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BIGMAC : breaking inaccurate genomes
and merging assembled contigs for long read
metagenomic assembly
Ka-Kit Lam1 , Richard Hall2, Alicia Clum3 and Satish Rao1*

Abstract

Background: The problem of de-novo assembly for metagenomes using only long reads is gaining attention. We
study whether post-processing metagenomic assemblies with the original input long reads can result in quality
improvement. Previous approaches have focused on pre-processing reads and optimizing assemblers. BIGMAC takes
an alternative perspective to focus on the post-processing step.

Results: Using both the assembled contigs and original long reads as input, BIGMAC first breaks the contigs at
potentially mis-assembled locations and subsequently scaffolds contigs. Our experiments on metagenomes
assembled from long reads show that BIGMAC can improve assembly quality by reducing the number of
mis-assemblies while maintaining or increasing N50 and N75. Moreover, BIGMAC shows the largest N75 to number of
mis-assemblies ratio on all tested datasets when compared to other post-processing tools.

Conclusions: BIGMAC demonstrates the effectiveness of the post-processing approach in improving the quality of
metagenomic assemblies.

Keywords: Genome assembly, Next generation sequencing, Metagenomics

Background
Introduction
De-novo assembly is a fundamental yet difficult [1] com-
putational problem inmetagenomics. Indeed, there is cur-
rently an open challenge for metagenomic assembly using
short reads, titled “Critical Assessment of Metagenomic
Interpretation (CAMI [2]).” On the other hand, emerging
sequencing technologies can provide extra information
and make the computational problem more tractable. For
example, long reads are increasingly being shown to be
valuable in the de-novo assembly of single genomes [3].
Therefore, it is natural to study metagenomic assembly
using long reads. Current assembly approaches for long
reads focus on developing more optimized assemblers to
leverage the power of the data. However, significant engi-
neering effort is usually involved to build an end-to-end
assembler.
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We take a different perspective, focusing the design
effort on a post-processor that improves assembled con-
tigs using the original long read data (Fig. 1). The main
question is whether we can achieve quality improve-
ment with this approach using typical long reads. This
post-pocessing approach is attractive because it lever-
ages existing software. Consequently, we can focus design
effort and computational resources to specifically address
thorny issues arising from the nature of new data, complex
repeats, varying abundances and noise. Moreover, since
the long reads are part of the input, the post-processor
can bring back information missed upstream. In single
genome assembly, FinisherSC [4] has demonstrated the
effectiveness of this approach. In this paper, we investi-
gate the effectiveness of this post-processing approach for
metagenomic assembly.
BIGMAC is a post-processor to improve metagenomic

assemblies with long read only data. It first breaks con-
tigs at potentially mis-assembled locations and subse-
quently scaffolds contigs. In our experiments, BIGMAC
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Fig. 1 Position of post-processor in an assembly pipeline (left). Improvement in assembly quality using post-processor BIGMAC on three different
datasets (right). BIGMAC shows the effectiveness of the post-processing approach for long read metagenomic assembly

demonstrates promising results on several mock com-
munities using data from the Pacific Biosciences long
read sequencer. Inputs to BIGMAC include assembled
contigs from HGAP [5] and the original raw reads with
adapters removed. After assembly and post-processing,
we use QUAST [6] to evaluate and compare the assem-
bly quality of contigs before and after using BIGMAC.
As shown in Fig. 1, BIGMAC improves the quality of
the contigs by reducing the number of mis-assemblies
while maintaining/increasing N50 and N75. This demon-
strates the effectiveness of the post-processing approach
for metagenomic assembly with long reads.

A top-down design of BIGMAC
We use a hypothetical yet representative set of input data
to illustrate the design of BIGMAC in a top-downmanner.
Let g1, g2 be two genomes of abundances λ1, λ2 respec-
tively. Assume that they share a long repeat in the middle,
that is, g1 = x1ry1, g2 = x2ry2. Unfortunately, an upstream
assembler mis-assembles the reads and produces two con-
tigs c1, c2 with incorrect joins at the repeat. That is, c1 =
x1ry2, c2 = x2ry1. As an assembly post-processor, BIG-
MAC takes the mis-assembled contigs c1, c2 and original
reads as input. Its goal is to reproduce g1, g2. To achieve
this, we immediately recognize that there should be com-
ponents for fixing mis-assemblies and scaffolding contigs.
In BIGMAC, they are respectively Breaker andMerger. An
illustration is given in Fig. 2.
Breaker is further divided into two subcomponents:

Signal Detector and Signal Aggregator. Signal Detector
collects signals that indicates mis-assemblies and Sig-
nal Aggregator subsequently makes decisions on breaking
contigs based on the collected signals. In our example,
the coverage fluctuation between λ1, λ2 along the contigs

c1, c2 and the presence of long repeat r are useful signals
that Signal Detector collects. After aggregating these sig-
nals, Signal Aggregator decides on breaking both the
contigs c1 and c2 at the starting points of the repeat r.
Therefore, the output contigs of Breaker are x1, x2, ry1, ry2.
Merger is also divided into two subcomponents: Graph

Operator and Contig Extender. With information from
the original reads, Graph Operator establishes connectiv-
ity of the input contigs using string graphs. Then, based
on the evidence from spanning reads and contig cover-
age, Contig Extender extends input contigs into longer
contigs. In our example, the input contigs to Merger
are x1, x2, ry1, ry2. Graph Operator forms a string graph
with edges x1 → ry1, x1 → ry2, x2 → ry1 and
x2 → ry2. Contig Extender analyzes the coverage depth of
the related contigs and decides to merge contigs to form
x1ry1 and x2ry2, thus reproducing the correct genomes.
Finally, we remark that BIGMAC uses overlap infor-

mation between reads and contigs or among con-
tigs. In our implementation, the overlap information
is provided by running MUMmer [7] on appropri-
ate strings. However, we note that one can imple-
ment the pipeline by replacing MUMmer with other
aligners.

Methods
Breaker: breaking inaccurate genome
After the functional decomposition of BIGMAC in the
previous section, we are ready to investigate its first com-
ponent: Breaker. We note that the goal of Breaker is to fix
mis-assemblies. In order to achieve that, we need to col-
lect sensible signals related to mis-assemblies and subse-
quently aggregate the signals to make the contig breaking
decisions.
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Fig. 2 Top-down design of BIGMAC with an example of how BIGMAC improves a pair of mis-assembled contigs

Signal Detector
Signal Detector collects three important signals related to
mis-assemblies.

Palindrome We are interested in palindromes because
of their relationship to a form of chimeric reads, the
adaptor-skipped reads, which are common in today’s long
read technology [8]. Since assemblers get stuck at these
chimeric reads, the palindrome pattern in reads propa-
gates to the corresponding contigs. Thus, the pattern of
palindrome is a strong signal indicating mis-assemblies,
particularly when the palindrome is long. A string tuple
(a, b) is called a wrapping pair if the reverse complement
of a is a prefix of b or the reverse complement of b is a suf-
fix of a. x is called a palindrome if it is the concatenation of
a wrapping pair (a, b), that is x = ab. The wrapping length
of x is maxx=ab,(a,b)is a wrapping pair min(a.length, b.length).
For example, x = ACGGCCG is a palindrome of
wrapping length 3; (a, b) = (ACGG,CCG) is a wrap-
ping pair because the reverse complement of b is CGG,
which is a suffix of a. Since the minimum length
of a and b is min(4, 3) = 3 and the wrapping
length of x cannot exceed 3, the wrapping length for
x is 3.
Signal Detector collects information about palindromes

by aligning each contig against itself. It then identifies
palindromes with long wrapping length because that indi-
cates mis-assemblies. The corresponding palindromes’
information is then put into Spalindrome. To improve sen-
sitivity, Signal Detector allows approximate match when
searching for palindromes. We note that approximate
matches are determined by computing the edit distance
of the corresponding strings. To determine approximate
matches in BIGMAC, we use nucmer in MUMmer [7]
with default parameters and with option –maxmatch. Two
strings are considered as approximately matched when
nucmer reports so.

Repeat Since long repeats confuse assemblers, their end-
points are possible candidates for mis-assemblies. Let
s1 = axb, s2 = cxd, a repeat between s1, s2 is
specified by the endpoints of x in s1, s2. For exam-
ple, s1 = CAAAAT , s2 = GAAAAG, the endpoints
of the repeat AAAA are the position specified by ! in
C!AAAA!T ,G!AAAA!G. Signal Detector aligns contigs
against themselves to find the repeats. It then marks
down the positions of the endpoints and puts them in a
set called Srepeat . To improve sensitivity, Signal Detector
allows approximate matches when searching for repeats.
We note that approximate matches are determined by
computing the edit distance of the corresponding strings.
Moreover, it only considers repeats that are maximal and
are of significant length.

Coverage Significant coverage variation along contigs
can correspond to false joins of sequences from differ-
ent genomes with different abundances. Coverage profile
is the coverage depth along the contigs. For example, the
coverage profile along a string s = ACGT is (1, 2, 2, 1) if
the reads are AC,CG,GT . Signal detector aligns original
reads to the contigs to find the coverage profile, which is
called Scoverage.

Signal Aggregator
After Signal Detector collects signals regarding palin-
dromes Spalindrome, repeats Srepeat and coverage profile
Scoverage, Signal Aggregator uses them to determine the
breakpoints on the input contigs C. The algorithm is
summarized in Algorithm 1.

ChimericContigFixing The goal of ChimericContigFix-
ing is to fix the contigs formed from chimeric reads. We
simply break the palindromes in Spalindrome at locations
corresponding to their wrapping lengths. After remov-
ing redundant contigs, ChimericContigFixing returns the
broken palindromes with the unchanged contigs.
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Algorithm 1 Signal Aggregator
1: Input: Input contigs C and signals from Signal Detec-

tor Spalindrome, Srepeat and Scoverage
2: Output: Contigs C′′ with less mis-assemblies
3: procedure (SignalAggregation)Spalindrome, Srepeat ,

Scoverage,C
4: C′ = ChimericContigFixing(Spalindrome, C)

� Fix chimeric contigs
5: Sfilter = LocatePotentialMisassemblies(Srepeat , C′)

� Locate mis-assemblies caused by repeats
6: C′′ = ConfirmBreakPoints(Sfilter , Scoverage, C′)

� Confirm mis-assemblies using coverage
7: return C′′

LocatePotentialMisassemblies The goal of the subrou-
tine LocatePotentialMisassemblies is to locate potential
mis-assemblies caused by repeats. We study the design of
this subroutine in this section.

Motivating question and example We can declare all
the endpoints of approximate repeats in Srepeat to be
potential mis-assemblies. While this is a sensible base-
line algorithm, it is not immediately clear whether it is
sufficient or necessary. It is thus natural to consider the
following question.
Given a set of contigs, how can we find the smallest set

of locations on contigs to break so that the broken con-
tigs are consistent with any reasonable ground truth? To
illustrate our ideas, we consider an example with contigs
x1 = abcde, x2 = fbcg, x3 = hcdi with {a, b, c, d, e, f , g, h, i}
being strings of equal length L.
The baseline algorithm of breaking contigs at the start-

ing points of all the long(≥ 2L) repeats breaks the contigs
4 times (i.e. a|b|cde, f |bcg, h|cdi). However, interestingly,
we will show that one only need to break the contigs 3
times to preserve consistency (i.e. x1 = ab|cde, x2 =
fb|cg, x3 = h|cdi) and that is optimal.

Modelling and problem formulation We will formal-
ize the notions of feasible break points, feasible ground
truth, consistency between sets of contigs, sufficiency of
break points to achieve consistency and the optimiality
criterion.
We use a graph theoretic framework. Specifically, we

study a directed graphG = (V ,E)withm sources S andm
sinks T where ∀v �∈ S∪T , indeg(v) = outdeg(v) and paral-
lel edges between two vertices are allowed. This is used to
model a fully contracted De Bruijn graph formed by suc-
cessive K-mers of the contigs. Vertices V are substrings
of the contigs and edges E correspond to potentially mis-
assembled locations on contigs. In our example, the set
of vertices is V = {a, b, c, d, e, f , g, h, i} and the set of
edges is E = {ab, fb, bc1, bc2, hc, cd1, cd2, cg, de, di}. We

use subscripts to differentiate parallel edges joining the
same vertices. The graph corresponding to our running
example is shown in Fig. 3.
Given such a graph G, we note that E is the set of all

feasible break points because each edge in the graph
corresponds to a potentially mis-assembled location on
contigs. A feasible ground truth corresponds to a set
of m edge-disjoint source-to-sink trails that partitions
the edge set E. For simplicity, we represent a trail as a
sequence of the vertices in G, where the edges linking
the vertices are ignored. For example, {abcde, fbcdi, hcg} is
a feasible ground truth while {abcg, fgde, hcdi} is another
feasible ground truth. The set of all feasible ground truths
is GT.
We recall that our high level goal is to choose a set

of feasible break points R ⊆ E so that the broken con-
tigs are consistent with any feasible ground truth. So, we
need to define the notion of broken contigs and con-
sistency between two sets of contigs under the current
framework. Let gt ∈ GT , we denote gt\R be a set of trails
after the removal of the edge set R. In particular, for the
original contig set C ∈ GT , C\R is the set of broken con-
tigs for the set of feasible break points R. For example, if
R = {bc1, bc2, hc} and C = {abcde, fbcdi, hcg}, C\R =
{ab, cde, fb, cdi, h, cg}. To capture consistency between two
sets of contigs, we use the following definition. Given two
sets of trails T1,T2, we say that T1 is consistent with T2 if
∀x ∈ T1, ∃y ∈ T2 s.t. x ⊆ y and ∀x′ ∈ T2, ∃y′ ∈ T1 s.t. x′ ⊆
y′. We call R a sufficient breaking set with respect to
(C,GT) if ∀gt ∈ GT ,C\R is consistent with gt\R. In other
words, R is a set of feasible break points that allows the
broken contigs to be consistent with any feasible ground
truth. Although this notion of sufficient breaking set is a
natural model of the problem, it depends on the original
contig set C, which is indeed not necessary. Specifically,
we show that we have an equivalent definition of sufficient
breaking set without referring back to the original contig
set. Let us call R a sufficient breaking set with respect toG,

Fig. 3 The graph corresponding to our example contig set
x1 = abcde, x2 = fbcg, x3 = hcdi is shown. We note the optimal set of
break points by the red dotted line
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or simply a sufficient breaking set, if ∀gt1, gt2 ∈ GT , gt1\R
is consistent with gt2\R.

Proposition 1 R is a sufficient breaking set with respect
to (C,GT) if and only if R a sufficient breaking set with
respect to G.

Proof The backward direction is immediate because
C ∈ GT . We will show the forward direction as follows.
Let g1, g2 ∈ GT and we want to show that g1\R is con-
sistent with g2\R. Since R is a sufficient breaking set with
respect to (C,GT), g1\R is consistent withC\R. Therefore,
∀x ∈ g1\R∃y ∈ C\R s.t. x ⊆ y. But since g2\R is consistent
with C\R , we have ∃z ∈ g2\R s.t. y ⊆ z. By transitivity,
we have x ⊆ y ⊆ z ∈ g2\R. By symmetry, we can also
show that ∀x′ ∈ g2\R∃y′ ∈ g1\R s.t. x′ ⊆ y′. Thus, g1\R is
consistent with g2\R.

Now, we state our optimization criterion. The goal
here is to minimize the cardinality of the sufficient break-
ing set, formally as Eq. 1.

OPT =min
R⊆E

|R| s.t. R is a sufficient breaking set with
respect toG

(1)

We will show that if we solve Eq. 1 for our running
example, the answer is 3. This thus shows that the base-
line algorithm of breaking contigs at all starting points (in
our example, there are 4 of them) of all long repeats is not
optimal.

Proposition 2 For our running example, OPT = 3.

Proof First, by inspecting the 6 feasible ground truths
in GT, we note R = {bc1, bc2, hc} is a sufficient breaking
set with respect to G. Second, we note that the edge set
need to disconnect sources and sinks, otherwise, we can
find g1, g2 ∈ GT such that g1\R, g2\R are inconsistent. This
means |R| need to be ≥ mincut of the graph, which is 3.

Algorithm development and performance guarantee
Next we describe an algorithm that finds a sufficient
breaking set with respect to G. Let us denote a boolean
variable be on each edge e ∈ E, with �b = (be)e∈E . For v ∈
V , InEdges(v),OutEdges(v) are the sets of incoming edges
and outgoing edges at v respectively. Prev(v), Succ(v) are
the sets of predecessor vertices and successor vertices of
v respectively. Our algorithm solves the following mini-
mization problem (Eq. 2) as a proxy to (Eq. 1).

min
r⊆�b:r=True⇒�(�b)=True

|r| (2)

where,

�(�b) =∧v:|Prev(v)|≥2 and |Succ(v)|≥2
(∧e∈InEdges(v)be ∨ ∧e∈OutEdges(v)be

) (3)

In other words, it includes either all the incoming
edges or all the outgoing edges for every vertices with
at least 2 successors and at least 2 predecessors to R.
We then seek R with minimum cardinality among the
choices available. If G can be decomposed into connected
components, we can optimize �(�b) independently on
each connected component. In our implementation, if
the size of the connected component is not too large, we
optimize the objective function by exhaustion. Beyond
a certain threshold, we simply output a feasible solution
without optimizing. Indeed, in our experiments on real
data, most of the connected components are not that
large and this step typically takes a few minutes. But
we remark that for more complex applications, one
can further optimize the algorithm. For example, one
can first topologically sort the vertices and then use
dynamic programming to solve Eq. 2 along the sorted
vertices.
We note that the algorithm described gives an opti-

mal solution for our running example. Moreover, we show
performance guarantee of the algorithm as follows.

Proposition 3 Solving Eq. 2 gives a sufficient breaking
set R if the graph G is fully contracted.

Proof Let R be the set of edges selected by the algorithm.
For any two gt1, gt2 ∈ GT , we want to show that gt1\R and
gt2\R are consistent. By symmetry, it suffices to prove that
if x ∈ gt1\R, then ∃y ∈ gt2\R s.t. x ⊆ y. If |x| = 2, it is
immediate because every edge other than those in R are
covered. If |x| ≥ 3, we will show that it is also true using
proof by contradiction. If ∀y ∈ gt2\R, x �⊆ y, we can find
a sub-trail x′ = (a1, a2, . . . , ak , ak+1) of x such that ∃y′ ∈
gt2\R s.t. x′′ = (a1, . . . , ak) ⊆ y′ but ∀y ∈ gt2\R, x′ �⊆ y.
This implies ∃a∗ �= ak+1 s.t. (x′′, a∗) ⊆ z for some
z ∈ gt2\R. Since the edge (ak , ak+1) ⊆ x ∈ gt1\R, we know
that (ak , ak+1) is not in R. Similarly, (ak , a∗) �∈ R because
(ak , a∗) ⊆ y′ ∈ gt2\R. But since |Succ(ak)| ≥ 2, the fact
that our algorithm does not include (ak , a∗), (ak , ak+1) in
R implies that |Pred(ak)| = 1, namely Pred(ak) = {ak−1}.
Note that we are considering a fully contracted graph. So,
the fact that ak−1 exists implies that |Succ(ak−1)| ≥ 2.
But our algorithm has not removed edge (ak−1, ak). This
gives |Pred(ak−1)| = 1. Inductively, we get |Pred(ai)| =
1∀2 ≤ i ≤ k. But we know that (ak , ak+1) ⊆ w for some
w ∈ gt2\R. Since the edges along (a1, . . . , ak+1) are not
in R, this gives, x′ = (a1, . . . , ak+1) ⊆ w ∈ gt2\R. This
contradicts the assumption about x′.
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Proposition 4 If the graph G is fully contracted DAG
without parallel edges, then solving Eq. 2 returns a suffi-
cient breaking set that is of optimal cardinality, OPT.

Proof It suffices to show that for any sufficient break-
ing set R, ∀v ∈ V where |Succ(v)| ≥ 2, |Pred(v)| ≥ 2,
we have either InEdges(v) ⊆ R or OutEdges(v) ⊆ R. We
prove it by contradiction. If not, ∃v ∈ V where |Succ(v)| ≥
2, |Pred(v)| ≥ 2 but InEdges(v) �⊆ R and OutEdges(v) �⊆ R.
Because it is a DAG, it means we can find gt1 ∈ GT such
that ∃x, y, x′, y′ such that (x, v, y) ∈ gt1 and (x′, v, y′) ∈ gt1.
Now consider gt2 to be a clone of gt1 except that it has
(x, v, y′), (x′, v, y) instead of (x, v, y′), (x′, v, y). We note that
gt2 ∈ GT . And because there are no parallel edges, (x, v, y)
is not a subset of any of the trails in gt2. So, we find two
distinct gt1, gt2 ∈ GT such that gt1, gt2 are not consistent.
This contradicts the fact that R is a sufficient breaking
set.

It is noteworthy that if we are given any set of contigs
from any gt ∈ GT , we still obtain the same set of bro-
ken contigs after the operation of removal of redundant
trails, RemoveRedundant (i.e. we eliminate the contigs
in a set A to form a minimal subset B ⊆ A in which
∀x �= y ∈ B, x �⊆ y). This can be formalized as follows.

Proposition 5 If R is a sufficient breaking set, then
for any gt1, gt2 ∈ GT , RemoveRedundant(gt1\R) =
RemoveRedundant(gt2\R).

Proof Let si = RemoveRedundant(gti\R) for i ∈ {1, 2}.
By symmetry, it suffices to prove that s1 ⊆ s2 ∀x ∈ s1 ⊆
gt1\R, ∃y ∈ gt2\R, such that x ⊆ y. Note that we can also
find some x∗ ∈ s2 such that y ⊆ x∗. This gives x ⊆ y ⊆ x∗.
However, since we have no redundant trails in s1, we get
x = x∗. Thus x = x∗ ∈ s2.

To apply BIGMAC to real data, we have to implement
the described algorithm with some further engineering.
This includes methods to tolerate noise, to handle dou-
ble stranded nature of DNA, and to construct De Bruijn
graph from the repeats. Interestd readers can refer to
the Additional file 1 : Appendix for these implementation
details.

ConfirmBreakPoints The goal of ConfirmBreakPoints
is to utilize the coverage profile Scoverage to confirm break-
ing decisions at potentially mis-assembled locations spec-
ified in Sfilter . For the sake of simplicity, we now consider
a string s of length L, and a set of positions Y = {yi}1≤i≤k
of s which are potential mis-assemblies. Furthermore, let
us assume that all mis-assemblies are caused by mixing
genomes of different abundances. Using Y , we can par-
tition s into segments {si}0≤i≤k of lengths respectively as

{�i}0≤i≤k . We let xi be the number of reads that start in
segment si, which can be estimated from Scoverage. The
question is how to classify the points in Y as true mis-
assemblies or as fake mis-assemblies.
One can use heuristics, like comparing coverage depth

difference before and after each yi. However, this is not
ideal. For example, if we have coverage depth before and
after y1 differing by 1X, we would expect it to be a much
stronger signal for true mis-assembly if the lengths �0, �1
are of order of 100 K rather than of 100 and this cannot
be seen by considering coverage depth difference alone.
For the case of just two segments of equal length and if
we assume the xi’s are independent Poisson random vari-
ables, there is a popular statistical test, C-Test [9], that
can make the decision. Formally, if x1 ∼ Poisson(m1) and
x2 ∼ Poisson(m2), then C-Test is a test to decide between
the hypothesis of H0 : m1 = m2 against H1 : m1 �= m2.
C-Test first considers x1 + x2 to compute the decision
boundary and it then decides whether to reject H0 based
on x1/x2 and the previously derived decision boundary.
The intuition is that x1 + x2 corresponds to the amount
of data, which determines the confidence of a statistical
test. Thus, if x1 + x2 is large, a small perturbation of x1/x2
from 1 can still be very significant and can correspond to
a confident rejection of H0.
However, we still need to think carefully about how to

apply C-Test to our problem. One method is to directly
apply k independent C-Test on each of the junctions yi.
However, that method cannot take advantage of the infor-
mation from neighboring segments to boost the statistical
power at a junction. Therefore, we develop the algorithm
IterativeCTest. IterativeCTest performs traditional C-Test
but in multiple iterations. Initially, it directly applies k
independent C-Test on each of the junctions yi. Some of
the segments are merged and we aggregate the counts
from the merged segments to continue to the next C-Test
at the remaining unmerged junctions in Y . This process
is repeated until the algorithm converges. Finally, we use
the breaking decisions from IterativeCTest to break the
incoming contigs and return the fixed contigs.

Merger: merging assembled contigs
After fixing mis-assemblies, we are ready to study another
pillar of BIGMAC: Merger. Merger establishes connectiv-
ity among contigs and subsequently makes decisions to
extend contigs.

Graph operator
The goal of Graph Operator is to identify candidates
for contig extension. It forms and transforms a string
graph using the overlap information among original reads
and contigs. It subsequently analyzes the graph to find
candidates for contig extension. The overall algorithm is
summarized in Algorithm 2.
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Algorithm 2 Graph operator
1: Input: Contigs C and original reads R
2: Output: String graph G with information about can-

didates for contig extension
3: procedure GRAPHOPERATOR(R,C)
4: M = Mapping(R, S)

� Obtain mapping among contigs and reads
5: G = FormGraph(M)

� Form string graph to represent connectivity
6: G.GraphSurgery(M) � Simplify graph
7: G.FindExtensionCandidates()

� Identify candidates for contig extension
8: return G

Mapping We obtain mapping among contigs and reads.
This provides the fundamental building block to construct
the connectivity relationship among contigs and reads.

FormGraph The goal of FormGraph is to establish con-
nectivity among contigs. We use contig-read string graph
as our primary data structure. Contig-read string graph
is a string graph [10] with both the contigs and the reads
associated with their endpoints as nodes. The size of the
graph is thus manageable because most reads are not
included in the graph. Then, we construct an overlay
graph (which we call the contig graph) such that the nodes
are the contigs with weights on nodes being the cover-
age depth of contigs. In the contig graph, there is an edge
between two nodes if there is a sequence of reads between
the associated contigs. With these data structures, we can
switch betweenmacroscopic and microscopic representa-
tion of the contig connectivity easily.

GraphSurgery GraphSurgery simplifies the contig
graph. This includes removal of transitive edge and edge
contraction.
For nodes u, v,w, if we have edges u → v,u → w and

w → v, then we call u → v a transitive edge. We perform
transitive reduction [10] on the contig graph to remove
transitive edges. Removing these transitive edges prevents
us from finding false repeats in the next stage. To improve
robustness, there is a pre-processing step before transitive
reduction. If the contig w is too short and there are no
reads that form head-to-tail overlap between w,u or w, v,
then we can have a missing edge for transitive reduction
to operate properly. Thus, we add the missing edge (either
from u to w or w to v) back when we find contigs and
related reads that suggest the missing edge might be there.
An edge u → v is contractable when the outgoing

degree of u and the incoming degree of v are both 1. We
contract edges to fill gaps. Our experience with Finish-
erSC is that data are dropped in the assembler and so

reconsidering them as a post-processing step can poten-
tially fill some gaps. However, there is a caveat. In estab-
lishing connectivity in contig-read string graph, we only
use reads close to each contig’s endpoints (as a way to
save computation resources), we may miss some legiti-
mate connections. Therefore, very long repeats prevent
the detection of linkage of contigs, thereby allow contigs
to be erroneously merged. To address that, if there exists
contig w that is connected (by some reads) to a region
close to the right end of u/left end of v, then we avoid
contraction of u → v.

FindExtensionCandidates FindExtensionCandidates iden-
tifies candidates for contig extension by identifying local
patterns in the contig graph. One form of extension candi-
dates is a pair of contigs that are connected without com-
peting partners. This corresponds to the contigs joined by
a contractable edge. Another form of extension is a set of
contigs that are connected with competing partners. This
corresponds to the contigs linked together in the pres-
ence of repeats. In the contig graph, the repeat interior
can either be represented as a separate node or not. If
the repeat interior is represented as a separate node, the
local subgraph is a star graph with the repeat node at the
center. Otherwise, the local subgraph is a bipartite graph
consisting of competing contigs. After identifying the con-
tigs associated with a specific repeat, we can then merge
contigs in the next stage.

Contig extender
After the operations by Graph Operator, we have
extracted the potential contig extension candidates from
the contig graph. It remains to decide whether and how to
merge the corresponding contigs. In a high level, Contig
Extender aims at solving the Contig Merging Decision
Problem.

Contig merging decision problem Given a set of
incoming contigs I and a set of outgoing contigs O
whose coverage depth and read connectivity information
is known. Decide how to form an appropriate bipartite
matching between I and O.

While we do not intend to rigorously define the state-
ment of Contig Merging Decision Problem now, it is
clear that appropriate matching corresponds to one that
achieves high accuracy. Contig Extender carefully ana-
lyzes the read connectivity and contig coverage to make
decisions on merging contigs. In the coming discussion,
we first study an effective heuristic that captures the
essence of the problem. After that, we will study how to
rigorously define the Contig Merging Decision Problem
in a mathematical form and suggest an EM-algorithm in
solving that.
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Heuristic in solving the contig merging decision
problem When the cardinality of the set of incoming
contigs I and the set of outgoing contigs O are both 1, a
natural decision is to merge them. Thus, the focus here
is to study the case when |I| > 1 or |O| > 1. We select
the reads that uniquely span one contig a in the incom-
ing set and one contig b in the outgoing set. If there are
multiple such reads, then we decide that a, b should be
joined together provided that there does not exist any
paths of reads that lead a to other contigs in the outgo-
ing set and similarly for b. Moreover, we perform similar
tests using contig coverage. If the coverage depth between
two contigs is very close, they will be declared to be a
potential merge pair. Then, we test whether there are
any close runner-ups. If not, they should be merged. To
combine the decisions made using spanning reads and
coverage depth, we have a subroutine that discards all
conflicting merges. We find that this heuristic for deci-
sion making works quite well in our datasets. However,
in the coming discussion, we will study how to make
the extension decisions in a more principled and unified
manner.

General framework in solving the contig merging
decision problem The challenge for the Contig Merg-
ing Decision Problem is the tradeoff for many physical
quantities (e.g. abundance, edit distance of reads, noise
level, number of spanning reads, etc). We address this
by defining a confidence score based on parameter esti-
mation. For simplicity of discussion, we assume that k
is the cardinality of both the set of incoming contigs
and the set of outgoing contigs. The goal is to find
the best perfect matching with respect to a confidence
score.
Let M be a perfect matching of contigs among incom-

ing and outgoing groups I and O. Under M, there are k
merged contigs. Let the observation be the set of related
reads X = {Ri | 1 ≤ i ≤ n}. We define the parameters
θ = {(λj, Ij)1≤j≤k}, where λj is the normalized abundance
of contig j and Ij is genomic content of the contig j. Note
that

∑
1≤j≤k λj = 1. So, the parameter estimation problem

can be cast as sM = maxθ Pθ (X | M), where sM is the con-
fidence score of the matching M. Finally, the best perfect
matching can be found by comparing the corresponding
confidence score.
Note that we have hidden variables Z = (Zi)1≤i≤n which

indicate the contigs that reads X are extracted from (i.e.
Zi ∈ {1, 2, . . . , k}). If we assume the length of the contig
j to be �j and q to be the indel noise level (i.e. probabil-
ity of 1 − 2q to be remained unaltered at each location),
then we can use an EM-algorithm to obtain an estimate
of θ . Specifically, the expected value of the log likelihood
function Eq(Z|X,θ(t))

[
logPθ(t) (X,Z, θ(t+1)] is

∑

1≤i≤n

∑

1≤j≤k
Mj(Ri, I(t))

⎡

⎣log
λ

(t+1)
j

�j
+ |Ri| log(1 − 2q)

+d(Ri, I(t+1)) log
q

1 − 2q

⎤

⎦

(4)

where Mj(R, I(t)) = δj=argminjd(R,I(t)j )
is the assignment of

reads to the most similar contig (with tie breaking using
λ(t)), d(A,B) is the best local alignment score, I(t) =
(I(t)j )1≤j≤k are the genomic contents of the contigs at iter-
ation t and λ(t) = (λj)1≤j≤k are the estimated abundances
at iteration t. By maximizing the log likelihood function
with respect to θ(t+1), we have the update formulas as

λ
(t+1)
j∗ =

∑
1≤i≤n Mj∗(Ri, I(t))

∑
1≤j≤k

∑
1≤i≤n Mj(Ri, I(t))

(5)

I(t+1)
j∗ = argmin

I

∑

1≤i≤n
Mj∗(Ri, I(t))d(Ri, I) (6)

Note that the update of Ij∗ requires multiple sequence
alignment. In general, the problem is NP-hard [11]. How-
ever, for noisy reads extracted from several contigs, the
problem is not as difficult. For example, in the case of
pure substitution noise, an efficient optimal solution is a
column-wise majority vote. Despite the elegance and fea-
sibility of this approach, it is still computationally more
intense than the heuristic. Therefore, in our implemen-
tation of BIGMAC, the heuristic is the default method
used in Contig Extender. But we also provide an exper-
imental version of the EM-algorithm which can be used
when users specify -option emalgo=True in their
commands.

Results
End-to-end experiments
Synthetic data
We verify that BIGMAC correctly improves the incoming
contigs using the following synthetic data. We gener-
ate two synthetic species of different abundances ( 27 ,

5
7 ).

They are composed of random nucleotide sequences of
length 5 M each and share a common segment of length
12 K. We uniformly sample indel noise corrupted reads of
length 6 K from the genomes, with coverage depth of 20X
and 50X respectively. We also artificially construct mis-
assembled contigs by switching the genome segments at
the 12 K repeat.
The contigs and the reads are passed through BIGMAC.

BIGMAC breaks the contigs at the mis-assembled point
and joins them back correctly. One can see the sample run
on [12]. This is also the example that we discuss in the
top-down design of BIGMAC.
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Real data
We test the performance of BIGMAC in improving
metagenomic assembly on PacBio only data. We use dif-
ferent datasets of different characteristics. Dataset 1 con-
sists of a mock community of 5 species [13], with genomes
of high similarity. Dataset 2 consists of a mock community
of 23 species [14], with genomes of diverse abundances.
We also remark that we have tested BIGMAC on a third
PacBio only dataset (Dataset 3): a real experiment involv-
ing Desulfuromonas biwabikus, D. soudanensis and some
other unknown genomes. We note that we know the com-
plete ground truth for the metagenomes in both Dataset 1
and 2 but only know part of the ground truth for Dataset 3.
We take the output of HGAP and use the raw reads to
improve them using BIGMAC. We observe that in these
datasets, BIGMAC reduces the number of mis-assemblies
while maintaining/increasing N50 and N75. The results of
BIGMAC is summarized in Table 1, where the quantity
of mis-assemblies is obtained from the QUAST reports.
By default, QUAST’s statistics are based on contigs of
size >= 500 bp. Interested readers can refer to the
Additional file 1: Appendix for more details of the assess-
ment. The data is provided in our online distribution
and users can reproduce the results by issuing a single
command python reproduce.py.

Comparison with other post-processing tools
Synthetic data
We use the synthetic data in “Synthetic data” section
to evaluate and benchmark BIGMAC, FinisherSC [4],
SSPACE_LongRead [15] and PBJelly [16]. BIGMAC is
the only tool among the tested tools that fix the mis-
assembled contigs and merge them back correctly. Other
tested tools output the same mis-assembled contigs.

Real data
We perform end-to-end testing to compare performance
of different tools. The comparison is shown in Table 2.
BIGMAC shows the largest N75/# Mis-assemblies on all
three datasets and largest N50/# Mis-assemblies on two

Table 1 Performance evaluation of BIGMAC on several mock
communities

Dataset Method NContig # Mis-assembly N50 N75

1 HGAP 130 18 818655 274801

1 BIGMAC 129 7 4352719 274801

2 HGAP 477 187 397611 38471

2 BIGMAC 344 28 397611 75666

3 HGAP 185 26 257044 82370

3 BIGMAC 140 14 359704 99878

BIGMAC consistently improves assembly quality by simultaneously increasing
contig contiguity and decreasing the number of mis-assemblies

Table 2 Comparison of performance of BIGMAC with other
post-processing tools for long read assemblies

Data Method # Mis N50 N75 N50/# Mis N75/# Mis

1 HGAP 18 818655 274801 45481 15267

BIGMAC 7 4352719 274801 621817 39257

FinisherSC 32 2531294 415024 79103 12970

PBJelly 19 4642330 418480 244333 22025

SSPACE_LR 32 4657611 493683 145550 15428

2 HGAP 187 397611 38471 2126 206

BIGMAC 28 397611 75666 14200 2702

FinisherSC 192 654163 43018 3407 224

PBJelly 271 1585584 61775 5851 228

SSPACE_LR 255 1568442 95133 6151 373

3 HGAP 26 257044 82370 9886 3168

BIGMAC 14 359704 99878 25693 7134

FinisherSC 25 996532 97964 39861 3919

PBJelly 27 1103847 128718 40883 4767

SSPACE_LR 43 1266912 290104 29463 6747

BIGMAC shows the largest N75/# Mis on all three datasets and largest N50/# Mis on
two out of three datasets. We also remark that BIGMAC is the only tool that can
improve N50 and N75 while reducing the number of mis-assemblies. Note that #
Mis is an abbreviation for the number of mis-assemblies

out of three datasets. Indeed, in the only dataset that BIG-
MAC does not have the largest N50/#Mis-assemblies, the
number of contigs(i.e. L50) beyond N50 is 7. Due to the
small number of contigs, this particular measurement on
that dataset may not be significant. We also remark that
BIGMAC is the only tool that improves contiguity (N50
and N75) and the number of mis-assemblies.

Simulation and testing on independent components
We perform micro-benchmarking on individual compo-
nents of BIGMAC. The settings and results are summa-
rized as follows.

Analysis of LocatePotentialMisassemblies
We test our break point finding algorithm used in
LocatePotentialMisassemblies of Breaker on the synthetic
data of x1 = abcde, x2 = fbcg, x3 = hcdi discussed in the
previous section. The algorithm succeeds in identifying
the minimum number of break points as 3. Also, it suc-
ceeds in identifying the minimum number of break points
as 2 in the presence of double stranded DNA, in the test
case of x1 = abcd, x2 = ec′b′f , where b′, c′ are the reverse
complement of b, c respectively.

Analysis of ConfirmBreakPoints
We test IterativeCTest used in ConfirmBreakPoints of
Breaker on synthetic data. We simulate mis-assemblies
and variation on abundances by generating a sequence of
Poisson random variables and compare the performance
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of the algorithms on the simulated data as follows. We
generate a sequence of 100 numbers by 100 independent
Poisson random variables. The Poisson random variables
have parameters of either 20 or 50. To select the parame-
ters, we simulate 100 steps of a two-states Markov chain
with transition probability of 0.1. We then evaluate the
performance of C-Test and IterativeCTest on finding the
true transition points, which correspond to the junctions
of mis-assemblies. Taking average from 100 rounds of
simulation, the recall of both C-Test and IterativeCTest
are 0.93, meaning that they both can identify almost all
transition points. C-Test has precision of 0.75 while the
precision of IterativeCTest is of 0.87, meaning that Itera-
tiveCTest can avoid more fake mis-assemblies.

Analysis of merger
We compare Merger with other tools on synthetic data
as follows. We use a synthetic contig set {x1, x2, r, y1, y2}
where the ground truth genomes are (x1, r, y1), (x2, r, y2).
The coverage depth of (x1, y1) and (x2, y2) are 20X and
50X respectively. We pass the reads together with the
contig set to FinisherSC, PBJelly, SSPACE_LongRead to
perform scaffolding. We note that BIGMAC is the only
tool the can scaffold the contigs correctly into 2 contigs
by using the abundance information among the tested
tools. Other tools either do not change the input or simply
merge r with some of {x1, x2, y1, y2}, resulting in 4 contigs.

Runtime of BIGMAC
The runtime of BIGMAC is summarized in Table 3.
We use 20 threads to run the tool on a server com-
puter. The server computer is equipped with 64 AMD
Opteron(tm) Processor 6380(8 cores) with frequency
2500 MHz and 362 GB RAM. We note that the major-
ity of the time is spent on alignment of contigs and reads
by MUMmer.

Discussion
There are two main implications from the experiments
performed. First, we show that post-processing assemblies

Table 3 Runtime of BIGMAC and the corresponding file size

Dataset Component Contig file
size (MB)

Read file
size (GB)

Running
time (sec)

Synthetic Breaker 9.6 0.335 164

Synthetic Merger 9.6 0.335 123

1 Breaker 30 5.7 6646

1 Merger 29 5.7 6998

2 Breaker 32 5.8 4865

2 Merger 29 5.8 5087

3 Breaker 17 7.6 7099

3 Merger 14 7.6 6887

is a feasible alternative in improving assembly quality to
building another assembler from scratch. This is demon-
strated by BIGMAC showing simultanous improvement
in terms of number of mis-assembly and contiguity. We
note that this is a non-trivial feature because all other
tested tools fail to achieve it. Second, BIGMAC is com-
petitive when compared to the existing post-processing
tools. In particular, it shows better N75/# Mis-assemblies
than all other tested tools in all tested datasets. Moreover,
BIGMAC is also the only tool that can handle abundance
information, which makes it an attractive candidate for
improving metagenomic assembly.

Future work
We remark that the creation of BIGMAC sheds light on
many interesting future direction. For example, it would
be interesting to apply similar ideas to hybrid data, which
has a lot of potential in the context of metagenomics.
Moreover, it would also be useful to try BIGMAC and
other post-processing methodology on more real data to
better characterize the approach.

Conclusion
We study an agile approach in developing de novometage-
nomic assemblers: post-processing metagenomic assem-
blies with original input data. BIGMAC demonstrates the
effectiveness of the post-processing approach in improv-
ing the quality of metagenomic assemblies using long
reads. BIGMAC thus serves as an example that developing
post-processors is a good alternative to building end-to-
end assemblers, which typically involves more engineer-
ing efforts.

Additional file

Additional file 1: Supplementary materials include implementation
details, data analysis, theoretical analysis and commands used to run
different tools. (PDF 492 kb)
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