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Designed asymmetric coordination 
helicates with bis-β-diketonate 
ligands. 

Rosa Diego, Mohanad Darawsheh, Leoní A. Barrios, 
Anna Sadurní, Jordi García, Paul Lloyd-Williams, Simon J. 
Teat, Olivier Roubeau, David Aguilà and  Guillem Aromí 
ORCID l 

A new bis-(β-diketone) ligand featuring built-up structural 

asymmetry yields the non-symmetric Fe(III) and Ga(III) dinuclear, 

triple-stranded helicates by design. Their structural properties have 

been studied, both in solid state and solution, and compared with 

their corresponding symmetric analogues. The robustness 

observed show the potential of this synthetic strategy to develop 

non-symmetric helicoidal motifs with specific functional groups. 

Of the extensive range of structures derived from coordination 

supramolecular chemistry, metallohelicates have recently 

become highly topical due to the emergence of many potential 

applications. These helicoidal molecular architectures, based on 

two (or more) strand ligands wrapping one (or more) metal 

ion(s),1-3 are studied, for example, as potential cancer treatment 

agents,4 as molecular hardware for spin-based quantum 

computing,5 in chirality switching applications6 or as light-

converting devices.7 Among the different strategies to produce 

such supramolecular motifs, the use of bis-(β-diketone) ligands 

has become an excellent approach due to their enormous 

synthetic versatility.8, 9 One can, for example, functionalize β-

diketonate helicates to tailor their interaction with specific 

biomolecular targets,10 add electroactive units11 or engineer the 

spacer of the ligand to allow photoswitchability.12 Despite of 

such a potential, to date, only symmetric bis-(β-diketonate) 

helicates have been reported, while the only non-symmetric 

bis-(β-diketone) molecules found in the literature have been 

used as starting materials for a series of pyrazolyl-based 

ligands.13 Taking into account that asymmetry in helicates is 

crucial for some specific tasks, such as the site selective 

disposition of metal ions within heterometallic compounds14, 15 

or the promotion of amphipathic character in the molecular 

system,4 we decided to stablish a new ligand-based strategy to 

produce asymmetric metallohelicates using diketonate units. 

For that, we first focused our attention on two symmetric bis-

(β-diketone) ligands, H2LA and H4LB (Scheme 1), that have been 

previously used by some of us to design symmetric helicates,16 

pairs of clusters17 or linear metallic chains.18, 19  

 
Scheme 1. Ligands H2LA, H4LB and H3LC. 

Both ligands exhibit a central meta-phenylene spacer attached 

to two β-diketone units, capped at both ends with additional 

phenyl (H2LA) or hydroxyphenyl (H4LB) substituents. For this 

study, the potential of H4LB to promote likewise helicoidal 

topologies had not yet been explored. We have now 

ascertained this by making react three equivalents of the ligand 

with two equivalents of Fe(III) or Ga(III) in THF under moderate 

basic conditions (see Experimental Section, SI). Slow diffusion of 

diethyl ether into the resulting solutions afforded needle-

shaped crystals of [Fe2(H2LB)3] (1) or block-shaped crystals of 

[Ga2(H2LB)3] (2), respectively. Single-crystal X-ray diffraction 

(SCXRD) was used to determine the molecular structure of both 

systems, confirming their helical topologies (Fig. 1, top, and Fig. 

S1). 

 

Figure 1. Representation of the molecular structure of [Fe2(H2LB)3] (top) and [Fe2(HLC)3] 

(bottom). For the former, only one crystallographically independent helicate is shown. 



Fe, C and O atoms are shown in green, grey and red respectively. H atoms are omitted 

for clarity, except for those on phenol groups (shown in white spheres).  

Complexes 1 and 2 crystallize in the P21/n and C2/c space 

groups, respectively, featuring both, right-handed (ΔΔ) and left-

handed (ΛΛ) configurations in the unit cell (Table S1). The 

asymmetric unit of 1 exhibits three crystallographically 

independent molecules (Fig. S2) while only one is found for 

compound 2. The crystal lattice of both compounds is filled with 

molecules of THF, as well as Et2O molecules for 1. As observed 

for H2LA in the reported [M2(LA)3] metallohelicates (M=Ti, V, 

Mn, Fe),16 the helicates here exhibit three H2LB2– ligands 

wrapping two Fe(III) or Ga(III) ions though their β-diketonate 

units, keeping them in average 7.16 and 7.23 Å apart, 

respectively (Tables S2 and S3). The resulting octahedral 

environment around each metal site was quantified by means 

of continuous-shape measures (CShMs,20 Table S4). Similar 

results were obtained when assessing the crystal structure of 

[Fe2(LA)3], showing that both ligands have akin binding 

properties (Table S4). The potential of the two ligands to 

promote helicoidal species was further analyzed by 

characterizing the pitch L in [Fe2(LA)3] and [Fe2(H2LB)3], a 

parameter that measures the rate of the helical progression of 

the molecular strand as one advances along the axis of the 

helicate: 

𝐿 = 𝑑/ (
𝜔1

360
) 

Here, d is the distance (Å) between two points of the helical axis, 

and ω1 the angle twisted (°) in going from one point to the 

other.21 This allows quantifying the helicoidal arrangement in 

each compound, and thus to evaluate the torsion experienced 

by the ligands in accommodating the octahedral twist at the 

Fe(III) centers. A total pitch, LT, was defined by considering the 

distance between the centroids of the two most external 

triangular faces of the octahedral polyhedra of the metal ions 

(Fig. S3). The corresponding twist angle ω1T, was defined as the 

average of the torsion angles O-Fe1-Fe2-O of each strand 

(involving the outer oxygen donors of the two β-diketonate 

units). In addition, two local pitches, LFe1 and LFe2, referred to 

the twist inside the polyhedra around Fe1 and Fe2, respectively, 

were also defined. For these, d is the distance between the 

centroids of the outer and the inner triangular faces of each 

octahedron, while ω1 is the average of the three angles 

between both Fe–O vectors of each chelate, after projecting 

them on the plane perpendicular to the helical axis (Fig. S3). As 

expected, the values obtained for [Fe2(LA)3] and [Fe2(H2LB)3] 

were found to be similar, confirming the comparable twisting 

capabilities of the two corresponding symmetric ligands (Table 

1). The slightly larger d values and smaller ω1 angles observed in 

compound 1 evidence, nevertheless, the influence of the –OH 

groups from H2LB2–, which impose slightly larger pitch values. 

The stability of [Fe2(H2LB)3] in solution was confirmed by 

electrospray ionization mass spectrometry (ESI- MS) in CHCl3, 

which revealed the expected isotopic distribution (Fig. S4). This 

is in line with 1H NMR experiments with the diamagnetic 

compound 2, which demonstrates the integrity and high 

symmetry of the supramolecular structure (see below, Fig. 2, 

top). 

 
Table 1. Linear distances (d) and average twist angles (ω1) defining the total (LT) 

and local (LFe1 and LFe2) helical pitches in compounds [Fe2(LA)3], [Fe2(H2LB)3] and 

[Fe2(HLC)3]. 

 [Fe2(LA)3] [Fe2(H2LB)3]a [Fe2(HLC)3] 

dFe1 (Å) 2.34 2.35 · 2.39 · 2.37 2.37 
ω1(Fe1) (°) 50.0 47.6 · 45.7 · 45.6 47.6 
LFe1 (Å) 16.8 17.8 · 18.8 · 18.7 17.9 
    
dFe2 (Å) 2.35 2.37 · 2.41 · 2.37 2.35 
ω1(Fe2) (°) 50.2 46.2 · 42.9 · 46.8 49.4 
LFe2 (Å) 16.8 18.5 · 20.2 · 18.2 17.1 
    
dT (Å) 9.56 9.67 · 9.68 · 9.60 9.59 
ω1T (°) 85.3 75.8 · 69.8 · 75.0 81.9 
LT (Å) 40.3 45.9 · 49.9 · 46.1 42.2 
a The three values correspond to the three crystallographic independent helicates 

in the crystal lattice. 

The structural study of the two symmetric [Fe2(LA)3] and 

[Fe2(H2LB)3] metallohelicates evidence that the differences in 

the external groups of their strands do not significantly alter the 

supramolecular recognition. Thus, combining both, phenyl and 

hydroxyphenyl groups in the same ligand could be used to 

impose asymmetry in the supramolecular architecture without 

influencing the helicoidal motif or the metallic environment. In 

order to explore such a possibility, we decided to synthesize the 

new asymmetric ligand H3LC (Scheme 1). This preparation was 

not trivial. Following various fruitless attempts to use methods 

analogous to that used for H2LA and H4LB (Scheme S1), 3-

(methoxycarbonyl)-carboxylic acid was treated with one 

equivalent of acetophenone to obtain the corresponding β-

diketone through a Claisen condensation (Scheme 2). The 

carboxylic group of the resulting molecule was then subject to 

an esterification with 2-hydroxyacetophenone. The resulting 

phenoxycarbonyl is then poised to suffer the attack by the 

enolate from its own acetyl group via the so-called Baker-

Venkataraman rearrangement (Scheme 2),22-24 producing H3LC 

as a yellow solid.



 
Scheme 2. Synthesis of asymmetric H3LC ligand by combination of Claisen condensation and Baker-Venkataraman rearrangement.  



This strategy had been previously used by some of us to make bis-β-diketones incorporating hydroxyphenyl groups.12 

The identity of this asymmetric ligand and of all the intermediates was unambiguously confirmed by 1H NMR (Figs. S5-

S8). The coordination chemistry of H3LC was then explored through reactions with FeCl3 or GaCl3 in CH2Cl2 under basic 

conditions. The resulting solutions afforded the corresponding asymmetric helicates, [Fe2(HLC)3] (3) and [Ga2(HLC)3] (4), 

as plate-type crystals after slow diffusion of toluene. Both compounds were isostructural and were best modeled in the 

non-centrosymmetric Cc space group (Table S5) although the corresponding centrosymmetric C2/c and chiral C2 space 

groups were also explored (see refinement details in Supporting Information). The two helicates are structurally similar 

to their corresponding symmetric analogues, with two metal ions wrapped by three ligands (Fig. 1, bottom, and Figs S9 

and S10), the unit cell constituting a pure racemic mixture of both, the right-handed (ΔΔ) and the left-handed (ΛΛ) 

enantiomers. Each metal site features a distorted octahedral environment (analyzed here by CShMs, Table S4) using a 

β-diketonate unit from each of the three non-equivalent HLC2– ligands. The latter are disposed in a head-to-head-to-tail 

fashion, preferred over the head-to-head-to-head distribution. The two metal centers are separated by 7.21 and 7.20 Å 

for 3 and 4, respectively (Tables S6 and S7). As expected, the asymmetric entities preserve similar twisting abilities, as 

depicted by the values of local and total pitches (Table 1). Interestingly, the values were found to be in between those 

from [Fe2(LA)3] and [Fe2(H2LB)3], in accordance with the hybrid nature of the ligands of these helicates. The stability of 

the new helicates [Ga2(H2LB)3] (2) and [Ga2(HLC)3] (4) in solution was assessed using 1H NMR spectroscopy. Complex 2 

is soluble in CD3Cl producing in this solvent a clean spectrum, consistent with the expected idealized symmetry (Fig. 2, 

top). The latter features nine signals, analogous to these shown by the free ligand25 (SI) without the peak of the enolic 

–OH. Complex 4 is only scarcely soluble in DMF. In this solvent it produces a more complex spectrum (Fig. 2, bottom) 

consistent with the lack of mirror symmetry of HLC2–. 

 
Figure 2. 1H NMR spectra featuring the aromatic region of [Ga2(H2LB)3] (2; top, CD3Cl as solvent) and [Ga2(HLC)3] (4; bottom, d7-DMF as solvent). The inset of the 

bottom spectrum shows the signals corresponding to the phenol −OH groups of compound 4. 

The asymmetry of the complex is only reflected by the splitting of the peaks corresponding to the phenol –OH groups 

(inset Fig. 2, bottom) and the peaks most directly connected to the metals (e and k in Fig. 2, bottom). The remainder of 



the signals are not sensitive to the configuration of the ligands within the molecule. These results are in full agreement 

with the structure of 4 observed in the solid state. 

Conclusions 

In conclusion, we have shown here the first results of a new synthetic approach to make specific non-symmetric 

helicates with bis-(β-diketonate) ligands. Interestingly, the stability of such supramolecular motifs in solution opens the 

possibility of evaluating their potential towards biomolecular targets. In that sense, we are now implementing this 

strategy for the production of new asymmetric ligands featuring both hydrogen donor units and moieties favoring π-

stacking interactions, from which the resulting helicates could potentially present the characteristics required to 

significantly enhance DNA bonding. 
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