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ABSTRACT OF THE DISSERTATION

Reduced-Order Modeling of Unsteady Aerodynamics: Theoretical and Computational
Approaches

By

Amir Saman Rezaei

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2019

Professor Haithem E. Taha, Chair

Unsteady aerodynamics emerges in several applications in mechanical and aerospace engi-

neering such as the flutter problem, dynamic stall, bio-inspired flying robots, helicopters, and

wind turbines. A leap in the design of these machines would only occur in the preliminary

design phase upon investigating millions of design alternatives, which cannot and should not

use high-fidelaity simulations. Therefore, the development of reduced-order models for un-

steady aerodynamic loads will be of paramount importance for advancing these applications,

which is the main focus of this dissertation.

The common (perhaps only) reduced-order models of unsteady aerodynamics in literature

are based on potential flow theory, which is neither complete (invokes a closure condition)

nor descriptive of viscous effects. While the Kutta condition is quite successful in small-

angle of attack and large Reynolds number situations, it was originally devised for steady

flows. Hence, its illegitimate use in unsteady environments may only be successful at low-

frequencies. Therefore, there are numerous research reports that invoked another closure

condition for potential flow in the unsteady case.

Three main contributions are achieved in this dissertation. First, realizing that the lift

development and vorticity production are essentially viscous processes, a viscous extension

xiv



of the classical theory of unsteady aerodynamics is developed by matching the potential flow

theory with a special boundary layer theory that pays close attention to the flow details in the

vicinity of the trailing edge: the triple deck boundary layer theory. Based on this extension,

a Reynolds-number-dependent lift frequency response is developed for the first time. The

theory is validated against high-fidelity simulations of the Navier-Stokes equations showing

a remarkable agreement. It is found that viscosity induces more phase lag at high reduced

frequencies and low Reynolds numbers where the viscous effects are more pronounced.

Second, to extend the applicability of this viscous unsteady theory to account for arbitrary

airfoil shapes, arbitrary kinematics, and wake deformation, a numerical method is developed.

The developed numerical technique represents a viscous extension of the classical unsteady

vortex lattice method (UVLM). In such an extension, Hilbert matrix algebra is exploited

to show the relationship between the Kutta condition and the location of the control and

collocation points on the panel. As such, the implicit Kutta condition in the UVLM is

relaxed (corrected for) by updating the locations of these points within the panel at each

time based on the viscous correction coming from the triple deck boundary layer theory,

which is based on the instantaneous airfoil motion.

Finally, due to the fact that many aerial vehicles operate at moderate Reynolds number,

which is prone to laminar-to-turbulent transition and theoretical approaches are not expected

to perform efficiently in those conditions, the transition effects on the lift and circulation

dynamics on a pitching airfoil are investigated numerically. It is found that transition induces

significant nonlinearities in the lift and circulation dynamics even at very small pitching

amplitudes down to half a degree. It is shown that this nonlinearity in the lift dynamics is

attributed to the violation of the Kutta condition in this regime. Based on this connection,

it is delineated how the potential flow theory can be extended with the aid of high-fidelity

simulation data to capture the nonlinear transition effects.
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Chapter 1

Introduction to the Thesis

1.1 Background and Motivation

The ability and strong legacy of potential flow theory have paved the path for aerody-

namicists to labour it in a wide range of aeronautical engineering problems. Although its

history goes back to D’Alambert and Euler (Dugas, 2012), the theory did not ripen until

Prandtl (1904). In the the last century, most of the analytical developments of the wing

(airfoil) aerodynamics in an incompressible flow, either steady or unsteady, were based on

the Prandtl’s potential flow theory. Based on his assumptions, for an infinitely thin airfoil,

the viscous events are associated with a thin layer around the airfoil and a thin layer in the

wake (unlike the steady flows, in unsteady flows, the wake should be considered) and the

flow outside of these regions can be assumed irrotational. These concepts, in addition to

assuming small disturbance to the mean flow (flat wake assumption), form the heart of the

classical theory of (unsteady) aerodynamics (Birnbaum & Ackermann, 1923; Prandtl, 1918;

Wagner, 1925; Theodorsen, 1935; Von Karman & Sears, 1938) and also provide the basis for

the recent developments (Wang & Eldredge, 2013; Ford & Babinsky, 2013; Hemati et al.,
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2014; Ramesh et al., 2014; Darakananda & Eldredge, 2019; Epps et al., 2019). However, this

framework using potential flow is not complete and invokes a closure or auxiliary condition

(e.g., the Kutta condition (Kutta, 1902)) since the strength and shape of the vortices that

are shed form the sharp trailing-edge (TE) of the airfoil are not specified apriori. Applying

the Kutta condition at the sharp edges completes the framework by providing strengths of

the newly shed vortices. Consequently, one can use conservation of circulation to determine

the value of the instantaneous circulation over the airfoil (bound circulation), which dictates

the generated lift force through Kutta-Joukowsky theorem (Joukowsky, 1910). Moreover, it

has been believed for decades that by allowing the sheets of vorticity on the airfoil and in

its wake, the classical thin airfoil theory does not completely ignore viscous effects; that is,

the boundary layer over the airfoil and the viscous shear layer in the wake are represented

by the infinitely thin sheets of vorticity on the airfoil and wake, respectively (see a detailed

discussion by Sears (1976a)). However, the application of the Kutta condition to unsteady

flows has been controversial (see Crighton (1985) and the references therein). Although this

framework is indeed for a linearized and high Reynolds number flow at small angles of attack,

it has been extensively used at low Reynolds number flows (e.g., biological flyers) relying

on the facts that (i) there is no sharp stall (a smooth lift variation over a broad range of

angles of attack (Dickinson et al., 1999), (ii) the shear force contribution to the aerodynamic

loads is minimal, as observed in the experimental study of Dickinson et al. (1999) and the

computational results of Wang (2000) and Ramamurti & Sandberg (2002).

As expected, all the analytical theories in steady or unsteady aerodynamics were developed

for simple geometries such as a flat plate or a cylinder etc., under simplifying assumptions

like flat wake and the types of motion that lend themselves to analytical solutions such as a

step input, a simple harmonic motion or a constant speed motion. Due to the ability of the

potential flow framework to capture essential physics of the flow, scholars attempted to adopt

numerical approaches based on this framework. The most famous one is the vortex lattice

method developed by Falkner (1943), which can accommodate any airfoil shape subjected

2



to any arbitrary input and allows for the wake deformation. In this method, the shape of

the airfoil is represented by its camberline and is divided into finite number of panels with

a vortex of unknown strength sitting on each of them and the airfoil motion is accommo-

dated by the condition of flow tangency for impermeable surfaces (no-penetration boundary

condition) that gives the strength of the vortices. Then, utilizing Bernoulli’s equation, the

pressure field on the airfoil is obtained and the aerodynamic loads can be calculated. The

vortex lattice method is a simple and efficient tool that is employed in variety of aeronautical

and aerospace engineering applications (Belotserkovskii, 1977; Katz & Maskew, 1988; Smith,

1996; Stanford & Beran, 2010).

The Unmanned Aerial Vehicles (UAV) and Micro Air Vehicles (MAV) are the two most

important examples that renewed interest in the unsteady aerodynamics subject in the past

two decades (Mueller & DeLaurier, 2003; Ansari et al., 2006a). There are many reasons

that why the classical aerodynamics models may not be sufficiently accurate for these new

concepts and further research is required to extend and modify the classical models to be

applicable in modern aerodynamics. For example, in many scenarios where the aerodynamics

of a flapping bird or an insect is of interest, the body (airfoil) experiences high angles

of attack and operates in the low-to-moderate Reynolds numbers where the underpinning

assumptions of the potential flow are not valid. Therefore, scholars seek new methods to

extend the classical approaches to be suitable for modern aerodynamics applications (Ramesh

et al., 2014; Nguyen et al., 2016; Mesalles Ripoll et al., 2019). Since the Kutta condition

acts as the bridge between potential flow and viscous flow, further investigation on this

complementary condition in the potential flow framework is needed that leads to viscous

extension of potential flow approaches.
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1.2 Application of Potential Flow in Unsteady Aero-

dynamics

In unsteady aerodynamics, the goal is to find the aerodynamic loads on a moving airfoil

(wing). In this thesis, following the classical methodologies, it is assumed that the flow is

incompressible with high Reynolds number and the airfoil deflections are small. Based on

these assumptions, the continuity equation and the non-linear Navier-Stokes partial differ-

ential equations can be reduced to the linear Laplace equation for velocity potential and

Bernoulli’s equation for pressure field. It is known that the superposition principle can be

applied on the linear differential equations to construct the solution. There are many func-

tions that can satisfy the Laplace equations, such as a source, sink, doublet, vortex and free

stream (e.g. a constant value ), which are called elementary functions or singularities. Com-

bining these singularities, it is possible to construct the flow field around different objects,

which is a typical chapter in all the elementary fluid mechanics courses to study the steady

flow. In the case of an unsteady flow, for example when the object is moving, setting up

the problem is more involved and requires special techniques. There are several tools to be

utilized in order to develop an unsteady aerodynamic model in the potential flow frame-

work. Since the focus in this dissertation is on the unsteady aerodynamics modeling, assume

a moving flat plate (which represents the airfoil or the lifting surface) in a fluid medium.

The domain of the aforementioned setup is called plate domain. It is a common practice

to conformally map the plate domain (z − plane) into the cylinder domain(ζ − plane) (see

figure 1.1) through Kutta-Joukowsky transformation as

z = ξ +
b2

4ξ
, (1.1)

where z = x + iy is the coordinate in the plate domain and ξ = ζ + iη is the coordinate in

the cylinder domain.
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Figure 1.1: Conformal map between the flat plate of length 2b (−b 6 x 6 b) to a circle of
radius b/2 (0 6 θ 6 2π)

Utilizing equation (1.1), a cylinder of radius b/2 and its surrounding flow field can be con-

fromally mapped to the flow field around a flat plate of length 2b. Generally, formulation of

the problem in the cylinder domain is more convenient as working with potential function of

source/sinks and vortices are easier in the cylinder domain. The relation between the coordi-

nate on the plate surface and the cylinder surface can be written as x = b cos θ. Furthermore,

since dW/dz = dW/dξ.(dz/dξ)−1 = u− iv (where W is the complex potential function) and

dW/dξ = e−iθ(vr − ivθ), by using equation (1.1) to find dz/dξ and substituting ξ =
b

2
reiθ,

the velocities on the plate surface (u, v) are related to the velocities on the cylinder surface

(vr, vθ) by u = −vθ/2 sin θ and v = vr/2 sin θ. It can be immediately seen that θ = 0, which

corresponds to the TE of the cylinder, is a singularity unless vθ = 0 (note that automatically

vr = 0 due to no-penetration or no flow through boundary condition). This mathematical

trick, vθ = 0, to remove the singularity from TE is called Kutta condition. In the plate

domain, the equivalent representation of the Kutta condition is no pressure loading or zero

circulation or vanishing velocity difference on the top and bottom surfaces at the plate TE.

This representation essentially means that the flow separates from the plate right at the TE

station and there is no vorticity jump at that location. Having the velocity potential Φ in
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the plate domain and using unsteady Bernoulli’s equation given by

ρΦt +
1

2
ρ
(
~∇Φ.~∇Φ

)
+ P + ρgz = F (t), (1.2)

the pressure distribution on the top and bottom surfaces can be obtained. In equation (1.2),

Φt is the time derivative of the velocity potential, ~∇Φ(= ~u) is the gradient of the velocity

potential that gives the velocity vector ~u, P is the fluid pressure and ρ is the fluid density.

The constant of integration F (t) is calculated by considering the freestream properties as

F (t) = P∞ + 1
2
ρV 2
∞ where P∞ is the freestream pressure far from the plate and V∞ is the

freestream velocity. Note that in the derivation of F (t), it is assumed that the Φt at ∞ is

zero (Φt|∞ = 0), which corresponds to the constant freestream velocity. If the freestream

velocity is time-varying, then Φt|∞ possesses a non-zero value, which is not the case in this

dissertation. If ~u is linearized around V∞ meaning ~u = (V∞+∆u)̂i+(∆u)ĵ and equation (1.2)

is used to calculate the pressure on the top and bottom surfaces of the plate, then the lift force

coming from the integration of the top and bottom surfaces pressure difference is written as

L(t) = 2ρ

[∫ b

−b
(Φt(x)dx) + V∞ΦTE

]
. (1.3)

Note that in equation (1.3) it is assumed that ΦLE is zero. This assumption is justified based

on the fact that it is expected the stagnation point to be in the vicinity of leading-edge (LE)

and the resulting pressure possesses high values. As it can be seen in equation (1.3) the only

unknown parameter is the velocity potential Φ. It can be shown that the velocity potential

is correlated to the tangential velocity on the cylinder as

Φ(θ) =
−b
2

∫ π

θ

vθ(τ)dτ, (1.4)
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where τ is an arbitrary integration variable. As a result, the whole problem of finding the lift

force on the moving flat plate boils down to finding the tangential velocity on the cylinder

(when the plate is conformally mapped to the circle). In order to use the velocity potential

on the cylinder given by equation (1.4) to find the lift force, the x coordinate in the integral

in the right hand side of equation (1.3) is changed with θ by x = b cos θ and is written as

b
∫ 0

π
Φt(θ) sin θdθ. One important difference between the steady and unsteady aerodynamics

models is that the wake should be considered in the latter. In the presence of wake, Kelvin’s

law of zero total circulation (dΓtotal
dt

= 0) should be satisfied. Since it is assumed that the

fluid and plate are at rest at t = 0 and the total circulation Γtotal is zero, it remains zero for

all the time resulting in

Γbound = −Γwake, (1.5)

where Γbound is the total circulation on the plate and Γwake is the total wake circulation.

1.3 Summary of Theodorsen Model

Theodore Theodorsen (1935) developed an unsteady aerodynamics model for a pitching-

plunging flat plate. This problem traces its roots back to the major issue of the first gen-

eration aircraft suffering from structural failure and stability loss which culminated in the

theory of wing oscillations (Von Baumhauer & Koning, 1923). Since this problem was deal-

ing with high Reynolds number flows and low angles of attack configurations, the potential

flow theory was the best candidate for solving the aerodynamics side of the flutter problem.

Exploiting the tools and concepts described in the previous section, Theodorsen managed

to solve the unsteady aerodynamics problem of a harmonically pitching-plunging airfoil (see

figure 1.2: the distance between the hinge and mid-chord point is ab) that is coupled with

the structural dynamics equation to provide flutter boundaries.
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Figure 1.2: A generic setup for a pitching-plunging flat plate

He tackled the problem by formulating it in the cylinder domain and dividing the aero-

dynamic forces into two different categories: non-circulatory and circulatory. In the non-

circulatory part, the motion of the cylinder, which corresponds to the motion of the flat

plate through Kutta-Joukowsky transformation, is accommodated. To do so, a distribution

of sources/sinks of unknown strength Q(θ) are placed on the cylinder. The no-penetration

boundary condition on the cylinder surface (vr(θ) = 0) provides a means to obtain Q(θ).

In fact, we are dealing with time-varying sources/sinks such that the velocity produced by

them cancels the velocity induced by the pitching motion α(t), plunging motion h(t) and

the free stream velocity V∞. The induced tangential velocity by this distribution of sources

and sinks is

vθNC (θ) = −2

[
(V∞ sinα + ḣ cosα + α̇ab) cos θ +

α̇b

2
cos 2θ

]
(1.6)

Note that, sinα, and cosα, are replaced by α and 1, respectively, as the deflections are

assumed to be small. Then, by utilizing equation (1.4) the velocity potential on the plate

will be

Φplate = b

[
(V∞α + ḣ+ α̇ab) sin θ +

α̇b

4
sin 2θ

]
, (1.7)
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which is plugged into equation (1.3) to provide the non-circulatory lift LNC as

LNC = πρb2a⊥ 1
2
, (1.8)

where, a⊥ 1
2

= V∞α̇+ ḧ− α̈ab (after linearization), is the acceleration of the mid-chord point

of the plate. The non-circulatory lift is commonly termed as ”added mass” lift as it can be

interpreted as the required force to move the surrounding fluid (in fact πρb2 can be regarded

as the mass per unit length). This force which appears in the right hand side of the flutter

formulation (similar to all other aerodynamic forces) can be moved to the left hand side and

be added to the inertial forces acting as an ”added mass” term. The important feature of the

LNC is that it is an instantaneous force due to the airfoil motion as there is a direct algebraic

relation between the LNC and the acceleration term. Therefore, no dynamics is involved in

the forces of this category. One significant outcome of this solution is the tangential velocity

at the TE of the cylinder, which can be calculated by setting θ = 0 in equation (1.6) as

vθNC (θ = 0) = −2v3/4(t). As a result, the normal velocity at the three-quarter-chord of

the plate v3/4(t) is directly proportional to the tangential velocity of the cylinder at TE.

Based on the previous section, in order to satisfy the Kutta condition, vθTE must be zero. In

consequence, it is expected that the circulatory portion of the lift force cancels the generated

velocity by the non-circulatory portion to remove the singularity at the TE.

Figure 1.3: Setup of the Theodorsen problem in cylinder domain for the circulatory portion
of the lift
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As mentioned before, in the unsteady flows, the wake behind the plate (airfoil) must be mod-

eled. For this purpose, Theodorsen added a vortex of strength Γ2 outside of the cylinder with

the distance X to the center as shown in figure 1.3. This vortex disturbs the no-penetration

boundary condition on the circle, which was already satisfied in the non-circulatory part.

In other words, the cylinder will not remain a streamline by just considering a single vor-

tex (Γ2) in the wake. Therefore, an image vortex Γ1 is placed inside the cylinder with the

distance Y to the center, which sits on the line connecting the center of the wake vortex

Γ2 and the center of the cylinder. Before trying to make the cylinder surface a streamline

again, it is convenient to satisfy the Kelvin’s circulation theorem based on equation (1.5),

which gives Γ1 = −Γ2. So, we are dealing with a pair of counter-rotating vortices with equal

strength. Now, it is desired to find Y in terms of X such that the superposition of the pair

of vortices keeps the cylinder of radius b/2 a streamline, which results in Y = b2/4X. Then,

the tangential velocity induced by the pair of vortices on the cylinder is calculated as

vθC =
−Γ1

πb

X2 − b2/2

X2 + b2/4− bX cos θ
. (1.9)

Thus, the tangential velocity at the TE (θ = 0) can is given by vθC (θ = 0) = −Γ1

πb
X+b/2
X−b/2 =

−Γ1

πb

√
Z+b
Z−b , where Z is the coordinate of the wake vortex in the plate domain correspond-

ing to X in the cylinder domain (Z and X are related to each other through Joukowsky

transformation). In the next step, the wake vortex Γ2 is substituted with a distribution

of vortices γw(z, t). It is important to elucidate that this substitution does not disturb the

Kelvin’s condition as Γ1 is assumed to adapt itself with the wake vortices distribution to keep

the cylinder a streamline and the Kelvin’s condition satisfied. In order to satisfy the Kutta

condition, the tangential velocity of the non-circulatory and circulatory parts of the solution

is considered (vθNC (θ = 0) + vθC (θ = 0) = 0), and the integral equation for circulation is
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derived as

1

πb

∫ ∞
b

γw(z, t)

√
z + b

z − b
dz = 2v3/4(t). (1.10)

Furthermore, substituting vθC from equation (1.9) in equation (1.4) and using equation (1.3),

ΦTE = Γ1

2
and the circulatory lift is written as

Lc(t) = ρV∞

∫ ∞
b

γw(z, t)
z√

z2 − b2
dz. (1.11)

So far, no particular assumption has been made on the motion type. If the airfoil undergoes

harmonic motion with low deflections at zero mean angle of attack, it is fair to assume a

harmonic and flat wake convecting with V∞, which means γw(z, t) = γw(z0, t− z−z0
V∞

) where z0

is the location of the current wake vortex γw(z, t) at t = t0. Based on these simplifications,

we obtain

γw(z, t) = γ̄we
iw(t− z

V∞
) (1.12)

It is worth pointing out that the extension of equation (1.12) for a non-zero mean angle of

attack is an involved process and has not been presented in the literature according to the

author’s knowledge. Now, by combining equations (1.10) and (1.11) and utilizing equation

(1.12), the circulatory lift Lc can be written as

Lc = LQS

∫∞
1
e−ikσ σ√

σ2−1
dσ∫∞

1
e−ikσ

√
σ+1
σ−1

dσ
, (1.13)

where LQS = −2πbρV∞v3/4(t) is the quasi-steady lift, σ = z
b

is the normalized coordinate
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and k = wb
V∞

is the motion reduced frequency. The ratio of the two integrals in the right

hand side of equation (1.13) is called Theodorsen function C(k). Astonishingly, there is an

analytical solution for Theodorsen function as

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (1.14)

where H
(m)
n is the Hankel function of mth kind of order n. Unlike the non-circulatory lift

where an instantaneous force is generated due to the plate motion, the circulatory lift pos-

sesses dynamics and there is a transfer function C(k) between the input (motion) and output

(lift) in this case, which is a function of reduced frequency. Lastly, the total lift force expe-

rienced by the flat plate is given by the summation of the non-circulatory (equation (1.8))

and circulatory lifts (equation (1.13)). For further details on the differences and connections

between circulatory and non-circulatory lifts, the reader is highly recommended to read Taha

& Rezaei (2019b).

1.4 Outline of the Thesis

The main focus of this work is to replace the Kutta condition in the classical efficient unsteady

aerodynamics models with a viscous condition that contains viscous effects near the trailing

edge. This goal is achieved by relaxing the Kutta condition in the potential flow framework

and obtaining the strength of the generated singularity through triple-deck boundary layer

theory. In chapter 2, it is shown that relaxing the Kutta condition introduces a singularity

in the pressure distribution as expected. This singularity is integrable meaning that the

resulting force and moment associate with that pressure distribution is finite. It is shown how

the triple-deck boundary layer theory can be employed to find the strength of the singularity.

This theory treats the flow in the vicinity of the TE, where there is a strong interaction

between the upstream Blasius boundary layer and downstream Goldstein wake. We adopted
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this approach by introducing a singularity in the pressure distribution of a moving plate and

showed the modifications that need to be applied in the classical models. As a result, we

developed a viscous unsteady aerodynamics model that unlike Theodorsen model, which is

only a function of reduced frequency, it is a function of both Reynolds number and reduced

frequency. The analytical results are validated against computational results at high and low

Reynolds numbers. Lower amplitude of the circulatory lift transfer function and more phase

lag, which are enhanced at lower Reynolds number, are the important outcomes. In chapter 3,

based on the developed methodology in chapter 2, we tackle the Kutta condition in the well-

known unsteady vortex method (UVLM). Unlike the Theodorsen analytical model described

above where the Kutta condition is explicitly formulated and satisfied, the application of the

Kutta condition in UVLM is subtle. First, by realizing that the matrix system appearing in

UVLM is a special kind called Hilbert matrix and by utilizing the Hilbert matrices algebra,

we show how Kutta condition is implicitly applied in UVLM by dictating the layout of each

panel. Then, it is attempted to replace the Kutta condition by the viscous condition from

the triple-deck theory. This approach results in a time-varying layout of each panel. Then,

the extended UVLM is used for several different motion inputs and very good results are

obtained compared to the CFD results, which show a significant enhancement compared

to the original inviscid UVLM. The captured dynamics of the aerodynamic forces in the

previous chapter is linear. It is observed that under Laminar-to-turbulent transition, the

lift (circulation) dynamics is no longer linear even under low deflections and low reduced

frequencies. In chapter 4 by realizing that the amount of circulation of the airfoil is dictated

by the Kutta condition, we use the numerical simulations to study the effect of transition

on the circulation dynamics. In fact, in unsteady flows, the Kutta condition relates the

amount of vorticity generated in the boundary layer to the vorticity being shed into the

wake. This vorticity flux can be obtained by the velocities and pressures at the edges of

the top and bottom boundary layers. It is shown that in the derivation of the classical

Kutta condition, the pressure difference at the boundary layer edges was neglected. This
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omission is in accordance with the boundary layer theory results where no pressure rise across

the boundary layer is expected. However, the complicated flow-field near the trailing edge

and the presence of transition can violate the boundary layer assumptions, resulting in a

noticeable pressure rise in the boundary layer. After validating our numerical setup with an

experimental study, we use the fact that the edge of the boundary layer is detectable under

these circumstances and elaborate on the non-linear behavior of the circulation dynamics.

Specifically, we show the contribution of each term in the exact definition of Kutta condition

and study the effect of important parameters such as Reynolds number, reduced frequency

and pitching amplitude through time-history and FFT analysis. The results are compared

with the Theodorsens potential-flow based theory and the deviations are explained. Finally,

chapter 5 provides the conclusion of this thesis and suggests a few projects for future work.
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Chapter 2

Viscous Lift Frequency Response

Problem Using Triple-Deck Theory

2.1 Background

Recalling the historical development of the classical theory of unsteady aerodynamics (un-

steady aerodynamics of wings in an incompressible flow), we realize that it is mainly based

on the following fundamental assumption due to Prandtl (1924) and Birnbaum (1924): For

a high Reynolds number, small angle of attack flow around an infinitely thin airfoil, sep-

aration or sheets of vorticity are shed from the sharp edges only and the flow outside of

these sheets can be considered irrotational. This brilliant assumption is quite accurate in

the stated regime and was extremely enabling. Because an incompressible irrotational flow

is simply governed by the Laplace equation, which is a linear equation admitting super-

position, this framework was the basis for almost all analytical theories of aerodynamics

in the linear regime: the steady ones such as the thin airfoil theory (Birnbaum & Acker-

mann, 1923; Glauert, 1926), Prandtl’s lifting line theory (Prandtl, 1918), Weissinger’s ex-
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tended lifting line theory (Weissinger, 1949), the lifting surface theory (Truckenbrodt, 1953;

Multhopp, 1950) which evolved to the vortex lattice/panel method; and the unsteady ones

such as Theodorsen’s lift frequency response (Theodorsen, 1935), Wagner’s lift step response

(Wagner, 1925), Kussner’s sharp edged gust problem (Küssner, 1929), the developments of

Von Karman & Sears (1938) among others. In addition, it is still acting as the pillar of many

of the recent developments (Jones, 2003; Yongliang et al., 2003; Pullin & Wang, 2004; Ansari

et al., 2006b; Michelin & Smith, 2009; Tchieu & Leonard, 2011; Wang & Eldredge, 2013;

Ramesh et al., 2013; Taha et al., 2014; Ramesh et al., 2014; Yan et al., 2014; Li & Wu, 2015;

Hussein et al., 2018; Xia & Mohseni, 2017). However, this framework using potential flow

is not complete and requires a closure or auxiliary condition (e.g., the Kutta condition). In

particular, it does not quantify the vorticity shed at the sharp trailing edge. This quantity

is essential as it immediately determines the circulation over the airfoil through conservation

of circulation, which in turn dictates the lift via the Kutta-Joukowsky lift theorem Kutta

(1902); Joukowsky (1910). Therefore, the potential flow theory alone cannot predict the

generated lift force. However, if the potential flow theory is supplied by the generated lift

force, it will provide a reasonable (sometimes accurate) representation of the flow field even

in unsteady high angles of attack situations, as shown in the recent efforts of Ford & Babin-

sky (2013); Hemati et al. (2014). They basically showed that by using the “right” auxiliary

condition to determine the circulation development over the airfoil, the resulting potential

flow field is quite close to the actual flow field even at unsteady high angle of attack situations

where vortices also shed from the leading edge. We interpret these results from a dynamical

system perspective as an observability result: the flow dynamics are observable from the

lift force (or circulation) output measurement and the observer (a reduced-order observer)

is given by the potential flow dynamics. That is, given the generated aerodynamic forces,

one can estimate (observe) the flow dynamical states (e.g., the velocity field). However, the

generated aerodynamic forces are the primary unknowns of interest to an aerodynamicist.

The most common auxiliary condition that has been typically used throughout the history
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(a) Early Transient. (b) Steady State.

Figure 2.1: Visualization of the impulsive start flow around an airfoil (Tietjens & Prandtl,
1934, pp. 296-299). During the transient period, the flow rotates around the trailing edge.
After reaching steady state, the flow leaves the trailing edge smoothly and the Kutta condi-
tion is satisfied.

of potential flow aerodynamics is the Kutta condition. It completes the potential flow frame-

work by providing the circulation around the airfoil (equivalently the generated lift force).

It has several representations: smooth flow-off the trailing edge, no flow around the trailing

edge, or that the stagnation point is right at the trailing edge, among other forms. It is

quite accurate for a steady flow (at high Reynolds number and small angle of attack) as can

be seen from Prandtl’s flow visualizations in his water channel early in the past century.

Figure 2.1(b) shows smooth flow-off the trailing edge and that there is no flow around the

trailing edge from the lower surface to the upper surface or vice versa; that is, the stagnation

point is at the trailing edge and the Kutta condition is essentially satisfied. Indeed, it is a

paradigm for engineering ingenuity where a mathematical condition is inferred from physical

observations. However, for an unsteady case as the one shown in figure 2.1(a), it is already

known that, in the early transient moments after an impulsive start, the flow goes around

the trailing edge from the lower surface to the upper surface and the stagnation point is

on the upper surface (Tietjens & Prandtl, 1934, pp. 158-168; Goldstein, 1938, pp. 26-36;

Schlichting & Truckenbrodt, 1979, pp. 33-35).

The application of the Kutta condition to unsteady flows has been controversial. The reader

is referred to the articles by Sears (1956, 1976b) and the review article on the topic by

Crighton (1985), although, the latter’s definition of the Kutta condition is different from the
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current discussion or that by Sears. Crighton defined the Kutta condition as a condition of

least singularity at the edge, which may even come from viscous considerations (i.e., bound-

ary layer theory). However, in this case, we (similar to Sears viewpoint) would consider it as

a viscous extension of the Kutta condition. The need for an auxiliary condition alternative

to Kutta’s can be traced back to the work of Howarth (1935) with a research flurry on the

applicability of the Kutta condition to unsteady flows in the 1970’s and 1980’s (Basu &

Hancock, 1978; Daniels, 1978; Satyanarayana & Davis, 1978; Bass et al., 1982; Crighton,

1985). The present research was partly motivated by the failure to capture an accurate

flutter boundary (Rott & George, 1955; Abramson & Chu, 1959; Henry, 1961; Abramson

& Ransleben, 1965). Recall that the flutter phenomenon is simply an interaction between

unsteady aerodynamics and structural dynamics. In addition, since structural dynamics

could be captured with good accuracy (e.g., exact beam theory), it has been deemed that

the flaw stems from the classical unsteady aerodynamic theory, particularly the Kutta con-

dition, as suggested by Chu (1961) and Shen & Crimi (1965) among others. Moreover, since

these deviations occurred even at zero angle of attack or lift (Woolston & Castile, 1951; Chu

& Abramson, 1959), it was inferred that there is a fundamental issue with such a theory

that is not merely a higher-order nonlinear effect (Chu, 1961). Therefore, there was almost

a consensus that the Kutta condition has to be relaxed particularly at large frequencies,

large angles of attack and/or low Reynolds numbers (Abramson et al., 1967; Savage et al.,

1979; Satyanarayana & Davis, 1978). In fact, Orszag & Crow (1970) regarded the full-Kutta

condition solution as “indefensible”.

Interestingly, this dissatisfaction with the Kutta condition and the need for its relaxation

has been recently rejuvenated. Several recent efforts invoked an alternative auxiliary condi-

tion to Kutta’s. Ansari et al. (2006b,c) proposed a modified version of the Kutta condition,

particularly during rapid pitching near stroke reversals, to avoid creating artificially strong

vortices; the idea was that the pitch maneuver is so acute that the fluid may actually flow

around the edge not along it. More recently, Ford & Babinsky (2013) experimentally studied
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the leading edge vortex (LEV) dynamics over an impulsively started flat plate. They also

developed a potential flow model that consists of a bound circulation, free LEVs and free

trailing edge vortices. They determined the positions and strengths of the vortices by ap-

plying the γ2-method (Graftieaux et al., 2001) to their PIV measurements. Based on these

values, they determined the value of the bound circulation that minimizes the deviation

between the potential flow field and PIV measurements. During early stages, the optimum

bound circulation was found to be considerably different from the Kutta’s value (that en-

sures finite velocity at the trailing edge). In a similar setting, Hemati et al. (2014) improved

their previous varying-strength discrete vortex model (Wang & Eldredge, 2013) by relaxing

the Kutta condition via applying optimal control theory to determine the strengths of the

recently shed vortices that minimize the discrepancy between the potential flow predicted

forces and measurements, which was also found to be considerably different from Kutta’s

values.

Ramesh et al. (2014) developed a new LEV shedding criterion based on the first (singular)

term in the well-known Fourier series representation of the bound circulation distribution

in the classical thin airfoil theory. This term, which they called Leading Edge Suction

Parameter (LESP), is a measure of leading edge suction (Garrick, 1937). Ramesh et al.

(2014) showed that there is a critical value of the LESP (depending on airfoil shape and

Reynolds number) that determines whether the flow is attached or separated at the leading

edge, irrespective of the motion kinematics. Their LESP criterion not only predicts the onset

and termination of LEV shedding but also the strength of the newly shed LEV, thereby

removing the need for an auxiliary condition at the leading edge. Nevertheless, they applied

the Kutta condition at the trailing edge. It is also noteworthy to mention the recent efforts

of Xia & Mohseni (2017) who extended Jones (2003) auxiliary condition at the sharp edges

of a flat plate to the case of a finite trailing edge angle. Jones (2003) used the Rott-Birkhoff

equation (Rott, 1956; Birkhoff, 1962) to model the dynamics of free continuous vortex sheets

emanating from the leading and trailing edges. He satisfied the Kutta condition at both
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edges by imposing boundedness of the flow velocity everywhere. This formulation lead to

the edge condition: the vortex sheet sheds tangentially to the plate. However, this result is

applicable only to a flat plate or an airfoil with cusped trailing edge. Xia & Mohseni (2017)

extended it to the case of an airfoil with finite trailing edge angle by requiring that the flow

velocity be tangential to the vortex sheet at the edge. Using this condition, together with

conservation of momentum, Xia & Mohseni (2017) derived two equations that generalize

Jones edge condition (governing the shedding of a continuous vortex sheet from a sharp edge

with zero angle) to the case of a finite edge angle.

Indeed, the development of an auxiliary condition that replaces the Kutta condition in highly

unsteady flows is a pressing issue that persisted over almost a century. Since the vorticity

generation and lift development are essentially viscous processes, a purely inviscid theory of

unsteady aerodynamics might be fundamentally flawed. Here, we develop a viscous extension

of the classical theory of unsteady aerodynamics. The problem setup, governing equations

and boundary conditions are similar to the Theodorsen model shown in figure 1.2. The

main difference is the way that the amount of bound circulation is calculated in the viscous

extension. Similar to almost all the classical theories, Theodorsen used the Kutta condition

for this purpose. However, in this effort, we relax the Kutta condition and show a new

singularity that emerges at the trailing-edge with unknown strength, which cannot be found

using just potential flow framework. Therefore, we revisit the unsteady boundary layer triple

deck theory developed by Brown & Daniels (1975) and Brown & Cheng (1981) to develop a

viscous extension of Theodorsen’s lift frequency response. In section section 2.3, we extend

their effort (on a flat plate pitching around its mid-chord point) to the more general case of

an arbitrarily-deforming thin airfoil (or time-varying camber), while correcting for few minor

mistakes. In section 2.4, using a describing function formulation, we develop for the first

time a viscous (Reynolds number dependent) lift frequency response. Then, we perform a

computational simulation using ANSYS Fluent for a harmonically pitching airfoil (NACA

0012) to assess the validity of the obtained results from the unsteady triple deck theory.
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Finally, we provide in section 2.6 a physical explanation of the obtained results, namely a

discussion on the relation between the viscosity-induced lag in circulation development and

the Kutta condition. This chapter follows our journal (Taha & Rezaei, 2019a) and conference

(Taha & Rezaei, 2018) articles.

2.2 The Boundary Layer Triple Deck Theory

During his PhD study under Prandtl, Blasius (1908) solved Prandtl’s boundary layer equa-

tions subject to a no-slip boundary condition on a flat plate. Via similarity transformation,

he obtained the celebrated Blasius solution resulting in a boundary layer thickness of order

R−1/2, where R is the Reynolds number based on the plate chord length. Later, Goldstein

(1930) solved the exact same equations subject to a different boundary condition: zero stress

on the wake centerline behind the flat plate. His solution for the stream function near the

edge constituted of Blasius function at the edge plus corrections in the form of x1/3, where

x is the distance downstream of the trailing edge. As such, Goldstein’s solution is not uni-

formly valid as x → 0: the transverse velocity has a singularity at x = 0. Moreover, when

taking into account the effect of Goldstein’s boundary layer on the outside potential flow, it

induces an adverse pressure gradient upstream of the edge (above the Blasius layer) and a

favorable pressure gradient downstream of the edge (Messiter, 1970). That is, the removal

of the plate’s surface accelerates the flow behind the plate leading to a favorable pressure

gradient. Therefore, in the vicinity of the trailing edge, there are two boundary layers inter-

acting with each other. It is expected that neither Blasius nor Goldstein solution is valid in

the immediate vicinity of the edge where the x-derivatives become large due to the abrupt

change in the viscous boundary condition. The triple deck theory has been originally devised

to model these local interactions near the trailing edge of an airfoil in steady flow due to

the transition from a modified Blasius boundary layer with an adverse pressure gradient to a
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modified Goldstein near-wake solution with a favorable pressure gradient (Crighton, 1985).

In other words, the triple deck structure represents a solution to the discontinuity of the

viscous boundary condition at the edge (Brown & Daniels, 1975): from a zero tangential

velocity on the airfoil to a zero pressure discontinuity on the wake center line. As shown in

figure 2.2, this interaction typically takes place over a short length of order R−3/8, similar

to Lighthill’s supersonic shock-wave-boundary-layer interaction (Lighthill, 1953). Over this

range, the correction in the boundary layer solution due to the non-zero pressure gradient

becomes of the same order as the leading term (Messiter, 1970). Therefore, unlike the typical

boundary layer theory where scaling (zooming) is applied to the y-axis only, the x-axis is

also scaled in the triple deck theory to discern the details of such a transition. As shown in

figure 2.2, aerodynamicists modeled this transition through three decks (triple deck theory):

(i) the upper deck which consists of an irrotational flow outside of the main boundary layer;

(ii) the main deck which consists of a Blasius-like layer, though it becomes inviscid; and (iii)

the lower deck, which is a sub-layer inside the main boundary layer that takes care of the vis-

cous boundary conditions on the centerline in the vicinity of the trailing-edge. The main and

lower decks are governed by the full Navier-Stokes equations, although through the chosen

scaling in each of them and keeping the leading terms, the obtained equations are reduced

versions of Navier-stokes equations (similar to Prandtle’s boundary layer equations). The

upper deck (y ∼ R−3/8) is governed by the inviscid potential flow. The boundary conditions

for the triple deck are as follows. In the upstream the solution should match to that of the

perturbed Blasius solution and in the downstream to that of the perturbed Goldstein near

wake solution. On the center line (y = 0), u = 0 for x < xTE and ∂u/∂y = 0 for x > xTE.

Also, as y → ∞ the outer potential flow solution should be recovered. The solution proce-

dure is started by regarding the main deck and using the proper scaling (perturbation) in this

region and expanding the velocities and pressure terms. By matching the obtained solution

with the upstream Blasius and downstream Goldestein solutions, the unknown coefficients in

the expansions of velocities and pressure in the main deck are derived. Then, it is observed
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Figure 2.2: Triple deck structure and various flow regimes, adapted from Messiter (1970).

that this solution does not satisfy the viscous boundary conditions on the centerline and

does not match with the potential flow solution as y →∞. Thus, the upper and lower decks

are introduced to address these issues, and are asymptotically matched with the main deck

solution as y → ∞ and y → 0, respectively. For more details, the reader is referred to the

review articles (Stewartson, 1974, 1981; Smith, 1983; Messiter, 1983; Crighton, 1985, and

the references therein).

One of the useful outcomes from the triple deck theory is its correction to the Blasius skin

friction drag CD ' 1.328√
R

, which is valid only for high enough Reynolds number. However,

the triple deck correction

CD '
1.328√
R

+
2.66

R7/8

to the Blasius skin friction drag coefficient is in a very good agreement with both Navier-

Stokes simulations and experiments down to R = 10 and even lower (Crighton, 1985).

Another useful outcome from the triple deck theory, which is one stepping stone to the

theory developed in this work, is the trailing edge stall concept and the viscous correction

of the steady pressure distribution. This result is discussed next.
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Stewartson (1968) and Messiter (1970) were the first to develop the triple deck theory for a

flat plate in a steady flow at zero angle of attack. Brown & Stewartson (1970) extended such

a work for a non-zero angle of attack in the order of R−1/16. Over this range, the resulting

adverse pressure gradient is of the same order as the favorable pressure gradient in the triple

deck, leading to separation in the immediate vicinity of the trailing edge, which is called

Trailing Edge Stall. To provide a viscous correction for the steady Kutta-Joukowsky lift,

Brown & Stewartson (1970) introduced a singularity in the loading at the trailing edge.

Consider a flat plate with a semi-chord length b subject to a steady uniform flow U at an

angle of attack αs. Let x̃ be the plate coordinate normalized by b (i.e., −1 ≤ x̃ ≤ 1 over the

plate). Brown & Stewartson (1970) wrote the steady pressure distribution over the upper

surface of the plate near the trailing edge (i.e., x̃→ 1) as 1

Ps(x̃→ 1) = ρU2αs

−√1− x̃
2

+
Bs/2

2
√

2

√
1− x̃

2
+

Bs/2

b
√

1−x̃
2

 , (2.1)

where ρ is the fluid density and the pressure on the lower side is given by the negative of

(2.1). The first term represents the potential flow pressure distribution with its leading edge

singularity (at x̃ = −1) and zero loading at the trailing edge (at x̃ = 1). The second term

represents a trailing edge singularity, which is supposed to be zero according to the Kutta

condition. By contrast, Brown & Stewartson (1970) proposed to determine the value of Bs

(trailing edge singularity) by matching the triple deck with the outer potential flow solution.

Brown & Stewartson (1970) formulated such a problem and showed that the flow in the

lower deck is governed by partial differential equations that are solved numerically for each

value of αe = R1/16λ−9/8αs, where λ = 0.332 is the Blasius skin-friction coefficient. Jobe

& Burggraf (1974) and Veldmann & Van de Vooren (1975) solved the αe = 0 case, while

Chow & Melnik (1976) solved the case of 0 < αe < 0.45 and concluded that the flow will

1Equation (2.1) is given as (2.2) by Brown & Stewartson (1970) and re-written in the terminology of this
chapter.
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Figure 2.3: Results of the steady triple deck boundary layer theory. For 2.3(a), αe is set
to the trailing edge stall value (0.47) and the corresponding actual angle of attack αs is
determined from (2.2) based on the Reynolds number R. The trailing edge stall angle of
attack decreases as R increases. Figure 2.3(b) is adapted from Chow & Melnik (1976).

separate from the suction side of the airfoil from the trailing edge at αe = 0.47 (trailing

edge stall angle). This result leads to an inverse relation between Reynolds number and the

actual trailing edge stall angle of attack, as shown in figure 2.3(a). This result yields quite

a small value for the airfoil angle of attack before trailing edge stall: αs = 3.1◦ − 4.2◦ for

R = 104 − 106 (figure 2.4).
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Figure 2.4: Variation of the αs with αe at three different Reynolds numbers

The numerical solution by Chow & Melnik (1976) provides Be as a nonlinear function of αe,

which is represented here in figure 2.3(b), where

αe = αsε
−1/2λ−9/8, Bs = 2bε3λ−5/4Be(αe), (2.2)
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where αs, αe are in radians, and ε = R−1/8 � 1 (Stewartson, 1968). In other words, they

provide Bs = Bs(αs): the strength of the trailing edge singularity in terms of the angle of

attack. Using this approach, we determine the nonlinear variation of the steady lift coefficient

CL with the angle of attack αs up to the trailing edge stall angle, as shown in figure 2.5
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Figure 2.5: Nonlinear steady CL-α relation from the viscous boundary layer theory. It is
constructed based on the steady version of the theory detailed below, equivalently the viscous
steady theory of Brown & Stewartson (1970) and the numerical solution of Chow & Melnik
(1976). The CL-α relation becomes more nonlinear as R decreases and there is a lift drop
towards trailing edge stall.

2.3 Unsteady Triple Deck Theory

2.3.1 Background and Main Concept

Brown & Daniels (1975) were the first to extend the steady triple deck theory to the case

of a high-frequency (ω), small-amplitude oscillatory pitching flat plate. Unlike the steady

case, there is a Stokes layer near the wall that is of order
√
ν/ω where the viscous term is

balanced by the time-derivative term in the equations. Brown and Daniels assumed that

the Stokes layer and the lower deck have the same thickness, which results in a reduced

frequency k = O(R1/4), where k = ωb
U

. This range is too large for engineering applications:

k ' 5−15 for R = 104−106. Then, the matching between the adverse pressure gradient due
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Figure 2.6: Low frequency triple deck structure and flow regimes.

to oscillation and the triple deck favorable pressure gradient results in a pitching amplitude

in the order of O(R−9/16), which is also impractically small for engineering applications:

' 0.02◦− 0.32◦ for R = 104− 106. Indeed, their work is for very high-frequency, very small-

amplitude oscillations. Note that over this range, in contrast to the engineering-relevant

problem considered in this work, the triple deck problem becomes mathematically interesting

as the time-derivative term appears in the lower deck equations.

Brown & Cheng (1981) extended the work of Brown & Daniels (1975) to a more practical

range of parameters 0 < k � R1/4. They provided a solution for the case of a flat plate

pitching about its mid-chord at k = 1/2. In this section, we extend their work to an

arbitrarily deforming thin airfoil, arbitrary k in the range 0 < k � R1/4, and correct for few

minor mistakes in their derivation. More importantly, we use the developed theory, within

a describing function formulation (Krylov & Bogoliubov, 1943) assuming weakly-nonlinear

dynamics, to provide a viscous extension of the classical Theodorsen’s lift frequency response,

which was not provided by Brown & Cheng (1981).

A key element in the theoretical development below is the vanishing of the time derivative

term from the triple deck equations over the range 0 < k � R1/4. That is, the lower
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deck equations are quite similar to those of the steady case at a non-zero αs studied by

Brown & Stewartson (1970) with a proper definition for the equivalent steady angle of

attack. However, we emphasize that this approach is not a quasi-steady solution; although

the time-derivative term does not show up in the lower deck equations, the correspondence

with the steady equations implies an equivalent angle of attack that is dependent on the

oscillation frequency, as shown below. Therefore, the lower deck system is dynamical (i.e.,

possesses a non-trivial frequency response). In fact, even with no time-derivative term in

the lower deck equations, it is not obvious how the steady results of Brown & Stewartson

(1970) can be readily applied because the upstream flow is unsteady with Stokes layer in

the perturbed Blasius layer. Brown & Daniels (1975) encountered a similar problem: how

to match the solution of the perturbed Blasius boundary layer (with its inner Stokes layer)

with the main deck of the triple deck structure? They resolved this issue by introducing

a transition region, whose length is O(k−1), between the perturbed Blasius boundary layer

and the triple deck, called the fore deck. It has similar structure to that upstream of the

triple deck: outer potential flow, main boundary layer, and an inner Stokes layer, as shown

in figure 2.6. Therefore, in the low-frequency problem where the triple deck equations are

void of the time-derivative term, to match the unsteady flow upstream of the triple deck

with the “quasi-steady” flow in the triple deck, Brown & Cheng (1981) inserted a second

fore deck between the first fore deck and the triple deck, as shown in figure 2.6. As such, the

numerical results of Chow & Melnik (1976) to the steady problem of Brown & Stewartson

(1970) could be readily used with an equivalent angle of attack. Since the equivalent steady

angle of attack αs is proportional to Aαk
2 (where Aα is the amplitude of oscillation), and the

steady triple deck formulation of Brown & Stewartson (1970) is valid for αs = O(R−1/16),

the current unsteady formulation is valid for Aαk
2 = O(R−1/16), which is quite relevant to

engineering applications (e.g., R ' 106, Aα ' 5◦, and k < 5).
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Figure 2.7: A flexible/deformable thin airfoil defined by the time-varying camber function
yc(x, t).

2.3.2 Theoretical Development

Potential Flow Setup

Consider an arbitrarily deforming thin airfoil (i.e., of time-varying camber) in the presence of

a uniform stream U , as shown in figure 2.7. In classical thin airfoil theory (e.g., Schlichting &

Truckenbrodt, 1979; Bisplinghoff et al., 1996; Robinson & Laurmann, 1956), it is convenient

to define the acceleration potential Ω = DΦ
Dt

, where D
Dt

= ∂
∂t

+ U ∂
∂x

is the linearized material

derivative and Φ is the velocity potential. Comparing with the linearized unsteady Bernoulli’s

equation, one can immediately relate the pressure P to the acceleration potential as P = ρΩ

and can show that Ω satisfies the Laplace equation (∇2Ω = 0). Then, using series expansion,

it can be shown that the following series solution is obtained for the acceleration potential

or pressure distribution over the upper surface, which automatically satisfies the Kutta

condition (zero loading at the trailing edge)

P (θ, t)− P∞ = ρ

[
1

2
a0(t) tan

θ

2
+
∞∑
n=1

an(t) sinnθ

]
, (2.3)

where θ is related to x via x = b cos θ and a0 represents the leading-edge singularity. The

pressure on the lower side is given by the negative of (2.3). This series solution satisfies the

unsteady Bernoulli’s equation and basically bypasses the procedure of finding the velocity
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field by dealing directly with the pressure distribution on the airfoil. Thus, if velocity

distribution is needed, one can plug in the pressure distribution given by equations (2.3)

into the unsteady Bernoulli’s equation to find the velocity. Moreover, if the plate’s normal

velocity vp, (refer to equation (2.15) that provides the relation for the harmonically pitching-

plunging plate in a free stream at an angle of attack), is written as

vp(θ, t) =
1

2
b0(t) +

∞∑
n=1

bn(t) cosnθ, (2.4)

then the no-penetration boundary condition will provide a means to determine all the co-

efficients an’s (except a0) in terms of the plate motion kinematics (bn’s) as (Robinson &

Laurmann, 1956, pp. 491)

an(t) =
b

2n
ḃn−1(t) + Ubn(t)− b

2n
ḃn+1(t), ∀ n ≥ 1. (2.5)

The determination of a0 is more involved in the sense that it requires solving an integral

equation, which cannot be solved analytically for arbitrarily time-varying wing motion. It

has been solved for some common inputs; e.g., step change in the angle of attack resulting in

the Wagner’s response (Wagner, 1925), simple harmonic motion resulting in Theodorsen’s

frequency response (Theodorsen, 1935), and sharp-edged gust (Küssner, 1929). Since the

focus of this work is to provide a viscous extension of Theodorsen’s frequency response,

consider the simple harmonic motion

vp(θ, t) = Vp(θ)e
iωt; Vp(θ) =

1

2
B0 +

∞∑
n=1

Bn cosnθ,
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where the spatially-varying amplitude Vp(θ) may be complex and ω is the oscillation fre-

quency. Then, a0 is written as (Robinson & Laurmann, 1956, pp. 496) 1

a0(t) = U(B0 +B1)C(k)eiωt − Ub1(t), (2.6)

where C(k) is the Theodorsen’s frequency response function, which depends on the reduced

frequency k = ωb
U

via

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (2.7)

where H
(m)
n is the Hankel function of mth kind of order n. Finally, the potential flow coeffi-

cients of lift and pitching moment (positive pitching up) at the mid-chord point are written

as

CLP = − π

U2
(a0 + a1) and CM0P

=
π

4
(a2 − a0) . (2.8)

Viscous Correction

Following the approach of Brown & Stewartson (1970) in the steady problem (described

above), we relax the Kutta condition in the unsteady inviscid pressure distribution (2.3)

by introducing a correction Γv to the Kutta circulation. This additional circulation will

naturally introduce a singularity at the trailing edge. Similar to the steady case, there is

no means within potential flow to determine the strength of such a singularity (additional

circulation); the essence behind the Kutta condition is to remove such a singularity (condition

of least singularity Crighton, 1985). This additional circulation will have two effects on the

unsteady inviscid pressure distribution (2.3): (i) a steady-like effect with two singularities

1Note that the presentation of Robinson and Laurmann is adapted to a more common and modern
notation.
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at the leading and trailing edges, similar to the Bs-term in (2.1); and (ii) an unsteady effect

from the interaction with the wake. The latter has a singularity only at the leading edge.

As such, the modified pressure distribution can be written as

P (θ, t)−P∞ = ρ

[
1

2
a0(t) tan

θ

2
+
∞∑
n=1

an(t) sinnθ +
1

2
Bv(t)

(
cot

θ

2
+ a0v(t) tan

θ

2

)]
, (2.9)

where the correction Bv is related to the additional circulation as Bv = UΓv

2πb
and a0v is the

total leading edge singularity effect from the two contributions of Γv, mentioned above. This

term has a non-trivial dynamics (there is a non-trivial transfer function from Γv to a0v).

It can be determined from potential flow considerations: it is the a0 term in the unsteady

inviscid pressure distribution (2.3) over the plate due to a bound circulation Γv, ignoring

the quasi-steady contribution (i.e., the wake effects only). Therefore, similar to the general

a0 term, it cannot be determined analytically for arbitrary kinematics; there is an analytical

expression in the special case of harmonic motion (a0v = 2C(k)− 1 Brown & Cheng, 1981).

To determine the viscous correction Bv, without resorting to the Kutta condition (Bv = 0),

we use the unsteady triple deck theory. Since x = cos θ, then cos
θ

2
=

√
1 + x

2
and sin

θ

2
=√

1− x
2

, and tan
θ

2
and cot

θ

2
can be calculated accordingly. Approaching the trailing edge

(θ → 0 or x̃→ 1), the inviscid pressure (with the Bv term) is written as

P (x̃→ 1, t)−P∞ = ρ

(1

2
a0(t) + 2

∞∑
n=1

nan(t) +
Bv/2

2
√

2

√
1− x̃

2
+

1

2
Bv(t)a0v(t)

)√
1− x̃

2
+
Bv(t)/2√

1−x̃
2

 .
(2.10)

Equation (2.10) reduces to (2.2) in the work of Brown & Stewartson (1970) for the steady

case (k = 0). In this case, an = 0 ∀ n ≥ 1; a0 = −2U2αs; and a0v = 0, which yields

equation (2.1) in this work. It also reduces to (2.7) in the work of Brown & Daniels (1975)

for their case of a harmonically pitching flat plate about its mid-chord point at very high
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frequency (k � 1). In this case, a0 and a1 (proportional to α̇) are neglected with respect to

a2 = −b2α̈/4, and an = 0 ∀ n > 2.

The unsteady inviscid pressure (2.10) has the same form as the steady one (2.1) with

αs(t) ≡
1

U2

∣∣∣∣∣12a0(t) + 2
∞∑
n=1

nan(t) +
1

2
Bv(t)a0v(t)

∣∣∣∣∣ , (2.11)

Bv(t) ≡ Bs = −2ε3λ−5/4

(
1

2
a0(t) + 2

∞∑
n=1

nan(t) +
1

2
Bv(t)a0v(t)

)
Be(αe). (2.12)

Note that after matching with the steady pressure at the trailing-edge, the second term in

the right hand side of equation (2.1) cancels the third term on the right hand side of the

equation (2.10) as Bs = Bv. Therefore, this term does not contribute in the developed

theoretical model. This comparison, along with the fact that the time-derivative term does

not enter the triple deck equations, points to the possibility of directly using the steady

solution by Chow & Melnik (1976) of the inner deck equations for the unsteady case with

the equivalence shown above, valid in the range 0 < k � O(R1/4). In the above equivalence,

if the term 1
2
a0 + 2

∑∞
n=1 nan + 1

2
Bva0v is negative, then the top of the oscillating thin airfoil

will correspond to the top of the steady plate; and if is positive, then the top of the oscillating

thin airfoil should correspond to the bottom of the steady plate. In either case, the equivalent

steady angle of attack αs would be positive. In fact, this correspondence has lead to the

following interesting behavior: While there is always a significant lift decrease at the trailing

edge stall angle in the steady case as shown in figure 2.5, there can be either increase or

decrease in the unsteady lift when αs reaches the trailing edge stall value, as shown by

Brown & Cheng (1981). The above equivalence was mistakenly performed in (Brown &

Cheng, 1981, see equations (2.2,2.9,2.12) in their work).

The application procedure will be as follows. The airfoil kinematics will be used to determine
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the instantaneous values of an(t) via the no-penetration boundary condition (2.5,2.6). These

coefficients will define the equivalent steady angle of attack αs according to (2.11), which

defines αe according to (2.2), resulting in Be via the numerical solution of Chow & Melnik

(1976). Finally, the Bv will be determined from Be and the an’s according to (2.12), which

represents the viscous correction to the Kutta condition and consequently to the lift and

moment as

CL = − π

U2
[a0 + a1 +Bv (1 + a0v)] and CM0 =

π

4U2
[a2 − a0 +Bv (1− a0v)] . (2.13)

This procedure is iterative at each time step because the input (αs) depends on the output

(Bv): to determine αs, one needs Bv, which would not be determined until αs is known.

However, our computational results show that the Bv-contribution to αs is quite negligible.

As such, it is fair to consider the following equivalence instead of (2.11,2.12)

αs(t) ≡
1

U2

∣∣∣∣∣12a0(t) + 2
∞∑
n=1

nan(t)

∣∣∣∣∣ , Bv(t) ≡ −2ε3λ−5/4

(
1

2
a0(t) + 2

∞∑
n=1

nan(t)

)
Be(αe),

(2.14)

which eliminates the need for iteration at each time step.

It should be noted that this procedure admits arbitrary time variation of the airfoil camber

(not necessarily harmonic); only a0 should be modified accordingly instead of using (2.6).

Nevertheless, because there might not be exact closed-form expressions for a0(t) due to other

kinematics (e.g., step input), we recommend using (2.6) to construct a viscous frequency

response (describing function Krylov & Bogoliubov, 1943), assuming a weakly nonlinear

system, and then using the Fourier transform to obtain the viscous lift force and pitching

moment due to an arbitrarily time-varying camber (as shown in Garrick, 1938; Bisplinghoff

et al., 1996, pp. 282-283). This procedure is demonstrated in more detail in the next section.

For more examples on describing function analysis, please refer to Slotine et al. (1991).
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2.4 Viscous Lift Frequency Response

2.4.1 Setup of the Frequency Response (Describing Function)

The above approach can be used to construct a viscous extension of Theodorsen’s function

at a given Reynolds number. For practical use, we opt to show such an extension for a

pitching-plunging flat plate. The problem setup, governing equation and boundary condition

are shown in figure 1.2 when pitching and plunging motions are harmonic. In this case, the

normal velocity of the plate (assuming small disturbances ḣ and α) is written as

vp(x, t) = ḣ(t)− α̇(t)(x− ab)− Uα, −b ≤ x ≤ b, (2.15)

where h is the plunging displacement (positive upward) and α is the pitching angle (angle

of attack, positive clockwise), and ab represents the chordwise distance from the mid-chord

point to the hinge point, as shown in figure 2.7. This kinematics results in

b0(t) = 2
[
ḣ(t) + abα̇(t)− Uα

]
= 2v1/2(t), b1(t) = −bα̇(t) and bn = 0 ∀n > 1,

where v1/2 is the normal velocity of the mid-chord point. As such, for the harmonic motion

h(t) = Hbeiωt and α(t) = Aαe
iωt, (2.16)

equations (2.5,2.6) result in the following coefficients

a0(t) = U
[
2V3/4C(k)eiωt + bα̇(t)

]
, a1(t) = bv̇1/2 − bUα̇(t), a2(t) = −b

2α̈(t)

4
, (2.17)
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where v3/4(t) = V3/4e
iωt is the normal velocity at the three-quarter-chord point. Also, the

coefficient a0v is given by (Brown & Cheng, 1981)

a0v = 2C(k)− 1.

Note that in this harmonic formulation, equation (2.17) may yield complex values for the

coefficients an’s; the actual coefficients, to be used in the series (2.9), are determined by taking

the real parts of those in (2.17). In the common classification proposed by Theodorsen (1935),

the coefficient a0 represents the circulatory contribution while the other two coefficients (a1,

a2) represent the non-circulatory contribution. The lift coefficient is then written as

CL(t) = −π
bv̇1/2(t)

U2︸ ︷︷ ︸
Non−circulatory

+ 2πα3/4(t)C(k)︸ ︷︷ ︸
Circulatory︸ ︷︷ ︸

Potential Flow Solution

− 2πB̃v(t)C(k)︸ ︷︷ ︸
Viscous Correction

, (2.18)

where B̃v = Bv

U2 , α3/4 is the local angle of attack at the three-quarter-chord point (as recom-

mended by Pistolesi theorem Schlichting & Truckenbrodt, 1979, pp. 80), and the multipli-

cation α3/4(t)C(k) is interpreted after writing α3/4(t) = α3/4e
iωt as

(
α3/4C(k)

)
(t) = <

(
α3/4C(k)eiωt

)
,

where α3/4 may be a complex number and <(.) denotes the real part of its complex argument.

Recall that if u(t) = Aeiωt is the input to a linear dynamical system whose frequency re-

sponse is G(iω), then the steady state output is simply written as y(t) = A|G(iω)|eiωt+arg G(iω)

(Ogata & Yang, 1970). The describing function technique represents an extension of the fre-

quency response concept for weakly nonlinear systems

(Krylov & Bogoliubov, 1943). In this technique, only the response at the fundamental fre-

quency is considered and the higher harmonics are neglected. As such, the response of a
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weakly nonlinear system to the input u(t) = Aeiωt is approximated as y(t) = Y (A, ω)eiωt+φ(A,ω).

That is, unlike linear systems, the magnitude and phase of the transfer function depend on

the input amplitude. Using such a technique, we provide below a viscous extension of

Theodorsen’s frequency response; i.e., the frequency response between the quasi-steady lift

(input) and the viscous circulatory lift (output).

The system possesses two nonlinearities as shown in figure 2.9: a multiplicative nonlinearity

and the triple deck viscous nonlinearity. The former is due to interactions between the

airfoil motion (represented by an’s) and the trailing edge singular behavior (represented by

Bs) while the latter is due to the steady triple deck nonlinear characteristics, determined

numerically by Chow & Melnik (1976), and shown here in figure 2.3(b). The effect of these

nonlinearities is minimal with respect to the main linear contribution at small angles of

attack as evident from the power spectra (FFT) of the total circulatory lift coefficient CLC

shown in figure 2.8(a) for the case of pitching around the mid-chord point with Aα = 1◦ at

k = 0.8 and R = 105. The FFT of CLC has a single distinct peak at the operating frequency

(k = 0.8). In fact, even the viscous contribution (the Bv-term) is mostly linear despite the

existence of a weak cubic nonlinearity as evident from its FFT shown in figure 2.8(b). This

weakly nonlinear behavior of the system justifies the use of the describing function approach

(akin to linearization) to construct a frequency response. It is interesting to note that the

triple deck theory confirms the common expectation that the most significant term in the

power series expansion of lift in terms of the angle of attack after the linear term is the cubic

one (Ding & Wang, 2006; Librescu et al., 2003). It is also interesting to point out that even

at this small amplitude (Aα = 1◦) and relatively large Reynolds number (R = 105), the

viscous contribution is about 19%, as shown in figure 2.8(a).
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Figure 2.8: Power spectra (FFT) of the total circulatory lift coefficient CLC and the viscous
correction πB̃v, both normalized by 2πAα, for the case of a flat plate pitching around the
mid-chord point with Aα = 1◦ at k = 0.8 and R = 105. The behavior is almost linear with
single distinct peak at this small amplitude.

2.4.2 Computation Procedure

As described in chapter 1, the ultimate goal in unsteady aerodynamics is to determine the

aerodynamics loads on a moving airfoil. Following the problem setup by Theodorsen shown

in figure 1.2 and the circulatory non-circulatory classification by him, we show how the new

viscous correction is accommodated. Let k and R be given. Then, the quasi-steady lift

coefficient (input to the sought lift dynamical system) is written as

CLQS(t) = 2πα3/4(t).

Also, the coefficients a0, a1, and a2 are given from (2.17). Thus, αs can be obtained accord-

ingly from (2.14), however, care should be taken when applying (2.14). It should be applied

instantaneously as

αs(t) =
1

U2

∣∣∣∣12a0(t) + 2a1(t) + 4a2(t)

∣∣∣∣ .
As such, the scaled angle of attack αe(t) for the numerical solution of Chow & Melnik (1976)

is obtained from (2.2) with ε = R−1/8. Using, figure 2.3(b), one can obtain Be(t), which in
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turn is substituted in (2.2) to determine the strength Bs of the equivalent steady trailing

edge singularity. Then, (2.14) will yield the viscous correction Bv(t). As such, the unsteady

viscous circulatory lift coefficient is determined from (2.18) by excluding the first term, i.e.,

CLC (t) = <
[
2πα3/4(t)C(k)− πB̃v(t)

]
. (2.19)

Finally, a spectral analysis (e.g., FFT) is applied to CLC (t) to extract its relative amplitude

and phase shift with respect to CLQS(t). That is, the circulatory-lift viscous transfer function

Cv is defined as

Cv(k;Re) ,
CLC (k;Re)

CLQS(k)
.

Figure 2.9 shows a block diagram for the dynamics of the unsteady viscous circulatory lift.

Note that if αe(t) exceeds 0.47, then the simulation should be terminated because such a value

implies trailing edge stall beyond which the current analysis is not valid. This limitation

defines the region of applicability of the developed model. For example, the model can handle

an oscillation about the mid-chord point with 3◦ amplitude at 0.4 reduced frequency and

10, 000 Reynolds number. However, it cannot handle the same situation when the amplitude

is increased to 4◦ as αe(t) would exceed 0.47 during the course of the simulation.

Following the above procedure, we construct frequency responses of the unsteady, viscous,

circulatory lift coefficient CLC at different Reynolds numbers, which are shown in figure 2.10

in comparison to Theodorsen’s. Intuitively, as R increases, the viscous response approaches

the inviscid Theodorsen’s response and vice versa. The current theory does not predict a

considerable change in the magnitude from the inviscid Theodorsen’s solution. However, it

is found that viscosity induces a significant phase lag beyond Theodorsen’s; the larger the

oscillation frequency and the smaller the Reynolds number are, the larger the discrepancy is

between Theodorsen’s phase lag and the viscous results. Interestingly, this finding supports
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Figure 2.9: A block diagram showing the different components constituting the dynamics
of the viscous circulatory lift. The airfoil motion dictates the angle of attack α3/4 at the
three-quarter-chord point, which is the main input to Theodorsen’s inviscid linear dynamics,
resulting in the potential flow circulatory lift. The upper branch represents the viscous
correction developed in this work. The correction term B̃v represents a singularity in the
inviscid pressure distribution at the trailing edge. It should be set to zero according the
Kutta condition. Rather, it is obtained here from the triple deck boundary layer theory.
The airfoil motion goes into some linear dynamics (that includes Theodorsen function) to
obtain an equivalent steady angle of attack, which will be used in the nonlinear triple deck
theory to obtain the viscous correction to the circulatory lift.
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Figure 2.10: Comparison between the frequency responses of the unsteady, viscous, cir-
culatory lift coefficient CLC at different Reynolds numbers and that of the potential flow
circulatory lift coefficient (i.e., Theodorsen’s). The larger the frequency and the lower the
Reynolds number, the larger the discrepancy in phase between Theodorsen function and the
viscous frequency response.
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the conclusions of some of the earlier experimental efforts (Chu & Abramson, 1959; Bass

et al., 1982): Chu & Abramson (1959) suggested adding a phase lag of −10◦ to Theodorsen

function for a better estimate of the unsteady lift and flutter boundary when k ' 0.5. Bass

et al. (1982) conducted a water tunnel experiment for a NACA 16-012 undergoing pitching

oscillations around its quarter-chord point in the range of 0.5 < k < 10 and R = 6, 500 −

26, 500. They compared their force measurements to Theodorsen’s potential flow frequency

response. They found bad agreement in the range 0.5 < k < 2 where the most pronounced

boundary layer activity is observed and the flow near trailing edge being separated and

alternating around the trailing edge. They concluded that adding a phase lag of −30◦ to

the Theodorsen’s C(k) would make the predicted lift from the classical theory of unsteady

aerodynamics match their experimental measurements over this range, which supports the

current results shown in figure 2.10.

This finding is particularly important for the determination of the flutter boundary (e.g.,

Alben, 2008; Mandre & Mahadevan, 2010; Zakaria et al., 2015; Hussein & Canfield, 2017).

Note that the flutter instability, similar to any typical Hopf bifurcation, is mainly dictated

by when energy is added/subtracted during the cycle. That is, the phase difference between

the applied loads (aerodynamic loads) and the system motion (e.g., angle of attack) plays a

crucial role in dictating the stability boundary (Bisplinghoff et al., 1996, pp. 280). There-

fore, if the Theodorsen function does not capture such a phase difference correctly, it will

typically lead to an erroneous flutter stability boundary. Hence, if the current model better

captures the phase lag, it may enhance our flutter predictability, if occurring at high reduced

frequencies. Based on this discussion, we suggest using the obtained viscous frequency re-

sponses in place of Theodorsen’s for a more accurate, yet efficient, estimate of the flutter

boundary. This point will be discussed further below from an added mass point of view in

the last section.
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2.5 Validation via Computational Simulation

In this section, we investigate the effect of viscosity on the lift frequency response using

a higher fidelity simulation of the Navier Stokes equations to support/refute the theoret-

ical findings in the last section. Although the developed theory should be valid only for

the laminar regime, it is interesting to assess its performance in high Reynolds number

turbulent flows as well to investigate its ability to capture the global picture of the flow

field and some important integrated quantities such as the generated aerodynamic loads.

For this purpose, two computational setups have been constructed using the finite volume

based software package ANSYS FLUENT: (1) unsteady laminar simulation and (2) Unsteady

Reynolds-averaged-Navier-Stokes (URANS). For the latter setup, it is important to select an

appropriate turbulence model that accurately captures the behavior of the integrated global

quantities of interest (e.g., the lift dynamics). Note that details of the small-scale features in

the flow will not be captured by averaging; large eddy or direct numerical simulations will

be needed instead. However, this is beyond the scope of this work. The k − ω turbulence

model is well-known for its superiority in handling complex boundary layer flows with adverse

pressure gradients (Wilcox, 1998; Menter, 1994). However, it may result in early transition

and separation and is sensitive to inlet boundary conditions. Nevertheless, no severe ad-

verse pressure gradient and separation are expected in the current investigations with small

amplitudes. We also assume a fully turbulent flow in the high Reynolds number simulation

cases (i.e., no transition). Therefore, the k−ω model should be quite suitable for the current

application, with the caveat of being sensitive to free stream inlet conditions. This issue is

resolved by selecting its extension: the shear-stress-transport (SST) k−ω, which makes use

of the k − ω model near the wall and the k − ε model in the free stream and wake regions.

As such, the k − ω SST exploits the k − ω capabilities in capturing the boundary layer and

its adverse pressure gradient while mitigating its sensitivity to inlet conditions (such as the

free stream turbulence intensity). Hence, it is an almost perfect choice for the current study
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when performing simulations at high Reynolds numbers, assuming a fully turbulent flow.

In relation to the numerical setup, the pressure velocity coupling was tackled by the SIMPLE

algorithm. All the spatial discretization were second order upwind. Implicit second order

discretization was chosen for transient terms. The convergence criterion for all the variables

were set to be 10−6 at each time step. To select an appropriate value for the time step, three

numerical simulations were performed using 500, 250, and 150 time steps per pitching cycle

(nt). For instance, if the period of pitching motion is T , the simulation time steps will be

T/nt. It was found that 250 sample per cycle is sufficient to obtain well-converged results.

In each simulation, the number of cycles are chosen to be sufficient for a periodic lift pattern

to establish.

2.5.1 Computational Setup

The O-Type far field located 25c away from the solid body has been implemented for grid

generation around the standard NACA 0012 airfoil with sharp trailing edge. In return of

closing the blunt trailing edge of the original NACA 0012, the thickness of the airfoil altered

to 11.9%. To construct the dynamic mesh due to the airfoil motion, the computational

domain is divided into three rings as shown in figure 2.11. The inner ring (red), which

encloses the airfoil, has the radius of 6c. In this region, hybrid mesh is used such that

a boundary layer structure dense mesh near the airfoil guarantees dimensionless distance

y+ ≡ ρuτy
µ

< 1 (where uτ =

√
τw
ρ

is the friction velocity, τw = dU
dy
|y=yw is the wall shear

stress, and y is the distance from the nearest wall) for all the case studies, in conjunction

with an unstructured tri-mesh attached to it. The distance of the first layer of the mesh

was set to be 10−5c with 1.1 growth factor, which guarantees that the triple deck structure,

O(R−3/4), is well resolved at the highest Reynolds number (106) in this simulation. A total

of 300 mesh points were used on each side of the airfoil. A size function has been used to
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Figure 2.11: O-Type mesh around the airfoil with the outer ring being fixed, the inner ring
moves rigidly with the airfoil, and the intermediate ring represents the deforming dynamic
mesh.
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ensure that the unstructured mesh in the inner ring is dense enough to capture the shed

vortices if needed. The whole inner ring including the airfoil undergos a rigid body pitching

motion. No dynamic mesh is used in this region to ensure that the grids near the airfoil

maintain their fine configuration and quality as they were before the motion.

The outer ring located at 25c away from the airfoil is stationary as if no motion is taking

place inside the domain. This fixed mesh near the outer boundaries certifies that the farfiled

boundary conditions are applied correctly. The intermediate ring plays the main role of the

dynamic mesh. The inner radius of this ring is 6c and the outer radius is 18c; it occupies a

large region inside the domain. It should be noted that these values (6c and 18c) are obtained

based on a few tries and errors to minimize the mesh deformations in this region and to leave

enough room for the outer and inner grids to be generated. Based on the airfoil geometry,

prescribed deflections and required accuracy, these numbers might change, although did not

seem to have a significant effect on the results based on the author’s experience as long as

reasonable values are chosen. Moreover, since the computational time is not a big concern

in this project, it is tried to have very good grid resolution. Both remeshing and deforming

techniques are utilized to damp the deformations in the region caused by the motion of the

inner ring. A User Defined Function is attached to the solver to impose an arbitrary motion

to the airfoil and prevent high skewness in the dynamic mesh zone. The advantage of this

method may not be sensible when deflections are small, yet it demonstrates its ability in

damping mesh deformations at large motion amplitude. The large size of the intermediate

region gives enough room to handle excessive deflections. The total number of grids is

roughly 2× 105. For more information about the computational setup, the reader is referred

to our earlier effort (Rezaei & Taha, 2017). Mesh independence study has been performed by

running another case in which the grids were twice denser and no alternation in the results

has been observed. Thus, the aforementioned mesh configuration was utilized in all of the

forthcoming simulations.
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Since the flow is assumed to be incompressible, velocity inlet and pressure outlet, correspond-

ing to left semi-circle and right semi-circle respectively, were set as the far field boundary

conditions. In all the simulations, the gauge pressure at the outlet boundary condition was

set to zero. The no-slip boundary condition is imposed on the airfoil which is undergoing

the harmonic pitching motion α = Aα sinωt with a pitching amplitude of Aα = 3 degrees

to ensure that the airfoil is in the pre-stall regime (Schlichting & Truckenbrodt, 1979). The

chord length of the airfoil is 18cm and the magnitude of the velocity at the inlet boundary

is 1 m/s and 10 m/s corresponding to R = 104 and R = 105, respectively. The laminar

solver is used in the lower Reynolds number R = 104 and the unsteady Reynolds averaged

Navier-stokes equations (URANS) are used in the case of the high R = 105. Although in the

theoretical development in the previous sections the effect of turbulence is not considered,

the URANS simulations are carried out as they calculate average quantities and to assess the

applicability of the theory to find the global aerodynamic loads at higher Reynolds numbers

where the flow is no longer laminar. For these cases, the turbulent intensity of the flow was

set to 0.1%. Note that the free stream turbulence intensity is not expected to significantly

affect the results because the k − ω SST turbulence model utilizes the k − ε model in the

free stream region, which is robust to changes in the inlet conditions; our simulations with

changing the inlet turbulence intensity ten folds did not show an appreciable change in the

lift dynamics.

As mentioned above, y+ < 1 is required for the grid resolution near the wall since the adopted

turbulence model (k − ω SST ) does not utilize wall function, but is valid all the way down

to the near-wall region. To quantify that the lower deck (∼ cR−5/8) provided in figure 2.2 is

resolved, the length of the first layer of the grids near the wall hw is compared against the

lower deck length scale. Since hw = 10−5c = 1.8× 10−6m and cR−5/8 = 1.35 ∗ 10−4, the grid

resolution is capable of resolving the triple-deck structure.

Figure 2.12 shows the distribution of the pressure difference (i.e., lift distribution) over the
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(b) R = 104 and k = 1.

Figure 2.12: Comparison for the pressure distribution over the flat plate from the inviscid
theory, the current viscous theory, and computational simulations in the case of a harmon-
ically pitching airfoil about its quarter-chord with 3◦ amplitude at k = 1 and (a) R = 105,
(b) R = 104. In the former case, a URANS solver is used whereas a laminar solver is used
in the latter case. The figures show the pressure distributions at the instant of zero pitching
angle α(t) = 0 and maximum upward pitching velocity α̇.

flat plate for the case of pitching about the quarter-chord with 3◦ amplitude at k = 1

for two Reynolds numbers R = 105, R = 104. The figure shows results from the inviscid

theory (i.e., twice the result of (2.3)), which is insensitive with respect to R; the developed

viscous theory (i.e., twice the result of (2.9)); and the computational simulations described

above. Very good matching between the computational simulations and the developed theory

is found. It should be noted that the selected instant (α(t) = 0 and α̇ maximum) is a

critical instant during the cycle where the flat plate is on the verge of trailing edge stall,

as shown in figure 2.13: when α(t) = 0 and α̇ is maximum, at this relatively high k,

the equivalent αe becomes very close to the trailing edge stall value 0.47. Both results

from computational simulations and the current boundary layer theory indicate that, as R

decreases, the pressure distribution at this critical moment deviates more from the inviscid

one; the pressure distribution decreases and shifts to the left (i.e., the pressure attains its

maximum earlier on the airfoil). The developed theory captures this behavior by adding a

singularity at the trailing edge, which bends the pressure distribution curve downward and to

the left. However, it is precisely this trailing edge singularity that causes discrepancy between

the predicted singular pressure and the actual non-singular pressure at the trailing edge.
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Figure 2.13: Variation of the equivalent angle of attack αe over the cycle along with the
actual angle of attack α for the case of a harmonically pitching flat plate about its quarter-
chord with 3◦ amplitude at k = 1 and R = 104. At this relatively high k, the instant of
maximum α̇ renders the airfoil on the verge of trailing edge stall in comparison to the instant
of the maximum α.

Nevertheless, the strength of this singularity decreases as R increases and the discrepancy

becomes more confined to the immediate vicinity of the trailing edge (i.e., agreement with

the computational simulations over a wider range of the airfoil). We emphasize that the

developed theory should be valid only for high Reynolds numbers. In other words, the results

of the developed theory should be only interpreted as providing a first-order correction to the

inviscid results for finite Reynolds numbers; from this point of view, it is quite satisfactory.

One more point that is noteworthy, though it does not seem to be significant here, is that

the developed theory is for an infinitely thin airfoil whereas the computational simulations

are performed for a finite-thickness airfoil (NACA 0012) that can affect the potential flow

pressure outside of the boundary layer due to curvature. This induces adverse pressure

gradient downstream of the maximum thickness point; thus, the flow becomes more prone

to separation.
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2.5.2 Computation of the Viscous Lift Frequency Response Func-

tion

In this study, we show how the viscous lift frequency response (describing function) is deter-

mined from computational simulations at a given Reynolds number. Similar to Theodorsen

(1935), this transfer function is defined as the ratio between the circulatory lift coefficient and

the quasi-steady lift coefficient. As such, given a combination of k and R, our computational

setup is simulated to result in a time history of the total lift coefficient CLtot . According to

the describing function approach (Krylov & Bogoliubov, 1943), the Fourier transform ĈLtot

of the total lift coefficient at the fundamental frequency k is considered; it is a complex

number, as shown in figure 2.14. To extract the circulatory contribution ĈLC from ĈLtot ,

the non-circulatory contribution must be subtracted. Adopting Theodorsen’s estimate 1 for

the non-circulatory loads in the case of a pitching airfoil around the quarter-chord point, we

obtain

CLNC = π
b

U

(
α̇ +

bα̈

2U

)
⇒ ĈLNC (k) = πAα

(
ik − k2/2

)
.

As such, the circulatory lift frequency response is obtained as ĈLC = ĈLtot− ĈLNC , as shown

graphically in figure 2.14. Then, the complex number ĈLC is divided by the quasi-steady lift

CLQS = 2πα3/4 = 2π

(
α +

α̇b

U

)
⇒ ĈLQS = 2πAα (1 + ik)

to obtain the viscous lift transfer function Cv(k;R) =
ĈLC (k;R)

ĈLQS (k)
.

Figure 2.15 shows the computed viscous lift frequency response function at two different

Reynolds numbers: R = 105 and R = 104; the former is obtained using URANS and the

latter is obtained using the laminar solver. The figure also shows the inviscid Theodorsen’s

1Theodorsen’s estimate for the non-circulatory loads may not be accurate as will be discussed below.
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Figure 2.14: Complex plane showing the different lift components.

lift frequency response function and the developed viscous extension for comparison. For the

case of R = 104, the convergence properties of the laminar solver at lower k values were not

satisfactory and therefore omitted. It is found that the magnitude of the transfer function

decreases as R decreases and k increase (conforming with the results of Zakaria et al., 2017),

which was not captured using the triple deck theory. However, the computational phase

results corroborate the theoretical findings discussed above. That is, at lower Reynolds

numbers and higher frequencies, there is a significant deviation from Theodorsen’s phase

prediction. In fact, there is a satisfactory quantitative agreement between the theoretical

phase lag predictions and computational results. This additional phase lag may significantly

affect the prediction of an instability boundary (e.g., flutter) as discussed above. Note that

Bisplinghoff et al. (1996, pp. 280) emphasized the importance of unsteady phase lag in

dictating flutter boundary even at low reduced frequencies (e.g., k = 0.1) where the phase

lag is already very small. Therefore, since the developed theory provides a better estimate

of the unsteady phase lag than Theodorsen function, particularly at large k and low R,

it is expected to enhance our retarding capability in predicting flutter, which is discussed

further below from an added mass point of view. It should be noted that most of the earlier

experimental efforts that reported failure in predicting flutter (or unsteady loads) lie in the
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Figure 2.15: Computational results of the frequency responses of the unsteady, viscous,
circulatory lift coefficient CLC at different Reynolds numbers. The computational results
support the theoretical finding that the larger the frequency and the lower the Reynolds
number, the larger the discrepancy in phase between Theodorsen function and the viscous
frequency response.

high-frequency range: k ' 0.5 (Chu & Abramson, 1959), k ' 0.6 − 1.4 (Henry, 1961),

k ' 0.7 (Abramson & Ransleben, 1965), and k ' 0.5 − 10.0 (Bass et al., 1982). Therefore,

it is expected that the developed theory may help reconcile the concerns raised in these

efforts; a quantitative assessment of the effect of the predicted additional phase lag on the

flutter boundary will be addressed in future work. Having said that, one should emphasize

that the flutter frequency of conventional airplane wings is usually in the order of k = 0.1

(Bisplinghoff et al., 1996, pp. 280), for which the current theory results in a phase close

to Theodorsen’s. However, it is expected that the developed theory will be useful for the

flutter prediction of the next generation unconventional designs with highly flexible wings

(typically with higher flutter frequencies).

It is noteworthy to mention that a better matching between the theoretical phase lag predic-

tions and computational results is obtained when using the eddy viscosity in the developed

boundary layer theory, as shown in figure 2.16 for the case of R = 106. In this case,

a Reynolds number based on the average value of the eddy viscosity (obtained from the

URANS simulations) is used in the developed theoretical model. That is, even when oper-

ating at a high Reynolds number where the deviations between Theodorsen results and the
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Figure 2.16: Phase of the lift frequency response at R = 106 when using molecular and
eddy viscosity. Using eddy viscosity enhances the matching between the theoretical phase
lag predictions and computational simulations. Turbulent viscosity ratio of 10 is used based
on URANS simulations.

developed theory and computational simulations are minimal, the effective Reynolds number

is actually less implying that the phase predictions of Theodorsen function are quite off at

high frequencies. Note that as R decreases, the turbulent viscosity ratio decreases and its

effect on the developed theory may be neglected.

2.6 Physical Illustrations: Viscosity Induced Lag and

the Kutta Condition

2.6.1 Viscosity Induced Lag

The fact that viscosity induces phase lag in the flow response is well known from classical

fluid problems. For example, the laminar viscous flow in a pipe due to an oscillatory pressure

gradient shows phase lag between the input pressure gradient and the flow response (e.g.,

velocity distribution, wall shear or vorticity Langlois & Deville, 2014, pp. 113-116). Also,
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recall the Stokes second problem: the flow above an oscillating infinite plate, shown in

figure 2.17. This problem is one of the few simple problems where an analytical solution

of the Navier Stokes equations is available (Batchelor, 2000, pp. 191-193; Lamb, 1932, pp.

619-623; Langlois & Deville, 2014, pp. 109-111), which results in the following velocity

distribution

u(y, t) = Ue−y/δ cos (ωt− y/δ) , (2.20)

where δ =
√

2ν/ω is the thickness of the boundary layer (Stokes layer) and ν is the fluid’s

kinematic viscosity. Equation (2.20) clearly shows the phase lag between the input (plate

motion) to the flow dynamics and the flow response and that this phase lag increases with

the fluid viscosity. Moreover, the vorticity in the boundary layer experiences even more lag

in development with respect to the plate motion than the fluid velocity as shown in the

vorticity response

ζ(y, t) = −∂u
∂y

=

√
2U

δ
e−y/δ cos (ωt− y/δ − π/4) . (2.21)

The generation of vorticity in the boundary layer is particularly important for the explanation

of the observed lag in the lift frequency response of an oscillating airfoil, for the lift evolution

is intimately related to vorticity generation and circulation development.

Figure 2.17: Stokes Second Problem: Flow above an oscillating infinite plate.
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2.6.2 Viscous Damping and Lag in Circulation Development

To show that the observed phase lag in the lift frequency response is due to lag in the

development of the bound circulation, we computed the latter by performing a line integral

of the tangential velocity along a closed contour around the airfoil. Then, we followed a

similar procedure to the one presented in the last section to construct a frequency response

(describing function) between the quasi-steady circulation ΓQS as an input and the viscous

unsteady bound circulation Γ as an output. The former is determined as

ΓQS = UbCLQS = 2πbU

(
α +

α̇b

U

)
⇒ Γ̂QS = 2πUbAα (1 + ik) . (2.22)

Figure 2.18 shows a comparison between the viscous transfer function Γ̂

Γ̂QS
of the circulation

response from computational simulations and the corresponding potential flow one, which

is different from the Theodorsen function C(k). Rather, it is given as (Bisplinghoff et al.,

1996, pp. 275-276)

Γ̂P

Γ̂QS
(k) =

−2e−ik

ikπ
(
H

(2)
1 (k) + iH

(2)
0 (k)

) , (2.23)

where ΓP denotes the potential flow unsteady bound circulation. Similar to the lift transfer

function Cv(k;R) =
ĈLC (k;R)

ĈLQS (k)
, the circulation transfer function Γ̂

Γ̂QS
experiences more phase

lag due to viscosity at high frequencies than its potential flow counterpart.

Figure 2.19 shows the vorticity contours during the cycle of a harmonically pitching NACA

0012 airfoil about its quarter-chord with 3◦ amplitude at k = 1 and two different Reynolds

numbers R = 105 and R = 104. First, figure 2.19(a) shows that for this relatively high k, the

wake is more deformed at the instants of zero pitching angle (α = 0) and maximum angular

velocity α̇ in comparison to the instants of maximum α with α̇ = 0. This fact, similar to the

theoretical findings above, implies that the airfoil would be more prone to trailing edge stall
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Figure 2.18: Computational results of the frequency responses of the unsteady, viscous,
bound circulation at different Reynolds numbers. A behavior similar to the circulatory lift
frequency response is observed: the larger the frequency, the larger the discrepancy in phase
between inviscid and viscous responses.

(a) R = 105 and k = 1.

(b) R = 104 and k = 1.

Figure 2.19: Vorticity contours during the cycle of a harmonically pitching NACA 0012
airfoil about its quarter-chord with 3◦ amplitude at k = 1 and (a) R = 105, (b) R = 104. As
R decreases, viscosity damps the deformation of wake vorticity.

at the instants of maximum α̇ when oscillating at high frequencies. Second, the comparison

between the two sets of figures at the two values of R indicates a much less wake activity

(deformation) for lower R, which is intuitively expected due to viscous damping. From a

dynamical system perspective, this damping of wake vorticity will be typically associated

with lag in its development which, via conservation of circulation, points to a lag in the

bound circulation development. Therefore, it may explain the larger phase lag of the lift

frequency response found at lower Reynolds numbers and higher frequencies.

55



2.6.3 Lag in Circulation Development and the Kutta Condition

One may be able to relate the observed lag in the circulatory lift frequency response (due

to lag in the circulation development) to the Kutta condition. Note that the trailing edge

singularity term in the pressure distribution (2.9) is the main modification introduced to the

inviscid pressure distribution (2.3). Therefore, the observed additional lag in the lift response

may be related to the pressure near the trailing edge, which motivates the following analysis.

The Kutta condition at the sharp trailing edge can be stated in several ways such as (i)

finite velocity, (ii) zero loading, or (iii) continuous pressure, among others (see Sears, 1956).

In fact, some of these representations are, indeed, exact. For example, clearly, the pressure

must be continuous at the trailing edge. That, is

lim
y→0+

P (TE, y) = lim
y→0−

P (TE, y). (2.24)

However, the inviscid pressure distribution over the plate represents the distribution at the

edge of the boundary layer. That is, applying the condition (2.24) within the framework of

potential flow results in P1 = P2, where the points 1 and 2 lie on the edge of the boundary

layer at the trailing edge station as shown in figure 4.7.

1

2

+

+

TE

��x�

Figure 2.20: A zoom at the trailing edge and its boundary layer. The blue lines represent
the edge of the boundary layers and the red dots (points 1 and 2) represent the edge of
the boundary layers at the trailing edge x station. The potential flow theory, ignoring the
boundary layers, assumes the points 1, 2, and the trailing edge all lie on the top of each
other. Hence, the Kutta condition (continuous pressure at the trailing edge) would dictate
P1 = P2 neglecting the pressure rise across the boundary layer and its effect on the circulation
development over the airfoil.
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While Prandtl’s boundary layer assumption (pressure is constant along the boundary layer

thickness) is valid over the majority of the airfoil length, it is not necessarily valid in the

singular trailing edge region. As such, if ∆P is the pressure rise across the boundary layer,

then the condition (2.24) results in

P1 −∆P1 = P2 −∆P2, (2.25)

which is also suggested by Preston (1943) and Spence (1954) as a modification of the classical

Kutta condition (P1 = P2). Since the points 1 and 2 lie on the edge of the boundary layer,

one can use the unsteady Bernoulli’s equation to relate P1 and P2 as (Bisplinghoff et al.,

1996; Katz & Plotkin, 2001)

P1

ρ
+

1

2
V 2

1 +
∂φ1

∂t
=
P2

ρ
+

1

2
V 2

2 +
∂φ2

∂t
, (2.26)

where V is the potential flow velocity at the edge of the boundary layer and φ is the cor-

responding velocity potential. Combining (2.25) and (2.26) and realizing that φ1 − φ2 = Γ,

one obtains

Γ̇ =
1

2

(
V 2

2 − V 2
1

)
+

∆P2 −∆P1

ρ
. (2.27)

Equation (2.27) represents an exact (derived) version of the hypothesized Kutta condition.

In particular, it governs the evolution of the bound circulation over the airfoil; i.e., it provides

the dynamics of the bound circulation. Interestingly, it can be derived from a completely

different point of view than the continuity argument (2.24) which we opt to show below.

The underpinning concept is that the circulation is instantaneously conserved. That is, the

instantaneous rate of change of circulation Γ̇ is related to the total vorticity flux at separation

(Sears, 1976b). As such, assuming that separation occurs at the trailing edge (complying
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with the triple deck theory used in this section), we write

Γ̇ = −
[∫ δ1

0

ζ(y)u(y)dy +

∫ 0

−δ2
ζ(y)u(y)dy

]
, (2.28)

where ζ is the clockwise vorticity, u is the velocity parallel to the wall inside the boundary

layer, and δ is the boundary layer thickness. Also, Γ is assumed clockwise positive in this

chapter. Then, one can use the boundary layer theory along a curved surface (Goldstein,

1938, pp. 119-120; Sears, 1956) to write

∫ δ1

0

ζudy =

∫ δ1

0

(
∂u

∂y
+ κu

)
udy =

V 2
1

2
+

∆P1

ρ
, (2.29)

where κ is the curvature of the wall. Note that base on boundary layer theory (Goldstein,

1938), κ
∫ δ1

0
u2dy can be written as −1/ρ

∫ δ1
0

∂P
∂y
dy. Writing an expression for the vorticity

flux out of the boundary layer on the lower surface similar to (2.29) and substituting both

in (2.28), one immediately arrives at the condition (2.27).

Setting ∆P1 = ∆P2 = 0 along with V1,2 = U ± 1
2
γTE as typically done in the classical theory

of unsteady aerodynamics, the condition (2.27) results in

Γ̇Kutta(t) = −UγTE(t), (2.30)

where γTE is the circulation distribution at the trailing edge (instantaneous strength of the

shed vortex sheet per unit length at the shedding time). Equation (4.6) is equivalent to

the classical Kutta condition (P1 = P2) and it is ubiquitously used in the classical theory

of unsteady aerodynamics (Wagner, 1925; Loewy, 1957; Bisplinghoff et al., 1996, equation

5-318; Peters, 2008, equation 11-c, among others). Note that the main difference between

the exact condition (2.27) and the classical Kutta condition (4.6) is two assumptions: (i)

linearization (V1,2 = U ± 1
2
γTE) and (ii) negligence of the curvature terms ∆P1, ∆P2. The

first assumption may be valid for small disturbance (small angle of attack). Using a higher

58



fidelity computational simulations, we assess the validity of the second assumption. Figure

2.21 shows a comparison between the Kutta’s rate of circulation development Γ̇Kutta and the

viscous contribution proportional to ∆PTE = P2−P1, at different frequencies and Reynolds

numbers. It is found that the viscous contribution Γ̇∆P relative to the inviscid Γ̇Kutta is

not sensitive to frequency; it mainly depends on Reynolds number. This ratio is about

18%, irrespective of the frequency k, at the lower Reynolds number R = 104 versus 6-7% at

R = 105. Moreover, a higher frequency, though does not significantly affect the magnitude,

causes a significant phase shift for the viscous contribution, which will in turn affect the

phase of the total lift force at high-frequencies.

In summary, the lower Reynolds number, the larger the viscous contribution to the bound

circulation development relative to the inviscid one; and the higher the frequency, the larger

phase shift of this viscous contribution. That is, at higher frequencies and lower Reynolds

numbers, the viscous contribution to the bound circulation rate of development is of relatively

larger magnitude and phase shift. This point, in addition to the wake viscous damping

discussed above, may help explain the physical reasons behind the additional phase lag in

the lift response at high k and low R that could not be captured by the inviscid theory

even at very small amplitudes. Since this viscous contribution is essentially neglected in

the classical potential flow framework by virtue of the classical Kutta condition (4.6), it is

inferred that the Kutta condition is one of the reasons behind the inaccurate phase prediction

of Theodorsen’s lift frequency response function.

2.6.4 Viscous Reduction in Virtual Mass

A closer look at the viscous contribution Bv in (2.14) and its contribution to the lift in (2.19)

implies that the viscous lift contribution is proportional to (in phase with) the “effective”
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(b) R = 105 and k = 1.
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(c) R = 104 and k = 0.3.
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(d) R = 104 and k = 1.

Figure 2.21: Inviscid and viscous contributions (Γ̇Kutta, Γ̇∆P ) to the rate of bound circulation
development over NACA 0012 undergoing a pitching oscillation about the quarter-chord
point at different reduced frequencies and Reynolds numbers.
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angle of attack

αeff =
1

U2

[
1

2
a0(t) + 2

∞∑
n=1

nan(t)

]
.

Note that this αeff is different from the common notion of the effective angle of attack in

potential flow. The former is a term special to the developed theory while the latter is

simply given by the angle of attack α3/4 at the three-quarter-chord point (Schlichting &

Truckenbrodt, 1979, pp. 80). Equation (2.14) implies that the viscous contribution −πB̃v

to the lift coefficient is simply proportional to αeff :

−πB̃v(t) = f (|αeff(t)|)αeff(t),

where f(.) is a nonlinear function coming from the numerical solution of Chow & Melnik

(1976) to the triple deck problem, specifically from figure 2.3(b) and equation (2.2). This

nonlinear function mainly affects the magnitude of B̃v with a very weak effect on its phase,

as shown in Figs. 2.22, 2.23: the viscous contribution is almost exactly in phase with αeff .

Considering the studied case of a pitching flat plate about its quarter-chord point, the above

definition of the effective angle of attack can be manipulated to write its Fourier transform

as

α̂eff = α̂3/4C(k)− Aα
(
3ik − 2k2

)
.

Since the viscous contribution is proportional to αeff , it is fair to write

−π ˆ̃Bv(t) = 2πA
[
α̂3/4C(k)− Aα

(
3ik − 2k2

)]
, (2.31)

where A is the proportionality constant (actually dependent on αeff). Written this way, equa-

tion (2.31) implies that the viscous contribution actually has a component that is in phase
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Figure 2.22: A comparison between the time history of the inviscid circulatory lift α3/4C(k),
the effective angle of attack αeff for the developed viscous theory, the weighted effective
angle of attack or the viscous contribution −πB̃v, and the inviscid added-mass lift. All lift
coefficients are represented as effective angles of attack (i.e., normalized by 2π). Simulation
of the developed viscous model is performed for a flat plate pitching about its quarter-chord
point with amplitude 1◦ at k = 1 and R = 104. The viscous contribution −πB̃v is opposite
to the inviscid non-circulatory lift, decreasing the added mass effect by 92%.

with the inviscid circulatory lift α̂3/4C(k). Moreover, recalling the inviscid non-circulatory

lift in this case:

ĈLNC = πAα
(
ik − k2/2

)
,

equation (2.31) implies that the second component −Aα (3ik − 2k2) of the viscous contribu-

tion is opposite to the non-circulatory lift (added mass). This fact is clearly seen in Figs.

2.22, 2.23. Therefore, adding −πB̃v to the inviscid lift coefficient would decrease the added

mass and cause a phase lag for its contribution.

It is noteworthy to comment on the results shown in figure 2.22 for a pitching flat plate

about its quarter-chord point with amplitude 1◦ at k = 1 and R = 104. In addition to the

points addressed above (−πB̃v is almost-exactly in phase with αeff and out of phase with

CLNC ), it is interesting to see the apparent nonlinear response of the viscous contribution

even at this very small amplitude. Moreover, the phase lag between the inviscid circulatory

lift and viscous contribution is very clear, also in the Argand diagrams in figure 2.23. More
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(a) R = 105 and k = 1.
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Figure 2.23: Argand diagram showing different components of lift for a pitching flat plat
about its quarter-chord point at k = 1 and two different Reynolds numbers. All lift coeffi-
cients are represented as effective angles of attack (i.e., normalized by 2π). The term αeff is
scaled down to one fourth to enhance visualization. The viscous contribution B̃v increases
as R decreases, resulting in a larger phase difference between the inviscid circulatory contri-
bution α3/4C(k) and the total (viscous) circulatory component CLc , or a larger decrease in
the added mass effect.

importantly, the viscous contribution is as strong as the inviscid one at this low R and

high k: its magnitude is 66% of the inviscid circulatory lift or 92% of the non-circulatory

lift. Of course, decreasing the added mass by 92% would have a significant effect on flutter

(Bisplinghoff et al., 1996), if it happens at this low R and high k.

2.7 Conclusion

The triple deck theory is a boundary layer theory developed in the 1970’s to model local

interactions in the vicinity of the trailing edge of an airfoil due to the discontinuity of the

viscous boundary condition: from a zero-slip on the airfoil to a zero-stress on the wake

center line. We utilized this theory to develop a viscous extension of the classical theory of

unsteady aerodynamics, equivalently an unsteady extension of the viscous boundary layer

theory. In particular, we developed an analytical model for the viscous unsteady lift response

over a two-dimensional airfoil due to small amplitude maneuvers. The developed model

admits airfoil flexibility (i.e., time-varying camber). The main modification to the classical
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thin airfoil theory is the introduction of a trailing edge singularity term in the pressure

distribution. The amplitude of such a correction cannot be obtained from potential flow.

The Kutta condition dictates that it must vanish. We dodged the Kutta condition and

determined such a correction from pure viscous considerations: by drawing connections

with the steady triple deck theory. Using the developed model, we constructed, for the

first time, a theoretical viscous (Reynolds number dependent) extension of Theodorsen’s lift

frequency response. It was found that viscosity induces a significant additional lag in the lift

development that is not captured by Theodorsen, particularly at higher reduced frequencies

and lower Reynolds numbers. This finding was also supported by laminar simulations of

Navier Stokes equations on a sinusoidally pitching NACA 0012 at low Reynolds numbers

and using Reynolds-Averaged Navier Stokes equations at relatively high Reynolds numbers.

It was found that the viscosity-induced lag in the lift response can be interpreted as lag in

the circulation development. This lag in the circulation dynamics was related to the Kutta

condition via deriving an equation for the rate of change of circulation around the airfoil in

terms of the pressure rise across the boundary layer at the trailing edge. It was concluded that

the viscous contributions due to this pressure rise, which are typically neglected in a potential

flow analysis (employing the Kutta condition at the trailing edge), affect the magnitude

of circulation development at lower Reynolds numbers and induce phase shift at higher

frequencies. That is, the Kutta condition is one of the reasons behind the inaccurate phase

prediction of Theodorsen’s lift frequency response function. From a different perspective,

the viscous contribution to the unsteady lift was shown to significantly decrease the virtual

mass at low Reynolds numbers and high frequencies. Recalling that both the unsteady

phase lag of the circulatory lift and the virtual mass play crucial roles in determining the

flutter boundary, these findings may shed some light on the reasons behind our meager state

of flutter predictability using potential flow; it is expected that the developed theory would

enhance flutter prediction, particularly when occurring at high frequencies and low Reynolds

numbers.

64



Chapter 3

Viscous Extension of the Unsteady

Vortex Lattice Method

3.1 Background

As discussed in chapter 2, potential flow theory has been used in a wide range of applications.

These potential flow based approaches (e.g. Birnbaum & Ackermann (1923) thin airfoil the-

ory, Prandtl (1918) lifting line theory, Wagner (1925) and Theodorsen (1935) models, etc),

typically result in integral equations with singular kernels. As discussed by Belotserkovskii

(1977), one of the most convenient techniques to solve singular integral equations is via dis-

cretization resulting in linear algebraic system of equations (James, 1972). This approach

constructs the basis of the so-called Vortex Lattice Method (VLM) introduced by Falkner

(1943), which is customarily ascribed to the steady-state scenarios. In the case of transient

problems such as those associated with a moving airfoil (pitching, plunging or surging), the

Unsteady Vortex Lattice Method (UVLM) is used, which allows for wake deformation and

any arbitrary time-varying motion.
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Kutta condition has been extensively used as the needed auxiliary condition potential flow

framework (either the analytical or numerical version). Therefore, it is essential for aero-

dynamicists to have a fundamental grasp of the Kutta condition and how the viscosity is

explicitly neglected in potential flow, but implicitly plays a vital role through the Kutta con-

dition. It is a proper condition for steady attached flows at high Reynolds numbers, which

may also be applicable to the unsteady problems at a relatively small oscillation frequency.

However, the discontent with the Kutta condition at highly unsteady flows (high reduced

frequency) or more viscous ones (low Reynolds numbers) has been reported in numerous

studies (Archibald, 1975; Ho & Chen, 1981; Poling & Telionis, 1986; Ansari et al., 2006b;

La Mantia & Dabnichki, 2009; Xia & Mohseni, 2013; Darakananda & Eldredge, 2019). The

reader is referred to chapter 2 for more references that reported flaws with the application of

Kutta condition. In chapter 2, we developed a viscous extension of the classical potential flow

unsteady aerodynamics (with emphasis on the lift frequency response problem) by relaxing

the Kutta condition. This approach naturally introduces a singularity at the trailing-edge,

which must vanish according to the Kutta condition. In contrast, its strength is obtained

from the triple-deck boundary layer theory, which is dependent on the Reynolds number

and angle of attack. Consequently, unlike the Theodorsen inviscid response which is only

a function of motion reduced frequency, the new model provides dependence on both the

motion frequency and Reynolds number.

The natural extension of our previous work (provided in chapter 2) is to adopt a numerical

model to account for the viscous Kutta condition while considering wake deformation (in

contrast to the flat wake assumption in the analytical model- see Kadlec & Davis (1979)

for the effect of wake roll-up) and arbitrary motion kinematics (not just harmonic and step

inputs), hence making it useful for many applications in aeronautical engineering. In fact,
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because of the ability of the potential flow-based methods, such as VLM or discreet-vortex

method (DVM), to capture the essential macroscopic physics of the flow, they are adopted

for variety of engineering and research problems. There have been several previous efforts

to develop extensions of UVLM or DVM to regions where the primary potential flow as-

sumptions fade out, hence broadening the applicability of the aforementioned methods. For

instance, Wang & Eldredge (2013); Ford & Babinsky (2013); Hemati et al. (2014); Ramesh

et al. (2014); Darakananda & Eldredge (2019); SureshBabu et al. (2019); Epps et al. (2019)

among others have developed extensions of the UVLM or DVM to high angle of attack

maneuvers, necessary for the analysis of the modern applications of bio-inspired flight and

dynamic stall.

Our contribution in this chapter revolves around the integration of the developed unsteady

viscous theory in chapter 2 and the numerical unsteady vortex lattice method (UVLM).

This goal is achieved by replacing the Kutta condition with a viscous condition based on

the triple-deck boundary layer theory. However, unlike the DVM and analytical models, the

Kutta condition is not explicitly applied in the UVLM. In fact, the application of the Kutta

condition is quite subtle; there are nuances between various potential flow methods in this

regard. For example, in analytical models, whether steady (such as thin airfoil theory), or

unsteady (such as Wagner and Theodorsen), the Kutta condition is explicitly imposed as a

separate equation, which completes the system of equations. On the other hand, in some

discrete numerical approaches such as the traditional VLM (Hedman, 1966; Katz & Plotkin,

2001), the no-penetration boundary condition which must be satisfied on each panel, fulfills

the number of equations required to calculate the unknown strength of the vortices on each

panel; apparently there is no need for an additional equation (Kutta condition). However,

a unique solution cannot be obtained with this system of equations as described above and

the resulting outcome will not generate the correct lift force (circulation). Then, one might

inquire about how the Kutta condition can be applied (or relaxed) in the vortex lattice
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method (steady or unsteady).

To answer the above questions and develop the targeted viscous UVLM, we first show how

the Kutta condition is implicitly satisfied in the original (inviscid) (U)VLM relying on Hilbert

matrices algebra that constitutes the basis of (U)VLM. We show that the Kutta condition

is related to the locations of the collocation point (the point at which a vortex is assigned

on each panel) and control point (the point at which the no-penetration boundary condition

is satisfied on each panel) in (U)VLM. As such, the conventional locations of the collocation

and control points on each panel (which were dictated to be at quarter-chord and three-

quarter-chord points, respectively, according to the Kutta condition) are updated at each

time step according to the viscous correction coming from the triple-deck boundary layer

theory, depending on the instantaneous angle of attack and the value of the Reynolds number.

As a result, we develop a viscous extension of the UVLM by adapting the mesh at each time

step to account for the deviation from the Kutta condition obtained from the triple-deck

boundary layer theory. In the coming sections, we firstly touch upon the role of the Kutta

condition in potential flow framework and how the results from the triple-deck boundary

layer theory can be utilized to relax the Kutta condition. Then, we show the relation

between the Kutta condition and the collocation and control points in VLM followed by the

development of the viscous UVLM via modifying the Kutta condition and employing the

triple-deck theory. Finally, we provide results and validations in terms of frequency response

(i.e. Theodorsen function), step response (i.e. Wagner function), and lift history for an

arbitrary time-varying (e.g. multi-frequency) input.
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3.2 The Kutta condition and triple-deck boundary layer

theory

Based on the information in chapter 2, this section provides a summary of how the triple-deck

theory is implemented in potential flow framework after relaxing the Kutta condition. In

almost all the introductory fluid mechanics courses, after constructing the flow field around

a cylinder by adding two elementary flows (an angled free stream and a doublet), it is shown

that no lift force can be generated unless a vortex is placed at the center of a cylinder, which

retains the cylinder as a streamline yet generate circulation or lift force through Kutta-

Joukowsky theorem. The question is that how can the strength of the circulation be found?

There is no means to find the strength of this circulation in the potential flow framework

unless an auxiliary condition (Kutta condition) is utilized. In the above scenario where

the problem is formulated in the cylinder domain, the Kutta condition dictates the value

of the circulation by forcing the TE (the most downstream point of the cylinder) to be a

stagnation point. To better comprehend the role of the Kutta condition, it is better to

convert the velocity field to the pressure field through the Bernoulli’s equation and observe

that the TE singularity is removed by applying the Kutta condition. It should be noted that

there is also a singularity at the leading-edge (LE), which remains intact.

It can be seen that, conceptually, the Kutta condition introduces some viscous effects, al-

though it is just a mathematical trick to remove the TE singularity. Therefore, any attempt

to include viscous effects in the potential flow framework is to be performed through the

edge condition. If the Kutta condition is relaxed which corresponds to adding a new vortex

of unknown strength at the center of the cylinder, by utilizing the Joukowsky transformation

the velocity u on the flat plate of length 2b in a free stream U∞ at a steady angle of attack
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αs can be written as

u

U∞
= 1± αs

√
1− x
1 + x

∓ Bs√
(1− x2)

, (3.1)

where x is the plate coordinate normalized by b (i.e. −1 ≤ x ≤ 1). The first row of

signs corresponds to the suction side and the second row corresponds to the pressure side

of the plate. The first two terms on the right hand side of Equation (3.1) represent the

potential flow solution, satisfying the Kutta condition. However, the third term is the result

of deviation from the Kutta condition. In other words, the Kutta condition dictates Bs = 0

so that TE singularity is removed. It should be noted that similar to the common leading

edge singularity, the new TE singularity is an integrable singularity: although the velocity (or

pressure) is singular, the integrated lift and moment are finite. Thus, by applying Bernoulli’s

equation to Equation (3.1) and integrating over the plate, the lift and moment coefficients

can be written as

Cl = 2π (αs −Bs) , (3.2)

Cm = 0.5π (αs − 2Bs) . (3.3)

respectively. If the formulation is transformed into the cylinder domain, it can easily be

shown that after relaxing the Kutta condition, the new stagnation point sits at θst =

arcsinBs.

In order to find the strength of Bs, Brown & Stewartson (1970) devised the triple-deck

boundary layer theory for a lifting flat plate, to model the local interactions between the

Blasius boundary layer and the shear layer in the wake in the immediate vicinity of the

TE. They constructed an asymptotic solution (ε −→ 0 where ε is related to the Reynolds
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Figure 3.1: Numerical solution of the lower deck equations

number Re as ε = Re−1/8) for this viscous interaction near the TE to determine the value

of Bs. Their approach resulted in a nonlinear boundary value partial differential equation,

which they solved by linear approximations. Six years later, Chow & Melnik (1976) solved

this partial differential equation numerically, and provided the strength of the singularity

Bs = 2αsε
3λ−5/4Be(αe) in terms of the normalized angle of attack αe = αsε

−1/2λ−9/8, where

λ = 0.334 is the Blasius skin friction coefficient. Note that if αs is zero, then Bs is also

zero. Figure 3.1 shows the nonlinear relation between Be and αe, which possesses a vertical

asymptote at αe = 0.47 where TE stall occurs according to the triple-deck results (Brown &

Stewartson, 1970). This value of αe yields αs = 3.1− 4.2◦ for Re = 104− 106 before the flow

separates further away from the TE (TE stall). Moreover, to facilitate the usage of this plot,

an exponential function that approximates the numerical results of the steady lower deck is

provided in Figure 3.1.
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Figure 3.2: Schematic of the problem setup in the VLM.

3.3 Relation between the VLM mesh and the Kutta

condition

The UVLM represents the airfoil by its camber-line, which is divided into several panels.

One vortex and one control point are assigned to each panel, as shown in Figure 3.2. At each

panel of length di = c
m

, where c is the chord length and m the number of panels, two values

are crucial for the current problem: the fraction ξ of the panel length where the vortex is

located and the fraction η between this point and the control point, where the no-penetration

boundary condition is going to be applied.

To show the relation between the Kutta condition and the values of ξ and η, consider the

steady case of a symmetric airfoil subject to a free stream U∞ at a small angle of attack α.

According to the Biot-Savart law for a vortex induced velocity, the no-penetration boundary

condition is satisfied on each control point as

m∑
i=1

−mΓi
2πc

1

j − i+ η
+ U∞α = 0 , j = 1, 2, ...,m. (3.4)

It can be seen from Equation (3.4) that the evaluation of the no-penetration boundary

condition does not depend on ξ and is only a function of η. Let Aij = −m
2πc

1
(i−j+η)

be the

influence coefficient. Then, Equation (3.4) can be expressed in matrix form for all the control
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points as

[A]



Γ1

Γ2

...

Γm


= −U∞α



1

1

...

1


. (3.5)

The Γi’s are the unknown circulations on each panel. It is noteworthy to mention that

the form of the influence coefficients Aij = −m
2πc

defines a special kind of the Hilbert matrix

(Collar, 1951). Exploiting the properties of the Hilbert matrix the circulations Γi’s are given

by

Γi = 2πU∞α
c

m

m∑
j=1

Rij , (3.6)

where [R] = 1
2πd

[A]−1 and d = c/m. Then, the resulting lift and moment coefficients are

given by

Cl =
2

U∞c

m∑
i=1

Γi , (3.7)

Cm =
2

U∞c2

m∑
i=1

Γixi , (3.8)
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respectively. According to Collar (1951), we have:

m∑
i=1

m∑
j=1

Rij = mη . (3.9)

Substituting equations (3.6) and (3.9) into Equation (3.7), the lift coefficient can be found

as

Cl = 4παη . (3.10)

Equation (3.10) provides the lift coefficient given by the VLM. If this equation is compared

with the lift coefficient (Cl = 2πα) dictated by the Kutta condition, it is clear that η = 0.5.

This condition, which is based on global matching of the VLM and analytical potential flow

theory, stipulates that the clearance between the collocation point and the control point is

half of the panel length.

In order to determine the location of the collocation point, the moment coefficient should be

considered. The sum in Equation (3.8) can be written as

m∑
i=1

Γixi =
c

m
ξ

m∑
i=1

Γi +
c

m

m∑
i=1

Γi(i− 1) . (3.11)

Note that the first term in Equation (3.11) can be determined from Equation (3.9). In

addition, making use of the properties of the Hilbert matrix (Collar, 1951), we write

m∑
i=1

(i− 1)
m∑
j=1

Rij = −0.5m(m− 1)η(η − 1) . (3.12)

Combining equations (3.9), (3.11), and (3.12) and substituting into Equation (3.8), the
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moment coefficient at the leading edge calculated by the VLM is written as

Cm = 4πα
1

m
[ξ − 0.5(m− 1)(η − 1)] η . (3.13)

If Cm is compared to the Kutta’s value Cm = πα
2

at the leading edge of a flat plate and

considering η = 0.5 coming from lift matching, then ξ = 0.25 independent of the number

of panels m. In conclusion, the ubiquitous choice of the collocation point and control point

at the quarter-chord and three-quarter-chord implicitly satisfy the Kutta condition in the

VLM framework.

Since the main goal of this effort is to develop a viscous extension of (U)VLM, we tackle

the problem with the same procedure discussed above, but using the results of the viscous

extension of potential flow. Comparing the VLM lift coefficient given by Equation (3.10) to

the viscous lift coefficient given by Equation (3.2), we find the value of η as

η = 0.5

(
1− Bs

αs

)
. (3.14)

Note that Bs varies nonlinearly with αs, so the term Bs/αs approaches zero as αs → 0.

Equation (3.14) provides a new rule for mesh spacing in the VLM to account for the viscous

correction of the Kutta condition. In fact, η is no longer a constant value as it is in the

classical VLM but a function of the TE singularity Bs, which depends on the angle of attack

αs and the Reynolds number Re.

Similarly, matching the moment coefficient would provide a new viscous rule for ξ. The

comparison between equations (3.13) and (3.3) after replacing the viscous value of η from

Equation (3.14) results in

ξ =
1

4

(
1 +

Bs

αs

)
+
mBs

4αs

(
αs − 2Bs

αs −Bs

)
. (3.15)
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Equations (3.14) and (3.15) provide viscous corrections to the common mesh spacing of

quarter and three-quarter in the vortex lattice method.

In Equation (3.15), a clear dependence of ξ on the number of panels m is observed. This

dependence vanishes only if Bs = 0 or Bs = 0.5αs. The latter choice outside the scope of the

current theory as it corresponds to situation well beyond the TE stall. For instance, when

Re = 105 the latter choice results in Be
∼= 4.7, which is not in the valid region of triple-deck

theory (see Figure 3.1). As described above, when the Kutta condition is applied (B = 0),

the dependence on the number of panels disappears. Therefore, after relaxing the Kutta

condition (B 6= 0) the dependence of ξ on m cannot be avoided.

3.4 UVLM Methodology and Its Extension

It is a common practice to carry the obtained results for the panel layout from the VLM

to UVLM. In other words, the location of the collocation point (quarter-chord) and control

point (three-quarter-chord) on each panel that are calculated from a steady analysis are

typically used in the unsteady version as well. The only difference is that for the unsteady

cases, the wake must be considered. In that regard, a vortex is shed from the TE at each

time step. The strength of the shed vortex ΓTE is calculated at each time step such that it

satisfies Kelvin’s conservation of circulation as follows

N∑
i=1

Γi (tk) +

NW∑
i=1

ΓWi = 0 (3.16)

or equivalently

N∑
i=1

Γi (tk) + ΓTE = −
NW−1∑
i=1

ΓWi =
N∑
i=1

Γi (tk−1) ≡ ΓB (tk−1) , (3.17)
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where Γi’s are the bound circulations (the strength of the vortices on the airfoil), ΓW ’s are

the wake circulations, tk is the current time and tk−1 is the previous time-step. Therefore,

equation (3.5) is modified to account for the shed vortices in the wake and the following

system of equations is obtained:



a11 a12 · · · a1N a1W

a21 a22 · · · a2N a2W

...
...

. . .
...

...

aN1 aN2 · · · aNN aNW

1 1 · · · 1 1





Γ1 (tk)

Γ2 (tk)

...

ΓN (tk)

ΓWNW


=



RHS1

RHS2

...

RHSN

ΓB (tk−1)


(3.18)

where aiW ’s are the influence coefficients at the collocation points of the newly shed vortex.

It is worth noting that these coefficients are only computed once in the original UVLM as

they only depend on the airfoil shape and not on its position (or the maneuver type). In

the unsteady cases where the airfoil is prescribed to a certain motion, the right-hand side

coefficients of equation (3.18) must be corrected as

RHSi = − (u∞ − ui) · ~ni, (3.19)

where ui is the velocity of the collocation point i due to the airfoil motion on an inertial

frame of reference and ~ni is to normal vector on each panel.

As it has been discussed, the wake vortices are allowed to convect freely with local fluid

velocity (Kirckhhoff velocity) to satisfy Helmholtz laws of vortex dynamics (Helmholtz, 1858;

Saffman, 1992). To do so, in each iteration the position of a wake vortex i is updated as

~rWi (tk) = ~rWi (tk−1) + uWi∆t (3.20)

where ∆t is the time increment at each time-step, ~r is the position vector of each vortex and
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uWi is total computed velocity of each wake vortex computed by taking into account the

freestream velocity and the induced velocities by the bound and other wake vortices as

uWi = u∞ +
N∑
j=1

uij +

NW∑
j=1,j 6=i

uij. (3.21)

After obtaining all the circulations by solving the system equations (3.18), the pressure

difference on each panel is given by the unsteady Bernoulli’s equation written as

∆Pi = ρU∞
Γi
di

+ ρ
∂

∂t

i∑
j=1

Γj, (3.22)

and this pressure distribution is integrated to provide the lift force.

The proposed viscous extension of the UVLM via modification of the location of the control

and collocation points on each panel is performed as follows. The influence coefficient Aij

remains a function of η for each time step obeying Equation (3.14); unlike the original UVLM

where η = 0.5 for all the instances. The velocities induced by the new shed vortex in the

wake and all the older ones on each panel remain a function of η and ξ that are updated

at each time step as Be is a function of time for the moving plates. To clarify more, for

a pitching motion (α = α(t)), the instantaneous angle of the plate α(t) is used to find the

value of Be for updating the position of the collocation and control points. For a plunging

motion (y = h(t)), the relative angle of attack serves as the instantaneous angle of attack

αs = ḣ(t)/U∞ to calculate Be.

3.5 Results

Based on the proposed viscous UVLM, three different cases are considered: the step response,

the frequency (harmonic) response, and response due to an arbitrary time-varying input
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Figure 3.3: Wagner (step) response at Re = 104 and α = 3◦: (a) Lift coefficient response
and (b) moment coefficient response

(taken to be a multi-frequency harmonic signal). Figure 3.3 shows the lift and moment

history of the foil subjected to a step change in the angle of attack (pitching angle). This is

also known as the Wagner response. Even though the lift dynamics (evolution) are similar

for both the original and modified (viscous) UVLM, they approach different asymptotes.

Expectedly, the original UVLM approaches Kutta’s potential flow values, while the modified

UVLM approaches the viscous values given by equations (3.2) and (3.3), which are smaller

than the Kutta’s values as the viscous term Bs tend to decrease Cl and Cm. In fact, these

results verify that the coupling between the UVLM and the viscous theory is correctly

achieved.

Figure 3.4 shows the lift frequency response of a harmonically pitching airfoil. For more

information on how to build a frequency response from an unsteady solver, the reader is re-

ferred to Rezaei & Taha (2017). The original UVLM matches perfectly with the Theodorsen

inviscid results in both amplitude and phase of the lift frequency response (i.e. Theodorsen

function). The modified UVLM is compared against the lift frequency response constructed

from URANS computational simulations using k − ω SST turbulence model. The reader is

referred to chapter 2 for more details about the setup in the computational fluid dynamics
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Figure 3.4: Comparing the frequency response of a pitching airfoil using different methods
at Re = 105

(CFD) solver. The frequency response is constructed using a 3-degrees pitching amplitude

for NACA 0012 at Re = 105. A very good agreement is observed between the modified

UVLM and CFD results; both showing more phase lag and lower amplitude of the transfer

function at a higher reduced frequency.

The lift history of the foil for a multi-frequency input in the form of α(t) = A sin(ωt) +

0.1A sin(3ωt) is plotted in Figure 3.5, where A = 1◦ and ω corresponds to a reduced frequency

of k = ωc
2V∞

= 1, which is a relatively fast oscillation. The chord-based Reynolds number is

set to be 105. Unlike the original UVLM which predicts higher peaks for the lift history, the

modified UVLM matches the CFD results. In order to evaluate the local performance of the

developed viscous UVLM, distribution of the pressure difference over the flat plate due to

the same multi-frequency input at two critical instances during the maneuver is provided in

Figure 3.6. The first instant is at the beginning of the upstroke motion when the geometric

angle of the plate with respect to free stream is zero (α = 0) but the relative velocity

is maximum (α̇max). The second instant is when the geometric angle of the plate with

respect to free stream is maximum (αmax) but the plate relative velocity is zero (α̇ = 0).
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putational simulation due to a generic multi-frequency input α(t) = A sin(ωt)+0.1A sin(3ωt)
with A = 1◦ at Re = 105

A remarkable agreement is observed between the CFD results and the viscous UVLM in

both cases in Figure 3.6. The main enhancement is observed near the TE region where the

original UVLM over-predicts the value of the pressure by generating high-strength vortices

near the TE due to Kutta condition. By considering the viscous effects in the developed

viscous UVLM, this issue is addressed. Furthermore, the wake structure of the original

and developed viscous UVLM due to the same input is shown in Figure 3.7. A significant

difference is seen in the peaks and valleys. The figure shows a more damped wake activity

in the viscous solution, which is physically intuitive.

3.6 Discussion

The ultimate purpose of this effort is to incorporate the viscous edge condition in the UVLM.

Similar to the viscous theory (chapter 2), the viscous extension of UVLM was developed by

tackling the Kutta condition and replacing it by a viscous condition from the triple-deck

theory, described in the above sections. The author also tried two other intuitive methods

81



-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x/b

-0.05

0

0.05

0.1

0.15

0.2

P
re

s
s
u

re
 c

o
e

ff
ic

ie
n

t

Original UVLM

Viscous UVLM

CFD

(a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x/b

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
re

s
s
u

re
 c

o
e

ff
ic

ie
n

t

Original UVLM

Viscous UVLM

CFD

(b)

Figure 3.6: Comparison of the pressure distribution over the flat plate from the original
UVLM, viscous UVLM and computational simulation due to a generic multi-frequency input
α(t) = A sin(ωt) + 0.1A sin(3ωt) with A = 1◦ at Re = 105 and (a) α = 0, α̇max and (b) αmax,
α̇ = 0
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Figure 3.7: Comparing the wake structure of the original and viscous UVLM due to a generic
multi-frequency input α(t) = A sin(ωt) + 0.1A sin(3ωt) at Re = 105 and A = 1◦
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to accommodate the viscous condition in the UVLM, which could potentially be an easier

approach compared to replacing the Kutta condition, yet, did not lead to useful results.

Therefore, it may be prudent to report the failure of these other intuitive approaches.

First, by realizing that the new TE singularity Bs in Equation (3.1) can be related to an

additional viscous circulation Γv as Be = U∞Γv/(2πb), it was attempted to modify the

Kelvins’s equation by adding the Γv to the right hand side of Equation (1.5) account for the

effect of the viscous term Γv. Based on this idea, the generated wake circulation is updated at

each time step, which not only modifies the strength of the shed vortices, but also changes the

wake shape. In this case, the resulting aerodynamic load deviates significantly from the CFD

or analytical results. In the second trial, the effect of new viscous condition was interpreted

as a modification to the free stream angle of attack based on the fact that the singularity

emerging from relaxing the Kutta condition can be seen as a change in the stagnation point

angle in the cylinder domain (see the discussion after equations (3.2) and (3.3)). Since the

angle of the rear stagnation point in the cylinder domain can be varied with the angle of the

free stream velocity αs and the conformal map from the cylinder domain to the plate domain

preserves the angles, this new angle αv given by αv = Γv/2U∞ = 2πBe/U
2 was subtracted

from αs in the UVLM (in the plate domain). Again, the results were not satisfying based

on this approach. Therefore, the attempts to modify other conditions in UVLM rather than

the Kutta condition to accommodate the viscous correction did not work properly.

3.7 Conclusion

The unsteady vortex lattice method was developed in the 1950s based on the potential

flow formulation, Kutta condition and Kelvin’s conservation of circulation. UVLM does not

explicitly account for viscous effects, although it possesses some flavor of viscosity through

Kutta (similar to almost all of the potential flow-based models). Exploiting the Hilbert
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matrices algebra, it is shown how the Kutta condition is implicitly applied in the UVLM

by dictating the location of the collocation and control point on each panel. Then, it is

discussed that the relaxation of Kutta condition introduces an integrable singularity in the

potential flow solution, which cannot be determined from the potential flow framework. In

fact,the Kutta condition assumes this singularity to be zero. To obtain the strength of the

singularity, the analytical triple-deck boundary layer theory, developed in 1970s, is employed

and the corrections to the lift and moment coefficients are provided. The strength of the

singularity is Reynolds number and angle of attack dependent. By incorporating the viscous

corrections of the lift and moment in the UVLM through Hilbert matrix algebra, the viscous

extension of the UVLM is developed. It is shown that the panel mesh is updated at each

time step based on the airfoil motion and Reynolds number. The performance of the viscous

UVLM is compared against the original UVLM and CFD results. To this end, three different

cases are studied. First, the lift history of a flat plate subjected to the step input is provided

that demonstrates the correctness of the coupling between UVLM and viscous theory as the

lift and moment coefficients reach to the value predicted by the viscous theory. Second,

the comparison of the frequency response is provided, which shows a very good agreement

with the CFD results. Lastly, a multi-frequency input is used as the plate motion and the

results are compared in term of lift history, pressure distribution and wake structure. A

remarkable enhancement is observed in the viscous UVLM compared to the original UVLM

when comparing against CFD results.
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Chapter 4

Nonlinear Effects of

Laminar-to-Turbulent Transition on

Lift Dynamics

4.1 Background

There are many recent applications in aeronautical engineering that operate in the low-to-

moderate Reynolds number regime, such as high-altitude flying ships (Greer et al., 2000)

or unmanned-aerial-vehicles and micro-air-vehicles (Mueller & DeLaurier, 2003; Taha et al.,

2012). These vehicles typically operate at low speeds and possess short characteristic length

scales, necessitating more research to obtain a deeper understanding of the low-to-moderate

Reynolds number aerodynamics for various configurations. The corresponding Reynolds

number for these applications ranges from 104−105, at which laminar-to-turbulent transition

is prone to happen (Pelletier & Mueller, 2000; McMasters & Henderson, 1980). In general,

the airfoils operating at low-to-moderate Reynolds numbers, ∼ O(105), are vulnerable to
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laminar boundary layer separation and transition that have either adverse or uncommon

effects on the aerodynamic performance.

A large body of publications have investigated the transition phenomenon in steady aero-

dynamics for a wide range of Reynolds numbers (Narasimha, 1985; Yarusevych et al., 2009;

McAuliffe & Yaras, 2010; Boutilier & Yarusevych, 2012; Hosseini et al., 2016); several stud-

ies have discussed the unsteady effects on transition (Lee & Basu, 1998; Lian & Shyy, 2007;

Garmann & Visbal, 2011; Kim & Chang, 2014; Raffel et al., 2015; Liu et al., 2018; Benton &

Visbal, 2019). From a fluid dynamics perspective, the subject of unsteady aerodynamics of

moving airfoils can be divided into attached (typically small deflections) and separated (typ-

ically large deflections) flows on the body. The latter is mainly known as the light or deep

(dynamic) stall, which is encountered in helicopters, turbines and compressors where the

blades experience high incident angles beyond the linear region of the flow (Xia & Mohseni,

2013; Zakaria et al., 2017; Santos & Marques, 2018; Gupta & Ansell, 2018; Benton & Visbal,

2019; Deparday & Mulleners, 2019). However, the focus of this chapter is on the former case

(small deflections). The previous efforts in this direction (McCroskey & Puccif, 1982; Dowell

et al., 1983; Dovgal et al., 1994; Lee & Basu, 1998; Yarusevych et al., 2009; Poels et al., 2015;

Kurtulus, 2018) have mostly studied the temporal-spatial growth or decay of different types

of instabilities and mechanisms triggering the transition onset, which are enhanced at lower

Reynolds numbers. Some articles have focused on the influence of transition on the flutter

analysis (Lorber & Carta, 1994; Poirel & Mendes, 2014). There are several factors, such as

Reynolds number, surface roughness, free stream properties, geometry and airfoil kinematics

(Arena & Mueller, 1980; Lian & Shyy, 2007), that can affect the transition process. It has

been shown that laminar separation is followed by instabilities which in many cases eventu-

ally lead to laminar-to-turbulent transition (Smith, 1986; Dovgal et al., 1994). Depending

on the values of the Reynolds number, angle of attack, free stream turbulent intensity, airfoil

thickness, etc, the separated flow may reattach shortly after departure, forming a laminar

separation bubble (LSB).
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When the Reynolds number is moderate, transition is usually accompanied by a slight sep-

aration forward to the trailing-edge even at small angles of attack as the initial laminar

boundary layer is not strong enough to overcome the downstream adverse pressure gradi-

ent. The reattachment is typically turbulent and may persist to the trailing-edge station. It

should be noted that if the Reynolds number is very high, LSB is not created and the flow

remains attached on the entire length of the airfoil while transition is happening at some

location on the airfoil. (Richter et al., 2014)

As discussed by Poirel & Mendes (2014) and Negi et al. (2018), transition significantly in-

fluences the aerodynamic characteristics of the airfoil and often introduces non-linearities in

the response. Therefore, the transition effect on the dynamics of circulation and force gen-

eration is of particular importance for preliminary design purposes where the aerodynamic

forces are the main concern. Kim & Chang (2014) experimentally investigated the effect of

transition at low to moderate Reynolds numbers (2 × 104 − 5 × 104) on a pitching airfoil.

Utilizing pneumatic tubing for the pressure measurements and flow visualization, they re-

ported the time history of the aerodynamic forces and flow behavior near the trailing-edge.

They characterized the transition from the pressure drop on the suction side of the airfoil

and showed that the transition point moves toward the leading edge as either angle of at-

tack or Reynolds number increases. Furthermore, it can be seen from their results that the

aerodynamic loads reveal non-linear behavior. Raffel et al. (2015) utilized the Differential

Infrared Thermography (DIT) to measure the onset and end of the transition location of a

pitching NACA 0012 at Re = 1×106. Later, Liu et al. (2018) validated their three-equation

transition model with the experimental results of Raffel et al. (2015) and concluded that the

transition location of a pitching airfoil possesses a non-trivial frequency response.

It is a very common goal to develop simple and sufficiently accurate aerodynamic models that

can be utilized for analyses and design. Almost all of the classical efficient tools, whether

analytical (e.g. Theodorsen (Theodorsen, 1935) and Wagner (Wagner, 1925)) or numerical

87



(e.g. unsteady vortex lattice method:UVLM (Hedman, 1966)), originated from the linear

potential flow theory (valid for high Reynolds number flows). In these approaches, the effect

of viscosity is taken into account solely through the auxiliary condition at the sharp edges,

which determines the rate of vorticity shed from the boundary layer to the wake and dictates

the amount of circulation (or lift) on the airfoil as discussed in chapter 2. The most utilized

condition is the well-known Kutta condition, which assumes smooth flow off the trailing-

edge (TE), and has been discussed in detail by Sears (1976a) and Crighton (1985), and

recently by Xia & Mohseni (2017) and in chapter 2 of the present dissertation. The classical

Kutta condition neglects any uncommon effects that might happen in the vicinity of the

trailing-edge or inside the boundary layer (e.g. flow around the trailing-edge or non-linear

effects from transition). As a result, the classical models based on potential flow cannot

predict transition effects on the resulting aerodynamic loads in the low-to-moderate range

of Reynolds numbers. While this fact is well-known to aerodynamicists, what these models

exactly lack to better capture transition effects is less known. In other words, how can one

augment potential flow models with high-fidelaty simulation data to account for transition

effects on the lift dynamics in a simple way? The current effort provides an answer to this

question.

The objective of this work is to investigate the non-linear effects of transition on the lift and

circulation dynamics of a pitching airfoil at low-to-moderate Reynolds number. By deriving

the exact version of the hypothesized Kutta condition, we show the contribution of the

pressure gradient across the boundary layer in the presence of transition (and LSB), which

was neglected in the classical Kutta condition. To this end, the unsteady incompressible

Reynolds-averaged Navier-Stokes equations have been numerically solved. The finite-volume

computational fluid dynamics (CFD) solver ANSYS Fluent 18.2 has been employed using

the γ − Reθ (or transition-SST) closure model by Langtry and Menter (Langtry & Menter,

2009), which showed satisfactory results in transition prediction for aerodynamic applications

including complex cases involving dynamic stall (Wang et al., 2010; Gharali & Johnson,
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2013). In this study, the considered pitching amplitudes are far below the dynamic stall, and

the oscillation reduced frequencies are low. Therefore, the SST transition model is a good

candidate for this study. The numerical setup is explained in Sec 4.2. Validation against an

experimental study by Kim & Chang (2014) on a pitching airfoil at a moderate Reynolds

number where transition occurs is presented in Sec 4.3. Note that the numerical setup and

validation sections follow the recent paper (Rezaei & Taha, 2019) and are presented here

with more details for completeness. Lastly, in Sec 4.4, the effect of different parameters

such as Reynolds number, pitching amplitude and reduced frequency on the circulation

dynamic is studied, and a connection is drawn between transition and the rate of circulation

development (equivalently the rate of vorticity shed at the sharp edge). Based on this

connection, extension of the classical unsteady approaches can be performed to account for

the non-linear lift dynamics in the transition regime by modifying the edge condition (i.e.,

the Kutta condition).

4.2 Numerical setup

The farfield unstructured mesh and the conformal grid resolution near the airfoil is shown

in Figure 4.1. This hybrid mesh comprises a very dense structured mesh near the airfoil,

which contains the boundary layer in all the studied cases, followed by an unstructured mesh,

which facilitates the dynamic mesh approach. The O-type farfield has been used and divided

into three rings where the intermediate ring (red) accommodates the airfoil motion via a

dynamic mesh, the inner ring (blue) moves with the airfoil like a rigid body, and the outer

ring (green) is fixed. This technique maintains the generated high quality grid near the airfoil

described below as no deformation or remeshing occurs in the inner ring. The geometry and

methodology are almost identical to that in Taha & Rezaei (2018) except for two changes.

The first alteration is the addition of grid layers inside the boundary layer to guarantee
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that the y+ < 1. Also, a coarser mesh was also generated for grid independence study and

similar results were observed. However, the denser mesh was chosen for the rest of the study

since the computational time was not a big concern and to be conservative. This high grid

resolution helps to better capture the events inside the boundary layer and the flow field

near the trailing-edge, which requires capturing the edge of the boundary layer and finding

the vorticity fluxes into the wake as proposed by Sears (1976a) and demonstrated below.

The high-performance computer (HPC) at the University of California, Irvine, was utilized

for all the simulations with 32 CPUs in parallel, where the clock speed of the processors

was 2.2 GHz. The total simulation time for running 4 complete pitching cycles of the airfoil

was almost 15 hours. (For more details about the grid topology, dynamic mesh and solution

setup in the solver, the reader is referred to chapter 2)

Leading­edge Trailing­edge

Figure 4.1: Mesh topology in the farfield (top picture) and near the leading edge and trailing-
edge (bottom pictures) of the airfoil. The blue region near the airfoil constitutes of high
resolution structured grids that contains the boundary layer and the gray region is made of
unstructured triangular elements.

The second difference is employing the local correlation-based γ − Reθ transition model

(Menter et al., 2006) which is compatible with the unstructured mesh. It involves two
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transport equations for the intermittency, γ, and the transition onset momentum thickness

Reynolds number, R̂eθt, as follows:

∂(ργ)

∂t
+∇ · (ργU) = Pγ − Eγ +∇ ·

(
(µ+

µt
σf

)∇(γ)

)
(4.1a)

∂
(
ρR̂eθt

)
∂t

+∇ · (ρR̂eθtU ) = Pθt +∇ ·
(
σθt(µ+ µt)∇(R̂eθt)

)
, (4.1b)

where σf and σθt are the model constants that are set to 1 and 2, respectively. The two

source terms, Pγ and Eγ, in the right hand side of Equation (4.1a) are responsible for the

transition onset and destruction/relaminarization, respectively. The production term Pθt

in Equation (4.1b) adjusts the value of the transition onset momentum thickness Reynolds

number to match the value obtained from the empirical correlations (equations 35 and 36 in

the paper by Langtry & Menter (2009)) outside the boundary layer, and vanishes inside the

boundary layer. These transport equations are discretized with second order upwind method

and calculated at each cell. The intermittency equation initiates the transition by affecting

the turbulent kinetic energy (TKE) production downstream of the transition point.

Unlike typical transition models that suffer from non-local calculations, by utilizing the

vorticity Reynolds number (Rev = µy2

ρ
|∂U
∂y
| where y is again the distance from the nearest

wall), the γ −Reθ transition model correlates the transition onset with the local boundary-

layer quantities through empirical relations. Since Rev can be calculated locally, this model

has the advantage that can be easily implemented into RANS equations. Aside from all

the local calculations and correlations in the γ-equation to treat transition, the non-local

events outside the boundary layer, such as free stream TKE decay and pressure gradient,

impact the transition process by altering the turbulent intensity. In fact, these non-local

effects form the basis of the empirical-based models of transition (Abu-Ghannam & Shaw,

1980). The momentum thickness Reynolds number, which is an important part of this

model, is devised to handle these non-local effects on the transition onset by manipulating
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the source term in the intermittency equation. These equations interact with the k−ω SST

model by modifying some of the source terms in the k−equation (Fluent, 2009), while the

ω−equation remains intact. Unlike the turbulence models, which were devised to model the

physics of turbulence to some extent (e.g. the turbulent kinetic energy equation is derived

from the time-averaged Navier-Stokes equations), the provided transport equations for γ

and R̂eθt do not exactly model the transition physics as pointed out by Langtry & Menter

(2009), yet contain the parameters (correlations) that have been proved to play a vital role in

transition process due to different mechanisms and possess sufficient accuracy at lease under

the conditions studied in this dissertation (see the validation section). The added transport

equations require boundary conditions on the airfoil surface, inlet and outlet. On the no-slip

wall (aifoil) and constant pressure outlet, zero normal flux condition is prescribed for γ and

Reθ. At the inlet station, γ is set to 1 and Reθ is to be found from empirical correlations in

the model based on the inlet turbulent intensity. These correlations are provided in equations

35 to 38 in (Langtry & Menter, 2009).

4.3 Validation

The numerical setup is validated against the experimental results of Kim & Chang (2014) who

studied the boundary layer events at moderate Reynolds numbers. The corresponding case

that is chosen for validation is a NACA 0012 airfoil pitching around the quarter chord point

with a zero mean angle of attack and 6 degrees pitching amplitude. The reduced frequency is

k = 0.1, Reynolds number is Re = 48×103, and the free stream turbulent intensity reported

in the paper is TI < 0.4%, so we set TI = 0.35% for our numerical simulation. Under

these conditions, the flow experiences transition which magnifies as the Reynolds number

decreases (Kim & Chang, 2010). From computational side, modeling transition in unsteady

flows has been always a challenge due to the difficulty in predicting the transition point on
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the dynamically moving surface.

Figure 4.2 shows a comparison between the experimental results of Kim & Chang (2014)

and our numerical results, which shows a good agreement in the lift history. It should be

noted that the SST transition model shows dissipative behavior for Re < 70 × 103 based

on our simulations. The ripples seen in Figure 4.2 for the curve of Re = 48 × 103 occur

near the instants of maximum pitching velocity where the flow is more prone to separation.

At these instants, the interaction between the laminar separation bubble and downstream

adverse pressure gradient is significant, and the model is unable to find the correct transition

point. That is the reason why Re = 75× 103 has also been used for the validation with the

experiment.
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Figure 4.2: Validation of the computational setup adopted from (Rezaei & Taha, 2019).
Comparison between the lift history from CFD and the experimental study (Kim & Chang,
2014) for a pitching NACA 0012 with α(t) = 6◦ sin(ωt) and k = 0.1 undergoing transition.

The discrepancy in the maximum lift coefficient may actually be attributed to the experi-

mental results per se. The maximum lift coefficient in the experimental data is almost equal

to the one obtained from thin airfoil theory: 2π(6◦ × π
180

) = 0.66, which is not expected

because (i) an actual airfoil has a lift curve slope that is smaller than the theoretical value

of 2π, and (ii) the amplitude of the unsteady lift must be attenuated due to wake effects:
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Theodorsen lift deficiency (Theodorsen, 1935).

To validate the local flow details and the transition point dynamics, we consider the pressure

coefficient Cp at three important instances, i.e. two instances (αu = 5, 6) in the upstroke

near stroke reversal and one instance (αd = 3) in the downstroke, as shown in Figure 4.3.

As described by Arena & Mueller (1980) and recently by Boutilier & Yarusevych (2012), the

start of the short plateau in the mid-chord region corresponds to the laminar separation,

followed by a sudden drop indicating the transition point. Then the pressure recovery region

is attributed to turbulent reattachment. A good agreement is observed in terms of the mag-

nitude of the pressure coefficient and transition point. The reason for slightly higher values

of Cp in the experimental results compared to CFD is the same as the above explanation for

Cl difference near the stroke reversal. The αd = 3 case corresponds to the instant where the

airfoil is at the three-quarter of the downstroke motion where more complicated flow events

are expected due to the interaction with the vortical region formed in the upstroke near the

trailing-edge. Under this condition, the transition point obtained from the CFD results is

delayed roughly 10 percent.
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(a) +5 degrees upstroke (b) +6 degrees upstroke

(c) +3 degrees downstroke

Figure 4.3: Comparison of the pressure coefficient on the suction side between the CFD
results and experiment

Figure 4.4 indicates the flow field near the trailing edge at different instants during the cycle.

As it is addressed by Kim & Chang (2014), a mushroom structure is clearly seen in figure

4.4a when αu = +3 which is the consequence of the interaction between two consecutive

produced vortices at the trailing edge. The growth of the third vortex at the trailing edge

(Figure 4.4b) tends to disrupt the mushroom structure followed by a big vortical region on

the suction side (Figure 4.4c). The same scenario happens when the new LEV starts to

form (Figures 4.4d, 4.4e & 4.4f).

95



(a) αu = +3 (b) αu = +3.3 (c) αu = +3.9

(d) αu = +4.2 (e) αu = +4.6 (f) αu = +5

Figure 4.4: Flow visualization near the trailing edge of the pitching airfoil colored with the
Z-vorticity

4.4 Results

4.4.1 Effect of Transition on the Lift Dynamics

CFD simulations have been carried out in the range of moderate Reynolds number, Re =

75 × 103 − 400 × 103 and motion reduced frequency k = 0.1 to investigate the effect of

transition on the lift dynamics of a pitching airfoil at zero mean angle of attack with 3

degrees pitching amplitude. As shown in our preliminary analysis (Rezaei & Taha, 2019),

it should be emphasized that in this regime, the effect of transition on the lift dynamics

96



is significant. That is, if transition is not taken into account or properly modeled, the

computed aerodynamic loads will be noticeably different. Based on Figure 4.5a, assuming a

fully turbulent flow without modeling the transition, using a single harmonic motion as an

input for the pitching airfoil (time-varying angle of attack) results in a harmonic lift response

at the same frequency (i.e., linear dynamics). However, at the same Reynolds number, the

same input results in a different lift dynamics when transition is considered. In fact, in

the presence of transition, the dynamics of the flow is no longer linear as the output (lift)

possesses higher harmonics compared to the single-harmonic input (angle of attack), which

will be the focus of the coming sections. For better comparison, the Theodorsen results at

k = 0.1 is also plotted, which matches the linear results of the fully turbulent case. To put in

a nutshell, a fully turbulent flow results in a linear lift dynamics whereas laminar-to-turbulent

transition induces non-linearity in the lift dynamics.

This criterion can be used as an indicator for transition. To further investigate this point,

the effect of Reynolds number on the lift history is shown in figure 4.5b. It can be seen

that increasing the Reynolds number makes the output signal (lift) to resemble more a pure

sinusoid. It is found that, under the conditions used in this study, the lift dynamics becomes

very close to the fully turbulent case for Re > 400 × 103, and below this value, careful

consideration is required to capture the transition, specifically when Re < 200 × 103 where

transition effects are significant.
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(a) (b)

Figure 4.5: Lift history of a pitching NACA 0012 with α(t) = 3◦ sin(ωt) and k = 0.1
undergoing transition: (a) Comparison of the lift history between Theodorsen model and
CFD results at Re = 75× 103 using transition and fully turbulent models and (b) Effect of
Reynolds number on the lift history utilizing transition model in CFD.

Figure 4.6 shows the flow field for three cases where in the first two cases, the transition

is assumed to occur in the flow field and in the third one is fully turbulent. It can be

seen that at lower Reynolds number, two vortical regions exist at the top and bottom, and

they disappear as the Reynolds number increases. When the Reynolds number is high, the

transition and fully turbulent cases are similar and that is the reason that the lift history of

the cases is also identical.
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(a) (b) (c)

Figure 4.6: Streamlines near the trailing edge at αu = 0 at: (a) Re = 7.5 × 104 using
transition model (b) Re = 35× 104 using transition model and (c) Re = 35× 104 using fully
turbulent model

4.4.2 Flow near the trailing-edge and the Kutta condition

Potential flow theory is indeed a milestone in the history of aerodynamics, forming the basis

of almost all the analytical theories in steady and unsteady aerodynamics. It states that

for a thin airfoil subjected to small deflections at high Reynolds numbers, the flow can be

assumed everywhere irrotational except for a thin layer around the airfoil (boundary layer)

and in the wake (only appears in the unsteady theories). These regions are modeled with

sheets of (or point) vortices whose strength is determined from the kinematic boundary

condition on the airfoil (no-penetration). Laboring this algorithm, a unique solution cannot

be determined unless the value of the circulation is known. Therewith the Kutta condition

comes to play, which dictates vanishing circulation distribution at the trailing-edge (zero

loading at the trailing-edge) based on physical observations from the flow field around the

airfoil trailing-edge. This condition forms the bridge that connects potential flow to viscous

flow and essentially relates the amount of generated vorticity flux in the boundary layer to

the vorticity in the wake (Sears, 1976a). In the potential flow framework, there are many

representations of the Kutta condition; one dictates zero loading at the trailing-edge, which
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is stated as

lim
y→0+

P (TE, y) = lim
y→0−

P (TE, y), (4.2)

where P (TE, y) represents the pressure at the trailing-edge (TE) station at a distance y

above the trailing-edge point; that is the trailing-edge is approached from the top by tak-

ing the limits as y → 0+ and from the bottom as y → 0−. In the corresponding viscous

flow accompanied by the boundary layer development on the top and bottom surfaces, this

condition means equal pressure at the edges of the boundary layers on each side, which is

indeed generally true. Nevertheless, under certain conditions such as low Reynolds number

flows, high frequency motion of the airfoil and laminar-to-turbulent transition, deviation is

observed from the classical Kutta condition as shown in chapters 2 and 3. To elaborate more,

consider the viscous flow around an airfoil and regard the flow near the trailing-edge, shown

in Figure 4.7. Since the potential flow pressure distribution over the thin airfoil represents

the pressure distribution at the edge of the boundary layer in the viscous flow, Equation (4.2)

applied within the potential flow solver, yields P1 = P2 in the presence of boundary layers,

where the points 1 and 2 lie on the edge of the boundary layer at the trailing-edge station

(Figure 4.7).

Figure 4.7: A zoom at the trailing-edge and its boundary layer. The blue lines represent
the edge of the boundary layers and the red dots (points 1 and 2) represent the edge of the
boundary layers at the trailing-edge station.

In the second chapter, we have shown while the main assumption underpinning Prandtl’s
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boundary layer theory (pressure is constant along a direction perpendicular to the surface

inside the boundary layer thickness) is valid over the majority of the airfoil length, it may

not be valid in the immediate vicinity of the trailing-edge. The situation is exacerbated

when laminar-to-turbulent transition occurs. That is, there may be a considerable pressure

rise ∆P across the boundary layer. In this case, the physical condition (4.2) results implies

P1 −∆P1 = P2 −∆P2, (4.3)

In addition, the unsteady Bernoulli’s equation provides a relation between P1 and P2 (note

that point 1 and 2 lie on the edge of the boundary layer) as:

P1

ρ
+

1

2
V 2

1 +
∂φ1

∂t
=
P2

ρ
+

1

2
V 2

2 +
∂φ2

∂t
, (4.4)

where V is the potential flow velocity at the edge of the boundary layer and φ is the corre-

sponding velocity potential. Combining Eqs.(4.3) and (4.4) and realizing that φ1 − φ2 = Γ,

we obtain

Γ̇ =
1

2

(
V 2

2 − V 2
1

)
+

∆P2 −∆P1

ρ
, (4.5)

To recover the common form of the Kutta condition typically applied in the classical theory

of unsteady aerodynamics, we set ∆P1 = ∆P2 = 0 and V1,2 = U ± 1
2
γTE. In this case,

Equation (4.5) results in

Γ̇Kutta(t) = −U∞γTE(t), (4.6)

where γTE is the circulation distribution at the trailing-edge (instantaneous strength of the

shed vortex sheet per unit length at the shedding time) calculated as

γTE(t) = V2 − V1, (4.7)
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Thus, the exact circulation dynamics governed by Equation (4.5) reduces to the classical

Kutta’s circulation governed by Equation (4.6) using two assumptions: linearization of the

first term (velocity-term) and neglecting the second term due to pressure differences across

the boundary layers. The former assumption is quite accurate for small deflections (small

α). In this work, we show that the transition effects on the lift dynamics are related to (can

be captured by) the pressure term in the circulation dynamics Equation (4.5).

Transition induces non-linearity in the lift dynamics. Since lift is ultimately dictated by the

Kutta condition, one can legitimately deduce that the classical Kutta condition is violated,

and special care is required to study the flow near the trailing-edge. It is worth noting

that unlike the steady boundary layer where the flow reversal corresponds to zero shear

stress at the wall (defining the separation phenomenon), in the unsteady case, zero shear

stress (or flow reversal) is not an indication of boundary layer separation. In other words,

the boundary layer assumptions may remain correct while flow reversal is observed inside

it. In fact, separation might happen far downstream of the point of zero shear stress in

unsteady flows. Finding a mathematical condition that define the boundary layer separation

in unsteady flows has been a challenge over decades for scholars. However, it is known that

upon separation, wake is commenced and the boundary layer breaks up and its definition is

no longer valid (Sears & Telionis, 1975). Likewise, complicated boundary layer events can

also be found in transversely oscillating cylinders. (Bao et al., 2012; Peppa & Triantafyllou,

2016)

4.4.3 Persistence of the Boundary Layer in Transition

Figure 4.8 shows the vorticity contours and streamlines around the pitching NACA 0012 with

6 degrees pitching amplitude and motion reduced frequency of 0.1 (A = 6◦ and k = 0.1) at

the highest geometric incident angle of the foil, αu = 6, and the maximum effective angle of
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attack αeff = α̇b
U∞

, which corresponds to the αu = 3. The LSB is initially formed close to the

trailing-edge (Figure 4.8a) and is observed on the mid-upper surface at the highest geometric

angle of attack (Figure 4.8b), which can be influenced by the leading edge separation and

forms a significantly larger vortical region in cases that experience higher angles of attack

(dynamic stall). In contrast to these cases of dynamic stall where a massive separation is

observed on the airfoil (see figure 7 in Lee & Gerontakos (2004)), for the studied cases where

transition occurs under pre-dynamic-stall conditions, the boundary layer behaves similar to

that of attached flow in the sense that its edge is detectable all the way to the trailing-

edge where the wake begins (Figure 4.8). This finding is in accordance with the pressure

coefficient results (Figure 4.3); if significant separation had happened in the flow, the pressure

distribution would have shown a flat trend in the separated region (similar to the pressure

distributions at stall conditions) while figure 4.3 shows a monotonically decreasing pressure.

Adding to the above discussion (for A = 6◦), the results coming in the rest of this section

will be at most for 3 degrees pitching amplitude, which helps even more to keep the flow

attached. Consequently, using the vanishing vorticity criteria, the edge of the boundary layer

can be determined at all the sections of the airfoil, specifically near the trailing-edge, which

is of particular interest in this study to investigate the Kutta condition. Thus, by utilizing

the CFD results, the edge of the boundary layer at the top and bottom of the airfoil have

been found and the values of pressure and velocity at those locations have been extracted

for further investigation provided in the coming sections.
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Figure 4.8: Vorticity contours around a pitching NACA 0012 with α(t) = 6◦ sin(ωt) and
k = 0.1 and zoom-in near the trailing-edge at (a) α = A

2
, α̇max = Aw (maximum effective

AOA) and (b) αmax = A, α̇ = 0 (maximum geometric AOA)

To better illustrate what is mentioned above, it is worth looking at a case where the airfoil

experiences high angles of attack. Lee & Gerontakos (2004) experimentally studied the

dynamic stall flow field around a pitching NACA 0012 prescribed to α(t) = 10◦+ 15◦ sin(ωt)

at Re = 135 × 103 and k = 0.1. As shown in figure 7 of their work, except for the cases

that the airfoil is at relatively small angles of attack where the boundary layer persists, at

higher angles, the vortical region on the airfoil grows and separation occurs at larger angles

of attack quite far from the values considered in this study.

4.4.4 Effect of Transition on Circulation Dynamics

In the current study, the circulation dynamics is investigated at two different Reynolds

numbers: Re = 75 × 103 and Re = 200 × 103; four different reduced frequencies: k =

0.05, 0.1, 0.2, 0.3; and three different pitching amplitudes: A = 0.5, 1.5 and 3 degrees. All

the studied cases (9 in total) are shown in table 4.1.
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Table 4.1: The pitching amplitudes, motion reduced frequencies and Reynolds numbers of
all the studied cases.

@
@

@
@
@

A

k
0.05 0.1 0.2 0.3

Re = 75× 103

0.5◦ *

1.5◦ *

3◦ * * * *

Re = 200× 103
0.5◦ *

3◦ * *

Before discussing the effect of each parameter on the circulation dynamics, let us point

out some noteworthy findings. For simplicity purposes, let, Γ̇U = 1
2

(V 2
2 − V 2

1 ), Γ̇P =

(∆P2 − ∆P1) / ρ, Γ̇total = Γ̇U + Γ̇P and Γ̇Theodorsen ≡ L̇Theodorsen
ρU∞

(it is termed Γ̇Theo in the

coming figures). For a pitching airfoil hinged at the quarter-chord point, the total lift force

reads LTheodorsen = πρb2[U∞α̇+ 0.5bα̈] + 2πρU∞bC(k)[U∞α+ bα̇], where C(k) is Theodorsen

function (Theodorsen, 1935). As discussed above, in potential flow theory, Γ̇P should be

zero assuming zero pressure rise across the boundary layer at the trailing-edge station (zero

loading). This assumption is accurate for high Reynolds number steady flows or unsteady

flows at low reduced frequencies (quasi-steady conditions). Nevertheless, under unsteady

conditions undergoing transition, this assumption might not be accurate and needs further

investigation. Figures 4.9, 4.12 and 4.15 show the time-history of all the defined Γ̇’s for all

the studied cases. Note that all the results come from a pure sinusoidal pitching input, i.e.

a simple harmonic motion, and have been normalized by the maximum value of the Γ̇Kutta.

Interestingly, figures 4.9, 4.12 and 4.15 indicate that Γ̇Kutta and Γ̇U coincide in all the cases

reflecting the fact that the linearization is fairly accurate, which is expected because of the

considered small amplitudes. Therefore, any non-linearity in the flow dynamics should not

be attributed to geometric non-linearities due to large angles. Moreover, since Γ̇U ≈ Γ̇Kutta,
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we have

Γ̇U = Γ̇Kutta →
1

2
(V2 + V1) (V2 − V1) = U∞(V2 − V1) (4.8)

resulting in V2 + V1 = 2U∞. So, the non-linear trend of the Γ̇U must be attributed to the

V2 − V1 term as V2 + V1 is shown to be equal to a constant (twice the free stream velocity).

In the upcoming sections, the results are provided in terms of rate of change of the circulation

Γ̇ coming from different sources and the Fast Fourier Transform (FFT) results of Γ̇U and

Γ̇P to show both their linear-nonlinear behavior and their relative contribution to the total

circulation. Moreover, in order to elaborate more on the flow events near the TE, the history

of the boundary layer thickness on the top and bottom of the airfoil have been plotted. All

the figures were normalized by the maximum thickness of the boundary layer.

Effect of pitching amplitude (A) on circulation dynamics

In this section, the effect of pitching amplitude (A) on the Γ̇’s is investigated while the two

other parameters are kept constant at Re = 7.5 × 104 and k = 0.1 . Since the objective of

this article is to focus on transition-induced non-linearity on the lift dynamics in the pre-

stall regime, the selected pitching amplitudes are fairly low. At lower amplitudes of pitching

(Figure 4.9a), Γ̇U behaves more linear compared to higher pitching amplitudes (Figures.

4.9b, 4.9c) where the non-linear trend is more apparent. This result can be confirmed by

inspecting the FFT figures of Γ̇U and Γ̇P (Figure 4.10). Interestingly, both Γ̇U and Γ̇P

possess cubic non-linearities in their response even at the considered small amplitudes and

low frequency; the strength of this cubic non-linearity (i.e. third harmonic) relative to the

linear response (first harmonic) increases as A increases. Of particular importance is the
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remarkable contribution of the Γ̇P to Γ̇total in all the cases in this section (ranging between

15% to 35%).

Figure 4.9 shows that Γ̇P is out of phase with respect to Γ̇U , which upon addition, would

decrease the rate of circulation development (i.e. Γ̇total), causing a lag in circulation dynamics

and consequently in lift dynamics too. The significant deviation of Γ̇total from the classical

linear theory of Theodorsen at a very small amplitude (0.5◦) and low frequency (k = 0.1),

shown in Figure 4.9a, is remarkable, and may be solely attributed to transition effects.

However, increasing A, decreases the contribution of Γ̇P and brings the Γ̇total closer to Γ̇U

which is also reflected in the magnitude of the FFT results in figure 4.10 showing diminution

of |Γ̇P | when A increases. Nevertheless, we must point out that even in these cases of

relatively larger amplitudes (Figure 4.9c), the effect of Γ̇P is not negligible and the rate of

circulation development is quite far from the linear theory of Theodorsen.

It must be noted that since the dynamics of Γ̇P is non-linear, the superposition principle

is not applicable and there must be coupling between the dynamics of the two-subsystems

representing Γ̇U and Γ̇P . For instance, assume the total circulation development is written as

Γtotal = a Γ+f(γ) where the first linear term represents the Kutta circulation (Γ̇Kutta = Γ̇U),

and the second non-linear term represents the ΓP . If this latter contribution is neglected,

the circulation dynamics would be purely linear resulting in the classical theory of unsteady

aerodynamics. However, when the second term does not vanish, the superposition principle

cannot be applied; the total circulation cannot be decomposed into two contributions, one

coming from each sub-system. Moreover, since Γ̇P induces non-linearity in the total circu-

lation, the non-linearity will also be inherited in the linear term (a Γ). That is, Γ̇P is the

main source of non-linearity in the response of Γ̇U which explains why the CFD prediction

of Γ̇Kutta deviates from Theodorsen’s.

In order to elaborate more on the flow events near the TE, the history of the boundary layer

thickness on the top and bottom of the airfoil have been plotted in Figure 4.11. All the
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figures were normalized by the maximum thickness of the boundary layer. Results reveal

that the thickness of the boundary layer is not symmetric between the top and bottom

surfaces of the airfoil otherwise, the ∆y-plot would be flat zero. At lower A (Figure 4.11a),

the yupper and ylower are more sinusoidal while increasing the pitching amplitude excites more

non-linearity in the system. (Figure 4.11b,4.11c)
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Figure 4.9: Γ̇ history at Re = 7.5× 104, k = 0.1, and three different pitching amplitudes A:
(a) A = 0.5◦, (b) A = 1.5◦, and (c) A = 3◦
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Figure 4.10: FFT of Γ̇U and Γ̇P at Re = 7.5×104, k = 0.1, three different pitching amplitudes
A: (a) A = 0.5◦, (b) A = 1.5◦, and (c) A = 3◦
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Figure 4.11: Variation of the y-coordinate of the boundary layer at the top and bottom of
the trailing-edge and the difference between them (in purple) at Re = 7.5 × 104, k = 0.1,
and three different pitching amplitudes A: (a) A = 0.5◦, (b) A = 1.5◦, and (c) A = 3◦

Effect of reduced frequency (k) on circulation dynamics

The reduced frequency effect is analyzed by varying the pitching frequency and retaining the

pitching amplitude and Reynolds number fixed at A = 3◦ and Re = 7.5 × 104. Note that

figures 4.9c, 4.10c, and 4.11c can also be considered in this section for comparison. Increasing

k leads to an increase in the effective angle of attack causing the the adverse pressure gradient

effects to dominate the transition effects. Hence, Γ̇U becomes more linear (Figure 4.12), which

can also be observed in the FFT results (Figure 4.13). Because of the relatively large A, the

Γ̇P -contribution induces a small phase shift to Γ̇total as discussed above. Even though there

is a big difference between Γ̇total coming from CFD and Γ̇Theodorsen; comparing the peaks

imply that at low k values, Theodorsen phase matches with the numerical results, whereas

at higher k values, a significant phase difference exists, which is similar to the viscous effects

discussed in chapter 2. The boundary layer thickness (Figure 4.14) exhibits more sinusoidal

trend as k increases which is in accordance with the circulation dynamics behavior.
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Figure 4.12: Γ̇ history at Re = 7.5 × 104, A = 3◦ and three different motion reduced
frequencies k: (a) k = 0.05, (b) k = 0.2, and (c) k = 0.3
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Figure 4.13: FFT of Γ̇U and Γ̇P at Re = 7.5×104, A = 3◦ and three different motion reduced
frequencies k: (a) k = 0.05, (b) k = 0.2, and (c) k = 0.3
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Figure 4.14: Variation of the y-coordinate of the boundary layer at the top and bottom of
the trailing-edge and the difference between them (in purple) at Re = 7.5× 104, A = 3◦ and
three different motion reduced frequencies k: (a) k = 0.05, (b) k = 0.2, and (c) k = 0.3
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Effect of Reynolds number (Re) on circulation dynamics

It is expected that increasing the Reynolds number will undermine the laminar-to-turbulent

transition, therefore less non-linear behavior in the Γ̇-response. For this part, the numerical

simulations were carried out at two different reduced frequencies and pitching amplitudes

(refer to table 4.1 for details). Considering figures 4.15a,4.15b for the Γ̇-response when

A = 3◦ and comparing them with the ones for Re = 7.5 × 104 (figures 4.9c, 4.12a), a more

linear trend in Γ̇U is observed (can also be confirmed with the FFT results). Unlike the lower

Reynolds number case where Γ̇P shifted the Γ̇total to the right (i.e. induced a phase lag), at

higher Reynolds number, this effect is not observed; Γ̇total follows Γ̇U in phase. However, at

both Reynolds numbers, Γ̇P leads to an attenuation of the amplitude of Γ̇total. The boundary

layer thickness plots (figures 4.17a, 4.17b) also indicate smoother (akin to pure sinusoidal)

trend of the flow.

Analogous to the influence of the pitching amplitude at the lower Reynolds number case

(Figure 4.9), it can be seen that at lower pitching amplitudes (Figure 4.15c), Γ̇P plays a

considerable role in the dynamics of circulation. Nevertheless, it is interesting to point out

that Γ̇P possesses a linear behavior at small amplitude (A = 0.5◦), low frequency (k = 0.1),

and high Reynolds number (Re = 20 × 104), as shown in Figure 4.15c which are the main

assumptions underpinning the classical linear theory.
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Figure 4.15: Γ̇ history at Re = 20 × 104 when (a) k = 0.05 and A = 3◦, (b) k = 0.1 and
A = 3◦, and (c) k = 0.1 and A = 0.5◦
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Figure 4.16: FFT of Γ̇U and Γ̇P at Re = 20× 104 when (a) k = 0.05 and A = 3◦, (b) k = 0.1
and A = 3◦, and (c) k = 0.1 and A = 0.5◦
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Figure 4.17: Variation of the y-coordinate of the boundary layer at the top and bottom of
the trailing-edge and the difference between them (in purple) at Re = 20 × 104 when (a)
k = 0.05 and A = 3◦, (b) k = 0.1 and A = 3◦, and (c) k = 0.1 and A = 0.5◦

4.5 Conclusion

CFD simulations (Reynolds-Averaged Navier-Stokes) are implemented to study the effects

of the Laminar-to-Turbulent transition on the unsteady aerodynamic response of a pitching

NACA 0012 airfoil. The γ − Reθ transition model is coupled with k − ω SST turbulence

model to account for transition effects. The numerical model (flow solver, closure model,

dynamic mesh, etc) is validated against an experimental study at a moderate Reynolds

number of Re = 48× 103, which shows the satisfactory accuracy of the numerical model. It
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has been shown that under the studied conditions (the airfoil, free-stream turbulent intensity

and reduced frequency), bellow Re ≈ 200× 103, transition has a significant effect on the lift

response. It induces non-linearities in the lift and circulation dynamics, which diminish as

Reynolds number increases toward the fully turbulent flow.

Dissecting the flow field near the trailing-edge, we show that the Kutta condition is violated

when transition occurs even at small pitching amplitudes (A = 0.5◦) and low reduced fre-

quencies (k = 0.1); the rate of vorticity pumped into the wake from the boundary layer is

quite different from the linear potential flow theory (e.g., Theodorsen). Consequently, the

development of the bound circulation over the airfoil is quite different from the linear theory,

and in fact possesses a non-linear behavior even at very small angles of attack and oscilla-

tion frequencies. We show that this deviation is due to a pressure jump across the boundary

layer, which is caused by transition effects. Such a pressure jump is typically ignored in

potential flow analysis. It leads to an additional contribution to the rate of change of bound

circulation, which is found to be out of phase with respect to the main linear component.

Hence, upon addition, it decreases the rate of change of bound circulation, causing a lag in

circulation development and consequently in lift dynamics.

The effect of three parameters (pitching amplitude, frequency and Reynolds number) on

the circulation dynamics is investigated. As pitching amplitude or frequency increases, the

effects due to adverse pressure gradient dominate over the transition effects, diminishing the

contribution of the pressure jump, leading to a more linear response. Also, increasing the

Reynolds number, the flow becomes closer to a fully turbulent one where the linear response

is dominant.
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Chapter 5

Conclusion and Future Considerations

5.1 Concluding remarks

Potential flow framework is the basis of almost all the analytical models in unsteady aero-

dynamics. This framework is not complete and requires an auxiliary condition. The most

common condition that is employed is the Kutta condition. By removing the trailing-edge

singularity, Kutta condition dictates the amount of circulation or lift on the airfoil. It was

shown that the application of Kutta condition in unsteady flows, specially at high reduced

frequencies and low Reynolds number flows, is controversial. In this work, the Kutta condi-

tion was relaxed, and unsteady triple deck theory; a boundary layer theory that accounts for

the transition from a Blasius boundary layer to Goldstein wake layer at the trailing edge, was

utilized to obtain the required condition in potential flow. As a result, a theoretical viscous

unsteady aerodynamics model for an oscillating thin airfoil with arbitrary time-varying cam-

ber was developed. This model is essentially a viscous correction to Theodorsen's potential-

flow frequency response function, which accounts for viscous actions near the trailing edge

region. Using the developed model, it was shown that viscosity leads to a significant phase
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lag at high frequencies and low Reynolds numbers, which is not predicted by Theodorsen's

potential flow model. To validate our theoretical model, computational fluid dynamic (CFD)

simulations were utilized to solve the fluid flow around a pitching NACA 0012. The incom-

pressible unsteady Reynolds-averaged Navier-Stokes equations were solved for the cases of

high Reynolds number and unsteady laminar ones for the cases of low Reynolds number. The

total lift history was obtained from CFD at different motion frequencies and the frequency

response was constructed, which showed very good agreement with the theoretical results.

The differences between the classical model of Theodorsen and the developed viscous model

were explained in terms of viscous induced lag and lag in circulation development. Moreover,

the dissatisfaction with Kutta condition was discussed.

The natural extension of the theoretical model was to develop a numerical method that can

handle any type of airfoil shape subjected to any arbitrary motion, which accounts for wake

deformation. The best candidate was the efficient and sufficiently accurate unsteady vortex

lattice model. It was shown through Hilbert matrices algebra how the Kutta condition

was implicitly applied in UVLM by dictating the location of the collocation and control

point (panel layout). Then, the Kutta condition was relaxed and the triple-deck theory was

utilized to include the viscous effects in UVLM. Based on this approach, the location of the

collocation and control points are no longer fixed and varies with time based on the strength

of the singularity coming from the triple-deck theory, which is a function of angle of attack.

Next, three different inputs, namely step, single-frequency and multi-frequency harmonic

motions were prescribed to the airfoil and the results were compared against analytical and

CFD results, which showed an excellent agreement.

Lastly, URANS simulations have been implemented to study the effects of the Laminar-to-

Turbulent transition on the circulation dynamics of a pitching NACA 0012 airfoil laboring

transition SST model. In the first step, the numerical method was validated against an

experimental study and the flow field near the trailing edge was analyzed. It has been shown
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that bellow Re = 200× 103 the transition effects are significant, and are not negligible from

the lift force history point of view. By utilizing the exact derivation of the Kutta condition,

it was shown that transition induces non-linearities in the circulation dynamics. Results

showed the remarkable contribution of the pressure rise/fall across the boundary layer near

the TE in the dynamics of the circulation, which is nonlinear in all the cases, and therefore,

it is not expected to be captured by the linear potential flow theory. This work casts light on

how the potential flow framework can be extended to account for the non-linear lift dynamics

when transition occurs.

5.2 Recommendations for Future Research

One of the main contributions of this dissertation is providing a framework on how to replace

the Kutta condition in the potential flow framework and, instead, utilizing the triple-deck

boundary layer theory to obtain a viscous condition. As a result, all the classical theories

that have used Kutta condition can be revisited to develop the viscous extension of them.

Obviously, this process is involved and requires special techniques and tools. For exam-

ple, Küssner (1929)’s model for sharp-edged gust problem (among many other examples in

unsteady aerodynamics) can be a good candidate for this purpose.

In this work, we adopted UVLM to develop a numerical approach for the developed theo-

retical model. This work can be extended in two ways. First, another numerical model like

discrete vortex method (DVM) can be utilized as the Kutta condition is explicitly satisfied

in that framework, which facilitates replacing it with the viscous condition. Second, in the

derivation of panel layout in UVLM based on Hilbert matrices algebra, it is assumed that

the panel length is constant. This assumption can be relaxed, which may result in removing

the dependence of the collocation and control point on the number of panel in the extended

UVLM.
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The main message of chapter 3 in this dissertation was to direct the attentions to a neglected

term in classical theories, which plays a vital role in the non-linear circulation dynamics

under transition conditions. The ultimate goal is to find the map between the neglected

term, which comes from the pressure rise/fall across the boundary layer near the TE, and

the effective parameters such as Reynolds number, motion frequency, type of maneuver,

turbulent intensity, airfoil type etc. Therefore, a large numerical and/or experimental data

set is needed to achieve this goal.
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behandlung des ebenen problems der tragflügeltheorie. ZAMM-Journal of Applied Mathe-
matics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 3 (4), 290–
297.

Bisplinghoff, R. L., Ashley, H. & Halfman, R. L. 1996 Aeroelasticity . Dover Pub-
lications, New York.

Blasius, H. 1908 Grenzschichten in Flüssigkeiten mit kleiner Reibung . Druck von BG Teub-
ner.

Boutilier, Michael SH & Yarusevych, Serhiy 2012 Separated shear layer transition
over an airfoil at a low reynolds number. Physics of Fluids 24 (8), 084105.

Brown, S. N. & Cheng, H. K. 1981 Correlated unsteady and steady laminar trailing-edge
flows. Journal of Fluid Mechanics 108, 171–183.

Brown, S. N. & Daniels, P. G. 1975 On the viscous flow about the trailing edge of a
rapidly oscillating plate. Journal of Fluid Mechanics 67 (04), 743–761.

Brown, S. N. & Stewartson, K. 1970 Trailing-edge stall. Journal of Fluid Mechanics
42 (03), 561–584.

Chow, R. & Melnik, R. E. 1976 Numerical solutions of the triple-deck equations for
laminar trailing-edge stall. In Proceedings of the Fifth International Conference on Nu-
merical Methods in Fluid Dynamics June 28–July 2, 1976 Twente University, Enschede,
pp. 135–144. Springer.

Chu, W.-H. 1961 An aerodynamic analysis for flutter in Oseen-type viscous flow. Journal
of the Aerospace Sciences 29, 781–789.

119



Chu, W.-H. & Abramson, H. N. 1959 An alternative formulation of the problem of
flutter in real fluids. Journal of the Aerospace Sciences 26 (10).

Collar, A. R. 1951 On the reciprocal of a segment of a generalized hilbert matrix. In
Mathematical Proceedings of the Cambridge Philosophical Society , , vol. 47, pp. 11–17.
Cambridge University Press.

Crighton, D. G. 1985 The Kutta condition in unsteady flow. Annual Review of Fluid
Mechanics 17 (1), 411–445.

Daniels, P. G. 1978 On the unsteady Kutta condition. The Quarterly Journal of Mechanics
and Applied Mathematics 31 (1), 49–75.

Darakananda, Darwin & Eldredge, Jeff D 2019 A versatile taxonomy of low-
dimensional vortex models for unsteady aerodynamics. Journal of Fluid Mechanics 858,
917–948.

Deparday, Julien & Mulleners, Karen 2019 Modeling the interplay between the shear
layer and leading edge suction during dynamic stall. Physics of Fluids 31 (10), 107104.

Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aero-
dynamic basis of insect flight. Science 284 (5422), 1954–1960.

Ding, Q.n & Wang, D.-L. 2006 The flutter of an airfoil with cubic structural and aero-
dynamic non-linearities. Aerospace science and technology 10 (5), 427–434.

Dovgal, AV, Kozlov, VV & Michalke, A 1994 Laminar boundary layer separation:
instability and associated phenomena. Progress in Aerospace Sciences 30 (1), 61–94.

Dowell, Earl H, Williams, MH & Bland, SR 1983 Linear/nonlinear behavior in
unsteady transonic aerodynamics. AIAA Journal 21 (1), 38–46.

Dugas, René 2012 A history of mechanics . Courier Corporation.

Epps, Brenden P, Roesler, Bernard T, Medvitz, Richard B, Choo, Yeunun
& McEntee, Jarlath 2019 A viscous vortex lattice method for analysis of cross-flow
propellers and turbines. Renewable Energy 143, 1035–1052.

Falkner, V. M. 1943 The calculation of aerodynamic loading on surfaces of any shape.
Tech. Rep.. AERONAUTICAL RESEARCH COUNCIL LONDON (UNITED KING-
DOM).

Fluent, Ansys 2009 12.0 users guide. Ansys Inc .

Ford, CW Pitt & Babinsky, Holger 2013 Lift and the leading-edge vortex. Journal
of Fluid Mechanics 720, 280–313.

Garmann, Daniel J & Visbal, Miguel R 2011 Numerical investigation of transitional
flow over a rapidly pitching plate. Physics of Fluids 23 (9), 094106.

120



Garrick, I. E. 1937 Propulsion of a flapping and oscillating airfoil. Tech. Rep. NACA-TR-
567.

Garrick, I. E. 1938 On some reciprocal relations in the theory of nonstationary flows.
Tech. Rep. 629. NACA.

Gharali, Kobra & Johnson, David A 2013 Dynamic stall simulation of a pitching
airfoil under unsteady freestream velocity. Journal of Fluids and Structures 42, 228–244.

Glauert, H. 1926 The elements of aerofoil and airscrew theory . Cambridge University
Press.

Goldstein, S. 1930 Concerning some solutions of the boundary layer equations in hy-
drodynamics. Mathematical Proceedings of the Cambridge Philosophical Society 26 (1),
1–30.

Goldstein, S. 1938 Modern developments in fluid dynamics: an account of theory and
experiment relating to boundary layers, turbulent motion and wakes . Clarendon Press.

Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining piv, pod and vortex
identification algorithms for the study of unsteady turbulent swirling flows. Measurement
Science and Technology 12 (9), 1422.

Greer, Donald, Hamory, Phil, Edwards, Center, Krake, Keith & Drela,
Mark 2000 Design and predictions for high-altitude (low reynolds number) aerodynamic
flight experiment. Journal of aircraft 37 (4), 684–689.

Gupta, Rohit & Ansell, Phillip J 2018 Unsteady flow physics of airfoil dynamic stall.
AIAA Journal 57 (1), 165–175.

Hedman, Sven G 1966 Vortex lattice method for calculation of quasi steady state loadings
on thin elastic wings in subsonic flow. Tech. Rep.. AERONAUTICAL RESEARCH INST
OF SWEDEN STOCKHOLM.

Helmholtz, Hermann 1858 About integrals of hydrodynamic equations related with vor-
tical motions. J. für die reine Angewandte Mathematik 55, 25.

Hemati, M. S., Eldredge, J. D. & Speyer, J. L. 2014 Improving vortex models via
optimal control theory. Journal of Fluids and Structures 49, 91–111.

Henry, C. J. 1961 Hydrofoil flutter phenomenon and airfoil flutter theory. Tech. Rep. 856.
Davidson Laboratory.

Ho, C. & Chen, S. 1981 Unsteady kutta condition of a plunging airfoil. In Unsteady
turbulent shear flows , pp. 197–206. Springer.

Hosseini, Seyed Mohammad, Vinuesa, Ricardo, Schlatter, Philipp, Hanifi,
Ardeshir & Henningson, Dan S 2016 Direct numerical simulation of the flow around
a wing section at moderate reynolds number. International Journal of Heat and Fluid
Flow 61, 117–128.

121



Howarth, L. 1935 The theoretical determination of the lift coefficient for a thin elliptic
cylinder. Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences 149 (868), 558–586.

Hussein, Ahmed A & Canfield, Robert A 2017 Unsteady aerodynamic stabilization
of the dynamics of hingeless rotor blades in hover. AIAA Journal 56 (3), 1298–1303.

Hussein, A. A., Taha, H., Ragab, S. & Hajj, M. R. 2018 A variational approach for
the dynamics of unsteady point vortices. Aerospace Science and Technology 78, 559–568.

James, R. M. 1972 On the remarkable accuracy of the vortex lattice method. Computer
Methods in Applied Mechanics and Engineering 1 (1), 59–79.

Jobe, C. E. & Burggraf, O. R. 1974 The numerical solution of the asymptotic equations
of trailing edge flow. Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 340 (1620), 91–111.

Jones, M. A. 2003 The separated flow of an inviscid fluid around a moving flat plate.
Journal of Fluid Mechanics 496, 405–441.

Joukowsky, N. 1910 Über die konturen der tragflächen der drachenflieger. Zeit. für
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