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RESEARCH ARTICLE Open Access

Association mapping by aerial drone
reveals 213 genetic associations for
Sorghum bicolor biomass traits under
drought
Jennifer E. Spindel1,7, Jeffery Dahlberg2, Matthew Colgan3, Joy Hollingsworth2, Julie Sievert2,
Scott H. Staggenborg4, Robert Hutmacher5, Christer Jansson6 and John P. Vogel1*

Abstract

Background: Sorghum bicolor is the fifth most commonly grown cereal worldwide and is remarkable for its drought
and abiotic stress tolerance. For these reasons and the large size of biomass varieties, it has been proposed
as a bioenergy crop. However, little is known about the genes underlying sorghum’s abiotic stress tolerance
and biomass yield.

Results: To uncover the genetic basis of drought tolerance in sorghum at a genome-wide level, we undertook a high-
density phenomics genome wide association study (GWAS) in which 648 diverse sorghum lines were phenotyped at
two locations in California once per week by drone over the course of a growing season. Biomass, height, and leaf area
were measured by drone for individual field plots, subjected to two drought treatments and a well-watered control. The
resulting dataset of ~ 171,000 phenotypic data-points was analyzed along with 183,989 genotype by sequence markers to
reveal 213 high-quality, replicated, and conserved GWAS associations.

Conclusions: The genomic intervals defined by the associations include many strong candidate genes, including those
encoding heat shock proteins, antifreeze proteins, and other domains recognized as important to plant stress responses.
The markers identified by our study can be used for marker assisted selection for drought tolerance and biomass. In
addition, our results are a significant step toward identifying specific sorghum genes controlling drought tolerance and
biomass yield.
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Background
The plant and agricultural research community faces a
grave challenge: in a mere three decades, we must
reinvent agriculture to feed a growing global population,
in an environmentally sustainable manner, while dealing
with a projected increase in drought events [1–3]. Sor-
ghum [Sorghum bicolor (L.) Moench] could be bred to
help address these challenges. Sorghum is the fifth most
commonly grown cereal crop worldwide, and over half a
billion people rely on it as a daily food staple. It is
already essential to food security, as it can grow across a

wide range of marginal climates, including regions too
hot and dry to grow rice, corn, or wheat. Sorghum has
also generated interest in recent years as a bioenergy
crop because it can produce exceptionally large biomass
yields on marginal lands with limited inputs [4–6].
In order to efficiently develop sorghum biomass varieties,

several important research questions must be addressed.
First, we must understand the genetic underpinnings of
terminal biomass in sorghum and identify specific genes or
genetic regions that can be targeted for breeding and engin-
eering efforts. Second, if bioenergy crops are to be compat-
ible with environmental stewardship and increased food
production they cannot compete with food crops for pro-
ductive croplands – they must be grown on underutilized,
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marginal lands. So, it is also necessary to gain a mechanistic
understanding of stress tolerance. Unfortunately, our
current understanding of the genetics underlying biomass
and/or drought tolerance in sorghum is limited. While there
have been many linkage mapping studies for drought toler-
ance quantitative trait loci (QTLs), there has been almost no
validation of causal polymorphisms, which is a crucial step
before results are of use to breeders, and the QTL regions
identified in these linkage studies have been too large to
identify meaningful candidate alleles [7–13]. A genome wide
association study (GWAS), by contrast, identifies linkages
between SNPs and causal polymorphism based on historical
recombination events in a diversity panel, and thus allows
for a much finer resolution around the site of a causal poly-
morphism, while, at the same time, assaying more diversity
than a linkage mapping in a bi-parental family. Thus, despite
the many QTLs identified for drought tolerance in sorghum
over the years, a well-designed GWAS for drought tolerance
is needed to identify better candidates for causal polymor-
phisms underlying the remarkable drought tolerant charac-
teristics of sorghum.
By far, the best studied traits in sorghum are flowering

time and plant height, in large part because these traits
were the targets of the US Sorghum Conversion Program
(SCP). Most sorghum varieties are photoperiod sensitive
and do not flower at temperate latitudes, so in 1963, the
SCP was begun with the goal of introgressing photoperiod
insensitivity and dwarfing alleles into exotic sorghum
backgrounds to produce what are now commonly referred
to as converted lines or ‘SC’ lines [14–16]. When photo-
period sensitive sorghums are grown in the US, they have
greater potential as biomass lines than SC lines because
they never transition out of the vegetative stage and so
grow all season long. They also do not generally express
the genes for short stature, which the converted lines were
bred to favor, and which for obvious reasons, also dramat-
ically decrease biomass [5].
In sorghum plant height is thought to be primarily

determined by four dwarfing loci, Dw1-Dw4, all of
which have been cloned with the exception of Dw4
[17]. Flowering time is likewise thought to be con-
trolled by six major loci (Ma1-Ma6), of which Ma1 and
Ma3 have been cloned [14, 16, 18]. Total/terminal plant
biomass, however, is a complex trait that is affected by
many genetic factors beyond plant height and flowering
time. While a few recent GWAS have attempted to
map single nucleotide polymorphisms (SNPs) linked to
causal polymorphisms of sorghum biomass traits, very
few candidates have been identified [19–22]. One of the
main reasons for this is the difficulty of measuring bio-
mass in the field. The most common method of meas-
uring plant biomass is destructive, which means that
only a single measurement can be taken per plot for an
entire growing season, an under-powered approach for

a GWAS. Attempting to collect precise non-destructive
plant growth measurements (e.g. height, leaf area
index) by hand over the course of the growing season,
however, is highly impractical. Many others have
pointed out that the bottleneck for the modern GWAS
is no longer the genotyping, which is now relatively in-
expensive and almost entirely automated, but the phe-
notyping. So, we must solve this new problem the same
way we solved the first – with the development and ap-
plication of new technology, generally referred to as
‘phenomics’ [23–25].
Approaches to field-based plant phenomics include

gantry systems, ground-based vehicles, and aerial drones.
With all phenomic strategies, however, the goals are
high-throughput, non-invasiveness, accuracy, and auto-
mation. Gantry systems are able to lift large, imaging
sensor suites, making them ideal for engineering re-
search and development, but are fixed installations and
cover a small area compared to the needs of commercial
plant breeders. Ground-based vehicles, including high-
clearance tractors and slim-profile autonomous robots
which maneuver between crop rows, can measure traits
that are challenging to observe from above, but can be
physically impeded by downed plants, tall plants, and
tillering, particularly in sorghum. Aerial drones, by con-
trast, can cover large areas quickly, allowing all geno-
types in a study to be measured simultaneously, and are
not impeded by plant height, which allows them to cap-
ture data throughout the entire growth season [26].
Regardless of platform, however, the most challenging
aspect of any phenomic approach is the data analysis
and conversion of imagery and sensor data into trait
measurements that are relevant to plant breeders.
We present here the results of a GWAS in sorghum in

which all of the phenotype data, including total fresh bio-
mass (BWET), biomass at 65% moisture content (B65), leaf
area index (LAI), and plant height (PH), were collected by
aerial drone and ground-truthed, once per week, over the
course of the growing season. The panel included 620
diverse public sorghum conversion (SC) lines and 26 pro-
prietary sorghum hybrids provided by Chromatin Inc. To
investigate the interaction between biomass and drought,
as well as to better understand the genetic architecture of
drought tolerance in sorghum, the panel was planted in
three treatment plots including a control, pre-flowering
drought stress, and post-flowering drought stress plots, at
two locations in central California. We thus refer to the
resulting phenotype dataset as ‘high density’, and the
GWAS we performed as a ‘high-density phenotype’ GWAS,
or an ‘HDP-GWAS’. Using a custom HDP-GWAS data
analysis pipeline and novel data visualization tools, we iden-
tified 213 highly reliable GWAS peaks, a number of signifi-
cant and reliable associations far larger than in any
previously published GWAS performed in sorghum.
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Results and discussion
Germplasm selection, genotyping and population structure
Six hundred fourty-eight lines including 620 SC lines,
two inbred lines with known drought tolerance and
26 hybrids were selected to make up the diversity
panel to assay the natural diversity of Sorghum bicolor
(Additional file 1). The SC lines were selected to rep-
resent the broad genetic and environmental base from
which sorghum was domesticated and include repre-
sentatives of all major sorghum morphology types
(a.k.a. races -- bicolor, caudatum, guinea, kafir, and
durra) and a range of breeder ‘working groups’ cur-
rently recognized in traditional sorghum breeding
classification schemes. Converted sorghum lines were
selected to form the bulk of the panel based on the
hypothesis that transition to flowering and the shift
to reproductive growth stages have profound effects
on genetic regulation of most, if not all traits, and
that performing a GWAS in lines that did not flower
(i.e., a panel of non-converted lines) would identify
fewer polymorphisms linked to biomass and/or drought
tolerance.
The panel was genotyped using genotyping-by-sequencing

(GBS). Imputation accuracy (FILLIN, methods) was calcu-
lated as 99.8% for major allele homozygotes, 92.9% for
minor allele homozygotes, and 55.6% for heterozygotes.
After filtering for bi-allelic SNPs with call rates ≥75%,
183,989 SNPs remained with an overall heterozygosity rate
of 1.34%. When the hybrid lines were removed, only ~ 1%
of SNP calls were heterozygous. A final set of 131,544 SNPs
with minor allele frequency (MAF) ≥ 0.01 were used for all
GWAS analyses. Two individuals with genotyping rates <
60% were dropped from all subsequent analyses, after
which the mean call rate per genotype was 91.5%.

Neighbor-joining (NJ) tree analysis, principle compo-
nents analysis (PCA) analysis, and partitioning around
k-medoids analysis (PAMK) each identified five sub-
population groups within the diversity panel (Fig. 1,
Additional file 2: Figure S1). The NJ tree analysis
revealed that the genetic structure could be explained
by a combination of morphology type and country of
origin of the exotic parents used in the SCP, specifically,
West Africa (Nigeria, Mali), East Africa excluding
Ethiopia (Sudan, Kenya, and Uganda), Ethiopia, India,
and South Africa, in agreement with previous studies of
sorghum natural diversity (Fig. 1) [16, 22, 27, 28]. Due
to the high degree of confounding between morphology
type and country of origin, it was not possible to deter-
mine which of these two factors was the primary driver
of subpopulation structure in this dataset, however it is
clear that the two factors together explain almost all
clusters and sub-clusters on the NJ tree well (Fig. 1).
The comparison of our tree and PCA results to those
published on larger and more extensive analyses of
sorghum natural diversity suggest that our panel is rep-
resentative of sorghum natural diversity [22, 27, 28]
(Additional file 1). PAMK also found the number of
subpopulations to be 5 by maximum average silhouette
width (aws) = 0.082.
Pairwise linkage disequilibrium (LD, r2) was calculated for

all SNPs on each chromosome. For each pair of SNPs, the
relationship between pairwise distance and r2 was then cal-
culated using a Gaussian kernel smoother (σ = 500). Across
all chromosomes, this yielded an average baseline LD (r2) of
0.12 (Fig. 2, Additional file 2: Figure S2, Additional file 3).
LD decayed to less than 0.3 r2 by an average of 39.7 Kb,
however it is important to note that regions of substantially
higher LD were identified across the genome, most

Fig. 1 Genetic relationship between lines. Neighbor joining trees for 648 diverse Sorghum bicolor lines including 622 inbred sorghum lines and
26 proprietary Chromatin Inc. hybrids colored by morphology type (a) and country of origin of exotic parents (b). Together, morphology type
and country of origin explain most of the genetic structure of this sorghum panel
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notably, on chromosomes with known conversion loci,
the most extreme of which were found on chromo-
somes 6 and 9, in the regions of Ma1/Dw2 and Dw1
respectively (Fig. 2, Additional file 2: Figure S2,
Additional file 3) [16]. These areas of high local LD
were taken into account when interpreting the results
of the GWAS experiments.

Phenotyping
Plant phenotypic traits were measured by drone in Par-
lier, CA (KARE) and Five Points, CA (WREC) once per
week over 12 weeks during the 2016 growing season. At
each location, each genotype was grown under three
drought conditions: pre-flowering drought stress (PRE),
post-flowering drought stress (POST) and control. The
drone measured four plant traits: 1., vegetative biomass
adjusted to 65% moisture content (tons/acre, B65), a sor-
ghum industry standard for measuring biomass yield
and assessing the amount of bioenergy feedstock a sor-
ghum line can provide, 2., fresh total plant biomass
(tons/acre, BWET), 3., plant height (m, PH) and 4., leaf
area index (LAI).
For each phenotype and drought stress treatment,

drought tolerance was calculated as an additional pheno-
type by taking the deviation between PH, LAI, B65, and
BWET for PRE and POST treatments and the control
treatment, respectively, for an additional two derived phe-
notypes per individual, time-point, and location. Thus, the
total number of drone phenotype data-points was 171,072
for a high-density phenomics (HDP) dataset. In addition
to the phenotype data collected by drone, field-based phe-
notypes were collected for flowering time at KARE, and
drone-collected photos were used to determine flowering
time for WREC.

Phenotype data filtering
Prior to running GWAS, a phenotype data filtering method
was developed and applied to the drone-collected pheno-
type data to reduce noise and remove outliers. Briefly, for
each individual, trait, treatment, and location combination,
the drone measurements were plotted versus time. A kernel
smoothing line was then fit for each plot, and outliers were
identified based on the size of the residual of a given data
point from the fitted spline (Additional file 2: Figure S3).
Using this method, 2.2% of the PH data points, 5.3% of the
LAI data points, 5.9% of the B65 data points, and 7.7% of
the BWET data points were removed from the dataset, and
treated as missing data for all subsequent GWAS analyses.
Our filtering method was found to be highly robust for
removal of outliers based on the revised set of time-plots
produced after outlier filtering, as well as the high quality of
the GWAS results (Additional file 2: Figure S4). The result-
ing phenotype dataset was also used for calculating the
derived drought tolerance phenotypes.
Post-phenotype data filtering, all four phenotypes and

treatments were well correlated within a given site and
time-point, as was expected based on the general propor-
tionality of different measures of plant biomass, although
LAI was slightly less well correlated than the other three
traits with the group as a whole (Additional file 2: Figure S5).
All filtered phenotypes followed approximate normal distri-
butions (Additional file 2: Figure S6).

Drone-based genome-wide association studies
Single-variate GWAS were run using GEMMA for every
combination of trait, treatment, time-point, and location
for a total of 460 GWAS. For each GWAS, the following
covariates were tested for inclusion in the GEMMA
model: no covariates, 1 principle component (PC), 2
PCs, 3 PCs, 4 PCs, 1PC + flowering time (FT), 2 PCs +

Fig. 2 Linkage disequilibrium. Gaussian kernel smoothed pairwise linkage disequilibrium (LD), r2, by SNP pair distance (bp) for chromosomes 1 and 6.
Pairwise LD was calculated for all pairs of SNPs on each chromosome using Plinkv1.9, and a Gaussian kernel smoother (σ = 500) fit to
model the relationship between SNP distance and pairwise LD on each chromosome. Most chromosomes resembled chromosome 1 (top)
in that LD quickly decayed to a baseline of ~ 0.1 r2. Several chromosomes such as chromosome 6 (bottom), however, were subject to
large linkage blocks as a result of linkage drag around conversion loci on these chromosomes. Similar plots for the other chromosomes
can be found in Additional file 2: Figure S2
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FT, 3 PCs + FT, and 4 PCs + FT. Of these different
models, the simplest model resulting in the best
QQ-plot was selected for each GWAS. QQ-plots varied
widely in terms of adherence to the null hypothesis, sug-
gesting that for some trait by time by treatment by loca-
tion combinations (TTLs), population structure, some of
which was likely caused by linkage with SCP selection
loci, was a confounding factor, however this was not the
case for all TTLs, suggesting that false positives due to
structure may be present in some GWAS, but not in
others – the subsequent analysis methods take this into
consideration (Additional file 2: Figure S7). Multiple test
correction to a false discovery rate of 0.1 was performed
for all p-values (wald test, or p-wald) for each GWAS.

Consolidating results of 460 GWAS into conserved,
reliable peaks
The 460 GWAS performed identified a total of 12,014
significant associations after multiple test correction,
which corresponded to 3907 unique SNPs. To identify
the number of genetic loci we defined conserved and re-
liable peaks across all GWAS. A conserved peak is de-
fined as a peak that was identified in more than one
GWAS. A reliable peak is defined as one that is not
likely to be the result of a data artifact such as popula-
tion structure. The high density GWAS pipeline we de-
veloped to define our GWAS peaks is illustrated in
Fig. 3 and described in detail in the materials and
methods.
Using this pipeline, a total of 213 distinct GWAS peaks

were identified. The mean of the highest significant –log
(p-value) identified per SNP, after FDR correction, was
2.74, ranging from a maximum of 12.86 to the defined
minimum of 1. The average distance spanned by the sig-
nificant SNPs across all GWAS runs was 149.84 Kb, ran-
ging from a minimum of 0 (only one significant SNP) to a
maximum of 1.6 Mb (Table 1, Additional files 4 and 5).

Introducing the Manhattan blot: Visualization of many
single variate GWAS results
To jointly visualize the results of 460 GWAS with the goal
of identifying the strongest candidates, we designed a vari-
ation on the Manhattan plot -- the “Manhattan blot”
(M-blot). Like a Manhattan plot, the M-blot x-axis plots
the SNP physical position and the y-axis plots the SNP –
log (p-value), however on an M-blot, only the SNPs that
were significant in at least one GWAS are plotted, and the
size of the point is proportional to the number of times the
SNP was significant. The SNPs are plotted on a per
chromosome basis, and the exact y-axis position of each
point is the median of the –log (FDR corrected p-value)
across all GWAS where the SNP was significant. The
physical boundaries of the GWAS peaks defined using our

peak definition pipeline are delineated by alternating blue
and green vertical lines (Fig. 4; Additional files 4 and 5).
The assumption at the heart of the M-blot is that the

more GWASs that identify a particular SNP as significant,
the more likely that SNP is to be linked to a causal
polymorphism. This assumption is borrowed from the
meta-GWAS approach, which relies on replication be-
tween separate experiments to lend reliability to the find-
ing that any given SNP, region, or peak is truly linked to a
causal polymorphism. In our experiment, we utilized the
related idea that replication across time, environments,
and/or treatments can lend similar reliability to our statis-
tical inference.
Since all of our GWAS were performed in the same

population (unlike in a traditional meta-GWAS), it was
important we minimize the possibility that SNPs identified
many times were the result of linkage to a subpopulation
structure locus. We did so by removing peaks where all
individual GWAS appeared to be the result of population
structure artifact (Fig. 3c). The M-blot, itself, also makes it
easy to visually assess if this type of subpopulation artifact
is present by examining how many circles fall in the phys-
ical space of the peak, i.e., in a vertical line. Since each
point/circle is a different significant SNP, the more circles
that fall in a vertical line, the less likely the peak is an
artifact of population structure. The M-blot can thus be
interpreted as follows -- the more large circles that fall in
a vertical line, the stronger the GWAS peak candidate.
The second (right) y-axis on our M-blots plots the highest
median percent variance explained (PVE) for a given peak
(red stars; Fig. 4; Additional files 4 and 5).
A variation on the M-blot, the Manhattan blot B (M-blot

B) was created to further simplify the data presentation
(Additional file 2: Figure S8). The M-blot B differs from the
M-blot only in that only a single SNP is plotted for each de-
fined GWAS peak – it still shown as a series of blue and
green vertical lines. This single SNP is the SNP with the
highest median p-value of all the SNPs in a given peak. The
count of GWASs in which the SNP was identified as sig-
nificant was then adjusted to equal the sum of the peak
SNP counts as well as the sum of counts of all the other
SNPs in the peak interval. The point size was then plotted
as proportional to this grand sum for each peak. The
advantage of the M-blot B is that by glancing only at the
single circle, it is easier to gauge the total number of
SNPs significant in a given interval across all 460
GWAS (Additional file 2: Figure S8, Additional files 4
and 5).

Percent phenotypic variance explained and allele effects
Percent phenotypic variance explained (PVE) and pheno-
typic allele effect were calculated for each individual
GWAS, for each SNP that was significant. Given that 460
individual GWAS were performed, these values are more
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interesting when summarized. PVE was plotted on Manhat-
tan blots as described above, and the mean, median, stand-
ard deviation, minimum, and maximum PVE values for
each SNP are given in Additional file 6. PVEs ranged from
a maximum of 39.3% (S01_56985753) to almost zero. The
mean PVE was ~ 5.27%.
For all traits, allele effects of all sizes were identified.

Allele effects for B65 ranged from − 1.87 to + 14.81
tons/acre, B65 deviation from − 4.2 to + 11.18 tons/acre,
for BWET from − 2.35 to + 22.67 tons/acre, for BWET
deviation from − 5.6 to + 16.04 tons/acre, for PH from −
0.08 to + 1.38 m, for PH deviation from − 0.45 to– +
0.61 m, for LAI from − 0.60 to + 1.73 and for LAI devi-
ation, from − 0.72 to + 1.11 (Additional file 7). Some of
the very large effect alleles are undoubtedly conversion
loci, responsible for flowering time insensitivity and/or
dwarfism, however, not all large effect loci overlap with
conversion QTL, which suggests promising avenues for
future research (Fig. 5, Additional file 2: Figure S9). In
general, SNPs where the minor allele decreased drought

Fig. 3 Overview of HDP-GWAS peak definition pipeline. To define
preliminary GWAS peaks, all SNPs identified as significant in at least
one out of 460 individual GWAS were consolidated into a single file.
Local pairwise LD (r2) was calculated by first calculating the relationship
between pairwise LD and SNP pair distance using a Gaussian kernel
smoother (σ = 500), after which, for every SNP in a particular linkage
block, the SNP position was found in the pairwise LD table and all
linked SNPs identified (a, 1–2). A SNP was considered linked if r2≥ 0.2
for all chromosomes except chromosomes 6 and 9, for which a SNP
was considered linked if r2≥ 0.3. (a, 2). Max distance (Max dist) was
then defined as the largest bp distance between linked SNPs (a, 4).
This process was repeated for all linkage blocks. Once max dist was
defined for each significant SNP, the upper boundary of each preliminary
GWAS peak could be defined as SNP position + max dist, and the lower
boundary of each GWAS peak could be defined as SNP position – max
dist (a 5–7). All SNPs falling in between the boundaries were
then considered to be within the same GWAS peak (a, 8). This
process was repeated for all peaks. In the event that more than
one peak contained the same SNPs, they were merged into a
single peak (a, 9). After defining preliminary peaks in this manner,
peaks were refined by drawing ‘zoomed’ Manhattan plots around
peaks, i.e., SNPs +/− 50 Kb from the preliminary peak boundaries (b, 10).
Each zoomed Manhattan plot was then assessed visually to determine if
the peak was, in fact, a single peak, or if the pattern of linkage indicated
that the peak should be split into two or more peaks (b, 11). If it was
determined that a preliminary peak should be split into two or more
peaks, the diagnosis was confirmed by drawing second zoomed
Manhattan plot including SNPs +/− 2 Mb around the peak boundaries
(b, 12). After peaks were refined in this way, each individual zoomed
Manhattan plot was rated either 1, 2, or 3 based on the evidence
suggesting the peak was not an artifact, using visual assessment,
where a rating on 1 indicated a peak with no evidence to suggest it
was not an artifact, and a rating of 3 indicated a peak with very strong
evidence it was not an artifact. All other peaks were rated as 2 (c, 14–15).
Any GWAS peaks with only ‘1’ ratings were removed from the final set of
significant GWAS peaks (c, 16). The final step of the pipeline is results
analysis, i.e., identifying the combinations of trait, treatment, time point,
and location that resulted in each significant GWAS peak (d, 17)
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Fig. 4 Manhattan blots (M-blots) for chromosomes 1–10. We designed the Manhattan blot as a new method for viewing the results of a large
number of single-variate GWAS, as might be performed to utilize HDP-GWAS data -- the results of 460 single-variate GWAS results in the case of
the current study. Each point on an M-blot represents a SNP that was significant in at least one of the 460 GWAS where the x-axis is the physical
position of the SNP in Mb (by chromosome), the left y-axis gives median of the –log (FDR corrected p-value) across all GWAS where the SNP was
significant, and where the size of the point is proportional to the number of independent GWAS in which the SNP registered as significant (N).
These M-blots show the combination of the results for all trait by treatment by time-point by location combinations. The alternating blue and green
vertical lines delineate the physical positions of distinct peaks defined using our peak definition pipeline. The right y-axis gives the value of the red star
– the highest median percent variance explained (PVE) calculated for the SNPs within the interval of each peak

Table 1 Summary of final GWAS peaks identified using peak definition pipeline

max p-val narrow peak span (Kb) wide peak span (Kb)

mean 2.74 32.8 149.84

std 1.41 61.67 236.13

min 1.01 0 0

25% 1.85 0.22 9.09

50% 2.36 6.31 60.56

75% 3.08 39.9 179.82

max 12.68 437.36 1621.43

count (N peaks) 213

‘max p-val’ = highest corrected p-value for any SNP in a given peak over the 460 individual GWAS runs, narrow peak span (Kb) = smallest distance spanned in Kb
by significant SNPs for a given peak over the 460 GWAS runs, where a value of 0 indicates that a single SNP passed the significance threshold, wide peak span
(Kb) = Kb range of the union of all SNPs that surpassed the significance threshold in any GWAS that registered a given peak (i.e., the largest, significant bp
position out of all GWAS runs - smallest significant bp position out of all GWAS runs, for a given peak). The mean, standard deviation (std), minimum, maximum,
and 25%, 50% and 75% quantiles were calculated across these values for the final set of 213 GWAS peaks to produce the above summary
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tolerance were only observed when deviation data were
used. Far more minor allele effects were observed that
increased drought tolerance, suggesting potential for
large gains from selection for drought tolerance breed-
ing programs.

SNP effects by subpopulation
When one or more subpopulations have been historically
untapped by modern breeders, these subpopulations can
serve as reservoirs of new, agronomically useful alleles. In
order to determine if any such reservoirs exist among the
five sorghum subpopulation groups in our panel, we
looked at the number of individuals from each subgroup
that carried the effect allele for any given GWAS SNP.
Fig. 6 shows the relative differences in the percentage of
individuals in each subgroup carrying effect alleles over
the 213 peaks. The individual percentages are graphed for
each peak in Additional file 2: Figure S10. The results of
these analyses suggest that, as expected, for most of the
peaks, the number of individuals with effect alleles was
unevenly distributed across the five genetic subgroups.
The peaks that were exceptions to this rule are most likely
associated with conversion loci, i.e., the SNPs are probably
derived from the recurrent parent in the SCP rather than
the exotic parent.
In the dataset as a whole, a median of ~ 3.1% of the

genotypes carried minor alleles at loci associated with
the 213 GWAS peaks. When this percentage is broken
down by subgroup, group K4 is enriched relative to this
median, and greatly enriched relative to the other sub-
groups: ~ 4.4% of K4 genotypes carried minor alleles at
effect loci compared to ~ 2.7% of K1 genotypes, ~ 1.4%
of K5 genotypes, and ~ 0% of K2 and K3 genotypes, by
median (Fig. 6). These differences were highly significant
by one-sample ANOVA (F = 16.1, p = 3.84E-13).
Group K4 was also found to have the highest number

and percentage of private SNPs, meaning that a higher
proportion of SNPs with minor allele effects occurring
only in a single subgroup were found for K4 than any
other subgroup. One hundred twenty-two of the 1673
final unique significant SNPs linked to the end set of
213 GWAS peaks were private to K4, ~ 7.3% of the

Fig. 5 Average allele effects. Heat maps showing the average allele
effects across locations and time-points of significant SNPs on
chromosome 1 for B65 (left) and B65 deviation (right, where
post-flowering = control – post-flowering data and pre-flowering
= control – pre-flowering data), for each treatment. Note that
each heat map has its own scale, but in all cases, darker red
indicates that the minor allele confers an increase in the trait
measurement (i.e., increased drought tolerance), darker blue
indicates that the minor allele confers a decrease in the trait
measure (i.e., decreased drought tolerance), and yellow indicates
an effect close to or at 0. SNPs between dashed lines are in the
same GWAS peak
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GWAS associated SNPs and ~ 0.5% of all SNP genotypes
in K4. K1 had the second most private SNPs, 57, ~ 0.2%
of K1 genotype calls. For the other three subgroups, less
than 0.1% of genotype calls were for private GWAS as-
sociated SNPs (Additional file 8).
Groups K4 and K1 were also the largest subgroups in

the panel, 252 and 146 genotypes, respectively (Add-
itional file 8), so it is possible that more effect alleles,
i.e., the minor alleles of GWAS loci in population, were
found in these subpopulations due to the greater power
bestowed on these groups by their larger sample sizes,
and that more effect alleles would have been identified
in groups K2, K3, and K5 if these population subgroup
sizes had been on par with K4 (Additional file 8). Future
diversity panels should try to include more individuals in
these clusters to answer this question. However, we can
say from our results that the individuals in group K4,
which consisted of a mix of morphology types from
across Africa, represent a good source of exotic diversity
from which to breed for drought tolerance and biomass
(Additional file 1).

Peaks by trait, time, treatment, and location
GWAS peaks were classified in several ways based on
the combinations of traits, time-points, treatments, and
locations in which they registered as significant (Table 2,
Additional files 4 and 5). Peaks were first classified as
deviation (DV) and/or non-deviation (NDV) peaks. DV
peaks were those peaks that were identified for any of
the four phenotypes measured as deviations from the
control treatment, and represent true tolerance loci,

whereas NDV peaks were those identified using the raw
phenotype data for each treatment. NDV peaks may be
tolerance loci when identified under drought conditions
for reasons of stochasticity, or, more likely, they may
have an effect on the phenotype that is not dependent
on the environmental condition.
Out of the final 213 GWAS peaks, ~ 29% (62) were ex-

clusively NDV, ~ 9% [19] were exclusively DV, and ~ 62%
(132) of the peaks were identified using both deviation and
non-deviation data (Fig. 7a, Additional files 4 and 5). One
strategy for deciding which peaks to begin validating first
for drought tolerance would be to look at the peaks in ei-
ther the DV or ‘both’ categories. The exclusively NDV
peaks are an interesting source for future investigation, but
are more likely to contain peaks linked to conversion than
drought tolerance and so may be of lower priority for future
validation studies. Similarly, more peaks were identified at
both locations than at only one location (Fig. 7b, Additional
files 4 and 5). Of the peaks identified at only a single loca-
tion, more peaks were identified at WREC than at KARE,
most likely as a result of the harsher drought stress condi-
tions at KARE due to sandy loam soil conditions at this site.
The classification of peaks based on the combination of
both location and DV/NDV peak type is shown in Fig. 7c.
Overall, the results suggest there is a high degree of overlap
between peaks identified at different locations and using
different phenotype data, which, in turn, suggests that the
results, and in particular, the final set of filtered GWAS
peaks, are of high quality and reliability.
For both the DV and NDV peaks, all four traits (i.e.,

B65, BWET, PH, and LAI) were on par with each other

Fig. 6 Distribution of effect alleles among genetic subgroups. Average percent of genotypes with effect alleles at GWAS loci by genetic subgroup
across 1673 SNPs within 213 GWAS peaks. For each genetic subgroup (K = 1–5), for each SNP, the number and percent genotypes homozygous
for the effect (minor) allele was tabulated. The mean, median, range, and interquartile range (IQR) were then calculated for each subgroup. Box
whiskers show range, green triangles show mean, lines show median, and box outlines the IQR. The difference between the medians by
one-sample ANOVA was highly significant (f = 16.1, p = 3.84E-13). Box for group K = 6 shows statistics across all individuals
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for the number of peaks they identified, with the excep-
tion of LAI, which was linked to noticeably fewer peaks
than the other three phenotypes, likely as a result the
higher error for this phenotype (Table 2, Additional files
4 and 5). The effect of treatment was examined in the
context of time, where the majority of peaks were identi-
fied in pre-flowering treatments during recovery (i.e.,
late in the season after resumption of watering), control
treatments, and post-flowering during stress time-points
(i.e., late in the season during drought stress) (Table 2,
Fig. 8, Additional files 4 and 5). Although these treat-
ments also cover most of the time-points at which data
were collected, the results suggest we identified alleles
for both pre-flowering and post-flowering stress toler-
ance, with an enrichment for alleles active later in the
growing season (Fig. 8).

Candidate genes for biomass and drought tolerance
All annotated sorghum genes that fell into regions of
each GWAS peak (as defined by the physical distance
spanned by the significant SNPs for each peak) were

pulled from PhytoMine to generate lists of candidate
genes (Additional file 9). From these lists, 156 of the
strongest candidate genes were selected as the entries
closest to the peak GWAS SNPs with domains plausibly
involved in drought tolerance and/or biomass accumula-
tion (Additional file 10). Of these 156 candidates, ~ 48
were considered exceptionally strong candidates, yellow
highlighted rows in Additional file 10, which include
among other candidates, heat shock proteins, cyto-
chromes, and antifreeze proteins, as well as proteins
with repeat domains thought to be important for a var-
iety of stress tolerance traits in plants such as Leucine
rich repeats, Armadillo repeats, Ankyrin repeats, and
WD40 repeats [29–31]. There was also a high prevalence
of genes among the top candidates (~ 27) with DNA
binding domains suggesting potential transcriptional
regulators, as well as many genes (~ 21) that could
otherwise be active in gene regulation, such as protein
kinases and phosphatases [32] (Additional file 10).
The vast majority of the candidates were uncharacter-

ized beyond protein domains and domain ontology or
fell in what appear to be intergenic regions (166/213 or
78% of the peaks), which suggests there is a great poten-
tial to better understand plant genes that confer drought
tolerance and increased biomass traits under drought
conditions. Of the significantly enriched gene ontology
(GO) terms among all genes falling into the regions
spanned by the 213 significant GWAS peaks, the top 10
included domains essential to oxidoreductase activity
and the treatment reactive oxygen species (ROS), which
are both stress regulatory signals as well as destructive
cellular compounds that must be neutralized under
stressful conditions [33, 34]. Other significantly enriched
GO terms include those involved in signal transduction
and secondary messaging, functions that are highly likely
to be involved in adaptive or acclimatizing processes
[32] (Additional file 11).
The top 10 significantly enriched protein domains sug-

gested potentially important roles for hydrolases, F-box
transcription factors, proteins involved in the circadian
cycle, and unknown protein domains (Additional file 12).
Notably, hydrolases have been previously implicated in
plant stress tolerance stress [35], and circadian proteins
have clear ties to all forms of abiotic stress tolerance
[36].

Comparison to previous GWAS
With the exception of plant height, our traits have not
been previously studied in sorghum. Due to the fact that
our population consisted almost entirely of SC lines, the
largest effects for both of these traits are the result of
genetic differences between converted and
non-converted lines in the panel, and variation between
lines that had differing combinations of maturity alleles

Table 2 Distribution of GWAS peaks

# NDV % NDV # DV %DV

TRAIT

B65 181 84.98 107 50.23

PH 151 70.89 129 60.56

BWET 150 70.42 88 41.31

LAI 57 26.76 30 14.08

TREATMENT

Pre-flower during recovery 164 77.00 71 33.33

control 120 56.34 NA NA

Post-flower during stress 117 54.93 127 59.62

Post-flower no stress 50 23.47 2 0.94

Pre-flower during stress 38 17.84 6 2.82

LOCATION

WREC 168 78.87 129 60.56

KARE 159 74.65 63 29.58

Number of GWAS peaks identified using GWAS phenotype inputs by trait
(B65 = biomass at 65% moisture content, tons/acre, PH = plant height, m,
BWET = total fresh biomass, tons/acre, LAI = leaf area index) by treatment
(pre-flower during recovery = pre-flowering drought treatment, late season -
irrigation, pre-flower during stress = pre-flowering drought treatment, early
season – no irrigation, post-flower during stress = post-flowering drought
treatment, late season – no irrigation, post-flower no stress = post-flowering
drought treatment, early season – irrigation, control = all control treatments),
by location (WREC =Westside Research and Extension, KARE = U.C. Kearney). #
NDV = the number of non-deviation GWAS peaks identified, i.e., GWAS peaks
identified using the raw phenotype data, % NDV = percent of all GWAS peaks
identified using the raw phenotype data, # DV = number of GWAS peaks
identified using the deviation phenotype data (DV for pre-flowering
treatments = control data – pre-flowering drought data, DV for post flowering
treatments = Control data - post-flowering drought data. There is no DV for
control data, hence the NA for these cells in the table.) %DV = percent of all
GWAS peaks identified using DV data. Note that the %DV plus %NDV is
greater than 100% because some peaks belong to both DV and NDV groups
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and dwarfing alleles. Thus, unsurprisingly, we identified
large QTL in the regions of Ma1, Dw2, Dw3, and Dw1
in agreement with previously performed GWAS in sor-
ghum [16, 21, 22, 27, 28, 37–39] (Additional file 10:
green rows).
Few GWAS have been performed under drought con-

ditions in sorghum. The largest was performed by Lasky
et al. (2015), for harvest index plasticity compared be-
tween well-watered and drought treatments, relative net
root growth as compared between control and Al tox-
icity treatments, and panicle weight plasticity com-
pared between well-watered and drought treatments.
Twenty eight of our GWAS peaks overlapped with
peaks identified for one or more of these three traits
and suggest strong candidates for further functional
validation (Additional file 10).
A small number of our peaks also overlapped with

sorghum plant architecture traits identified in a
couple of other recent GWAS, and are summarized
in Additional file 13. Overall, 44/213 peaks or ~ 21%
of our regions overlapped with significant peaks from
previously performed GWAS, while the majority of
our peaks, 169/213 or 79%, were identified here for
the first time.

Conclusions
Using a drone to collect precise measurements for bio-
mass traits over the course of the growing season for mul-
tiple locations and drought stress treatments allowed us to
identify 213 unique genomic regions associated with bio-
mass and/or drought tolerance in sorghum, 79% of which
were identified for the first time, and 100% of which were
identified multiple times within our high-density pheno-
type trials. On average, the number of similar peaks identi-
fied in other, recently performed GWAS using the
Sorghum Association Panel (SAP) [40], and a variety of
conventional (i.e., non-phenomics) phenotyping ap-
proaches for traits related to those focused on in this
study, was ~ 15.3 associations per trait [21, 27, 37, 39, 41–

Fig. 7 Distribution of GWAS peaks. Pie charts showing the proportion
of GWAS peaks identified using deviation versus non-deviation
phenotype data (a), at location = KARE (UC Kearney) versus
location = WREC (Westside Research and Extension) (b)., and for
all combinations of DV vs NDV at the two locations (c). a All
peaks were classified as DV and/or NDV, where DV peaks were
those identified using the phenotype data calculated as the
deviation between either the pre-flowering stress treatment or
the post-flowering stress treatment and the control, and the NDV
peaks were those identified using the raw phenotype data. The
majority of peaks were identified regardless of whether DV or NDV
data were used. c Each wedge shows the proportion of the peaks that
were only identified for a particular combination of data, e.g., the
largest proportion of peaks (~ 20%) were identified only using NDV
data from KARE, DV data from WREC and NDV data from WREC

Spindel et al. BMC Genomics  (2018) 19:679 Page 11 of 18



43]. Using our filtered set 619 daylength-insensitive lines,
by contrast, we identified ~ 111.6 associations per trait,
13.7 times the number of results from the most compar-
able recent studies in the literature (Additional file 13).
These results evidence the extraordinary power that we
gained by using high-density, precision based phenomics
(Additional file 13).
The 213 regions and candidate genes we identified in

this study provide strong targets for future experiments
focused on gene validation, with the ultimate goal of iden-
tifying new alleles to deploy in the breeding/engineering
of drought tolerant sorghum varieties. We conclude that
HDP-GWAS will be a powerful tool for identifying all
manner of genotype-trait associations in sorghum, and
likely, in a wide variety of other crop species, as well.

Methods
Site descriptions, planting, irrigation and harvesting
648 lines including 620 SC lines, two other inbred lines
and 26 sorghum hybrids provided by the USDA-ARS
National Genetic Resources Program (GRIN) and Chro-
matin Inc., respectively, were selected to make up the
diversity panel in order to assay the natural diversity of
sorghum bicolor. The two field locations were the

University of California Agriculture & Natural Resources
(UC-ANR) Kearney Agricultural Research & Extension
Center (KARE) in Parlier, CA and the UC-ANR West-
side Research and Extension Center (WREC) in Five
Points, CA. One hundred seeds of each converted line
from the Sorghum Conversion program were requested
from GRIN (https://www.ars-grin.gov) in the fall of 2014
for planting at KARE in the summer of 2015. Single row
plantings, 6.1 m in length on .76 m beds, occurred on
June 1, 2015 on a Hanford sandy loam soil and fully irri-
gated throughout the growing season. Fifty plants per
plot were bagged and harvested for increase. In some
cases, open pollinated plants were collected because of
poor seed set under bags. Seed was then threshed,
cleaned and stored in 10 °C cold storage units.
The 620 SC lines and 26 Chromatin breeding lines and

hybrids were planted in two row plots (6.1 × .76 m), along
with 6 (x two row) plots of two inbred lines with character-
ized drought tolerance: RTx430, a pre-flowering drought
tolerant line, and BTx642, a post-flowering drought tolerant
line, on June 1, 2016 at KARE and June 6, 2016 at WREC
using a four-row Almaco research row planter [44, 45]. All
lines were planted in blocks of plantings that were adjacent
to each other, and separated into a non-water stressed

Fig. 8 Distribution of peaks by date and location. Number of DV and NDV peaks identified at each location, by time-point. All peaks were classified as
either DV, NDV, or as belonging to both groups, where DV peaks were those identified using the phenotype data calculated as the deviation between
either the pre-flowering stress treatment or the post-flowering stress treatment and the control, and the NDV peaks were those identified using the
raw phenotype data. Times surrounded by a red box and underlined with a red line are dates where the pre-flowering drought stress plots received
no irrigation, and all other plots were irrigated. During the times not surrounded by the red boxes, the post-flowering drought stress plots received no
irrigation, while all other plots were irrigated
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(control) treatment, a pre-flowering period water stress
treatment (pre-flowering/PRE), and post-flowering period
water-stress treatment (post-flowering/POST).
The soil type at WREC is a Panoche clay loam and the

soil at KARE is a Hanford sandy loam. At both sites, daily
potential evapotranspiration (ETo) was determined using
on-site weather stations that are part of the CA Irrigation
Management Information System (CIMIS), with the wea-
ther stations located approximately 150 m from the field
plot sites at both KARE and WREC [46]. With the excep-
tion of two post-emergence sprinkler irrigations applied
soon after planting at the WREC site, all irrigations at both
sites were applied using gated-pipe furrow irrigation.
Amounts of water applied during each irrigation event at
the two field sites differed due to the lower water infiltra-
tion rates at the KARE site, resulting in typical furrow irri-
gation amounts averaging 55 mm per irrigation event at
KARE versus an average of 117 mm per irrigation event at
WREC.
To supplement winter rainfall and prepare the field

for planting, all plots at KARE received a 150 mm
furrow irrigation prior to planting, and all plots at
WREC received an 85 mm pre-planting furrow irriga-
tion. These irrigations provided adequate soil mois-
ture for seed germination at KARE, but at WREC it
was determined that due to drying, windy conditions
immediately prior to and at planting, sprinklers were
needed to apply an additional 89 mm of water be-
tween 6/07 and 6/17, 2016 to ensure uniform germin-
ation and seedling establishment.
The pre-flowering water stress treatment was im-

posed by providing no irrigation during the period
from seedling emergence until the 50% average flow-
ering growth stage, with the first within-season irriga-
tions for that treatment on 7/29 and 7/18 for WREC
and KARE, respectively. Irrigations at both sites con-
tinued after those dates at timings and amounts that
matched the control treatments. Final irrigations in
the pre-flower and control treatments were applied
on 9/09 and 9/06 for WREC and KARE, respectively.
The post-flowering drought treatments were irrigated
on the same dates and amounts as the control treat-
ment from post-emergence until 50% flowering, after
which irrigations were terminated, 7/28 and 7/19 for
WREC and KARE, respectively.
Additional file 14 shows ETo and irrigation water

application amounts for these representative growth
stages and irrigation treatments. Values for ETo are
typical of those for summer-planted sorghum in the
semi-arid, relatively hot Mediterranean-type climate of
the San Joaquin Valley in central CA. Measured rain-
fall was essentially zero, with > 2 mm rainfall, total, at
both sites from the June 1 to September 30 growing
period (Additional file 14).

Genotyping, imputation, and population structure analysis
DNA was extracted from young leaf tissue using Ther-
moFisher plant DNAzol® reagent according to the man-
ufacturer’s directions [47]. GBS library prep and
sequencing was then performed by the University of
Wisconsin using the ApeKI for restriction digest,
according to standard protocols [48]. Raw GBS data
were processed using the TASSEL5 GBSV2 pipeline
and tags were aligned to the Phytozome v3.0 reference
genome using Bowtie2 (−R 8, other parameters set to
defaults, alignment rate = 79.5%). SNPs were called
using the Tassel 5 discoverySNPCallerPluginV2 based
on a Tassel 5 production pipeline kmer database con-
taining all publicly available sorghum GBS data at the
time of publication (that used ApeKI for restriction
digest), ~ 4,163,211 donor kmers (min kmer count = 10)
and 7904 donor S. bicolor taxa [49, 50].
Imputation was performed using FILLIN (TASSEL 5)

using the same kmer database, using FILLIN defaults [51,
52]. Proportion of unimputed SNPs was equal to 0.50 for
minor allele homozygotes, 0.74 for heterozygotes, and
0.34 for major allele homozygotes. Using masking of
known alleles, imputation accuracy was found to be 93%
for minor allele homozygotes, 99% for major allele homo-
zygotes, and 50% for heterozygotes. For all 355,378
masked vs unmasked site comparisons, the R2 value was
equal to 92%. Given that the overall rate of heterozygosity
in the population was quite low these values were deemed
acceptable for accurate GWAS analysis.
Post-imputation, all SNPs with call rates < 75% were

removed from the dataset for a total of 272,942 SNPs.
Two individuals (358 and 638) with call rates ≤60% were
also removed from the dataset. All other individuals had
call rates ≥60%. Prior to GWAS analysis, SNPs were also
filtered for minor allele frequency (MAF) ≥0.01, for a
final GWAS dataset of 131,544 SNPs. In this final SNP
dataset, an average of ~ 76.81% of genotype calls across
each taxa were homozygous for the major allele, ~
12.88% were homozygous for the minor allele, and
1.77% were heterozygous. Neighbor joining trees were
created in R using the function nj from the ape library
[53]. PAMK was performed using function pamk from R
package fpc [54], and PCA was performed using R func-
tion prcomp.

Linkage disequilibrium calculation
Pairwise linkage disequilibrium (LD) was calculated for all
SNPs on each chromosome using Plinkv1.9, function = −-r2

-inter-chr -yes-really. Using the resulting LD matrices, the
relationship between SNP pairwise distance (BP_B - BP_A)
and LD, for each chromosome, was calculated as the
Gaussian smoothed r2 by SNP pairwise distance, where
smoothed r2 was found using the Gaussian kernel from Py-
thon3 scipy, function = scipy.ndimage.filters.gaussian_filter
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(σ = 500). Local LD was then defined as the smoothed r2

that corresponded to the location of a given SNP in the
resulting tables of BP_A, BP_B, pairwise distance, and
smoothed r2.

Phenotyping
The drone used to collect phenotyping data was a modi-
fied multirotor vehicle and Blue River’s proprietary
imaging payload. The vehicle was a six propeller multiro-
tor, flown at 25 m altitude and 6.5 m/s airspeed using an
onboard autopilot with GPS waypoint navigation to
ensure the target image resolution of 1 cm was achieved.
The drone measured four plant traits: plant height (m,
PH), leaf area index (LAI), fresh total plant fresh biomass
(tons/acre, BWET), and vegetative biomass adjusted to
65% moisture content (tons/acre, B65). These trait mea-
surements were derived from LiDAR (Light Detection and
Ranging) and multispectral imagery collected by Blue Riv-
er’s imaging payload. The LiDAR instrument used
near-infrared lasers to create a 3D point cloud of the sor-
ghum canopy < 3 cm spot spacing, which is in turn used
to extract plant height. Images from the color and NIR
cameras were stitched together into a single mosaic image
of each field using the TraitMapper software. The color
and near-infrared mosaics were then converted to re-
flectance, and a digital grid representing the field
plots was overlaid onto the mosaics. The reflectance
and LiDAR height data were then extracted for each
field plot and converted to trait measurements using
TraitMapper.
Ground-truthing measurements were taken over a

small subset of field plots to calibrate and validate the
drone-based measurements, which covered all field
plots. Manual field-based measurements of PH, LAI,
BWET, and B65 were taken at 15 plots per week (10
plots at KARE, 5 plots at WREC) within 1 day of each
drone overflight. Due to the laborious nature of the
field-based measurements, each of the 15 manual mea-
surements were taken within a sub-plot (80 × 160 cm),
centered within each field plot. The ground-truthing of
PH was performed using a height pole to measure the
height of all plants within each subplot and then the
median height was reported for each subplot. Leaf area
index (LAI) was ground-truthed by first measuring the
surface area of every leaf within each subplot using a
hand-held Licor LI-3000C portable leaf scanner, and
then dividing the total leaf area by the area of the subplot.
BWET was ground-truthed by harvesting and weigh-
ing the total plant mass of each subplot. B65 was
ground-truthed by then drying harvested plant mater-
ial for 5 days at 50 °C in forced air drying ovens and
reweighing.
Performance of the drone-based models of height, leaf

area, and biomass was assessed using the ground-truthing

data and repeated k-fold cross validation (k = 5). Specific-
ally, each of the models for PH, LAI, BWET, and B65 were
first trained on a calibration dataset, randomly selected
from 80% of the ground-truthing data, and the R2 was
computed using the remaining 20% of the ground-truthing
data. This process was then repeated 1000 times, each time
randomly selecting a different 80% subset for calibration.
Finally, the median R2 over the 1000 repetitions was com-
puted and defined here as the “validation R2”. The valid-
ation R2 were: PH R2 = 0.98, n = 88; LAI R2 = 0.90, n = 63;
BWET R2 = 0.90, n = 63; B65 R2 = 0.89, n = 100 (n is total
number of ground-truthing measurements).

Phenotype data filtering
For the drone-collected phenotype data, two plots for each
treatment and each location (2 × 3 × 2), were mistakenly
identified ‘74’ and ‘475’, respectively, and could not be dis-
ambiguated. As a result, all plots labeled either ‘74’ or
‘475’ were removed from the dataset prior to analysis.
Drone-collected phenotype data were also filtered for

noise. For each single genotype x trait x treatment x lo-
cation combination, the phenotype data were plotted
over the 11 or 12 timepoints at which they were col-
lected to ensure a biologically plausible growth pattern,
(i.e., a plant should not double in height 1 week, then
shrink back the following week). Time plots with sharp
peaks or zig zags were interpreted as containing pheno-
type noise/outliers in need of filtering prior to perform-
ing GWAS. To standardize the removal of outliers and
prevent the need to look at every time-plot by eye, a ker-
nel smoothing spline line (σ = 2.5) was fit for each time
plot. The standard deviation (sd) of the residuals was
calculated and each plot was first classified as either high
or low noise, where high noise plots had residual sd ≥0.4
for PH, ≥0.51 for LAI, ≥3.0 for B65, and ≥ 4.5 for BWET.
Data points on high noise plots were considered outliers
if the residual from the spline was ≥1.2 sd for PH, B65,
and BWET, and ≥ 1.5 sd for LAI. Data points on low
noise plots were considered outliers if the residual from
the spline ≥2 sd for PH, B65, and BWET, and ≥ 3 sd for
LAI. These parameters were determined empirically
using 10–15 case (obvious outliers identified by eye) and
4–8 control plots (no outliers identified by eye) per trait,
for a total set of 49 case and 25 control plots. Different
sets of parameters were tested to select the set of final
values that resulted in the removal of all conservatively
defined outliers from the case plots and the removal no
points from the control plots. Example of case and control
sample plots are shown in Additional file 2: Figure S3.

GWAS modeling
Individual single variate GWAS were run for each com-
bination of trait, treatment, time-point and location
using both the raw phenotype data, and the deviations
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of the drought treatments from the control, equal to the
control phenotype – pre-flowering drought treatment
phenotype and control phenotype – post-flowering
drought phenotype for pre-flowering and post-flowering
drought deviations, respectively, for a total of 460 indi-
vidual GWAS runs. All GWAS were run using GEMMA
[55]. IBD matrices were calculated for each GWAS
model using GEMMA (−gk 2). To control for popula-
tion structure and determine the best GWAS model for
each phenotype datafile, ~ 9 different covariate files were
tested for each model: no covariates, the first principle
component (PC), the first two PCs, the first three PCs,
the first four PCs, then, the first PC with flowering time
data, the second two PCs with flowering time data, the
first three PCs with flowering time data, and the first
four PCs with flowering time data. Because the KARE
and WREC flowering times were collected in different
ways, i.e., KARE FT data was collected in the field by an
experienced sorghum breeder and WREC FT data were
determined from manual examination of drone photo-
graphs, for the WREC GWAS runs, each covariate file
that contained flowering times was tested using 1. The
flowering times from WREC, as well as 2. The flowering
times from KARE.
For every GWAS model, a QQ-plot was generated,

and the simplest model (meaning the model with the
fewest covariates) resulting in the QQ-plot with the least
deviation from the null hypothesis was selected as the
final GWAS model for a given data-file. Multiple test
correction was performed using Benjamini-Hochberg
method to a false discovery rate (FDR) of 0.1 [56].
After all single-variate GWAS models were selected,

all SNPs that passed the significance threshold after
multiple test correction were concatenated into a single
results file for processing using a custom HDP-GWAS
pipeline (Fig. 3).

Custom HDP-GWAS peak definition pipeline
Conserved and reliable GWAS peaks were defined using
the following pipeline, illustrated in Fig. 3. The following
is a detailed explanation of the peak definition pipeline
discussed in the results section.

Calculate local LD around significant SNPs
For each significant SNP, the SNP position was found in
the table of values containing the kernel smoothed r2 by
physical position and bp pairwise distance. SNPs were
considered linked to a given significant SNP the pairwise
kernel smoothed r2 was ≥0.3 for chromosomes 6 and 9,
and considered linked if r2 was ≥0.2 for all other chro-
mosomes. The higher LD threshold was used for chro-
mosomes 6 and 9 as a result for the higher baseline LD
on these chromosomes. Max distance was defined as the
largest distance spanned by linked SNPs around a given

significant SNP, and calculated as maximum base pair
(bp) distance between SNPs defined as linked based on
the above local LD parameters (Fig. 3 steps 1–4).

Group significant SNPs into preliminary peaks based on
calculated local LD
SNPs in the concatenated table of all significant GWAS
SNPs were considered to be a part of the same GWAS
peak if they fell within the max distance defined for a
given significant SNP, as determined in step one of the
pipeline (Fig. 3 steps 5–9).

Zoom in on each GWAS peak
‘Zoomed’ Manhattan plots were constructed for each
preliminary peak as defined in step two by plotting all
SNPs +/− 50 Kb around the boundaries of each prelim-
inary GWAS peak, for each individual GWAS run in
which a given peak was identified, e.g., if a peak was
identified in 12/260 GWAS runs, then 12 zoomed Man-
hattan plots were drawn, each showing only the SNPs
+/− 50 Kb around the boundaries of the defined GWAS
peak. Then, for each preliminary peak, all zoomed Man-
hattan plots were studied individually to determine if,
based on the pattern of the graphed points, a prelimin-
ary peak needed to be divided into two or more peaks. If
it was determined that a peak should be split into two or
more peaks, it was re-plotted for all individual GWAS
runs in which the peak was identified including all SNPs
+/− 2 Mb around the peak boundaries (zooming out), in
order to confirm the diagnosis. In some cases, zooming
back out around peaks reversed an initial decision to the
split the peak. In this way, a final set of refined peaks
was determined (Fig. 3 steps 10–12).

Rate GWAS peaks for reliability and drop low reliability
peaks from final GWAS result set
After the refined set of peaks was defined as de-
scribed in step 3, a final set of zoomed Manhattan
plots were constructed that including all SNPs +/− 50
Kb around the boundaries of each GWAS peak for
each individual run in which a given GWAS peak was
identified. Each of these zoomed Manhattan plots was
then individually assessed and rated as either 1, 2, or
3 based on how likely a peak was to be the result of
a data artifact such as population structure. Plots
were rated ‘1’ when they were considered highly likely
to be the result of a data artifact, i.e., cases where
only a single SNP was high above the significance
threshold with no linked SNPs leading to it (artifact
due to the nature of linkage), and cases where there
were not enough SNPs in the peak region to a draw
a strong conclusion. By contrast, peaks were rated ‘3’
when they had very clear evidence to suggest they
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were not the result of data artifact, i.e., peaks were
many linked SNPs lead to multiple SNPs that passed
the significance threshold. All cases/peaks that fell be-
tween these two extremes and were, in other words,
difficult to categorize as either definitely artifacts, or
definitely not artifacts, were rated as ‘2’. Peaks with
only plots rated as 1 were dropped from the final list
of GWAS peak results (Fig. 3 steps 14–16).
Manhattan blots and Manhattan blot B’s were created

using matplotlib.pyplot.scatter, where point size was set
equal the total number of GWAS hits for each SNP (or
each peak for M-blot B) * 200.

Allele effects and PVE calculations
Percent variance explained (PVE) was calculated for each
SNP, for each GWAS, as the squared Pearson correlation
between the Best Linear Unbiased Predictors (BLUPs) of
the given GWAS phenotype vector and the given SNP
genotype vector, * 100. BLUPs were calculated in R using
package rrBLUP, function ms.solve (phenotype vector,
K = A.mat (genotype matrix). PVE summaries includ-
ing mean, median, minimum, and maximum values
were found by calculating the respective descriptive
statistics across all individual PVE values found for
each SNP, for each GWAS. PVE should be considered
as a rough guide to the impact of each SNP in this
population rather than a truly quantitative measure-
ment because it may overestimate PVE in some cases
due to the large number of SNPs and presence of
subpopulation structure. For Manhattan blots, a PVE
medians were calculated for all SNPs shown on the
Manhattan blot by calculating the statistic across the
PVEs for the subset of GWAS at which a given SNP
was significant. Then for all the SNPs including in a
particular GWAS peak on the Manhattan blot, the
SNP with the highest median PVE was chosen to
have its PVE plotted on the blot as a red star.
Allele effects were calculated as the differences between

the mean phenotypes of the individuals homozygous for
the effect/minor allele – the mean phenotypes of the indi-
viduals homozygous for the non-effect/major allele for
each significant SNP identified for a given trait/phenotype
for a particular trait x treatment x time x location combin-
ation. Allele effect heat maps were generated using
Python3 seaborn.heatmap (cmp = “RedYlBu_r”), where the
plotted allele effects were averaged across all time-points
and locations.

Candidate gene identification
Candidate genes were identified using PhytoMine v.3.0
using the template gene query (https://phytozome.jgi.-
doe.gov/phytomine/template.do?name=Region_Gene&
scope=all), organism = Sorghum bicolor, chromosome =
peak chromosome, location start > position of the first

SNP associated with a particular peak, and location end
< position of the last SNP associated with a particular
peak (Additional files 4 and 5). Columns were selected
from the ‘manage columns’ menu.

Additional files

Additional file 1: Information about the lines used in this study.
(XLSX 30 kb)

Additional file 2: This file contains Figures S1-S10. (PDF 8610 kb)

Additional file 3: Summary of pairwise LD across the ten chromosomes
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data. (XLSX 137 kb)

Additional file 5: Summary of GWAS peaks identified using deviations
between control and treatment data. (XLSX 65 kb)

Additional file 6: Summary of percent variance explained across 460
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Additional file 9: Tables showing all genes in the regions spanned by
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