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Abstract

Towards Grid-independent Dynamics in High-resolution Numerical Weather Prediction
Models

by

Jason Scot Simon

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Fotini Katopodes Chow, Chair

Since the beginning of numerical weather prediction (NWP), which was performed on
O(700 km) grids, advances in computing technology have driven corresponding advances in
model resolution. In recent years, operational NWP efforts have reached O(1 km) horizontal
resolutions, leading to the use of large-eddy simulation (LES) to simulate the atmospheric
boundary layer (ABL). However, the available turbulence closure models for atmospheric LES
were designed to model the smallest scales of atmospheric turbulence, leaving operational
forecasters and researches in many diverse fields alike without a turbulence model fit for the
computing power available to them. This range of resolutions is known as the “gray zone”
or terra incognita in the atmospheric turbulence literature, and will be the focus of much
discussion in this dissertation. Further, the results will be presented in a way that is visual
and digestible to a user of LES whose expertise is not necessarily in theoretical turbulence.

Here, the Weather Research and Forecasting (WRF) model is used to give a thorough and
visual demonstration of the inadequacies of the more popular LES turbulence closure models,
the Smagorinsky-Lilly and TKE-1.5 models, at gray-zone resolutions, and an explanation of the
behavior is offered. Two alternatives, both with multiple flavors, the dynamic reconstruction
model (DRM) and an alternative-anisotropic formulation of the classical eddy-viscosity
models, are presented as potential remedies to the gray-zone issue. Studies are conducted
first for an idealized free-convection case with constant surface heat flux and zero mean wind.
A more realistic initial profile with an initial wind and geostrophic forcing is then considered.
Finally, three more cases are considered with various surface heat flux values and initial wind
profiles.

Both the DRM and alternative-anisotropic eddy-viscosity models are able to deliver much more
consistent results at coarse resolutions when considering planar-averaged profiles of potential
temperature and velocity, resolved velocity fields and resolved turbulent kinetic energy, and
their performance inspires interesting topics of future work regarding the representation of
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scales of energy in the atmosphere. The implementation of the anisotropic eddy-viscosity
model in general, as well as the anisotropic Smagorinsky-Lilly model specifically, in the WRF
model is also considered, resulting in a change in the WRF turbulent diffusion routines and a
demonstration of improvement seen at coarse resolutions by reformulating the anisotropic
Smagorinsky-Lilly model to partition stress terms into horizontal and vertical components.
An additional chapter presents the gray zone problem as it relates to complex terrain.
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Chapter 1

Introduction

1.1 Notation

Some of the more prevalent notation used in this manuscript is:

• arrows indicate vectors in vector notation, e.g. ~u is the velocity vector;

• bolded capital letters indicate tensors in vector notation, e.g. T is the stress tensor;

• single indices indicate vectors in summation notation, e.g. ui is the velocity vector;

• double indices indicate tensors in summation notation, e.g. Tij is the stress tensor;

• a variable not modified to indicate otherwise is assumed to be a “true” or correct value,
e.g. ui is the true velocity vector that our model is striving to produce;

• an overline indicates a field’s value after filtering, e.g. ui is the filtered velocity vector;

• angled brackets indicate some stated global averaging, e.g. 〈ui 〉 could be the planar-
averaged, resolved velocity field;

• a prime indicates a deviation from a stated mean value, e.g. u′i = ui − 〈ui 〉 could be
the resolved turbulent fluctuation from the planar-averaged resolved field;

• a product of primed values under a common filter implies a modeled value, as it could
not be known otherwise (which is consistent with the notion that it is the “resolved”
nonlinear term, in the sense that it is the value for the quantity under the filter), e.g.
w′θ′ would be the modeled, sub-grid scale (SGS) vertical turbulent heat flux, contrasted

to the resolved vertical turbulent heat flux, w′θ
′
;

• a product of non-primed values under a common filter implies a theoretical value, e.g.
uiuj would be the theoretical true value of the advective term (care will be taken in
the text to avoid ambiguity in this and the previous notations);
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• WRF input parameters are written in monospace font, e.g. tke heat flux is a setting
for surface heat flux.

Other notation will be introduced where appropriate.

1.2 Description and motivation

Mesoscale atmospheric models used for numerical weather prediction (NWP) historically use
coarse [O(1− 10 km)] horizontal resolutions relative to the dominant lengthscale of turbulent
energy in the atmosphere, which scales with the planetary boundary layer (PBL) depth
[O(0.1−1 km)]. The separation between mesoscale grid spacing and turbulence lengthscale is
a result of the balance between domain size, grid resolution and computational capability; i.e.
forecasters must use coarse resolution to obtain a simulation that is fast enough and covers a
large enough geospatial area to resolve relevant meteorological phenomena. Mesoscale models
are based on Reynolds averaging, which uses an ensemble average to separate mean and
fluctuating quantities of the Navier-Stokes equations,

∂〈ui 〉
∂t

+
∂〈ui 〉〈uj 〉

∂xj
= −1

ρ

∂〈p 〉
∂xi

+ ν
∂2〈ui 〉
∂xj∂xj

− ∂τij
∂xj

. (1.1)

The effect of turbulent motions is contained in the Reynolds stress term, τij = 〈u′iu′j 〉,
where u′i = ui − 〈u 〉i is the fluctuating velocity field and the angled brackets represents an
ensemble average. Inherent in this formulation is the assumption that the Reynolds stress
term represents the effects of all of the unresolved scales of motion and that 〈u′ 〉 = 0. Most
mesoscale models use a one-dimensional parameterization for the turbulent stresses which
cannot be resolved on coarse grids. Thus the assumption that RANS represents a mean
flow solution results from the choice of grid resolution and/or the behavior of the chosen
turbulence model.

In contrast to RANS, a large-eddy simulation (LES) resolves much of the turbulent energy
(the “large eddies”) in the flow. In an LES, the evolution of the PBL is well resolved and is
not parameterized. A turbulence closure is used to model the subfilter-scale (SFS) motions
which are smaller than a selected spatial filter width. With LES, the governing equations are
typically written as

∂ρui
∂t

+
∂
(
ρuiuj

)
∂xj

= − ∂p

∂xi
− ∂τij
∂xj

, (1.2)

where the overbar indicates a spatial filter and τij = ρ (uiuj − uiuj) is the SFS turbulent
stress. In LES, u′ 6= 0. LES parameterizations for τij often contain a term representing the
size of the filter, making the turbulence models “scale aware”, in that the model will adjust
when more or less energy is placed in the subfilter field. Commonly, there is no explicit filter
defined and the grid itself and discretization schemes are considered to be the filter. Defining
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an explicit filter allows reconstruction of scales between the filter and grid cutoffs, enabling
more accurate representation of fine scales, as discussed further below.

Since LES requires a high-resolution grid to resolve the most energetic turbulent motions,
LES has historically been limited to idealized atmospheric studies and small-scale engineering
applications. Recently, many NWP models have adopted options for LES, enabling microscale
weather simulations. Such models include the Advanced Regional Prediction System (ARPS)
(Xue et al., 2000), the Naval Research Laboratory Coupled Ocean/Atmosphere Mesoscale
Prediction System (COAMPS) (Golaz et al., 2005), the Consortium for Small-scale Modeling
(COSMO) model (Langhans et al., 2012), the Colorado State University Regional Atmospheric
Modeling System (RAMS) (Pielke et al., 1992), the United Kingdom Met Office Unified
Model (UM) (Lean et al., 2008) and the Weather Research and Forecasting model (WRF)
(Skamarock et al., 2008).

At the same time as offering LES capabilities, users are pushing mesoscale models to
kilometer scale resolutions [O(1 km)]. High resolution grids allow for a more accurate
representation of many fields (e.g. terrain, land-use, urban effects). There are many recent
examples in the literature of forecasting efforts reaching kilometer and finer scales for varying
applications. Liu et al. (2011) used WRF with real-time four dimensional data assimilation
for wind-energy forecasting, downscaling (nesting) from a 30-km grid to a 123-m grid,
transitioning from a PBL scheme to LES at 500 m. Similarly, Zhu et al. (2010) used WRF
to simulate stratocumulus clouds in the Southern Great Plains, nesting from 8.1 km to
100 m resolution using a PBL scheme and an LES closure. In another application, Taylor
et al. (2016) used WRF to nest from 2.25-km resolution to 30-m resolution to model landfill
methane emissions and assess potential observational strategies. Scalar plumes were studied
by Klose and Shao (2013), who used WRF at a resolution of 100 m to model turbulent dust
emissions using an LES closure. Garcia et al. (2014) used WRF to study the impact of using
high-resolution forest harvesting data on high-resolution NWP, using grids from 30 km to
100 m. All of these examples describe nested LES case studies with short-term simulations
on the order of a day.

Longer term or operational simulations are also moving to higher resolution. Kendon et al.
(2014), for example, used the UM for a study on the United Kingdom’s regional climate under
climate change using an LES closure model at 1.5 km horizontal resolution. MeteoSwiss in
Switzerland routinely performs NWP forecasts at kilometer-scale resolution (Leuenberger
et al., 2005), as does the United Kingdom Met Office (Kendon et al., 2012).

It is clear that the resolution limits for NWP are changing rapidly, and it is only a matter
of time before operational weather forecasts use a horizontal resolution ∆x,y < 1 km. This is
problematic from a turbulence perspective, however, because kilometer-scale grids can be on
the same order as the largest turbulent motions in the atmosphere [e.g. thermal plumes in
the convective boundary layer (CBL)]. When an NWP grid cell size is similar in size to the
largest eddies, the mesoscale modeling assumption that turbulent scales are all filtered out is
no longer true. A natural progression would be to transition from mesoscale modeling to LES
at finer resolutions, but LES has the opposite limitation that its filter is assumed to be much
smaller than the turbulent eddies. This leaves forecasters with a range of resolutions where
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there is no appropriate modeling procedure. This gap in turbulence parameterizations is often
referred to as the terra incognita (Wyngaard, 2004). The term “gray/grey zone”, a more
general term, has also been adopted by the atmospheric turbulence community (Arakawa
and Wu (2013) use the term to describe a similar issue in the cloud modeling community).

The gray zone has also been the subject of recent literature. Beare (2014) conducted an
LES study on the gray zone for a CBL and proposed a gray zone criteria of zi/λd < 0.7, where
zi is the inversion height and λd is a dissipation lengthscale based on the second moment
of the TKE spectrum. This aims to capture the smallest lengthscale not filtered out by
the combined turbulence model and numerical schemes. They found that the dissipation
lengthscale is a much more accurate metric for considering gray zone dynamics than the
simpler zi ∼ ∆x,y criteria that is often used. Zhou et al. (2014) used the ARPS model and a
TKE-based PBL scheme at grids progressively refined from 3.6 km to 400 m and compared
to a 25-m LES case. They found that as the model enters the gray zone, from the mesoscale
side, thermal structures begin to be resolved. This is problematic because the resolved
thermal structures are nonphysically large due to the relatively coarse grid resolution, leading
to physically inaccurate dynamics. Similar unrealistically large convective cells were seen
using the UM with a PBL scheme for horizontal resolutions of 4- and 1-km by Lean et al.
(2008), and again in WRF by Ching et al. (2014), who modified the BouLac PBL scheme to
successfully suppress these large convective cells for 1-km and finer cases.

More generally, resolution sensitivity and requirements for LES have been studied from
multiple perspectives. For example, Chow et al. (2006) used ARPS to simulate valley flows
in the Swiss Alps nesting from 9 km to 150 m and found that many important features were
not resolved until reaching a horizontal resolution of 350 m. Bryan et al. (2003) conducted
a study on resolution requirements for LES to model deep moist convection by simulating
squall lines at resolutions from 1 km to 125 m. They concluded that O(100 m) resolution is
required for modeling deep convection, however they did not reach convergence even at 125
m. Michioka and Chow (2008) used ARPS to nest from 45 km to 25 m, though results did
not significantly improve with increased horizontal resolution beyond 190 m. Piotrowski et al.
(2009) demonstrated heavy grid-dependence in convective structures and a large influence
of numerical diffusion using the EULAG model (Prusa et al., 2008). Honnert et al. (2011)
conducted an extensive study on the balance between resolved and SGS turbulent kinetic
energy (TKE) at different resolutions. Efstathiou and Beare (2015) explored the gray zone
of the Smagorinsky-Lilly turbulence model using the Met Office Large Eddy Model for a
variety of shear and surface heating combinations. They observed a delay in the onset of
resolved TKE in the gray zone, and that profiles of resolved TKE become unrealistic when
∆x,y > 200 m. van Stratum and Stevens (2015) conducted a gray zone study using the
Smagorinsky-Lilly model for the nocturnal boundary layer, considering resolutions from 3.125
to 100 m, finding significant differences in the coarser cases.

In this dissertation, we examine the role of the turbulence closure model in LES on the
behavior of convective boundary layer (CBL) simulations in the terra incognita. In particular,
we examine two traditional LES closure models, Smagorinsky-Lilly and TKE-1.5, and a
dynamic mixed model. Specifically, we study the performance of the dynamic reconstruction
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model (DRM) (Chow et al., 2005) as implemented in WRF (Kirkil et al., 2012). Simulations
of the CBL are performed at varying resolutions similar to Zhou et al. (2014) but at finer
LES resolutions, with the aim of understanding the behavior of the model as it transitions
from LES to RANS resolutions. Our goal here is to examine the role of the turbulence closure
model in defining the gray zone, by examining the onset of convection, turbulence statistics,
and mean profiles. In particular, it is hypothesized that the dynamic reconstruction model
can be helpful in reducing grid-dependence in the gray zone by increasing the turbulence
model’s “awareness” of the resolved velocity field. The DRM has been shown to improve mean
and turbulent profiles in neutral and stable boundary layer flows (Chow et al., 2005; Zhou
and Chow, 2011). Moeng et al. (2010) conducted an a priori test on a cloud-resolving model
with a horizontal resolution of 100 m and found that a mixed model, which is equivalent
to a low-order reconstruction model (Chow, 2004), “greatly improves the representation
of SGS fluxes of heat, moisture, and momentum” but the mixed model was not used in
an a posteriori test. We proceed with the hypothesis that each closure model will behave
differently in the gray zone, some models will be better at intermediate resolutions, and each
model will require different guidelines for transitioning from LES to RANS. We also present
an alternative formulation of anisotropic eddy-viscosity models which shows a great amount
of potential at these scales.

1.3 Governing equations of fluid motion

The Navier-Stokes (N-S) equations are the most commonly used description of fluid motion.
They can be, and have been, derived in a number of ways and their re-derivation is not
necessary in the modern literature. However, in the context of the present analysis of
highly-anisotropic grids being used to model the atmospheric boundary layer (which is often
described as a compressible fluid behaving approximately incompressibly), it is helpful to
point out the assumptions of a fluid’s behavior that are made when using the N-S equations.
Thus we will present one derivation that is particularly physically-revealing, which is to start
with Cauchy’s equations for motion in a continuum and then take Stokes’ interpretation(s)
of fluid motion. While this is not a rigorous presentation, as it begins by assuming the
general equations of motion and the concept of a continuum and all of the mathematical
assurances therein, the process of turning a general continuum into a “Stokesian fluid” is,
in the author’s opinion, the most elucidating part of the derivation. The rigor that is
bypassed is so fundamental to all of classical mechanics that it may be taken for granted
here. The presentation of this section will largely follow Truesdell (1952, 1954); Truesdell
and Toupin (1960), Serrin (1959) and Aris (1962) (the latter two authors themselves being
largely influenced by the former).

As justified above, we are quite comfortable with accepting Cauchy’s equation of motion
for a continuum, which can be written as

ρ~a = ρ
D~u

Dt
= ρ~f + ~∇ ·T, (1.3)
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where ρ is the material’s density, ~a is the material’s acceleration vector (in time and three

dimensions of space), D/Dt is the material derivative, ~u is the material’s velocity vector, ~f is

the external force per unit mass, ~∇· is the divergence operator and T is the general stress
tensor which has yet to be connected to either the composition or kinematic state of the
material. Equation (1.3) is easy to accept due to its simplicity; the only visible assumptions

are ~F = m~a and a very general notion of a continuum as a differentiable volume with a
density and a boundary that can experience external forces and internal stresses.

Transitioning from a general continuum to a fluid requires making a few key assumptions
about the nature of the internal stresses of the material. The first is Stokes’ observation that
a fluid’s motion at any point, P , is proportional to the difference between the normal stresses
on P by its immediate material surroundings and the normal stresses that P would experience
in hydrostatic equilibrium. For now, let us call this proportionality to the difference in normal
stresses anywhere in the continuum the “momentum potential”, ~p. Further, Stokes observed
that a fluid has no preferred direction of motion when ~p 6= 0, i.e. that the fluid’s response to
momentum potential is isotropic in space and thus our potential field, ~p, is necessarily a scalar,
p. For the desired behavior of divergent flow when p > 0, we can define this proportionality
of relation to the equilibrium stress at a point to be −p, and redefine the stress tensor as

T = −pI + V, (1.4)

which has the trace
Tr (T) = −3p+ Tr (V) , (1.5)

where I is the identity matrix and V will be called the viscosity tensor.
The relationship between the material and kinematic state of the fluid needs to be

expressed in the definition of T (a “constitutive” relation), which Stokes did by deriving a
linear relation between stress and strain of the form

V = 2µS, (1.6)

where µ is the thermodynamic (or simply “dynamic”) viscosity and S is the strain-rate
tensor.1 A key feature of this variable, µ, is that it is a thermodynamic property that is
necessarily independent of pressure [proof not shown; see Stokes (1845)]. As an aside, it is
nice to note that inherent in our assumptions thus far is the relation that V = 0 when S = 0,
which implies that

T = −pI (1.7)

when the fluid is in hydrostatic equilibrium, and when the only body force is gravity Eq. (1.3)
reduces to

∂p

∂z
= −ρg, (1.8)

1Equation 1.6 is known as Newton’s viscosity law and its applicability distinguishes a “Newtonian” from
a “non-Newtonian” fluid. Humorously, however, Stokes (1845) credits, in alphabetical order, Biot, Bossut,
Cauchy, d’Alembert, Dubuat, Lagrange and Poisson ahead of Newton in validating his derivation of this
relation.
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where g is the scalar gravity magnitude.
Stokes (1845) also pointed out that a simple rotation of reference frame could re-frame

components of Tij to Tii, thus from the assumptions of isotropic motion and Galilean invariance
the remaining strain-rate tensor is necessarily symmetric, which can be written as

S =
1

2

(
~∇~u+ ~∇~u ᵀ

)
, (1.9)

where S is now the symmetric strain-rate tensor.
Note that this new dynamic variable for momentum potential, p, may only be taken to

be the thermodynamic (thermostatic) pressure for a compressible (incompressible) fluid after
further assumptions are made about V after removing the isotropic p component. For a
compressible fluid, it must be assumed that the fluid is in thermodynamic equilibrium at all
times, even while in motion. For an incompressible fluid, it must be assumed that Tr (V)
vanishes in Eq. (1.5), which is ultimately true for an incompressible Newtonian fluid, but not
by any assumptions made to this point (proof not shown; see Aris (1962), sec. 5.23). If no
assumptions of this sort are made, we can write Eqs. (1.4) and (1.5) as

T =
(
−p+ γϑ

)
I + 2µS, (1.10)

and
1

3
Tr (T) = −p+ γϑ+

2

3
µ, (1.11)

where γ is called the “second” or “bulk” viscosity and ϑ is the viscous dilation, an invariant
of the deformation tensor that can be interpreted physically as a fractional rate of change
of infinitesimal volume [see Sec. 4.43 of Aris (1962)]. Thus, the γϑ term represents the
irreversible loss due to viscous resistance to expansion (contraction) for positive (negative)
values of γ (akin to losses to shearing friction), which is separate from the reversible exchange
with momentum potential, p.

Re-inserting our construction of T into Eq. (1.3) and assuming that gravity is the only
body force and viscosity is (at least spatially) homogeneous, we can express the conservation
of linear momentum in a Stokesian fluid as

ρ
D~u

Dt
= ρ~g − ~∇p+

(
γ +

2

3
µ
)
~∇ · ~u+ µ~∇ ·

(
~∇~u+ ~∇~u ᵀ

)
. (1.12)

To get from Eq. (1.12) to the N-S equation for linear momentum, we must find a way to
neglect the bulk effects, i.e. to say (

γ +
2

3
µ
)
~∇ · ~u = 0. (1.13)

If the fluid is assumed to be incompressible, then

~∇ · ~u = 0 (1.14)
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and the bulk effects may be neglected, which is very justifiable for most liquids. Otherwise,
the neglect of volume effects can be stated as

γ = −2

3
µ. (1.15)

This can be interpreted either as that the dynamic variable p is the same as the (to
now unrelated) thermodynamic pressure and that the fluid is always in thermodynamic
equilibrium, or that viscous effects oppose shearing stress at a two-thirds rate that they
oppose volume compression; either interpretation is justifiable for a monotonic gas. Older
literature commonly refers to Eq. (1.15) as “Stokes’ assumption,” where modern literature
typically takes this assumption for granted by beginning with the N-S equations.

Ultimately, the N-S equations for a compressible fluid together with the continuity equation
are most often written as

∂ρui
∂t

+
∂ρujui
∂xj

= − ∂p

∂xi
+ µ

(
∂2ui
∂xj∂xj

)
+ Fi

∂ρ

∂t
+
∂ρui
∂xi

= 0, (1.16)

where the indices imply summation notation and the variables are the same as before. It is
perhaps only tangentially relevant but interesting to note that the density is often coupled to
the velocity inside the derivative terms, as written here, which is not necessary mathematically
(though it can be used to cleverly write both equations in one expression), but is instead a
precursor to the numerical methods that will be used to solve these equations.

Brilliant and effective as the N-S equations are on the small and isotropic scales assumed in
their derivation, for large-scale, highly-anisotropic grids in atmospheric boundary layer models,
the assumptions related to stresses and especially to the equilibrium of the thermodynamic
pressure should be considered, even if ultimately neglected, in any efforts to represent the
internal viscous stresses experienced by the atmosphere.

1.3.1 Internal energy equation

If considerations are taken for energy in a fluid described by the N-S equations, we can follow
Aris (1962), sec. 6.3 and say

ρ
∂E

∂t
= ~∇ ·

(
k~∇T

)
− p
(
~∇ · ~u

)
+ µΥ, (1.17)

where E is the specific internal energy, k is the conductance of heat, T is temperature and
Υ is the viscous dissipation function which describes external energy converted to internal
energy by viscous forces.

While such considerations are often taken for idealized cloud models [e.g. Romps (2008);
Pressel et al. (2015)], most operational NWP models, including WRF, do not conserve, or even
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track, internal energy explicitly in this way. WRF, specifically, prognosticates momentum,
potential temperature, column mass and geopotential and uses a pressure-based vertical
coordinate system. It is assumed that the energetics related to viscosity can be adequately
dissipated by numerical effects associated with the numerical scheme, SGS model, or both.
We do not intend to argue that the total energy should be conserved and accounted for as
in Eq. (1.3.1), but rather that the entire implicit job of the SGS viscosity closure should be
considered when it is formulated. Typically only the duties of the SGS model when the grid is
in the inertial subrange and isotropic are considered in LES SGS closure model formulations,
despite being commonly extended to O(1 km) and highly anisotropic applications.

1.3.2 Definition of potential temperature

Potential temperature, θ, is a very useful variable in atmospheric modeling, as it is a buoyantly-
relevant representation of temperature that encapsulates the effects of the local pressure of
an air parcel. Potential temperature is defined as

θ = T

(
p0

p

)R/cp
, (1.18)

where T is absolute temperature, p is local pressure, p0 is a reference pressure (typically
100 kPa), R is the gas constant of air and cp is the specific heat capacity of air at a constant
pressure (Stull, 1988a).

1.4 Weather Research and Forecasting (WRF) model

governing equations

The WRF model solves the flux-form Euler equations using a terrain-following hydrostatic-
pressure vertical coordinate system, η, defined as

η =
ph − pht
m

, (1.19)

where
m = phs − pht (1.20)

is the column mass per unit area,2 ph is the local hydrostatic pressure, phs is the hydrostatic
pressure at the surface boundary and pht is the hydrostatic pressure at the top boundary.

The prognostic variables for momentum, ~U = (U, V,W ), and mass-coupled potential
temperature, Θ, are coupled to the column mass per area, m, and are defined as

~U = m~u, (1.21)

Θ = mθ, (1.22)
2The WRF documentation, namely Skamarock et al. (2008), uses µ for the column mass per area, but

this manuscript has reserved µ for dynamic viscosity and will thus use m here.
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where ~u = (u, v, w) is the velocity vector3 and θ is the potential temperature.
For a dry atmosphere, following Sec. 2.2 of Skamarock et al. (2008), the governing

prognostic equations are written for momentum,

∂U

∂t
+
(
~∇ · ~Uu

)
− ∂

∂x

(
p
∂φ

∂η

)
+

∂

∂η

(
p
∂φ

∂x

)
= FU , (1.23)

∂V

∂t
+
(
~∇ · ~Uv

)
− ∂

∂y

(
p
∂φ

∂η

)
+

∂

∂η

(
p
∂φ

∂y

)
= FV , (1.24)

∂W

∂t
+
(
~∇ · ~Uw

)
− g

(
∂p

∂η
−m

)
= FW , (1.25)

for potential temperature,
∂Θ

∂t
+
(
~∇ · ~Uθ

)
= FΘ, (1.26)

for column mass per area,
∂m

∂t
+
(
~∇ · ~U

)
= 0, (1.27)

and for geopotential,
∂φ

∂t
+

1

m

[(
~U · ~∇φ

)
− gW

]
= 0, (1.28)

where g is gravity, φ = gz is geopotential, p is the thermodynamic pressure, ~∇· is the
divergence operator for the vertical coordinate system used here [see Sec. 2.2 of Skamarock
et al. (2008) for details], and FU , FV , FW , and FΘ are forcing terms from model physics,
spherical projections, the Earth’s rotation and turbulent mixing. The final consideration,
turbulent mixing, is the focus of this manuscript and is the primary contribution to the F~U
terms for the cases considered here.

These are combined with the equation of state,

p = p0

(
Rdθ

p0α

)γ
, (1.29)

where p0 is a reference pressure, γ = cp/cv = 1.4 is the ratio of heat capacities for dry air, Rd

is the gas constant for dry air, and α = ρ−1 is the inverse density which is found from the
diagnostic relation,

α = − 1

m

∂φ

∂η
. (1.30)

Only dry cases are considered in this work and the addition of moisture considerations
does not significantly complicate the governing equations. As such the moist governing
equations for WRF are not presented here [see Sec. 2.3 of Skamarock et al. (2008) for WRF’s
treatment of moisture].

3Again, Skamarock et al. (2008) uses ~V and ~v, but ~U and ~u are used here for consistency with other
discussions within the manuscript.
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1.5 Large-eddy Simulation (LES) equations

To simplify the discussion of the large-eddy simulation (LES) turbulence closure models,
consider perhaps the simplest form of the Euler momentum equations, written as

∂ρui
∂t

+
∂
(
ρuiuj

)
∂xj

= − ∂p

∂xi
, (1.31)

where the subscripts imply summation notation, ρ is the fluid density and the other variables
are the same as before. The neglect of the gravity term can be formally justified by declaring
that p is now the deviation from the hydrostatic equilibrium pressure, if desired.

The derivation of the general LES equations from Eq. 1.31) is very straightforward. First,
consider a general spatial filter, which will be indicated with an overbar, e.g. ui would be the
filtered value of the true ui field. Applying this general filter and assuming that it may be
distributed among linear terms and that the density may be treated as spatially homogeneous
under the filter, the Euler equations can be written and manipulated as

∂ρui
∂t

+
∂
(
ρuiuj

)
∂xj

= − ∂p

∂xi
(1.32)

∂ρui
∂t

+
∂
(
ρuiuj

)
∂xj

= − ∂p

∂xi
− ∂

(
ρuiuj − ρuiuj

)
∂xj

(1.33)

∂ρui
∂t

+
∂
(
ρuiuj

)
∂xj

= − ∂p

∂xi
− ∂τij
∂xj

, (1.34)

where τij = ρ (uiuj − uiuj) is the turbulent stress tensor.
τij represents both the internal effects of viscosity (which must be present to form eddies,

at least theoretically) and any turbulent energy that was lost to turbulent dissipation at
scales below the LES filter (which itself has yet to be defined). Most often the finite-difference
scheme itself, and thus the grid itself, is considered to be the filter. When the numerical
scheme for the advection term is chosen to have a diffusive error, this choice of using the grid
as the filter includes an inherent diffusive term in the momentum equation, i.e. numerical
diffusion. Thus this implicit filter that is formed by the grid combined with the implicit
numerical dissipation sets the effective minimum resolution, below which the cumulative
effect of numerical truncation errors so strongly impairs motions that they are essentially
absent. It has been seen that different turbulence closure models have different associated
implicit filter widths (Ch. 2).

1.5.1 Numerical diffusion

It is important to also consider the role of numerical diffusion when investigating turbulence
closure models. A small amount of numerical diffusion is often considered beneficial since
its magnitude is usually small and it tends to damp high wavenumbers, specifically 2∆
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waves, removing noise from the solution. Numerical diffusion is present when an odd-ordered,
upwind scheme is used for discretizing the advection term in a transport equation for either
momentum or scalars (Wang et al., 2009).

Use of an upwind scheme can be shown to be equivalent to a centered scheme with
additional numerical diffusion. To demonstrate this, consider first- and second-order finite
difference schemes, and their respective error terms, for a first derivative in the x-direction of
a generic scalar, q. Following Skamarock et al. (2008), the error of the scheme is found by
considering a Taylor series expansion:

q (x+ ∆x) = q (x) + ∆x
∂q

∂x
+

∆2
x

2

∂2q

∂x2
+

∆3
x

6

∂3q

∂x3
+ higher order terms, (1.35)

and rearranging to define a finite difference approximation of a first derivative, ∂q/∂x, with
first-order accuracy, O(∆x), which has the form

q(x+ ∆x)− q(x)

∆x︸ ︷︷ ︸
finite difference scheme

=
∂q

∂x︸︷︷︸
perfect solution

+
∆x

2

∂2q

∂x2
+

∆2
x

6

∂3q

∂x3
+ higher order terms︸ ︷︷ ︸

error terms

. (1.36)

A second-order central scheme, O(∆2
x), includes the point q(x−∆x) as well, taking the

form

q(x+ ∆x)− q(x−∆x)

2∆x

=
∂q

∂x
+

∆2
x

6

∂3q

∂x3
+ higher order terms. (1.37)

Note that the first-order scheme [Eq. 1.36)] contains an additional second derivative term,
which is diffusive in nature, that is absent in the second-order scheme [Eq. 1.37)]. This is the
first-order scheme’s “numerical diffusion”. Similarly, a third-order scheme will include an
additional hyper-diffusive fourth-derivative term compared to a fourth-order scheme. Likewise
a fifth-order scheme will have a hyper-diffusive sixth derivative in the leading error term.
The diffusive error terms serve to smooth out the solution in much the same way as an eddy
viscosity model would. Note, however, that these terms cannot be tuned, as they are the
error that results from the finite difference scheme and depend on the size of the grid and the
nature of q.

The default for momentum and scalar (e.g. potential temperature) advection in WRF is a
5th-order scheme in the horizontal directions and a 3rd-order scheme in the vertical direction,
although WRF has 2nd through 6th order options available. The odd-ordered schemes are
upwind-biased and numerically diffusive (Skamarock et al., 2008).

1.5.2 LES filters

Unlike RANS which is based on parameterizing fluctuations from a mean value, LES is based
on simulating a “filtered” velocity field and parameterizing scales of turbulence that are
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smaller than the filter. The typical representation of the most general LES filter is

ui(x) =

∫ ∞
−∞

G (τ)ui (x+ τ) dτ (1.38)

where ui is the “exact” or “perfect” velocity field, ui is the filtered velocity field and G is the
filter kernel to be defined later.

There are many ways to represent the LES filter that are used in practice, including both
explicit and implicit methodologies. Often the only difference between a RANS mesoscale
NWP model and an atmospheric LES is the behavior of the implemented turbulence closure
model, where a RANS closure model will attempt to parameterize all of the turbulent energy
in the atmospheric boundary layer and aloft, while an LES closure model will only attempt
to parameterize the turbulent energy below the LES filter width.

The basis for the DRM is that there are potentially relevant scales of motion between
the grid width and the filter width that can, theoretically, be reconstructed up to the grid’s
Nyquist limit by applying an inverse filter to the velocity field and using this reconstructed
velocity in the scale similarity component of a mixed model. The eddy-viscosity model used
in the DRM is the DWL model, which itself uses a test filter for its own scale-similarity
component.

1.6 Turbulence closure models

1.6.1 Isotropic eddy-viscosity models

As described above, one of the few things that is known about τij for atmospheric LES is
that it contains the effects of turbulence on the resolved flow field. It is thus quite natural
to assume that τij has a diffusive form in a similar vein to molecular diffusion, an approach
referred to as an eddy-viscosity model. Generally, eddy-viscosity turbulence closure models
have the form

τij = −2KSij, (1.39)

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.40)

is the resolved, symmetric strain-rate tensor, K is the eddy viscosity and ui is the resolved
velocity vector. The eddy viscosity then must be modeled as well.

In the Smagorinsky-Lilly model (Lilly, 1962; Smagorinsky, 1963; Lilly, 1967) the eddy
viscosity is diagnosed based, again, on the resolved strain rate. Specific implementations vary,
but the WRF implementation, which is relatively simple, diagnoses K as

K = C2
s l

2Sβ, (1.41)

where Cs is the Smagorinsky tuning coefficient [typically O(0.1)], l is a turbulent lengthscale
and Sβ is the magnitude of the resolved strain-rate tensor after some stability-based scaling,
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typically based on the Richardson number. In WRF this is also implemented relatively simply
as

Sβ = max

[
0,

(
SijSij −

N2

Pr

)1/2
]
, (1.42)

where N is the Brunt-Väisälä frequency and Pr is the turbulent Prandtl number (Pr−1 = 3 is
the typically-specified value).

Original eddy-viscosity formulations all used an isotropic lengthscale, typically defined as

l = (∆x∆y∆z)
1/3 . (1.43)

Scalar diffusion is modeled with the turbulent Prandtl number mentioned above, as

Kscalar =
1

Pr
K. (1.44)

The turbulent kinetic energy (TKE) order-1.5 model (often called TKE-1.5) solves a
prognostic TKE equation which includes TKE advection and parameterizes sources and sinks
from shear production, buoyancy, turbulent mixing and dissipation (Deardorff, 1972, 1974;
Skamarock et al., 2008). The TKE-1.5 closure uses a grid-based lengthscale to define the
eddy-viscosity as

K = Ckl
√
e, (1.45)

where e is the SGS TKE and Ck is a constant [also typically O(0.1)]. Scalar eddy diffusivities
are defined for TKE-1.5 in the same way as the Smagorinsky-Lilly model above.

1.6.2 Anisotropic eddy-viscosity models

Most modern LES turbulence closure implementations also have some anisotropic option, with
varying degrees of anisotropy. For instance, the WRF model will use anisotropic lengthscales
such that

lh = (∆x∆y)
1/2 ,

lv = ∆z, (1.46)

and Eq. 1.41) is modified to indicate that the eddy-viscosity now takes different vertical and
horizontal values using the respective lengthscales, but the other terms do not change, i.e.

Kh = C2
s l

2
hSβ, (1.47)

Kv = C2
s l

2
vSβ. (1.48)

Other codes have gone further, separating the strain terms anisotropically as well. For
instance, the CM1 model uses

Sh =
√

2
(
S

2

11 + S
2

22 + S
2

33 + S
2

12 + S
2

21

)1/2

,

Sv =
√

2
(
S

2

13 + S
2

23 + S
2

31 + S
2

32

)1/2

, (1.49)
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and modifies Eqs. (1.47) and (1.48) to use the respective anisotropic strain rates after
applying their particular implementation of Eq. 1.42) (Shi et al., 2019).

This re-formulation is not available in WRF as distributed, but is simple to implement
and will be considered here as the “anisotropic-deformation Smagorinsky-Lilly” model, or
“ad.Smag.” in Ch. 3. The relevant original and modified WRF code is presented in Appx. 3.A.

The TKE-1.5 model is also often implemented anisotropically, generally as

Kh,v = Cklh,v
√
e, (1.50)

where the horizontal and vertical lengthscales, lh and lv, are defined anisotropically. In WRF
these lengthscales are defined as

lh = (∆x∆y)
1/2 , (1.51)

lv =

{
min (∆z, 0.76N−1

√
e) : N2 > 0

∆z : N2 ≤ 0
,

where the stability-based damping effect on the mixing length is similar to the damping
applied to Sβ in the Smagorinsky-Lilly model.

1.6.3 The dynamic Wong-Lilly model (DWL)

The DWL model, as presented by Wong and Lilly (1994), defines the turbulent stress tensor
as

τij = −2Cε∆
4/3S̃ij. (1.52)

The coefficient Cε is then found dynamically as

2∆4/3Cε ≈

〈(
Lij − 1

3
δijLkk

) (
Ŝij − 1

3
δijŜkk

)〉
(1− α)

〈(
Ŝlm − 1

3
δlmŜnn

)2
〉 , (1.53)

where

Ŝij =
1

2

(
∂ûi
∂xj

+
∂ûj
∂xi

)
,

Lij = ûiuj − ûiûj,

α =

(
∆̂

∆

)4/3

,

and ∆ is the grid width, ∆̂ is the test-filter width, the overbar represents the grid filter, the
hat represents the test filter and 〈 〉 indicates planar or local volume averaging.

When the DWL model is formulated isotropically, the resulting system is then solved
in a least-squares manner for a single value of 2∆4/3Cε. When the DWL is formulated
anisotropically, separate horizontal (consisting of 11, 22, 33, 12 components) and vertical
(consisting of 13 and 23 components) systems are solved.
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1.6.3.1 The DWL test filter

The “test filter” is specified to be

ûι =
1

2
uι−1 +

1

2
uι+1 (1.54)

and is applied on top of the explicit filter, yielding

̂̃uι =
1

8
uι−2 +

1

4
uι−1 +

1

4
uι +

1

4
uι+1 +

1

8
uι+2, (1.55)

which is a tophat filter that is twice the width of the explicit filter. This formulation is in
agreement with the coefficients specified by Chow et al. (2005).

1.6.4 The dynamic reconstruction model (DRM)

The dynamic reconstruction model considers both the explicit and implicit filters involved in
LES. The DRM allows for backscatter of energy from small to large scales, exhibits excellent
correlation with turbulent stresses obtained from a priori tests, and reduces numerical errors
in the solution (Chow et al., 2005; Zhou and Chow, 2011, 2012). The DRM uses an explicit
filter (larger than the grid cell width) combined with velocity reconstruction, previously
described by Chow et al. (2005) and Gullbrand and Chow (2003). Specifically, explicit filtering
separates the role of the LES filter from the implicit grid discretization effects. This means
there is a range of eddy motions between the grid’s Nyquist limit and the LES filter. These
motions are, by definition, resolvable, because they are larger than the minimum resolvable
wavelength on the grid, and are referred to as RSFS motions.

Using the explicit filter (denoted by a wavy-overline) and the implicit grid filter (still
denoted by an overbar), we define ui as the resolved velocity field on the grid, ũi as the
filtered, resolved velocity field and u?i as the reconstructed velocity field (Gullbrand and
Chow, 2003). (Note that the notation here differs from previous literature.) The explicit
filter is chosen here to be a tophat filter and is used in a deconvolution step to reconstruct
the velocity field,

u?i = ũi︸︷︷︸
Level 0

+ (I −G) ∗ ũi︸ ︷︷ ︸
Level 1

+ (I −G) ∗
[
(I −G) ∗ ũi

]
︸ ︷︷ ︸

Level 2

+... (1.56)

where I is the identity matrix, G is the explicit filter and ∗ represents the convolution operator
(Gullbrand and Chow, 2003). The DRM is characterized by the number of reconstruction
terms included; level-n reconstruction includes the first n+ 1 terms in the series (as indicated
in Eq. 1.56). In practice, only the first few terms in the series are retained for u?i (Chow
et al., 2005; Shi et al., 2018). Once u?i is reconstructed, the Wong and Lilly (1994) dynamic
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eddy-viscosity model (the Dynamic Wong-Lilly model) is combined with the RSFS term to
create a mixed model. Together these become

τij =
(
ũ?iu

?
j − ũ?i ũ?j

)
− 2Cε∆

4/3
f S̃ij, (1.57)

where Cε is a dynamically-determined coefficient and ∆f is the filter lengthscale (typically
2∆x,y, which is used here). To prevent unstable, anti-diffusive solutions, the dynamic

coefficient of the eddy-viscosity term is constrained to Cε∆
4/3
f > −1.5× 10−5. Scalar diffusion

uses a similar mixed model, where the scalar RSFS term is found with the same filtering
process as for momentum (Eq. 1.56) and the eddy-viscosity term is scaled by the same
turbulent Prandtl number used with the Smagorinsky and TKE-1.5 models. For potential
temperature, θ, the DRM SFS term is

τθj =
(
θ̃?u?j − θ̃? ũ?j

)
− 1

Pr
2Cε∆

4/3
f

∂θ̃

∂xj
. (1.58)

When the DWL is used in concert with the reconstruction terms, as it is in the DRM,
Eq. 1.53 is modified with a corresponding Hij term, which is subtracted from Lij in the
numerator as

2∆
4/3
Cε ≈

〈(
Lij − 1

3
δijLkk −Hij

) (
Ŝij − 1

3
δijŜkk

)〉
(1− α)

〈(
Ŝlm − 1

3
δlmŜnn

)2
〉 , (1.59)

where

Hij =
(̂̂uiûj − ̂̂uî̂uj)− τ̂RSFS

ij .

Further details can be found in Chow et al. (2005).
When u?i = ũi (level-0 DRM), we obtain a dynamic mixed model similar to Zang et al.

(1993). We will consider the level-0 and level-2 DRM cases here, referred to as DRM0 and
DRM2, respectively. Mixed models have long been shown to improve the performance of
LES. Moeng et al. (2010), for example, conducted an a priori test on a cloud-resolving model
with a horizontal resolution of 100 m and found that a mixed model greatly improved the
representation of SGS fluxes of heat, moisture, and momentum.

1.6.4.1 The “explicit” LES filter

The “explicit filter”, denoted herein with a wavy-overline (e.g. ũi), is the filter used to define
the theoretical scales of the LES. Since the filtered fields must exist on the grid, the LES
filter must be larger than the grid. It is so-named because in a maximally-rigorous LES
the velocity field would first be solved on the grid and would then be filtered to some scale
larger than the grid and the turbulence closure model would then parameterize turbulent
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SFS energy. The numerics associated with solving the turbulent Navier-Stokes equations on
a grid are often diffusive in nature, and additionally most LES turbulence closure models
either have a diffusive eddy-viscosity component or are a purely diffusive model.

The step of applying this LES filter, if only implicitly, cannot be avoided without unstable,
anti-diffusive behavior. However, this step is often ignored by practitioners and the grid itself
is considered to be the entirety of the LES filter. In fact, the term “SGS” is often (incorrectly)
considered to be synonymous with SFS and the SGS stress model is considered to be the
entire turbulence closure model.

Although the WRF-LES model uses the grid as its implicit LES filter, the DRM is
implemented as if the LES filter is a 3-point explicit tophat filter with coefficients

ũι =
1

4
uι−1 +

1

2
uι +

1

4
uι+1 (1.60)

in each dimension, where ι denotes grid index.

1.7 Overview

Chapter 2 presents a detailed analysis of the behavior of anisotropic eddy-viscosity models
and two levels of the DRM at 25-m to 1-km horizontal resolutions using the WRF-LES model
to simulate an atmosphere under idealized free convection, showing the increasing importance
of the turbulence closure model as the resolution becomes coarser.

Chapter 3 presents a further analysis of the behavior of both isotropic and anisotropic
eddy-viscosity models at kilometer-scale resolutions for an increasingly realistic case, as well
as considers the effects of different possible anisotropic implementations.

Chapter 4 presents a reformulation of the lengthscales used for anisotropic eddy-viscosity
models which results in improved performance on anisotropic grids.

Chapter 5 presents an analysis of the representation of high-resolution terrain in kilometer-
scale NWP models and the similarities to the challenges of representing high-resolution
turbulent structures.

Chapter 6 summarizes the work presented here and makes recommendations for future
studies.

Appendix A presents a similar analysis to Ch. 3 for two levels of the DRM.
Appendix B considers the performance of eddy-viscosity models and the DRM for a case

with complex terrain by introducing a high-resolution representation of Granite Mountain.

1.8 Summary of contributions

In summary, the main contributions to the literature are:
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1. A demonstration of the inadequacies of current isotropic and anisotropic eddy-viscosity
models in modeling convective boundary layers in the atmosphere on anisotropic grids
where ∆x,y is O(1 km);

2. A demonstration of the ability of the DRM to generate consistent dynamics even at
O(1 km) horizontal resolutions and on highly anisotropic grids;

3. An explanation for the dynamics seen at O(1 km) resolutions for eddy-viscosity and
mixed models;

4. A thorough analysis of the formulation of turbulent stresses and the Smagorinsky-Lilly
model in WRF;

5. A motivation for an alternative formulation of anisotropic eddy-viscosity models and
a demonstration of the potential improvement introduced in the ability to create
scale-consistent dynamics on different grid sizes and resolutions;

6. An investigation of similar “gray-zone” issues related to representing high-resolution
terrain data on O(1 km) grids in NWP models.
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Chapter 2

Idealized free convection1

2.1 Introduction

Mesoscale atmospheric models used for studying atmospheric dynamics and for numerical
weather prediction (NWP) historically use horizontal resolutions that are O(1 − 10 km),
which are much larger than the dominant lengthscale of turbulence in the atmosphere. Since
turbulent motions in the atmosphere cannot be resolved at such coarse horizontal resolutions,
their effects are parameterized. The parameterizations used to represent the impact of
turbulence on the mean flow are typically based on Reynolds averaging, which uses an
ensemble average to separate mean and fluctuating quantities, of the Navier-Stokes equations,

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
− ∂τij
∂xj

+ F i. (2.1)

where xi represent x, y, z coordinates, ui are the mean velocities, p is pressure, ρ is density,
and molecular viscosity effects are neglected. The effect of turbulent motions is contained in
the Reynolds stress term, τij = u′iu

′
j , where u′i is the fluctuating velocity field. Most mesoscale

models use a planetary boundary layer (PBL) scheme to parameterize ensemble-averaged
turbulent mixing in the boundary layer because it is assumed that PBL eddies cannot be
resolved on a mesoscale grid.

In large-eddy simulation (LES), the large, energy-containing scales are resolved while
smaller scales are parameterized. A turbulence closure is used to model the subfilter-scale
(SFS) motions which are smaller than a selected spatial filter width. With LES, the overbar
in Eq. 2.1) indicates a spatial filter and τij = uiuj − uiuj is now the SFS turbulent stress.
Commonly, there is no explicit filter defined and the grid combined with the effects of the
discretization schemes are considered to be an implicit filter. This implicit filter is effectively

1This chapter is a modified reproduction of the article “Explicit Filtering and Reconstruction to Reduce
Grid Dependence in Convective Boundary Layer Simulations Using WRF-LES” by Jason S. Simon (the
principle author), Bowen Zhou, Jeffrey D. Mirocha and Fotini Katopodes Chow, first published in Monthly
Weather Review, May 2019, Volume 147(5), pages 1805 – 1821 (Simon et al., 2019), c©Copyright 2019
American Meteorological Society. Full copyright notice in Appendix D.1.
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wider than the grid’s Nyquist limit, the smallest wavelength that can be resolved on a given
grid. In contrast, defining an explicit filter allows reconstruction of resolvable subfilter-scale
(RSFS) motions, enabling more accurate representation of fine scales (Gullbrand and Chow,
2003; Chow et al., 2005). Furthermore, by providing stresses from the missing scales, explicit
filtering and reconstruction enable a more accurate representation of the more important
energetic scales, as discussed further below.

Given the fine mesh spacing required to resolve turbulence, LES has historically been
limited to idealized atmospheric studies and small-scale engineering applications where
domain sizes are small enough to be manageable with the available computing power. As
computational resources expand, users are now pushing mesoscale models to much higher
resolutions, allowing for a more accurate representation of many properties (e.g., terrain, land-
use, urban effects) as well as atmospheric features such as microfronts and terrain-induced
flows, for example. As such, many NWP models have adopted options for LES, enabling
microscale simulations. There are many recent examples in the literature of forecasting
research reaching kilometer and finer scales for varying applications, such as wind energy (Liu
et al., 2011), scalar dispersion (Klose and Shao, 2013; Taylor et al., 2016), cloud modeling
(Zhu et al., 2010) and use of high-resolution surface data (Garcia et al., 2014). Longer term
or operational simulations are also moving to higher resolution. This is problematic from a
boundary-layer turbulence perspective, however, because kilometer-scale grids can be on the
same order as the size of the largest turbulent eddies in the atmospheric boundary layer (ABL)
(e.g., organized thermals in the convective boundary layer [CBL]). This leaves forecasters
with a range of resolutions that are too coarse for LES and too fine for mesoscale turbulence
modeling. This gap in turbulence parameterizations is often referred to as the gray zone or
the terra incognita (Wyngaard, 2004). In the atmospheric boundary layer of depth zi, it
is often suggested that the gray zone consists of resolutions where ∆x,y ∼ zi (though this
definition will be examined here).

The gray zone has been the subject of many recent studies from multiple perspectives.
Honnert et al. (2011) conducted an extensive study on the balance between resolved and
sub-grid scale (SGS) turbulent kinetic energy (TKE) at different resolutions. Grid-dependent
dynamics, in the form of nonphysically large convective cells, have been documented using
multiple numerical models and turbulence closures (Lean et al., 2008; Piotrowski et al., 2009;
Ching et al., 2014; Zhou et al., 2014; Shi et al., 2018).

Beare (2014) conducted an LES study on the gray zone for the CBL and proposed a gray
zone criterion based on a dissipation lengthscale diagnosed from the second moment of the
TKE. Efstathiou and Beare (2015) explored the gray zone of the Smagorinsky-Lilly turbulence
model for a variety of shear and surface heating combinations, observing a delay in the onset
of resolved TKE in the gray zone and that profiles of resolved TKE become unrealistic when
∆x,y > 200 m. Khani and Waite (2014, 2015) studied the Kraichnan, Smagorinsky-Lilly
and dynamic Smagorinsky-Lilly models and found that different turbulence closures have
different grid-spacing criteria for accurate simulations of stratified turbulence and proposed a
gray zone criterion based on the buoyancy lengthscale. Multiple strategies for simulating the
atmosphere in the gray zone have been proposed, including local grid refinement near the
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surface (Zhou et al., 2017, 2018), distinguishing between updrafts and downdrafts (Thuburn
et al., 2018), and improving eddy-viscosity models to better adapt to gray-zone resolutions
(Efstathiou et al., 2016; Kurowski and Teixeira, 2018).

Here, we use the Weather Research and Forecasting (WRF) model to examine the role
of the turbulence closure model in LES on the behavior of CBL simulations in the gray
zone. Four LES closure models are tested: the Smagorinsky-Lilly model, the TKE-1.5 model,
and the dynamic reconstruction model (DRM) with level-0 and level-2 reconstruction (see
Sec. 2.11.6.4). Specifically, we study the performance of the DRM (Chow et al., 2005) as
implemented in WRF (Kirkil et al., 2012). The DRM is built from an explicit filtering
and reconstruction framework, which improves the representation of turbulent motions.
Simulations of the CBL are performed at varying resolutions, in a process similar to Zhou
et al. (2014) but using LES and at finer resolutions.

Our goal here is to examine the role of the turbulence closure model in the gray zone by
examining mean profiles, the onset of convection, turbulence statistics, and velocity fields. In
particular, it is hypothesized that the DRM can be helpful in reducing grid dependence in
the gray zone by increasing the accuracy of the resolved scales and allowing for backscatter.
The DRM has been shown to improve mean and turbulent profiles in multiple ABL regimes,
including the neutral, stable, and stratocumulus-topped boundary layer when compared to
eddy-viscosity models (Chow et al., 2005; Zhou and Chow, 2011; Shi et al., 2018). In addition
to exploring the performance of the DRM in detail, we proceed with the hypothesis that
each closure model will behave differently in the gray zone. This means that the resolution
at which the model transitions from well-resolved LES to the gray zone will be different
depending on the closure model used.

2.2 Case description

This study considers the development of the CBL, a key aspect of NWP, in an idealized
model setup featuring a quiescent initial state with no forced mean wind, a flat bottom
boundary with uniform roughness, and periodic lateral boundary conditions. The simulations
are run for 9 hours with a constant sensible surface heat flux of 270 W m−2, the default value
for idealized convective cases in WRF-LES. This case was chosen primarily to isolate free
convection, but also because it does not require any changes to the WRF code. The Wangara
Day 33 case (Clarke et al., 1971) was also considered and yielded very similar results to those
presented here (not shown).

A 3rd-order Runge-Kutta time-integration scheme, a 5th-order horizontal advection
scheme and a 3rd-order vertical advection scheme are used (WRF default values). All cases
use a time step of 0.1 s, a domain height of 3.5 km, and 65 vertical levels. The lowest vertical
level is at z = 24 m and there are 10 levels below z = 500 m. The surface drag is computed
using the Monin-Obukhov surface layer scheme in WRF for all of the turbulence models used.

Simulations are performed with horizontal resolutions ranging from ∆x,y = 25 m to 1 km
(see Table 2.1). Domains with ∆x,y ≤ 200 m are designed to have a size of 20 km× 20 km.
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∆x,y (m) nx,y Domain size (km2)
25 800 20× 20
50 400 20× 20
100 200 20× 20
200 100 20× 20
500 80 40× 40
1000 80 80× 80

Table 2.1: Domain sizes for each horizontal resolution considered for all turbulence models
unless stated otherwise (as noted in Sec. 2.32.3.1 and in Sec. 2.32.3.4).

The coarsest domains (∆x,y = 500 m, 1 km) are larger in size to obtain adequate statistics
with the lower resolution (Table 2.1). Different domain sizes are used for some cases in
Secs. 2.32.3.1 and 2.32.3.4, as explained in the respective sections. Experiments were also
conducted with finer and coarser vertical resolutions, but changes in vertical resolution had
little to no impact on the results seen here. WRF version 3.8.1 is used for all cases.

The focus of this study is the grid dependence of large-eddy simulations, rather than the
specific accuracy relative to field data. Therefore, the highest-resolution grid for a given
turbulence model is considered to be the “true” solution for this idealized setup. A well-
resolved solution for this convection-dominated case should show a shallow super-adiabatic
layer at the surface, a well-mixed neutral layer above and resolved entrainment of the free
atmosphere at the top of the CBL (Stull, 1988b). The finest grid spacing should put the
filter-width well within the inertial subrange, and the next-finest grid should show a nearly
identical solution to confirm that our study begins in a region of grid-independent dynamics.

2.3 Results

2.3.1 Mean CBL development

The evolution of the CBL is first evaluated by considering hourly mean potential temperature
profiles for the Smagorinsky-Lilly, TKE-1.5, DRM0 and DRM2 models at the finest resolution
(∆x,y = 25 m). Smagorinsky-Lilly and TKE-1.5 here use the WRF default coefficients where
Cs = 0.25 and Ck = 0.15, respectively. Figure 2.1 shows that for all four models, the 25-m
cases show very good agreement in the development of the CBL. Specifically, they feature a
well-mixed surface with a visible but shallow super-adiabatic layer, a deepening neutral layer,
and entrainment at the CBL top, as expected (Stull, 1988b). For all models, the 50-m cases
(not shown) exhibit the same development and are nearly identical to the 25-m cases.

Now considering the ∆x,y = 1 km case for the Smagorinsky-Lilly model using the WRF
default value of Cs = 0.25 (Fig. 2.2a), the mixing is clearly not sufficient to create the desired
neutral layer. This is especially true in the first four hours where the profile does not diverge
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from the initial profile above a height of approximately 900 m. It should be noted that the
potential temperature profiles for the Smagorinsky-Lilly model in the WRF, presented here,
may be sensitive to model parameters. For example, Efstathiou and Beare (2015) presented
results using the Smagorinsky-Lilly model in the Met Office Large Eddy Model, which uses
different stability functions and a height-dependent lengthscale; their profiles, while still
insufficiently mixed, appear better than the WRF results at coarse resolutions, especially
near the surface.

Simulations using the Smagorinsky-Lilly model that are coarser than 50-m resolution
are all associated with a deeper super-adiabatic layer at the surface, even in the later hours
when the profiles appear to be somewhat well-mixed. The observed delay in resolved mixing
for the Smagorinsky-Lilly model can be seen more clearly by considering the evolution of
the mean resolved vertical heat flux, 〈w′θ′ 〉, in a horizontal plane 218-m above the surface
(Fig. 2.3). The 25-, 50- and 100-m cases show very similar behavior: resolved mixing begins
approximately 15 minutes into the simulation, with the initially-trapped warm air being
released in a burst of buoyancy-induced mixing. In the 200-m case, a 25-minute delay in
the resolved heat flux onset is observed. Furthermore, the 500-m case is delayed a full hour,
and the 1-km case is delayed 2.5 hours. For all resolutions, the onset of resolved mixing is
associated with a spike in 〈w′θ′ 〉. For ∆x,y ≤ 200 m, 〈w′θ′ 〉 reaches a quasi-steady value
in the first hour, while the coarser resolutions take increasingly longer to reach a steady
mean planar value. Reconsidering the Smagorinsky-Lilly model’s mean potential temperature
profiles with the knowledge of suppressed resolved turbulent mixing in the early hours of
the simulation, we see that resolved mixing is very important to the potential temperature
profiles. Before resolved turbulence begins, the surface heat flux is trapped in the lower
atmosphere because the SFS turbulence model is only designed to provide local diffusion and
is thus unable to mix the column when resolved mixing is absent. After resolved turbulence
begins and the model is fully spun-up, the profiles change considerably in shape and it is clear
that there is mixing throughout the column; however, these profiles are still very inaccurate
in comparison with the higher-resolution simulations.

The TKE-1.5 model, using the WRF default value Ck = 0.15, appears to perform much
better at coarser resolutions based on the potential temperature profiles, and even the 1-
km case agrees relatively well with the 25-m case (Fig. 2.4a). There is a smaller delay in
resolved vertical heat flux in the 218-m plane, with the onset of the 1-km case being delayed
approximately 30 minutes and taking about 2 hours to become steady (Fig. 2.5).

Using smaller coefficient values of Cs = 0.18 and Ck = 0.10 for the Smagorinsky-Lilly
and TKE-1.5 models, respectively, does show a small degree of improvement in potential
temperature profiles for both models. The Smagorinsky-Lilly model has slightly different
results with the lower Cs = 0.18 coefficient at coarser resolutions, where profiles show resolved
mixing earlier (Fig. 2.2b). However, once both cases begin to resolve mixing, the Cs = 0.18
profiles are less neutral than their Cs = 0.25 counterparts, and both cases have a super-
adiabatic layer that is very sharp and extends more than 200 m vertically. For the lower Cs,
the delay in resolved 〈w′θ′ 〉 is reduced by about an hour in the 1-km case and by 30 minutes
in the 500-m case (not shown). The TKE-1.5 model, which already agrees relatively well
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with its 25-m case at coarse resolutions, improves noticeably via sharper gradients in θ(z)
resulting in shallower surface layers and sharper inversions (Fig. 2.4b). The TKE-1.5 model

using the lower Ck also sees the delay in resolved 〈w′θ′ 〉 reduced to only 15 minutes when
∆x,y = 1 km and shows no delay in the 500-m case (not shown).

In an attempt to improve the performance of the Smagorinsky-Lilly and TKE-1.5 cases,
isotropic lengthscales (lh = lv = (∆x∆y∆z)

1/3) were also considered. Results are not presented
here as all cases performed worse than their anisotropic counterparts. This is expected given
the improvements seen using lower Cs,k values, because isotropic lengthscales effectively only
serve to increase Kv.

Examining the DRM, we see that for DRM0 the potential-temperature profiles show a
well-mixed structure throughout the simulation even at 1-km resolution. The super-adiabatic
surface layer and inversion layer are much closer to the 25-m case compared to equivalent
resolutions using either Smagorinsky-Lilly or TKE-1.5, even when using decreased values for
Cs and Ck (Fig. 2.6a). Using the DRM0, the onset of resolved convection in the 218-m plane
shows a delay of less than 30 minutes for the 1-km case, slightly better than the TKE-1.5
model (Fig. 2.7). The mean resolved heat flux in the 1-km case takes approximately two

hours to become steady. The 500-m and 1-km cases show a similar burst of 〈w′θ′ 〉 when
resolved convection begins, though this is shorter-lived than in the TKE-1.5 case and much
shorter than the Smagorinsky-Lilly case.

The ∆x,y = 1 km potential temperature profiles for the DRM2 case also show great
agreement with the corresponding ∆x,y = 25 m case, producing the most accurate entrainment
layer of any of the models considered (Fig. 2.6b). The two levels of additional reconstruction
(from DRM0 to DRM2) do add a small kink to the potential-temperature profiles near the
surface, but the overall performance is quite good considering the coarseness of the grid and
the performance of the eddy-viscosity models at the same resolution. The time series of 〈w′θ′ 〉
for the DRM2 show the earliest resolved convection at all resolutions, the smallest bursts
of upward resolved heat flux at all resolutions, and the earliest steadying at all resolutions
(Fig. 2.8). The coarse DRM0 and DRM2 potential temperature profiles show a very slight
warm bias in the bulk of the CBL when compared to their 25-m profiles. As shown in Zhou
and Chow (2014), increasing levels of reconstruction in the DRM allows the model to resolve
more turbulent fluxes under stably-stratified environments. Compared to the DRM0 in
Fig. 2.6a, the 1-km DRM2 predicts slightly larger boundary-layer-top entrainment due to its
higher reconstruction level, resulting in a warmer CBL. The performance the DRM under
stably-stratified conditions at kilometer scale resolution will be examined in a future study.

Considering the time series of 〈w′θ′ 〉 of the four models, it is expected that an LES
will resolve less of any flux as the grid spacing becomes larger, because more energy is
present in the SFS motions. The DRM0 and especially the DRM2 exhibit this behavior
clearly while the Smagorinsky-Lilly and TKE-1.5 models maintain a similar resolved vertical
heat flux magnitude for all resolutions considered. This is due to gray-zone issues such as
overly-energetic resolved thermals and inaccurate SFS stress magnitudes in the latter two
models.
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The time series for 〈w′θ′ 〉 when ∆x,y = 25 and 50 m for all models are taken from smaller
80× 80 domains with high temporal output to minimize data storage.
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Figure 2.1: Hourly horizontally domain-averaged potential temperature profiles using the
Smagorinsky-Lilly (solid), TKE-1.5 (dashed), DRM0 (dash-dotted) and DRM2 (dotted)
models for the 25-m resolution case.
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Figure 2.2: Hourly horizontally domain-averaged potential temperature profiles using the
Smagorinsky-Lilly model with Cs = 0.25 (left) and Cs = 0.18 (right) for ∆x,y = 1 km, with
profiles from the corresponding 25-m cases overlaid (dotted black).
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Figure 2.3: Mean value of resolved w′θ′ in the 218-m plane (5th vertical level) using the
Smagorinsky-Lilly model with Cs = 0.25 for resolutions from 25 m to 1 km. Planar averages
are taken every 2 minutes initially and every 15 minutes once 〈w′θ′〉 is approximately steady.
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Figure 2.4: As in Fig. 2.2 but using the TKE-1.5 model with Ck = 0.15 (left) and Ck = 0.10
(right).
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Figure 2.5: As in Fig. 2.3 but using the TKE-1.5 model with Ck = 0.15.
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Figure 2.6: As in Fig. 2.2 but using the DRM0 (left) and DRM2 (right).
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Figure 2.7: As in Fig. 2.3 but using the DRM0.
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Figure 2.8: As in Fig. 2.3 but using the DRM2.
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2.3.2 Turbulent vertical momentum stress profiles

Profiles of vertical turbulent momentum stresses (w′w′) at t = 6 h for the ∆x,y = 500 m and
∆x,y = 1 km cases are compared to filtered high-resolution cases for further evaluation in
Fig. 2.9. Vertical fluxes of horizontal momentum (u′w′, v′w′) are not considered here because
there is no mean wind present. The total (resolved + SFS) stress profiles should be consistent
for different grid resolutions for the LES to be considered accurate. The resolved and SFS
profiles are also shown individually for the TKE-1.5, DRM0 and DRM2 models to further
illustrate their behavior as the grid coarsens. The high-resolution cases used for reference
are the 25-m TKE-1.5 and DRM2 cases, which are filtered in each horizontal plane using
a spectral cut-off filter where energy associated with a wavelength smaller than 2∆filter is
set to zero. The TKE-1.5 and DRM2 high-resolution cases are sufficient for comparison as
the resolved stress profiles for the 25-m TKE-1.5 and Smagorinsky-Lilly cases are nearly
indistinguishable, as are the total stress profiles for the 25-m DRM2 and DRM0 cases.

Only the resolved profiles are presented for the Smagorinsky-Lilly model because it
does not store the isotropic portion of Sii and thus an accurate τ33 term cannot be found.
The Smagorinsky-Lilly model’s resolved profile of 〈w′w′ 〉 is very similar to the DRM2 at
∆x,y = 500 m, and is similarly shaped to the DRM2 but approximately half the magnitude
at ∆x,y = 1 km. It can be deduced from the resolved profiles and the model’s poor overall
performance in other metrics considered at coarse resolutions that the SFS contribution
would not significantly improve its evaluation here. It will also be shown in later sections
that the motions resolved by the Smagorinsky-Lilly model occur at wavelengths that are
much larger than those in the high-resolution case.

The planar-averaged SFS stress profiles for the TKE-1.5 model are found as 〈τ33 + 2e/3〉
to account for the isotropic portion of Sii. Considering the planar-averaged total vertical
momentum fluxes shown in Fig. 2.9, the TKE-1.5 model performs relatively poorly for both
the 500-m and 1-km cases when compared to the high-resolution cases. The TKE-1.5 model
produces the largest planar-averaged resolved flux (〈w′w′ 〉) of all the models in the 500-m case
and much more than any model except the DRM0 in the 1-km case. The 500-m TKE-1.5 case
compares quite well to the filtered high-resolution TKE-1.5 case, however, later analysis shows
that these motions again occur at much larger wavelengths. The TKE-1.5 planar-averaged
SFS stress (〈τ33 〉) is the smallest of all of the models, however, generating a total flux profile
that is much smaller in magnitude than either 25-m case, especially when ∆x,y = 1 km.

The SFS stress profiles for the DRM0 and DRM2 cases contain both the eddy-viscosity
and the RSFS terms. The DRM0 has a much more significant SFS contribution than the
TKE-1.5 model at both resolutions, leading to a total flux profile that is much closer to the
TKE-1.5 and DRM2 high-resolution cases both in magnitude and shape, though still smaller
than either high-resolution case in magnitude. The DRM2 has the largest SFS contribution
of all the models due to the presence of the additional reconstruction terms representing the
RSFS, resulting in the closest match to both high-resolution cases when considering the total
flux profile. The DRM2 is especially accurate for the ∆x,y = 500 m case, where its total flux
profile matches the DRM2 high-resolution case very closely.
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Considering the total flux profiles, it is clear that the DRM2 is the closest match to the
reference high-resolution cases of all four models at both resolutions, followed closely by the
DRM0. The TKE-1.5 model performs much better than the Smagorinsky-Lilly model, but
both perform poorly when compared to the DRM simulations.

Interestingly, filtering of the high-resolution TKE-1.5 case reveals a double-peak structure
in the profile of τ33 that is much more exaggerated than for the DRM2, especially when
filtered to ∆x,y = 1 km. The DRM’s ability to produce single-peaked second moments of
resolved vertical velocity has been noted in other studies as well (Shi et al., 2018).

Figure 2.9: Planar-averaged total (resolved + modeled) vertical momentum flux (〈w′w′+τ33 〉),
resolved vertical momentum flux (〈w′w′ 〉), SFS vertical momentum flux (〈τ33 〉) for the
TKE-1.5, DRM0, DRM2 and Smagorinsky-Lilly (resolved only) models after 6 hours when
∆x,y = 500 m (left) and ∆x,y = 1 km (right), compared to high-resolution cases (∆x,y = 25 m)
using the TKE-1.5 and DRM2 models filtered to the corresponding coarse resolution.

2.3.3 Vertical velocity fields

We next examine the vertical velocity field, w(x, y), in the 218-m horizontal plane under
coarsening horizontal resolution and compare to a high-resolution velocity field. The 218-m
plane is chosen for its visual clarity of the convective cells formed near the surface. The
coherent structures seen in w indicate the size of the convective cells formed at each resolution,
which can then be compared to high-resolution results. A spectral filter applied to a high-
resolution case is then used to examine the coarse models’ ability to accurately capture the
proper scales of motion at that grid size.

At high resolutions all four models appear very similar and demonstrate the thermal
cells that are expected for a convectively-forced ABL with no mean wind. The TKE-1.5
model using 25-m horizontal resolution is shown in Fig. 2.10; the other three models are
omitted because they are similar. As the horizontal resolution is coarsened, the size of the
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convective cells should not change and the resolved motions should be similar to those of the
spectrally-filtered high-resolution case.

Examining the resolved w fields of the coarser cases using the Smagorinsky-Lilly model
(Cs = 0.25) shows the familiar cellular structure in the 100-m case (Fig. 2.11). The 200-m
case looks similar, but the cells are visibly larger in their characteristic size. This pattern
continues for the 500-m and 1-km cases, where very large cells are resolved on the grid. Also
note that these cells are much larger than the grid’s Nyquist limit. Reducing the Smagorinsky
coefficient to Cs = 0.18 shows a reduction in the size of the thermal cells at coarser resolutions,
though they remain extremely large compared to any of the high-resolution cases (Fig. 2.12).
Note that all the w slices are shown over a 20 km× 20 km subdomain for comparison, though
the actual simulations follow the domain sizes given in Table 2.1.

The resolved fields for the coarser cases using the TKE-1.5 model (Ck = 0.15) show
a similar trend to the Smagorinsky-Lilly model but to a smaller degree (Fig. 2.13). For
comparison, the cells on the 1-km grid using the TKE-1.5 model appear similar in size to
the cells seen on the 200-m grid using the Smagorinsky-Lilly model, although the field is
generally smoother between the updrafts of the thermal cells for the Smagorinsky-Lilly model.
Reducing the coefficient for the TKE-1.5 model to Ck = 0.10 shows a similar reduction in the
size of the thermal plumes, however the fields still contain very large structures (Fig. 2.14).

When using the DRM0 at fine resolutions (∆x,y ≤ 200 m) the resolved vertical velocity
field shows a cellular nature, as expected (Fig. 2.15). As the grid coarsens, the resolved w
field that the DRM0 produces becomes less coherent, in contrast to the large cells produced
by standard eddy-viscosity models. The coarse DRM2 cases are qualitatively very similar
to the DRM0 results, but with smaller magnitudes seen for both updrafts and downdrafts
(Fig. 2.16). A quantitative comparison between the scales of energy present in the coarse
cases and the scales present in the cellular, high-resolution cases is presented in Sec. 2.32.3.4.

For comparison to the coarser cases, the 25-m TKE-1.5 case is filtered in the same
manner as in Sec. 2.32.3.2 (Fig. 2.17). The spectral filter selects the resolved large-scale
motions present in the high-resolution cases, which should ideally be reproduced by the
coarse-resolution LES simulations. Filtering the high-resolution case using different filter
cut-offs shows a resolved field which loses its cellular nature after a horizontal resolution of
approximately 200 m. The DRM0 and DRM2 are the only models which qualitatively agree
with the filtered case at coarser resolutions, implying that the turbulent structures resolved
by the two DRM models are more accurately represented than those from the eddy-viscosity
models.
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Figure 2.10: Resolved vertical velocity (w) field in the 218-m plane at hour 6 for ∆x,y = 25 m.
All four models produced very similar fields; only the TKE-1.5 model is shown.

Figure 2.11: Resolved vertical velocity (w) field in the 218-m plane at hour 6 using the
Smagorinsky-Lilly (Cs = 0.25) model for ∆x,y = 100, 200, 500 and 1000 m. All cases are
plotted as 20× 20 km2, but actual domain sizes follow Table 2.1.
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Figure 2.12: As in Fig. 2.11 but using the Smagorinsky-Lilly (Cs = 0.18) model for ∆x,y =
500 m and 1 km.

Figure 2.13: As in Fig. 2.11 but using the TKE-1.5 (Ck = 0.15) model.

Figure 2.14: As in Fig. 2.11 but using the TKE-1.5 (Ck = 0.10) model for ∆x,y =
500 m and 1 km.
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Figure 2.15: As in Fig. 2.11 but using the DRM0.

Figure 2.16: As in Fig. 2.11 but using the DRM2.

Figure 2.17: Filtered resolved vertical velocity (w) field in the 218-m plane at hour 6 for the
25-m TKE-1.5 case, filtered to ∆x,y = 500 m (left) and ∆x,y = 1 km (right).
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2.3.4 Turbulent energy spectra

The one-dimensional spectral energy densities of w′ as a function of the horizontal wavenumber

kh =
(
k2
x + k2

y

)1/2
divided by the domain length, L, for the Smagorinsky-Lilly (Cs = 0.25),

TKE-1.5 (Ck = 0.15), DRM0 and DRM2 models taken at z = 667 m (approximately the
center of the CBL) after 6 hours are shown in Fig. 2.18. All models agree very closely with each
other as well as with the theoretical k−5/3 decay rate at high resolutions (∆x,y = 25 m shown),
but disagree significantly when ∆x,y = 1 km. The ideal spectrum at a coarse resolution would
follow the high-resolution spectra until the grid’s Nyquist limit (Skamarock, 2004). The
Smagorinsky-Lilly model is so dissipative that very little energy is resolved other than at
very coarse modes, resulting in too much energy at the grid’s coarse scales and not enough
energy at the grid’s fine scales, as was seen qualitatively in Sec. 2.32.3.3. The TKE-1.5
model performs much better in that it allows much more energy to develop on the grid’s
finer scales. However, similar to Smagorinsky-Lilly, the TKE-1.5 model allows too much
energy to build up at coarser resolutions, generating the larger, cohesive structures seen in
the w(x, y) fields. This can be addressed to some degree via changing the Cs,k values for the
Smagorinsky-Lilly and TKE-1.5 models, respectively, (spectra not shown) which reduces the
energy in long waves and increases the energy in short waves, though this creates a very
case-specific turbulence model that is still not particularly accurate. The DRM0 is the closest
of the four models to matching the spectral density of the high-resolution cases, and excels
both in terms of avoiding a buildup of energy at large scales and in allowing energy to develop
on the grid’s finer scales. The DRM0 also has the sharpest decay when approaching the grid’s
Nyquist limit, with a peak energy that is the closest of the four to the high-resolution cases.

It was seen in Sec. 2.32.3.2 that the DRM0 resolves more turbulent stress than the
DRM2 due to the expected increase in the SFS term of the DRM2 from its RSFS terms.
This relationship is seen again in the spectra, where the DRM0 and DRM2 agree closely
at large scales but the DRM0 has more energy than the DRM2 at finer scales. This again
is attributed to the DRM2 RSFS contribution, which is larger due to the higher level of
velocity reconstruction (Chow et al., 2005). In Sec. 2.32.3.2, the TKE-1.5 and DRM0 models
had very similar profiles of resolved variance, 〈w′w′ 〉, but we can see in the spectra (and in
Sec. 2.32.3.3) that the TKE-1.5 model’s resolved energy occurs at much larger wavelengths
than the DRM0 despite their similar total resolved stress throughout the profile. This is
consistent across energy spectra taken at different vertical levels (not shown).

To make a quantitative evaluation of the size of the thermal cells, the dominant wavelength
of the resolved vertical velocity field is approximated by the critical wavelength λc = 1/kc
(the 2π is omitted because we are interested in meters per cycle, rather than meters per
radian, to get a better physical intuition of the quantities). kc is defined as the wavenumber
where 2/3 of the velocity variance seen in the physical field (〈w′w′ 〉 in this case) is contained
between kc and kN , the Nyquist limit, on the energy spectrum, S, of the turbulent velocity.
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For w′ using a discrete Fourier transform, we can say

2

3

〈
w′w′

〉
=

kN∑
kc

S33. (2.2)

Values for λc are found here by considering the same one-dimensional energy spectra
shown in Fig. 2.18 and finding the smallest kc value where 2/3〈w′w′ 〉 ≥∑kN

kc
S33 for each

case. This can be considered similar to taking the median of a sample, and is used for
its reduced sensitivity to noise in determining the peak of the spectrum (de Roode et al.,
2004). The critical wavelength is computed in the same 218-m plane seen in Figs. 2.10 –
2.17. Calculating λc is sensitive to domain size and requires a domain large enough to have
negligible energy at the largest scales. To this end, some cases required domains up to 25%
larger in the horizontal to achieve statistics independent of domain size for λc.

In Fig. 2.19, all four models have a consistent dominant wavelength λc ≈ 1 km for
∆x,y ≤ 100 m, and agree very well with each other. At 200 m, the Smagorinsky-Lilly,
TKE-1.5 and DRM2 models begin to show increasing dominant wavelengths and all four
models begin to diverge from each other. When ∆x,y = 500 m the Smagorinsky-Lilly model’s
critical wavelength is greater than 6 km and by ∆x,y = 1 km the Smagorinsky-Lilly model’s
critical wavelength has increased 20-fold from the ∆x,y = 25 m case value of λc = 1.0 km to
λc = 19.8 km. The TKE-1.5 model’s increase from λc = 1.1 to λc = 4.6 km for the same
change in resolution appears modest when compared to Smagorinsky-Lilly, but it is still
nearly a 5-fold increase and is also more than twice the size of the grid’s Nyquist limit of 2
km.

The DRM0 and DRM2 show a more consistent value for λc as horizontal resolution
increases. The DRM2, as noted above, shows a small increase when ∆x,y = 200 m, but does
not grow as quickly as TKE-1.5. Both DRM0 and DRM2 begin to show a notable increase in
λc when ∆x,y = 1 km with λc = 2.9 km for DRM0 and λc = 3.3 km for DRM2. Note that
some increase is inevitable because the ∆x,y = 25 m critical wavelength (∼ 1 km) is smaller
than the 1-km grid’s Nyquist limit of 2 km. Interestingly, the DRM2 has a slightly larger
critical wavelength than the DRM0 at coarse resolutions and is somewhat comparable to the
TKE-1.5 model by the λc metric, especially at ∆x,y = 500 m, however the magnitude of the
resolved energy is much lower than the TKE-1.5 model (seen in Figs. 2.9 and 2.18), resulting
in a more accurate w field.

As we have seen, different LES turbulence models have varying responses to coarse (gray
zone) resolutions due to differences in their formulation, implying that the models should not
necessarily share criteria for being in the gray zone. Along these lines, Beare (2014) explored
the lengthscales of the gray zone and suggested that the conventional wisdom that the gray
zone begins when zi ∼ ∆x,y (where zi is the inversion depth) does not sufficiently capture
the nuances of the turbulence model. They instead introduced the dissipation lengthscale,
λd, which is the wavelength where turbulent dissipation begins in the energy spectrum. The
result of the horizontal resolution and underlying numerical schemes on a turbulence model’s
performance can be encompassed by λd, defined as λd = 1/kd, where
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k2
d =

∑
k2S33∑S33

. (2.3)

Beare (2014) found that the gray zone begins when λp = 1.4λd, where λp is the peak
wavelength of the turbulent energy spectrum [here we are assuming λp ≈ λc from Eq. 2.2)].
When λc is considered as a function of λd, instead of a function of ∆x,y, the relationships for
the four models essentially overlap, indicating that the dissipation lengthscale is a much more
general predictor of the gray zone than horizontal resolution (Fig. 2.20). After considering
the energy spectra and λc versus ∆x,y for the four models, it is not surprising that the DRM0
and DRM2 also show the slowest increase in dissipation lengthscale as resolution coarsens.

Generally we agree with Beare (2014) that λc or λd are useful metrics for diagnosing the
boundaries of the gray zone. Specifically, using λd as the characteristic lengthscale for a
given grid resolution, in lieu of ∆x,y, provides a much more accurate measure of the limits of
motions that can be represented numerically. The dissipation lengthscale is also useful for
comparing the gray zones for different turbulence models because it includes the effects of
the specific models on the energy spectra, which is crucial to turbulent dynamics in the gray
zone.
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Figure 2.18: Spectral energy density of w′ as a function of kh/L, where kh is the horizontal
wavenumber and L is the domain length, for the Smagorinsky-Lilly, TKE-1.5, DRM0 and
DRM2 models in the 667-m plane after 6 hours at 25-m (dashed) and 1-km (solid) resolutions.
Nyquist limits of the respective grids also shown (dashed black).
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Figure 2.19: Horizontal resolution vs. critical wavelength of resolved w′ in the 218-m plane
after 6 hours for Smagorinsky-Lilly, TKE-1.5, DRM0 and DRM2 for resolutions from 25 m
to 1 km. Calculated by applying Eq. 2.2).
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Figure 2.20: Dissipation wavelength vs. critical wavelength of resolved w′w′ in the 218-m
plane after 6 hours for Smagorinsky-Lilly, TKE-1.5, DRM0 and DRM2 for resolutions from
25 m to 1 km. Calculated by applying Eqs. 2.2 and 2.3.
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2.3.5 Backscatter in the DRM

Energy transfer between resolved and SFS scales is represented by the dissipation, Π, defined
as

Π = −τijSij. (2.4)

When Π is positive it represents dissipation, i.e. energy transfer from resolved to SFS scales,
which is a primary function of an LES turbulence model. Π is called dissipation because
it is largely positive, although negative values (backscatter of energy from the SFS to the
resolved scales) are also seen in atmospheric observations (Port-Agel et al., 2001; Carper and
Porté-Agel, 2004). Eddy-viscosity models are purely dissipative by their formulation, which
does not allow Kh,v to take negative values. Because τij and Sij are always opposite in sign
(or zero) for these models due to their definition of τij [Eq. (1.39)], Π can never be negative.
Scale-similarity models are not constrained in the same way, and do allow for energy transfer
from SFS to resolved scales via negative dissipation values (Zhou and Chow, 2011).

PDFs of Π for all four models considered, normalized by their standard deviations, σ,
are shown for the ∆x,y = 200 m (Fig. 2.21a) and ∆x,y = 1 km (Fig. 2.21b) cases. Data
from the 4th to 20th vertical levels (from z = 218 m to z = 976 m) are used to compute
the PDF of dissipation values within the well-mixed layer of the boundary layer. PDFs at
other grid resolutions show similar behavior and are not shown here. The Smagorinsky-Lilly
and TKE-1.5 models have only positive dissipation values, as expected. The DRM0 and
DRM2 show a significant backscatter component and compare well to the observations of
τ33 seen by Carper and Porté-Agel (2004). For the ∆x,y = 200 m (∆x,y = 1 km) case, 42%
(47 %) of the gridpoints produce backscatter accounting for 35% (47%) of the total stress by
magnitude-weighted average using the DRM0, and 43% (52 %) of the gridpoints produce
backscatter accounting for 41% (56%) of the total stress by magnitude-weighted average using
the DRM2. Backscatter in the DRM is nearly entirely attributed to the scale-similarity term.
The eddy-viscosity component of the DRM is not a significant contributor to backscatter
because the dynamic coefficient is constrained to cε∆

4/3
f > −1.5× 10−5.

That the DRM creates backscatter is one reason that it performs well at coarse resolutions.
Specifically, the DRM allows backscatter of energy from the SFS to the resolved scales,
introducing resolved energy near the grid’s Nyquist limit that is not seen in the eddy-viscosity
models. The positive effects of backscatter are especially pronounced at the coarse resolutions
considered here due to the important role of energy near the grid’s Nyquist limit.

2.3.6 Other considerations

Given the sensitivity of the CBL evolution to the closure models, changes to several other
aspects of the numerical configuration were also explored. Changing from 3rd- to 5th-order
advection has little influence on the dynamics (not shown). Changing the vertical advection
to an even, 4th-order scheme, which does not contain any numerical diffusion, does tend
to reduce the delay of resolved mixing by a few minutes in both the 500-m and 1-km cases
(not shown). While the eddy-viscosity model is primarily responsible for the grid-dependent
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Figure 2.21: PDF of dissipation in 16 horizontal planes, from the 4th to 20th vertical level,
at hour 6 for the Smagorinsky-Lilly, TKE-1.5, DRM0 and DRM2 models at 200-m (left) and
1-km (right) resolutions. The Smagorinsky-Lilly and TKE-1.5 models have only positive
dissipation values while the DRM0 and DRM2 both show a large backscatter component.

effects seen, the numerical diffusion present in the default 3rd-order vertical advection term
exacerbates the issue of overly damping the high wavenumbers. Changing the horizontal
advection scheme between odd- and even-ordered does not have a noticeable effect on the
dynamics for the convectively-driven case considered here.

Increasing the vertical resolution has little effect on the size of the resolved thermal cells
or the delay in resolved turbulence. Coarser vertical-resolution cases were also tested, in
accordance with Mirocha et al. (2010), who advise an aspect ratio (α = ∆x,y/∆z) of 2 – 4.
Ultimately, even large changes in vertical resolution have little influence on the presence of
large resolved thermal structures seen with coarse horizontal resolution. [Zhou et al. (2018)
explored the use of increased horizontal refinement near the surface to alleviate the impact of
unrealistic large thermal structures.]

Alternative surface-stress implementations [as in Mirocha and Lundquist (2017)] were
used for the Smagorinsky-Lilly model but had minimal impact on its performance and are not
shown here. The Dynamic Wong-Lilly eddy-viscosity model alone, without any scale-similarity
or velocity reconstruction, outperforms the Smagorinsky-Lilly and TKE-1.5 models based on
all of the criteria considered here, however it is inferior to the DRM0 and DRM2 and is thus
not presented.

The current DRM implementation in WRF has not been optimized and requires approxi-
mately twice as long to run compared to the eddy-viscosity closure models. In other codes,
the DRM has been found to increase computational cost by only 25 – 60% depending on the
level of reconstruction (Chow et al., 2005; Kirkil et al., 2012; Shi et al., 2018).
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2.4 Summary and conclusions

The gray zone refers to a range of resolutions where there exists no fundamentally appropriate
turbulence model. The gray zone for a CBL simulation includes resolutions which lie between
the traditional application of mesoscale PBL parameterizations and LES closure models, and
is often generally defined to be the range when horizontal resolutions are O(1 km). The gray
zone is specific not only to the mesoscale and fine-scale turbulence models chosen, but also to
the physics of the case being simulated. Here, simulations performed at various resolutions
and with different closure models allowed a detailed examination of the gray zone for the
convectively-forced atmospheric boundary layer. Vertical profiles of potential temperature
and turbulent fluxes, time series of resolved fluxes, horizontal slices of vertical velocity fields
and energy spectra of coarse simulations were compared to higher-resolution simulations.

Based on the dependence of the critical wavelength, λc, on horizontal resolution, the gray
zone appears to begin at ∆x,y ≈ 200 m for both the Smagorinsky-Lilly and TKE-1.5 models.
This is in agreement with prior studies in the literature (Beare, 2014; Zhou et al., 2014;
Efstathiou and Beare, 2015) which also include other numerical weather prediction models in
addition to WRF. Both eddy-viscosity models are problematic at coarse resolutions because
the fine-scale motions, relative to the grid, are damped, forcing the model to resolve turbulence
at artificially large scales. The eddy-viscosity models also are unable to produce accurate total
(resolved + SFS) stress profiles when compared to high-resolution LES statistics. However,
the TKE-1.5 model, despite its deficiencies, is significantly superior to the Smagorinsky-Lilly
model in the gray zone.

The DRM is a mixed model which allows backscatter of energy from small to large scales.
In the DRM the scale-similarity component is designed to reconstruct structures that are
large enough to be resolved on the grid but are removed due to the implicit filter of the
LES. Because the filter width is explicitly included in the DRM, it provides a potential
solution for turbulence modeling at both LES resolutions and in the gray zone. Due to
the DRM’s explicit filtering, numerical errors are overall reduced [see Gullbrand and Chow
(2003)]. Then, reconstruction allows better representation of grid-scale turbulent motions
(near the grid cutoff). Other dynamic model implementations have considered the choice
of the test filter relative to the grid cutoff as a way to improve this further (Schaefer-Rolffs,
2017). For example, using either the DRM0 or DRM2 at resolutions coarser than 200 m shows
a much better qualitative and quantitative agreement with the high-resolution simulation
results than the standard Smagorinsky-Lilly or TKE-1.5 closures. The DRM2 especially
excels at producing accurate total stress profiles at coarse resolutions when compared to
high-resolution cases. By using the DRM turbulence closure, the extent of the gray zone
is greatly reduced for this convective case. Explicit filtering and reconstruction using the
DRM produces realistic dynamics using a horizontal resolution as coarse as 1 km without
any tuning to account for either the coarseness of the grid or the physics of the case being
considered. The ability of the DRM to produce realistic turbulence on a coarse grid by
reconstructing RSFS motions is very encouraging and will be the subject of future work
where more complex cases will be considered.
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Chapter 3

More on the formulation and
performance of eddy-viscosity models
in WRF-LES

3.1 Introduction

The turbulent gray zone problem is typically defined in terms of the scale of ∆x,y compared
to the energetic scale of the atmospheric boundary layer (ABL). However, considering that
fine-scale turbulence closure models typically assume isotropic turbulence in their derivations,
and considering also that isotropic grids are only feasible in numerical weather prediction
(NWP) models at very high resolutions, the gray zone could be conceptually re-cast as an
inability to model scale-correct resolved turbulence on anisotropic grids (that is, on grids
where ∆x,y ≈ ∆z cannot be said).

As well, there is not a consensus among models as to how to partition τij in an anisotropic
eddy-viscosity model (that is, a formulation that uses differing turbulent lengthscales depend-
ing on the orientation of the stress term). The effect of different implementations, especially
for the Weather Research and Forecasting (WRF) model, is also not clear in the literature.

In Ch. 2 the anisotropic Smagorinsky-Lilly and TKE-1.5 models were compared to the
DRM0 and DRM2 models for a purely convective case. The results seen there for the
eddy-viscosity models will be elaborated on here by considering a more realistic initial profile
as well as different potential formulations of Smagorinsky-Lilly and TKE-1.5 models.

In this chapter we outline how WRF currently partitions the deformations and lengthscales
for anisotropic Smagorinsky-Lilly and TKE-1.5 model implementations, and the improvement
or regression associated with differing, but justifiable, formulations relative to each other and
isotropic formulations.

We also note that the current (prior to version 4.1.3) implementation of the turbulent
stress tensor in the WRF model uses Kv to calculate τ13 and Kh to calculate τ31, which the
WRF development team considers to be incorrect but was unaware of prior to our notification.
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3.2 Turbulent stress implementations in WRF

For any of these anisotropic eddy-viscosity formulations, it is not necessarily immediately
clear which Kh,v should be used for the calculation of τ31 (the ∂w/∂t term associated with
∂u/∂z) and τ33 (the ∂w/∂t term associated with ∂w/∂z). Arguments based on either scaling
or symmetry could be made for using either value of K in either of the stress terms, and
theoretical speculations seem unnecessary when numerical experiments could so easily be
performed.

In the most recent release of WRF (version 4.1.2 at the time of writing), Kh is used when
considering contributions to ∂w/∂t from both τ31,33. The use of Kh for τ31 could be justified
by considering that the gradients of τ31 are taken over ∂x when considering ∂w/∂t, which is
reasonable. It could also be argued that Kv should be used instead to be consistent with τ13

for symmetry reasons, which seems equally reasonable.1 The use of Kh for τ33 is ostensibly
related to symmetry with τ11,22, but again the use of Kv or a different treatment entirely
could be argued based on energetics [e.g. Wajsowicz (1993)]. It should be noted in both cases
that any assumptions related to the forms of τ13,33 that assume an isotropic grid are most
likely to be invalid in any NWP application, which is rarely performed on isotropic grids.

In an attempt to alleviate the general confusion on the roles and influences of each
component of the turbulent stress tensor, we consider the effect of changing Kh for Kv in
either or both of these stresses for the Smagorinsky-Lilly and TKE-1.5 models. Cases using
the original WRF implementation, where τ13 (the ∂u/∂t contribution) uses Kv and τ31 (the
∂w/∂t contribution) uses Kh will be labeled simply as “anisotropic”. Cases that instead use
Kv for τ31 will be labeled as “anisotropic + alt13”. Cases that use Kv (rather than the current
Kh) for τ33 will be labeled as “anisotropic + alt33”. Cases that make both modifications will
be labeled as “anisotropic + alt13/33”.

3.3 Case description

This study considers the development of the convective boundary layer (CBL), a key aspect of
NWP, in an idealized model setup featuring a (dry) stable initial profile with a realistic initial
mean column wind, a flat bottom boundary and periodic lateral boundary conditions. In
preparation for future studies of LES over mountainous terrain, the ground elevation is 1315-m
above-sea-level, though it does not noticeably affect the results shown here. The surface
drag is set as z0 = 0.1 m and is enforced with an ad-hoc modification of WRF’s treatment
of surface friction, replacing the tke drag coefficient parameter (see Sec. C.2.3).2 The
simulations are run for 9 hours with a constant sensible surface heat flux of w′θ′s = 0.3 m K s−1

1Jimy Dudhia (personal communication) has expressed that the WRF development team considers the
existing implementation of τ31 to be an error which they will update in the next release owing to our
notification (so that Kv will instead be used for both τ13,31), and the existing implementation of τ33, which
uses Kh, to be correct.

2Original modification made by Katherine A. Lundquist for IBM-WRF, as indicated by the “KAL” in
the comments in Appx. C.2.3.
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(∼ 314 W m−2) and an initial profile with a mean column wind u = 4 m s−1 in the lower
3 km, which is further forced with a geostrophic wind ug = 10 m s−1. The initial profile is
based on reanalysis data rather than a completely idealized column, which was done to verify
that none of the models were creating unrealistic mixing aloft where gradients in temperature
and momentum can become quite large while the atmosphere remains thermodynamically
stable [a known potential issue in NWP turbulence closures (Shi et al., 2018)]. The initial
potential-temperature and u-velocity profiles can be seen in the full-column profiles for
t = 0 hours in Appx. 3.B.

A 3rd-order Runge-Kutta time-integration scheme, a 5th-order horizontal advection
scheme and a 3rd-order vertical advection scheme are used in all cases (WRF default values).
All cases use a time step of 0.2 s. The domains have a total height of 9.5 km, the top 3 km of
which is a Rayleigh damping layer with a coefficient 0.003 s−1 (the WRF default coefficient).

Simulations are performed with horizontal resolutions of ∆x,y = 100 m and 1.2 km. All
grids have 55 vertical levels with the lowest u-level at z = 58 m AGL and ∆z ranging from
100 – 150 m in the lower 4 km AGL, making the grid approximately isotropic in the finest
case (∆x,y = 100 m). This is a relatively coarse vertical resolution, but the results seen
here appear consistent across different vertical resolutions; a more precise treatment on the
sensitivity to vertical resolution will be the subject of future work.

WRF version 3.8.1 is used for all cases.

3.4 Results

A well-resolved solution for this convection-dominated case should show a shallow super-
adiabatic layer at the surface, a well-mixed neutral layer above and resolved entrainment of
the free atmosphere at the top of the CBL (Stull, 1988b). This is very similar to the case
examined in 2, but with a more realistic initial profile with added complexity aloft, and a
stronger constant surface heat flux.

3.4.1 High-resolution cases

Considering the Smagorinsky-Lilly and TKE-1.5 models for a relatively high-resolution case,
∆x,y = 100 m, with 801 × 401 grid points, there is a very similar development of mean
potential temperature profiles in the isotropic Smagorinsky-Lilly (anisotropic Smagorinsky-
Lilly model not run at high-resolution for cost reasons) and TKE-1.5 models, as well as the
anisotropic TKE-1.5 model (Fig. 3.1). Recalling that ∆z ≈ 100 m near the surface, this grid
is approximately isotropic in the ABL, so the similarity between the isotropic and anisotropic
formulations is the expected behavior. Planar slices of vertical velocity in the z ≈ 518 m
plane after 4 and 9 hours are similarly indistinguishable, where all three models produce the
cellular convective structure expected for this idealized case (Fig. 3.2).

To make a quantitative evaluation of the size of the thermal cells, the dominant wavelength
of the resolved vertical velocity field is approximated by the critical wavelength of de Roode
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et al. (2004), λc, as used previously in Simon et al. (2019). For clarity it will be restated here
that to find the critical wavelength,

λc = 1/kc (3.1)

where the 2π is omitted to find meters per cycle, rather than meters per radian, to get a
better physical intuition of the quantities. Then define kc as the wavenumber where 2/3 of
the velocity variance seen in the physical field (〈w′w′ 〉 in this case) is contained between kc
and kN , the Nyquist limit, on the energy spectrum, S33, of the turbulent velocity. For TKE
in the w-velocity using a discrete Fourier transform on the resolved field, the criteria can be
written as

2

3

〈
w′w′

〉
=

kN∑
kc

S33. (3.2)

Values for λc are found here by considering the same one-dimensional energy spectra
shown in Fig. 3.3, but without averaging in time, and approximating kc where Eq. 3.2) is
satisfied by taking a weighted average between the two wavenumbers that bound kc on our
discrete spectrum, then taking Eq. 3.1). This can be considered similar to taking the median
of a sample, and is used for its reduced sensitivity to noise in determining the peak of the
spectrum (de Roode et al., 2004). It can seen that the one-dimensional energy spectra for the
vertical component of resolved TKE (w′w′) are, again, indistinguishable between the three
models, showing the same temporal development of critical wavelength and total w′w′, and
showing overlapping spectra in wavenumber space when averaged over z ≈ 169 m to 1.79 km
over the final two hours (Fig. 3.3).

Considering, finally, the same one-dimensional energy spectrum (but as a function of
wavelength, k−1

h ) as a contour in time for each model, it is seen again that the three models
create nearly identical solutions (Fig. 3.4). These contours of energy in time give a visual
insight into the development of the energy in the simulation and how the critical wavelength,
λc, should grow with time as the dynamics develop. Specifically, the onset in energy is smooth
in time and and tends to begin with the smallest wavelengths and grow to larger wavelengths,
which is indeed the theoretical behavior of the development of a boundary layer.

As an aside, it is noteworthy how the utility and accuracy of the λc metric are so clearly
visualized in Fig. 3.4. Also note that the Nyquist limit marked on the contours is the
one-dimensional Nyquist limit in either ∆x or ∆y; as can be seen in Fig. 3.4, energy values at
higher wavenumbers result due to the nature of the scalar wavenumber,

kh =
√
k2
x + k2

y. (3.3)

While the three models considered appear indistinguishable at ∆x,y = 100 m, the per-
formance of the no-model case also deserves mentioning. The profiles of planar-averaged
potential temperature in Fig. 3.1 for the no-model case show no discernible difference to
the other cases, and all cases show the expected development. The velocity profiles for the
no-model case appear noticeably less mixed than in the cases using a turbulence model, but
it is not clear which of the four profiles is the most accurate, and they are all quite similar;
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the differences between the no-model case and the other cases is not much more pronounced
than the differences between the other cases compared to each other.

Considering the slices of w, the no-model case shows a qualitatively similar structure, but
the no-model case does have visibly stronger updrafts at both times considered in Fig. 3.2.
This is again seen in the resolved spectra, S33, in Fig. 3.3, where the effect of the turbulence
closure models is seen most clearly. Specifically, the no-model case shows more energy on the
high wavenumbers at the expense of the coarser wavelengths.
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Figure 3.1: Planar-averaged resolved potential temperature and u-velocity profiles for the
high-resolution (∆x,y = 100 m) cases using the isotropic Smagorinsky-Lilly model, isotropic
and anisotropic TKE-1.5 model, and no model (from left to right). Full-column profiles
shown in Appx. 3.B.
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Figure 3.2: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (top) and 9
(bottom) hours for the high-resolution (∆x,y = 100 m) cases considered.
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Figure 3.3: Metrics of the resolved vertical velocity field, w, averaged over the z ≈
169 m to 1.79 km planes for the high-resolution (∆x,y = 100 m) cases with different model
and isotropy settings: total resolved TKE (w′w′) in time (far left), the same in log-log scale
(middle left), critical wavelength of w′w′ in time (middle right), and spectra of resolved TKE
(S33) averaged over the final two hours (far right).

Figure 3.4: Contours of spectra of resolved TKE in the vertical velocity (S33) in time for
the high-resolution (∆x,y = 100 m) cases with different isotropy settings, with the critical
wavelength (dotted white) and horizontal Nyquist limit (dotted black) overlaid.
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3.4.2 Coarse grid with no explicit model

Similar to the high-resolution case, the performance of the WRF model for the same physical
case for ∆x,y = 1.2 km using no explicit SGS turbulence model, thus relying on numerical
diffusion alone for SGS-mixing as well as viscous dissipation and numerical stability, warrants
a brief discussion here for context during the evaluation of different formulations of different
turbulence closure models that is to follow, so that the value the turbulence closure models
are adding to the simulation is clear.

The planar-averaged profiles of resolved potential temperature and u-velocity show im-
mediately the need for some explicit turbulence closure model, with profiles of 〈θ 〉 that are
under-mixed near the surface and profiles of 〈u 〉 are very visibly under-mixed throughout
the ABL (Fig. 3.5). As well, both profiles show a significant kink near the surface. Note,
though, that the entrainment at the top of the ABL shows an excellent agreement with the
high-resolution profiles.

The familiar metrics of w′w′ are very informative to the added value that is expected from
a turbulence model, where the no-model case resolves a very large proportion of the resolvable
TKE seen in the high-resolution case (Fig. 3.6). Considering only the one-dimensional spectra
of S33, the no-model case compares very well to any of the high-resolution cases using a
model (as those high-resolution cases are all indistinguishable). However, considering the
temporal development of the resolved w′w′ on the grid, there is a very visible oscillation
in the resolved TKE in the first two hours of the simulation. With the behavior of w′w′

in time and wave-space in mind, the visual nature of the resolved vertical velocity field, w,
which shows a large amount of resolved turbulence with no visible coherent structures, is not
surprising (Fig. 3.7).

The conclusion to be drawn from both the high-resolution (∆x,y = 100 m) and coarse
(∆x,y = 1.2 km) no-model cases is that an SGS closure model is not necessary to generate
resolved mixing in a convective boundary layer simulation. Therefore, the role of the SGS
turbulence closure model in a convectively-forced atmosphere is not to generate “mixing” but
rather to reduce, or smooth, resolved mixing so that it may behave as similarly as possible to
the high-resolution cases. However, it is clear from the spectrum of resolved vertical TKE,
S33, that the total amount of resolved energy is kept relatively stable by the grid-effects (i.e.
numerical diffusion) alone; that is to say, any additional smoothing will come at the expense
of reducing the accuracy of the resolved TKE. It will be seen that this balance between
effectively smoothing the physical momentum and scalar fields without removing excessive
amounts of resolvable TKE is the essence of the “gray zone”.
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Figure 3.5: Planar-averaged resolved potential temperature and u-velocity profiles for the
∆x,y = 1.2 km case using no model with the high-resolution (∆x,y = 100 m) case overlaid
for potential temperature (dotted black) and u-velocity (faded black). Full-column profiles
shown in Appx. 3.B.
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Figure 3.6: As in Fig. 3.3 but when ∆x,y = 1.2 km using no model.

Figure 3.7: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (left) and 9 (right)
hours for the ∆x,y = 1.2 km case using no model.
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3.4.3 Coarse Smagorinsky-Lilly flavors

The different formulations of the turbulent lengthscales, as outlined in Sec. 3.2, in the
Smagorinsky-Lilly model show some significant differences that are worth discussing. The
planar-averaged profiles of potential temperature and velocity show the first significant
difference, which is that SGS-mixing of potential temperature is much more pronounced in
the isotropic case (Fig. 3.8). Also noteworthy is the significantly-reduced response to the
surface drag in the coarse isotropic case compared to all of the coarse anisotropic formulations,
where the velocity profiles in the coarse isotropic case are notably different than in the reference
high-resolution case, but the coarse isotropic case is not more extreme in its deviation from
the initial profile in any sense, whereas all of the anisotropic formulations have velocity
profiles with much larger deviations from the initial profile.

It is also perhaps interesting that, of the three permutations of changes to the anisotropic
formulation considered, the most realistic 〈θ 〉 profiles are produced when only τ33 is changed,
which is the opposite of what is considered the correct formulation by the WRF team. While
none of the coarse Smagorinsky-Lilly cases exhibit particularly good behavior, relative to the
high-resolution cases, it must be said that the isotropic implementation is the most acceptable
form based on the mean profiles. Note that all of the anisotropic formulations considered
thus far still use the same Sβ term, and so differences between the formulations are in the
lengthscales used in Eqs. (1.47) and (1.48).

Considering planar slices of resolved vertical velocity (w, Fig. 3.9) and the time-series
and spectrum of TKE in the vertical direction (w′w′, Fig. 3.10) is again very revealing of
the behavior of the Smagorinsky-Lilly model, and shows similar conclusions to the profiles.
Specifically, the isotropic version does a lot more mixing of potential temperature on the SGS
which results in much better-behaved profiles throughout the simulation, while all profiles are
visibly flawed. Most notably, though, is that once resolved convection begins, i.e. w′θ

′
> ε,3

the lengthscale of the convective cells that form on the grid are very different in the isotropic
version than the anisotropic version. In all formulations of the anisotropic version, the cells
that develop are quite large and their horizontal lengthscale is visibly grid-dependent, where
the isotropic cells are much smaller and closer in physical size to the high-resolution cases.

The behavior seen in the velocity contours is confirmed in the S33 spectra, where the
anisotropic versions essentially shift their spectra to longer wavelengths compared to the
high-resolution case. In contrast, the isotropic version only resolves energy within the
spectrum of the high-resolution case, though with notable energy missing on both ends of
the spectrum. The temporal development of the energy is shown through the perspective of
S33 spectra contours in time, shown in Fig. 3.11. For the different implementations of the
Smagorinsky-Lilly model the different energetic developments in time are very visible in the
contours, where energy is resolved earlier in the anisotropic implementations but focused in
very coarse wavelengths, compared to the isotropic formulation, which takes longer to begin

3It is somewhat interesting to note that while ε is ambiguous in this context, as it could be taken to be
either some arbitrary minimum value or the energy dissipation rate, either definition would be equivalent
here.
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resolving turbulence, but does so at a much finer wavelength and in a much more broad
spectrum once resolved turbulence is triggered.

It was previously reported in Simon et al. (2019) that isotropic implementations of eddy-
viscosity models do not improve their performance at O(1 km) horizontal resolutions, which
does not appear to be true for the case considered here despite the deficiencies noted in the
isotropic case. The original conclusion that using isotropic length scales does not improve
the performance of the Smagorinsky-Lilly model on coarse grids was made for a case with a
low surface heating rate and zero horizontal winds. These factors both increased the delay
in generation of resolved turbulence so greatly that there was never resolved turbulence in
that case. In contrast here, stronger surface heating and non-zero horizontal winds show a
different behavior.

It must be confessed that the performance of the isotropic Smagorinsky-Lilly model is
better, or at least more nuanced, than the author was aware after previous studies, and would
be considered superior to the anisotropic Smagorinsky-Lilly model by any standard considered
for the case presented, both before and after resolved turbulence is triggered. However, it is
difficult to argue that the solution given by the isotropic Smagorinsky-Lilly model is correct,
or even “good”, because the Smagorinsky-Lilly model is not meant to generate a smooth
profile via large SGS gradients and low levels of resolved turbulence, and any favorable results
are, at best, a fortunate accident, as will be explained.

In the coarse, isotropic case, the initial mixing of the potential temperature profile is
achieved by SGS diffusion, which is distinguishable by the shape of both the 〈θ 〉 and 〈u 〉
profiles and lack of resolved entrainment until the seventh hour in Fig. 3.8. This can also
be seen in the lack of resolved velocity at hour four in the vertical in Fig. 3.9, and most
clearly in the time series of w′w′ in Fig. 3.10. While it may seem beneficial that the isotropic
Smagorinsky-Lilly model creates a profile that appears mixed at coarse resolutions, this SGS
diffusion is actually problematic for two reasons. The first is that this is simply not the
design of the model, which is formulated with the assumption that the grid-scale is within the
inertial subrange (Lilly, 1962). The result is, as indicated by our prior incorrect or incomplete
assessment in 2, that the Smagorinsky-Lilly model cannot be relied upon to function as a
robust SGS model at coarse resolutions. The second problem with this behavior is, related to
the first, that the Smagorinsky-Lilly model is a fine-scale turbulence closure model designed
to numerically dissipate scales of energy that may be assumed to be ultimately destined for
viscous dissipation in the real atmosphere, while allowing appropriate scales of mechanical
turbulence to be resolved. By generating such a large amount of SGS diffusion, the isotropic
Smagorinsky-Lilly model is suppressing its own resolved mixing by generating SGS mixing.
However, as can be seen in the improved profiles in Fig. 3.8 in the later hours and in the
resolved velocity field at hour 9 in Fig. 3.9, resolved mixing is the superior method of mixing
for the isotropic Smagorinsky-Lilly model, which is expected considering the design of the
model.

In this way, the isotropic Smagorinsky-Lilly model for this case demonstrates the problem
of the turbulent gray zone quite clearly. The LES turbulence closure model is unable to
function as intended because it is too effective at mixing on the SGS, yet it is not effective
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enough to create realistic profiles. Further, the stated intention of an LES is to resolve
eddies on the grid, so while the mixing delivered by the SGS model before resolved mixing
is triggered is impressive from one perspective, it is delaying the generation of resolved
turbulence on the grid, which would create a much better-mixed profile and more realistic
resolved fields. Even further, a smooth mean-profile solution is attainable with a PBL scheme
at very coarse resolutions; to use a three-dimensional eddy-viscosity closure to ultimately
generate a column-averaged solution is a significant waste of resources. However, the present
anisotropic formulations, which do reduce the effectiveness of the SGS mixing and thus also
reduce the delay in the onset of resolved turbulence, perform decidedly worse by any other
metric considered here. There is a corresponding issue with planetary boundary layer (PBL)
schemes, where on fine enough grids they can allow resolved mixing to be triggered (Zhou
et al., 2014). This span of resolutions is what is referred to in the literature and throughout
this manuscript as the turbulent gray zone, or the terra incognita.
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Figure 3.8: Planar-averaged resolved potential temperature and u-velocity profiles for the
∆x,y = 1.2 km case using the Smagorinsky-Lilly model with isotropic and anisotropic length-
scales, with the high-resolution (∆x,y = 100 m) case overlaid for potential temperature (dotted
black) and u-velocity (faded black). Full-column profiles shown in Appx. 3.B.
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Figure 3.9: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (top) and 9
(bottom) hours for the ∆x,y = 1.2 km cases using the Smagorinsky-Lilly model with isotropic
and anisotropic lengthscales.
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Figure 3.10: Metrics of the resolved vertical velocity field, w, averaged over the z ≈
169 m to 1.79 km planes for the ∆x,y = 1.2 km cases using the Smagorinsky-Lilly model with
isotropic and anisotropic lengthscales: total resolved TKE (w′w′) in time (far left), the same
in log-log scale (middle left), critical wavelength of w′w′ in time (middle right), and spectra
of resolved TKE (S33) averaged over the final two hours (far right).

Figure 3.11: Contours of spectra of resolved TKE in the vertical velocity (S33) in time for
the ∆x,y = 1.2 km cases using the Smagorinsky-Lilly model with isotropic and anisotropic
lengthscales, with the critical wavelength (dotted white) and horizontal Nyquist limit (dotted
black) overlaid.
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3.4.4 Coarse anisotropic-deformation Smagorinsky-Lilly flavors

As discussed in Sec. 1.6.2, the anisotropic Smagorinsky-Lilly model in WRF was modified to
implement Eq. 1.49), which will be referred to as the “anisotropic-deformation Smagorinsky-
Lilly” model, or “ad.Smag.” model. The “anisotropic Smagorinsky-Lilly” model will always
refer to the formulation that is currently implemented in the release version of WRF, where
only the lengthscales are taken anisotropically.

The behavior of the planar-averaged mean profiles for this anisotropic-deformation
Smagorinsky-Lilly model is much improved over any of the permutations of the original WRF
anisotropic Smagorinsky-Lilly model. The ad.Smag version, it will be argued, is also better
than the isotropic Smagorinsky-Lilly model.

The behavior of this formulation of the Smagorinsky-Lilly model is intuitive in that it
greatly improves the performance of the anisotropic Smagorinsky-Lilly model, generating
resolved TKE on the grid much earlier and at much smaller lengthscales than the previous
anisotropic formulations, also generating significantly better-behaved planar-averaged profiles
(Fig. 3.12). However it is also somewhat counter-intuitive, in that it makes the resolved
velocity fields produced by the model largely insensitive to any permutations of alternative
anisotropic lengthscales considered, i.e. alt13, alt33 and alt13/33 (Fig. 3.13). That is, when
the strain-rate tensor is taken anisotropically, the resolved field is much less sensitive to the
choice of Kh or Kv for either τ31,33.

The resolved velocity fields are not only less sensitive to the formulation of the length-
scales in K, they are also, visibly, significantly more coherent (cellular structures) than any
formulation of the standard anisotropic Smagorinsky-Lilly model other than the anisotropic
+ alt33 case. The resolved cells are also visibly smaller in size than any permutation of the
standard anisotropic Smagorinsky-Lilly model, though still much too large to be realistic for
an ABL.

A final thought on the anisotropic-deformation Smagorinsky-Lilly model: it does an
excellent job at generating coherent turbulent structures at the scales available on the grid
(as seen in Fig. 3.13), which was the actual goal of the Smagorinsky-Lilly model (Lilly, 1962,
1967). Further, resolved TKE begins relatively early in the simulation and a k−5/3 cascade is,
more or less, generated even at very coarse resolutions. For scale-accurate dynamics, one
should consider the dynamic Wong-Lilly model (Wong and Lilly, 1994).
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Figure 3.12: As in Fig. 3.8 but using the anisotropic-deformation Smagorinsky-Lilly model.

Figure 3.13: As in Fig. 3.9 but using the anisotropic-deformation Smagorinsky-Lilly model.
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Figure 3.14: As in Fig. 3.10 but using the anisotropic-deformation Smagorinsky-Lilly model.
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3.4.5 Coarse TKE-1.5 flavors

The isotropic TKE-1.5 model performs very similarly to the isotropic Smagorinsky-Lilly model
in many ways (which is technically also the isotropic version of the anisotropic-deformation
Smagorinsky-Lilly model), where the first few hours are dominated by SGS mixing of potential
temperature. This creates an unrealistically sharp profile without any entrainment at the
CBL top, but is still effective enough to suppress the onset of resolved turbulence (Fig. 3.15).
Also similar to the isotropic Smagorinsky-Lilly model, the isotropic TKE-1.5 model shows
much less dramatic velocity profiles and much smaller convective cells once resolved mixing
does begin (Fig. 3.16). The behavior in time and wave-space of w′w′ is also very similar
to the isotropic Smagorinsky-Lilly model, where there is a four-hour delay before the onset
of resolved mixing, but the spectra seen over the final two hours are surprisingly accurate
compared to the high-resolution TKE-1.5 case (Fig. 3.17). It is nice that a model formulated to
model fine-scale, isotropic turbulence produces an acceptable resolved potential-temperature
profile at such coarse resolutions. However, this could be achieved with a PBL scheme at
even coarser resolution. But if this were a PBL scheme, then the onset of resolved turbulence
is not desirable, so this is problematic behavior from either perspective. Thus the isotropic
TKE-1.5 model is, yet again, a great example of the gray zone problem.

The anisotropic TKE-1.5 model behaves very similarly to the anisotropic-deformation
Smagorinsky-Lilly model, both in the qualitative features of the resolved potential-temperature
and u-velocity profiles, and in the nature of the resolved cells in the w-velocity field (Figs. 3.15,
3.16). Also similar to the anisotropic-deformation Smagorinsky-Lilly model, the anisotropic
TKE-1.5 model is largely insensitive to different permutations of τ31,33. This is both in terms
of the already-discussed profiles and velocity fields and in the metrics of w′w′ familiar to this
manuscript, namely the resolved spectra, S33, which show a very visible and consistent shift
towards longer wavelengths when compared to the high-resolution counterpart for any of
alt13, alt33 or alt13/33 (Fig. 3.17).
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Figure 3.15: As in Fig. 3.8 but using the TKE-1.5 model with isotropic and anisotropic
lengthscales.
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Figure 3.16: As in Fig. 3.9 but using the TKE-1.5 model with isotropic and anisotropic
lengthscales.
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Figure 3.17: As in Fig. 3.10 but using the TKE-1.5 model with isotropic and anisotropic
lengthscales.

3.5 Summary and conclusions

This chapter extended the analysis of the two eddy-viscosity models considered in Ch. 2, the
Smagorinsky-Lilly and TKE-1.5 models, by considering isotropic and different anisotropic
formulations as well as a more realistic initial column wind profile. The two models are
also compared to using no model, relying entirely on the numerical diffusion of the grid
discretization for SGS mixing, dissipation and for model stability.

It is seen that at high resolutions (∆x,y = 100 m) the isotropic Smagorinsky-Lilly, isotropic
TKE-1.5 and anisotropic TKE-1.5 models all agree very closely, as expected. It is also seen
at high resolutions that the turbulence closure models are providing a value to the simulation
compared to using no model, which results in too much energy at high wavenumbers compared
to theoretical dissipation rates (e.g. Fig. 3.3).

At coarse resolutions (∆x,y = 1.2 km), the isotropic Smagorinsky-Lilly and isotropic
TKE-1.5 models provide a solution that appears decent in this case, but is largely driven
by SGS mixing, and thus the ability of the model to produce a mixed mean-profile is not
consistent or reliable. To this end, both models begin resolved mixing many hours into
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the simulation, but at scales that compare better to the high-resolution cases than either
model’s anisotropic formulation. However, the isotropic models suppress their own resolved
turbulence for too long initially to produce an accurate atmospheric simulation.

The anisotropic Smagorinsky-Lilly model, as implemented in release versions of WRF
at the time of writing (where only the lengthscales are taken anisotropically), shows very
poor behavior at coarse resolutions. However, if it is modified to also consider deforma-
tions anisotropically, as other NWP models have done, the behavior of the anisotropic-
deformation Smagorinsky-Lilly model is significantly improved, and behaves very similarly to
the anisotropic TKE-1.5 model.

Throughout the aforementioned analysis, considerations were made for different potential
implementations of anisotropy, where the use of Kh or Kv is considered for τ31 and τ33.
Only the anisotropic Smagorinsky-Lilly model was sensitive to these permutations, where
the anisotropic-deformation Smagorinsky-Lilly and anisotropic TKE-1.5 models show very
consistent results for all implementations.

Finally, it is worth stating clearly that, in the author’s opinion, both the anisotropic-
deformation Smagorinsky-Lilly model and the anisotropic TKE-1.5 model do an excellent
job of generating turbulent structures on the grid-scale which is, in fact, the original stated
objective of both models (Lilly, 1962; Deardorff, 1972). The manner that they generate, more
or less, the same momentum cascade on any grid is their intended functionality. Put another
way, with the exception of the anisotropic Smagorinsky-Lilly model (which it has been argued
here should be replaced by the anisotropic-deformation Smagorinsky-Lilly model) this chapter
should be read as instructional to users and developers, rather than critical of anisotropic
eddy-viscosity models.
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3.A Changes to the turbulent stress tensor in the

WRF code

In this section, the reader will find the code for the Smagorinsky-Lilly model as-distributed in
WRF 3.8.1 (Sec. 3.A.1), followed by the code for the anisotropic-deformation reformulation
of the Smagorinsky-Lilly model (Sec. 3.A.2).

3.A.1 Original anisotropic Smagorinsky-Lilly implementation

1 SUBROUTINE smag km( c o n f i g f l a g s , xkmh , xkmv , xkhh , xkhv ,BN2, &
2 div , defor11 , defor22 , defor33 , defor12 , &
3 defor13 , defor23 , &
4 u , v , z , ht , &
5 rdzw , dx , dy , dt , i s o t r o p i c , &
6 mix upper bound , msftx , msfty , &
7 ids , ide , jds , jde , kds , kde , &
8 ims , ime , jms , jme , kms , kme , &
9 i t s , i t e , j t s , j t e , kts , kte )

10

11

12 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 ! Begin d e c l a r a t i o n s .
14

15 IMPLICIT NONE
16

17 TYPE( g r i d c o n f i g r e c t y p e ) , INTENT(IN ) : : c o n f i g f l a g s
18

19 ! JSS : SKIPPING THE REST OF THE DECLARATIONS
20

21 pr = prandt l
22 c s = c o n f i g f l a g s%c s
23

24 do j=j s t a r t , j end
25 do k=kts , k t f
26 do i=i s t a r t , i end
27 def2 ( i , k , j ) =0.5∗( de fo r11 ( i , k , j ) ∗ de for11 ( i , k , j ) + &
28 de for22 ( i , k , j ) ∗ de for22 ( i , k , j ) + &
29 de for33 ( i , k , j ) ∗ de for33 ( i , k , j ) )
30 enddo
31 enddo
32 enddo
33

34 do j=j s t a r t , j end
35 do k=kts , k t f
36 do i=i s t a r t , i end
37 def2 ( i , k , j )=def2 ( i , k , j )+ de for12 ( i , k , j ) ∗ de for12 ( i , k , j )
38 enddo
39 enddo
40 enddo
41

42 do j=j s t a r t , j end
43 do k=kts , k t f
44 do i=i s t a r t , i end
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45 def2 ( i , k , j )=def2 ( i , k , j )+ de for13 ( i , k , j ) ∗ de for13 ( i , k , j )
46 enddo
47 enddo
48 enddo
49

50 do j=j s t a r t , j end
51 do k=kts , k t f
52 do i=i s t a r t , i end
53 def2 ( i , k , j )=def2 ( i , k , j )+ de for23 ( i , k , j ) ∗ de for23 ( i , k , j )
54 enddo
55 enddo
56 enddo
57

58 IF ( i s o t r o p i c .EQ. 0) THEN
59 DO j = j s t a r t , j end
60 DO k = kts , k t f
61 DO i = i s t a r t , i end
62

63 mlen h=s q r t ( dx/ msftx ( i , j ) ∗ dy/ msfty ( i , j ) )
64 mlen v= 1 ./ rdzw ( i , k , j )
65

66 tmp=max ( 0 . , de f2 ( i , k , j )−BN2( i , k , j ) /pr )
67 tmp=tmp∗∗0 .5
68 xkmh( i , k , j )=max( c s ∗ c s ∗mlen h∗mlen h∗tmp , 1 . 0E−6∗mlen h∗mlen h )
69 xkmh( i , k , j )=min (xkmh( i , k , j ) , mix upper bound ∗ mlen h ∗ mlen h / dt )
70 xkmv( i , k , j )=max( c s ∗ c s ∗mlen v∗mlen v∗tmp , 1 . 0E−6∗mlen v∗mlen v )
71 xkmv( i , k , j )=min (xkmv( i , k , j ) , mix upper bound ∗ mlen v ∗ mlen v / dt )
72 xkhh ( i , k , j )=xkmh( i , k , j ) /pr
73 xkhh ( i , k , j )=min ( xkhh ( i , k , j ) , mix upper bound ∗ mlen h ∗ mlen h / dt )
74 xkhv ( i , k , j )=xkmv( i , k , j ) /pr
75 xkhv ( i , k , j )=min ( xkhv ( i , k , j ) , mix upper bound ∗ mlen v ∗ mlen v / dt )
76

77 ENDDO
78 ENDDO
79 ENDDO
80 ELSE
81

82 ! JSS : REMOVED, NOT RELEVANT HERE
83

84 ENDIF
85

86 END SUBROUTINE smag km
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3.A.2 Modified anisotropic-deformation Smagorinsky-Lilly
implementation

1 SUBROUTINE s m a g j s s a n i s o ( c o n f i g f l a g s , xkmh , xkmv , xkhh , xkhv ,BN2, &
2 div , defor11 , defor22 , defor33 , defor12 , &
3 defor13 , defor23 , &
4 u , v , z , ht , &
5 rdzw , dx , dy , dt , i s o t r o p i c , &
6 mix upper bound , msftx , msfty , &
7 ids , ide , jds , jde , kds , kde , &
8 ims , ime , jms , jme , kms , kme , &
9 i t s , i t e , j t s , j t e , kts , kte )

10

11 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 ! Begin d e c l a r a t i o n s .
13

14 IMPLICIT NONE
15

16 TYPE( g r i d c o n f i g r e c t y p e ) , INTENT(IN ) : : c o n f i g f l a g s
17

18 ! JSS : SKIPPING THE REST OF THE DECLARATIONS
19

20 pr = prandt l
21 c s = c o n f i g f l a g s%c s
22

23 do j=j s t a r t , j end
24 do k=kts , k t f
25 do i=i s t a r t , i end
26 def2 ( i , k , j ) = 0 . 5∗ ( de fo r11 ( i , k , j ) ∗ de for11 ( i , k , j ) + &
27 de for22 ( i , k , j ) ∗ de for22 ( i , k , j ) + &
28 de for33 ( i , k , j ) ∗ de for33 ( i , k , j ) )
29 enddo
30 enddo
31 enddo
32

33 do j=j s t a r t , j end
34 do k=kts , k t f
35 do i=i s t a r t , i end
36 def2 ( i , k , j ) = def2 ( i , k , j ) + de for12 ( i , k , j ) ∗ de for12 ( i , k , j )
37 enddo
38 enddo
39 enddo
40

41 do j=j s t a r t , j end
42 do k=kts , k t f
43 do i=i s t a r t , i end
44 def2v ( i , k , j ) = de for13 ( i , k , j ) ∗ de for13 ( i , k , j )
45 enddo
46 enddo
47 enddo
48

49 do j=j s t a r t , j end
50 do k=kts , k t f
51 do i=i s t a r t , i end
52 def2v ( i , k , j ) = def2v ( i , k , j ) + de for23 ( i , k , j ) ∗ de for23 ( i , k , j )
53 enddo
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54 enddo
55 enddo
56

57 DO j = j s t a r t , j end
58 DO k = kts , k t f
59 DO i = i s t a r t , i end
60

61 mlen h = s q r t ( dx/ msftx ( i , j ) ∗dy/ msfty ( i , j ) )
62 mlen v = 1 ./ rdzw ( i , k , j )
63

64 tmp = max( 0 . , de f2 ( i , k , j ) )
65 tmp = tmp∗∗0 .5
66

67 tmpv = max( 0 . , def2v ( i , k , j )−BN2( i , k , j ) /pr )
68 tmpv = tmpv∗∗0 .5
69

70 xkmh( i , k , j ) = max( c s ∗ c s ∗mlen h∗mlen h∗tmp , 1 . 0E−6∗mlen h∗mlen h )
71 xkmh( i , k , j ) = min ( xkmh( i , k , j ) , mix upper bound∗mlen h∗mlen h/dt )
72 xkmv( i , k , j ) = max( c s ∗ c s ∗mlen v∗mlen v∗tmpv , 1 . 0E−6∗mlen v∗mlen v )
73 xkmv( i , k , j ) = min ( xkmv( i , k , j ) , mix upper bound∗mlen v∗mlen v/dt )
74 xkhh ( i , k , j ) = xkmh( i , k , j ) /pr
75 xkhh ( i , k , j ) = min ( xkhh ( i , k , j ) , mix upper bound∗mlen h∗mlen h/dt )
76 xkhv ( i , k , j ) = xkmv( i , k , j ) /pr
77 xkhv ( i , k , j ) = min ( xkhv ( i , k , j ) , mix upper bound∗mlen v∗mlen v/dt )
78

79 ENDDO
80 ENDDO
81 ENDDO
82

83 END SUBROUTINE s m a g j s s a n i s o
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3.B Full column planar-averaged profiles
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Figure 3.18: Full model height of planar-averaged resolved potential temperature and u-
velocity profiles for the high-resolution (∆x,y = 100 m) cases using the isotropic Smagorinsky-
Lilly model, isotropic and anisotropic TKE-1.5 model, and no model (from left to right).
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Figure 3.19: As in Fig. 3.18 but for ∆x,y = 1.2 km cases using no model.
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Figure 3.20: As in Fig. 3.18 but for ∆x,y = 1.2 km cases using the Smagorinsky-Lilly model
with isotropic and anisotropic lengthscales.
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Figure 3.21: As in Fig. 3.20 but using the anisotropic-deformation Smagorinsky-Lilly model.
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Figure 3.22: As in Fig. 3.20 but using the TKE-1.5 model.
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Chapter 4

A promising alternative anisotropic
formulation for eddy-viscosity models
for atmospheric LES

4.1 Introduction

It has been seen in Chs. 2 and 3 that there is considerable work to be done, both in the area
of improvement and in clarification, on the behavior of eddy-viscosity models for atmospheric
large-eddy simulation (LES) when used for numerical weather prediction (NWP) applications,
which are inherently performed on highly-anisotropic grids and likely will be for years to
come.

With the results of Chs. 2 and 3 in mind, an alternative formulation is suggested for
eddy-viscosity turbulence closure models when used on anisotropic grids for NWP, dubbed
here the “alternative-anisotropic” formulation for the Smagorinsky-Lilly and TKE-1.5 models.
It is shown that this alternative-anisotropic formulation performs well compared to the
isotropic and anisotropic formulations of both models seen in Ch. 3 under the same criteria
used there, and shows an interesting potential direction of study. The comparisons are made
to the original formulations used in WRF v3.8.1 with the exception of the ∆x,y = 5 km
free-convection case, where the anisotropic-deformation Smagorinsky-Lilly formulation from
Ch. 3 is used (Sec. 4.2.1.2).

An analysis of the alternative-anisotropic formulation is presented for the previous case
considered in Ch. 3 as well as a simpler, no-wind case that is similar, but not identical,
to the case considered in Ch. 2. Then a shorter discussion is given on the results seen for
three other cases where the surface heat flux is increased with no wind, the surface heat
flux is decreased with high wind, and the surface heat flux is increased with high wind.
The alternative-anisotropic eddy-viscosity models show an ability to generate qualitatively
consistent planar-averaged profiles. As well, many questions are introduced related to the
scales of production and dissipation of energy associated with buoyancy and shear and the
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associated lengthscales, particularly in the S33 spectra seen in the alternative-anisotropic
TKE-1.5 model, which will be the subject of future work.

4.1.1 Historical context for turbulence models

The explicit goal of the LES turbulence closure model is often not stated, but there are
many different objectives that may be attempted with LES, with different outcomes deemed
satisfactory [see Pope (2004) for a detailed treatment of this topic]. The traditional eddy-
viscosity models were generally designed to generate a turbulent cascade on the grid, and will
only generate the correct scales of motion on high-resolution grids. In the case of atmospheric
LES there is a lot of merit to the numerical studies of turbulence that these models were
designed for, and the discussion here is in no way meant to diminish them. That said,
for NWP with a stated goal of accurate physics, these formulations are only correct on
very high-resolution grids. While the objectives for LES turbulence models have changed
throughout their development, it is interesting to consider the original objectives at their
development.

To give a very abbreviated history of LES turbulence closure models, Smagorinsky
(1958, 1963) formulated his model for a very primitive two-level, vorticity-conserving general
circulation code at a time when a viscous fluid had never before been numerically integrated
on a computer. His intention was to generate a general circulation by dissipating vorticity in
the xy-plane to surface friction in the lower layer, which would then be transported to the
upper layer by the vorticity conservation inherent in his formulation. The two key points to
note here are: first, that the original Smagorinsky (1958) SGS model’s aim was to generate
resolved circulations via local transport created by the dissipation of an explicitly conserved
quantity (i.e. diffusion of vorticity); second, that his computing resources were so limited
that generating physical features that appeared accurate was considered a bonus.

Lilly (1962) reformulated Smagorinsky’s model for three-dimensional, fine-scale turbulence
by adding a stability constraint in the vertical direction. Similar to Smagorinsky, Lilly was
simply trying to simulate the turbulent momentum cascade observed by experiments on
a grid, and was navigating uncharted territory and doing so with such limited resources
that generating turbulence at all was considered a success. As well, Lilly (1962) is very
clear that the grid is assumed within the inertial subrange in his SGS formulation. The
three key points to note here are: first, that the Smagorinsky-Lilly SGS model’s formulating
assumption is that the grid-scale is in the inertial subrange; second, that generating eddies
on the grid is prioritized over scale-correct dynamics in the formulation of the Smagorinsky-
Lilly model; and third, that the classical formulation of the turbulent lengthscales in the
Smagorinsky-Lilly model is only appropriate for modeling a physically-realistic atmosphere
on very high-resolution grids.

Around the same time, Deardorff (1972) began developing models to prognosticate the
advection, production and dissipation of SGS TKE to inform these fine-scale turbulence
modeling efforts, leading to the familiar 1.5-order TKE model. The so-called TKE-1.5 model
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is largely unchanged since its inception by Deardorff (1972), at least in its implementation
into the WRF model.

Again, none of this is meant as a slight to the Smagorinsky-Lilly or TKE-1.5 models, as
they are simple, elegant, cheap (the Smagorinsky-Lilly more so than the TKE-1.5 in this
regard) and do exactly what they were designed to do. However, it is important to understand
what they were intended to do, which is to generate as many eddies on the grid-scale as
possible.

4.1.2 An alternative formulation for anisotropic eddy-viscosity
models

As described in Sec. 4.1.1, the original isotropic Smagorinsky-Lilly turbulence closure model
was formulated with the specific assumption “that the scale of the calculation mesh lies
within the inertial range” (Lilly, 1967), and the model was originally formulated with the
goal of producing a three-dimensional turbulent momentum cascade on a grid. Anisotropic
efforts since have focused on the approach outlined in Sec. 1.6.2, the deficiencies of which
were discussed in Chapter 3. The result is that eddies are resolved on the grid-scale by the
turbulence closure model at resolutions that are too coarse to represent physically-realistic
resolved motions (Ch. 2). with the anisotropic formulations. This is not without merit, as
these models were designed to study turbulence via numerical simulation.

In the case of LES being used for high-resolution NWP, the objectives are quite different
than those of the original formulators of the eddy-viscosity models. Instead of using the
turbulence closure model to encourage resolving eddies on any grid, we would like to use
the closure model to provide smoothing and/or dissipation when and where appropriate to
develop accurate and consistent velocity and temperature fields at any resolution, but also to
not overly suppress energy that would be resolved on a higher-resolution grid. That is, we
want to develop appropriate scales of energy on whatever grid resolution is used; essentially
to develop a consistent spectra of resolved TKE for whichever wavenumbers are available.

Considering, as a thought-experiment, the horizontal and vertical directions independently
for an ABL, it a large coefficient on a diffusive term taken over ∂2/∂x2, i.e. a large value
for Kh, will result in a large amount of smoothing of waves over ∆x,y, starting with the
wavelengths nearest to the grid’s Nyquist limit in that direction, i.e. λ ≈ 2∆x,y. However,
this is only desirable if it is desirable to enforce that ∆x,y is in the inertial subrange. For an
atmospheric LES, where scale-correct dynamics are preferential to developing a turbulent
momentum cascade, the only waves that should be smoothed in either direction are those that
are either “sub-filter scale” or those that are too energetic. Recalling that numerical diffusion
increases with grid-spacing and the results seen in Ch. 3, the overly-energetic motions in the
horizontal wavespace are adequately dissipated without any explicit SGS model. However,
there are many wavenumbers that are resolvable in ∆z on these highly-anisotropic grids that
are smaller than the horizontal Nyquist limit, and thus are SFS motions in x but not in z.
The vertical direction also receives much less numerical diffusion by virtue of being finer-scale,
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so any stability-related efforts should be focused in the vertical direction. This is a fine
balance of choosing the correct length scale and coefficients (e.g. Smagorinsky constant) to
achieve the desired balance of resolved turbulence and SGS smoothing. This was also seen
in the no-model results of Ch. 3, where the ∆x,y = 1.2 km resolved u-velocity profiles were
significantly under-smoothed compared to the ∆x,y = 100 m case.

Following up said thought experiment with a numerical experiment, both the anisotropic
Smagorinsky-Lilly and anisotropic TKE-1.5 models were modified to be formulated as

lh = ∆z,

lv = ∆x,y, (4.1)

where the lengthscales are then treated as they normally are in the anisotropic TKE-1.5
eddy-viscosity calculation. The implementations of the original and alternative-anisotropic
TKE-1.5 models into the WRF code are presented in Appx. 4.A.1.2. Note that, currently,
this adjustment in the TKE-1.5 model is made for the eddy-viscosity calculation only, and is
not included in any calculations inside the prognosticated TKE equation. The impacts of
this choice will be examined in future work.

The Smagorinsky-Lilly model was then adjusted further in its alternative-anisotropic
formulation based on diagnosable deficiencies, until the following formulation was found.
First, a partitioning similar to the anisotropic-deformation formulation discussed in Ch. 3 is
taken, but recalling that the motivation is to mix vertically, the S33 term is moved to the Sv
term, i.e.

Sh =
√
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2

31 + S
2

32

)1/2

, (4.2)

so that S33 will now be paired with the larger of the two lengthscales after applying the
forthcoming re-definition of the lengthscales. Note that this is different than the partitioning
used in the anisotropic-deformation Smagorinsky-Lilly formulation presented previously in
Ch. 3. One possible explanation offered for the partitioning in Eq. (4.2) is that, recalling the
discussions of Secs. 1.3 and 1.3.1, it may not be safe to assume a constant thermodynamic
equilibrium in the pressure field on such anisotropic grids.

Finally, recalling the behavior of the no-model case in Chs. 2 and 3, where the no-model
resolved TKE spectrum actually showed the most resolved TKE, the new lengthscale is
formulated to scale with height in order to allow resolved mixing to be triggered at the
surface, so that gradients may be smoothed out vertically by resolved mixing before being
smoothed out horizontally by SGS mixing. Once the TKE is in the atmosphere, it may then
be dissipated by the model, but it must first be allowed to enter into the resolved scale.

Thus, for the Smagorinsky-Lilly model, the alternative-anisotropic lengthscales are imple-
mented as

l2h =
(
z
)(

∆z

)
,

l2v =
(
z
)(

∆x,y

)
, (4.3)
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where z is height AGL. While the turbulent lengthscales are set alternatively [i.e. as in
Eq.( 4.3)], the numerical-stability-based upper limits for Kh,v are set with the original grid
lengths, as can be seen in the implementations of the original and alternative-anisotropic
Smagorinsky-Lilly models into the WRF code presented in Appx. 4.A.2.2.

The alternative-anisotropic formulation is considered for both the Smagorinsky-Lilly and
TKE-1.5 models. For convenience and simplicity, these reformulations will be referred to in
figure labels as “alt.Smag.” and “alt.TKE-1.5”, respectively.

It is generally found that Cs = Ck = 0.1 works best for the alternative-anisotropic
Smagorinsky-Lilly and alternative-anisotropic TKE-1.5 models, respectively, which is what is
shown in this manuscript, though there is certainly room for improvement in the tuning of
and further understanding of these coefficients. Other than this coefficient being lightly tuned
(or simplified to be Cs = Ck = 0.1) and the re-defining of the turbulent lengthscales and
the noted partitioning of deformations into anisotropic components in the Smagorinsky-Lilly
model, there are no special changes made to the code for either model implementation.

It is worth pointing out that, while the alternative-anisotropic Smagorinsky-Lilly model
does have some additional modifications other than the swapping of the lengthscales, the
alternative-anisotropic TKE-1.5 model is only modified as Eq. (4.1) in the calculation of
the final turbulent stresses, τij, and not in the prognostic TKE equation. The alternative-
anisotropic TKE-1.5 formulation is equivalent to the isotropic TKE-1.5 model on isotropic
grids.

4.2 Results

Here the alternative-anisotropic formulation for the Smagorinsky-Lilly and TKE-1.5 models
will be presented and compared to the standard isotropic and anisotropic formulations of the
two models. They will be evaluated by the same criteria used for eddy-viscosity models in
Ch. 3 for multiple combinations of surface heat flux and column mean wind. The first case
considered is a free-convection version of the case from Ch. 3 (where w′θ′s = 0.3 m K s−1),
using the same initial potential-temperature profile but with all velocities, as well as the
geostrophic forcing, set to zero. The second case considered is the identical case to Ch. 3.
Analysis is extended to coarser ∆x,y = 5 km grids here, in addition to the ∆x,y = 1.2 km
already seen. At ∆x,y = 5 km the anisotropic Smagorinsky-Lilly model is replaced with the
anisotropic-deformation Smagorinsky-Lilly model, as will be discussed. Other cases are also
considered in less detail with larger and smaller heating rates and larger mean wind speeds,
leading to some very interesting observations, conclusions and open questions for future work.

Some of the following analysis will consider only the standard isotropic and anisotropic
TKE-1.5 model, as the TKE-1.5 performance was superior to the Smagorinsky-Lilly model in
both formulations, as seen in Ch. 3. Analysis of the performance of the standard TKE-1.5
model, both in isotropic and anisotropic formulations, will not be heavily repeated here
except as relevant as compared to the alternative-anisotropic models. Note that the standard
versions used here are with the original WRF v3.8.1 implementation, before either of the
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changes described in Ch. 3 (referred to as “alt13” and “alt33” there), with the exception of the
5-km simulations below which use the anisotropic-deformation Smagorinsky-Lilly formulation.

4.2.1 Free convection

4.2.1.1 At 1.2-km horizontal resolution

The first case presented is a wind-free (i.e. u0 = 0 m s−1) simplification of the case presented
previously in Ch. 3, but all other model and grid settings remain identical. Considering first
the planar-averaged resolved potential temperature and u-velocity profiles, the subtle but
familiar signatures of the isotropic and anisotropic TKE-1.5 models are visible, though not
strikingly so, in the potential-temperature profiles (Fig. 4.1). Those signatures are: in the
first few hours the isotropic model has a profile that is visibly under-mixed and there is a lack
of entrainment at the CBL top during the first few hours compared to the high resolution
results. Resolved turbulence appears to begin in the t = 5 hours profile, after which the
profiles appear very well mixed with visible entrainment, though with a near-surface adiabatic
layer that has the appearance of being slightly too deep and gentle. The anisotropic TKE-1.5
model tends to be more severely under-mixed before resolved convection begins, but resolved
convection begins earlier than in the isotropic case and develops a near-surface layer that is
both too deep and too warm. For this wind-free case, neither model generates a significant
mean-wind, which is the correct behavior.

The alternative-anisotropic models both perform similarly to each other, with the only
noticeable differences in the planar-averaged resolved potential temperature profiles in the first
couple of hours. The alternative-anisotropic Smagorinsky-Lilly model is more under-mixed
in the first hour than the isotropic TKE-1.5 model, but less than the anisotropic TKE-1.5
model. The alternative-anisotropic TKE-1.5 model appears to be the most mixed profile of
the four shown in the first hour, and there is visible entrainment in the CBL top, which cannot
be said for the other three models. The second-hour profiles of the alternative-anisotropic
models are interesting in that the alternative-anisotropic Smagorinsky-Lilly model generates
a more-developed near-surface layer, while the TKE-1.5 version has not yet developed a clear
near-surface layer, but is entraining aloft at a rate that appears similar the high-resolution
case shown for comparison. By the third hour, both alternative-anisotropic models generate
profiles that agree well with the high-resolution case, and continue to do so for the duration
of the simulation.

Slices of the resolved vertical velocity (w) through the z ≈ 518-m plane at hours 4 and
6 are shown in Fig. 4.2. The familiar behavior of the isotropic and anisotropic TKE-1.5
model is presented for reference, showing that the alternative-anisotropic formulations for
both the Smagorinsky-Lilly and TKE-1.5 models are generating smaller scales than both
traditional formulations of the TKE-1.5 model. As well as resolving turbulence at a smaller
scale, the t = 4 hour slices show high amounts of early resolved turbulence in both alternative-
anisotropic models, unlike the isotropic TKE-1.5 model which appears very calm relative to
the other three. The alternative-anisotropic models appear to combine the earlier onset of



CHAPTER 4. A PROMISING ALTERNATIVE ANISOTROPIC FORMULATION FOR
EDDY-VISCOSITY MODELS FOR ATMOSPHERIC LES 75

resolved mixing seen in the traditional anisotropic formulations with the smaller scales of
resolved TKE seen in the isotropic formulations, inspiring further consideration.

Considering the TKE in w′w′, as before, the alternative-anisotropic models both show
an improved performance over the standard models for this case (Fig. 4.3 – 4.6). First
discussing the alternative-anisotropic Smagorinsky-Lilly model, both the time-evolution of
〈w′w′ 〉 in space and the resolved energy spectra, S33, over the final two hours show some
unique qualities (Fig. 4.3). While the traditional models are both delayed longer than
five hours before they begin resolving turbulence, the alternative-anisotropic model has
triggered resolved turbulence by the first hour. As well, while the traditional models both
begin with a very visible oscillation in the time series, the alternative-anisotropic case has a
smoother onset of w′w′. The resulting critical wavelength in the alternative-anisotropic case
is smoother versus time than the standard models, though it still shows a higher λc than the
high-resolution case due to the coarser horizontal resolution in this test case. Considering the
spectra of the three models, the alternative-anisotropic formulation appears to agree closest
to the high-resolution control case. Compared to the high-resolution case, the isotropic model
is visibly missing energy at both the lower and higher wavenumber ends of the spectrum,
and the traditional anisotropic model has the same general shape as the high-resolution case
but with a significant shift towards lower wavenumbers. The alternative-anisotropic case
compared to the high-resolution case, however, shows a very high amount of agreement, and
is only missing significant amounts of energy in the highest wavenumbers on the grid.

Contours of the resolved spectra, S33, in time show that, again, the alternative-anisotropic
Smagorinsky-Lilly model is visually the best-performing Smagorinsky-Lilly formulation
(Fig. 4.3). The alternative-anisotropic model begins resolving TKE earlier than either other
formulation, and at a smaller and more consistent scale.

The alternative-anisotropic TKE-1.5 model shows similar improvement compared to the
traditional isotropic and anisotropic formulations, though less dramatic, partly owing to
the traditional TKE-1.5 model performing better at ∆x,y = 1.2 km than the traditional
Smagorinsky-Lilly model. Considering the time series of w′w′, the alternative-anisotropic
TKE-1.5 model actually shows a slightly increased delay in resolved turbulence compared
to the traditional anisotropic model and its onset of resolved TKE is not as smooth as
the alternative-anisotropic Smagorinsky-Lilly model (Fig. 4.5. The alternative-anisotropic
TKE-1.5 model produces a smaller critical lengthscale λc than the standard versions, though
all versions show some oscillations with time. Improvement is also seen in the spectra of
the resolved turbulence at the finest scales, S33, however the improvement over the isotropic
model is less pronounced due to the isotropic TKE-1.5 model delivering superior spectra to
the isotropic Smagorinsky-Lilly model.

Contours of spectra for the TKE-1.5 models confirm what was seen above, where the
alternative-anisotropic TKE-1.5 model shows the smoother and smaller-scale energy but
is delayed in its onset compared to the traditional anisotropic TKE-1.5 model (Fig. 4.6).
Considering that the delay in TKE is lesser in the traditional anisotropic model, this delay in
resolved w′w′ for the alternative-anisotropic TKE-1.5 model is possibly due to the lengthscales
in the SGS TKE-1.5 routines (prognosticated TKE equations) not being updated to correspond
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to the eddy-viscosity calculation, and is the subject of future work.
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Figure 4.1: Resolved potential temperature and u-velocity profiles for ∆x,y = 1.2 km using the
current isotropic (far left) and anisotropic (middle left) TKE-1.5 implementations, compared
to the alternative-anisotropic Smagorinsky-Lilly (middle right) and alternative-anisotropic
TKE-1.5 (far right). High-resolution (∆x,y = 100 m) isotropic TKE-1.5 case overlaid for
resolved potential temperature (dotted black) and u-velocity (faded black). Full-column
profiles shown in Appx. 4.B.

Figure 4.2: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (top) and 9 (bottom)
hours for the ∆x,y = 1.2 km cases using the current isotropic (far left) and anisotropic (middle
left) TKE-1.5 implementations, compared to the alternative-anisotropic Smagorinsky-Lilly
(middle right) and alternative-anisotropic TKE-1.5 (far right).
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Figure 4.3: Metrics of the resolved vertical velocity field, w, averaged over the z ≈
169 m to 1.79 km planes for the ∆x,y = 1.2 km cases using the Smagorinsky-Lilly model
with current isotropic and anisotropic, as well as alternative-anisotropic, lengthscales: total
resolved TKE (w′w′) in time (far left), the same in log-log scale (middle left), critical wave-
length of w′w′ in time (middle right), and spectra of resolved TKE (S33) averaged over the
final two hours (far right)

Figure 4.4: Contours of spectra of resolved TKE in the vertical velocity (S33) in time for the
∆x,y = 1.2 km cases using the Smagorinsky-Lilly model with current isotropic and anisotropic,
as well as alternative-anisotropic, lengthscales, with the critical wavelength (dotted white)
and horizontal Nyquist limit (dotted black) overlaid.
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Figure 4.5: As in Fig. 4.3 but using the TKE-1.5 model.
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Figure 4.6: As in Fig. 4.4 but using the TKE-1.5 model.
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4.2.1.2 At 5-km horizontal resolution

Considering the same case at ∆x,y = 5 km results in a very clear demonstration of the
differences in the models considered, where each model behaves almost like a caricature
of itself, in the planar-averaged profiles and velocity slices, but particularly in the energy
spectra.

Considering the planar-averaged profiles first, following the precedent of the manuscript,
the isotropic Smagorinsky-Lilly model shows planar averaged profiles of resolved potential
temperature column that are fully mixed throughout the simulation but with no visible
resolved surface layer or entrainment (Fig. 4.7). The anisotropic Smagorinsky-Lilly model
(standard WRF version) was unable to complete the simulation and was thus replaced with
the anisotropic-deformation Smagorinsky-Lilly model (“ad.Smag”), which, based on the
profiles of potential temperature, appears to suppress mixing until approximately midway
into the simulation, after which a very deep surface layer is resolved, with very minimal
entrainment at the CBL top. The alternative-anisotropic Smagorinsky-Lilly model, like the
other two Smagorinsky-Lilly formulations that produced a solution (i.e. the isotropic and
anisotropic-deformation Smagorinsky-Lilly models), is unable to generate entrainment at the
CBL top. However, in character, the near-surface layer is nicely resolved considering the
horizontal resolution available. The velocity profiles show no mean wind as expected.

The planar-averaged profiles for the isotropic and alternative-anisotropic TKE-1.5 model
appear very similar, with both showing very well-mixed profiles that are visibly too sharp
(sharp gradients at the top of the boundary layer), the alternative-anisotropic version more so
than the isotropic version (Fig. 4.8). Both the isotropic and alternative-anisotropic versions
appear to under-develop the near-surface layer, consistent with the behavior seen by both
models, but exhibit reasonable entrainment, with sharper gradients and the alternative-
anisotropic slightly over-entraining at the CBL top. The anisotropic TKE-1.5 model struggles
to mix the surface heat flux in the first 6 hours, and then produces a near-surface layer that
is visibly much deeper than the reference high-resolution profile.

The slices of resolved vertical velocity at the same time and vertical-levels considered
previously (z ≈ 518 m and t = 4, 9 hours) show generally the same behavior as seen before
and do not reveal anything particularly new. However, they are presented in Appx. 4.C.1 for
the interested reader.

The TKE spectra for the resolved vertical velocity is very informative of the underlying
behavior of the different models (Fig. 4.9). All four panels of the w′w′ diagnostic figure are
presented for the familiar reader, but discussion will focus on the final panel considering
the spectrum in wavespace, osvv. Compared to the ∆x,y = 100 m case using the isotropic
TKE-1.5 model as a reference (recalling that all models produced largely the same spectra),
the different behavior of the models is more pronounced than at finer resolutions, and is
very aligned with everything learned about the models thus far. The two isotropic models,
both Smagorinsky-Lilly and TKE-1.5 implementations, produce spectra that are largely flat
across scalar wavespace (kh), with the Smagorinsky-Lilly model staying flat past the largest
wavelength of the isotropic and alternative-anisotropic TKE-1.5 models (which agree with
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each other at the longest wavelengths). The isotropic TKE-1.5 model has a production-rate
that is very visible, and in agreement with the rest of the models, but it both dissipates a lot
of energy overall, and also, like the isotropic Smagorinsky-Lilly model, creates a spectrum
that is largely flat across the present scales of kh.

In contrast, the alternative-anisotropic TKE-1.5 model, which agrees with the isotropic
TKE-1.5 model at the coarsest scales, continues producing TKE at the same production-rate
until very close to the grid’s Nyquist limit. The alternative-anisotropic Smagorinsky-Lilly
model behaves much the same as the alternative-anisotropic TKE-1.5 model, but allows
significantly more resolved energy on the grid and nearly overlaps with the reference high-
resolution case. The low levels of resolved energy seen in Fig. 4.9 are because the simulations
have not yet begun resolving turbulence, though it can be seen in the log-log time-series that
all models appear to beginning to trigger mixing at the end of the 9-hour simulation. Longer
simulations will be considered in future work.

The standard anisotropic implementations of both models show a very similar behavior to
each other, and also fitting with their established behavior, where they have the same general
aforementioned production rate, which all models other than the isotropic Smagorinsky-Lilly
model seem to agree upon, but then resolve energy at the largest scales possible, rather than
the finest scales possible. As has been stated previously in the analysis and criticism of the
models considered, resolving a turbulent cascade on the grid is the objective of the traditional
eddy-viscosity models, and to this end, again, they excel. Unfortunately, as has also been
stated previously, in the case of NWP, this is the opposite behavior than is desired.

Contours of the w′w′ energy spectra, S33, in time are also interestingly informative of the
behavior of the models (Fig. 4.10 and 4.11). The isotropic Smagorinsky-Lilly model very
visibly dissipates its seeded TKE in the first three hours and shows no signs of triggering
significant amounts of resolved turbulence. The anisotropic-deformation Smagorinsky-Lilly
model begins resolving TKE relatively early and the spectra develops in the correct nature,
but, again, at too large of a scale for the physics driving this case, confirming what was
seen from the time-averaged spectra of anisotropic-deformation Smagorinsky-Lilly model in
Fig. 4.9. The alternative-anisotropic Smagorinsky-Lilly model does begin resolving turbulence
at a very small scale, relative to the grid, and it was seen in the Fig. 4.9 that the resolved
energy in w′w′ is in excellent agreement with the high-resolution case. However there is also a
very visible delay in the onset of resolved turbulence compared to both a high-resolution case
(see Ch. 3) and the anisotropic-deformation Smagorinsky-Lilly model at the same resolution.

The different versions of the TKE-1.5 model show a similar, but improved, behavior
compared to the Smagorinsky-Lilly implementations. The isotropic TKE-1.5 model does also
visibly dissipate a lot of its seeded TKE in the first hour, but it does not dissipate it all like
the Smagorinsky-Lilly model, and appears as if it could trigger resolved turbulence if let to
run longer (though that is largely speculative). The anisotropic TKE-1.5 model, similarly
to the anisotropic-deformation Smagorinsky-Lilly model, begins resolving TKE earlier than
either the isotropic or alternative-anisotropic formulations, however at a scale that is visibly
much too large, and again similar to the anisotropic-deformation Smagorinsky-Lilly model,
with a behavior that appears similar to the high-resolution case, rather than physically correct.
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Unlike the anisotropic-deformation Smagorinsky-Lilly model, the anisotropic TKE-1.5 model
takes nearly seven hours to to really start resolving TKE. Similar to the behavior seen in
Sec. 4.2.1.1, it is hypothesized here that this behavior is related to, and can be addressed via,
the lengthscales associated with different processes in the prognostic TKE calculation.
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Figure 4.7: As in Fig. 4.1 but for ∆x,y = 5 km using versions of the Smagorinsky-Lilly model.
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Figure 4.8: As in Fig. 4.1 but for ∆x,y = 5 km using versions of the TKE-1.5 model.
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Figure 4.9: As in Fig. 4.3 but for ∆x,y = 5 km cases using the current isotropic Smagorinsky-
Lilly model, isotropic and anisotropic TKE-1.5 model, the alternative-anisotropic Smagorinsky-
Lilly and alternative-anisotropic TKE-1.5 models.
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Figure 4.10: As in Fig. 4.4 but for ∆x,y = 5 km cases using the current isotropic
Smagorinsky-Lilly, the anisotropic-deformation Smagorinsky-Lilly and the alternative-
anisotropic Smagorinsky-Lilly models.

Figure 4.11: As in Fig. 4.4 but for ∆x,y = 5 km cases using the current isotropic and
anisotropic TKE-1.5, and the alternative-anisotropic TKE-1.5 models.
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4.2.2 Sheared convection

There are two pertinent questions features to examine when adding wind to the initial column.
The first is whether or not the alternative-anisotropic models develop wind profiles as well as
they develop potential-temperature profiles. The second is whether the presence of a mean
wind and shear at the surface effects the potential-temperature development seen in the
quiescent case.

4.2.2.1 At 1.2-km horizontal resolution

Considering the ∆x,y = 1.2 km grids, as to the first question above, the potential-temperature
profiles appear actually improved, and certainly are not worse. The u-velocity profiles are
interesting, where the alternative-anisotropic Smagorinsky-Lilly model appears to generally
match the high-resolution case worse, in that its profile is not damped enough near the CBL
top. However, the near-surface layer is better developed and thinner than any of the other
cases considered, which is the same behavior that is seen in the potential-temperature profiles.
The alternative-anisotropic TKE-1.5 model shows a well-developed potential-temperature
profile compared to the high-resolution case, although it must be said the near-surface layer
is not as well-defined as in the alternative-anisotropic Smagorinsky-Lilly model (which is
also true in the u-velocity profiles). The u-velocity profile for the alternative-anisotropic
TKE-1.5 model is well behaved compared to the high-resolution case, avoiding the increased
velocity seen in the alternative-anisotropic Smagorinsky-Lilly profile. Based on the planar-
averaged profiles of u-velocity alone, the alternative-anisotropic TKE-1.5 case is better than
the anisotropic TKE-1.5 case, which is overly-effected by the drag at the surface, but appears
very similar to the isotropic TKE-1.5 case here.

Velocity slices are not significantly different from the previous case to warrant analysis,
but are presented for completeness in Appx. 4.C.2.

The energy spectra in the w′w′ field, S33, for the different Smagorinsky-Lilly formulations
shows the same behavior as before, where the isotropic case under-resolves energy on both
ends of the spectrum and the anisotropic Smagorinsky-Lilly model shifts the entire spectrum
towards longer wavelengths (Fig. 4.13). The alternative-anisotropic Smagorinsky-Lilly model,
on the other hand, agrees much closer, at least visually, with the high-resolution case at the
coarse end of the spectrum, and agrees relatively well with the high-resolution spectrum
until very close to the grid’s Nyquist limit, resolving visibly more energy than the isotropic
Smagorinsky-Lilly model at both the low-wavenumber and high-wavenumber modes available
on the ∆x,y = 1.2 km grid.

Contours of S33 for the Smagorinsky-Lilly formulations show the same improved perfor-
mance as seen before (Fig. 4.14).

Considering the familiar metrics of w′w′ for the isotropic, anisotropic and alternative-
anisotropic TKE-1.5 model, the alternative-anisotropic TKE-1.5 model again appears very
similar to the isotropic TKE-1.5 case, while the anisotropic TKE-1.5 case shows the undesirable
behavior that was well-documented in Ch. 3 (Fig. 4.15). However, despite the general
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similarities between the isotropic TKE-1.5 model and the alternative-anisotropic TKE-1.5
model, the alternative-anisotropic TKE-1.5 model begins resolving TKE more than an hour
earlier than the isotropic TKE-1.5 model and develops in a smoother time-series than the
isotropic TKE-1.5 model. As well, the alternative-anisotropic TKE-1.5 model generates
visibly more energy on the finest scales of the S33 spectrum compared to either of the other
models, though the difference is not as drastic as for the Smagorinsky-Lilly model. The
same can be said for the contours of S33 in time (Fig. 4.16), which appear better for the
alternative-anisotropic TKE-1.5 case by virtue of the TKE being triggered earlier than the
isotropic case and at a finer scale than in the anisotropic case, however, like in the no-wind
case before, the anisotropic TKE-1.5 model begins resolving turbulence before either of the
other models. This once again leads to the conclusion that there is a better formulation of
the alternative-anisotropic TKE-1.5 model possible, which will be the subject of future work.
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Figure 4.12: Resolved potential temperature and u-velocity profiles for ∆x,y = 1.2 km
using the current isotropic (far left) and anisotropic (middle left) TKE-1.5 implementations,
compared to the alternative-anisotropic Smagorinsky-Lilly (middle right) and alternative-
anisotropic TKE-1.5 (far right). High-resolution (∆x,y = 100 m) isotropic TKE-1.5 case
overlaid for resolved potential temperature (dotted black) and u-velocity (faded black).
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Figure 4.13: Metrics of the resolved vertical velocity field, w, averaged over the z ≈
169 m to 1.79 km planes for the ∆x,y = 1.2 km cases using the Smagorinsky-Lilly model
with current isotropic and anisotropic, as well as alternative-anisotropic, lengthscales: total
resolved TKE (w′w′) in time (far left), the same in log-log scale (middle left), critical wave-
length of w′w′ in time (middle right), and spectra of resolved TKE (S33) averaged over the
final two hours (far right)

Figure 4.14: Contours of spectra of resolved TKE in the vertical velocity (S33) in time for the
∆x,y = 1.2 km cases using the Smagorinsky-Lilly model with current isotropic and anisotropic,
as well as alternative-anisotropic, lengthscales, with the critical wavelength (dotted white)
and horizontal Nyquist limit (dotted black) overlaid.
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Figure 4.15: As in Fig. 4.13 but using the TKE-1.5 model.
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Figure 4.16: As in Fig. 4.14 but using the TKE-1.5 model.
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4.2.2.2 At 5-km horizontal resolution

At ∆x,y = 5 km, the conclusions are much the same as before in both the ∆x,y = 1.2 km case
with wind and the ∆x,y = 5 km case without wind. Specifically, the isotropic models produce
a decent solution but by means of a mean-profile with minimal resolved turbulence, as seen
in the planar-averaged profiles (Fig. 4.17), slices of resolved vertical velocity in the z ≈ 518-m
plane at t = 4 and 9 hours (Fig. 4.18).

Of more interest is that the same behavior is seen in the energy spectra for w′w′, i.e.
S33 (Fig. 4.19). Again, the isotropic Smagorinsky-Lilly and TKE-1.5 models create energy
spectra that are essentially flat in wavenumber space. Interestingly, the presence of shear has
shifted the 5-km S33 spectrum for the alternative-anisotropic TKE-1.5 case towards lower
wavenumbers, though not to the degree that the traditional anisotropic TKE-1.5 model is
shifted to lower wavenumbers. The alternative-anisotropic Smagorinsky-Lilly model shows a
similar behavior as at 5-km resolution without a mean wind, but does not resolve as much
energy by the final two hours of the simulation. Generally, the same behavior is seen in the
spectra, but the presence of shear is noticeably dissipating energy at the finest scales, even
when there is not superfluous energy to be dissipated. Contours of S33 in time show the same
behavior and are included in Appx. 4.C.2.
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Figure 4.17: As in Fig. 4.12 but for ∆x,y = 5 km cases using the current isotropic Smagorinsky-
Lilly model, isotropic and anisotropic TKE-1.5 model, the alternative-anisotropic Smagorinsky-
Lilly and alternative-anisotropic TKE-1.5 models.
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Figure 4.18: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (top) and 9
(bottom) hours for the ∆x,y = 5 km cases using the current isotropic Smagorinsky-Lilly model,
isotropic and anisotropic TKE-1.5 model, the alternative-anisotropic Smagorinsky-Lilly and
alternative-anisotropic TKE-1.5 models.
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Figure 4.19: As in Fig. 4.13 but for ∆x,y = 5 km cases using the current isotropic Smagorinsky-
Lilly model, isotropic and anisotropic TKE-1.5 model, the alternative-anisotropic Smagorinsky-
Lilly and alternative-anisotropic TKE-1.5 models.
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4.2.3 Other cases

Three other cases are considered to attempt to further isolate the different effects of buoyant
and shear effects. Their results will be presented in Secs. 4.2.3.1 – 4.2.3.2, below, via the
familiar figures of planar-averaged potential temperature and u-velocity, slices of resolved
vertical velocity and energy spectra of TKE in the vertical direction, but will be discussed
together here for the sake of brevity. For all cases shown here, the reference high-resolution
control is a corresponding ∆x,y = 100 m case using the isotropic TKE-1.5 model.

In Sec. 4.2.3.1 the surface heat flux is increased to w′θ′s = 0.4 m K s−1 for a case with no
mean wind or geostrophic forcing. In brief, the results show similar promise. At ∆x,y = 1.2 km,
resolved planar-averaged profiles show good visual agreement with the reference high-resolution
case (Fig. 4.20 and 4.21), resolved velocities appear to be at the appropriate scale for the
grid both visually (Fig. 4.22 and 4.23) and in the energetics (Figs. 4.24), and the contours
of the resolved spectra begin resolving TKE early and smoothly, and at a consistent scale
(Fig. 4.25). In summary, for a purely convective atmosphere the alternative-anisotropic model
performs well for Smagorinsky-Lilly and TKE-1.5 implementations compared to both the
other standard eddy-viscosity formulations considered and the reference high-resolution case
and warrant further consideration.

In Sec. 4.2.3.2, the surface heat flux is reduced to w′θ′s = 0.15 m K s−1 and the initial
mean wind is increased to u0 = 8 m s−1 near the surface. Considering the planar-averaged
profiles, the alternative-anisotropic Smagorinsky-Lilly (Fig. 4.26) and alternative-anisotropic
TKE-1.5 (Fig. 4.27) again show good agreement with the high-resolution case and the other
cases, both developing visual entrainment and the alternative-anisotropic Smagorinsky-Lilly
model developing the thinnest surface layer, as was seen before. The development of the
resolved u-velocity profiles by the alternative-anisotropic models is of particular interest,
where both isotropic eddy-viscosity models show very rigid, sharp profiles (which should
be expected, in hindsight, considering that it is an isotropic model) and the anisotropic
Smagorinsky-Lilly model generates a velocity profile that can only be described as incorrect
in nearly every way, and appears to be actually reinforcing the xz-plane shear instead of
mixing it upwards into the ABL. The anisotropic TKE-1.5 model shows this same behavior
in the first few hours, before resolved mixing begins (as can be confirmed by both the shape
of the resolved potential temperature profiles and later in time series of w′w′), but then
reverts to the correct velocity profile after resolved mixing begins. The alternative-anisotropic
TKE-1.5 model behaves like the isotropic TKE-1.5 model until resolved mixing begins, at
which point it also begins resolving a velocity profile that compares, visually, relatively well
to the high-resolution case though with overly-sharp gradients in velocity and potential
temperature. Considering the resolved velocity fields shows the same conclusions as for every
case thus far, but they do provide a nice visual confirmation (Figs. 4.28 and 4.29).

The time-series and spectra of w′w′ for this case show an interesting behavior that has
yet to be seen in this manuscript (Fig. 4.36). The isotropic Smagorinsky-Lilly case shows
a behavior that is clearly numerical in nature, showing bursts of energy across the entire
spectrum that are immediately dissipated, as can also be seen in the time-contours of S33
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(Fig. 4.37). Both isotropic models show average resolved spectra over the final two hours
(Fig. 4.36 far right panel) that appear to peak near an appropriate value, but with a very
strange behavior at the highest wavenumbers of a decreased dissipation rate, and as well
show an overly-sharp production rate on the lower wavenumbers. The alternative-anisotropic
TKE-1.5 model shows a similar behavior but allows more energy to be resolved. The
alternative-anisotropic Smagorinsky-Lilly model shows the best-looking spectra, but does
not agree as well with previous high-resolution cases. This case warrants more computing
resources for investigation, as it appears that the productive lengthscales are not yet fully
resolved even on the high-resolution case (which contains 801× 401 points. This could be
said for most of the cases presented here, but this particular balance of high-shear and
low-surface-heat appears to exacerbate the issue.

In Sec. 4.2.3.3, the surface heat flux is increased to w′θ′s = 0.45 m K s−1 with the same
initial profile as the previous section with a mean column profile of u0 = 8 m s−1 near the
surface. To be brief, the performance of the alternative-anisotropic eddy-viscosity models in
this case show good agreement with the high-resolution control case without the large and
very visible faults seen in the high-shear case.

The implications for future work by the behavior shown in the high-shear, low-heat case
are, in the author’s opinion, quite vast. The most immediate topics are further investigations
of the lengthscales of buoyant and shear-driven production and dissipation in the TKE-1.5
turbulence closure model to deliver consistent results on highly anisotropic grids.



CHAPTER 4. A PROMISING ALTERNATIVE ANISOTROPIC FORMULATION FOR
EDDY-VISCOSITY MODELS FOR ATMOSPHERIC LES 92

4.2.3.1 For w′θ′s = 0.4 m K s−1, u0 = 0 m s−1
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Figure 4.20: As in Fig. 4.1 but for w′θ′s = 0.4 m K s−1, u0 = 0 m s−1 cases using the
current isotropic and anisotropic Smagorinsky-Lilly model, and the alternative-anisotropic
Smagorinsky-Lilly model.
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Figure 4.21: As in Fig. 4.1 but for w′θ′s = 0.4 m K s−1, u0 = 0 m s−1 cases using the current
isotropic and anisotropic TKE-1.5 model, and the alternative-anisotropic TKE-1.5 model.
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Figure 4.22: As in Fig. 4.2 but for w′θ′s = 0.4 m K s−1, u0 = 0 m s−1 cases using the
current isotropic and anisotropic Smagorinsky-Lilly model, and the alternative-anisotropic
Smagorinsky-Lilly model.

Figure 4.23: As in Fig. 4.2 but for w′θ′s = 0.4 m K s−1, u0 = 0 m s−1 cases using the current
isotropic and anisotropic TKE-1.5 model, and the alternative-anisotropic TKE-1.5 model.
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Figure 4.24: As in Fig. 4.3 but for w′θ′s = 0.4 m K s−1, u0 = 0 m s−1 cases using the
current isotropic Smagorinsky-Lilly model, isotropic and anisotropic TKE-1.5 model, the
alternative-anisotropic Smagorinsky-Lilly and alternative-anisotropic TKE-1.5 models.

Figure 4.25: As in Fig. 4.4 but for w′θ′s = 0.4 m K s−1, u0 = 0 m s−1 cases using different
formulations of the Smagorinsky-Lilly (top) and TKE-1.5 (bottom) models.
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4.2.3.2 For w′θ′s = 0.15 m K s−1, u0 = 8 m s−1
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Figure 4.26: As in Fig. 4.1 but for w′θ′s = 0.15 m K s−1, u0 = 8 m s−1 cases using the
current isotropic and anisotropic Smagorinsky-Lilly model, and the alternative-anisotropic
Smagorinsky-Lilly model.
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Figure 4.27: As in Fig. 4.1 but for w′θ′s = 0.15 m K s−1, u0 = 8 m s−1 cases using the current
isotropic and anisotropic TKE-1.5 model, and the alternative-anisotropic TKE-1.5 model.
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Figure 4.28: As in Fig. 4.2 but for w′θ′s = 0.15 m K s−1, u0 = 8 m s−1 cases using the
current isotropic and anisotropic Smagorinsky-Lilly model, and the alternative-anisotropic
Smagorinsky-Lilly model.

Figure 4.29: As in Fig. 4.2 but for w′θ′s = 0.15 m K s−1, u0 = 8 m s−1 cases using the current
isotropic and anisotropic TKE-1.5 model, and the alternative-anisotropic TKE-1.5 model.
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Figure 4.30: As in Fig. 4.3 but for w′θ′s = 0.15 m K s−1, u0 = 8 m s−1 cases cases using the
current isotropic Smagorinsky-Lilly model, isotropic and anisotropic TKE-1.5 model, the
alternative-anisotropic Smagorinsky-Lilly and alternative-anisotropic TKE-1.5 models.

Figure 4.31: As in Fig. 4.4 but for w′θ′s = 0.15 m K s−1, u0 = 8 m s−1 cases using different
formulations of the Smagorinsky-Lilly (top) and TKE-1.5 (bottom) models.
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4.2.3.3 For w′θ′s = 0.45 m K s−1, u0 = 8 m s−1
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Figure 4.32: As in Fig. 4.1 but for w′θ′s = 0.45 m K s−1, u0 = 8 m s−1 cases using the
current isotropic and anisotropic Smagorinsky-Lilly model, and the alternative-anisotropic
Smagorinsky-Lilly model.
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Figure 4.33: As in Fig. 4.1 but for w′θ′s = 0.45 m K s−1, u0 = 8 m s−1 cases using the current
isotropic and anisotropic TKE-1.5 model, and the alternative-anisotropic TKE-1.5 model.
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Figure 4.34: As in Fig. 4.2 but for w′θ′s = 0.45 m K s−1, u0 = 8 m s−1 cases using the
current isotropic and anisotropic Smagorinsky-Lilly model, and the alternative-anisotropic
Smagorinsky-Lilly model.

Figure 4.35: As in Fig. 4.2 but for w′θ′s = 0.45 m K s−1, u0 = 8 m s−1 cases using the current
isotropic and anisotropic TKE-1.5 model, and the alternative-anisotropic TKE-1.5 model.
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Energy in w′w′ for w′θ′s = 0.45 m K s−1, u0 = 8 m s−1, ∆x,y = 1.2 km, mean over z = 169 m to 1.79 km

Figure 4.36: As in Fig. 4.3 but for w′θ′s = 0.45 m K s−1, u0 = 8 m s−1 cases using the
current isotropic Smagorinsky-Lilly model, isotropic and anisotropic TKE-1.5 model, the
alternative-anisotropic Smagorinsky-Lilly and alternative-anisotropic TKE-1.5 models.

Figure 4.37: As in Fig. 4.4 but for w′θ′s = 0.45 m K s−1, u0 = 8 m s−1 cases using different
formulations of the Smagorinsky-Lilly (top) and TKE-1.5 (bottom) models.



CHAPTER 4. A PROMISING ALTERNATIVE ANISOTROPIC FORMULATION FOR
EDDY-VISCOSITY MODELS FOR ATMOSPHERIC LES 101

4.3 Two interesting features of TKE spectra

produced by the alternative-anisotropic

eddy-viscosity model

In a brief presentation that can only be described, in good conscience, as for fun, I would
like to point out two features of the TKE spectra of w′w′ that are revealed by the consistent
production lengthscales generated by the alternative-anisotropic TKE-1.5 model.

The first is that the spectra appears, in shape, to resemble the PDF of a beta distribution
with parameters α = 3, β = 5, though it is seemingly impossible to massage the units to
fit both sides of the spectra simultaneously (Fig. 4.38, left two panels). It also appears,
qualitatively, that the time series of 〈w′w′ 〉 in the WRF model is similar in shape to the
CDF of the same Beta(k; 3, 5) distribution (Fig. 4.38, right two panels).

This annoyance of not being able to fit both sides of a kinetic energy spectra to a single
distribution being reminiscent of the “Ultraviolet Catastrophe”, it was hypothesized that
Planck’s law may fit the spectrum, if in shape only. This appears, shockingly enough, to be
true, as Planck’s law can indeed be massaged into matching both ends of the resolved TKE
spectrum if units are ignored (Fig. 4.39).

As noted, both figures presented in this section are a result of massaging functions to
match on a plot; what I will refer to here as “toy units”, or a “toy model”. Despite its
underdeveloped state as a theory, I find both of these plots fascinating and believe that this
is interesting enough to share as a final thought here given the context and forum.
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Figure 4.38: Resolved TKE in the vertical direction (w′w′) using the alternative-anisotropic
TKE-1.5 model compared to PDFs and CDFs of two Beta(k; 3, 5) distributions generated
with differing toy units (i.e. with units finessed to fit visually).
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Figure 4.39: Resolved TKE in the vertical direction (w′w′) using the alternative-anisotropic
TKE-1.5 model compared to Planck’s law as a functional shape, generated with toy units
(i.e. with units finessed to fit visually).
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4.4 Summary and conclusions

An argument has been made that a reformulation of anisotropic eddy-viscosity models,
referred to here simply as the “alternative-anisotropic” formulation, can potentially yield a
turbulence closure model that generates more consistent resolved dynamics for atmospheric
LES, the first steps towards this having been demonstrated with a first proof-of-concept
of alternative-anisotropic formulations of the Smagorinsky-Lilly and prognostic TKE-1.5
turbulence closure models using the WRF-LES model.

It was shown that the alternative-anisotropic formulations are able to generate relatively
consistent planar-averaged profiles for potential temperature and velocity, as well as resolve
more energy compared to their respective isotropic formulations and resolve the correct scales
of energy compared to their respective traditional anisotropic formulations.

Considering highly-sheared cases, it appears possible that the scales of production and
dissipation for buoyant and shear modes may necessitate separate lengthscale considerations,
as all model formulations show very clear deficiencies at coarse resolutions. It is seen that,
despite the large amount of resources expended in the production of this manuscript, larger
grid-sizes and higher resolutions are necessary to properly investigate the behavior of these
eddy-viscosity models and their modes of energy representation.

In closing, between the performance of all versions of the two models, primarily the
traditional anisotropic TKE-1.5 model and the alternative-anisotropic Smagorinsky-Lilly and
TKE-1.5 models, there is an interesting potential for some formulation(s) of the Smagorinsky-
Lilly and/or TKE-1.5 models that improve the treatment of buoyant and shear rates of
production and dissipation to deliver an accurate solution in terms of planar-averaged mean
profiles, resolved velocity fields and resolved TKE spectra.

Acknowledgments. Acknowledgement is made to the Savio computational cluster provided
by the Berkeley Research Computing program at the University of California, Berkeley (sup-
ported by the UC Berkeley Chancellor, Vice Chancellor for Research, and Chief Information
Officer) for computing time used in this research. Also a very sincere thanks to Professor
Mark Stacey for additional computing time on the Savio cluster which made this research
possible.



CHAPTER 4. A PROMISING ALTERNATIVE ANISOTROPIC FORMULATION FOR
EDDY-VISCOSITY MODELS FOR ATMOSPHERIC LES 104

4.A Alternative-anisotropic eddy-viscosity

implementations in the WRF code

4.A.1 TKE-1.5 model

4.A.1.1 Original anisotropic TKE-1.5 implementation

1 !=======================================================================
2 !=======================================================================
3

4 SUBROUTINE tke km ( c o n f i g f l a g s , xkmh , xkmv , xkhh , xkhv , &
5 bn2 , tke , p8w , t8w , theta , &
6 rdz , rdzw , dx , dy , dt , i s o t r o p i c , &
7 mix upper bound , msftx , msfty , &
8 ids , ide , jds , jde , kds , kde , &
9 ims , ime , jms , jme , kms , kme , &

10 i t s , i t e , j t s , j t e , kts , kte )
11

12 ! H i s tory : Sep 2003 Changes by Jason Knieve l and George Bryan , NCAR
13 ! Oct 2001 Converted to mass core by B i l l Skamarock , NCAR
14 ! . . . . . .
15

16 ! Purpose : This r ou t ine c a l c u l a t e s the exchange c o e f f i c i e n t s f o r the
17 ! TKE turbu lence paramete r i za t i on .
18

19 ! Re f e rences : Klemp and Wilhelmson (JAS 1978)
20 ! Chen and Dudhia (NCAR WRF phys i c s r epo r t 2000)
21

22 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 ! Begin d e c l a r a t i o n s .
24

25 IMPLICIT NONE
26

27 TYPE( g r i d c o n f i g r e c t y p e ) , INTENT( IN ) &
28 : : c o n f i g f l a g s
29

30 INTEGER, INTENT( IN ) &
31 : : ids , ide , jds , jde , kds , kde , &
32 ims , ime , jms , jme , kms , kme , &
33 i t s , i t e , j t s , j t e , kts , kte
34

35 INTEGER, INTENT( IN ) : : i s o t r o p i c
36 REAL, INTENT( IN ) &
37 : : dx , dy , dt
38

39 REAL, DIMENSION( ims : ime , kms : kme , jms : jme ) , INTENT( IN ) &
40 : : tke , p8w , t8w , theta , rdz , rdzw , bn2
41

42 REAL, DIMENSION( ims : ime , kms : kme , jms : jme ) , INTENT( INOUT ) &
43 : : xkmh , xkmv , xkhh , xkhv
44

45 REAL, INTENT( IN ) &
46 : : mix upper bound
47

48 REAL , DIMENSION( ims : ime , jms : jme ) , INTENT(IN ) : : msftx , &
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49 msfty
50 ! Local v a r i a b l e s .
51

52 REAL, DIMENSION( i t s : i t e , kt s : kte , j t s : j t e ) &
53 : : l s c a l e
54

55 REAL, DIMENSION( i t s : i t e , kt s : kte , j t s : j t e ) &
56 : : dthrdn
57

58 REAL &
59 : : d e l ta s , tmp , mlen s , mlen h , mlen v , tmpdz , &
60 th e ta s f c , thetatop , minkx , pr inv , pr inv h , pr inv v , c k
61

62 INTEGER &
63 : : i s t a r t , i end , j s t a r t , j end , kt f , i , j , k
64

65 REAL, PARAMETER : : t k e s e e d v a l u e = 1 . e−06
66 REAL : : t k e s e ed
67 REAL, PARAMETER : : e p s i l o n = 1 . e−10
68

69 ! End d e c l a r a t i o n s .
70 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71

72 k t f = MIN( kte , kde−1 )
73 i s t a r t = i t s
74 i end = MIN( i t e , ide−1 )
75 j s t a r t = j t s
76 j end = MIN( j t e , jde−1 )
77

78 IF ( c o n f i g f l a g s%open xs .OR. c o n f i g f l a g s%s p e c i f i e d .OR. &
79 c o n f i g f l a g s%nested ) i s t a r t = MAX( i d s +1, i t s )
80 IF ( c o n f i g f l a g s%open xe .OR. c o n f i g f l a g s%s p e c i f i e d .OR. &
81 c o n f i g f l a g s%nested ) i end = MIN( ide −2, i t e )
82 IF ( c o n f i g f l a g s%open ys .OR. c o n f i g f l a g s%s p e c i f i e d .OR. &
83 c o n f i g f l a g s%nested ) j s t a r t = MAX( jd s +1, j t s )
84 IF ( c o n f i g f l a g s%open ye .OR. c o n f i g f l a g s%s p e c i f i e d .OR. &
85 c o n f i g f l a g s%nested ) j end = MIN( jde −2, j t e )
86 IF ( c o n f i g f l a g s%p e r i o d i c x ) i s t a r t = i t s
87 IF ( c o n f i g f l a g s%p e r i o d i c x ) i end = MIN( i t e , ide−1 )
88

89 c k = c o n f i g f l a g s%c k
90 t k e s e ed = t k e s e e d v a l u e
91

92 DO j = j s t a r t , j end
93 DO k = kts +1, kt f−1
94 DO i = i s t a r t , i end
95 tmpdz = 1 .0 / rdz ( i , k+1, j ) + 1 .0 / rdz ( i , k , j )
96 dthrdn ( i , k , j ) = ( theta ( i , k+1, j ) − theta ( i , k−1, j ) ) / tmpdz
97 END DO
98 END DO
99 END DO

100

101 k = kts
102 DO j = j s t a r t , j end
103 DO i = i s t a r t , i end
104 tmpdz = 1 .0 / rdzw ( i , k+1, j ) + 1 .0 / rdzw ( i , k , j )
105 t h e t a s f c = T8w( i , kts , j ) / ( p8w( i , k , j ) / p1000mb ) ∗∗( R d / Cp )
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106 dthrdn ( i , k , j ) = ( theta ( i , k+1, j ) − t h e t a s f c ) / tmpdz
107 END DO
108 END DO
109

110 k = k t f
111 DO j = j s t a r t , j end
112 DO i = i s t a r t , i end
113 tmpdz = 1 .0 / rdz ( i , k , j ) + 0 .5 / rdzw ( i , k , j )
114 thetatop = T8w( i , kde , j ) / ( p8w( i , kde , j ) / p1000mb ) ∗∗( R d / Cp )
115 dthrdn ( i , k , j ) = ( thetatop − theta ( i , k−1, j ) ) / tmpdz
116 END DO
117 END DO
118

119 IF ( i s o t r o p i c .EQ. 0 ) THEN
120 DO j = j s t a r t , j end
121 DO k = kts , k t f
122 DO i = i s t a r t , i end
123 mlen h = SQRT( dx/ msftx ( i , j ) ∗ dy/ msfty ( i , j ) )
124 tmp = SQRT( MAX( tke ( i , k , j ) , t k e s e ed ) )
125 d e l t a s = 1 .0 / rdzw ( i , k , j )
126 mlen v = d e l t a s
127 IF ( dthrdn ( i , k , j ) .GT. 0 . ) THEN
128 mlen s = 0.76 ∗ tmp / ( ABS( g / theta ( i , k , j ) ∗ dthrdn ( i , k , j ) ) )

∗∗0 .5
129 mlen v = MIN( mlen v , mlen s )
130 END IF
131 xkmh( i , k , j ) = MAX( c k ∗ tmp ∗ mlen h , 1 . 0E−6 ∗ mlen h ∗ mlen h )
132 xkmh( i , k , j ) = MIN( xkmh( i , k , j ) , mix upper bound ∗ mlen h ∗mlen h / dt

)
133 xkmv( i , k , j ) = MAX( c k ∗ tmp ∗ mlen v , 1 . 0E−6 ∗ d e l t a s ∗ d e l t a s )
134 xkmv( i , k , j ) = MIN( xkmv( i , k , j ) , mix upper bound ∗ d e l t a s ∗ d e l t a s / dt

)
135 pr inv h = 1 ./ prandt l
136 pr inv v = 1 .0 + 2 .0 ∗ mlen v / d e l t a s
137 xkhh ( i , k , j ) = xkmh( i , k , j ) ∗ pr inv h
138 xkhv ( i , k , j ) = xkmv( i , k , j ) ∗ pr inv v
139 END DO
140 END DO
141 END DO
142 ELSE
143 CALL c a l c l s c a l e ( c o n f i g f l a g s , tke , BN2, l s c a l e , &
144 i s t a r t , i end , kt f , j s t a r t , j end , &
145 dx , dy , rdzw , msftx , msfty , &
146 ids , ide , jds , jde , kds , kde , &
147 ims , ime , jms , jme , kms , kme , &
148 i t s , i t e , j t s , j t e , kts , kte )
149 DO j = j s t a r t , j end
150 DO k = kts , k t f
151 DO i = i s t a r t , i end
152 tmp = SQRT( MAX( tke ( i , k , j ) , t k e s e ed ) )
153 d e l t a s = ( dx/ msftx ( i , j ) ∗ dy/ msfty ( i , j ) / rdzw ( i , k , j ) )

∗∗0.33333333
154 xkmh( i , k , j ) = c k ∗ tmp ∗ l s c a l e ( i , k , j )
155 xkmh( i , k , j ) = MIN( mix upper bound ∗ dx/ msftx ( i , j ) ∗ dy/ msfty ( i , j ) /

dt , xkmh( i , k , j ) )
156 xkmv( i , k , j ) = c k ∗ tmp ∗ l s c a l e ( i , k , j )
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157 xkmv( i , k , j ) = MIN( mix upper bound / rdzw ( i , k , j ) / rdzw ( i , k , j ) / dt ,
xkmv( i , k , j ) )

158 pr inv = 1 .0 + 2 .0 ∗ l s c a l e ( i , k , j ) / d e l t a s
159 xkhh ( i , k , j ) = MIN( mix upper bound ∗ dx/ msftx ( i , j ) ∗ dy/ msfty ( i , j ) /

dt , xkmh( i , k , j ) ∗ pr inv )
160 xkhv ( i , k , j ) = MIN( mix upper bound / rdzw ( i , k , j ) / rdzw ( i , k , j ) / dt ,

xkmv( i , k , j ) ∗ pr inv )
161 END DO
162 END DO
163 END DO
164 END IF
165

166 END SUBROUTINE tke km
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4.A.1.2 Alternative-anisotropic TKE-1.5 implementation

1 !=======================================================================
2 !=======================================================================
3

4 SUBROUTINE tke km ( c o n f i g f l a g s , xkmh , xkmv , xkhh , xkhv , &
5 bn2 , tke , p8w , t8w , theta , &
6 rdz , rdzw , dx , dy , dt , i s o t r o p i c , &
7 mix upper bound , msftx , msfty , &
8 ids , ide , jds , jde , kds , kde , &
9 ims , ime , jms , jme , kms , kme , &

10 i t s , i t e , j t s , j t e , kts , kte )
11

12 ! H i s tory : Sep 2003 Changes by Jason Knieve l and George Bryan , NCAR
13 ! Oct 2001 Converted to mass core by B i l l Skamarock , NCAR
14 ! . . . . . .
15

16 ! Purpose : This r ou t ine c a l c u l a t e s the exchange c o e f f i c i e n t s f o r the
17 ! TKE turbu lence paramete r i za t i on .
18

19 ! Re f e rences : Klemp and Wilhelmson (JAS 1978)
20 ! Chen and Dudhia (NCAR WRF phys i c s r epo r t 2000)
21

22 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 ! Begin d e c l a r a t i o n s .
24

25 IMPLICIT NONE
26

27 TYPE( g r i d c o n f i g r e c t y p e ) , INTENT( IN ) &
28 : : c o n f i g f l a g s
29

30 INTEGER, INTENT( IN ) &
31 : : ids , ide , jds , jde , kds , kde , &
32 ims , ime , jms , jme , kms , kme , &
33 i t s , i t e , j t s , j t e , kts , kte
34

35 INTEGER, INTENT( IN ) : : i s o t r o p i c
36 REAL, INTENT( IN ) &
37 : : dx , dy , dt
38

39 REAL, DIMENSION( ims : ime , kms : kme , jms : jme ) , INTENT( IN ) &
40 : : tke , p8w , t8w , theta , rdz , rdzw , bn2
41

42 REAL, DIMENSION( ims : ime , kms : kme , jms : jme ) , INTENT( INOUT ) &
43 : : xkmh , xkmv , xkhh , xkhv
44

45 REAL, INTENT( IN ) &
46 : : mix upper bound
47

48 REAL , DIMENSION( ims : ime , jms : jme ) , INTENT(IN ) : : msftx , &
49 msfty
50 ! Local v a r i a b l e s .
51

52 REAL, DIMENSION( i t s : i t e , kt s : kte , j t s : j t e ) &
53 : : l s c a l e
54

55 REAL, DIMENSION( i t s : i t e , kt s : kte , j t s : j t e ) &
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56 : : dthrdn
57

58 REAL &
59 : : d e l ta s , tmp , mlen s , mlen h , mlen v , tmpdz , &
60 th e ta s f c , thetatop , minkx , pr inv , pr inv h , pr inv v , c k
61

62 INTEGER &
63 : : i s t a r t , i end , j s t a r t , j end , kt f , i , j , k
64

65 REAL, PARAMETER : : t k e s e e d v a l u e = 1 . e−06
66 REAL : : t k e s e ed
67 REAL, PARAMETER : : e p s i l o n = 1 . e−10
68

69 ! End d e c l a r a t i o n s .
70 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71

72 k t f = MIN( kte , kde−1 )
73 i s t a r t = i t s
74 i end = MIN( i t e , ide−1 )
75 j s t a r t = j t s
76 j end = MIN( j t e , jde−1 )
77

78 IF ( c o n f i g f l a g s%open xs .OR. c o n f i g f l a g s%s p e c i f i e d .OR. &
79 c o n f i g f l a g s%nested ) i s t a r t = MAX( i d s +1, i t s )
80 IF ( c o n f i g f l a g s%open xe .OR. c o n f i g f l a g s%s p e c i f i e d .OR. &
81 c o n f i g f l a g s%nested ) i end = MIN( ide −2, i t e )
82 IF ( c o n f i g f l a g s%open ys .OR. c o n f i g f l a g s%s p e c i f i e d .OR. &
83 c o n f i g f l a g s%nested ) j s t a r t = MAX( jd s +1, j t s )
84 IF ( c o n f i g f l a g s%open ye .OR. c o n f i g f l a g s%s p e c i f i e d .OR. &
85 c o n f i g f l a g s%nested ) j end = MIN( jde −2, j t e )
86 IF ( c o n f i g f l a g s%p e r i o d i c x ) i s t a r t = i t s
87 IF ( c o n f i g f l a g s%p e r i o d i c x ) i end = MIN( i t e , ide−1 )
88

89 c k = c o n f i g f l a g s%c k
90 t k e s e ed = t k e s e e d v a l u e
91

92 DO j = j s t a r t , j end
93 DO k = kts +1, kt f−1
94 DO i = i s t a r t , i end
95 tmpdz = 1 .0 / rdz ( i , k+1, j ) + 1 .0 / rdz ( i , k , j )
96 dthrdn ( i , k , j ) = ( theta ( i , k+1, j ) − theta ( i , k−1, j ) ) / tmpdz
97 END DO
98 END DO
99 END DO

100

101 k = kts
102 DO j = j s t a r t , j end
103 DO i = i s t a r t , i end
104 tmpdz = 1 .0 / rdzw ( i , k+1, j ) + 1 .0 / rdzw ( i , k , j )
105 t h e t a s f c = T8w( i , kts , j ) / ( p8w( i , k , j ) / p1000mb ) ∗∗( R d / Cp )
106 dthrdn ( i , k , j ) = ( theta ( i , k+1, j ) − t h e t a s f c ) / tmpdz
107 END DO
108 END DO
109

110 k = k t f
111 DO j = j s t a r t , j end
112 DO i = i s t a r t , i end
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113 tmpdz = 1 .0 / rdz ( i , k , j ) + 0 .5 / rdzw ( i , k , j )
114 thetatop = T8w( i , kde , j ) / ( p8w( i , kde , j ) / p1000mb ) ∗∗( R d / Cp )
115 dthrdn ( i , k , j ) = ( thetatop − theta ( i , k−1, j ) ) / tmpdz
116 END DO
117 END DO
118

119

120

121 DO j = j s t a r t , j end
122 DO k = kts , k t f
123 DO i = i s t a r t , i end
124 mlen v = SQRT( dx/ msftx ( i , j ) ∗ dy/ msfty ( i , j ) )
125 tmp = SQRT( MAX( tke ( i , k , j ) , t k e s e ed ) )
126 d e l t a s = 1 .0 / rdzw ( i , k , j )
127 mlen h = d e l t a s
128 IF ( dthrdn ( i , k , j ) .GT. 0 . ) THEN
129 mlen s = 0.76 ∗ tmp / ( ABS( g / theta ( i , k , j ) ∗ dthrdn ( i , k , j ) ) )

∗∗0 .5
130 mlen v = MIN( mlen v , mlen s )
131 END IF
132 xkmh( i , k , j ) = MAX( c k ∗ tmp ∗ mlen h , 1 . 0E−6 ∗ mlen h ∗ mlen h )
133 xkmh( i , k , j ) = MIN( xkmh( i , k , j ) , mix upper bound ∗ mlen h ∗mlen h / dt

)
134 xkmv( i , k , j ) = MAX( c k ∗ tmp ∗ mlen v , 1 . 0E−6 ∗ d e l t a s ∗ d e l t a s )
135 xkmv( i , k , j ) = MIN( xkmv( i , k , j ) , mix upper bound ∗ d e l t a s ∗ d e l t a s / dt

)
136 pr inv h = 1 ./ prandt l
137 pr inv v = 1 ./ prandt l
138 xkhh ( i , k , j ) = xkmh( i , k , j ) ∗ pr inv h
139 xkhv ( i , k , j ) = xkmv( i , k , j ) ∗ pr inv v
140 END DO
141 END DO
142 END DO
143

144 END SUBROUTINE tke km
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4.A.2 Smagorinsky-Lilly model

4.A.2.1 Original anisotropic Smagorinsky-Lilly implementation

1 SUBROUTINE smag km( c o n f i g f l a g s , xkmh , xkmv , xkhh , xkhv ,BN2, &
2 div , defor11 , defor22 , defor33 , defor12 , &
3 defor13 , defor23 , &
4 u , v , z , ht , &
5 rdzw , dx , dy , dt , i s o t r o p i c , &
6 mix upper bound , msftx , msfty , &
7 ids , ide , jds , jde , kds , kde , &
8 ims , ime , jms , jme , kms , kme , &
9 i t s , i t e , j t s , j t e , kts , kte )

10

11

12 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 ! Begin d e c l a r a t i o n s .
14

15 IMPLICIT NONE
16

17 TYPE( g r i d c o n f i g r e c t y p e ) , INTENT(IN ) : : c o n f i g f l a g s
18

19 ! JSS : SKIPPING THE REST OF THE DECLARATIONS
20

21 pr = prandt l
22 c s = c o n f i g f l a g s%c s
23

24 do j=j s t a r t , j end
25 do k=kts , k t f
26 do i=i s t a r t , i end
27 def2 ( i , k , j ) =0.5∗( de fo r11 ( i , k , j ) ∗ de for11 ( i , k , j ) + &
28 de for22 ( i , k , j ) ∗ de for22 ( i , k , j ) + &
29 de for33 ( i , k , j ) ∗ de for33 ( i , k , j ) )
30 enddo
31 enddo
32 enddo
33

34 do j=j s t a r t , j end
35 do k=kts , k t f
36 do i=i s t a r t , i end
37 def2 ( i , k , j )=def2 ( i , k , j )+ de for12 ( i , k , j ) ∗ de for12 ( i , k , j )
38 enddo
39 enddo
40 enddo
41

42 do j=j s t a r t , j end
43 do k=kts , k t f
44 do i=i s t a r t , i end
45 def2 ( i , k , j )=def2 ( i , k , j )+ de for13 ( i , k , j ) ∗ de for13 ( i , k , j )
46 enddo
47 enddo
48 enddo
49

50 do j=j s t a r t , j end
51 do k=kts , k t f
52 do i=i s t a r t , i end
53 def2 ( i , k , j )=def2 ( i , k , j )+ de for23 ( i , k , j ) ∗ de for23 ( i , k , j )
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54 enddo
55 enddo
56 enddo
57

58 IF ( i s o t r o p i c .EQ. 0) THEN
59 DO j = j s t a r t , j end
60 DO k = kts , k t f
61 DO i = i s t a r t , i end
62

63 mlen h=s q r t ( dx/ msftx ( i , j ) ∗ dy/ msfty ( i , j ) )
64 mlen v= 1 ./ rdzw ( i , k , j )
65

66 tmp=max ( 0 . , de f2 ( i , k , j )−BN2( i , k , j ) /pr )
67 tmp=tmp∗∗0 .5
68 xkmh( i , k , j )=max( c s ∗ c s ∗mlen h∗mlen h∗tmp , 1 . 0E−6∗mlen h∗mlen h )
69 xkmh( i , k , j )=min (xkmh( i , k , j ) , mix upper bound ∗ mlen h ∗ mlen h / dt )
70 xkmv( i , k , j )=max( c s ∗ c s ∗mlen v∗mlen v∗tmp , 1 . 0E−6∗mlen v∗mlen v )
71 xkmv( i , k , j )=min (xkmv( i , k , j ) , mix upper bound ∗ mlen v ∗ mlen v / dt )
72 xkhh ( i , k , j )=xkmh( i , k , j ) /pr
73 xkhh ( i , k , j )=min ( xkhh ( i , k , j ) , mix upper bound ∗ mlen h ∗ mlen h / dt )
74 xkhv ( i , k , j )=xkmv( i , k , j ) /pr
75 xkhv ( i , k , j )=min ( xkhv ( i , k , j ) , mix upper bound ∗ mlen v ∗ mlen v / dt )
76

77 ENDDO
78 ENDDO
79 ENDDO
80 ELSE
81

82 ! JSS : REMOVED, NOT RELEVANT HERE
83

84 ENDIF
85

86 END SUBROUTINE smag km
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4.A.2.2 Alternative-anisotropic Smagorinsky-Lilly implementation

1 SUBROUTINE alt smag km ( c o n f i g f l a g s , xkmh , xkmv , xkhh , xkhv ,BN2, &
2 div , defor11 , defor22 , defor33 , defor12 , &
3 defor13 , defor23 , &
4 u , v , z , ht , &
5 rdzw , dx , dy , dt , i s o t r o p i c , &
6 mix upper bound , msftx , msfty , &
7 ids , ide , jds , jde , kds , kde , &
8 ims , ime , jms , jme , kms , kme , &
9 i t s , i t e , j t s , j t e , kts , kte )

10

11

12 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 ! Begin d e c l a r a t i o n s .
14

15 IMPLICIT NONE
16

17 TYPE( g r i d c o n f i g r e c t y p e ) , INTENT(IN ) : : c o n f i g f l a g s
18

19 ! JSS : SKIPPING THE REST OF THE DECLARATIONS
20

21 pr = prandt l
22 c s = c o n f i g f l a g s%c s
23

24 do j=j s t a r t , j end
25 do k=kts , k t f
26 do i=i s t a r t , i end
27 def2 ( i , k , j ) =0.5∗( de fo r11 ( i , k , j ) ∗ de for11 ( i , k , j ) + &
28 de for22 ( i , k , j ) ∗ de for22 ( i , k , j ) )
29 def2v ( i , k , j ) =0.5∗( de fo r33 ( i , k , j ) ∗ de for33 ( i , k , j ) )
30 enddo
31 enddo
32 enddo
33

34

35 do j=j s t a r t , j end
36 do k=kts , k t f
37 do i=i s t a r t , i end
38 tmp=0.25∗( de fo r12 ( i , k , j )+de for12 ( i , k , j +1)+ &
39 de for12 ( i +1,k , j )+de for12 ( i +1,k , j +1) )
40 def2 ( i , k , j )=def2 ( i , k , j )+tmp∗tmp
41 enddo
42 enddo
43 enddo
44

45 do j=j s t a r t , j end
46 do k=kts , k t f
47 do i=i s t a r t , i end
48 tmp=0.25∗( de fo r13 ( i , k+1, j )+de for13 ( i , k , j )+ &
49 de for13 ( i +1,k+1, j )+de for13 ( i +1,k , j ) )
50 def2v ( i , k , j )=def2v ( i , k , j ) + tmp∗tmp
51 enddo
52 enddo
53 enddo
54

55 do j=j s t a r t , j end
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56 do k=kts , k t f
57 do i=i s t a r t , i end
58 tmp=0.25∗( de fo r23 ( i , k+1, j )+de for23 ( i , k , j )+ &
59 de for23 ( i , k+1, j +1)+de for23 ( i , k , j +1) )
60 def2v ( i , k , j )=def2v ( i , k , j )+tmp∗tmp
61 enddo
62 enddo
63 enddo
64

65 DO j = j s t a r t , j end
66 DO k = kts , k t f
67 DO i = i s t a r t , i end
68

69 tmpz = z ( i , k , j ) − ht ( i , j )
70

71 mlen h=s q r t ( dx/ msftx ( i , j ) ∗ dy/ msfty ( i , j ) )
72 mlen v= 1 ./ rdzw ( i , k , j )
73

74 tmp=max ( 0 . , de f2 ( i , k , j ) )
75 tmp=tmp∗∗0 .5
76

77 tmpv=max ( 0 . , def2v ( i , k , j )−BN2( i , k , j ) /pr )
78 tmpv=tmpv∗∗0 .5
79

80 xkmh( i , k , j )=max( c s ∗ c s ∗mlen v∗tmpz∗tmp , 1 . 0E−6∗mlen h∗mlen h )
81 xkmh( i , k , j )=min (xkmh( i , k , j ) , mix upper bound ∗ mlen h ∗ mlen h / dt )
82 xkmv( i , k , j )=max( c s ∗ c s ∗mlen h∗tmpz∗tmpv , 1 . 0E−6∗mlen v∗mlen v )
83 xkmv( i , k , j )=min (xkmv( i , k , j ) , mix upper bound ∗ mlen h ∗ mlen h / dt )
84 xkhh ( i , k , j )=xkmh( i , k , j ) /pr
85 xkhh ( i , k , j )=min ( xkhh ( i , k , j ) , mix upper bound ∗ mlen h ∗ mlen h / dt )
86 xkhv ( i , k , j )=xkmv( i , k , j ) /pr
87 xkhv ( i , k , j )=min ( xkhv ( i , k , j ) , mix upper bound ∗ mlen v ∗ mlen v / dt )
88 ENDDO
89 ENDDO
90 ENDDO
91

92 END SUBROUTINE alt smag km
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4.B Full column planar-averaged profiles
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Figure 4.40: Full model height of planar-averaged resolved potential temperature and u-
velocity profiles for the ∆x,y = 1.2 km) cases using the isotropic and anisotropic TKE-1.5
model, and the alternative-anisotropic Smagorinsky-Lilly and alternative-anisotropic TKE-1.5
models (from left to right).
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4.C Additional results

4.C.1 No-wind case

Figure 4.41: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (top) and 9
(bottom) hours for the ∆x,y = 5 km cases using versions of the Smagorinsky-Lilly model.
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Figure 4.42: As in Fig. 4.41 but using versions of the TKE-1.5 model.
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4.C.2 Wind case

Figure 4.43: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (top) and
9 (bottom) hours for the ∆x,y = 1.2 km cases using the current isotropic (far left) and
anisotropic (middle left) TKE-1.5 implementations, compared to the alternative-anisotropic
Smagorinsky-Lilly (middle right) and alternative-anisotropic TKE-1.5 (far right).

Figure 4.44: As in Fig. 4.14 but for ∆x,y = 5 km cases using the current isotropic Smagorinsky-
Lilly model, isotropic and anisotropic TKE-1.5 model, the alternative-anisotropic Smagorinsky-
Lilly and alternative-anisotropic TKE-1.5 models.
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Chapter 5

The gray zone of terrain
representation in atmospheric models1

5.1 Introduction

Mesoscale models have traditionally been used for predictions of atmospheric flow at re-
gional scales. For higher-resolution, microscale simulations, computational fluid dynamics
(CFD) codes are frequently used with the large-eddy simulation (LES) technique. Generally,
mesoscale codes solve the Reynolds-averaged Navier-Stokes (RANS) equations with features
for operational weather prediction such as using analysis and observational boundary condi-
tions and extensive parameterization schemes of atmospheric physics processes. Traditional
mesoscale codes also use a terrain-following coordinate system, where the bottom boundary of
the grid is mapped to the terrain and metric terms arise from the coordinate transformation.
This makes the application of the bottom boundary condition straightforward and works well
at resolutions too coarse to resolve the more complex features of the terrain. Terrain-following
coordinate systems generate some numerical errors in the presence of any slope due to the
metric terms (Janjic, 1977; Klemp et al., 2003). For low slopes this is error is negligible but
at high slopes model errors become large and can cause stability problems (Lundquist et al.,
2010b).

On the other hand, traditional the CFD codes that are used for high-resolution studies of
microscale atmospheric dynamics often have simplistic boundary conditions and do not use
atmospheric physics parameterizations. The trade-off is that CFD codes, and specifically LES
codes, are able to resolve turbulent eddies and thus study their evolution in the atmospheric
boundary layer (ABL). These models can handle complex terrain well through use of conformal

1This chapter is a reproduction of the manuscript “Application of the Immersed Boundary Method to
Simulations of Flow Over Steep, Mountainous Terrain” by Jason S. Simon (the principle author), Katherine A.
Lundquist and Fotini Katopodes Chow, first published in the proceedings of the 15th Conference on Mountain
Meteorology, American Meteorological Society, August 2012 (Simon et al., 2012) c©Copyright 2012 American
Meteorological Society. Full copyright notice in Appendix D.2.
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Figure 5.1: A mountain profile represented in terrain-following (top) and IBM coordinate
systems. Note the distortion of grid cells when using terrain-following coordinates.

grid generation techniques, which are not terrain-following. The difference between the grids
for each coordinate system is illustrated in Figure 5.1.

For ABL simulations, the massive historical costs of computing resources has meant that
mesoscale codes cannot be run at high resolutions if they are to cover a sufficiently large
geographic region and LES codes cannot be run for large geographic regions if they are to be
sufficiently resolved.

A model capable of representing a range of scales is needed to seamlessly integrating from
the meso to the microscale. This work continues development of such a framework, using the
Weather Research and Forecasting (WRF) model.

WRF is capable as both a mesoscale model and an LES model, and is widely used for
both operational and research applications (Skamarock et al., 2008). WRF is currently
configurable as an LES code, and is able to nest between mesoscale and LES domains, albeit
in a terrain-following coordinate system. Thus, WRF in its standard form is unable to handle
very steep and complex terrain at fine resolution. We have therefore introduced an immersed
boundary method (IBM) into WRF to allow for complex terrain to be represented at high
resolutions within the WRF model (Lundquist et al., 2010a, 2012). IBM uses a Cartesian
coordinate system and immerses the terrain boundary within this, using interpolation methods
to represent the effect of the boundary on the flow. This then makes the IBM-WRF framework
an excellent candidate for a model which can capture meso and microscales over steep and
complex terrain.

Questions remain regarding the appropriate application of IBM-WRF over complex terrain.
At coarse resolutions, the terrain-following coordinates native to WRF are appropriate, but at
fine resoluions over complex terrain these break down, needing the use of the IBM features to
represent the terrain. For a framework which uses grid nesting from meso to fine scales, the
appropriate transition zone from terrain-following to IBM coordinates must be determined.

In this manuscript we present three simple experiments conducted on two-dimensional
domains to compare WRF and IBM-WRF and evaluate how they each perform for different
grid scales. (We use “WRF” to indicate the traditional form of WRF using terrain-following
coordinates and “IBM-WRF” to indicate the use of the IBM coordinates.) These preliminary
results will be used to guide more costly efforts to describe the relationship between WRF
and IBM-WRF in three dimensions. The experiments are designed to illustrate the numerical
errors associated with both the terrain-following coordinates and the IBM coordinates and
design a strategy to mitigate these errors by appropriately transitioning between WRF and
IBM-WRF.
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Figure 5.2: Satellite image of Northwestern Utah; Granite Mountain circled in red. Photo
from NASA landsat.

Figure 5.3: Profile of Granite Mountain at 10m resolution, after smoothing. Note the
complexity. To scale.

5.2 MATERHORN

The general goal of the MATERHORN campaign is to study the predictability of meteorolog-
ical events in complex, mountainous terrain. The MATERHORN observational campaign
will take place at the Granite Mountain Atmospheric Science Testbed (GMAST), located on
Dugway Proving Grounds in Utah. Granite Mountain is a relatively isolated mountain on the
playa, southwest of the Great Salt Lake (Figure 5.2). This creates a nearly ideal topography
of a complex mountain sitting on otherwise flat topography. Figure 5.3 shows a line profile,
to scale, of an easterly cross-section of Granite Mountain to illustrate the complexity of the
surface.

5.3 IBM background

IBM is used to represent the effects of boundaries on nonconforming, structured grids. There
are many possible implementations of IBM, but the most common form is to add a body
force term to the governing equations that takes a zero value away from the boundary and a
non-zero value near the boundary. The IBM used in IBM-WRF is a direct forcing method,
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Figure 5.4: Visual description of the three types of nodes used in IBM-WRF. The blue line
represents the terrain surface. The ghost node is the first node beneath the surface, and its
image point is a reflection normal to the surface into the fluid domain. The green fluid nodes
mark the values that are interpolated to find the image point value. The image point value
and the boundary condition determine the value that the ghost node takes. In this example
the value at the boundary is apart of the interplation process, which is the case only under
Dirichlet boundary conditions.

where solutions at nodes near the boundary are calculated specifically to enforce the boundary
condition, eliminating the need to calculate the body force explicitly (Mohd-Yusof, 1997).
IBM-WRF uses a finite-difference approach which applies this forcing at ghost nodes (nodes
that take a value only to enforce a correct solution in an adjacent node, and are not included
in the physical solution) located just below the boundary. Nodes below the boundary are
referred to as solid nodes.

Prognostic variables are reconstructed on the ghost node by finding a fit between the ghost
node, the boundary condition and the image point (reflection of the ghost node across the
boundary). The value of the image point is found via interpolation from surrounding nodes in
the fluid domain. In this work, the image point is found using a unique bilinear reconstruction
scheme for two-dimensional terrain, but three-dimensional interpolation methods are found
to be tractable in the literature. An illustrative schematic of this method is shown in Figure
5.4.

A detailed description of the implementation of IBM-WRF is presented by (Lundquist,
2010).

5.4 Hypothesis/experiment

The mesoscale model WRF uses a terrain-following coordinate system. As previously discussed,
this becomes an issue in steep topography. Terrain data is often available at very high
resolutions (∼ 5 m), therefore the steepness of the terrain represented in the model is
essentially determined by the horizontal resolution of the simulation. Thus, we can assume
that the hypothetical “error” that originates in the numerics of WRF’s coordinate system
increases as the grid spacing decreases. IBM-WRF, on the other hand, relies on interpolation
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Figure 5.5: Idealization of the relationships between WRF, IBM-WRF and horizontal
resolution.

at the terrain boundary. Therefore, when modeling complex terrain at the mesoscale,
terrain-following coordinates are preferable because the numerical errors from the coordinate
transformation are smaller than the numerical errors introduced by the interpolation scheme.
This is only an issue when the coarse terrain retains enough steepness to be heterogeneous.
Once the grid spacing is larger than the terrain scale, the surface is approximately flat and
IBM-WRF’s interpolation is adequate. This creates a hypothetical error inherent in the IBM’s
numerics that is very low at high resolutions, regardless of the presence of steep terrain, and
high at coarse resolutions. At the point where the terrain is coarse enough to be essentially a
flat plate the error returns to a low value.

While the performance of terrain-following coordinates in steep terrain is well studied,
the horizontal resolutions appropriate for WRF and IBM-WRF relative to each other are not
known. Given the inverse effect of resolution on the numerical errors of the two coordinate
systems, when nesting from coarse to fine domains in a WRF/IBM-WRF framework, there
should exist a horizontal resolution where the modeler should change from WRF to IBM-WRF.

A simple analysis of the relationship between the two models and horizontal resolution
(and thus, indirectly, slope) can be done to estimate the nature of the two models’ appropriate
spatial scales. Figure 5.5 shows an idealization of the numerical errors of each coordinate
system compared to an unknown exact solution. It follows that, if the shapes are correct, the
difference between the solutions from WRF and IBM-WRF should relatively follow the sum
of the two individual curves, and the resolution to switch from WRF to IBM-WRF should
be the point where the two curves intersect (after IBM-WRF is adjusted for performance
cost considerations). Note that in this idealization of the error curve WRF is shown to
have a value across the entire spectrum of resolutions, and indeed this is how we expect the
theoretical error associated with terrain-following coordinates to behave. In reality, though,
we expect that WRF will have stability problems at very steep slopes (fine resolutions) so
the error will not be measurable.
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5.5 Difference vs. horizontal resolution

To estimate the behavior of the numerical error, WRF and IBM-WRF are run in complex
terrain at different horizontal resolutions to compare differences in the resulting velocities.
The terrain being used for this and the following experiments is an idealization of Granite
Mountain created by prescribing a minimum elevation in the domain and removing all features
other than the mountain. The result is an isolated mountain on a perfectly flat playa, which
is a relatively realistic representation at the microscale. A two-dimensional east-west slice is
taken through one of the highest points on Granite Mountain, and is used as the domain in
all experiments.

The solutions from WRF and IBM-WRF are compared by interpolating the velocity
magnitude field from IBM-WRF to the terrain-following coordinate system and taking the
difference at each node in the domain. The difference between the two coordinate systems
will be represented by the largest difference, in magnitude, present in the domain. For
convenience, hereafter this interpolated velocity difference field between WRF and IBM-WRF
will simply be referred to as the difference and will be a surrogate for the theoretical error in
the system. This assumes that for any horizontal resolution one of the coordinate systems is
appropriate and can give an accurate solution.

5.5.1 Model setup

All cases are two-dimensional in the east-west direction with 50 horizontal grid points. The
horizontal resolutions used range from 450m to 4km. The finest grid is determined by the
point where WRF becomes numerically unstable for this configuration, and the coarsest grid
is the point where the difference between WRF and IBM-WRF starts decreasing. WRF has
90 vertical grid points, covering a vertical span from 1315 m to 7000 m above sea-level (ASL).
IBM-WRF has 92 vertical grid points, to account for the two necessary solid nodes below
the terrain, and covers a vertical span from 1215 m to 7000 m ASL. The cases are run for
6 hours with a 0.25 s timestep, with 5 m s−1 geostrophic forcing. The initial temperature
profile is neutral and the initial velocity profile is a uniform 5m/s westerly flow. The eddy
viscosity for all cases is 100 m2 s−1, to allow the solution to reach steady-state faster. Coriolis
is neglected. A no-slip bottom boundary condition is used and a Rayleigh damping layer is
present at the top 2km of the grid. The lateral boundary conditions are periodic. Terrain
data is obtained from the Utah AGRC’s 5 m Auto-Correlated Digital Elevation Model (DEM)
with aforementioned adjustments; minimum elevation has been set to 1315 m. The DEM is
interpolated to the model domain using the WRF Preprocessing System (WPS) average grid
cell interpolation and smoothing-desmoothing.

Of the aforementioned settings, the results are most sensitive to vertical resolution and
eddy viscosity.

The horizontal resolutions used range from 450 m to 4 km. This range, found empirically,
contains the scales that we are interested in. The smallest resolution used is determined
by the point where WRF becomes numerically unstable, and the largest resolution is the
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determined by the point where the error decreases to global minimum levels after a local
maximum.

5.5.2 Results

Figure 5.6 shows the maximum difference of five representative resolutions. The figures have
a horizontal span of 60 km, centered on Granite Mountain, and extend vertically to 4km
ASL (from a base of 1315 m). In all cases the maximum difference is on the lee side of the
mountain and spreads quite far downstream. The general trend is illustrated in these cases:
the largest error is present in the 3 km domain, with a decreasing trend in either direction.
Notice that in the coarsest case the error is centered on the downstream edge of the mountain
and spreads downstream, while in the finer two cases the error is located more directly over
the mountain and does not spread nearly as far.

Figure 5.7 shows the maximum difference as a function of grid spacing. The error increases
at coarser resolutions, as expected. With coarser grids, the terrain slope is lower, hence the
WRF solution does a better job. The increase in error is due to interpolation errors in the
IBM-WRF solution, which become larger at coarse resolution because the distance between
grid points increases. Thus, the shape seen is approximately what we would expect to see if
only evaluating the error from IBM-WRF. Once the resolution is so coarse that the terrain
“looks” entirely flat to the model, the difference between the results becomes quite small,
leading to a sharp dropoff in the curve at very coarse resolutions. These results therefore
capture the orange curve in the Figure 5.5 schematic above. The green curve requires very
fine resolutions where WRF may not be able to accurately run, especially in two dimensions.

5.6 Increasing slope case

The previous experiment was conducted at coarse resolutions where IBM-WRF has not
previously been tested. At these coarse resolutions, the above results imply that the terrain-
following coordinates are more accurate than coordinates using the IBM. This result is
dominated by the effects of grid spacing on IBM-WRF, and it is very difficult to discern
the impact that the slope has on WRF. The point where slope issues begin to dominate
is of great interest, since it likely plays a large role in defining the edge of both WRF and
IBM-WRF’s preferred scale. The scale that is dominated by terrain slopes is not present due
to numerical limitations. This limitation is case-specific, and a relationship between slope
and error is still desirable. Since this is a two-dimensional domain it should not be assumed
that horizontal resolutions that are too fine for WRF under these settings remain problematic
in real, three-dimensional cases.

A second experiment is conducted to evaluate this slope/error relationship where the
horizontal resolution remains constant (at 500 m) and the terrain is scaled from zero to one.
The scaling factor is applied only to heights above the artificial floor of the topography. When
the scale is zero, our domain is reduced to flat terrain and the two coordinate systems should
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Figure 5.6: Velocity magnitude difference fields for cases where the horizontal resolution
is (from top to bottom) 4, 3, 2, 1 0.5 km. Domains are zoomed in both horizontally and
vertically. To scale.

yield nearly identical results. When the scale is one, we know from our first experiment that
the maximum difference for this setup at 500 m horizontal resolution should be approximately
0.6 m s−1 (Figure 5.7). Since the resolution here is not changing, the variability in the error
associated with grid points catching peaks and troughs in the terrain is not in play, and thus
the trend should be very clear.

5.6.1 Model setup

The setup from the first experiment where dx = 500 m is scaled to coefficients of 0, 0.1,
0.2, 0.4, 0.6, 0.8 and 1.0. Since such strong trends are produced by this experiment, it is
conducted for different eddy viscosities as well (K = 20, 30, 40, 50, 100 m2 s−1). All other
settings are consistent throughout all runs. The coefficients used for each resolution are
shown in Figure 5.8.
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Figure 5.7: Maximum difference as a function of grid spacing, plotted in semi-log.

Figure 5.8: Scales used on the terrain to achieve different slopes. Horizontal resolution is
500 m for all cases.
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Figure 5.9: Velocity magnitude difference fields for cases where the terrain scale is (from top
to bottom) 0.2, 0.4, 0.6, 0.8, 1.0. Domains are zoomed in both horizontally and vertically. To
scale.

5.6.2 Results

Figure 5.9 shows five of the seven terrain scales (for K = 100 m2 s−1) and their difference
field. A clear pattern, focused just on the lee side of the peak, emerges as the height of the
mountain is increased. Even in the most consistent case, the location of the mountain can be
made out easily by the location of nonzero difference values.

The maximum difference values seen in each domain, and for each eddy viscosity, follow a
very strong increasing trend with slope. In Figure 5.10 the maximum differences are plotted
against slope, with the slope axis reversed to mimic the pattern that would emerge were grid
spacing used on the independent axis. Despite the altering of the x-axis, Figure 5.10 closely
resembles the green curve in Figure 5.5 above.

This experiment is the only of the ones presented to vary eddy viscosity (all values are
included in Figure 5.10). The isotropic eddy viscosity is a measure of how quickly momentum
disperses in the atmosphere. When the eddy viscosity is high this momentum dispersion is
rapid and the effects of the terrain are felt over shorter temporal and spatial scales. Thus the
expected result is that for any scenario, a larger eddy viscosity will always yield a smaller
maximum error. This was indeed the case for these results.
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Figure 5.10: Maximum difference as a function of slope, plotted in reverse to mimic the shape
expected when grid spacing is the independent variable.

5.7 Constant slope case

In this experiment 19 different horizontal resolutions between 4 km and 450 m are used. For
each resolution, the height of Granite Mountain is scaled so that the maximum slope seen
over any set of adjacent grid point is 10 degrees. All other factors remain constant. This is
the same experiment as the initial case, except that we are removing a mechanism that is
believed to limit the difference that we see as the grid spacing increases. This is very similar
to the initial experiment, but attempts to isolate grid spacing as a variable and the impact it
has on IBM-WRF.

5.7.1 Model setup

The base model setup the same as the previous case, with a scaling factor used to maintain a
maximum slope of 10 degrees at each resolution. Figure 5.11 shows the scales used at each
resolution to achieve the necessary maximum slope.

5.7.2 Results

Difference fields for five representative domains are shown in Figure 5.12. Unlike in Figure
5.9, where the difference seems to radiate directly from the mountain, the differences here are
much more sporadic and concentrated to the side of the mountain. Such patterns, especially
the one shown for the dx = 2 km case, indicate an interpolation error. This is visually
confirmed in Figure 5.13 by comparing the velocity magnitude fields of WRF and IBM-WRF.

The resulting relationship between maximum difference and horizontal resolution is shown
in Figure 5.14. The difference follows a similar trend as the initial experiment, but shows no
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Figure 5.11: Scales used on the terrain to achieve a maximum slope of 10 degrees for each
horizontal resolution.

sign of a tail. Two outliers are very visible (noted in Figure 5.14), but the trend is clearly
present. Interestingly, the outliers are both at horizontal resolutions where the scaling factor
is < 1, which is counter-intuitive. A decrease in the scale of the terrain is expected to be
accompanied by an improvement in mutual agreement between the two systems. These
outliers seem to be a result of a variable nature possessed by IBM-WRF at coarse resolutions,
and are an example of an issue that the implementation of a log-law could potentially address.

5.8 Concluding remarks

The IBM-WRF framework is potentially a very powerful atmospheric model, capable of
ranging across essentially all scales of the globe. Of note is the improved capability of joint
observational and modeling studies of the atmosphere, especially studies of atmospheric
turbulence. The meso-to-micro scale nesting capability would allow for LES at the finest
scales to consider regional weather effects associated with observational data. The general
spatial scale where each coordinate system is appropriate is known, however the specific
relationships between numerical errors in the different systems and the multiple factors that
control these errors are not known. If these two systems are to be used in a single modeling
framework, the nature of the two systems relative to each other and their model settings
must be investigated in more detail.

In this work we have presented a hypothetical model for the behavior of WRF’s terrain-
following coordinate system and IBM-WRF’s immersed boundary method and conducted
three simple experiments to evaluate this model. The presented hypothesis seems to have
merit, although the relative location of WRF showing signs of numerical instabilities is not
accurately predicted. The hypothesis is that as grid spacing decreases WRF and IBM-WRF
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Figure 5.12: Velocity magnitude difference fields for cases where the horizontal resolution is
(from top to bottom) 4km, 3km, 2km, 1km, 500m. Domains are zoomed in both horizontally
and vertically. To scale.

Figure 5.13: Velocity magnitude fields for IBM-WRF (top) and WRF when the horizontal
resolution is 2 km and the maximum slope is artificially set to 10 degrees. To scale.



CHAPTER 5. THE GRAY ZONE OF TERRAIN REPRESENTATION IN
ATMOSPHERIC MODELS 132

Figure 5.14: Maximum difference as a function of horizontal resolution when the maximum
slope is artificially set to 10 degrees. The two outliers are in red.

will begin to diverge before WRF cannot continue. In these experiments WRF’s range is at
its minimum before a fine-scale divergence is seen. This is not concerning considering the
two-dimensional setup used, since this is a considerable constrain on the solution that very
well may cause premature instability.

From these results it can be deduced firstly that the choice of coordinate system is
highly dependent on horizontal resolution and terrain slope. It is also concluded that, for
two dimensions, there is a range of notably low difference between WRF and IBM-WRF
which marks the location of the desired transition between the two. In two dimensions
this transition is made necessary by numerical instabilities in WRF, but that result is not
necessarily expected in three dimensions.

The errors generated by IBM-WRF are primarily a result of inaccurate interpolation
caused by large spatial distances between grid points. This can likely be alleviated with the
implementation of a log-law to reconstruct image point values. Indeed, this is a subject of
ongoing work that is expected to increase the flexibility of IBM-WRF to be extended to
coarser resolutions. The specific impact that a log-law will have on the results found here is
not known.
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Chapter 6

Conclusions and future work

A thorough investigation is presented on the behavior of isotropic and various implementations
of anisotropic versions of the three-dimensional Smagorinsky-Lilly model of Lilly (1962);
Smagorinsky (1963), the 1.5-order prognostic turbulent kinetic energy (TKE) model of
Deardorff (1972), and the dynamic reconstruction model (DRM) using zero and two levels of
reconstruction for large-eddy simulation (LES) of the atmospheric boundary layer (ABL).
Cases considered began with an idealized free-convection case with w′θ′s = 0.24 m K s−1 and
u0 = 0 m s−1. A more realistic initial profile with an initial wind and geostrophic forcing
was then considered with w′θ′s = 0.3 m K s−1. Finally, three more cases were considered
with w′θ′s = 0.4 m K s−1 and u0 = 0 m s−1, w′θ′s = 0.15 m K s−1 and u0 = 8 m s−1, w′θ′s =
0.45 m K s−1 and u0 = 8 m s−1.

For eddy-viscosity models, it is shown that, on the highly-anisotropic grids common
to numerical weather prediction (NWP), classical isotropic formulations generate a TKE
spectrum of resolved vertical velocity that is generally flat in wavenumber space, while classical
anisotropic formulations generate a TKE spectrum of w′w′ that is skewed towards the longest
wavelengths possible on the grid, which may be acceptable behavior for numerical studies of
dimensionless turbulence but not applicable to forecasting applications where physical scales
should be consistent across grids. It is also shown that the DRM generates a more consistent
energy spectrum across different grids, as well as more consistent planar-averaged profiles of
potential temperature and velocity and planar slices of vertical velocity.

A new alternative-anisotropic formulation (a swapping of lh and lv) is then proposed and
shown to generate a TKE spectrum that is skewed towards the smallest wavelengths possible
on the grid. The behavior of this new formulation is evaluated for multiple levels of surface
heating and geostrophic forcing. It is seen that, while the performance is generally very good
and an improvement over either traditional isotropic or anisotropic formulations, there are
some very interesting follow-up questions about the different lengthscales of production and
dissipation for heat and momentum in the atmosphere, and their partitioning in sub-grid scale
(SGS) turbulent models. From the results seen, it seems very optimistic to think that there is
some formulation of the prognostic TKE-1.5 model that is able to generate highly-consistent
results across all grid scales, as well as provide insights into the scales of TKE production
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and dissipation.
Analysis is also extended for the DRM, which is shown to improve the performance of

NWP models in the presence of both increased shear and orographic drag (in the Appendices),
with simulations of turbulence around a high-resolution representation of Granite Mountain
(Utah) shown and compared to the traditional models.

Finally, a brief treatment of a similar gray-zone problem in the representation of complex
terrain is given, highlighting that the general issues outlined here for representing atmospheric
turbulence, where the extreme ends of the micro and macro scales are both easily modeled,
but at the most relevant scales there is a conflict between the representation of the terrain
complexity and the representation of the flow complexity that can lead to large errors in the
solution.

This work has addressed many outstanding questions and has also led to many new
and interesting questions which will be the subject of future work. First and foremost,
considerations will be made for the inclusion of moisture, which is not only the most natural
and obvious next step, but is the next step in the author’s career as well. Other future
considerations include the further development of the DRM and alternative anisotropic
eddy-viscosity models, particularly in the lengthscales used in the prognostic TKE equations
for the alternative-anisotropic TKE-1.5 model, as well as further theoretical insights to the
scales of production and dissipation of TKE in the atmosphere that may be gained from
these investigations.
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Appendix A

Additional sheared test cases in
WRF-LES

This appendix includes additional test cases comparing the DRM to the Smagorinsky-Lilly
and TKE-1.5 models for sheared convection cases. The setup of these cases follows the cases
in Chs. 3 and 4.

A.1 Results

A.1.1 High-resolution cases

High-resolution results (100 m) are given first using the same familiar figures to show the
evolution of mean and turbulent fields.
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Figure A.1: Resolved potential temperature and u-velocity profiles for the high-resolution
(∆x,y = 100 m) cases using the isotropic TKE-1.5 model, isotropic DRM2 model and no
model.

Figure A.2: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (top) and 9
(bottom) hours for the high-resolution (∆x,y = 100 m) cases using the isotropic TKE-1.5
model, isotropic DRM2 model and no model.
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Figure A.3: Metrics of the resolved vertical velocity field, w, averaged over the z ≈
169 m to 1.79 km planes for the high-resolution (∆x,y = 100 m) cases using the isotropic
TKE-1.5 model, isotropic DRM2 model and no model: total resolved TKE (w′w′) in time
(far left), the same in log-log scale (middle left), critical wavelength of w′w′ in time (middle
right), and spectra of resolved TKE (S33) averaged over the final two hours (far right).

Figure A.4: Contours of spectra of resolved TKE in the vertical velocity (S33) in time for the
high-resolution (∆x,y = 100 m) cases using the isotropic TKE-1.5 model, isotropic DRM2
model and no model, with the critical wavelength (dotted white) and horizontal Nyquist
limit (dotted black) overlaid.
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A.1.2 Coarse DRM flavors

This section includes results from test cases at 1.2-km resolutions with level-0 and level-2
reconstruction using isotropic and anisotropic versions of the DWL.
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Figure A.5: Resolved potential temperature and u-velocity profiles for the ∆x,y = 1.2 km
using the DRM0 and DRM2 models with isotropic and anisotropic lengthscales.

Figure A.6: Resolved vertical velocity, w, in the z ≈ 518 m plane at t = 4 (top) and 9
(bottom) hours for the ∆x,y = 1.2 km using the DRM0 and DRM2 models with isotropic and
anisotropic lengthscales.
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Figure A.7: As in Fig. 3.3 but when ∆x,y = 1.2 km using the DRM0 and DRM2 models with
isotropic and anisotropic lengthscales.

Figure A.8: As in Fig. 3.4 but when ∆x,y = 1.2 km using the DRM0 and DRM2 models with
isotropic and anisotropic lengthscales.



140

Appendix B

Additional test cases with terrain in
WRF-LES

This appendix includes preliminary test cases including complex terrain, comparing the DRM
to the Smagorinsky-Lilly and TKE-1.5 models for sheared convection. The setup of these
cases follows the cases in Chs. 3 and 4 but with the addition of a mountain.

B.1 Results

B.1.1 Coarse isotropic cases

Figure B.1: Vertical velocity, w, at t = 4 (top) and 9 (bottom) hours in the z ≈ 518 m plane
for the ∆x,y = 1.2 km cases considered.
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Figure B.2: Vertical velocity, w, at t = 4 (top) and 9 (bottom) hours in the z ≈ 1389 m plane
for the ∆x,y = 1.2 km cases considered.
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B.1.1.1 Smagorinsky-Lilly model

Figure B.3: Slice through the y−z plane at x = 190 km using the isotropic Smagorinsky-Lilly
model at t = 4 (top) and 9 (bottom) hours for the ∆x,y = 1.2 km case.

B.1.1.2 TKE-1.5 model

Figure B.4: As in Fig. B.3 but for the isotropic TKE-1.5 model.
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B.1.1.3 DRM model

Figure B.5: As in Fig. B.3 but for the isotropic DRM0 model.

B.1.1.4 No model

Figure B.6: As in Fig. B.3 but using no model.
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Appendix C

Relevant details of the WRF code

C.1 Turbulent diffusion

C.1.1 Diffusion in WRF prior to 3.8.1

In versions of WRF prior to 3.8.1 the turbulent stress terms were coupled to the dry column
mass per area, m, (mimicking the prognostic variables U, V,W,Θ) and were simply calculated
as the difference in the coupled-stress over the distance of interest. Considering θ as an
example, turbulent stress gradients are included in the discrete tendency terms as

∂Θ

∂t
+ = −∆ (mτθ3)

∆z
(C.1)

where

τθ3 = −Kv

Pr

∂θ

∂z
, (C.2)

m is column dry air mass per area, Kv is vertical eddy viscosity and Pr is the turbulent
Prandtl number.
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C.1.2 Diffusion in WRF 3.8.1 onwards

Beginning with WRF 3.8.1 the diffusion terms were updated to conserve mass by coupling
the turbulent stresses with the local density rather than the column mass. Due to prognostic
variables having units of being coupled to the column mass rather than the local density, this
required a reformulation of diffusion terms to a much less intuitive form, becoming (again
considering Θ)

∂Θ

∂t
+ = g

∆ (ρτθ3)

∆η
(C.3)

where

η =
ph − pht
phs − pht

=
ph − pht
m

(C.4)

where ph is the hydrostatic pressure, pht is the hydrostatic pressure at the top, phs is the
hydrostatic pressure at the surface, ρ is local density. The change in sign is because ∆η is 1
at the surface and 0 at the model top (i.e. positive-down, compared to z which is positive-up).
Using the definition of hydrostatic pressure it is relatively simple to find that C.1 and C.3
are equivalent.

C.2 Ideal surface fluxes

C.2.1 Surface heat fluxes in WRF

When a constant surface heat flux is specified in the namelist it is done via tke heat flux,
which has units of [m K s−1], and the diffusion routine takes

τθ3,s = tke heat flux, (C.5)

∂Θs

∂t
+ = −gρτθ3,s

∆η
, (C.6)

then calculates

HFX = cpmρτθ3,s (C.7)

to provide output in units of [W m−2].
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C.2.2 Surface heat and momentum fluxes in the WRF code

1 SUBROUTINE v e r t i c a l d i f f u s i o n 2 ( ru tendf , rv tend f , rw tendf , r t t e n d f , &
2 tke t end f , moi s t tendf , n moist , &
3 chem tendf , n chem , &
4 s c a l a r t e n d f , n s ca l a r , &
5 t r a c e r t e n d f , n t race r , &
6 u 2 , v 2 , &
7 thp , u base , v base , t base , qv base ,mu, tke ,&
8 c o n f i g f l a g s , defor13 , defor23 , defor33 , &
9 nba mij , n nba mij , &

!JDM
10 div , &
11 moist , chem , s ca l a r , t race r , &
12 xkmv , xkhv , xkmh , km opt , &

! xkmh added
13 fnm , fnp , dn , dnw , rdz , rdzw , &
14 hfx , qfx , ust , rho , &
15 ids , ide , jds , jde , kds , kde , &
16 ims , ime , jms , jme , kms , kme , &
17 i t s , i t e , j t s , j t e , kts , kte )
18

19 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 ! Begin d e c l a r a t i o n s .
21

22 ! JSS : REMOVED, NOT RELEVANT HERE
23

24 ! End d e c l a r a t i o n s .
25 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 i s t a r t = i t s
28 i end = MIN( i t e , ide −1)
29 j s t a r t = j t s
30 j end = MIN( j t e , jde−1)
31 !
32 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33

34 CALL v e r t i c a l d i f f u s i o n u 2 ( ru tendf , c o n f i g f l a g s , mu, &
35 defor13 , xkmv , &
36 nba mij , n nba mij , & !JDM
37 dnw , rdzw , fnm , fnp , rho , &
38 ids , ide , jds , jde , kds , kde , &
39 ims , ime , jms , jme , kms , kme , &
40 i t s , i t e , j t s , j t e , kts , kte )
41

42

43 CALL v e r t i c a l d i f f u s i o n v 2 ( rv tend f , c o n f i g f l a g s , mu, &
44 defor23 , xkmv , &
45 nba mij , n nba mij , & !JDM
46 dnw , rdzw , fnm , fnp , rho , &
47 ids , ide , jds , jde , kds , kde , &
48 ims , ime , jms , jme , kms , kme , &
49 i t s , i t e , j t s , j t e , kts , kte )
50

51 CALL v e r t i c a l d i f f u s i o n w 2 ( rw tendf , c o n f i g f l a g s , mu, &
52 defor33 , tke ( ims , kms , jms ) , &
53 nba mij , n nba mij , & !JDM
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54 div , xkmh , & !Mod from
RR Oct2013 was xkmv

55 dn , rdz , fnm , fnp , rho , &
56 ids , ide , jds , jde , kds , kde , &
57 ims , ime , jms , jme , kms , kme , &
58 i t s , i t e , j t s , j t e , kts , kte )
59

60 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
61 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
62 ! MODIFICA a l f l u s s o d i momento a l l a pare te
63 !
64 v f lux : SELECT CASE( c o n f i g f l a g s%i s f f l x )
65 CASE (0) ! Assume cd a constant , s p e c i f i e d in name l i s t
66 cd0 = c o n f i g f l a g s%t k e d r a g c o e f f i c i e n t ! constant drag c o e f f i c i e n t
67 ! s e t in name l i s t . input
68 !
69 ! c a l c o l o de l modulo d e l l a v e l o c i t a
70 DO j = j s t a r t , j end
71 DO i = i s t a r t , i t e
72 V0 u=0.
73 tao xz =0.
74 V0 u= s q r t ( ( u 2 ( i , kts , j ) ∗∗2) + &
75 ( ( ( v 2 ( i , kts , j )+ &
76 v 2 ( i , kts , j +1)+ &
77 v 2 ( i −1, kts , j )+ &
78 v 2 ( i −1, kts , j +1) ) /4) ∗∗2) )+e p s i l o n
79 !SNT −− Fix to d i f f u s i o n
80 ! tao xz=cd0∗V0 u∗u 2 ( i , kts , j )

! o ld code
81 ! r u t end f ( i , kts , j )=ru t end f ( i , kts , j ) &

! o ld code
82 ! −0.25∗(mu( i , j )+mu( i −1, j ) ) ∗ tao xz ∗( rdzw ( i , kts , j )+rdzw

( i −1, kts , j ) ) ! o ld code
83

84 tao xz=cd0∗V0 u∗u 2 ( i , kts , j ) ∗( rho ( i , kts , j )+rho ( i −1, kts , j ) ) /2 .
! new code

85 ru t end f ( i , kts , j )=ru t end f ( i , kts , j ) + g∗ tao xz /dnw( kts )
! new code

86 !SNT −− End changes
87 ENDDO
88 ENDDO
89

90

91

92 ! JSS : REMOVED, SAME AS ABOVE FOR RV TENDF
93

94 CASE (1 , 2 ) ! u s ta r computed from s u r f a c e rou t ine
95 DO j = j s t a r t , j end
96 DO i = i s t a r t , i t e
97 V0 u=0.
98 tao xz =0.
99 V0 u= s q r t ( ( u 2 ( i , kts , j ) ∗∗2) + &

100 ( ( ( v 2 ( i , kts , j )+ &
101 v 2 ( i , kts , j +1)+ &
102 v 2 ( i −1, kts , j )+ &
103 v 2 ( i −1, kts , j +1) ) /4) ∗∗2) )+e p s i l o n
104 ustar =0.5∗( ust ( i , j )+ust ( i −1, j ) )
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105 !SNT −− Fix to d i f f u s i o n
106 ! tao xz=ustar ∗ ustar ∗u 2 ( i , kts , j ) /V0 u

! o ld code
107 ! r u t end f ( i , kts , j )=ru t end f ( i , kts , j ) &

! o ld code
108 ! −0.25∗(mu( i , j )+mu( i −1, j ) ) ∗ tao xz ∗( rdzw ( i , kts , j )+rdzw

( i −1, kts , j ) ) ! o ld code
109

110 tao xz=ustar ∗ ustar ∗u 2 ( i , kts , j ) ∗( rho ( i , kts , j )+rho ( i −1, kts , j ) ) / ( 2 .∗V0 u )
! new code

111 ru t end f ( i , kts , j )=ru t end f ( i , kts , j ) + g∗ tao xz /dnw( kts )
! new code

112 !SNT −− End changes
113 ENDDO
114 ENDDO
115

116 ! JSS : REMOVED, SAME AS ABOVE FOR RV TENDF
117

118 CASE DEFAULT
119 CALL w r f e r r o r f a t a l ( ’ i s f f l x va lue i n v a l i d f o r d i f f o p t =2 ’ )
120 END SELECT vf lux
121

122

123 CALL v e r t i c a l d i f f u s i o n s ( r t t e n d f , c o n f i g f l a g s , var mix , mu, xkhv , &
124 dn , dnw , rdz , rdzw , fnm , fnp , rho , &
125 . f a l s e . , &
126 ids , ide , jds , jde , kds , kde , &
127 ims , ime , jms , jme , kms , kme , &
128 i t s , i t e , j t s , j t e , kts , kte )
129

130

131 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
132 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
133 !MODIFICA a l f l u s s o d i c a l o r e
134 !
135 !
136 h f lux : SELECT CASE( c o n f i g f l a g s%i s f f l x )
137 CASE (0 , 2 ) ! with f i x e d s u r f a c e heat f l u x g iven in the name l i s t
138 h e a t f l u x = c o n f i g f l a g s%t k e h e a t f l u x ! constant heat f l u x value
139 ! s e t in name l i s t . input
140 DO j = j s t a r t , j end
141 DO i = i s t a r t , i end
142 cpm = cp ∗ ( 1 . + 0 .8 ∗ moist ( i , kts , j ,P QV) )
143 hfx ( i , j )=h e a t f l u x ∗cp∗ rho ( i , kts , j ) ! provided f o r output only
144 !SNT −− FIx to d i f f u s i o n
145 ! r t t e n d f ( i , kts , j )=r t t e n d f ( i , kts , j ) & ! o ld code
146 ! +mu( i , j ) ∗ h e a t f l u x ∗rdzw ( i , kts , j ) ! o ld code
147 r t t e n d f ( i , kts , j )=r t t e n d f ( i , kts , j ) & ! new code
148 −g∗ h e a t f l u x ∗ rho ( i , kts , j ) /dnw( kts ) ! new code
149 !SNT −− End changes
150 ENDDO
151 ENDDO
152

153 CASE (1) ! use s u r f a c e heat f l u x computed from s u r f a c e rou t in e
154 DO j = j s t a r t , j end
155 DO i = i s t a r t , i end
156
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157 cpm = cp ∗ ( 1 . + 0 .8 ∗ moist ( i , kts , j ,P QV) )
158 !SNT −− Fix to d i f f u s i o n
159 ! h e a t f l u x = hfx ( i , j ) /cpm/rho ( i , 1 , j ) ! o ld code
160 ! r t t e n d f ( i , kts , j )=r t t e n d f ( i , kts , j ) & ! o ld code
161 ! +mu( i , j ) ∗ h e a t f l u x ∗rdzw ( i , kts , j ) ! o ld code
162 h e a t f l u x = hfx ( i , j ) /cpm ! new code
163 r t t e n d f ( i , kts , j )=r t t e n d f ( i , kts , j ) & ! new code
164 −g∗ h e a t f l u x /dnw( kts ) ! new code
165 !SNT −− End changes
166

167 ENDDO
168 ENDDO
169

170 CASE DEFAULT
171 CALL w r f e r r o r f a t a l ( ’ i s f f l x va lue i n v a l i d f o r d i f f o p t =2 ’ )
172 END SELECT hf lux
173

174

175

176 ! JSS : REMOVED, NOT RELEVANT HERE
177

178

179 END SUBROUTINE v e r t i c a l d i f f u s i o n 2
180

181

182

183 !=======================================================================
184 !=======================================================================
185

186 SUBROUTINE v e r t i c a l d i f f u s i o n s ( tendency , c o n f i g f l a g s , var , mu, xkhv , &
187 dn , dnw , rdz , rdzw , fnm , fnp , rho , &
188 doing tke , &
189 ids , ide , jds , jde , kds , kde , &
190 ims , ime , jms , jme , kms , kme , &
191 i t s , i t e , j t s , j t e , kts , kte )
192

193 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
194 ! Begin d e c l a r a t i o n s .
195

196 IMPLICIT NONE
197

198 TYPE( g r i d c o n f i g r e c t y p e ) , INTENT(IN ) : : c o n f i g f l a g s
199

200 INTEGER , INTENT(IN ) : : ids , ide , jds , jde , kds , kde , &
201 ims , ime , jms , jme , kms , kme , &
202 i t s , i t e , j t s , j t e , kts , kte
203

204 LOGICAL, INTENT(IN ) : : do ing tke
205

206 REAL , DIMENSION( kms : kme ) , INTENT(IN ) : : fnm
207 REAL , DIMENSION( kms : kme ) , INTENT(IN ) : : fnp
208 REAL , DIMENSION( kms : kme ) , INTENT(IN ) : : dn
209 REAL , DIMENSION( kms : kme ) , INTENT(IN ) : : dnw
210

211 REAL , DIMENSION( ims : ime , kms : kme , jms : jme ) , INTENT(INOUT) : : tendency
212

213 REAL , DIMENSION( ims : ime , kms : kme , jms : jme ) , INTENT(IN) : : xkhv
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214

215 REAL , DIMENSION( ims : ime , jms : jme ) , INTENT(IN) : : mu
216

217 REAL , DIMENSION( ims : ime , kms : kme , jms : jme ) , &
218 INTENT(IN ) : : var , &
219 rdz , &
220 rdzw , &
221 rho
222 ! LOCAL VARS
223

224 INTEGER : : i , j , k , k t f
225

226 INTEGER : : i s t a r t , i end , j s t a r t , j end
227

228 REAL , DIMENSION( i t s : i t e , kt s : kte , j t s : j t e ) : : H3 , &
229 xkxavg , &
230 rravg
231

232 REAL , DIMENSION( i t s : i t e , kt s : kte , j t s : j t e ) : : tmptendf
233

234 ! End d e c l a r a t i o n s .
235 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
236

237 k t f=MIN( kte , kde−1)
238

239 i s t a r t = i t s
240 i end = MIN( i t e , ide −1)
241 j s t a r t = j t s
242 j end = MIN( j t e , jde−1)
243

244 IF ( c o n f i g f l a g s%open xs . or . c o n f i g f l a g s%s p e c i f i e d . or . &
245 c o n f i g f l a g s%nested ) i s t a r t = MAX( i d s +1, i t s )
246 IF ( c o n f i g f l a g s%open xe . or . c o n f i g f l a g s%s p e c i f i e d . or . &
247 c o n f i g f l a g s%nested ) i end = MIN( ide −2, i t e )
248 IF ( c o n f i g f l a g s%open ys . or . c o n f i g f l a g s%s p e c i f i e d . or . &
249 c o n f i g f l a g s%nested ) j s t a r t = MAX( jd s +1, j t s )
250 IF ( c o n f i g f l a g s%open ye . or . c o n f i g f l a g s%s p e c i f i e d . or . &
251 c o n f i g f l a g s%nested ) j end = MIN( jde −2, j t e )
252 IF ( c o n f i g f l a g s%p e r i o d i c x ) i s t a r t = i t s
253 IF ( c o n f i g f l a g s%p e r i o d i c x ) i end = MIN( i t e , ide −1)
254

255 IF ( do ing tke ) THEN
256 DO j = j s t a r t , j end
257 DO k = kts , k t f
258 DO i = i s t a r t , i end
259 tmptendf ( i , k , j )=tendency ( i , k , j )
260 ENDDO
261 ENDDO
262 ENDDO
263 ENDIF
264

265 ! H3
266

267 xkxavg = 0 .
268

269 DO j = j s t a r t , j end
270 DO k = kts +1, k t f
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271 DO i = i s t a r t , i end
272 xkxavg ( i , k , j )=fnm( k ) ∗xkhv ( i , k , j )+fnp ( k ) ∗xkhv ( i , k−1, j )
273 xkxavg ( i , k , j )=xkxavg ( i , k , j ) ∗( fnm( k ) ∗ rho ( i , k , j )+fnp ( k ) ∗ rho ( i , k−1, j ) ) !SNT
274 H3( i , k , j )=−xkxavg ( i , k , j ) ∗( var ( i , k , j )−var ( i , k−1, j ) ) ∗ rdz ( i , k , j )
275 ! H3( i , k , j )=−xkxavg ( i , k , j ) ∗ z e t a z ( i , j ) ∗ &
276 ! ( var ( i , k , j )−var ( i , k−1, j ) ) /dn( k )
277 ENDDO
278 ENDDO
279 ENDDO
280

281 DO j = j s t a r t , j end
282 DO i = i s t a r t , i end
283 H3( i , kts , j ) =0.
284 H3( i , k t f +1, j ) =0.
285 ! H3( i , kts , j )=H3( i , k t s +1, j )
286 ! H3( i , k t f +1, j )=H3( i , kt f , j )
287 ENDDO
288 ENDDO
289

290 DO j = j s t a r t , j end
291 DO k = kts , k t f
292 DO i = i s t a r t , i end
293 !SNT −− Fix to v e r t i c a l d i f f u s i o n to ensure conse rva t i on o f mass
294 ! tendency ( i , k , j )=tendency ( i , k , j ) & ! o ld code
295 ! −mu( i , j ) ∗(H3( i , k+1, j )−H3( i , k , j ) ) ∗rdzw ( i , k , j ) ! o ld code
296 tendency ( i , k , j )=tendency ( i , k , j ) & ! new code
297 + g ∗ (H3( i , k+1, j )−H3( i , k , j ) ) /dnw( k ) ! new code
298 !SNT −− End changes
299 ENDDO
300 ENDDO
301 ENDDO
302

303 IF ( do ing tke ) THEN
304 DO j = j s t a r t , j end
305 DO k = kts , k t f
306 DO i = i s t a r t , i end
307 tendency ( i , k , j )=tmptendf ( i , k , j ) +2.∗ &
308 ( tendency ( i , k , j )−tmptendf ( i , k , j ) )
309 ENDDO
310 ENDDO
311 ENDDO
312 ENDIF
313

314 END SUBROUTINE v e r t i c a l d i f f u s i o n s
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C.2.3 Surface roughness-length implementation in the WRF
code

In this section, the reader will find the ad-hoc method of including a surface roughness in the
form of a roughness length, z0, in the WRF model, as originally implemented by Katherine
A. Lundquist and passed down within the Chow Group.

The following code is an excerpt from the subroutine vertical diffusion 2 contained
in the file dyn em/module diffusion em.F:

1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 ! MODIFICA a l f l u s s o d i momento a l l a pare te
4 !
5

6 v f lux : SELECT CASE( c o n f i g f l a g s%i s f f l x )
7 CASE (0) ! Assume cd a constant , s p e c i f i e d in name l i s t
8 ! cd0 = c o n f i g f l a g s%t k e d r a g c o e f f i c i e n t
9 ! constant drag c o e f f i c i e n t s e t in namel i s t . input

10 Cd u = 0 .
11 Cd v = 0 .
12

13 IF ( c o n f i g f l a g s%t k e d r a g c o e f f i c i e n t /= 0) THEN
14 cd0 = c o n f i g f l a g s%t k e d r a g c o e f f i c i e n t ! constant drag c o e f f i c i e n t
15 ! s e t in name l i s t . input
16 DO j = j s t a r t , j end+1
17 DO i = i s t a r t , i end+1
18 Cd u ( i , j )= cd0
19 Cd v ( i , j )= cd0
20 ENDDO
21 ENDDO
22

23 ! ! ! −−−−−>>>> START OF KAL’ S MODIFICATIONS
24

25 ELSEIF ( c o n f i g f l a g s%z rough /= 0) THEN
26 !KAL rdz i s 1/dz at mass po in t s . This must be averaged in the h o r i z o n t a l
27 ! to f i n d i t at u and v h o r i z o n t a l v e l o c i t y po in t s
28

29 DO j = j s t a r t , j end+1
30 DO i = i s t a r t , i end+1
31 Cd u ( i , j )= (KARMAN / &
32 LOG( ( 2 . / ( rdz ( i −1, kts , j )+rdz ( i , kts , j ) ) ) / c o n f i g f l a g s%z rough ) ) ∗∗2
33 Cd v ( i , j )= (KARMAN / &
34 LOG( ( 2 . / ( rdz ( i , kts , j−1)+rdz ( i , kts , j ) ) ) / c o n f i g f l a g s%z rough ) ) ∗∗2
35 ENDDO
36 ENDDO
37

38 ! ! ! −−−−−>>>> END OF KAL’ S MODIFICATIONS
39

40 END IF ! end o f s e t t i n g drag c o e f f i c i e n t based on
41 ! t k e d r a g c o e f f i c i e n t or z rough from namel i s t
42

43 ! c a l c o l o de l modulo d e l l a v e l o c i t a
44 DO j = j s t a r t , j end
45 DO i = i s t a r t , i end+1
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46 V0 u=0.
47 tao xz =0.
48 V0 u=s q r t ( ( u 2 ( i , kts , j ) ∗∗2) + &
49 ( ( ( v 2 ( i , kts , j )+ &
50 v 2 ( i , kts , j +1)+ &
51 v 2 ( i −1, kts , j )+ &
52 v 2 ( i −1, kts , j +1) ) /4) ∗∗2) )+e p s i l o n
53

54 tao xz=Cd u ( i , j ) ∗V0 u∗u 2 ( i , kts , j ) ∗( rho ( i , kts , j )+rho ( i −1, kts , j ) ) /2 .
55 ru t end f ( i , kts , j )=ru t end f ( i , kts , j ) + g∗ tao xz /dnw( kts )
56

57 ENDDO
58 ENDDO
59

60 DO j = j s t a r t , j end+1
61 DO i = i s t a r t , i end
62 V0 v=0.
63 tao yz =0.
64 V0 v=s q r t ( ( v 2 ( i , kts , j ) ∗∗2) + &
65 ( ( ( u 2 ( i , kts , j )+ &
66 u 2 ( i , kts , j−1)+ &
67 u 2 ( i +1, kts , j )+ &
68 u 2 ( i +1, kts , j−1) ) /4) ∗∗2) )+e p s i l o n
69

70 tao yz=Cd v ( i , j ) ∗V0 v∗v 2 ( i , kts , j ) ∗( rho ( i , kts , j )+rho ( i , kts , j−1) ) /2 .
71 r v t e n d f ( i , kts , j )=r v t e n d f ( i , kts , j ) + g∗ tao yz /dnw( kts )
72

73 ENDDO
74 ENDDO
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D.1 Full copyright notice for Ch. 2
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determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the
conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require
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such as on a website or in a searchable database, or other uses of this material, except as
exempted by the above statement, requires written permission or a license from the AMS.
All AMS journals and monograph publications are registered with the Copyright Clearance
Center (http://www.copyright.com). Questions about permission to use materials for which
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