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SUMMARY
Amyotrophic lateral sclerosis (ALS) is linked to the reduction of certain nucleoporins in neurons. Increased
nuclear localization of chargedmultivesicular body protein 7 (CHMP7), a protein involved in nuclear pore sur-
veillance, has been identified as a key factor damaging nuclear pores and disrupting transport. Using
CRISPR-based microRaft, followed by gRNA identification (CRaft-ID), we discovered 55 RNA-binding pro-
teins (RBPs) that influence CHMP7 localization, including SmD1, a survival of motor neuron (SMN) complex
component. Immunoprecipitation-mass spectrometry (IP-MS) and enhanced crosslinking and immunopre-
cipitation (CLIP) analyses revealed CHMP7’s interactions with SmD1, small nuclear RNAs, and splicing factor
mRNAs in motor neurons (MNs). ALS induced pluripotent stem cell (iPSC)-MNs show reduced SmD1 expres-
sion, and inhibiting SmD1/SMN complex increased CHMP7 nuclear localization. Crucially, overexpressing
SmD1 in ALS iPSC-MNs restored CHMP7’s cytoplasmic localization and corrected STMN2 splicing. Our find-
ings suggest that early ALS pathogenesis is driven by SMN complex dysregulation.
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenera-

tive disease characterized by the progressive degeneration of

both upper and lower motor neurons (MNs), resulting in the

loss ofmotor function, respiratory failure, and ultimately death.1,2

While the etiology of ALS remainsmultifaceted and poorly under-

stood, recent research has shed light on a new aspect of its

pathogenesis.

Nucleoporins, essential components of the nuclear pore com-

plex (NPC), have been observed to be diminished in up to 90%of

sporadic ALS (sALS) cases.3–6 Studies have identified that the

abnormal nuclear localization of charged multivesicular body
Neuron 112, 1–15, December 18, 2024 ª 2024
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protein 7 (CHMP7), a component of the endosomal sorting

complexes required for transport endosomal III (ESCRT-III)

degradation pathway, causes NPC injury.4 This intriguing dis-

covery highlights the critical roles of CHMP7 and the NPC in

ALS pathogenesis, prompting further investigation into the regu-

latory mechanisms governing CHMP7 localization. In this study,

we elucidate the molecular pathways linking nucleoporin defi-

ciency to aberrant CHMP7 nuclear localization by identifying sur-

vival of MN (SMN) complex dysfunction as an unexpected

contributor to the onset and progression of sALS.

The SMN protein complex is an essential assembly compo-

nent in small nuclear ribonucleoprotein particle (snRNP) forma-

tion.7 Its primary function is to facilitate the efficient and specific
University of California San Diego. Published by Elsevier Inc. 1
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binding of the heteroheptameric Sm complex to a conserved

binding site found on the spliceosomal U1, U2, U4, and U5

small nuclear RNAs (snRNAs).8–11 Sm proteins are gradually

assembled together with snRNA in the cytoplasm,12 resulting

in the creation of functional snRNPs, which are essential for

the splicing of pre-messenger RNA (pre-mRNA) in the nucleus

of eukaryotic cells. SmD1, along with six other snRNP proteins

(SmB, SmD2, SmD3, SmE, SmF, and SmG), forms a heptameric

ring structure crucial for the assembly of snRNPs, which sur-

round U-rich snRNAs and play a pivotal role in pre-mRNA

splicing.13 SmD1 depletion can affect Sm protein-protein inter-

action, which can interfere with complex formation with SMN

and decrease the levels of U1, U2, U4, and U5 snRNPs.14,15

These findings underscore the essential role of Sm proteins in

splicing, snRNA maturation, and stability.16

Dysregulation or mutations in the SMN complex have been

associated with various neurodegenerative diseases, such as

spinal muscular atrophy (SMA), underscoring its significance in

both development and disease.17,18 Recent investigations

have further highlighted its relevance in the pathogenesis of

ALS, especially in sporadic cases (sALS).19 TDP-43 knockout

mice and mutant SOD1 mice also exhibit Gemin deficiency.20,21

Furthermore, Gemin deficiency exacerbates cellular stress and

degeneration in ALS.20,22 Building on this context, through an im-

age-based CRISPR screen using the CRISPR-based microRaft

followed by guide RNA identification (CRaft-ID) workflow,23 we

have identified RNA processing proteins, particularly those inte-

grated into the SMN complex, as critical regulators of CHMP7

subcellular localization. Confirming our findings, depletion of

SMN complex components results in nuclear localization of

CHMP7. As previously established, Sm complex proteins and

CHMP7 utilize the exportin protein XPO1 for active transport

from the nucleus to the cytoplasm.24,25 We demonstrate that

CHMP7 interacts with SMN complex proteins in MNs. This inter-

action is mirrored at the RNA level, with CHMP7 binding to

snRNAs and mRNAs encoding constitutive and alternative

splicing (AS) factors. We observe reduced expression of

SmD1, a component of the SMN complex in sALS induced

pluripotent stem cell (iPSC)-derived MNs. As CHMP7 nuclear

localization causes NPC injury,4 which leads to loss of nuclear

TDP-43 and reduced levels of STMN2 protein,26–28 we show

that restoration of SmD1 levels in sALS iPSC-MNs returns

CHMP7 to the cytoplasm and corrects regulation of STMN2 pro-

tein. Collectively, our findings suggest the existence of an early

pathway involving dysregulation of the SMN complex, which

drives the initial stages of sALS pathogenesis.

RESULTS

Image-based genome-wide CRISPR screen technology
identifies modulators of CHMP7 nuclear localization
To identify genes that modulate the subcellular localization of

CHMP7, we employed the CRaft-ID imaging-based screening

and analysis workflow to evaluate a lentiviral library with

>12,000 single-guide RNAs (sgRNAs) targeting over 1,000 anno-

tated RNA-binding proteins (RBPs).23 A HeLa cell line expressing

endogenously GFP-tagged CHMP7 was transduced with the

lentivirus-packaged library at low multiplicity of infection and
2 Neuron 112, 1–15, December 18, 2024
sparsely seeded on Cell Microsystems CytoSort arrays, each

containing 40,000 ‘‘microRafts’’ (1003 100 mm). A total of 12 mi-

croRaft arrays seeded at 20% cell occupancy were imaged and

84 individual microRafts containing cells with nuclear localized

CHMP7-GFP were isolated using the CellRaft AIR System (Fig-

ure 1A). Cells from candidate rafts were assigned a unique bar-

code by targeted PCR of the sgRNA insert and pooled for NGS

sequencing after gel extraction and cleanup (Figures 1A and

S1A–S1C). For reference, we picked a representative library

containing the six pooled rafts which we ran on the Agilent Ta-

pestation for gel extraction to isolate 220–250 bp DNA (Fig-

ure S1C). The final DNA library was subjected to sequencing

on the Miseq (Illumina) platform and the identities of the sgRNAs

were extracted by the CRaft-ID software package (Figure 1A).

The model-based analysis of genome-wide CRISPR-Cas9

knockout (MAGeCK) algorithm29was used to identify statistically

significantly enriched sgRNAs. We successfully identified 73

guides (from 84 rafts) representing 55 candidate genes (Fig-

ure 1B) of which some are involved in RNA processing

steps such as in RNA splicing (SNRPD1/SmD1, NOVA2) and

mRNA translation (EIF2AK2, EIF4G2, and EIF2AK4) (Figures 1C

and S1D).

RNA processing plays a pivotal role in governing the
cellular localization of CHMP7
Of the 55 genes, we prioritized 23 candidates that had appeared

at least twice in the screen and have roles in RNA splicing, impli-

cations in ALS biology and RNA export/transport. We utilized

XPO1 as a positive control that is known to facilitate the active

export of CHMP7 from the nucleus.25 To confirm the CRaft-ID re-

sults, we depleted each candidate gene in wild-type (WT)

HeLa cells, each with two different small interfering RNAs

(siRNAs). Where antibodies were available, we confirmed a min-

imum of 80% protein reduction through western blot analysis

(Figures S2A and S2B). Knockdown (KD) of eight genes

(NOVA2, DDX43, TUBA1B, FAM120C, SNRPD1, DHX8, XPO4,

and XPO7) had minimal or no effect on CHMP7 protein levels,

indicating that translocation of CHMP7 was not simply due to

overall changes in CHMP7 expression (Figure S2C). Three of

these candidates, XPO7, XPO4, and DHX8, are export factors

known to mediate the nuclear export of proteins and RNA.30–32

Using immunofluorescence, we assessed cytoplasmic and

nuclear intensity of endogenous CHMP7 protein HeLa cells

following the confirmation of protein depletion (Figures 2A–2D

and S2B). A notable increase in CHMP7 nuclear localization

was observed for our candidate RNA processing proteins (Fig-

ure 2E). Depletion of SmD1 encoded by the SNRPD1 gene

caused the highest increase in CHMP7 nuclear localization,

akin to the positive control XPO1 (Figure S2D). SmD1 is a

component of the Sm-class snRNPs and is critical for the assem-

bly of U4 snRNP,33 but it has no prior reported interactions

with CHMP7.

CHMP7 interacts with the SMN snRNP assembly
complex in iPSC-MNs
To investigate whether CHMP7 protein interacts with our candi-

date proteins in an RNA-dependent manner, we immunoprecip-

itated (IP) endogenous CHMP7 protein complexes from
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Figure 1. Image-based genome-wide CRISPR screen technologies identifies modulators of CHMP7 nuclear localization

(A) Schematic of the CRaft-ID experiment. A CRISPR-Cas9 gRNA library was generated from an array of sgRNA oligonucleotides cloned into the lentiCRISPR v2

backbone. HeLa cells expressing GFP-CHMP7 were infected at low multiplicity of infection (MOI 0.15) and cultured in bulk for 7 days after selection, allowing

lethal guides to drop out of the pool. A bulk infection of cells with a gRNA library targeting over 1,000 annotated proteins (>12,000 sgRNAs) was performed,

followed by single cell plating on 12 microRaft arrays to screen genetic knockout clones for mislocalization of CHMP7. Positive candidates, where GFP is in the

nucleus and co-localizing with nuclear staining by DAPI, were selected. To sequence the sgRNA associated with CHMP7 mislocalization to the nucleus, we

isolated target colonies adhered to microRafts from the array. A motorized microneedle, fitted over the microscope objective, was actuated to pierce the pol-

ydimethylsiloxane (PDMS) microarray substrate and dislodge individual magnetic microRafts from the array. Released microRafts and their cargo were collected

with a magnetic wand into a strip tube containing a lysis buffer for a targeted two-step PCR with in-line barcodes, followed by high-throughput sequencing.

(B) Bar chart showing the total number of rafts picked (84), sequenced (73 with successfully obtained PCR products), and identified (55 using CRaft-ID) and

proteins confirmed by siRNA depletion (23). The pie chart represents the distribution of sgRNAs identified from the 84 rafts.

(C) GO analysis of the 55 candidate genes identified in the screen compared with the background of genes targeted in the CRISPR screen.
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iPSC-derived differentiated MNs (iPSC-MNs) at day 28 with or

without RNase treatment, followed by mass spectrometry anal-

ysis (Figure 3A). We identified 379 enriched proteins in CHMP7-

IP samples relative to an IgG control in the untreated condition

(p value < 0.01 and greater than 2-fold difference; Figure 3B;

Table S1). CRaft-ID candidates SNRPD1/SmD1, EIF2AK2,

RRP1, and GAR1 were identified as interactors of CHMP7 in

the untreated samples, with two additional candidates EIF4G2

and XPO7 found as enriched under a less stringent p value cutoff

of 0.05 (Figure 3B; Table S1). Following treatment with RNase,

we observed a �75% reduction in the total number of enriched

interactions, suggesting that CHMP7’s protein-protein interac-

tome is largely RNA-mediated (Figure 3C). In untreated condi-

tions, the interacting proteins displayed an enrichment for RNA

processing factors, such as RNA transport, splicing modulators,

translation regulatory proteins, snRNPs, and RNA helicases (Fig-

ure 3D). In RNase-treated samples, this network shifted toward
the SUMOylation of DNA methylation, glycogen synthesis and

degradation, actin cytoskeleton organization, and glycogen

metabolic process unrelated to RNA metabolism (Figure 3E).

Despite CHMP7 being predominantly cytoplasmic, we identified

both cytoplasmic and nuclear proteins, as well as those known

to shuttle between the nucleus and cytoplasm, suggesting a

functional role for CHMP7 in both cellular compartments consis-

tent with prior reports.34–38 Cluster analysis was performed to

characterize molecular functions for the CHMP7 interacting pro-

teins in untreated samples. Our analysis identified several

candidates within the SMN complex, which itself is critical for

biogenesis of spliceosomal snRNPs,16,39 as well as within

mRNA transport and RNA processing machineries (Figure 3F).

Upon closer examination of CHMP7 RNA-mediated interactions,

we observed its close association with Gemin proteins and SmD

proteins, all integral components of the snRNP assembly

pathway (Figure 3G). Indeed, our analysis revealed a larger
Neuron 112, 1–15, December 18, 2024 3
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Figure 2. RNA processing plays a pivotal

role in governing the cellular localization of

CHMP7

(A) Representative images of proteins XPO7, DHX8,

and SmD1 depleted by siRNAs in HeLa cells.

Immunofluorescent analysis of DAPI (blue),

phalloidin (actin filaments, green), and CHMP7

(magenta). Scale bars, 50 mm.

(B–D) Western blot analysis of XPO7, SmD1, and

DHX8 in cells treated with targeting siRNAs,

alongside NTCs.

(E) Quantification of image intensity of cyto-

plasmic (C) and nuclear (N) CHMP7 in HeLa

cells when XPO7, DHX8, and SmD1 are targeted

by siRNA, compared with NTC, represented

by the y axis label as N/C ratio. Data are

presented as mean ± SD of three independent experiments (n = 3 wells, �800 cells total). Statistical significance analyzed by Student’s t test,

****p < 0.0001.
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number of interactions with the components of the SMN com-

plex compared with nucleoporins (Nups) (Figure 3G). Given

that the biogenesis of spliceosomal snRNPs involves multiple

steps in both nuclear and cytoplasmic phases, our results sug-

gest that CHMP7 and SMN could be involved in a coordinated

regulation of these RNA-related processes.

CHMP7 binds to snRNAs andmRNA of splicing factors in
iPSC-MNs
Given that 57% of CHMP7’s interacting proteins are annotated

RBPs, we reasoned that CHMP7 itself may have RNA-binding

capabilities. We employed our deep-learning RBP classifier

HydRA40 to identify potential RNA-binding domains (RBDs)

and low-complexity regions (LCRs) across the CHMP7 protein

sequence. HydRA’s occlusion map analysis indicates that

CHMP7 has predicted RNA-binding regions at 126–174 and

206–226 amino acids (aa) (p < 0.05) and at 141–166 aa

(p < 0.001), proximal to the N-terminal of the Snf7 domain (Fig-

ure 4A). We conducted enhanced crosslinking and immunopre-

cipitation (eCLIP) analysis on CHMP7 in iPSC-MNs after IP pull-

down confirmation (Figure S3A).41 Both CHMP7 IP replicates

passed statistical thresholds tomaximize the number of hits (Fig-

ure S3B) as specified by the Skipper computational workflow,42

and had high concordance between replicates (Figure S3C). Af-

ter processing all IPs separately, we selected reproducibly en-

riched windows for both transcriptomic regions and repetitive el-

ements, satisfying a 20% false discovery rate (FDR) cutoff

(Figure S3D).We found that CHMP7 interacts with transcripts

from protein-coding genes (Figure 4B; Table S2), binding primar-

ily to CDS and 50 untranslated regions (50 UTRs) (Figure 4C), sug-

gesting that CHMP7 interacts with mature mRNAs in the cyto-

plasm, reminiscent of other RBPs that had CDS preferences

analyzed by ENCODE3 (Figure 4D).43 We assessed the motifs

enriched within CHMP7 enriched regions and found two statisti-

cally significant motifs, namely CGG (p < 10�53) and UGG

(p < 10�44) (Figure S3E).

To characterize the genes enriched for CHMP7 binding, we

conducted a Gene Ontology (GO) enrichment analysis, revealing

significantly enriched terms ‘‘axon extension,’’ ‘‘transport along

microtubule,’’ ‘‘synapse assembly,’’ ‘‘splicesomal complex,’’

‘‘U2 and U5 SNRNP,’’ and ‘‘dynein complex binding’’ (Figure 4E).
4 Neuron 112, 1–15, December 18, 2024
To illustrate, we discovered CHMP7 binding to exonic regions of

mRNAs encoding splicing factors SF1 and PRPF40 (Figure S3F).

These genes encode integral protein constituents of snRNPs or

are actively engaged in splicing through U1 or U2 snRNPs.44 We

also observed binding to SNRNP70 which enables U1 snRNA

binding activity (Figure S3F). CHMP7 also exhibited enriched

binding to noncoding RNAs such as microRNAs (miRNAs),

long noncoding RNAs (lncRNAs), and snRNAs such as RNU1,

RNU2, and RN7SK (Figures 4B, 4F, and 4G). This direct binding

establishes connections to snRNA complex formation or regula-

tion at the RNA level, complementing our protein-protein interac-

tion results. In summary, CHMP7 appears to interact with the

RNAs of splicing factors and snRNAs involved in snRNP forma-

tion and splicing.

Impaired nuclear export of CHMP7 has consequences
on RNA processing
To investigate the potential impact of CHMP7’s subcellular local-

ization on RNAmetabolism, we obtained twomutants of CHMP7

from a previous study done on nuclear envelope reformation and

modified the plasmids with EF-1a promoter.45 Predictions sug-

gested that two nuclear export sequences (NESs) in helices 5

and 625,46 regulate CHMP7’s interaction with XPO1. To generate

nuclear localized CHMP7 cell models, we depleted CHMP7

in HeLa cells using siRNAs and transfected GFP-tagged

CHMP7 mutants: GFP-CHMP7, helix 6 (GFP-CHMP7NES2�) or
helix 5 and helix 6 (GFP-CHMP7NES1�&NES2�). As anticipated,

while observing nuclear accumulation of CHMP7 with the GFP-

CHMP7NES2� mutant, the GFP-CHMP7NES1�&NES2 mutant

demonstrated clustering at the nuclear envelope and peripheral

ER instead as previously shown (Figure 5A).45 We next per-

formed RNA sequencing (RNA-seq) analysis on cells transfected

with GFP-CHMP7NES2� relative to control GFP-CHMP7 to iden-

tify genes that are differentially expressed because of CHMP7

localization (Figure 5B; Table S3). GO analysis of genes downre-

gulated by CHMP7 nuclear localization were enriched for cyto-

plasmic translation, RNA splicing, mitochondrial translation, spli-

ceosomal complex assembly, and nuclear export. Upregulated

genes were involved in metabolic processing (Figure 5C). Using

rMATS turbo v4.2.0, we also identified a total of 774 AS

events with an FDR % 0.05 between GFP-CHMP7NES2� vs.



SMN Complex

A

D

E

DNA metabolic
process

Glycogen synthesis

Histone
Modification

Chromatin
Organization

mRNA
transport

SUMOylation

RNA splicing

rRNA processing

G

RNase TreatedCB

0 5 10 15 20

mRNA metabolic process
Capped Intron-Containing Pre-mRNA

RNA splicing
Spliceosome

Chromatin organization
Ribonucleoprotein complex biogenesis

SMN complex
SUMOylation

rRNA processing
snRNP Assembly

Nucleocytoplasmic transport
RNA transport

Glycogen synthesis
DNA metabolic process

Histone modification
Untreated

Day 28 MN

+RNase

Mediated Direct

DIA-MS

CHMP7

CHMP7 RNA Mediated PPI

F

-log10(p-value)

0 5 10 15

SUMOylation of DNA methylation
Polycomb repressive complex 1

SUMOylation of transcription cofactors
Regulation of PTEN gene transcription

Negative regulation of hydrolase activity
Glycogen synthesis and degradation

Actin cytoskeleton organization
Glycogen biosynthetic process

Glycogen metabolic process
Polysaccharide biosynthetic process

DNA synthesis involved in DNA repair
mRNA metabolic process

Protein complex oligomerization

-log10(p-value)

RNase Treated

CHMP7SNRPD1
EIF2AK2RRP1
GAR1

EIF4G2
XPO7

0

2

4

6

8

−5 0 5 10

log2 (CHMP7 / IgG)

−
lo

g 10
(p

−
v a

lu
e)

Untreated
Enriched (379) Enriched (94)

GEMIN7GEMIN7

SEC13SEC13

GEMIN2GEMIN2

GEMIN4GEMIN4

NUP133NUP133
NUP205NUP205

SNRPD1SNRPD1

SNRPFSNRPF

GEMIN5GEMIN5

NUP214NUP214

SMN2SMN2

GEMIN8GEMIN8

SNRPD2SNRPD2

NUP88NUP88

SNRPESNRPE

DDX20DDX20

SMN1SMN1

log2 (CHMP7 / IgG)

−
lo

g 10
(p

−
va

lu
e) CHMP7

SNRPD1
RRP1

GAR1

EIF2AK2
EIF4G2

XPO7
0

1

2

3

4

5

−5 0 5 10

(legend on next page)

ll
OPEN ACCESSArticle

Neuron 112, 1–15, December 18, 2024 5

Please cite this article in press as: Al-Azzam et al., Inhibition of RNA splicing triggers CHMP7 nuclear entry, impacting TDP-43 function and leading to
the onset of ALS cellular phenotypes, Neuron (2024), https://doi.org/10.1016/j.neuron.2024.10.007



ll
OPEN ACCESS Article

Please cite this article in press as: Al-Azzam et al., Inhibition of RNA splicing triggers CHMP7 nuclear entry, impacting TDP-43 function and leading to
the onset of ALS cellular phenotypes, Neuron (2024), https://doi.org/10.1016/j.neuron.2024.10.007
GFP-CHMP7, of which 378 events exhibited a change in

percent-spliced-in (J) value of 10% or more (Figure 5D;

Table S4). An analysis of the genes with AS events highlighted

‘‘mRNA splicing’’ and ‘‘chromatin organization’’ as the most

highly representedGO terms (Figure S4A). This indicates that nu-

clear retained CHMP7 impacts crucial cellular processes related

to RNA metabolism.

Changes in both RNA-binding profile and protein
interactions in sALS iPSC-MNs
Next, we investigated whether there are differences in the pro-

tein interactors of CHMP7 in iPSC-MNs from sALS lines (Fig-

ure S4B). We performed the IP of CHMP7 and evaluated it for in-

teracting SMN complex proteins by western blot analysis. We

observed a slight reduction in SmD1 interaction with CHMP7 in

sALS lines (Figure S4B). This observation led us to exploring

the transcriptome-wide CHMP7 protein-RNA landscape in ALS

iPSC models, where CHMP7 is aberrantly localized within the

nucleus. To accomplish this, we generated MNs from iPSC lines

from two healthy controls, two familial ALS patients with G4C2

repeat expansions in the C9ORF72 locus and two sALS patients.

To identify CHMP7 RNA-binding in ALS, we conducted eCLIP

analysis41 on each cell line using an antibody recognizing endog-

enous CHMP7 protein and quantified the number of enriched

transcriptomic regions bound by the protein. In healthy control

iPSC-MNs, we found a substantial enrichment in CDS and exons

aswe previously observed (Figures 4C and 6A). However, in both

C9orf72 and sALS iPSC-MNs, we discovered a 3-fold reduction

in CHMP7 binding to CDS, coupled with an increase in binding to

intronic regions (Figures 6B and 6C). Upon performing cluster

analysis, we observed that CHMP7 binding in C9orf72 and

sALS iPSC-MNs clustered with RBPs that typically interacted

with intronic regions and splice sites (Figure 6D). By averaging

across all transcripts using metadensity plots,47 we detected

prevalent intronic region binding, most likely due to CHMP7’s

nuclear localization in both C9orf72 and sALS iPSC-MNs (Fig-

ure 6E). Concurrently, we saw a reduction in 50 UTR binding in

sALS iPSC-MNs compared with control lines (Figure 6F). Next,

we analyzed AS events from sALS and C9orf72 iPSC-MN

compared with control RNA-seq datasets.48 At a FDR % 0.01,

we identified 1,038 AS events that exhibited a change of J of

more than 10% between ALS and control (Figure S4C). We

then tested the hypothesis that there was an association be-

tween CHMP7 binding and AS-containing genes. Out of 49

genes with intronic CHMP7-binding sites, 10 exhibited differen-

tial AS events. Among the 15,922 non-CHMP7-bound genes,
Figure 3. CHMP7 interacts with SMN complex proteins responsible fo

(A) Schematic of IP-MS workflow to identify CHMP7 protein-protein interactions

(B and C) Volcano plots showing proteins significantly enriched in untreated or R

changes betweenCHMP7 IP to IgG, and the y axis shows�log10 p values (unpaire

as interactors.

(D and E) GO terms that were enriched for the protein interactors in untreated or RN

of enrichment is plotted for each GO term. Background of all the proteins in IPs w

found in Table S1.

(F) Network analysis was performed for CHMP7 interactors across all GO term pa

densely connected protein neighborhoods in the network. The biological roles o

(G) CHMP7 RNA-mediated interactors associate with snRNP assembly proteins

based on k-means clustering and edge confidence; high (0.700), highest (0.900),
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1,028 had significant events, confirming a statistically significant

association (p < 0.00007; chi-squared statistic of 15.69; Fig-

ure S4C; Table S5). The 49 genes with enriched intronic binding

were associated with GO terms ‘‘regulation of mRNA metabolic

process,’’ ‘‘positive regulation of ERK1 and ERK2 cascade,’’

‘‘regulation of cellular catabolic process,’’ ‘‘FCERI mediated

MAPK activation,’’ and ‘‘apoptosis’’ (Figure S4D). Our findings

indicate that the abnormal nuclear localization of CHMP7 in

C9orf72 and sALS iPSC-MNs contributes to its increased inter-

actions within pre-mRNA intronic regions, likely affecting AS

and other RNA processing events. Consequently, this aberrant

localization leads to decreased interactions with maturemRNAs.

Overexpression of SmD1 is sufficient to restore
subcellular distribution of CHMP7 in sALS iPSC-MNs
Our experiments demonstrated that depletion of SmD1 led

to abnormal nuclear localization of CHMP7 in HeLa cells

(Figures 2A and 2E). Previous studies have demonstrated that

SmD1 depletion blocks splicing at the initial step, resulting in

decreased levels of U1, U2, U4, and U5.14 Given these results,

we investigated whether reducing SmD1 levels would induce

CHMP7 nuclear localization. After nucleofection with SmD1-tar-

geting siRNA in control iPSC-MNs, we observed increases in nu-

clear intensity of CHMP7 compared with non-targeting-control

(NTC) (Figures 7A and 7B). It has been described that the

increased nuclear localization of CHMP7 takes place as an early

event in ALS, occurring prior to themanifestation of NPC injury.49

Therefore, we determined whether SmD1 depletion could initiate

NPC injury, presumably following CHMP7 nuclear localization in

control iPSC-MNs. We observed reductions in POM121 and

Nup133 upon SmD1 protein depletion (Figures S5A and S5B).

We next quantified the nuclear intensity of TDP-43 and observed

a reduction in TDP-43 immunoreactivity upon SmD1 KD

compared with NTC (Figures 7A and 7C). Therefore, we

conclude that reduction of SmD1 in iPSC-MNs is sufficient to

trigger NPC alterations that have previously been demonstrated

to follow aberrant CHMP7 nuclear localization.4 This overall loss

of Nups is thought to impact nuclear transport, disrupt the func-

tion of Ran, and result in the loss of TDP-43 nuclear localization

and aggregation in the cytoplasm.50,51

To assess the functional consequences of altered TDP-43 dis-

tribution, we probed for changes in STMN2 cryptic exon splicing,

which was found to be a prominent feature of ALS in patients with

TDP-43 pathology.27,28,52 We performed quantitative reverse

transcription polymerase chain reaction (RT-qPCR) analysis to

quantify full-length and truncated STMN2 mRNA species in the
r snRNP assembly in iPSC-MNs

with or without RNase treatment.

Nase-treated CHMP7 IPs compared with IgG IPs. The x axis shows log2 fold

d Student’s t test). Proteins with p values < 0.01 and fold change > 2 are labeled

ase-treated samples. The�log10 (p value) depicting the statistical significance

as implemented in the GO term analysis. A list of enriched interactors can be

thways using the Molecular Complex Detection (MCODE) algorithm to identify

f each component are annotated.

(SmD1–SmD3), GEM, and nuclear pore complex proteins. Nodes are colored

and medium (0.400) from String.
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Figure 4. CHMP7 binds RNA, specifically RNA processing targets, in iPSC-MNs

(A) HydRA analysis of CHMP7 protein, with annotations for low complexity regions, and highDAS scores representing regions that occlusion analysis indicated to

be predicted RBDs.

(B) Pie chart of genomic features represented in enriched windows in CHMP7 eCLIP data from day 28 iPSC-MNs.

(C) Bar plot of gene features of CHMP7 eCLIP-binding enrichment (fold change) normalized to size-matched input control in day 28 iPSC-MNs. The data are

presented as the mean ± SD. Skipper analysis was used to compute these enrichments (Table S2).

(D) Comparison of CHMP7 eCLIP with ENCODE3 eCLIP data, clustered by binding preferences to genic features.

(E) Statistically significantly enriched GO terms for CHMP7 RNA targets.

(F) Heatmap indicating relative information for small nucleolar RNA (snoRNA) and snRNA elements with CHMP7 binding.

(G) Example of significantly enriched CHMP7 eCLIP-binding site on snRNA gene with size-matched input control reads on the same scale.
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Figure 5. Downregulation of RNA process-

ing upon CHMP7 nuclear accumulation in

HeLa cells

(A) Immunofluorescence staining of GFP-CHMP7,

helix 6 (GFP-CHMP7NES2�), or helix 5 and helix 6

(GFP-CHMP7NES1�&NES2�) with nuclear DAPI signal

in HeLa cells. Scale bars, 50 mm.

(B) Volcano plot comparing differentially expressed

transcripts from RNA-seq analysis of GFP- GFP-

CHMP7NES2� vs. GFP-CHMP7 transient expres-

sion, with p value threshold of 0.05 and fold change

of 2 as cutoffs.

(C) GO analysis of downregulated and upregulated

transcripts from volcano plot in (B) (Table S3).

(D) Distribution of classes of differentially changing

alternative splicing events (FDR% 0.05 + |DJ| < 0.1)

comparing GFP-CHMP7NES2� with GFP-CHMP7

expression.
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context of SmD1KD. Our findings revealed a reduction in the total

abundance of full-length STMN2mRNA, accompanied by a corre-

sponding increase in truncated STMN2 mRNA (Figures S5C and

S5D). Furthermore, to understand whether SmD1 KD causes

downstream consequences on MN health, we observed gluta-

mate-induced excitotoxicity with SmD1 KD in control iPSCs (Fig-

ure S5E). Conversely, to investigate whether the restoration of

SmD1 could influence STMN2 expression patterns, we demon-

strate that overexpression of SmD1 led to the restoration of

STMN2 levels while concurrently reducing truncated STMN2

mRNA abundance (Figures 7D and 7E). Furthermore, we noted

a substantial restoration of CHMP7 cytoplasmic localization

following the increase in SmD1 levels, (Figures 7F, 7G, and S5F).

Prior proteomicswork in sALSpatient tissuedepicted that SMN

protein is reduced, incorrelationwith increaseddiseaseseverity.53

This finding alignswith recent research conducted on sALS spinal

cord tissues, where laser capture microdissection and proteomic

analysis unveiled a striking decrease in the abundance of SMN

component SmD1.54 Further supporting these observations, we

observed a significant reduction of SmD1 mRNA levels in ALS

(12 sALS and 8 C9ORF72) day 32 iPSC-MNs relative to controls

(Figure 7H). We have also noticed a reduction of NOVA2 and

TAF15 expression, but not DHX8andXPO7 in these analyses (Fig-

ure S6). Collectively, these data provide compelling evidence that

the snRNP splicing factor SmD1 plays a pivotal role in modulating

the nuclear localization of CHMP7.
8 Neuron 112, 1–15, December 18, 2024
Pharmacological inhibition of snRNP
assembly leads to CHMP7 nuclear
localization
As an alternative to the genetic depletion

of SmD1 protein, we next determined

whether pharmacological inhibition of

snRNP assembly would alter nuclear/

cytoplasmic translocation using live-cell

imaging. Live-cell microscopy of GFP-

CHMP7 and mCherry-TDP43 was con-

ducted in HeLa cells subjected to either

mock treatment or treatment with a

commercially available SMN inhibitor as
previously discovered (2 h at 200 mM).55 Intriguingly, GFP-

CHMP7 rapidly localized to the nucleus following snRNP inhi-

bition (Figures 8A and 8B). Over a 2-h treatment period,

CHMP7 coalesced at the nuclear periphery, a phenomenon

previously observed during the maintenance of nuclear enve-

lope homeostasis during cell division.37,56,57 Endogenously,

we performed the same experiment and observed a robust

pattern of nuclear influx of CHMP7 (Figures 8C and S7A)

and changes in NPC barrier function (Figure S7B). As for

TDP-43, we observed subtle changes in the nuclear abun-

dance of TDP-43 over the 2-h period, with no significant

translocation evident (Figure 8A). However, after a 24-h treat-

ment with the SMN inhibitor at 30 mM, we began to observe

endogenous TDP-43 translocating to the cytoplasm with IF

(Figures S7C and S7D). Our findings build upon previous

research,4 supporting the interpretation that cytoplasmic

TDP-43 translocation follows the aberrant nuclear localization

of CHMP7 and associated nuclear pore injury (Figure 8D).

DISCUSSION

Abnormal nuclear accumulation of CHMP7 can initiate NPC

injury and cause defects in NCT, resulting in TDP-43 dysfunction

andmislocalization in humanALS neurons.4 Recent studies have

demonstrated that SUN1 mediated alterations to NPC perme-

ability barrier integrity facilitate increased nuclear influx of



A

C

B

E

D

F

Figure 6. Alterations in CHMP7 protein-RNA landscape in ALS iPSC-MNs
(A–C) Number of enriched CHMP7 binding windows across control, C9orf72, and sALS lines.

(D) Skipper t-distributed stochastic neighbor embedding (t-SNE) analysis of CHMP7-enriched binding in genic features across control, C9orf72, and sALS, with

ENCODE eCLIP data colored by target preferences in the background.

(E) Mean relative information around introns for CHMP7 control, C9orf72, and sALS in lines.

(F) Mean relative information around 50 UTR for CHMP7 in control and sALS lines.
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CHMP7 in sALS.58 However, the mechanisms and molecular

players underlying regulation of CHMP7 subcellular distribution

remain unknown and are of critical importance to our under-

standing of early pathogenesis of ALS.

Here, we employed high-throughput imaging-based custom

RBP-focused CRISPR-Cas9-based knockout screening tech-

nologies utilizing microRaft arrays to identify molecular regula-

tors of CHMP7 nuclear localization. This screening approach

identified 55 novel candidates influencing the subcellular distri-

bution of CHMP7, many of which have been previously impli-

cated in RNA processing, translation, and splicing regulation.

Our subsequent investigations focused on the validation of 23

identified candidates, selected based on their potential rele-

vance to ALS pathogenesis and roles in RNA processing. These

validation experiments revealed that depletion of specific RNA

processing proteins, including export factors, helicases, and

splicing proteins, led to a substantial increase in CHMP7 nuclear

localization. Notably, SNRPD1/SmD1 emerged as a primary and

unexpected candidate in controlling CHMP7’s subcellular local-

ization, showcasing one pathway that can influence CHMP7

translocation specifically.
To explore the RNA-binding capabilities of CHMP7, we con-

ducted a transcriptome-wide analysis of its RNA substrates.

Our findings revealed CHMP7’s affinity for both snRNAs (RNU1

and RNU2) and RNAs that encode for protein-coding genes,

particularly in exonic regions and the 50 UTR (Figures 4C, 4F,

and 4G). Although we did not observe direct binding of

CHMP7 to SmD1, we confirmed its interaction with snRNAs,

specifically RNU1 and RNU2, which are components of the U1

spliceosome. Interestingly, when CHMP7 abnormally localizes

to the nucleus in ALS iPSC-MNs, its binding profile shifts to in-

tronic regions, suggesting an interaction with pre-RNA likely

due to its nuclear localization. Our discovery further underscores

the notion of pathway-level dysregulation in cellular RNA splicing

processes as a link to the progression in the context of ALS as

previously have been reported.59,60

We show that alterations in the assembly of snRNPs, influ-

enced by SMN complex inhibition and the depletion of splicing

factors like SmD1, modulate CHMP7’s subcellular distribution.

This phenomenon, also accompanied by nuclear pore injury,

suggests a causal relationship between RNA processing disrup-

tions, CHMP7 localization, and NPC integrity. Ultimately, these
Neuron 112, 1–15, December 18, 2024 9
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Figure 7. Overexpression of SmD1 can sufficiently rescue CHMP7 cytoplasmic levels in sALS iPSC-MNs

(A) Immunofluorescence of day 28 iPSC-MNs with either NTC and si-SmD1, stained with CHMP7 and TDP-43. Showing CHMP7 nuclear localization in SmD1 KD

and reduction in nuclear TDP-43. Scale bars, 10 mm.

(B) Quantification of nuclear (N) to cytoplasmic (C) CHMP7 intensity in MNs (n = 3, �150 cells total).

(C) Quantification of nuclear TDP-43 levels with si-SmD1 compared with NTC (n = 3, �50 cells total).

(D and E) Overexpression of control plasmid and SmD1 open reading frame at day 36 in sALS lines showingmRNA levels for STMN2 and truncated STMN2 (n = 4).

The data are presented as the mean ± SD. Significance was assessed using the Student’s test (*p < 0.05, ***p < 0.001, ****p < 0.0001).

(F) Quantification of nuclear CHMP7 in neurons overexpressing SmD1 (n = 3, �35 cells total).

(G) Immunofluorescence staining of neurons overexpressing SmD1 in sALS at day 36, stained with CHMP7, MAP2, and DAPI. Scale bars, 10 mm.

(H) mRNA levels of SmD1 in 12 sALS lines and 8 C9orf72, normalized to GAPDH and control lines at day 32. The data are presented as the mean ± SD. Sig-

nificance was assessed using Student’s t test (*p < 0.05, ***p < 0.001).
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Figure 8. Perturbation of SMN-complex-dependent snRNP assembly modulates CHMP7 nuclear influx localization and alters NPC proteins

(A) Live-cell imaging of GFP-CHMP7 and TDP-43-mCherry at 0 and 120 min post-SMN inhibitor treatment. Heatmap of fluorescent intensity ratio of TDP-43 at

0 min and at 120 min. Scale bars, 20 mm.

(B) x axis indicates minutes (min); 0 min is prior to SMN inhibitor treatment. Nuclear GFP intensity, cells quantified, is �12 used and averaged from three in-

dependent experiments. Error bars show ± SD.

(C) Immunofluorescence analysis of CHMP7 (green) and DAPI with DMSO or SMN inhibitor in HeLa after 2 h (n = 3). Scale bars, 100 mm.

(D) Proposed mechanism of action. Created with BioRender.com.
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events contribute to decreased motor survival, triggering a

cascade in ALS neurodegeneration.

In our pursuit to understand the interplay between SmD1 and

TDP-43 function, we demonstrated that overexpression of

SmD1 restored total STMN2 expression levels and reduced

truncated STMN2 mRNA. Significantly, this exogenous expres-

sion of SmD1 also led to a substantial restoration of CHMP7’s

cytoplasmic localization, implying that SMN dysfunction may

contribute to abnormal nuclear localization of CHMP7 in disease.

Our focus on SmD1, a splicing factor within the SMN snRNP, re-

veals insights into themodulation of CHMP7 subcellular distribu-

tion, shedding light on one mechanism underlying sALS.

Disruptions in RNA processing, including perturbations in

snRNPs and defects in axonal transport, have been previously

linked to ALS pathogenesis.61,62 Alterations in SMN1 copy num-

ber, such as gene deletions or duplications, increase the risk of

developing sALS.63,64 These changes likely disrupt normal
SMN protein levels, resulting in heightened vulnerability of MNs

to degeneration. SMN deficiency has been shown to worsen

the severity of the phenotype in mutant SOD1 mice.65 Further-

more, a reduction in the number of Gemins due to decreased

SMN levels is a common feature of both SMA and ALS.66 Even

though both are distinct MN diseases, SMA and ALS have signif-

icant molecular overlaps. First, components of the SMN com-

plex, including SMN itself, have been identified as key players

in the interactomes of various ALS-related proteins, such as

SOD1, TDP-43, FUS, and dipeptide repeat proteins from

C9orf72 gene expansions.22,67 TDP-43 and FUS, which localize

to Gemins—nuclear bodies rich in SMN complexes68—further

emphasize these connections. Second, MNs derived from ALS

patients show varied SMN levels, with those having lower levels

being more susceptible to cell death.69 Finally, past studies in

Drosophila have underscored SmD1’s role in RNAi and antiviral

immunity,70 emphasizing the importance of most SMN complex
Neuron 112, 1–15, December 18, 2024 11
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proteins for neuronal survival, as their mutations or KDs can

significantly reduce lifespan in Drosophila. Our study illuminates

a key mechanistic connection between SMN and snRNP com-

plex assembly and modulation of CHMP7 localization and sub-

sequent NPC injury, integrating all these previous observations

for the first time.

In summary, RNA metabolism defects are increasingly impli-

cated in the pathogenesis of MN diseases. This work facilitates

the understanding of the RNA complex components involvement

in ALS and raise the need for further exploring their contribution

as potential susceptibility genes or risk factors for ALS or SMA.

Furthermore, while therapeutics elevating SMN levels show

promise in treating SMA, their effectiveness in ALS patients re-

quires further investigation.

Limitations of the study
In this study, we performed CRaft-ID in HeLa cells. Although the

nuclear architecture is sufficiently similar enough to other cell

types such as neurons, there are still cell-type-specific differ-

ences we can consider in the future. Additionally, we concen-

trated on understanding the role of the SMN complex in

CHMP7 nuclear entry as one pathway to explain this phenom-

enon. However, it is possible that multiple pathways are

involved in coordinating CHMP7 nuclear influx. Finally,

CHMP7 nuclear localization in sALS was not observed in all

diseased iPSC lines. Therefore, only the lines that exhibited

localization were identified, screened, and selected for further

biochemical assays.
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Metadensity software Her et al.47 https://github.com/YeoLab/Metadensity.

FastQC (Version 0.12.0) Babraham Bioinformatics https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

STAR: ultrafast universal RNA-seq aligner Dobin et al.72 N/A

FeatureCounts Liao et al.73 N/A

Gorilla Eden et al.74 N/A

rMATS (v4.1.2) Shen et al.75 https://github.com/Xinglab/rmats-turbo

HydRA (v0.1.21.28) Jin et al.40 https://github.com/Wenhao-Jin/HydRA

Metascape Zhou et al.76 metascape.org

HOMER (v0.4.11) Heinz et al.77 http://homer.ucsd.edu/homer/

Spectronaut v16.0 Bruderer et al.78 N/A

Graphpad Prism (Version 9) Graphpad https://www.graphpad.com/

SnapGene (Version 4.3.11) Dotmatics http://www.snapgene.com/

IGV Robinson et al.79 https://igv.org/doc/desktop/

Fiji Schindelin et al.80 https://imagej.net/software/fiji/

Other

96-well plates Greiner Bio-One cat# 07-000-166

6-well plates ThermoFisher cat# 89900

4%�12% BisTris gel ThermoFisher N/A

Zeiss LSM 880 Zeiss N/A

Azure Biosystems c600 System Azure Biosystems N/A

CellRaft AIR� System Cell microsystems N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Induced pluripotent stem cells, differentiated motoneurons, and cell lines
In this study, we reprogrammed fibroblasts from two fALS patients, referred to as fALS (C9-10) and fALS (C9-12). The sALS lines used

were obtained from a previous study.48 Additionally, we used the CV-B iPSC line, which originates from Craig Venter and is publicly

available, as previously described.71 All other non-neurologic control lines were obtained from Cedars Sinai. All required material

transfer agreements were filed and approved. Demographic information, including sex and age, for all cell lines is provided, and

all lines are from individuals identified as White and non-Hispanic or Latino, as detailed in the key resources table.

Human motor neurons were differentiated from iPSCs as previously described.81,82 iPSCs, before differentiation, were passaged

with Accutase (StemCell Technologies: catalog #. At-104) and grown as a monolayer on feeder-free plates in mTeSR1(Lot #:

1000086203) and mTeSR Plus 5x supplement (StemCell Technologies: 100-0276). IPSCs were then plated on a Matrigel

(Corning:354277). Once the cells reached >90% confluence, the medium was changed daily with N2B27 medium (DMEM/F12 +

GlutaMAX (Life Technologies:10565018), 1% N-2 supplement(Invitrogen:17502048), 2% B-27 supplement (Thermo Fisher Scienti-

fic:17504044), 100 mM ascorbic acid (Sigma-Aldrich:A4544), and 1% penicillin/streptomycin), and supplemented with 1 mM dorso-

morphin dihydrochloride(Tocris:3093), 10 mM SB431542(Tocris:1614), 3 mM CHIR99021 (Tocris:4423), and 5 mM Rock Inhibitor

(Tocris: 1254) until day 6. On Day 6, cells were split using Accutase (StemCell Technologies:07921), and 3 million cells were plated

on a 10 cm plate. From day 6 to 15, cells were fed daily with N2B27 medium supplemented with 1 mMdorsomorphin dihydrochloride

(Tocris:3093), 10 mM SB431542 (Tocris:1614), 200 nM smoothened agonist (SAG; Milipore sigma: 566660), 1.5 mM retinoic acid (RA;

Sigma-Aldrich:R2625), and 5uM Rock Inhibitor. On day 15, cells reached the motor progenitor stage and are dissociated using ac-

cutase and transferred to be plated on matrigel coated plates. The dissociated cells were seeded in N2B27 medium supplemented

with 200 nM smoothened agonist (SAG; Tocris), 1.5 mM retinoic acid (RA; Sigma-Aldrich), and 10uM Rock Inhibitor, 20 ng/ml recom-

binant human brain-derived neurotrophic factor (BDNF, R&D syst:248-BD), 2 ng/ml recombinant human glial cell line–derived neuro-

trophic factor (GDNF.R&D syst:212-GD), and 2 ng/ml recombinant human ciliary neurotrophic factor (CNTF, R&D syst:257-NT/CF).
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Two days post differentiation, neurons were grown with N2B27 medium, growth factor, 200nM SAG, 1.5 mMRetinoic acid, and 2 mM

Rock Inhibitor. On day 19 to day 20, medium was modified with the addition of 2 mM N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-

phenylglycine t-butyl ester (DAPT; Tocris:2634). Six days post differentiation (day 21), the medium was modified with a 5 mM rock

inhibitor and kept with the same media until Day 28 when cells are fully mature.

Human HEK293T and HeLa were cultured in DMEM (Gibco) with 10% FBS (ThermoFisher).

METHOD DETAILS

Generating GFP-CHMP7 fluorescently labeled HeLa cells
The CHMP7 plasmid (NM_152272) was obtained from OriGene. The CHMP7 sequence was cloned into the pLenti-EF1a-SPdCas9-

EGFP-2A-Blast vector (Addgene, Plasmid #52962) using Gibson assembly. HEK293T cells (70% confluent in a 10 cm dish) were

transfected with the GFP-CHMP7 construct using Lipofectamine� 3000 (ThermoFisher, L3000001). Media was harvested from

HEK293T cells at 24 and 48 h post-transfection, and virus particles were concentrated using Lenti-X� Concentrator (Takara,

631232) at a ratio of 1:3 volumes, overnight at 4�C. The resulting GFP-CHMP7 viral particles were used to infect HeLa cells. After

48 h, infected HeLa cells were selected with blasticidin and sorted by fluorescence-activated cell sorting (FACS).

Viral infection of HeLa cells with CRISPR-Cas9 library
CHMP7-GFP HeLa cells (53 106) were seeded onto four 10 cm plates. The following day, each plate received 13 mL of lentiviral par-

ticles in medium containing 8 mg/mL polybrene. After 24 h, the virus-containing mediumwas removed, and the transduced cells were

treated with 2 mg/mL puromycin for 3 days. Cells from all plates were combined and seeded ontomicroRaft arrays for further analysis.

Preparation of CRISPR library virus
HEK293T cells were seeded at 60% confluency in six 15 cm plates the day before transfection. Transfection was performed using

100 mL Lipofectamine 3000, 85.8 mL P3000 reagent, 22.5 mg lentiCRISPR plasmid library, 15.9 mg pMD.2g, and 21.5 mg psPAX2. The

mediumwas replaced with fresh DMEM supplemented with 10% FBS 24 h post-transfection. After 48 h, the supernatant was filtered

through a 0.45 mm low protein-binding membrane and ultracentrifuged at 24,000 rpm for 10 min at 4�C. The viral pellet was resus-

pended in PBS overnight at 4�C and stored at �80�C.

Determination of multiplicity of infection (MOI)
To calculate the MOI, lentiviral titration was performed by transducing HeLa cells (7 3 105 cells/well in a 6-well plate) with vary-

ing volumes of virus (0.5–20 mL) in medium supplemented with 8 mg/mL polybrene for 24 h. The medium was then replaced

(without polybrene), and half of the cells were split into replicate wells, one of which was treated with 2 mg/mL puromycin. After

3–4 days, cell numbers were counted, and the MOI was determined by identifying the viral volume that resulted in 15% cell

survival.

MicroRaft cell culture
MicroRaft arrays were plasma-treated for 5 min (Harrick Plasma, Ithaca, NY) and sterilized by incubating in 75% ethanol for 30 min.

After three consecutive 5-min rinses in 13 PBS, the arrays were coated with 0.001%w/v poly-D-lysine (PDL) for 1 h at 37�C, washed

twice with 13 PBS, and stored in cell culture medium. A total of 1.23 104 cells (1:1 ratio of CHMP7-GFP and CRISPR-infected cells)

were seeded onto each array in DMEMsupplementedwith 10%FBS and 1%Penicillin-Streptomycin (Gibco, 15140122). Arrayswere

centrifuged at 400 3 g for 4 min to ensure even distribution of cells, then incubated at 37�C with 5% CO2. After 24 h, an additional

2 mL of medium was added to each microarray.

Guide identification of target wells
Isolated microRafts were stored at �20�C in QuickExtract buffer until library preparation. Genomic DNA was extracted following the

manufacturer’s protocol: 15 s vortex, incubation at 65�C for 6 min, 15 s vortex, and final incubation at 98�C for 2 min. PCR amplifi-

cation was performed using Q5 High-Fidelity DNA Polymerase (NEB, M0492L). The first PCR round consisted of 22 cycles with

primers targeting the regions flanking the CRISPR guides. Products from 4 individual reactions with unique indexing primers were

pooled and purified using the Qiagen PCR purification kit. A second round of PCR was performed with 10 cycles using Illumina

sequencing primers. Gel extraction was used to isolate the desired 260 bp product. Libraries were sequenced on an Illumina MiSeq

platform. Detailed protocols for PCR and sequencing are available in Wheeler et al.23

siRNA transfections validation of candidates
For imaging in 96-well plates (GREINER BIO-ONE: 07-000-166), Hela pated 5.0X103 were reverse transfected using 10 nM of siRNA

(Dharmacon On-TARGETplus SMARTpool) and Lipofectamine RNAiMax (Invitrogen:13778), according to manufacturer’s protocol,

per well. After 72 h, cells were then fixed by adding 4% PFA to each well for 15 min at room temperature. Three washes with 13 PBS

were performed to remove PFA. HeLa cells were immunostained for 1:20 mouse-monoclonal CHMP7 (sc-271805), Phalloidin-iFluor

488 Reagent (ab176753) and secondary antibody 1:1000 Goat Anti-Mouse IgG H&L (ab175473). Nuclei were stained with DAPI
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(1:5000 v/v in PBS) for 30min at room temperature. Cells were washed once with 13 PBS before being preserved in 50% v/v glycerol

diluted in 13 PBS.

Immunofluorescence
To fix the cells (HeLa or Neuron), 12% paraformaldehyde (Fishersci:15713) was added to a final concentration of 4% PFA and incu-

bated for 15 min at room temperature. Three washes with a wash buffer (0.01% Triton-X in 13 PBS) were performed to remove the

PFA. Blocking and cell permeabilization were performedwith 1-h incubation in 0.1%Triton-X (SigmaAldrich, 9002-93-1) and 5%goat

serum (SigmaAldrich, G9023) diluted in 13 PBS. The cells were then washed with a wash buffer and incubated in the primary anti-

body solution overnight at 4�C (wash buffer with 5% goat serum). Samples were washed three times in wash buffer before being

incubated in secondary antibody solution (wash buffer with 5% goat serum) Finally, cells were washed three times with 1x PBS

and mounted with antifade mounting medium with DAPI (Vectashield, ZH1021).

Imaging
Zeiss LSM 880 confocal microscope was used to image all HeLa and iPSC-MNs. For super-resolution modalities or live cell exper-

iments, 63x oil objective Airyscan was used for high-quality images acquired with very low laser power, 0.5%–1.0%, and without

frame averaging, thus reducing phototoxicity.

Time-lapse imaging with SMN inhibitor
HeLa cells were transfected with CHMP7-GFP and TDP-43-mCherry and cultured for 24 h in a 35mm glass dish. Before imaging, the

cell culture medium was replaced with DMEMwithout phenol red. At time 0, after setting the imaging parameters, 200 mmof an SMN

inhibitor (PC-49646) was added to the dish. Throughout the imaging process, cells were enclosed within an insulated chamber main-

tained at 37�C and 5% CO2. The GFP and RFP channels were captured every 10 min for 2 h, utilizing a 63X magnification, and

Z-stacks consisting of 6–8 slices, separated by the recommended optimal distance. Image processing, including maximum

Z-projections, was carried out using FIJI.

Dextran exclusion
Following a previously established protocol,83 HeLa cells were treated with DMSO and 30 mm SMN inhibitor for 24 h. The detailed

functional assay involved the inclusion of 0.2 mg/ml 70 kDa Rhodamin-Dextran (Molecular Probes) and 1 mg/ml DAPI.

Nuclear pore complex imaging
Nuclei were isolated from iPSC-MNs using theNuclei Pure PrepNuclei Isolation Kit (Sigma-Aldrich, NUC201-1KT) in accordancewith

the manufacturer’s instructions. Following extraction, 10 to 50 ml of the obtained nuclei were then plated onto matri-gel-coated im-

aging chambers, and the subsequent immunofluorescence protocol mirrored the previously outlined procedure.

Glutamate toxicity
iPSCs were cultured in an iPSC growth medium following media protocol provided. To assess glutamate toxicity, at day 35 after

SmD1 KD, iPSCs were either subject to 0 mM glutamate or 10 mM for 24 h. To provide glutamate levels and sensitivity a colorimetric

glutamate assay kit (Abcam, Ab83389) was used.

Western blot
Cells were harvested from 6-well plates and pelleted by centrifugation in ice-cold PBS. Cell pellets were resuspended in 300 mL of

RIPA buffer (ThermoFisher, 89900), supplemented with Protease Inhibitor (Sigma-Aldrich, P8340). Protein concentration was quan-

tified using the BCA assay (Pierce, 23225). Equal amounts of protein (40 mg) were separated on 4%�12% Bis-Tris gels

(ThermoFisher), and transferred to PVDF membranes. Membranes were blocked with 5% milk in TBST for 1 h at room temperature.

Primary antibodies were used as described in the key resources table, including GAPDH (1:4000 in 5% milk in TBST) as a loading

control, and incubated overnight at 4�C. Membranes were washed in TBST and incubated with HRP-conjugated secondary anti-

bodies (Anti-rabbit IgG, HRP-linked, Cell Signaling, 7074; Anti-mouse IgG, HRP-linked, Cell Signaling, 7076), diluted 1:5000 in 5%

milk in TBST for 2 h at room temperature. Detection was performed using Pierce� ECL Western Blotting Substrate and

SuperSignal� West Femto Maximum Sensitivity Substrate on the Azure Biosystems c600 System.

Immunoprecipitations
Cell pellets were thawed on ice and lysed in 400 ml of lysis buffer (150mMNaCl, 50mM Tris pH 7.5, 1% IGPAL-CA-630, 5%Glycerol,

and protease and phosphatase inhibitors), and split evenly ( �200 ml) into separate tubes. Half of the lysate was treated with 5 ml of

10 mg/ml RNase (Promega, 527491) and both lystates (+/- RNase) were incubated on ice for 20 min. Each tube was centrifuged at

4�C for 10 min at 14,000 g. The total protein concentration of each lysate was measured using a BCA assay to ensure that each sam-

ple had between 1-2 mg of total protein. 100 ml of Dynabeads Protein G (Invitrogen, 01200616) magnetic beads were washed 3 times

in 1 ml lysis buffer and then conjugated to 10 mg of endogenous antibody (Fortislife, A305-734A). Bead-antibody conjugation was

then added to the cell lysate and incubated overnight at 4�C on the rotator. The following day, samples were placed on a magnetic
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bead separator, and the supernatant was removed. The samples were washed 2 times with a wash buffer (150mMNaCl, 50 mM Tris

pH 7.5, 5% Glycerol) containing 0.05% IGPAL and 2 times with a wash buffer without IGPAL. Beads were then incubated in 80 ml of

on-bead buffer (2M urea, 50mM Tris (pH 7.5), 1 mM DTT, and 5 mg/mL Trypsin (Promega, 487603) for 1 h at 25�C on a shaker

(1000 rpm). After 1 h, beads were placed on a magnetic bead separator and 80 ml of supernatant was transferred to a new tube.

The beads were then washed twice with 60 mL of 2M urea and 50 mM Tris (pH 7.5) HPLC buffer. The supernatant from each

wash was combined with the on-bead digest for a total of 200 ml per sample.

LC-MS/MS DIA
IP sample preparation

80ul of the partially digested proteins after trypsin digestion were used and disulfide bonds were reduced with 5 mM dithiothreitol

(DTT) for 45 min at 600 rpm and 25�C. Cysteines were subsequently alkylated with 10 mM iodoacetamide (IAA) for 45 min in the

dark at 600 rpm and 25�C. Samples were then further digested by adding 0.5 mg sequencing grade modified trypsin (Promega)

for 16 h at 600 rpm and 25�C. After digestion, samples were acidified with a final concentration of 1% formic acid. Tryptic peptides

were desalted on C18 StageTips according to Rappsilber et al.,84 dried in a vacuum concentrator, and reconstituted in 15 ml of 3%

acetonitrile/0.1% formic acid for LC-MS/MS.

MS/MS measurement

LC-MS/MS analysis was performed on a Q-Exactive HF. 5uL of total peptides were analyzed on a Waters M-Class UPLC using a

25cm Thermo EASY-Spray column (2um, 100A, 75um x 25cm) coupled to a benchtop ThermoFisher Scientific Orbitrap Q Exactive

HF mass spectrometer. Peptides were separated at a flow rate of 400 nL/min with a 100 min gradient, including sample loading and

column equilibration times. Data was acquired in data-independent mode.MS1 Spectra weremeasured with a resolution of 120,000,

an AGC target of 5e6 and a mass range from 350 to 1650 m/z. 34 isolation windows of 38 m/z were measured at a resolution of

30,000, an AGC target of 3e6, normalized collision energies of 22.5, 25, 27.5, and a fixed first mass of 200 m/z.

IP MS analysis

Proteomics raw data was analyzed by Spectronaut v16.0 (Biognosys)78 using a UniProt database (Homo sapiens, UP000005640),

and MS/MS searches were performed under BGS factory settings with background imputation and automatic cross run normaliza-

tion. Spectronaut Post Analysis software was used to calculate the average log2FC and unpaired Student’s t test p values for

CHMP7/IgG for RNase untreated and treated samples. 3 replicates of CHMP7 RNase untreated, CHMP7 RNase treated, IgG RNase

untreated, and 2 replicates of IgG RNase treated were analyzed. High confidence interacting proteins were identified as those that

were significantly enriched compared to RNase treatmentmatched IgG controls. Proteins with a FC> 2 and a p value < 0.01 (unpaired

Student’s t test) were determined to be enriched.

Enhanced crosslinking and immunoprecipitation (eCLIP)

Libraries were generated using standard eCLIP methods according to published protocols.85 Motor neurons and Hela cells (23 107

for each replicate plate) were UV crosslinked (254 nm, 400mJ/cm2), then lysed and sonicated (Bioruptor) in eCLIP lysis buffer (50mM

Tris–HCl pH 7.4, 100 mM NaCl, 1% NP-40 (Igepal: CA630), 0.1% SDS, 0.5% sodium deoxycholate, 1:200 Protease Inhibitor

Cocktail I, in RNase/DNase-free H2O). RNA fragments were created by incubating lysates with RNase I (Ambion) and LUC7L2:

RNA complexes were immunoprecipitated for 2 h at 4�C using Dynabeads bound to 4mg of LUC7L2-specific affinity-purified anti-

body. In parallel, libraries were generated from size-matched input (SMInput) samples containing RNAs present in the whole cell ly-

sates, i.e. sans RBP-specific IP. For the IPs, a series of stringent washes (high salt wash buffer: 50 mM Tris–HCl pH 7.4, 1 M NaCl,

1 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, in RNase/DNase-free H2O; wash buffer: 20 mM Tris–HCl pH 7.4,

10 mM MgCl2, 0.2% Tween-20, in RNase/DNase-free H2O) was followed by RNA dephosphorylation with FastAP (ThermoFisher)

and T4 PNK (NEB) then ligation of an adaptor to the 30 ends of the RNAs with T4 RNA ligase 1 (NEB). Protein:RNA complexes

were separated on 4–12% polyacrylamide gels, transferred to a nitrocellulose membranes and RNA was extracted from the mem-

branes using Proteinase K (NEB). Immunoprecipitation was confirmed by parallel western blotting of fractions of each sample with

the antibody described previously. Following purification, SMInput RNAwere dephosphorylated and 30-ligated, and all samples were

reverse transcribed with Superscript III (Invitrogen). Free primers were removed with ExoSap-IT (Affymetrix) and a DNA adaptor was

ligated to the 30 ends of the cDNAwith T4 RNA ligase 1. cDNAwas quantified by qPCR and PCR amplified using Q5Master Mix (NEB)

and resulting libraries were purified prior to Illumina sequencing.

RNA sequencing

Total RNAwas extracted fromHeLa cells using theDirect-zol RNAMiniprep Kit (Zymo, R2052). The integrity of the RNA (RNA integrity

number; RIN) was evaluated using the Agilent 2100 Bioanalyzer. Subsequently, indexed cDNA libraries were generated with the

TruSeq stranded mRNA Library Preparation kit from Illumina, and the sequencing was performed on a NovaSeq6000 (Illumina).

Gene expression profiling

After acquiring control andmutant sequences, reads were aligned using STAR: ultrafast universal RNA-seq aligner72 to the reference

GRCh38 annotation (GENCODE release 42). Once genes were aligned, reads aligned to genomic features were counted using fea-

tureCounts73 and the same GRCh38 genome annotation file to quantify the number of reads per gene in the data. Differential expres-

sion analysis was done using DESeq2 v1.39.386 in R v4.1.3. The differentially expressed genes (DEGs) were further analyzed in Py-

thon to produce a volcano plot with a Benjamini-Hochberg adjusted p value cut-off of 0.05. Gene ontology analysis was completed

using GOrilla.74
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Alternative splicing analysis

The analysis of alternative splicing events between GFP-CHMP7NES2- vs GFP-CHMP7 RNA-seq datasets was done using rMATS

turbo v4.2.0. Five types of splicing events were calculated: alternative 3’ splice-sites (A3SS), alternative 5’ splice-sites (A5SS), skip-

ped exons (SE), retained introns (RI) and mutually exclusive exons (MXE). The rMATS output comprises various metrics, with two

primary ones being the False Discovery Rate (FDR) and the delta percent spliced in (DJ). In our analysis, we first constructed a his-

togram to count alternative splicing events that met the following criteria: FDR% 0.05 & |DJ|R 0.1 (FDR + PSI) (Figure 5D). Using the

genes found in the FDR + PSI subgroup as foreground and the remaining genes that had no significant AS events as background, we

ran a Metascape analysis (Figure S4A).76

Alternative splicing events analysis for sALS and C9orf72 iPSC-MN vs Control iPSC-MNRNA-seq datasets was done using rMATS

turbo v4.2.0. A 2x2 contingency table was constructed separating genes into 4 categories defined by combinations of significant vs

insignificant AS genes and CHMP7 bounded vs not bounded genes. A Chi-squared statistic and the degrees of freedomwere calcu-

lated and fed into scipy.stats.chi2’s survival function to output a p value signifying a significant association between the significant

alternatively spliced genes and CHMP7 bounded genes.

Quantification and statistical analysis for eCLIP data

Reads were processed using the Skipper processing pipeline, available at https://github.com/YeoLab/skipper [[https://doi.org/10.

1101/2022.10.08.511447]]. In short, reads were trimmed of adapters with skewer [[https://doi.org/10.1186/1471-2105-15-182]],

mapped with STAR (2.7.10a_alpha_220314) [[https://doi.org/10.1093/bioinformatics/bts635]] and PCR-deduped with UMIcollapse

[[https://doi.org/10.7717/peerj.8275]]. Binding candidates were identified using a tiled window approach, where the 5’ read ends

(representing the crosslinking site) were counted across evenly sized windows for each genic region. Windows were then binned ac-

cording to GC content to estimate and adjust for GC biases, and the comparison of IP reads to corresponding size-matched input

(SMinput) reads were used to determine enrichment of signal above background.

qRT-PCR

Patient-derived sALS lines and IPSC-derived motor neurons were lysed with 300 mL of Trizol reagent (ThermoFisher), and RNA

extraction was performed using Direct-zol RNAMiniprep Kit (Zymo Research, R2052). 1mg total of RNAwas used for cDNA synthesis

using the Applied Biosystems High-Capacity cDNA Reverse Transcription Kit (ThermoFisher, 2783736) and RNAse inhibitor Murine

(NewEngland Biolabs,10200656). For all qPCR reactions, individual master mixes for the primer sequences of interest were prepared

in advance, each containing the primer itself, fluorescentmonitor FastStart Universal SYBRGreenMaster ROX (Roche, 4913850001),

and Nuclease Free H2O. The primers used throughout the qPCR procedure were STMN2 (IDT), TRUNC STMN2 (IDT), GAPDH (IDT),

and SNRPD1 (GeneCopoeia Inc.). STMN2 and Truncated STMN2 were used as targets to identify changes in stathmin length in the

presence or absence of SNRPD1. GAPDH was used as a normalizing control, and SNRPD1 was used to evaluate the success of the

initial knock down or overexpression from cell lines. Two representations of each sample were pipetted into a 384-well PCR plate.

QUANTIFICATION AND STATISTICAL ANALYSIS

In each experimental section described above, we conducted all data analysis using Fiji. The analysis process was either fully auto-

mated or conducted in a blinded manner. For statistical analyses, we utilized GraphPad Prism. In imaging experiments where we

quantified multiple cells per iPSC line, we performed statistical analyses by considering the average number of cells evaluated

per iPSC line, with the total sample size indicated in the figure legends. We employed the Student’s t test as specified in the figure

legends to assess statistical significance, with the following significance levels: *p < 0.05, **p < 0.01, **p < 0.001, and ****p < 0.0001.

To effectively visualize the complete distribution and variability of large datasets, we used violin plots. Note that the first violin plot

dots are not presented due to the large dataset size (>500 cells analyzed).
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