just described to solve the exact coupled channei eqs}(12),

which :limit the usefulness of this method forrpractical
calculations; | | N

(1) For realistic energy Suffaces many channels must
bebincluded in order to obtain convergence in the expansion (11).
This iucreeses tremendously‘the amount of computer time.

(ii) The exponentially growing selutions within the closed
chaunels present a serious numerical problem. Practical cal-
culations are only possible if the.closed channels can . more.

- or less be neglected. In the present calculations at
most two closed channels were included. If many closed

channels are important, one has to apply more sophisticated
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methods. One way to avoid these difficulties is to expand

the wave function for the closed channels by bound state

wave functibns to make sure that they contain no exponen-

"tially increasing components.

Another way is to choose different complete sets

for different x-values. As an example, let us consider

the potential (8):

Vy) = V) +FC) oy

(30)

It is an harmonic oscillator potential for each value of x.

The coupling is introduced by the x-dependence of the os-

" cillator length

v e )%1
b(x) = (—"’"7 -C(x) |

vand the oscillator frequency
, ‘ y
2

wx) = (C(x)/’my)
_Instead of eq.(11) we now make the ansatz

e L X
1_4: (le) = Z”— U, (x) - m 2“». (b(x))

(31a)

(31.b)

- (32)

\ ' ' oo
where ‘fg-&1,(¥%) are properly normalized oscillator wave

functions with the oscillator length - b(x).

Instead of eq.(12), one now finds

(—é 4, v(-x) + R w(x)_(w+l—'~) —E-) U, (x)

,,(x)')’ |

DL v + Rt

(33)
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with +00
th'(x) = 2 d; b( g (6(x)) (;X) | b);x)))] (34)

~~

Knn’ (X) = .-;Sodyﬂ)%';) ﬂ': (%t(x).)[%z (~L~(x)' én’ (i:('x)))].OS)

| Using the properties of the harmonic oscillator wave

functions hn , one finally obtains
/

[ =_£ {OF + 2 <wlz%]'r)'_>f' :(36)'

hn b hh
%m,’ = (-E‘/) {"3({ +' 3<°7125- n ) + <7712 n>f
—-—ZT?:{ Inn’ + 2<h12 >} | '.(_37).--

Eq;(33l is then solved as described previously.

From eq;(34) one obtains a zero'th approximation by
neélecting the coupling terms [ and K . 1In that case
one has no mixing of the channéls. For each channel one
has a one-dimensional barrier penetration problem. How-
ever, the form 6f thé barrier is now modified by the x-
depéndent oscillator energy Ew(’()'(%+ /{z) r as shown in |
fig. 3. The ¢orresponding wave functions are usually
called "adiabatié" states. In ref. 19 the adiabatic states

were calculated by a one-dimensional WKB-approximation and -

the coupling_treated in Born-approximation. It has also
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been pointed out by Maruhn and Greiner/20/ that'in>replacing
the multidimensional barrier bylthé motion along a bne-di?.
mensional fission péth; ohe has ét least'to COrfect for the

change of the zero-point energy along that path.

:For.oﬁr,simple model described in.chapter 2 we took intq
accddnt‘as many éhannelé as werefnecessary ﬁo obtain con-
vetgence. For coupling constants [c<\~< 0.15 at most two
closed channels had to be:included.’ Up to this value of-
the coupling constant the method previouély described pro-
“Qides an exact quantum mechanical soluﬁion to which one
cénICOmparé the semiclassiCai approximaﬁion,_whiéh we describe

in the next section.
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4. The semiclassical theory

4.1. THE INTEGRAL REPRESENTATION OF THE S-MATRIX »

As mentioned.in the introductiqn, we assume tﬁat there
exists a classical Hamilton function (eq.(2)) which deséribes
' the same system as the quantum-mechanical Hamiltoh operator |
(eq.(1)). For this case W.H. Miller /14-16/and R.A. Marcus7/17,18/
‘have derived semiclassical approximations for the_quantumF
mechanical S—matrix.
In this section we apply the method developed by Ma:cus/l7,18/
to the fwo—diménsional barrier penetraﬁ;on problem definéd
in section 2. The Hamilton funétion depends on'the fission
coordinate x, the corresponding momentum p and on the "in-
ternal" degree of freedom Yy with its canonically conju-
gate momentum Fy . The cofrespondence bétween the quantum-
’ mechaﬁical problem, where the 5/-mo£ion is quantized,and the
classical theory is most easily achieved if an action variable
J and an”angle variable urls) is used for this degree of
freedom. | |

'For our model (Chap.2) they are given by
2
i b
— — 2 Y : .
J T w(x) (C(x) I:;( * —o;) - : (38)

W o= - Arctg _(_/a,/(wck)-_m,-y)) .
- From the classical Hamilton function in these coOrdinétes
H(p,J,x,w) the quantum-mechanical Hamiltonian ié obtained
by the substitutions |

Jd -

ER o 23
50 +_?/c{ﬁf e Es (39)



21.

‘The constant ? déscribes the difference between the
classical action variable J and the quantum-mechanical
operator | %;—w . _Iﬁ is different for different types of
internal degreesof freedom/zl/. For ah harmonic oscillator
(present cése) it has the value l/2 in the WKB limiﬁ.
In the asymptotic region there is no coupling between
the two degrees of freedom. The internél state is de-
»scribed'by the quantum number n, and for the x-moﬁion one
has a plaﬁe wave with the wave number &n..,The_wavé fﬁﬁction
ié therefore given by B
(%) i(*h, X+ 2tnw).
(PnE ( X'lJ) = ¢ V S (40)

The total energy is fixed and has the value

. E; = t é” ‘+4>£n-

2 |
(41)

where En = ii(do(n+’{?_) is the internal energy.

| vFollowihg Dirac-/22/, one ndw.makes the WKB:ahsatz for .
the wave function v | J
! TAVEPIN AR
_ZZ,_ = A e , . | a2
and substitutes this ansatz intQ the Schrddinger équation.
Expanding in terus of 3 bné obtains for‘ﬁhe lowést,order

in h the Hamilton-Jacobi'/13/ equation

H'(-?—VZ-W w) = £ uy

Idx ! dw !

which allows a determinatim of the action W.
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To the next order in t one obtains a continuity equa-

tion for the amplitude A:

a 2 . a 2 o) _‘ :
5o (Ah) + 55 (M%) = 0 (a0
where the dots indicate time derivatives and are given by
.9 .
X = —lj w= == . (45)
dp CN;
" From classical mechanics/13/one knows how to solve eq. (43).
find the §
One has to solutions of the classical equations of motion

where

(45) (classical trajectories). The time derivative of

Hawiltons characteristic function W is

y . . . | v | N
ggW = p-x + Juwr . - (46)

Integrating eq.(46) With the\proper'initiél condition - that

for t<<£o '(to being a time before any interaction takes

place) one has an incoming wave in the channel /L (see

eq.(40)); one obtains

t
l/\/ = f (p-x +Jw)dt’ + t(ﬁ%x°+ QIz'wo('n#»"g)) (47)
ot |

o .
x° = x(to) and w =lJ(to). ~The integrals are line integrals,

the integration being performed along the classical tra-
jectories which the system traces. "Classical" means that
the trajectories are solutions of the classical equations

of motion(44). It is not necessary, however, that these be

real solutions. In fact thefe are classically forbidden
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regions whiéh cannot be reached by real trajectories.‘
The barrier:penetration is an example of such a case. 1In.
ordér tofind trajeétories reaching these regions, one has to
use .complex trajectories, as will be:discussed
in the ne#t section.‘ Here we assume that we have found
such solutions and discuss how to find an expfeééidn for
the wave function which fulfills the proper boundafy con-
’ditions.
.Eq.(445 is a continuity eéuation. Integrating‘it over
a tube spanned by classical paths.sta;ting at a‘pOint x°

(A(x%) = 1) we find

(48)

. : _ o ’ by
(£ /)"
A(X) = v dw° .
with v = x(t,)
In the ésymptotic'region we therefore have the wave

function | _ _
Yow) = ( /d )%/’(‘ "”“*’) (49)

For negative x—vaiues we have a superposition of the in-
coming and the reflected wave . | _
Q&(x,w) = E + ( / )@Xp(—-h/-lrw+b )(50)
-~ X - 00
qu the reflected wave one has to increase
the phase - by @Q, when p changes from
positive to negative (i.e. when x goes through a turning

‘point) /21/.
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Since we now have constructed a semiclassical wave
function, the next step is to obtain an expression for the
S-matrix. The matrix elements of the S-matrix can be

" found from the asymptotic expressions 49 and 50 and are

given by , _
tr (;;) +) o |
. : ,f1y o -
% ;ivoo B Z: Sv,w .{)7”) Lf)'n,, E : (51)
and ' : | .
o o+ '42{1 refl VF;:;> =)
Y e P T4 S"/& e (F:»E o

Once the S-matrix is known, the transition probabilities
for the system from an initial state m to a final

state VY are given by

1]

P \ ESQP,[ | | | (53)

Comparing egs.(51) with (49) and (52) with (50), we find

V(—-}L

-after multiplYing both sides by exp (-2rtm, %W ) and inte-

grating over the angle w— that

| & Z;Alﬁu)‘
z . :
= e -

with f
_ f(x'lv' , ‘w.j)oga’ - It p'(nrf/-m)fx(/v'/f)fh‘é»()ss,

where the upper sign holds for transmitted and the lower
sign for reflected waves. For the latter case an additional

phase of -@é has to be added to A .
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The f£inal angle W 1is a function of the initial angle
h)o. ‘Changing the integration variable fromv IR toluo

one obtains

c»'). Jd 2 LAM°) ‘
v w R - :
S = éiwz : (56)
ol /d v(t) " dw? ) ¢ o |

-700

-

The functions n(t) = JHQbyK, and p(t)'are time-independent
fér large t-values. However, the asymptotic
values ng and pe depend on the initial anglé‘zuo;{ Eq.(56) .
is the so- called integral representatlon of the S-matrix
derived first by R.A. Marcus and coworkers/l7 18/ It has
been used recently in an exactly soluble model/23/and turned
out to be very useful . Within’this éaper, hoWevef, we go
one step further énd‘apply the saddlé-point approximaﬁion

to the integral in eq. (56).
4.2. THE SADDLE-POINT APPROXIMATIONS

" In deriving the semiclassical S-matrix (56), we used -
the WKB ansatz for the wave function, which decomposes it
into an amplitude and a rapidly oscillating phase. Both
were calculated only for small values of 'tv. " Therefore
it seeméi nléonsistent to apply the same argument once ﬁore
and to use a saddle-point approximation for the‘integral (56) .
This approximation uses the_facﬁ that the phase efA/kvis

rapidly oscillating and that there will be contributions to

the integral (56) onlyfrom values w o, for which the phase

25.
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becomes stationary, ( saddle points)
o A «
L — = 0 A (57)
ol w’ ‘o

There exist several approximations to an integfal of»the
type-66)which take into account'only the values and certain
derivatives of the integrand at the points of stationary
phase. Tﬁree of them (the so-called primitive semiclassical

approximation, the Airy- and the Bessel approximation) are

considered in the appendix.

In order to find the saddle points, one has to find the solu-
tions of eq.(57).k For this purpose we go back to the repre-

sentation‘(Ss) and note that from (47) one has

A(’]A)) = W(w/x) - ’?Et w.n»_ ‘ymt{w‘,(b}(.*g)‘ : J oo (58)
. ~ Kk xk, - Hx°H
| v e
and for t — + oo
dd | 2Y g

= J- -Zerpp

E(:) = . _(59)

Owr
The points of stationary phase are therefore giveh by the

condition

m () = bim TE)), . = ™,

£ 00 2k - (60)

" To find such stationary solutions, one has to solve the-

classical equaiions of motion:

’ p '. . 7
X = ;;; 5 f) = - 5; Y?L;)

. (61)
' Py . d
m, Py = “oy V(_x’j),

ag
i
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with thé initial values x© (large and negative), po
- (given by energy conservation), n, and'uro ;landvto
calculate tﬁé final "action" variable nf(iao)(quantﬁm
number function),+ The stationary points.of'the phase
are £he points = W® for which the quantum humbe: function
has the real integer value -n, . Usually eq. (60) has se-
veral solutions, which corresponds to different saddle
points. |

| The model considered in the present paper has a
symmetry. The Hamiltonian does not change when changing
y to ~y . It is therefore sufficient to take into éccount
only the range O §w’°$‘(z‘ . Ifw is a soiution of eq.(60),

[} . ) .
then w + 1/2 Ais'also a solution, but from (54) and (56)

one has

Al = AW - (mymm) o (e
For odd values of 7“-?h. the matrix element S&“
vanishes (périty seiection rule).. For even values of N,y

one needs to take into account only the saddle points in

the intérv;l“() gz)os 1/2 and then multiply the resulting

+ .
Here we have (eq.(61)) written the equations of motions

in cartesian coordinates y, Py - Obviously they have to
'beﬂgransformed ipto the action angle variables in the asymp-
:pqtip regidn in.ofder to impose the right boundary conditions.
For our simplé model we éould have solved the equatiéns of
Qotioniin aC£ion angle variables as wéll. This, howevet;

often introduces numerical difficulties.
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S-matrix elements by a factor 2.

-For our model one has always two saddle
points in this interval : %, and w, . The_cor:esponding
angles ére | Q = 2rxw; . The phases A,; at these points

are (eq.<559
4, (m, /(X/o + w]) de’ (i=42) (63)

and (with (59))

gf‘ﬂ = Ik (/d%f (/ /) B (64)
dw’z L)"-'-U' w= lJ . : .

(3

- We therefore find fromvthe appendix and eqs.(63) and (64) that

~in the primitive semiclassical approximation the S-matrix is

.jglvén by .
' Z 7-4?("”'”") MMy
7 | (44 ) )
ZmE S
( n+h ) y zﬁd vr——’ izﬁ; f
= — ‘Z { F‘ c + Fh e | .
| / 2 | -
' = (66)
where - po = Ty | 1=1,2) .
dk)o wo=w

lpi\ are the classical probabilities,andrthe purely classical
S-matrix element‘would be IWpi! + V\pzl. The semic;assicélv

approximation, however, takes jinto account the phases
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for the»stationary trajectories and, for forbidden transi- ;
tione, allows the pi's to become complex.

As discussed in the appendix, one has to consider very
'carefullijheﬁher a stationafy solutien has to be inclu- |
ded in the sum (65). For classically forbidden processes
only one of them has to be included. For the Airy- ahd the .
Bessel-uniform approximation it is not necessary_te make. |
such distihctiqn. For the present tunneling preblem we
usedvthe'Bessel uniform approximation. With K = lnﬁ - n,

one finds for ﬁhe S-matrix element (eq.(A.8))

5 = e g (6T 16 W f;ﬂ

where % is 1mpllcltly given by

(A - A,) EVI- 2§ C 4 1 ~Lh(2§ | %)2){(68)

4.3. CLASSICALLY FORBIDDEN PROCESSES

In section 4.1 we considered a WKB-ansatz (42) for the
vwave function. The phase W was determined by the clas-
sical Hamilton-Jacobi equation (43). This equation was
'then.solved by the method of characteristics by which‘one'
introduces a time parametef and trajectories obeying the |

classical equations of motion. As long as one regards
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only real trajectories (i.e. real coordinates, momenta and
times), it is obvious that there are certain regions of'
the phase spaée which cannot be reached (classicaliy for-
bidden regibns).

For the problem consideréd here there are twp types
of>forbidden-regions:

(i) For the reflected trajéctories there ié only a
finifevfime during which the system feels a cduéling'SétWeén
the two degrees of freedom x and y . As long asnthe"'”
coﬁpling strength () is finite, there exist usually qﬁén-
tum numbers nf'which”cannot be reached by real'ﬁrajectories,

i.e. for fixed n; the equation
o) . : o
ng (w) = n _ (69)

does hotAhaVé'for all values of n real solutions \no,'
even-if'they are energetically allowed. However, allowing
compléx initial values .boo it is possible to find such
trajectories with a real time path. Complex initiél con-
ditions lead to a complex phase A ’ i.e. to an exponen-
tially dec:easing probability (see eq.(65)). For real time
paths, also ba°* is a solutionvof (60) , but as discussed
in ref. 24, only the saddle point in the complex 1J9—planev
giving an exponentially decreasing contribution should_be
taken into account within the primitive semiclassical
approach (eq.(65)).

Since the initial "phase" Ww?° is not physically ob-
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servable, one has no difficulties in alloﬁing it to be
complex. It is evident that one does not need complex
traJectories, if the integral represantation (56) for
the S—matrlx is used. For this case, using the analytic
properties of the integrand, it is sufficient to inre-
grate along the real interval O € w's 1. |

.(ii)”The situation is complerely different for the
tunnelingvsituation (E<V). As long as one starts with
real x- and p-values and uses real time increments only,:
it is not possiple to find trajectories which end up,
for t —> 00, at the other side of the barrier (even allow-~-
ing complex initial angles w’ ) . That means that, for
such trajectories, the wave function vanishes en the
right-hand side of the barrier. To get there a‘ﬁoh—
vanishing wave function, oae has to allow for cempiex time
paths. Thls has been studied in detail by W.H. Miller et
al., (ref. 15) in the analytically soluble one-dimensional
example of a symmetrical Eckard potential barrler. It is
shown there that for certain time paths im the complex time
plane one obtains a reflected wave, and for other paths
one gets tunneling. For this analytically seluble_model
one knows the analytic structure of the function 23 and
one therefore knows in which sheet of this multivalued
function one has to carry out the analytieal continuation
of the classical S-matrix. For the two—dimehsional problem
considered in the present paper one does not know tﬁe ana-

lytical structure and therefore it is not so‘straight-forward
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to find the tunneling trajeétories which contribute to
the S-matrix. For . our problem, one could always_find.
twd such tunneling trajectories. Since the time incre-
ments are no longer real, 1)2* now differé from %&o.
Fig. 4 shows fo: a particular case the quantum nﬁmberfnf
as a function of the initial angle (Pc = anoo .' One
observes that the quéntum number function is rather "flat"

and therefore the Bessel uniform approximation for the S-

matrix was used.
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5. Results and Comparison

We shall now present numerical\resUlts'fo: the tunneling
problem described by the model Hamiltonian (eq.8) using the

different methods discussed in the last two sections.

Fig.4 shows in its upper part the shape of the Gaussian
barrier (parameters are those of eq.9) together With the adiabatic
‘translétional.énergies in the x-direction for the three y-vibré- |
tional channels n=o, n=2, n=4. The total energy is chosen to be
Eto£= 6 MeV and the.coupling strength is X=o0.1. Thét means we
‘are dealing with a typical subfission barrierbwith'~ 5.5 MeV
of excitation and ~1.5 MeV below the classical barrier threshold.
Higher n—chaﬁnels are obviously closed, and 6dd n—éhannels are
,not'coﬁpled fof parity reasons.

The lower part of fig.5 shows the square of the wavefunctioﬁ
for an incident wave from the left in channel u=2 (i.e. uz(v)(X)lz)-
These fesults were obtained using the exact coupled channel
guantum mechanicél éode described in section 3. In the coupled
channel code, three open and one closed chénnel were included.
Taking into account'the‘fourth (closed channel) chahges the
results only in the fourth significant figure. We note the
standihg wave in the channel g =2 on the left side of the barrier,
as most of the flux is elastically refiectéd. About 10—5 is
inelasticaily reflected in channel}4=4 and 10_8 in channel/;=o.

To the right of the barrier Y=o, 2 and 4 waves are transmitted

at the 16_10, 10~ 12 24

and 10 “" probability levels respectively.
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Fig.6 shows how the penetrabilities Ryp change with the
coupling strength « between & =-0.15 and x=+0.15. These values
of & correspond to a not too strong coupling between the two
degrees of freedom. Larger values of « were notconsidered,
since in.order to expand the wavefunction eq.11, many more
g channels have to be included. From fig.6 we find that there
is a v1brational"cooling effect on the passage through the
barrier, with =0 transmitted waves dominating regardless of
the_vibrational state incident on the barrier. Only in the
case of very close to zero, (constant valley w1dth), will this
cooling not occur. The reason forvthis effect is, that the tunneling
k,,probability in a channel v with low v1brational quantum number
has more energy available for the translational motion, which |
favours’tunneling. As soon as the system - through-the.coupling
of the two.degrees of freedoﬁ - has moved into a Vibration with
lower vibrational energy its tunneling probability is much
higher and therdore transitions to lower vy -values are favoured
Obv1ously this is not a real cooling in the statistical sense.
The tran31tion is completely reversible and the transition proba-
bility Pwhfrom the channel/l to the channel y is equal to the
transition probability %m .
In the following we first discuss diagonal transitions. An
obvious approximation to be tested by the coupled channel_solution
is the socalled vibrationally adiabatic approximation (QMad)i

where one assumes that during the fission process the system
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always stays in the same oScillator state‘/b. We”only allow
the wave function in the yrdirection to adjust adiabatlcally
as the width of the valley changes'along the path. In this

~ case one neglects the right-hand side of eq. 33. Tahle 1
shows the diagonal txansition ptobabilities gm”\ffot the no-
‘coupling case (= 0) obtained with the exact guantum—mecha-
nical code (QM) and for the vibrationally adiabatic approgim-
ation'(QMad). .Sincevfor the model studied here the'lnertial
tensor is coordinate~independent and diagonal,'the.one-dlf,
mensional WKB approximation (eq.3) and the least;action path
method (eq.5) glve the same result (also shown in table 1)

and are independent of ot . | _ .

For ol = 0.1 one finds that the QM calculation is qulte
Egood, cons1derably better than ‘the WKB result. 'The main reason
why the WKB result and the least-action path method g1ve |
'larger penetrability values is because they neglect the
Change.of'the zero4point energy in the y—notion, whlchvin-
creases around the ‘barrier for positlve X —values (the
valley becomes narrower at the top of the barrier), leaving
less energy avallable in the fission degree of freedom to
penetrate the barrier. v

Neither the WKB nor the_least-actlon path nethod permit
the calculation of off-diagonal transitions (that is, cases
for which the final quantum number is different from the ini-.
tial qnantum“number), This, however, is no difficnlty in

the semi—classical'approach described in section 3. Table 2
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shows a coméarison'between the unifbrm semi—claseical

| approximation USCA (eq.(67)) and the exact'QM calculations.
For O = O the USCA results are identical to the WKB re-
eults shown ie teble 1 (only the diagonal transitions are
non—vanishing for o = 0). 1In fig. 6 the USCA reeﬁlts
are shown by dots. The agreement between tbese USCA cal-
culations and the exact quantum-mechanical‘coupled channel
calculations is very'goed, even though the model‘ceneidered
"here is highly non-classical.

Up'te now we have discussed a Gaussian berrief. .A
barrier of the shape f(z) = cosh-z(z) in eq.(8) (Eckard-
potential) can be treated analyticeliy in the one-dimensional
case._.In the two-dimensional case this is no longer possible.
“However;.in the so-ealled sudden limit the two-dimensional
problem can be solved analytically. lThiS limiting situation
is obtalned by letting my become very large and C very small
so that C-my remains constant. In this case the system
does not oscillate during the tunneling.process. The de?
tails of the analytical solution are given in ref. 23,
therefdre we give only some results here.

In the following the parameters

m_ = 500 MeV '; V_ =7 MeV; a = 0.120. (70)
were used.
The constants C and my'are not relevant in the sudden
limit. We take the 1n1tia1 quantum number to be /‘o 4
because in this case one has both excitation and de-excit-

ation of .the oscillator, and the total energy to be E = 3.5 MeV.
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Fig..7 shows the exact quantum-mechanical probabili-

ties for tunneling Ptrans and for_reflection‘P;efl as a

Yo v Se
function of the coupling strength o . For X = O the sfstem'
remains in the oscillator state n = 4. With increasing o
transitions to other oscillator states can take place. For
the reflected waves the population of the different-channels :
oscillates'with increasing X .. The corresponding semi-
classicalﬁsolntion.shows that there are always tmo.tra-.
jectories which_contribute to the S-matrix with.anlampli-
tude of the same order of magnitudes. This'prodncesian inter-
ference;' For the transmitted waves no-suchZOScillaﬁons |
occnr; The reason is that only one of the two classical |
~trajector1es contributes to the Sematrix.‘ The other onebb
has an amplitude which isvsmaller.byaseveral orders of
.magnitnde.‘ | T | |

For Qery small conpling constants the‘transition to
states with higher n—quantum numbers are favoured becausev
the matrix element ‘which couples n with n + 2 is larger than
the.one which couples h ton - 2. But with 1ncrea51ng<x
the states w1th lower n-values are favoured because they g
see_a‘lower barrier as discussed-before._

Tables 3 and 4 show the actual values of the trans-
missionAandTreflection probabilities for the,case oftﬁ = 0.1.
The exact'énantnm-mechanical solutions are compared With
the different'semi-classical apéroximations discussed in

section 4, namely the primitive semi- cla551cal (eq.(65)),

the Bessel (eqg.(67)), and the Airy (eq (A. 4)) approximatlon
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to the full integral (eq.(56)) which is given in the

last column. The over-all agreement with the quantum-

mechanical results is excellent.

6. Conclusion’

In this paper we have<investigated the tunnéiinq through
a tw0fdimensional fission barrier. A simple model was in-
- troduced and treated in several ways:’ | 7

(i) An exact quantdm-mechanical solution of the problem
is possible by a coupled-channel calculation. This metho&
is general'enough to be extended-to:mofe complicatéd pfo—'
blemé; however, difficulties arise in cases whéreAtoo many
closed chéhﬁels'have to be included in the calculation.

'f(ii)‘Thé‘épplication of the uniform semi-classical

apﬁrdkimation developed by W.H. Miller /14-16/ and R.Af
Mércus /17,18/ to the fission problem is proposéd'and in-
vestigated iﬁ this model. There are always two cdmplex
claséical ﬁrajectoriés which fulfill the right boundary
conditions. The corresponding amplitudes are added cohe-
rently to obtain the S—matrix, In the limii.of a sudden
~ collision one' can studyvthe behaviour of both trajectories
analytically. The result is that for the reflectéd waves
both'trajectories have amplitudes of the same order of
magnitudes. This produces an oscillating dependence of

the reflection probabilitiés oh the coupling strength & .
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For the transmitted waves one of the amplitudes is usually
'muchilanger than the rest. Therefore in this caséian
interference structure is not found. o

: The.agregment beﬁween the transition probabilities
coﬁputed guantum-mechanically and semi-classically'is very
good. For diagonal tfansitions the most important effect
resulting from the multi-dimensionality of the fission
Abafrier seems to be the change of the barrier high due to
the zero-point energy of the vibfatibnal'motion perpendicular
to the fission path. If one takes this zero-pdiﬁt énéfg?
into account, the adiabatic approximation along avdné¥air_
mensioﬁal'ﬁission path seems to be satisfactory;‘éé'léaét
as long as the coordinate dependence of the inertia tensor
is ignored, and one is interested only in diagonal tran-
.sitions.
The least-action path method /1/ is able to include a
'coordinéte-dependent inertia tensor. It is, however, not
able to include the éffects of zero-point motion perpendi-
cular to the fission path because it does not fulfill the
right boﬁndary conditions. Since it is very easy to in-
clude into the uniform semi—classical'approximation also'
coordinate-dependent and non-diagonal inertial tensors, the
latter seems to be an appropriate method to investigate
multi-dimensional fission barriers, at least as long as the
available total energy is not too close to the barrier top.

Up to now there has been no experimental data which
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gives information about non-diagonal transition. Never-
theless, the USCA-method'allOWS'to calculate non-diagonal

transition probabilities and the results agree well with

the exact calculation.
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Appendixzx

are interested in an approximate evaluation of thefinte-

. 1 (x) ‘ B
jj(x) e -d?‘ o | (A.1)

dF is large over most of the 1nterval (so that the inte-
is rapidly 050111at1ng) and has two saddles x1 and.x2
The socalled "pr;mltlve" approximation is obtained when f

is expanded -up te quadratic~terms around the points Xy

and X, separately.qin this case I is decomposed into two

parts and one gets

TR

(A.2)

swith £.=0(x;); g;5=8(x;)

b)

In the classically accessible case both saddle‘points are
real.fFor_the classical forbidden cases; however;“the
corfesponding saddle points are complex In applylng this
approx1mat10n one has to be therefore very careful and
check the relative pos1tlon and orlentatlon of the saddles
Whlch may result that in some cases one has to ‘take into

account only one of them (see ref. 2” and 23)

The approx1mat10n (A 2) is only good if the two saddle

points Xy and X, are well separated When the two saddle
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points x, and X, are close together one has to improve

1
the prescription(Aﬁ)and one way is to map the phase f onto

a cubic in such a way that the stationary points of f and

the cubic correspond18’2u’25)

5(*) = "3 | + §u + A = hv) " (A.3)

In this way one obtains the Airy—uniform approximation

o ei(fdj‘)/l {(_‘rﬁ__ T.S_:) § Ai(- f)

o “(s" r‘")§ A
o § e [3G-1)

The mapping (A.3) is-one of many possibilitiesr For the

case of a functions f with the structure , _
O ) .
fey = §x) - 2mex O wes)

for constant ® and rather "flat" f, Stine and'Marcusz6)

consider the mapping o : |
J((") = —f-cm(Zg) + A +xy = &_(‘J) (A.6)

from the interval 0€x€¢1 c'm“c“o the interv:;e.lvl - Sg €T The

constants § and A are chosen so that the_statiohér&}phase

points of f(x) in 0€ x ¢ 1 correspond to those of the new

function h(y) in the new domain. This leads to

th+f) = A- ™

-4 = -5 )+*~zL"(2§ { o
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For integer values of - this yields the so called Bessel

. | ' o ~ " )Z ' ' |
T 2wl )e‘”’{< )(g f)3(§>

i (& f> J. (§)

" (A. 8)

laW o

:_:f”a.b
> * -

vThngéséel— and Airy-approximation is usuaiiy more compli-
caﬁed to apply-than ﬁhe'ﬁrimitive'semiélaséicai apprdxima—
tion (eq.A.E),.but they also are more general and have adyah—_
tages in the case of complex saddle points. In ref. 23 the
three methods: are comparéd in detail in-a éimpieAmodél. In
ordef to decide which one to use, one has to ihvésﬁigate

the behaviour of the function f(x) in thé integral (A.l).
‘»fér complex saddle points (classically forbidden processes)
this can be rather tedious, and in such dases it ié‘oftén

easier to evaluate the integral numcerically.
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Table 1

’

Comparison between the QM, oM_4 and WKB calculationéof the

diagonal transitionprobabilities %V*
X =0 X = 0.1
M " |
» oM QM oM 4 WKB
0-0 1.67 ~1o—5A 1.40 107> 1.40 107° 1.60 107>
22 5.48 1013 2.67 10713 2.42 10713 5,21 10713
4~4  1.44 10°%% 4.66 1023  3.62 10723 22

1.34 1o

46



Table 2.
Comparison between the QM and "the USCA ntransition probabilities Pv}p
o = 0.1 X = 0.01
Vou 060 Oe2 O 4 2¢»2 2e0 4 0w O Oer 2 0v4
oM 1.40 1077 9.30 10" ' 1.03 107'® 2.67 10717 9.86 10717 | 1.64 107> 1.22 1072 1.49 1072°
1.44 1077 9.49 1071 697 107'® 2052 16713 9.15 10717 | 1.56 1077 1.30 1072 1.42 10°%°

USCA

"Ly
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Table 3

Transition probabilities P, (in units of 10-10) in the

Ko
sudden limit on anEckard—shaped potential. The parametérs are

given in the text. }Lo =4

)Y oM Pr.Semicl. Bessel Airy Integral

0 2.8 1.9 1.9 1.9 3.0

2 2.6 2.3 2.3 2.3 2.8

4 2.2 2.0 2.0 2.0 2.3

6 1.7 1.5 1.5 1.5 1.7

8 . 1.2 " 1.0 1.1 1.1 1.2

10 o.7] 0.68 0.63  0.69 ; 0.76
12 o.45 0.42 0.43  o0.43 0.47

Table 4

Reflection probabilitiesf35“° for the sudden limit on anEckard-

Shaped potential. The parameters are given iﬁ,the text. /ﬁﬁ = 4

M oM Pr.Semicl. - Bessel  Airy - Integral

o 0.041 . o.048"  0.039  o.o40 0.053
2 0.32  0.35 0.32 0.35 ol

4 0.016 0.019 0.015  0.016 0.016
6 0.14 .11 0.14 0.14 0.13

8 0.22 0.001 0.23 o.23 0.23
10 0.15  0.079 6.15 015 o.16
12 0.065 0.33¥  0.068  0.069 0.069

+ reflection is classically forbidden
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Figure Captions '

Fig. 1 Schematic represehtation of a fissien barrier. Shown is

" the potential along the fission valley.

Fig. 2 Potentlal energy surface V(x,y)/V (see eq.8) for the
| case of f(z)=cosh 2(z). The parameters are o(—O 1 and

1/2

h(C/my) =O.1-VO. X 1s measured 1in unlts of the barrler

‘width a and y is measured in units of the oscillator length
b=(h2/C my)l/u. Also drawn is the probablllty dlstrlbutlon
for the harmonic 050111ator wave functlon for the quantum

states n=o and n=4.

Fig. 3 The effective barrier for the adiabaticvstetes'n=o,2,u.
fThe.iowest.curve is the pure Gaussian berrier with the
parameters of eq.(9). The other full linestihcludevthe
x—dependent vibrational energy'h(d(x)f(n+i/2);2Fer the
dashed lines the vibrational energy was taken to be con-
stant hC%-(n+1/2) Shown also is the total energy of 6MeV ' 
used in the calculations to table 1 and 2 and fig.4,5 and.

6.

Fig.l4 Real eﬁa imaginary part of the quantum number function
n, (¢ ) Versus the real part of ¢ (¢ 2wtc) ‘The various
‘curves are labeled by the value of Imag (¢°). The para-
meters are given in eq.9 and the initial quantum'ﬁumber :
.is'2“=3. One observes that there are two solutions te

eq. 60;
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'Fig.-S Fission barrier and the muare'of the quantum mechanical

Fig. 6

Fig. 7

channel function tqﬁx)'for an incoming wave in the chan-
nel )L=2. The parameters are those of eq.(9), &=0.1,

E = 6 MeV.

Penetrabilities 99 for different values of the coup-

ling constant & . The lines correspond to_the Quantum
mechahical_coupled channel calculations (solid line for
diagonal .and broken lines for off-diagonal transitions)
and the dots correspond to sémiclassicai’calculations

using the uniform Bessel-approximation. The parameters

of the ‘potential. are given in eq.(QLvi e

Quantum mechanical transition probabilities versus the

- coupling strength & for several transitions for the sud-

den 1limit case; a) for the reflected waves, b) for the

transmitted waves. The parameters are given in the text.



g
3

e

T
43

U4 8

U u

51.

3 8ia

 ZG616:9.2 18X

X -—

>_



52.

.mm—m.wmn agx .
ox9 § v € Z L 0 - T € 7 & 9-

q/k




0 0 4 o

53.

~04 202 0 02 X 04

XBL 776-9150



-Reol'[ﬁ( ‘o)]

' Ol q“l

" | ‘_./

|lll|‘;~£-'1||1

— [.T T

/.

| LI I | I ! LB ' 1 1

~
\

\N \ } : .r

_ 30/

= 17
<= _lf 2.8
> /A/” 2.6 -
E 2054

RS

(
D
-

N SO B N

|

| R S B PR T I

- 30°

60°

90° 120°
Real (%)

150°

NBL 7510-8405

Fig. 4

180°

54.



8.0

Fig. 5

XBL755 —-2883

55.



Lﬁ (Pv¢ﬁp)

56.

0.0

| T
-100_0+0 o . —
-20.0 :_O;—’Z | —
T —— \\\ v /’—_“_______.—-
- .\\*\\ ////f _
_ N/~ _
\ )
-30.0F \f * =
/
- \\\\ | ”:
—40.0_ ~~~~~ -~ \\ I /// -1
\\\\ Vs /,__-—--—.“_""—"
_, \
| 44 o uf |
5001 — ¥ 4
' !
|
| | —
|
|
-600F I L 7
1 | | 1 |
-0.15 =-0Q.0 -0.05 0.0 0.05 O.10 0.15
| a

Fig. 6

XBL755-2884



CO0dua4ggyp x 5 4

1.0

refl |

nge4

0.5

10-9

ptrans B

Nge—14

10.‘10

‘0-11

10-12

005 o 015

02 a 025

1

005 01 0.15

Fig. 7

02 a 025
XBL 7769151

57.



s

Jooou ey

This report was done with support from the United States Energy Re-
search and Development Administration. Any conclusions or opinions
expressed in this report represent solely those of the author(s) and not
necessarily those of The Regents of the University of California, the
Lawrence Berkeley Laboratory or the United States Energy Research and
Development Administration.




7 »
TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





