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Abstract 

Research on semi-supervised category learning has been 
sparse despite its representativeness of naturalistic category 
learning and potential applications. Most of the semi-
supervised literature to date has focused on establishing the 
phenomenon. These efforts have produced mixed results and 
have explored a relatively limited set of learning 
circumstances. In the current work, we contribute a novel 
investigation of semi-supervised learning by extending the 
paradigm to relational category learning and evaluating the 
role that item similarity plays in the effectiveness of 
unsupervised learning opportunities. Our results show first-
ever evidence of semi-supervised learning in the induction of 
relational categories and, further, that the similarity between 
supervised and unsupervised examples critically dictates 
whether benefits of unsupervised exposures accrue. We 
conclude with implications and future directions. 

 

Keywords: semi-supervised learning; relational categories; 
similarity; classification learning; transfer 

Introduction 
A central goal of human category learning research is to 
understand what influences the quality, nature, and utility of 
the category representations we acquire. Research in pursuit 
of this goal has attained a respectable degree of breadth –
ranging from the effect of category structure (e.g., Shepard, 
Hovland, & Jenkins, 1961), to learning mode (e.g., 
classification vs. observational: Estes, 1994; Levering & 
Kurtz, 2015; classification vs. inference: Jones & Ross, 
2011; Yamauchi & Markman, 1998), to whether learning 
benefits more from blocking or interleaving categories 
during training (e.g., Carvalho & Goldstone, 2017). 

Despite the literature’s impressive breadth in many 
respects, it has been lopsidedly deep when it comes to the 
issue of supervision. A clear majority of studies investigate 
learning under full supervision. Within the context of the 
canonical classification learning task, supervised learning 
(SL) refers circumstances under which learners receive both 
a complete example and its associated, experimenter-
defined class label on each learning trial. While SL has 
enjoyed much attention in the literature, a comparatively 
small amount of non-SL research has been conducted. 
Further, the majority of non-SL studies have pertained to 
fully unsupervised learning tasks such as ‘free 
classification’ or ‘restricted classification’ (Garner, 1974) 
where the learner must construct her own basis for what 
things go together (e.g., Medin, Wattenmaker, & Hampson, 
1987).  

The value of the SL and UL research programs is clear. 
There are many real-world circumstances – such as 
pedagogical settings – in which we are informed of a 
target’s class membership. Additionally, there are also many 
times when we must group things together on our own 
without external indication about how they should be 
organized. In an ecological sense, however, each of these 
programs of research is estranged from the reality of how 
we learn most categories – that is, through some supervised 
experiences that are nested in a much broader context of 
unsupervised experiences. The integration of supervised and 
unsupervised learning experiences is known as semi-
supervised learning (SSL).  

The human SSL literature is a nascent, but critical, area 
for research. Besides serving to basic research interests, the 
study of SSL is highly relevant to educational applications. 
Given that a key goal of education is to provide learners 
with a set of learning experiences that enable their continued 
learning (Bransford & Schwartz, 1999), research that 
elucidates how to structure supervised learning to maximize 
subsequent unsupervised learning is in direct service of this 
goal. It should also be noted that SSL research has been an 
important topic in machine learning. As such, research on 
human SSL holds the potential to positively influence the 
development of novel machine learning algorithms.  

What is known about human SSL? Given the recency of 
this research area, the findings are somewhat sparse. In fact, 
most of the literature hitherto has been devoted to 
establishing the existence of the phenomenon – that 
category representations formed from supervised 
experiences are impacted by unsupervised ones or vice 
versa (Gibson, Rogers, & Zhu, 2013; Kalish, Rogers, Lang, 
& Zhu, 2011; Lake & McClelland, 2011; McDonnell, Jew, 
& Gureckis, 2012; Vandist, De Schryver, & Rosseel, 2009; 
Vong, Navarro, & Perfors, 2016; Zaki & Nosofsky, 2007; 
Zhu, Rogers, Quian, & Kalish, 2007). Although it presents 
as uncontroversial that we do capitalize on both supervised 
and unsupervised learning opportunities, the literature on 
this topic has been somewhat mixed. Several studies have 
demonstrated evidence of SSL in category learning (e.g., 
Kalish et al., 2011; Zhu et al., 2007; Vong et al., 2016) 
while others have failed to find any compelling evidence 
(e.g., Vandist et al., 2009; McDonnell et al., 2012). Thus, 
studies with a novel take on the SSL effect are warranted. 

While a few studies have examined factors that impact 
whether and to what degree SSL occurs – such as the effect 
of category structure and label ambiguity (Vong et al., 2016) 
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or the impact of the ratio of supervised to unsupervised 
examples (Vandist et al., 2009) – the literature’s 
predominant focus on establishing the phenomenon has left 
it relatively limited in scope. One way in which the 
literature shows reduced scope is in its exclusive usage of 
continuous, feature-based categories as the target of 
learning. Although the study of feature-based categories is 
integral to our understanding of SSL and category learning 
generally, much of the category knowledge we possess is 
not reducible to a feature-based understanding. Instead, a 
plethora of the categories we are knowledgeable about, such 
as positive feedback loop and reciprocity, are abstract and 
reliant on relationships rather than features. Accordingly, 
mounting attention has been devoted the study of relational 
categories (Gentner & Kurtz, 2005; Markman & Stilwell, 
2001) – categories whose members belong based on a 
shared set of relations (i.e., a common relational structure). 
It should be noted that relational category membership is 
based on deep, relational commonalities and members of the 
same category can be quite featurally distinct.  

The present investigation represents the first time SSL has 
been studied using relational categories. It should be noted 
that studying SSL using relational categories carries some 
unique benefits, relative to feature-based studies. For one, 
many of the concepts that are targeted in formal educational 
settings are relational in nature (e.g., Newton’s laws, the 
concepts of evolution by natural selection; Goldwater & 
Schalk, 2016). Given this, research on relational category 
learning holds the potential for high translational value. As a 
second point, relational categories have been characterized 
as being rule-like in nature (Gentner & Kurtz, 2005). That 
is, if a target possesses the requisite set of relationships, and 
the viewer identifies those relationships, then an item can be 
classified relatively unambiguously as a member of the 
category (in a way that is perhaps akin to the ‘classical 
view’ of category learning; Murphy, 2002).  This may be 
contrasted with research in the feature-based realm, where 
membership is demonstrably graded in most cases. In effect, 
relational categories may more uniformly lend themselves to 
classifications that can be interpreted as ‘correct’, which 
may increase both the impact that unsupervised 
classifications have on learning and the probability of 
demonstrating evidence of SSL.  

In addition, as an exploratory factor, we also sought to 
elucidate the role that similarity between the supervised and 
unsupervised item sets plays in whether SSL occurs. 
Towards this goal, we included high- and low-similarity 
SSL groups in our design. We operationalized similarity 
based on surface characteristics and the spatial orientation 
of the category-defining core. In the high-similarity group, 
items on both supervised and unsupervised trials shared a 
common (rock) domain and spatial orientation – that is, they 
shared literal similarity. In the low-similarity group, items 
encountered during unsupervised trials came from a 
different surface domain (mobiles) and had their relational 
core reflected over the X-axis. That is, these items were 
analogically similar to the supervised set. To be clear, 

although the unsupervised stimuli in the two SSL groups 
differed on the surface level, the deep, structural aspects of 
the target categories were equally preserved in both sets. We 
note one study that has examined the effect of similarity on 
SSL of feature-based categories (Vong et al., 2016). 
However, given the difference between the role of surface 
similarity in feature-based versus relational category 
learning (predictive vs. non-predictive of membership, 
respectively), this investigation of similarity will serve as an 
informative contribution.  

In the following between-subjects experiment, learners 
engaged in one of three classification learning conditions. 
The supervised-only control engaged in three blocks of 
supervised classification trials. The two SSL conditions 
were just like the control, except additional unsupervised 
classification blocks were inserted after each supervised 
block. In the high-similarity condition, subjects classified 
items that were literally similar to the supervised set during 
unsupervised blocks. In the low-similarity condition, 
subjects classified items that were only analogously similar 
to the supervised set during the unsupervised blocks. To be 
expressly clear, the SSL groups received many more 
stimulus exposures than the supervised-only group (all of 
which were unsupervised). Typically, an exposure 
imbalance is a methodological shortcoming. However, the 
fundamental question at stake – the SSL effect, for which 
evidence is currently mixed – is whether unsupervised 
exposures add anything at all to what is learned through 
supervision. As such, an exposure imbalance is an integral 
part of the question and manipulation. Following training, 
all conditions engaged in a common assessment sequence 
that consisted of a within-domain test followed by an 
across-domain transfer test. If learners do indeed integrate 
supervised and unsupervised experiences, then we should 
observe a benefit for one or both SSL groups over the 
supervised-only control. If similarity dictates the degree to 
which supervised and unsupervised experiences are 
integrated, then we should see performance differences 
between the two SSL groups. 

Method  
Participants 
120 undergraduates at Binghamton University participated 
for partial fulfillment of a course requirement.   
 
Materials 
The stimuli used for supervised training – held constant 
across all participants/conditions – consisted of 24 unique 
rock arrangements, eight per category. These stimuli have 
been used in previous relational category learning research 
(see Kurtz, Boukrina, & Gentner, 2013; see also Patterson & 
Kurtz, 2015). Each arrangement was made up of rocks that 
varied in shape, size, color, and spatial location (see Figure 
1). Each of these rock arrangements conformed to only one 
of the three following relational categories: monotonicity – 
embodied by a monotonic decline in rock height going from 
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left to right in the arrangement, support – defined by the 
presence of one rock being elevated by two other rocks 
below, and mirrored stack – characterized by the presence 
of two same-color rocks that were of similar size, shape, and 
stacked vertically. The artificial labels used for these 
categories in the experiment were Besod, Makif, and Tolar, 
respectively. 

The stimuli used for unsupervised training consisted of 
two subsets – a high-similarity (rocks) set and a low-
similarity (mobiles) set. The high-similarity set was made 
up of 15 unique rock arrangements that were similar to, but 
distinct from, those used for supervised training. The low-
similarity set consisted of 15 mobile stimuli that were 
composed of different shapes connected by lines (as if 
dangling from above) that varied in size, shape, color, and 
spatial location. Besides coming from a domain with 
different surface characteristics, the spatial orientation of the 
category-defining core was reflected over the X-axis in the 
mobiles, relative to the rocks. Thus, performance on these 
items was hinged on successful analogical transfer. As with 
the supervised set, each stimulus in each of the unsupervised 
sets conformed to only one of the target categories, and both 
high- and low-similarity sets were balanced by category 
with five items per category in each set. 

  The stimuli used at test consisted of within-domain and 
across-domain transfer items. The within-domain test was 
used to assess for differences in mastery and near-
generalization ability; it consisted of the 24 ‘old’ rock 
arrangements from the supervised set and 12 ‘new’ rock 
arrangements not previously experienced by any group. 
Given our main interest in learners’ ability to generalize to 
new examples, each ‘old’ item occurred once in the set and 
each ‘new’ item occurred twice. The ‘old’ and ‘new’ items 
were randomly interspersed. The across-domain transfer 
items were also novel to all participants. These items were 
used to assess for differences in learners’ abilities to transfer 
knowledge to surface-dissimilar examples of the categories. 
The 36 transfer items were an exact replica of the 24 ‘old’ 
and 12 ‘new’ rock arrangements from the within-domain 
test, except each item was mapped into one of eight 
different domains with different surface characteristics (see 
Figure 1 for examples). The frequency of each domain was 
equated across categories. As with the ‘new’ within-domain 
items, the across-domain items each occurred twice (totaling 
72 trials) and the order of the examples was randomized. 

Design and Procedure 

Learning phase Participants were randomly assigned to 
one of the three learning conditions: supervised learning 
only control (SL-only; n = 38), high-similarity SSL (n = 
39), or low-similarity SSL (n = 43). Prior to training, all 
subjects were given an archaeological cover story and 
condition-specific instructions that informed them of the 
upcoming tasks they would engage in – including the test; 
subjects were encouraged to learn, as best they could, both 
the class labels and what makes an item belong to a 
category.  

A schematic illustrating the training procedure by 
condition can be seen in Figure 2. All three conditions 
engaged in three blocks of supervised classification training. 
In each block, subjects encountered a new random order of 
the same 24 rock arrangements. On each supervised learning 
trial, an item was presented in the center of the screen and 
remained visible for the duration of the self-paced trial. A 
query about the item’s class membership was presented 
above the item and three response buttons (one for each 
category) below it. After registering a guess using the 
mouse, visual confirmation of the selection was shown, and 
evaluative feedback was given that included whether the 
response was correct and the correct category label of the 
presented item (e.g., Correct! This one is a Makif). 
Feedback was displayed in green or red for correct and 
incorrect responses, respectively. Following feedback, 
participants clicked the screen anywhere to proceed to the 
next trial. Time to make a classification and evaluate 
feedback were both unconstrained.  

 

 
 

Figure 1: Sample stimuli for each category in 
each phase. Note: within-domain test items (not 
shown above) were also rock arrangements. 

 
What distinguished the three conditions from one another 

was the type of task that followed each of the supervised 
learning blocks. The two SSL groups received blocks of 
unsupervised classification trials – three blocks in total. In 
the high-similarity SSL group learners made two passes 
through the 15 rock arrangements – a random order each 
time. Given the mixed results in the literature, we opted for 
this more heavy-handed approach of making two passes 
through the set. Thus, each unsupervised block consisted of 
30 trials. The structure of each unsupervised trial was 
identical to that of the supervised trials except no feedback 
was given following learners’ classification decisions. The 
low-similarity SSL group was just like the high-similarity 
SSL group except they made two randomized passes 
through the 15 mobile stimuli instead of the rock stimuli.   

In contrast to the SSL groups, the SL-only control group 
did not engage in unsupervised classification trials. These 
learners were instead given an 80 second break after each of 
the three supervised learning blocks. The duration of 80 
seconds was chosen based on preliminary data that 
suggested this was roughly the amount of time SSL learners 

2213



 

would need to complete each unsupervised block. To 
control for visual exposure, during each break, a distinct 
‘Where’s Waldo’ image was centered on the screen and a 
picture of Waldo was shown in the bottom corner of the 
screen. Both remained visible for the duration of the break. 
Learners were instructed to rest and were invited to play 
‘Where’s Waldo’ if they felt like it. An additional 
instruction was included for the Waldo-naïve that taught 
subjects how to play ‘Where’s Waldo’ (by finding the guy 
shown in the bottom corner of the screen). After the break 
time was up, learners were shown where Waldo was for 10 
seconds – so as not to leave any Waldo participators 
frustrated going into the next block 

 
 

Figure 2: Block-by-block training procedure by 
condition. 

Assessment phase After completing the three supervised 
classification blocks and the three interleaved blocks of 
either unsupervised classification (SSL groups) or break 
time (SL-only group), all conditions performed an identical 
assessment sequence. Participants were given a notification 
when they reached the test phase. Learners first received the 
within-domain test. Upon completion, learners were 
informed they would then be tested on a different set of 
items and subsequently began the across-domain transfer 
assessment. On each trial, in both the within- and across-
domain assessments, subjects were asked to classify the 
presented item and were not given feedback.           

Results 
The accuracy data were modeled trial-wise using logistic 
regressions run in the R environment (R Core Team, 2015). 
Learning phase models included block, learning condition, 
and their interaction as predictors. Assessment phase models 
predicted accuracy with learning condition as the lone 
predictor. Adjusted means and standard errors can be seen 
in Table 1. 

 
Learning Phase Performance 

Unsupervised blocks – SSL groups We first look at 
performance during the unsupervised learning blocks to 
evaluate whether high and low-similarity SSL groups 
differed in their ability to classify the items they were 

presented. We note two core effects here. First, the effect of 
block was highly significant (Hi-sim: β = 0.37, SE = 0.058, 
Z = 6.50, p < .001; Lo-sim: β = 0.54, SE = 0.069, Z = 7.95, p 
< .001), which reflects that participants’ accuracy on the 
unsupervised items increased as they progressed through 
each unsupervised block. Second, the effect of learning 
condition was also highly significant (Hi-sim > Lo-sim; β = 
0.57, SE = 0.052, Z =11.15, p < .001) – showing that 
learners were better able to make near generalizations, as 
opposed to more distant transfer. Last, we note a marginal 
interaction between block and learning condition that 
suggests that learners improved more in their unsupervised 
classifications across blocks when they received high-
similarity items (β = 0.17, SE = 0.09, Z = 1.91, p = .057). To 
the extent that more accurate generalization contributes 
greater learning, these findings suggest the high-similarity 
SSL group should demonstrate higher performance than the 
low-similarity group in the subsequent metrics. 

 
Table 1: Adjusted condition means and standard 
errors across all performance phases. 

 

 
 
Supervised blocks – All groups On the supervised trials, 
block was the only reliable effect (SL-only: β = 0.99, SE = 
0.075, Z = 13.21, p < .001; Hi-sim: β = 0.84, SE = 0.074, Z 
= 11.41, p < .001; Lo-sim: β = 0.81, SE = 0.068, Z = 11.91, 
p < .001). This demonstrates that learners became more 
adept at accurately classifying the exemplars across blocks. 
We note two additional trends that did not reach 
significance. First, there was a trend for high-similarity SSL 
over the SL-only group (β = 0.10, SE = 0.061, Z = 1.66, p = 
.096), which hints at a possible benefit to receiving high-
similarity unsupervised trials in addition to supervised trials. 
Second, we found a trend for the interaction between block 
and learning condition for the SL-only and low-similarity 
groups (β = -0.17, SE = 0.10, Z = -1.71, p = .086). The 
interaction suggests a possibility that learners in the low-
similarity SSL group were hindered in their ability to learn 
across supervised blocks, relative to the SL-only group. In 
sum, the supervised blocks provide only a weak suggestion 
that the unsupervised learning experiences exerted an effect 
on supervised training performance.  
 
Assessment Phase Performance 

Within-domain Of critical interest to this investigation was 
performance at test. On the within-domain assessment (see 
Figure 3) – consisting of a mixture of the ‘old’ and ‘new’ 
rock arrangements – we found two reliable effects of 
condition. The reliable advantage for the high-similarity 
SSL group over the SL-only group (β = 0.26, SE = 0.081, Z 
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= 3.16, p = .002) indicates that classifying high-similarity 
category members without feedback confers an added 
benefit. In addition to this effect, we also observed a reliable 
advantage for the high-similarity SSL group over the low-
similarity SSL group (β = 0.19, SE = 0.079, Z = 2.38, p = 
.02) – indicating a greater benefit was derived from 
experiencing near, as opposed to far, members during 
unsupervised exposure. No differences were found between 
the SL-only and low-similarity SSL groups. 
 

 
 

Figure 3: Within-domain performance. Error 
bars represent +/- 1SE. 

 
We can also examine these data by breaking them down 

into their separate ‘old’ and ‘new’ subcomponents. On the 
‘old’ items, we did not find any reliable effects. However, 
two trends mirrored the effects found in the overall 
assessment. First, the high-similarity SSL group exhibited a 
numerical advantage over the SL-only group that failed to 
reach significance (β = 0.22, SE = 0.13, Z = 1.72, p = .085). 
Second, the high-similarity group also showed a numerical 
advantage over the low-similarity group (β = 0.23, SE = 
0.13, Z = 1.84, p = .066). On the ‘new’ items however, we 
found a reliable advantage of high-similarity SSL over SL-
only (β = 0.29, SE = 0.11, Z = 2.71, p = .007) – suggesting 
that high-similarity SSL promotes further within-domain 
generalization. 

 

 
 

Figure 4: Transfer performance. Error bars 
represent +/- 1SE. 

 

Across-domain Transfer The across-domain transfer test 
mirrored the within-domain results (see Figure 4). We saw a 
highly reliable advantage for the high-similarity SSL group 
over both the SL-only group (β = 0.21, SE = 0.063, Z = 
3.27, p = .001) and the low-similarity SSL group (β = 0.18, 
SE = 0.061, Z = 2.98, p = .003). These findings provide 
further evidence that unsupervised learning experiences 
impact learners’ category knowledge and improve their 
ability to accurately identify new examples of a category in 
a different domain. However, this benefit only accrues when 
the unsupervised experiences are similar to those 
encountered under supervision. 

Discussion 
There were two primary goals of this study. First, we 

sought to make a novel contribution to the SSL literature by 
extending the evaluation of SSL, as a phenomenon, to the 
realm of relational category learning. Consistent with our 
predictions, we found compelling evidence that 
unsupervised encounters exert a marked effect on the 
quality and portability of category knowledge. Though SSL 
was not found to affect accuracy on the better-learned, 
supervised training items, we note a prominent effect of 
SSL on the extension of category knowledge both to near 
members and more distant, surface-dissimilar members. To 
our knowledge, these results represent the first evidence of 
SSL in relational category learning by induction. Further, 
these findings corroborate those studies in the feature-based 
literature that validate SSL as a phenomenon (Lake & 
McClelland, 2011; Gibson et al., 2013; Kalish et al., 2011; 
Zaki & Nosofsky, 2007; Zhu et al., 2007).  

We also found that the value of unsupervised exposures is 
not uniform. The second primary goal of this study was to 
gain insight into the potential role that superficial similarity 
plays in whether and to what degree SSL occurs. Our 
findings suggest that similarity is a critical determinant of 
SSL. Although the high-similarity SSL group showed clear 
benefits of unsupervised exposures, its low-similarity 
counterpart performed reliably worse at test and appeared to 
provide no additional value over SL alone. Understanding 
this finding will require additional research, however we 
offer three speculative interpretations. Perhaps the most 
obvious interpretation is that the analogical mapping was 
too challenging for learners to make. Without being 
accurately mapped/classified, it’s hard to see how the items 
might benefit learning. However, the accuracy data seem to 
cast doubt on this as a full account; learners performed 
reliably above chance on even the first unsupervised block 
and achieved a respectable degree of accuracy by the final 
block.  Another possibility is that, although learners 
performed reasonably well, the higher degree of error they 
faced (relative to high-sim learners) led to more 
inappropriate/inaccurate knowledge updates. Under this 
view, any benefits of unsupervised classifications might be 
corrupted by inaccurate guesses. Lastly, we note the 
possibility that learners may have for some reason down-
weighted the validity of their unsupervised classifications 
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(despite achieving accuracy), thereby nullifying any benefit. 
For example, the distant mappings required in the low-
similarity group may have contributed to lower confidence 
in their classifications. If confidence serves as a moderator 
to the amount that category knowledge is updated, this 
could explain the discrepancy between the two SSL groups. 
Future work should serve to distinguish these possibilities.   

There remain many follow-up questions that will need to 
be addressed to gain a fuller understanding of relational 
SSL. Are certain aspects of our paradigm critical to whether 
SSL occurs? For one, we chose the classification learning 
mode because it requires the making of a committed guess 
on each unsupervised trial – which could increase the effect 
of unsupervised exposures. Additional work will need to 
establish whether the effect is resilient to other more passive 
learning modes. We also chose to block unsupervised 
examples together instead of interleaving them with 
supervised examples. One could imagine a benefit of 
making temporally close comparisons between supervised 
and unsupervised examples on subsequent trials. Lastly, it 
remains to be seen whether the SSL effect and the role of 
similarity are expertise dependent – do these patterns shift at 
different stages of learning? Future work will bring the 
supervision we seek. But, until then, we’ll just have to go 
with our best guess. 
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