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ABSTRACT	OF	THE	DISSERTATION	

	
Environmental	Controls	on	Marine	Particulate	C:N:P	Ratios	

	
By	
	

Catherine	Amanda	Garcia	
	

Doctor	of	Philosophy	in	Earth	System	Science	
	

	University	of	California,	Irvine,	2019	
	

Professor	Adam	C.	Martiny,	Chair	
	
	

Elemental	ratios	of	particulate	organic	matter	(POM)	are	key	to	linking	

biogeochemical	cycles.	Microbial	uptake	and	allocation	of	essential	biogenic	elements	

(carbon	(C),	nitrogen	(N),	and	phosphorus	(P))	influence	the	distribution	of	nutrients	

throughout	the	ocean.	This	dissertation	evaluates	the	role	of	environmental	stress	and	

underlying	phytoplankton	diversity	in	driving	regional	variation	in	the	ratio	of	particulate	

C:N:P.	Competing	hypotheses	predict	C:N:P	equally	well	due	to	regional	co-variance	in	

environmental	conditions	and	biodiversity.	The	Indian	Ocean	offers	a	unique	positive	

temperature	and	nutrient	supply	relationship	to	test	these	hypotheses.	We	collected	248	

POC:N:P	observations	in	the	eastern	Indian	Ocean	along	this	environmental	gradient.	As	

phytoplankton	community	composition	was	constant,	biodiversity	changes	could	not	

explain	the	elemental	variation.	Instead,	our	data	supports	the	nutrient	supply	hypothesis	

over	the	influence	of	temperature.		

Nutrients	concentrations	are	often	below	detection	limits	in	subtropical	ocean	

regions.	We	develop	two	methods	to	predict	nutrient	stress	to	further	evaluate	its	role	in	

particulate	C:P	regulation.		In	the	first	method,	we	develop	a	global	remote	sensing	
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estimate	of	surface	phosphate.	Using	a	mechanistic	framework,	we	develop	an	artificial	

neural	network	to	provide	a	robust	basis	for	developing	a	remote	sensing	estimation	of	

surface	phosphate.	However,	C:P	predictions	using	only	phosphate	did	not	match	

observations	in	either	the	South	Indian	or	Pacific	subtropical	gyres.		To	address	this	

challenge,	we	develop	a	second	method	by	applying	genomic	shifts	among	microbial	

communities	as	‘biosensors’	for	the	in	situ	nutritional	environment.	We	find	that	our	

genome-based	trait-model	significantly	improves	our	prediction	of	particulate	C:P	across	

ocean	regions.	Furthermore,	we	detect	previously	unrecognized	ocean	areas	of	iron,	

nitrogen,	and	phosphorus	stress.	Ultimately,	we	find	a	combination	of	nutrient	stress	

accounts	for	global	variation	in	particulate	C:P.		
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INTRODUCTION	

The	elemental	composition	of	ocean	phytoplankton	ultimately	determines	the	

distribution	of	major	biogenic	elements.	This	core	role	was	first	described	by	Alfred	

Redfield	when	he	linked	the	ratio	of	nutrient	concentrations	(NO3:PO4)	to	the	average	

composition	of	particulate	organic	carbon	(C),	nitrogen	(N),	and	phosphorus	(P)	(Redfield,	

1934).	Since	the	Redfield	Ratio	(106C:	16N:	1P)	was	first	described,	it	has	been	widely	used	

to	model	biological	processes	(e.g.	remineralization	rates	of	exported	organic	matter,	

nutrient	uptake	rates,	etc.).	However,	recently	systematic	latitudinal	and	taxonomic	

variation	in	the	ratio	of	C:N:P	has	emerged	(Martiny	et	al.,	2013a;	Martiny	et	al.,	2013b).	

While	this	discovery	has	improved	model	predictions	of	nutrient	distributions	(Teng	et	al.,	

2014),	we	as	yet	only	hypothesize	which	factors	control	global	trends	in	C:N:P	(Moreno	&	

Martiny,	2018).	Here,	the	following	chapters	evaluate	the	environmental	drivers	

underlying	variation	in	surface	ocean	particulate	C:N:P.		

It	is	challenging	to	tease	apart	phytoplankton	stoichiometry	hypotheses,	as	

temperature,	nutrient	availability,	and	community	composition	covary	in	situ.	Cold,	

nutrient-rich	water	corresponds	to	larger	phytoplankton	taxa	and	depressed	C:N:P	ratios,	

and	vice	versa	yields	elevated	ratios.	The	Indian	Ocean	is	a	unique	basin,	where	the	

relationship	between	temperature	and	nutrient	supply	is	opposite	the	global	relationship.	

As	such,	we	can	tease	apart	these	hypotheses	based	on	expected	predictions.	In	Chapter	1,	

we	sampled	particulate	organic	matter	(POM)	along	with	environmental	conditions	to	

address	the	following	questions;	How	do	POM	concentrations	and	elemental	ratios	vary	

between	regions	and	on	short-term	scales	within	regions?	How	do	the	phytoplankton	

community	composition	and	environmental	conditions	relate	to	variation	in	POM	
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concentrations	and	elemental	ratios?	Is	the	South	Indian	Ocean	gyre	unique	in	terms	of	its	

POM	concentrations,	ratios,	and	controls	compared	to	other	oligotrophic	gyres?	

By	identifying	the	regional	importance	of	temperature	and	nutrient	availability,	we	can	

better	predict	how	POM	composition	will	respond	to	changing	climate	patterns.	Fluctuating	

temperature	influences	phytoplankton	physiology	directly,	but	also	indirectly	as	

phytoplankton	may	adjust	to	increased	stratification	between	surface	and	deep	ocean	

layers.	The	primary	environmental	controls	of	phytoplankton	processes	are	light,	

temperature,	and	nutrients.		Whereas	light	and	temperature	are	easy	to	observe,	nutrient	

availability	is	poorly	defined	and	difficult	to	measure.	Chapters	2	and	3	develop	novel	

methods	to	predict	nutrient	availability	and	limitation	in	the	surface	ocean.	With	these	

nutrient	proxies,	we	can	use	an	existing	phytoplankton	trait	model	(Moreno	et	al.,	2018)	to	

predict	C:P	ratios	under	differing	environmental	conditions.		

There	is	no	remote	sensing	product	for	global	ocean	phosphate,	whereas	sea	surface	

temperature	(SST)	and	photosynthetically	active	radiation	(PAR)	are	commonly	observed	

via	satellite.	Based	on	the	results	from	Chapter	1,	a	dynamic	prediction	of	nutrients	is	

needed	to	accurately	predict	C:P	in	the	low	latitudes	(Garcia	et	al.,	2018).	Previous	attempts	

to	model	nitrate	concentrations	are	based	on	temperature	and/or	chlorophyll	due	not	

capture	concentrations	below	detection	limits	(Switzer	et	al.,	2003).	Furthermore,	the	

underlying	patterns	of	ultralow	phosphate	concentrations	differ	(Martiny	et	al,	2019).	In	

Chapter	2,	we	develop	an	artificial	neural	network	model	of	surface	phosphate.	Firstly,	we	

test	which	combination	satellite	inputs	leads	to	the	best	prediction	of	surface	phosphate	

along	four	defined	gradients.	Secondly,	we	describe	the	regional	uncertainty	for	the	best	
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model	fits.	However,	we	find	that	a	trait	model	using	a	single	nutrient	input	is	not	enough	

to	predict	C:P	ratios	in	the	Indian	Ocean.		

The	Indian	Ocean	has	complex	nutrient	limitation	patterns	(Twining	et	al.,	2019).	As	

such,	models	must	account	for	multiple	nutrients	to	accurately	predict	cellular	allocation	of	

C:P.	Particulate.	This	is	difficult	in	oligotrophic	biomes,	where	nitrate	and	sometimes	

phosphate	concentrations	are	below	detection.	In	Chapter	3,	we	use	metagenomes	

collected	across	three	low	latitude	ocean	basins	(Indian,	Pacific,	and	Atlantic)	to	develop	a	

second	nutrient	stress	proxy.	We	address	the	following	questions;	1)	Can	we	quantify	the	

genetic	variation	of	nutrient	assimilation	genes	and	relate	this	metric	to	gradients	in	

nutrient	stress?		2)	Does	this	underlying	variation	in	nutrient	uptake	genes	lead	to	a	better	

prediction	of	C:P?	
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CHAPTER	1	

Nutrient	supply	controls	particulate	elemental	concentrations	and	ratios	in	the	

Eastern	Indian	Ocean	

Co-authors:	Steven	Baer,	Nathan	Garcia,	Sara	Rauschenberg,	Ben	Twining,	Michael	Lomas,	

and	Adam	Martiny.	

	

Abstract	

	

	 Variation	in	ocean	C:N:P	of	particulate	organic	matter	(POM)	has	led	to	competing	

hypotheses	for	the	underlying	drivers.	Each	hypothesis	predicts	C:N:P	equally	well	due	to	

regional	co-variance	in	environmental	conditions	and	biodiversity.	The	Indian	Ocean	offers	

a	unique	positive	temperature	and	nutrient	supply	relationship	to	test	these	hypotheses.	

Here	we	show	how	elemental	concentrations	and	ratios	vary	over	daily	and	regional	scales.	

POM	concentrations	were	lowest	in	the	southern	gyre,	elevated	across	the	equator,	and	

peaked	in	the	Bay	of	Bengal.	Elemental	ratios	were	highest	in	the	gyre,	but	approached	

Redfield	proportions	northwards.	As	Prochlorococcus	dominated	the	phytoplankton	

community,	biodiversity	changes	could	not	explain	the	elemental	variation.	Instead,	our	

data	supports	the	nutrient	supply	hypothesis.	Finally,	gyre	dissolved	iron	concentrations	

suggest	extensive	iron	stress,	leading	to	depressed	ratios	compared	to	other	gyres.	We	

propose	a	model	whereby	differences	in	iron	supply	and	N2-fixation	influence	C:N:P	levels	

across	ocean	gyres.		

Keywords:	Indian	Ocean,	marine	biogeochemistry,	particulate	organic	matter,	

phytoplankton	stoichiometry		
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Introduction	

	 	Elemental	ratios	of	particulate	organic	matter	(POM)	are	key	to	linking	

biogeochemical	cycles.	The	carbon:nitrogen:phosphorus	(C:N:P)	ratio	is	often	assumed	

globally	constant	at	Redfield	proportions	(106C:16N:1P).	However,	recent	observations	

show	high	ratios	in	nutrient-poor	subtropical	gyres	and	low	ratios	in	nutrient-rich	

environments	(Martiny	et	al.,	2013;	Weber	&	Deutsch,	2010).	There	are	also	ocean	basin	

differences	with	higher	C:P	and	N:P	values	in	the	North	Atlantic	subtropical	gyre	and	lower	

ratios	in	other	subtropical	gyres	(Martiny	et	al.,	2013;	Teng	et	al.,	2014).	However,	many	

regions	remain	woefully	under-sampled,	especially	in	regards	to	particulate	organic	

phosphorus.	

Individual	studies	have	presented	competing	hypotheses	explaining	global	variation	

in	the	elemental	ratios	of	POM	(Moreno	&	Martiny,	2018).	First,	the	translation-

compensation	hypothesis	predicts	a	negative	relationship	between	temperature	and	the	

cellular	concentration	of	P-rich	ribosomes	as	higher	temperatures	increase	ribosomal	

translation	efficiency	(Toseland	et	al.,	2013).	This	would	lead	to	a	positive	relationship	

between	temperature	and	C(N):P	ratios.	Second,	the	nutrient	supply	hypothesis	predicts	

that	nutrient	stressed	cells	are	frugal	and	have	low	cell	quotas	of	the	limiting	nutrient.	For	

example,	this	hypothesis	predicts	a	negative	correlation	between	C:P	and	ambient	P	

availability	(Galbraith	&	Martiny,	2015;	Klausmeier	et	al.,	2004).	Thirdly,	the	allometric	

diversity	hypothesis	predicts	that	smaller,	nutrient	uptake	specialists	like	Prochlorococcus	

have	elevated	C:P	and	N:P	in	comparison	to	larger	lineages	like	diatoms	(Arrigo,	2005;	

Klausmeier	et	al.,	2004;	Martiny	et	al.,	2013).		However,	it	is	a	challenge	to	separate	these	
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hypotheses	as	temperature,	nutrient	supply,	and	community	composition	strongly	co-vary	

in	the	ocean.		

	 The	Indian	Ocean	(IO)	accounts	for	15-20%	of	global	ocean	net	primary	production	

(Behrenfeld	&	Falkowski,	1997),	but	there	are	few	published	data	that	describe	the	ocean	

biogeochemistry	of	particulate	organic	matter	in	this	region.	In	the	Indian	Ocean	spring	

inter-monsoon	season,	sea	surface	temperatures	and	macronutrient	concentrations	

increase	northwards.	Strong	gradients	in	temperature	and	nutrient	concentrations	in	the	

surface	ocean	suggest	three	distinct	regions:	an	oligotrophic,	cooler	(20.5-29.7oC)	Southern	

Indian	Ocean	gyre	(SIO	gyre);	a	warm	(30.3-31.5oC)	upwelling	region	north	of	10°S	(EqIO);	

and	a	warm	(29.1-32.6oC),	higher	biomass	region	in	the	Bay	of	Bengal	(BoB)	(Grand	et	al.,	

2015).	Although	surface	nutrient	concentrations	are	consumed	to	near	depletion	

throughout	the	basin,	two	overturning	thermohaline	cells	deliver	nutrient-replete	water	

close	to	the	surface	around	10°S	and	slightly	north	of	the	equator	(Lee,	2004).	However,	the	

northern	branch	of	the	cross-equatorial	cell	is	not	well	defined	(Schott	et	al.,	2002).	The	

Bay	of	Bengal	also	has	elevated	nutrient	supply	driven	seasonally	by	coastal	upwelling	and	

river	inputs,	thereby	leading	to	periods	of	increased	productivity	(Gomes	et	al.,	2000).	

Thus,	it	appears	that	the	warmest	regions	are	also	the	most	nutrient	replete	in	the	eastern	

Indian	Ocean	leading	to	temperature	and	macronutrient	supply	being	uniquely	positively	

correlated.	As	such,	this	region	enables	a	test	of	our	hypotheses	for	how	phytoplankton	

stoichiometry	ratios	are	controlled.		

	 Here,	we	ask	the	following	three	questions	about	environmental	and	biological	

controls	of	biogeochemistry	in	the	eastern	Indian	Ocean:	How	do	particulate	organic	

matter	concentrations	and	elemental	ratios	vary	between	regions	and	on	short-term	scales	
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within	regions?	How	do	the	phytoplankton	community	composition	and	environmental	

conditions	relate	to	variation	in	POM	concentrations	and	elemental	ratios?	Is	the	SIO	gyre	

unique	in	terms	of	its	POM	concentrations,	ratios	and	controls	compared	to	other	

oligotrophic	gyres?		

Our	results	suggest	that	nutrient	supply	is	the	leading	driver	of	regional	variation	in	

elemental	composition	in	the	eastern	Indian	Ocean	as	well	as	other	low	latitude	regions.	

However,	the	C:P	ratio	in	the	SIO	gyre	is	low	in	comparison	to	other	subtropical	gyres	

leading	us	to	propose	that	iron	stress	controls	the	POM	C:P	ratio	in	oligotrophic	regions	via	

regulation	of	N2-fixation.	Thus,	the	unique	biogeochemistry	of	the	Indian	Ocean	provides	

key	information	for	understanding	the	controls	of	ocean	C:N:P.	

Results		

I09N	transect	environmental	gradients	

To	quantify	the	link	between	environmental	gradients,	phytoplankton	community	

composition,	particulate	organic	matter	(POM)	concentrations,	and	ratios,	we	collected	

samples	across	238	stations	in	the	eastern	Indian	Ocean	(Figure	1.1,	S1.1).	Both	the	

western	and	eastern	Indian	Ocean	experienced	anomalously	warm	sea	surface	

temperature	(SST)	during	the	sampling	period.	However,	there	was	an	overall	positive	

Indian	Ocean	Dipole	(IOP	+0.34,	April	2016)	since	the	eastern	basin	was	cooler.	These	

conditions	favor	wind	patterns	that	promote	upwelling	off	Indonesia	(Wiggert	et	al.,	2009).	

Based	on	near	surface	temperature	and	nutrient	concentration	gradients,	we	classified	the	

transect	into	the	Southern	Indian	Ocean	gyre	(SIO	gyre,	31°S	-	12°S),	an	equatorial	

upwelling	region	(EqIO,	10°S	-	5°N),	and	the	Bay	of	Bengal	(BoB,	5°N	-	19°N)(Figures	1.2A	

and	B,	Figure	S1.1).	Due	to	uncertainty	in	the	SIO	gyre-Indonesian	through	flow	transition,	
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12°S	was	used	instead	of	10°S	as	the	gyre	northern	cutoff.	We	used	the	depth	of	the	1µM	

NO3	isocline	to	define	the	nutricline	and	applied	this	as	a	proxy	for	nutrient	supply	into	the	

surface	layer	(Figure	1.2B,	Figure	S1.2)	(Cermeño	et	al.,	2008).		SIO	gyre	had	the	lowest	

surface	temperature	and	the	deepest	nutricline	depth	along	the	transect	(218	m)(Table	

S1.1	and	Figures	1.2A	and	B).	EqIO	was	characterized	by	temperatures	above	29°C	and	the	

nutricline	shoaled	to	71	m.	Increased	nitrate	concentrations	below	the	nutricline	near	10°S,	

the	equator,	and	5°N	corresponded	to	bands	of	elevated	chlorophyll	(Figure	1.1)(“NASA	

Goddard	Space	Flight	Center,	Ocean	Ecology	Laboratory,	Ocean	Biology	Processing	Group.	

Moderate-resolution	Imaging	Spectroradiometer	(MODIS)	Aqua	Chlorophyll	a	4km	Data;	

NASA	OB.DAAC,	Greenbelt,	MD,	USA.,”	n.d.).	This	suggests	high	nutrient	supply	at	these	

bands.	In	BoB,	temperature	was	on	average	30.8°C,	and	the	nutricline	remained	constant	

(70	m).	Overall,	there	was	a	coupled	negative	relationship	between	SST	and	nutricline	

depth	(R	=	-0.88).	Thus,	there	were	significant	regional	environmental	differences,	but	in	

support	of	our	prediction,	a	uniquely	positive	relationship	between	temperature	and	the	

nutrient	supply.	

Short	term	and	regional	variation	in	POM	

We	identified	significant	diel	variability	of	POM	concentrations	and	elemental	ratios	

(Figure	1.3).	Particulate	organic	carbon	(POC)	had	the	strongest	cycle	with	a	maximum	at	

dusk,	and	minimum	at	dawn.	POP	had	a	similar	cycle,	whereas	PON	cycled	with	a	peak	

between	midnight	and	07:00	local	time	(Table	S1.1).	The	stronger	oscillation	in	POC	led	to	

C:N	and	C:P	maxima	near	dusk.	The	temporal	shift	in	the	peak	of	PON	relative	to	POP	led	to	

a	weak	N:P	ratio	maximum	at	17:00	local	time.	Over	the	course	of	a	day,	on	average	the	
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ratio	of	C:P	changed	by	13.4,	N:P	by	0.64,	and	C:N	by	0.58	in	the	eastern	Indian	Ocean.	

These	daily	ranges	were	comparable	to	differences	observed	between	regions	(Table	S1.1).		

We	next	found	distinct	diel	amplitudes	across	regions	(Figure	1.3).	The	smallest	

amplitudes	for	all	POM	concentrations	and	elemental	ratios	were	observed	in	SIO	gyre,	but	

no	significant	differences	between	the	BoB	or	EqIO	regions	(Table	S1.1).	Using	the	daily	

POC	range	as	a	proxy	for	daily	biomass	accumulation,	the	highest	normalized	accumulation	

rates	were	observed	on	the	coastal	margin	of	Western	Australia	at	30.7°S,	EqIO	at	2.4°S,	

and	intermittently	northwards	at	5°N,	8.5°N,	and	17.2°N	(Figure	S1.3).	In	contrast,	the	POC	

normalized	accumulation	rates	were	dampened	in	SIO	gyre.	The	nutrient	and	hydrography	

profiles	suggested	upwelling	at	~4-8°N,	where	two	of	the	POC	normalized	accumulation	

peaks	were	observed	(Figure		S1.1).	Thus,	there	appeared	to	be	increased	daily	carbon	

accumulation	in	regions	with	elevated	nutrient	availability.	

	 We	found	significant	regional	variation	in	the	concentration	and	ratios	of	POC,	PON,	

and	POP	(Figure	1.4	and	Table	S1.2).	Particulate	organic	matter	concentrations	were	

lowest	in	SIO	gyre	and	higher	northwards	(Table	S1.1).	In	BoB,	the	POM	concentrations	

decreased	from	9°N	to	15°N	followed	by	a	sharp	increase	in	waters	overlying	the	

continental	shelf	(Figure	1.2D-F).	Although	the	nutricline	shoals,	nutrients	may	be	

entrained	below	the	thermocline	due	to	strong	salinity	gradients	in	BoB	leading	to	low	

POM	concentrations	(Prasanna	Kumar	et	al.,	2002).	The	elemental	ratios	followed	similar	

declining	northward	trends,	with	high	ratios	in	the	SIO	gyre	and	low	ratios	in	the	north.	C:P	

and	C:N	decreased	sharply	during	the	transition	from	SIO	Gyre	(C:P	150,	C:N	7.6)	to	EqIO	

(C:P	131,	C:N	7.0),	but	stayed	slightly	above	Redfield	proportions	in	the	EqIO	and	the	BoB	

(C:P	127,	C:N	7.1)(Figure	1.2G-I).	N:P	decreased	gradually	northward	throughout	the	
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transect	(N:P:	SIO	gyre	=	20.1	EqIO	=	19.0,	BoB	=	17.9).	Thus,	there	were	clear	regional	

differences	in	elemental	ratios	across	the	eastern	Indian	Ocean.			

	

Testing	ecological	stoichiometry	hypotheses	

We	next	tested	the	three	proposed	stoichiometry	models	for	POM	stoichiometry	

trends	in	the	Indian	Ocean.	First,	we	addressed	the	allometric	diversity	hypothesis.	

Consistent	with	past	studies	(Makino	et	al.,	2003;	Rusch	et	al.,	2010),	Prochlorococcus	

dominated	the	phytoplankton	portion	with	only	small	contributions	from	picoeukaryotic	

phytoplankton	and	Synechococcus.	The	picoeukaryotic	phytoplankton	increased	in	biomass	

north	and	south	of	the	equator,	while	the	Synechococcus	biomass	increase	centered	on	the	

equator.	Residual	effects	of	coastal	upwelling	could	explain	the	increases	in	Synechococcus	

in	the	EqIO	(Wiggert	et	al.,	2009),	but	the	overall	Synechococcus	contribution	to	

phytoplankton	composition	was	small.	Larger	phytoplankton	were	rare	and	the	ratio	of	

photo-to-heterotrophic	plankton	biomass	was	nearly	1:1	throughout	the	transect.	A	linear	

regression	model	showed	no	significant	explanatory	power	of	relative	biomass	

composition	for	POM	concentrations	and	elemental	ratios	(Table	S1.3,	Figure	S1.	4).	

Instead,	POM	variation	was	explained	equally	well	by	a	combination	of	a	sinusoidal	diel	

plus	an	either	temperature	or	nutricline	depth	model	(Figure	S1.	5,	Figure	S1.6,	Table	S1.4,	

Table	S1.5).	The	models	lent	support	for	both	the	translation-compensation	and	nutrient	

supply	hypotheses.	As	such,	we	were	statistically	unable	to	distinguish	between	these	two	

ecological	stoichiometry	hypotheses	based	solely	on	our	Indian	Ocean	data.		

To	further	understand	how	POM	stoichiometry	was	regulated,	we	next	compared	

the	observed	relationships	for	environmental	variation	and	POM	composition	within	the	
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Indian	Ocean	with	previously	seen	global	trends	(Martiny	et	al.,	2013)(Figure	1.5,	Figure	

S1.	7).	While	the	nutricline	depth	was	positively	related	to	POM	elemental	ratios	for	both	

the	Indian	Ocean	and	globally,	the	relationship	for	temperature	flipped	from	negative	in	the	

Indian	Ocean	to	globally	positive.	This	suggests	that	the	relationship	between	temperature	

and	POM	stoichiometry	is	not	uniform.	We	further	searched	the	global	C:N:P	database	for	

all	surface	transects	with	strong	temperature	and	nutricline	depth	correlations	(Figure	

S1.8).	This	analysis	confirmed	the	observations	in	the	Indian	Ocean,	whereby	the	

correlation	between	nutricline	depth	and	POM	stoichiometry	was	consistently	positive.	In	

contrast,	the	correlation	between	temperature	and	POM	stoichiometry	could	be	both	

positive	and	negative,	leading	us	to	reject	the	translation-compensation	hypothesis.	It	is	

worth	noting	that	all	these	cruises	were	from	tropical	and	subtropical	ocean	leaving	it	

currently	unknown	how	temperature	vs.	nutrient	supply	control	higher	latitude	POM	

ratios.	Nevertheless,	the	analysis	suggests	that	for	at	least	low	latitude	regions,	nutrient	

availability	is	the	primary	control	on	POM	stoichiometry.	

Proposed	model	relating	N:P	supply	ratio	to	gyre	POM	C:N:P		

While	the	POM	C:P	and	N:P	ratios	in	SIO	were	above	Redfield	proportions,	they	were	

still	substantially	lower	than	observed	in	several	other	low	nutrient	ocean	regions.	To	

further	understand	the	biogeochemical	controls	on	POM	cycling,	we	compared	the	POM	

concentrations	and	ratios	in	SIO	gyre	to	the	North	Atlantic,	South	Atlantic,	North	Pacific,	

and	South	Pacific	subtropical	gyres	(Figure	1.6,	Figure	S1.9).	The	mean	gyre	concentration	

for	POC,	PON,	and	POP	were	3.1	µM,	0.37	µM	and	16	nM	respectively	and	our	observed	

concentrations	in	the	SIO	gyre	were	generally	consistent	with	these	levels	(Table	S1.6).	

However,	there	were	also	clear	difference	in	the	levels	and	ratios	across	gyres	(Table	S1.7,	
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ANOVA	p-values	<	1E-16).	The	South	Indian	and	North	Pacific	observations	had	

anomalously	low	median	POM	concentrations,	the	North	Atlantic	was	near	the	mean,	and	

the	South	Pacific	and	South	Atlantic	gyres	had	median	POM	concentrations	at	or	above	the	

means.	Median	C:P	and	N:P	ratios	were	near	or	slightly	above	Redfield	proportions	in	the	

SIO	gyre	(C:P	=	147:1,	N:P	=	19:1),	near	the	average	in	the	North	and	South	Pacific,	and	

elevated	in	the	North	Atlantic	subtropical	gyre	(C:P	=	205:1,	N:P	=	33:1)(no	POP	data	for	

the	South	Atlantic).	Median	C:N	ratios	ranged	from	6.9	(North	Atlantic	gyre)	to	9.0	(South	

Atlantic	gyre).	The	highest	C:N	ratios	were	found	in	the	gyres	with	the	highest	median	POM	

concentrations.	Thus,	there	were	significant	differences	in	POM	ratios	across	gyres	(Table	

S1.7).		

We	hypothesized	that	low	iron	(Fe)	supply	could	influence	the	elemental	ratios	via	

Fe-controls	on	regional	N2-fixation	rates	and	the	relative	degree	of	N	vs.	P	stress	(Figure	

1.7)	(Mather	et	al.,	2008;	Rembauville	et	al.,	2016).	In	regions	with	low	N2-fixation	rates,	a	

relatively	higher	P	vs.	N	availability	would	lead	to	lower	POM	C:P	and	vice-versa	for	regions	

with	high	rates	leading	to	high	POM	C:P.	Thus,	Fe	controls	on	N2-fixation	may	influence	the	

nutrient	supply	ratio	of	nitrogen	versus	phosphorus	which	in	turn	would	affect	POM	C:P	

(Moreno	&	Martiny,	2018).	Previously	measured	dissolved	Fe	concentrations	(Grand	et	al.,	

2015;	Tagliabue	et	al.,	2012)	in	subtropical	gyres	have	an	inverse	relationship	with	surface	

phosphate	(Garcia	et	al.,	2013)	(Figure	1.7A).		Here,	the	South	Indian	and	South	Pacific	

gyres	have	the	highest	phosphate	concentrations,	but	lowest	dissolved	iron	concentrations.	

The	lowest	PO4:Dfe	concentration	ratio	was	found	in	the	North	Atlantic	gyre.	To	begin	to	

evaluate	this	hypothesis,	we	measured	ratios	of	POM	iron	to	carbon	and	phosphorus.	We	

detected	lower	labile	particulate	iron	to	POC	(LPFe:C)	ratios	in	the	SIO	gyre	(17.8	nM/µM)	
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and	typical	of	a	low	iron	ecosystem	(Table	S1.1)	This	was	seen	for	both	labile	and	

refractory	pFe.	In	contrast,	pFe:C	was	elevated	in	the	EqIO	(22.3	nM/µM)	region	and	

further	increased	into	the	Bay	of	Bengal	(44.5	nM/µM)	(Table	S1.).	Thus,	there	appeared	to	

be	lower	iron	stress	north	of	EqIO	and	the	highest	degree	of	iron	stress	in	the	gyre.	As	such,	

the	C:P	ratio	in	the	SIO	compared	to	the	North	Atlantic	gyre	may	be	depressed	due	to	lower	

Fe,	lower	P,	and	higher	N	availability	(Figure	1.7B	and	C).	The	regional	LPFe:C	and	LPFe:P	

mean	ratios	increased	toward	the	north,	further	indicating	reduced	iron	stress	in	the	

phytoplankton	community	in	EqIO	and	BoB	(Table	S1.1).	Thus,	the	elevated	iron	stress	in	

the	South	Indian	Ocean	may	suppress	C:P	in	the	gyre.	

Discussion	

The	quantification	of	POM	concentrations	in	the	eastern	Indian	Ocean	allowed	us	to	

test	current	hypotheses	for	how	elemental	ratios	are	regulated	as	well	as	identify	regional	

differences	in	biogeochemical	functioning.	Our	findings	directly	evaluate	three	proposed	

mechanisms	(allometric	diversity,	temperature,	and	nutrient	supply)	that	may	explain	

deviations	in	POM	stoichiometry.	Consistent	with	past	studies	(Schlüter	et	al.,	2011;	

Zwirglmaier	et	al.,	2008),	Prochlorococcus	dominated	the	phytoplankton	community	and	

the	ratio	of	photo-to-heterotrophic	plankton	biomass	was	nearly	1:1	throughout	the	

transect.	Thus,	we	only	observed	minor	changes	in	the	community	structure	leading	us	to	

reject	the	allometric	diversity	hypothesis.	However,	there	are	caveats	to	this	conclusion.	

First,	genetic	diversity	within	groups	(e.g.,	ecotypes)	may	determine	growth	physiology	

leading	to	unique	elemental	composition	(Martiny	et	al.,	2016).	However,	no	systematic	

patterns	have	yet	been	determined	at	this	level	of	phylogenetic	resolution.	Secondly,	

heterotrophic	bacteria	did	constitute	a	slightly	larger	portion	of	the	relative	biomass	when	
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C:P	and	C:N	ratios	were	higher.	We	find	this	an	unlikely	driver	as	heterotrophic	bacteria	

tend	to	have	lower	C:nutrient	ratios	in	comparison	to	phytoplankton	due	to	C	limitation	

(Moreno	&	Martiny,	2018).	Thus,	there	is	little	support	that	changes	in	plankton	

community	composition	is	the	primary	control	on	POM	stoichiometry	in	this	region.		

The	unique	environmental	conditions	in	the	Indian	Ocean	lead	us	to	support	the	

nutrient	supply	hypothesis	for	low	latitude	marine	ecosystems.	For	this	analysis,	we	

assumed	nutricline	depth	was	a	proxy	for	nutrient	supply	rates	to	the	surface	and	that	a	

deeper	nutricline	would	be	indicative	of	increased	surface	nutrient	stress.	We	found	that	

the	C:P,	N:P,	and	C:N	ratios	were	highest	in	the	SIO	gyre	and	decreased	when	the	nutricline	

shoaled	around	10-12oS.	Northwards	of	this	latitude,	the	Indian	Ocean	is	subject	to	

monsoonal	circulation	patterns	and	fine-scale	variation	in	the	elemental	ratios	

corresponded	to	observed	changes	in	the	nutrient	supply.	All	of	the	ratios	remained	above	

Redfield	proportions,	reflecting	oligotrophic	surface	conditions	during	the	intermonsoon	

season.	Between	5oS	and	5oN	C:P	and	C:N	ratios	increased	when	nutrient	concentrations	

declined	below	the	mixed	layer,	but	the	ratios	were	elevated	at	the	equator	where	a	band	of	

high	chlorophyll	was	present	off	Sumatra.	While	the	onset	of	upwelling	in	the	tropical	

Indian	Ocean	is	consistent,	the	magnitude	is	seasonally	variable	and	underlying	

mechanisms	are	complex	(Deshpande	et	al.,	2017;	Hood	et	al.,	2017;	Punyu	et	al.,	2014;	

Strutton	et	al.,	2015;	Wyrtki,	1973).	Furthermore,	the	positive	phase	of	the	Indian	Ocean	

Dipole	can	influence	surface	circulation	as	well	(Deshpande	et	al.,	2017;	Wiggert	et	al.,	

2009).	Historically,	upwelling	is	also	observed	off	the	Sri	Lanka	Dome	near	5oN,	where	POM	

concentrations	were	the	highest	and	elemental	ratios	decreased	(Hood	et	al.,	2017;	Schott	

et	al.,	2002).	Within	the	Bay	of	Bengal,	the	elemental	ratios	flattened	out	in	the	stratified	
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Inter-Monsoon	gyre	until	a	final	increase	putatively	driven	by	increased	nutrient	supply	

over	the	continental	shelf	in	northern	BoB.	Thus,	regional	differences	in	the	nutrient	supply	

rates	indicated	by	nutricline	depth	across	the	eastern	Indian	Ocean	appeared	to	regulate	

POM	concentrations	and	ratios.	

Two	cruise	transects	in	the	North	Atlantic	shared	a	positive	relationship	between	

temperature	and	nutrient	supply	and	these	provide	further	support	of	our	hypothesis	for	

how	POM	ratios	are	regulated.	POM	elemental	ratios	were	reported	as	part	of	a	FS	

Poseidon	(Kahler)	(Dietze	et	al.,	2004)	cruise	(30oW,	18oN-31oN)	and	a	North	Atlantic	

Bloom	Experiment	(NABE)	(Passow	&	Peinert,	1993)	cruise	(33oN,	21oW	to	18oN,	30oW).	In	

both	of	these	cruises,	nutrient	supply	rates	were	the	best	predictor	for	POM	ratios	and	the	

temperature	relationship	flipped	in	comparison	to	global	trends	(Figure	S1.8).	Since	

macronutrient	supply	rates	are	non-limiting	in	high	latitude	regions,	other	factors	(e.g.,	

light,	temperature,	and	plankton	growth	physiology)	likely	control	C:N:P	in	such	biomes	

(Moreno	&	Martiny,	2018).	In	support,	a	recent	study	demonstrated	that	the	elemental	

composition	of	a	phytoplankton	was	highly	regulated	by	the	nutrient	supply	but	the	

optimal	composition	(i.e.,	N:P	at	maximum	growth)	was	temperature	dependent	(Thrane	et	

al.,	2017).	Thus,	there	could	be	an	interaction	leading	to	a	more	pronounced	temperature	

effect	in	high	nutrient	conditions,	but	we	reject	the	translation-compensation	hypothesis	as	

the	primary	driver	in	low-latitude	regions.		

Stoichiometric	variation	on	diel	time	scales	was	observed	throughout	the	region.	In	

support,	studies	of	phytoplankton	cultures	(Clark	et	al.,	2014;	Lopez	et	al.,	2016;	Ng	&	Liu,	

2016)	and	communities	(Copin-Montegut	&	Copin-Montegut,	1978;	Fraga,	1966;	Fuhrman	

et	al.,	1985;	Ng	&	Liu,	2016)	show	a	peak	in	the	carbon-nutrient	ratio	towards	the	end	of	
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the	photoperiod.	A	diel	range	in	C:P	of	60	and	C:N	of	2	were	found	in	Synechococcus	

cultures,	but	barely	any	variation	in	the	N:P	ratio	(Lopez	et	al.,	2016).	The	peaks	are	

primarily	attributed	to	daytime	fixed	carbon	storage	and	troughs	from	exudation	and	

respiration	at	night	(Granum	et	al.,	2002;	Lopez	et	al.,	2016).	The	amplitude	of	C:P	and	C:N	

were	larger	in	a	culture	than	observed	in	the	IO9N	transect,	which	may	be	due	to	the	

presence	of	heterotrophic	lineages	or	detrital	material	in	field	samples.	The	diel	cycling	of	

POC	accumulation	and	degradation	could	also	influence	nutrient	cycling	within	the	whole	

microbial	community.	Diel	changes	in	the	surface	area	to	volume	ratio	of	phytoplankton	

can	limit	their	nutrient	uptake	and	the	timing	of	their	release	of	photosynthetically-derived	

nutrients	can	directly	impact	the	ambient	nutrient	concentrations	for	heterotrophic	

bacteria.	In	addition,	heterotrophic	grazers	could	compensate	for	low-quality	prey	(high	

C:N,	C:P)	by	increased	feeding	at	night	(Ng	&	Liu,	2016).	It	was	unclear	if	the	N:P	ratio	

residuals	displayed	a	diel	cycle	leading	us	to	conclude	that	daily	N	and	P	uptake	was	fairly	

synchronized	in	this	region.	If	N	fixation	played	a	large	role	during	the	IO9N	transect,	we	

would	expect	the	N:P	ratio	to	increase	during	the	daytime	(Capone	et	al.,	1990)	but	the	

absence	of	this	trend	suggested	depressed	N-fixation	rates.	Our	results	illustrate	that	the	

amplitude	of	daily	C:P	and	C:N	peaks	is	of	a	comparable	magnitude	to	changes	in	the	ratios	

across	ocean	regions,	but	the	lack	of	N:P	cycling	indicates	a	constraint	on	additional	N	

inputs.	

	We	hypothesized	that	low	Fe	supply	depresses	the	elemental	ratios	via	controls	on	

N2-fixation	rates	and	the	relative	degree	of	N	vs.	P	stress	(Mather	et	al.,	2008;	Rembauville	

et	al.,	2016).	In	contrast,	high	Fe	inputs	and	increased	nitrogen	fixation	may	lead	to	

elevated	N	and	intense	P	drawdown.	We	propose	that	this	mechanism	leads	to	divergent	
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C:P	and	N:P	ratios	in	the	North	Atlantic	Ocean	vs.	the	South	Indian	Ocean	gyre.	In	the	

eastern	Indian	Ocean,	the	regional	LPFe:C	and	LPFe:P	mean	ratios	increased	toward	the	

north,	indicating	northward	positive	gradient	iron	availability	for	the	phytoplankton	

community	(Table	S1.1).	Higher	N-fixation	rates	in	the	Arabian	Sea	than	at	the	equator	and	

Southern	Indian	Ocean	Gyre	along	69oE	were	attributed	to	higher	dissolved	iron	in	the	

Arabian	Sea	(Shiozaki	et	al.,	2014).	Our	depressed	C:P	ratios	in	the	SIO	gyre	are	consistent	

with	inverse	model	results	and	observations	of	the	western	SIO	gyre	(Copin-Montegut	&	

Copin-Montegut,	1978;	Teng	et	al.,	2014).	Thus,	the	SIO	gyre	may	represent	a	low	C:P	

extreme	for	ocean	gyres.	As	such,	the	variations	in	particulate	elemental	ratios	observed	in	

the	Indian	Ocean	are	distinctive	and	impose	new	constraints	on	how	ocean	C:N:P	is	

regulated.	

Methods	

Sample	collection	and	analysis	procedures	

	 Seawater	samples	were	collected	during	the	RR1604	GO-SHIP	IO9N	cruise	aboard	

R/V	Roger	Revelle	from	March	22-April	24,	2016.	Transect	coordinates	began	at	31°	02’01”	

S	/110°	27’28”E	off	Western	Australia	and	ended	at	16°	44’15”N/90°	08’77”E	in	the	Bay	of	

Bengal	(Figure	1.1).	In	total,	samples	for	particulate	organic	carbon,	nitrogen,	and	

phosphorus	were	taken	at	238	stations.	Samples	for	particulate	iron	were	collected	from	

24	separate	trace-metal	clean	casts	off	the	stern	at	20	m	depth.	Flow	cytometry	samples	for	

phytoplankton	and	Bacteria	cell	counts	were	collected	from	the	mixed	layer	(~20m)	at	31	

GO-SHIP	stations.	All	cruise	POM	data	is	available	on	BCO-DMO	(https://www.bco-

dmo.org/dataset/734915).	Nutrients	data	for	this	cruise	were	provided	by	Jim	Swift/SIO	

and	Susan	Becker/SIO	and	is	available	at	https://cchdo.ucsd.edu	(Swift	&	Becker,	2010).	
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	 Water	was	collected	from	a	circulating	seawater	system	distributed	via	plastic	

tubing	for	POC/PON/POP	around	3m	deep.		An	underway	system	was	chosen	to	vastly	

increase	sampling	coverage,	replicate	number,	and	sample	volume.	The	water	intake	is	

located	near	the	ship	sea	chest,	which	may	have	missed	particle	production	in	the	

subsurface.	The	circulating	seawater	was	never	turned	off	during	the	entirety	of	the	

transect	and	kept	at	a	constant	flow.	Water	was	passed	through	a	30μm	nylon	mesh	(Small	

Parts	#7050-1220-000-12)	to	remove	larger	plankton	and	particles	from	the	sample.		Each	

replicate	was	collected	into	a	separate	8.5L	plastic	carboys	(Thermo	Scientific,	Waltham,	

Massachusetts).	In	between	stations,	carboys	were	rinsed	with	30	μm	filtered	sample	water	

just	prior	to	collection.	Six	8	L	seawater	samples	were	divided	into	POC/PON	and	POP	

triplicates.		Carboys	were	placed	at	~45°	angle	to	avoid	particle	settling	below	the	nozzle.	

Each	replicate	was	passed	through	a	25	mm	pre-combusted	(500°C	for	5	h)	GF/F	filter	

(Whatman,	Florham	Park,	New	Jersey)	with	a	nominal	pore	size	of	0.7	μm.		The	vacuum	

filtration	was	an	in-line	setup	with	25	mm	filter	holders	connected	to	an	aspirator	pump	at	

-0.08	MPa.		POP	filters	were	rinsed	with	5	ml	of	0.17	M	Na2SO4	to	remove	traces	of	

dissolved	phosphorus	from	the	filter.		All	filters	were	stored	in	pre-combusted	aluminum	

packets	and	immediately	frozen	at	-80°C	during	the	cruise	and	-20°C	for	shipment.		

Particulate	Organic	Carbon/Nitrogen	

	 Prior	to	analysis,	the	filters	for	POC	and	PON	were	dried	according	to	the	JGOFS	

protocol(Ducklow	&	Dickson,	1994).	The	protocol	has	a	detection	range	of	0.43-43.13	µM	

for	POC	and	0.037-7.39µM	for	PON	in	sea	water(Ducklow	&	Dickson,	1994).	First,	the	filters	

were	dried	in	an	incubator	at	55°C	for	24-48	h	and	then	stored	in	a	desiccator	with	

concentrated	HCl	fumes	for	24	h	to	remove	inorganic	carbonates.	Secondly,	the	filters	were	
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dried	again	at	55°C	for	48	h	before	being	folded	and	packed	into	pre-combusted	tin	

capsules	(CE	Elantech,	Lakewood,	New	Jersey).		The	packaged	filters	are	analyzed	on	a	CN	

FlashEA	1112	Elemental	Analyzer	(Thermo	Scientific,	Waltham,	Massachusetts)	against	an	

atropine	standard	curve	(chemical	formula	C17H23NO3).		

Particulate	Organic	Phosphorus	

	 Particulate	organic	phosphorus	(POP)	were	analyzed	according	to	a	modified	ash-

hydrolysis	protocol(Lomas	et	al.,	2010).		Thawed	filters	were	placed	in	along	with	a	

corresponding	standard	curve	of	KH2PO4.	2	mL	of	0.017M	MgSO4	was	added	to	the	acid-

washed	glass	vials	containing	filters	and	covered	with	pre-combusted	aluminum	foil.	The	

vials	were	placed	in	an	incubator	at	90°C	for	24	h	and	then	combusted	(500°C,	2	h).	Once	

cooled,	5	mL	0.2	M	HCl	was	added	and	incubated	at	90°C	for	at	least	30	min.	Next,	the	

supernatant	plus	5	mL	milli-Q	water	was	mixed	with	2:5:1:2	parts	ammonium	molybdate	

tetrahydrate,	5N	sulfuric	acid,	potassium	antimonyl	tartrate,	and	ascorbic	acid	for	30	min.	

Finally,	the	standards	and	samples	were	analyzed	on	a	spectrophotometer	at	a	wavelength	

of	885	nm	to	determine	POP	concentration	with	an	assay	detection	limit	0.1	nmol	l-1.		

C:N,	C:P,	and	N:P	ratios	

	 Each	filter	analyzed	for	both	POC	and	PON	was	treated	as	a	replicate	with	a	

corresponding	POC/PON	ratio.		The	ratios	of	POC/POP	and	PON/POP	were	taken	from	the	

mean	concentrations.	The	standard	deviation	for	C:P	and	N:P	was	calculated	as	a	pooled	

sample:	

	

σCN	=	√((Σ(CNi	-CNave)2))	/n),		 	 	 (1)	

σNP	=	Nave/Pave	×	(√	((σN/Nave)2	+	(σP/Pave)2)),	 	 (2)	
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σCP	=	Cave/Pave		×	(√	((σC/Cave)2	+	(σP/Pave)2)),	 	 (3)	

	

Relative	Biomass	Estimates	

Samples	for	biomass	were	collected	directly	into	2	ml	cryovials	from	Niskin	bottles	

at	sea,	and	fixed	with	freshly	made	and	0.2	µm	filtered	paraformaldehyde.		After	fixation	for	

1	hour	at	4˚C	in	the	dark,	samples	were	frozen	at	-80˚C	until	analysis.	Cell	counts	were	run	

on	a	BD	FACSJazz	flow	cytometer	equipped	a	200	mW	488	nm	laser.	Prochlorococcus	was	

determined	by	forward	scatter	and	red	fluorescence,	and	Synechococcus	distinguished	by	

emission	in	the	green	and	yellow	wavelengths.		Small	eukaryotes	were	the	

autofluorescing	cells	outside	of	the	cyanobacterial	gates.		Biomass	estimates	were	based	on	

literature	values	of	carbon	per	cell	based	on	geometric	means	of	forward	scatter	for	each	

group	(Casey	et	al.,	2013).	Relative	biomass	estimates	were	used	in	this	study.		

Particulate	and	dissolved	Fe		

Trace	metal	samples	were	collected	from	5L	Teflon-coated	Niskin-X	bottles	hung	on	

Kevlar	line.	Niskin	bottles	were	transferred	to	a	clean	bubble	immediately	after	sample	

collection.	Samples	for	dissolved	metal	analysis	were	filtered	through	acid-washed	0.4	µm	

polycarbonate	filters	using	a	vacuum	filtration	apparatus	and	acidified	using	Optima	grade	

HCl.	Particulate	samples	were	collected	by	filtering	directly	from	pressurized	Niskin	bottles	

onto	0.45	µm	Supor	membranes.	All	samples	were	handled	and	stored	using	trace	metal	

clean	protocols.	Dissolved	samples	were	analyzed	using	an	ESI	seaFAST	SP2	coupled	to	a	

Perkin	Elmer	Nexion	350D	ICP-MS.	Samples	were	passed	through	an	ESI	preconcentration	

column	and	buffered	in-line	with	ammonium	acetate	buffer.	Metals	were	eluted	off	the	

column	and	analyzed	in	DRC	mode	using	ammonia	gas.	Samples	were	quantified	using	
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standard	additions;	each	sample	was	spiked	with	2	additions	averaging	roughly	100%	and	

200%	of	the	sample	concentration.	Labile	particulate	metals	were	leached	(Berger	et	al.,	

2008)	and	were	analyzed	using	a	Thermo	Element	2	HR-ICP-MS	(Twining	et	al.,	2011).	

Statistical	Model	Analysis	

	 All	analyses	were	completed	in	MATLAB.	Nutricline	depth	was	chosen	as	a	proxy	for	

nutrient	supply,	and	was	determined	by	a	threshold	nitrate	concentration	of	1	µM.	Depth	

profiles	of	nitrate	concentrations	were	analyzed	using	an	AutoAnalyzer	shipboard,	run	by	

the	SIO	HydroLab	according	to	standard	methods(Hydes	et	al.,	2010).	Mixed	layer	depths	

(MLD),	isothermal	layer	depths,	and	barrier	layer	thickness	were	calculated	according	to	

Rao	and	Sivakumar(Rao	&	Sivakumar,	2003)	(Figure	S1.4).	MLD	is	the	depth	where	the	

change	in	potential	density	anomaly	(σt)	equals	the	surface	σt(z=0)	plus	a	change	in	0.5°C	

(ΔT)	times	the	thermal	expansion	coefficient	(dσ/dt).	

	

Mixed	layer	depth	(MLD),	where	σt(z=h)	=	σt(z=0)	+	ΔT	dσ/dt,	 	 	 (4)	

Isothermal	layer	depth	(ITL),	where	θ	=	θ(z=0)	+	ΔT,	 	 	 	 (5)	

Barrier	layer	thickness	(BLT)	=	ITL	–	MLD,	 	 	 	 	 (6)	

	

	SST	values	were	from	the	underway	temperatures	by	the	Hydro	Lab	(HLT)	using	the	

following	correction(Wanninkhof	et	al.,	2016):	

	

SST(estimated)	=	0.001424*HLT^2	+	0.950053*HLT	+	0.048227,		 	 (7)	
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	 Statistical	models	were	fitted	using	one	or	two	predictor	variables	(SST	(°	C),	

Nutricline	Depth	(m)	or	Mixed	Layer	Depth,	as	well	as	time)(Table	S1.5).	The	models	were	

also	fitted	against	all	stations	south	of	5N	to	examine	the	influence	from	the	Bay	of	Bengal	

on	the	fits	(Table	S1.6).	RMSE	and	R2	were	used	to	compare	across	models.	If	a	daily	diel	

rhythm	was	identified	(Table	S1.1,	Figure	S1.3),	a	sine	function	was	added	to	the	model	

with	a	fixed	period	of	24	h.		

	 	

! = 	$(1)( ∗ sin -
./0	123∗45

46
+ $(2)(9 + ($(3)( + $(4)( × (SST, Znut, CD	MLD),						(8)	

where	! = POC, PON, POP, C: P, C: N, or	N: P	

	

Residuals	between	the	points	and	8-point	moving	average	were	used	for	comparing	

the	diel	cycles	of	POM	concentrations	and	ratio	at	each	station.	Again,	most	of	the	variation	

could	be	equally	explained	by	temperature	or	nutricline	depth.	Residuals	between	the	

points	and	8-point	moving	average	were	used	for	comparing	the	diel	cycles	of	POM	

concentrations	and	ratio	at	each	station.	

Global	and	Gyre	Comparisons	

	 The	global	observations	of	 concentrations	and	ratios	of	particulate	organic	matter	

was	 an	 from	 updated	 POM	 database	 (Martiny	 et	 al.,	 2014).	 Nitrate	 concentrations	 and	

temperature	values	were	taken	at	the	nearest	depth	from	monthly	WOA13	values	at	1km	

resolution	 (Garcia	 et	 al.,	 2013;	 Locarnini	 et	 al.,	 2013).	 For	 the	 gyre	 comparison,	 gyre	

coordinates	were	determined	where	 the	nutricline	depth	was	 greater	 than	150m	 for	 the	

North	Atlantic,	 South	Atlantic,	North	Pacific,	 South	Pacific,	 and	 South	 Indian	Oceans.	 The	

latitude	 blocks	 for	 each	 gyre	 are	 as	 follows:	North	Atlantic	 (90˚W	 to	 5˚W);	North	 Pacific	
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(120˚E	to	100˚W);	South	Atlantic	(60˚W	to	10˚E);	South	Pacific	(60˚W	to	150˚E);	South	Indian	

(30˚E	to	150˚E).	A	map	and	boxplot	of	observations	from	each	gyre	and	the	new	Indian	Ocean	

values	are	shown	(Figure	S1.7).	Average	gyre	surface	phosphate	concentrations	were	taken	

from	0m	WOA13	values	over	each	gyre	area	(Figure	1.7)	(Garcia	et	al.,	2013).	Average	gyre	

surface	dissolved	iron	concentrations	were	taken	from	all	data	point	 in	the	top	50m	over	

each	 gyre	 surface	 area	 using	 the	more	 recent	 Tagliabue	 et	 al.	 database	 (Tagliabue	 et	 al.,	

2012).	For	the	global	comparison,	POM	observations	were	filtered	to	only	include	the	top	

30m.	Temperature	and	nutricline	values	were	paired	with	the	observations	and	normalized	

to	the	maximum	values.	Correlation	coefficients	and	slopes	were	determined	separately	for	

the	global	database	stations	and	the	new	Indian	Ocean	observations	(Figure	1.5).	The	slopes	

were	 determined	 from	 a	 linear	 regression	 using	 a	 Monte	 Carlo	 Metropolis-Hastings	

algorithm	developed	for	MatlabStan	(Carpenter	et	al.,	2017;	Stan	Development	Team,	2017).		

The	scatter	plots,	linear	fits	and	correlations	are	shown	in	Figure	S1.	6.	

Data	Availability	

Particulate	organic	matter	data	that	support	the	findings	of	this	study	has	been	deposited	

in	BCO-DMO	as	cited:	Martiny,	Adam	and	Lomas,	Michael	(2018)	Particulate	organic	matter	

(PON,	POC,	POP)	concentrations	collected	on	R/V	Roger	Revelle	cruise	RR1604	along	the	

hydrographic	line	IO9	in	the	Eastern	Indian	Ocean	from	March	to	April	2016.	Biological	and	

Chemical	Oceanography	Data	Management	Office	(BCO-DMO)	https://www.bco-

dmo.org/dataset/734915.	Data	for	the	GO_SHIP	line	I09N	can	be	found	at	

https://cchdo.ucsd.edu/.		
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Figure	1.1.	Study	region.		The	transect	sampling	locations	for	GO-SHIP	cruise	IO9N	are	
marked	by	the	red	dots.	The	approximate	latitudinal	range	of	proposed	regions	is	marked	
by	yellow	bars.	Chlorophyll	concentrations	are	from	MODIS-Aqua	4km	April	2016	monthly	
average(“NASA	Goddard	Space	Flight	Center,	Ocean	Ecology	Laboratory,	Ocean	Biology	
Processing	Group.	Moderate-resolution	Imaging	Spectroradiometer	(MODIS)	Aqua	
Chlorophyll	a	4km	Data;	NASA	OB.DAAC,	Greenbelt,	MD,	USA.,”	n.d.).	Figure	was	created	in	
MATLAB	using	fireice.m	colormap	package.			
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Figure	1.2.	Observations	of	environmental	conditions,	relative	phytoplankton	biomass,	and	
POM	concentrations	and	ratios	across	the	eastern	tropical	Indian	Ocean;	A)	Sea	surface	
temperatures;	B)	Nitrate	concentrations	as	shaded	background	and	nutricline	depth	(depth	
with	1	µM	[NO3])	marked	by	light	blue	dots;	C)	Phytoplankton	relative	biomass;	D)	
particulate	organic	carbon	(POC);	E)	particulate	organic	nitrogen	(PON);	F)	particulate	
organic	phosphorus	(POP);	G)	POC:POP	(C:P);	H)	POC:PON	(C:N);	and	I)	PON:POP	(N:P).	In	
panels	D-I,	averages	of	analytical	triplicates	are	marked	by	black	dots,	the	red	line	
represents	an	8-sample	moving	average,	and	elemental	ratios	are	molar.	First	and	last	4	
end	points	are	averaged	over	fewer	than	8	points.	For	bacteria	&	phytoplankton:	Bact(dark	
green)	=	Heterotrophic	bacteria,	Pro(greenblue)	=	Prochlorococcus,	Syn(orange)	=	
Synechococcus,	and	Euks(cyan)	=	Eukaryotes.	
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Figure	1.3.	Diel	variation	in	POM	concentrations	and	ratios.	Residuals	are	calculated	as	
follows:	data	points	subtracted	from	the	8-point	smoothed	line	for	A)	particulate	organic	
carbon	(POC),	B)	particulate	organic	nitrogen	(PON),	C)	particulate	organic	phosphorus	
POP,	D)	POC:POP	(C:P),	E)	PON:POP	(N:P),	and	F)	POC:PON	(C:N).	Points	were	plotted	and	a	
sine	curve	was	fitted	for	each	region.	Bay	of	Bengal	(BoB)	is	in	cyan.	Equatorial	Upwelling	
(EqIO)	is	in	gold.	Southern	Indian	Ocean	gyre	(SIO	gyre)	is	in	red.	The	grey	bar	represents	
local	nighttime	and	white	bar	daytime.	
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Figure	1.4.	Regional	variation	in	environmental	parameters,	relative	biomass,	and	POM	
concentrations	and	ratios.	Significant	regional	variation	between	specific	regions	is	
indicated	by	the	number	of	stars	(ANOVA,	*	=	p	<0.5,	**	=	p<0.01,	***	=	p<0.001).	For	
relative	biomass;	Het	bacteria	=	heterotrophic	bacteria,	Pro	=	Prochlorococcus,	Syn=	
Synechococcus,	and	Euks	=	Eukaryotes.	
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Figure	1.5.	Global	and	Indian	Ocean	environmental	correlations.	Mean	of	slope	estimates	
for	global	and	Indian	Ocean	(IO9N)	transect	particulate	organic	matter	(POM)	
concentrations	and	ratios.	The	sign	of	the	slope	indicates	the	average	relationship	between	
the	POM	concentration(ratio)	and	the	enivironmental	parameter	(temperature	or	
nutricline	depth).	Slopes	are	fitted	to	a	linear	regression	model	(see	methods).		
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Figure	1.6.	Gyre	anomalies	for	particulate	organic	matter	concentration	and	ratios.	
Anomalies	are	relative	to	gyre	mean	(red	text)	for	A)	particulate	organic	carbon	(POC),	B)	
particulate	organic	nitrogen	(PON),	C)	particulate	organic	phosphorus	(POP),	D)	POC:POP	
(C:P),	E)	PON:POP	(N:P),	and	F)	POC:PON	(C:N).	There	are	no	POP,	C:P,	or	N:P	data	for	the	
South	Atlantic	gyre.		
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Figure	1.7.	Conceptual	model	for	regulation	of	ocean	gyre	biogeochemistry	A)	Nutrient	
levels	across	gyres:	median	surface	phosphate	to	dissolved	iron	in	top	50m.	B)	Iron	Supply	
Model	for	C:P	in	North	Atlantic	and	C)	South	Indian	Ocean	subtropical	gyres.	Median	C:P	
values	are	from	gyre	comparison	(North	Atlantic,	Table	S1.6)	and	this	cruise.	
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Figure	S1.1.	I09	GO-SHIP	section	profiles.	From	top	to	bottom:	A)	Nitrate	(µmol/Kg),	B)	
Salinity	(PSS-78),	C)	Phosphate	(µmol/Kg),		and	D)	CTD	temperature	(°C).	Images	made	in	
Ocean	Data	View.	E)	CTD	fluorescence	profiles	mapped	in	MATLAB.	 	
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Figure	S1.2.	Surface	layer	depths	and	gradients.	A)	Mixed	layer	depth	(black	line),	
nutricline	depth	(blue	line),	isothermal	layer	(ITL)	dashed	red	line,	and	the	deep	
chlorophyll	maximum	(DCM)	is	the	green	line.	The	barrier	layer	thickness	is	shaded	in	grey	
between	the	MLD	and	ITL	and	thickest	near	the	equator.	Because	nutricline	and	DCM	
depths	were	deeper	than	mixed	layer	depths,	it	is	likely	that	biological	uptake	influenced	
nutricline	depths	in	the	SIO	gyre	and	Bay	of	Bengal.	B)	NO3	gradient	calculated	as	change	in	
concentration	10m	below	nutricline	depth.	
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Figure	S1.3.	Daily	accumulation	rate	of	particulate	organic	carbon	(POC).	This	is	the	peak	
to	trough	difference	in	daily	POC	divided	by	the	minimum	POC.	Red	dashed	reference	line	is	
added	at	0.5	day-1.	
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Figure	S1.4.	Linear	Model	β0	+	β1*x1	+	β2*x2	+	β3*x3	+	β4*x4.	Lines	are	plotted	
predictions	of	POM	concentrations	and	ratios	at	Biomass	Stations	for	f(SST)	-green,	f(Znut)	
-blue,	f(MLD)-red,	f(bact,por,syn,euks)-cyan.	The	observations	are	ins	black.	SST	=	sea	
surface	temperature.	Znut	=	nutricline	depth.	MLD	=	mixed	layer	depth.	
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Figure	S1.5.	Nonlinear	sine	models	with	Bay	of	Bengal.	A)	Models	for	POM	concentrations	
and	ratios	are	described	in	methods.	Observations	(black	circles)	and	model	prediction	
(Sine-grey,	SST-green,	Znut-blue,	MLD-red)	for	POC,	POP,	PON,	C:P,	N:P	and	C:N.		B)	The	
same	except	the	Bay	of	Bengal	stations	above	5N	are	removed.	SST	=	sea	surface	
temperature.	Znut	=	nutricline	depth.	MLD	=	mixed	layer	depth.
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Figure	S1.6.	Nonlinear	sine	models	without	Bay	of	Bengal	(<5N).	A)	Models	for	POM	
concentrations	and	ratios	are	described	in	methods.	Observations	(black	circles)	and	model	
prediction	(Sine-grey,	SST-green,	Znut-blue,	MLD-red)	for	POC,	POP,		PON,	C:P,	N:P	and	C:N.		
B)	The	same	except	the	Bay	of	Bengal	stations	above	5N	are	removed.	SST	=	sea	surface	
temperature.	Znut	=	nutricline	depth.	MLD	=	mixed	layer	depth.	 	
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Figure	S1.7.	Comparison	of	global	and	IO9	POM	concentrations	and	ratios	to	nutricline	
depth	@	1µM	NO3	and	ocean	temperature.	The	slopes	are	estimates	at	each	station	across	
1000	iterations,	and	then	averaged	across	each	iteration	for	the	histogram	plots	(total	
counts	=	1000).	The	global	observations	and	histogram	slopes	are	in	blue.	The	Indian	
Ocean	observations	are	in	red.		
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Figure	S1.8.	Correlation	between	temperature	and	nutricline	depth	among	cruise	transects	
with	POC:POP	(C:P)	data,	are	shown	for	A)	the	correlation	between	temperature	and	
nutricline	depth,	B)	the	correlation	between	particulate	C:P	ratio	and	temperature	and	C)	
the	correlation	between	particulate	C:P	ratio	and	nutricline	depth.	This	study	eastern	
Indian	Ocean	transect	is	shown	in	cyan.	Blue	bars	indicate	negative	correlations	between	
temperature	and	nutricline	depth	of	R	<	-0.5.	Red	bars	indicate	positive	correlations	
between	temperature	and	nutricline	depth	of	R	>	0.5.	Y-axis	shows	cruise	transects	for	
global	C:N:P	database	(Adam	C	Martiny	et	al.,	2014).	D)	Map	of	station	locations.	
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Figure	S1.9.	Gyre	comparison	of	POM	concentrations	and	ratios.	Observations	are	included	
in	gyres	where	nutricline	depths	at	5µM	NO3	are	above	150m.		
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Table	S1.1	Regional	and	transect	averages	for	environmental	parameters	
	Region	 Indian	

Ocean	

Average	

SIO	Gyre	 EqIO	 Bay	of	

Bengal	

Latitude	 31°S	to	19°N	 31°S	to	12°S	 10°S	to	5°N	 5°N	to	19°N	
SST	(C)	 29.10	±	2.91	 25.33	±	2.56	 30.74	±	0.26	 30.79	±	0.69	
Nutricline	(m)	 78.1	±	36.9	 128.6	±	36.7	 61.6	±	10.4	 61.4	±	17.0	
Mixed	Layer	(m)	 38.0	±	16.3	 53.7	±	12.5	 40.2±	9.4	 26.5	±	14.7	
%	Prochlorococcus	biomass	 51.8	±	5.0%		 53.9	±	4.5%		 48.6	±	3.1%		 54.9	±	5.5%		
	%	Synechococcus	biomass	 38.3±3.8%		 36.6±2.9%		 41.6±2.6%		 35.1±2.4%		
	%	Eukaryotes	biomass	 2.1±	2.0%		 0.5±	0.2%		 	3.6±	2.3%		 2.8±	1.2%		
	%	Heterotrophic	Bacteria	biomass	 7.7±	3.9%	 9.0±	3.8%	 6.2±	2.9%	 7.1±	4.3%	
Particulate	organic	carbon	(μM)		 1.97	±	0.10	 1.84	±	0.12	 2.05	±	0.10	 2.01	±	0.08	
Particulate	organic	nitrogen	(μM)	 0.28	±	0.02	 0.25	±	0.03	 0.30	±	0.02	 0.28	±	0.02	
Particulate	organic	phosphorus	(nM)	 14.70	±	0.85	 12.27	±	0.90	 15.71	±	0.81	 15.80	±	0.78	
C:P	 135.30	±	

11.99	
150.51	±	
15.87	

131.14	±	
10.38	

126.93	±		
8.79	

N:P	 19.00	±	2.12	 20.14	±	2.82	 19.00	±	1.97	 17.92	±	1.44	
C:N	 7.17	±	0.56	 7.55	±	0.85	 6.96	±	0.52	 7.11	±	0.34	
Dissolved	iron	(nM)	 0.15	±	0.11	 0.15	±	0.05	 0.08	±	0.04	 0.26	±	0.14	
Labile	particulate	iron	(pM)	 53.6	±	30.9	 32	±	4	 47	±	17	 89	±	26	
LPFe(nM):	C(μM)	(ratio	of	means)	 26.5	 17.8	 22.3	 44.5	
LPFe	(pM):	P(nM)	(ratio	of	means)	 3.6	 2.6	 3	 5.6	
POC	24-hr	residual	amplitude	(μM)	 0.116	 0.037	 0.174	 0.132	
Local	time	of	POC	peak	min	(max)	 7:00		

(19:00)	
5:00		
(17:00)	

7:00		
(19:00)	

8:00	
	(20:00)	

PON	24-hr	residual	amplitude	(μM)	 5.9	x	10-3	 5.5	x	10-3	 7.9	x	10-3	 9.1	x	10-3	
Local	time	of	peak	min	(max)	 13:00	

(01:00)	
19:00		
(07:00)	

12:00	
(24:00)	

13:00		
(01:00)	

POP	24-hr	residual	amplitude	(μM)	 3.8	x	10-4	 4.8	x	10-4	 3.6	x	10-4	 5.9	x	10-4	
Local	time	of	peak	min	(max)	 8:00		

(20:00)	
4:00	
	(16:00)	

7:00		
(19:00)	

8:00		
(20:00)	

C:P	24-hr	residual	amplitude	 6.7	 2.58	 8.80	 7.11	
Local	time	of	peak	min	(max)	 7:00	(	

19:00)	
8:00	
	(20:00)	

6:00		
(18:00)	

7:00		
(19:00)	

N:P	24-hr	residual	amplitude	 0.32	 0.47	 0.28	 0.36	
Local	time	of	peak	min	(max)	 17:00	

(05:00)	
18:00		
(06:00)	

17:00	
(05:00)	

18:00		
(06:00)	

C:N	24-hr	residual	amplitude	 0.29	 0.17	 0.26	 0.37	
Local	time	of	peak	min	(max)	 6:00	

	(18:00)	
4:00		
(16:00)	

6:00	
	(18:00)	

7:00		
(19:00)	

Temperature,	nutricline	depth,	mixed	layer	depth,	percent	relative	biomass,	particulate	
organic	matter	(POM)	concentrations	and	ratios,	dissolved	iron,	and	labile	particulate	iron.	
Estimated	amplitudes,	peak	minimum	(min)	local	time	and	maximum	(max)	local	time	
from	fitted	sine	functions	(see	Figure	1.3)	are	shown	for	particulate	organic	carbon	(POC),	
particulate	organic	nitrogen	(PON),	particulate	organic	phosphorus	(POP),	POC:POP,	
PON:POP,	and	POC:PON.	SIO	=	Southern	Indian	Ocean,	EqIO	=	Equatorial	Indian	Ocean.	
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Table	S1.2.	One-way	ANOVA	results	Regional	Differences	
SST	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 1436.2	 2	 718.1	 326.3	 <1E-16	

Error	 497.3	 226	 2.2	
	 	

Total	 1933.5	 228	
	 	 	

Nutricline	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 185406.9	 2	 92703.5	 183.6	 <1E-16	

Error	 105503.6	 209	 504.8	
	 	

Total	 290910.5	 211	
	 	 	

Mixed	Layer	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 25187.3	 2	 12593.7	 81.0	 <1E-16	

Error	 32481.7	 209	 155.4	 	 	

Total	 57669.0	 211	 	 	 	

POC	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 1.9	 2	 0.9	 10.0	 6.8E-05	

Error	 20.7	 223	 0.1	
	 	

Total	 22.5	 225	
	 	 	

PON	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 0.1	 2	 0.0	 30.7	 1.7E-12	

Error	 0.4	 223	 0.0	
	 	

Total	 0.5	 225	
	 	 	

POP	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 0.0	 2	 0.0	 65.1	 <1E-16	

Error	 0.0	 224	 0.0	
	 	

Total	 0.0	 226	
	 	 	

POC:POP	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 23223.3	 2	 11611.6	 57.3	 <1E-16	

Error	 45025.0	 222	 202.8	
	 	

Total	 68248.2	 224	
	 	 	

PON:POP	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 186.1	 2	 93.1	 31.4	 9.9E-13	

Error	 658.2	 222	 3.0	
	 	

Total	 844.4	 224	
	 	 	

POC:PON	ANOVA	 SS	 df	 MS	 F	 Prob>F	

Regions	 13.2	 2	 6.6	 15.3	 5.8E-07	

Error	 95.7	 223	 0.4	
	 	

Total	 108.9	 225	
	 	 	

One-way	ANOVA	results	for	POM	concentrations,	ratios	and	environmental	parameters.	
Regions	defined	as	SIO	Gyre	(31°S	to	12°S),	EqIO	(10°S	to	5°N),	and	BoB	(5°S	to	20°N).	SST	
=	sea	surface	temperature,	POC	=	particulate	organic	carbon,	PON	=	particulate	organic	
nitrogen,	POP	=	particulate	organic	phosphorus,	and	POM	=	particulate	organic	matter.	
Sum	of	squares	(SS),	degree	of	freedom	(df),	mean	squares	(MS=SS/df),	ratio	of	mean	
squared	errors,	F=MS(Regions)/MS(Error)
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Table	S1.3.	Linear	Model	Coefficients	and	Statistics	
Ratio	 LinModel	 β0	 β1	 β2	 β3	 β4	 N	 	DF	 Fstat	 pVal	 	R2	 RMSE	
C:P	 f(SST)	 232.0	 -3.3	 0.0	 0.0	 0.0	 30	 28	 12.8	 0.001	 0.31	 12.64	
C:P	 f(Znut)	 120.3	 0.2	 0.0	 0.0	 0.0	 30	 28	 13.4	 0.001	 0.32	 12.54	
C:P	 f(MLD)	 119.8	 0.4	 0.0	 0.0	 0.0	 30	 28	 4.4	 0.045	 0.14	 14.18	
C:P	 f(b,pro,syn,euks)	 123.1	 154.3	 109.5	 284.1	 -142.4	 30	 25	 1.2	 0.337	 0.16	 14.79	
N:P	 f(SST)	 24.4	 -0.2	 0.0	 0.0	 0.0	 30	 28	 2.9	 0.101	 0.09	 1.62	
N:P	 f(Znut)	 17.4	 0.0	 0.0	 0.0	 0.0	 30	 28	 4.6	 0.041	 0.14	 1.58	
N:P	 f(MLD)	 18.0	 0.0	 0.0	 0.0	 0.0	 30	 28	 0.4	 0.551	 0.01	 1.69	
N:P	 f(bact,pro,syn,euks)	 16.5	 17.0	 14.1	 36.4	 -15.4	 30	 25	 2.1	 0.109	 0.25	 1.56	
C:N	 f(SST)	 10.2	 -0.1	 0.0	 0.0	 0.0	 31	 29	 5.1	 0.032	 0.15	 0.59	
C:N	 f(Znut)	 7.0	 0.0	 0.0	 0.0	 0.0	 31	 29	 3.8	 0.061	 0.12	 0.61	
C:N	 f(MLD)	 6.7	 0.0	 0.0	 0.0	 0.0	 31	 29	 4.2	 0.048	 0.13	 0.60	
C:N	 f(bact,pro,syn,euks)	 7.5	 4.4	 3.4	 4.0	 -4.4	 31	 26	 0.0	 0.996	 0.01	 0.68	
Linear	Model	β0	+	β1*x1	+	β2*x2	+	β3*x3	+	β4*x4.	Observations	(n	=	30/31)	limited	to	stations	with	biomass	estimates.	SST	=	
sea	surface	temperature	(oC),	Znut	=	nutricline	depth	(m),	MLD	=	mixed	layer	depth(m),	bact	=	Heterotrophic	bacteria	(ugC/L),	
pro	=	Prochlorococcus	(ugC/L),	syn	=	Synechococcus	(ugC/L),	euks	=	Eukaryotes	(ugC/L).	All	biomass	cells	pre-filtered	through	
20µm	mesh.	All	POM	concentrations	used	for	C:N:P	ratios	pre-filtered	through	30µm	mesh.	ANOVA	results	are	for	linear	model	
against	constant	model.	
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Table	S1.4.	Models	fits	for	POM	concentrations	and	ratios	
Ratio/POM	 NonlinModel	 p(1)	 p(2)	 p(3)	 p(4)	 N	

obs	
R^2	 RMSE	

POC	(µM)	 f(hour)	 -0.18	 6.07	 1.94	 0.00	 216	 0.19	 0.263	

POC	(µM)	 f(hours,SST)	 -0.18	 6.12	 0.17	 0.06	 216	 0.39	 0.230	

POC	(µM)	 f(hours,Znut)	 -0.18	 6.10	 2.25	 0.00	 216	 0.44	 0.219	

POC	(µM)	 f(hours,MLD)	 0.18	 2.94	 2.07	 0.00	 216	 0.23	 0.258	

PON	(µM)	 f(hour)	 0.01	 1.75	 0.28	 0.00	 216	 0.01	 0.042	

PON	(µM)	 f(hours,SST)	 0.01	 1.78	 -0.07	 0.01	 216	 0.37	 0.034	

PON	(µM)	 f(hours,Znut)	 0.01	 1.83	 0.34	 0.00	 216	 0.46	 0.031	

PON	(µM)	 f(hours,MLD)	 0.01	 1.69	 0.31	 0.00	 216	 0.10	 0.040	

POP	(µM)	 f(hour)	 0.00	 5.89	 0.01	 0.00	 217	 0.01	 2.6E-03	

POP	(µM)	 f(hours,SST)	 0.00	 6.17	 -0.01	 0.00	 217	 0.46	 1.9E-03	

POP	(µM)	 f(hours,Znut)	 0.00	 2.91	 0.02	 0.00	 217	 0.54	 1.8E-03	

POP	(µM)	 f(hours,MLD)	 0.00	 2.74	 0.02	 0.00	 217	 0.15	 2.4E-03	

C:P	 f(hour)	 8.42	 3.01	 132.78	 0.00	 215	 0.16	 13.859	

C:P	 f(hours,SST)	 -8.60	 6.07	 256.91	 -4.19	 215	 0.52	 10.475	

C:P	 f(hours,Znut)	 -8.38	 6.11	 113.64	 0.24	 215	 0.52	 10.474	

C:P	 f(hours,MLD)	 8.68	 2.99	 117.77	 0.39	 215	 0.33	 12.337	

N:P	 f(hour)	 0.46	 0.53	 18.89	 0.00	 215	 0.03	 1.756	

N:P	 f(hours,SST)	 0.48	 0.63	 28.08	 -0.31	 215	 0.18	 1.625	

N:P	 f(hours,Znut)	 0.48	 0.57	 17.55	 0.02	 215	 0.16	 1.641	

N:P	 f(hours,MLD)	 0.45	 0.58	 17.57	 0.03	 215	 0.13	 1.669	

C:N	 f(hour)	 -0.61	 0.05	 7.08	 0.00	 216	 0.40	 0.522	

C:N	 f(hours,SST)	 -0.61	 0.02	 10.21	 -0.11	 216	 0.52	 0.470	

C:N	 f(hours,Znut)	 -0.60	 0.04	 6.58	 0.01	 216	 0.53	 0.465	

C:N	 f(hours,MLD)	 -0.61	 0.04	 6.75	 0.01	 216	 0.45	 0.504	

Models	fits	for	POM	concentrations	and	ratios	are	described	in	methods.	SST	=	sea	surface	
temperature	(oC),	Znut	=	nutricline	depth	(m),	MLD	=	mixed	layer	depth(m).	
	 	



45	
	

Table	S1.5.	Models	fits	without	Bay	of	Bengal	
Ratio/POM	 NonlinModel	 p(1)	 p(2)	 p(3)	 p(4)	 N	

obs	
R^2	 RMSE	

POC	(µM)	 f(hour)	 -0.14	 6.18	 1.90	 0.00	 137	 0.15	 0.239	

POC	(µM)	 f(hours,SST)	 -0.15	 6.23	 0.04	 0.06	 137	 0.51	 0.182	

POC	(µM)	 f(hours,Znut)	 -0.15	 6.21	 2.19	 0.00	 137	 0.42	 0.198	

POC	(µM)	 f(hours,MLD)	 -0.14	 6.21	 2.20	 -0.01	 137	 0.26	 0.223	

PON	(µM)	 f(hour)	 0.01	 0.88	 0.27	 0.00	 137	 0.01	 0.042	

PON	(µM)	 f(hours,SST)	 0.00	 0.99	 -0.11	 0.01	 137	 0.60	 0.027	

PON	(µM)	 f(hours,Znut)	 0.00	 1.45	 0.34	 0.00	 137	 0.53	 0.029	

PON	(µM)	 f(hours,MLD)	 0.00	 0.88	 0.35	 0.00	 137	 0.26	 0.036	

POP	(µM)	 f(hour)	 0.00	 1.76	 0.01	 0.00	 136	 0.00	 2.4E-03	

POP	(µM)	 f(hours,SST)	 0.00	 0.65	 -0.01	 0.00	 136	 0.71	 1.3E-03	

POP	(µM)	 f(hours,Znut)	 0.00	 0.19	 0.02	 0.00	 136	 0.63	 1.4E-03	

POP	(µM)	 f(hours,MLD)	 0.00	 0.51	 0.02	 0.00	 136	 0.30	 2.0E-03	

C:P	 f(hour)	 9.58	 3.04	 136.59	 0.00	 136	 0.17	 15.377	

C:P	 f(hours,SST)	 9.15	 2.97	 253.19	 -4.03	 136	 0.50	 11.924	

C:P	 f(hours,Znut)	 8.51	 2.98	 115.53	 0.24	 136	 0.52	 11.719	

C:P	 f(hours,MLD)	 9.36	 3.00	 112.44	 0.53	 136	 0.34	 13.660	

N:P	 f(hour)	 0.41	 0.78	 19.42	 0.00	 136	 0.03	 1.779	

N:P	 f(hours,SST)	 0.45	 0.78	 25.67	 -0.22	 136	 0.11	 1.708	

N:P	 f(hours,Znut)	 0.47	 0.72	 18.34	 0.01	 136	 0.11	 1.713	

N:P	 f(hours,MLD)	 0.43	 0.79	 18.31	 0.02	 136	 0.06	 1.754	

C:N	 f(hour)	 -0.61	 0.10	 7.09	 0.00	 137	 0.35	 0.593	

C:N	 f(hours,SST)	 -0.59	 0.08	 10.82	 -0.13	 137	 0.53	 0.505	

C:N	 f(hours,Znut)	 0.57	 3.24	 6.40	 0.01	 137	 0.55	 0.495	

C:N	 f(hours,MLD)	 -0.60	 0.08	 6.21	 0.02	 137	 0.47	 0.535	

Bay	of	Bengal	stations	not	included.	Models	fits	for	POM	concentrations	and	ratios	are	
described	in	methods.	SST	=	sea	surface	temperature	(oC),	Znut	=	nutricline	depth	(m),	
MLD	=	mixed	layer	depth(m).	
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Table	S1.6.	Median	gyre	POM	concentrations	and	ratios		
	 North	

Atlantic	
Gyre	

North	
Pacific	
Gyre	

South	
Atlantic	
Gyre	

South	
Pacific	
Gyre	

South	
Indian	
Gyre	

Gyre	
Mean	

POC	(µM)	 2.7	 2.1	 3.8	 4.6	 2.1	 3.07	
PON	(µM)	 0.377	 0.302	 0.390	 0.448	 0.261	 0.356	
POP	(µM)	 0.010	 0.014	 -	 0.031	 0.016	 0.018	
POC:POP	 205.0	 163.7	 -	 177.5	 147.7	 173.5	
PON:POP	 33.2	 23.6	 -	 18.9	 19.3	 23.7	
POC:PON	 6.9	 7.0	 9.0	 8.1	 7.6	 7.7	

Median	POM	concentrations	and	ratios	from	surface	observations.	No	POP,	C:P,	and	N:P	
data	points	are	available	for	the	South	Atlantic	gyre.		
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Table	S1.7	One-way	ANOVA	for	gyre	regions	
POC	ANOVA	 SS	 df	 MS	 F	 Prob>F	
Regions	 4432.1	 4	 1108.0	 52.5	 <1E-16	
Error	 35449.5	 1680	 22.1	

	 	

Total	 39881.6	 1684	
	 	 	

PON	ANOVA	 SS	 df	 MS	 F	 Prob>F	
Regions	 19.7	 4	 4.9	 46.5	 <1E-16	

Error	 166.7	 1576	 0.1	
	 	

Total	 186.4	 1580	
	 	 	

POP	ANOVA	 SS	 df	 MS	 F	 Prob>F	
Regions	 3.1E-2	 3	 1.0E-2	 47.7	 <1E-16	
Error	 2.5E-1	 1149	 2.2E-4	 	 	
Total	 2.8E-1	 1152	 	 	 	
POC:POP	ANOVA	 SS	 df	 MS	 F	 Prob>F	
Regions	 764126.7	 3	 254708.9	 30.9	 <1E-16	
Error	 7495867.9	 910	 8237.2	

	 	

Total	 8259994.5	 913	
	 	 	

PON:POP	ANOVA	 SS	 df	 MS	 F	 Prob>F	
Regions	 27331.6	 3	 9110.5	 43.8	 <1E-16	

Error	 183332.3	 881	 208.1	
	 	

Total	 210663.9	 884	
	 	 	

POC:PON	ANOVA	 SS	 df	 MS	 F	 Prob>F	
Regions	 787.5	 4	 196.8	 33.4	 <1E-16	
Error	 8985.3	 1525	 5.9	

	 	

Total	 9772.7	 1529	
	 	 	

One-way	ANOVA	results	for	POM	concentrations	and	ratios.	Regions	analyzed	are	the	North	
Atlantic,	South	Atlantic,	North	Pacific,	South	Pacific,	and	South	Indian	gyres.	POC	=	
particulate	organic	carbon,	PON	=	particulate	organic	nitrogen,	POP	=	particulate	organic	
phosphorus,	and	POM	=	particulate	organic	matter.	For	POC:POP,	POP,	and	PON:POP	there	
are	no	observations	from	the	South	Atlantic.	Sum	of	squares	(SS),	degree	of	freedom	(df),	
mean	squares	(MS=SS/df),	ratio	of	mean	squared	errors,	F=MS(Regions)/MS(Error).	
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CHAPTER	2	

Remote	sensing	of	global	ocean	surface	phosphate	concentrations	

Co-authors:	Toby	Westberry,	Michael	Behrenfeld,	and	Adam	Martiny.	

Abstract	

Regional	variations	in	dissolved	inorganic	phosphate	(DIP)	influence	cellular	physiology,	

ocean	productivity,	and	cycling	between	bio-limiting	nutrients.	However,	we	have	not	

developed	a	robust	global	remote	sensing	(RS)	estimate	of	surface	DIP.	Here,	we	aim	to	

assess	the	variation	in	DIP	using	a	mechanistic	framework;	capturing	multiple	axes	of	

variation	including	latitudinal,	between	tropical	upwelling	vs	downwelling	regions,	among	

subtropical	gyres	and	between	polar	oceans.	We	then	matched	34	RS	inputs	to	each	axis	of	

variation	and	used	artificial	neural	network	analysis	to	predict	the	observed	distribution	of	

DIP.	The	RS	inputs	of	sea	surface	temperature,	net	primary	productivity,	total	dust	

deposition,	and	sea	surface	salinity	captured	77%	of	total	variation	in	surface	DIP.	

Uncertainty	in	predicting	ultralow	DIP	among	oligotrophic	regions	is	improved	with	high	

sensitivity	measurements	but	remains	a	large	source	of	variation.	The	contribution	of	RS	

inputs	associated	with	iron	deposition	indicates	the	importance	of	micronutrient	co-

limitation	in	estimating	regional	DIP	drawdown.	By	examining	the	interactions	among	the	

inputs	and	DIP	in	major	ocean	biomes,	we	find	an	unsupervised	neural	network	model	

matches	our	mechanistic	understanding.	Thus,	the	combination	of	a	mechanistic	model	for	

nutrient	supply	and	demand	combined	with	artificial	neural	networks	provided	a	robust	

basis	for	developing	a	remote	sensing	estimation	of	surface	DIP.	

Keywords:	phosphate,	remote	sensing,	neural	network	models,	marine	nutrients	
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Introduction	

Dissolved	inorganic	phosphate	(DIP)	is	one	of	the	major	bio-limiting	nutrients.	DIP	

is	suggested	to	be	the	ultimate	limiting	nutrient	over	geologic	timescales	(Tyrrell,	1999)	

and	can	locally	limit	primary	production	and	other	ocean	biological	processes	(Mills	et	al.,	

2008;	Mills	et	al.,	2004;	Moore	et	al.,	2013;	Moutin	et	al.,	2005,	2008).	Thus,	it	is	important	

to	identify	the	spatial	and	temporal	variation	in	DIP.	Currently,	DIP	is	predominantly	

measured	from	CTD	bottles	using	laborious	techniques	leading	to	large	spatial	or	temporal	

gaps	in	coverage.	Thus,	we	lack	either	autonomous	or	remote	sensing	approaches	to	

consistently	estimate	variation	in	DIP.		

There	is	systematic	heterogeneity	in	DIP	concentrations	([DIP]).	First,	[DIP]	is	low	in	

tropical	and	subtropical	waters	and	increases	poleward	due	to	a	latitudinal	gradient	in	

stratification	and	phytoplankton	nutrient	drawdown	(Falkowski	et	al.,	1992).	Secondly,	

[DIP]	is	elevated	in	regions	with	upwelling.	Thirdly,	there	are	subtle	gradients	within	

oligotrophic	regions	(Martiny	et	al.,	2019;	Wu	et	al.,	2000).	Using	high-sensitivity	

techniques	to	measure	DIP	(Karl	&	Tien,	1992),	there	appears	to	be	a	shift	in	[DIP]	between	

oligotrophic	gyres	in	the	Northern	VS.	Southern	Hemispheres	as	well	as	a	longitudinal	

gradient	within	the	gyres	(Martiny	et	al.,	2019).	Drivers	for	differences	in	concentrations	

among	the	subtropical	gyres	are	poorly	understood	but	hypothesized	to	include	iron	stress	

among	microbial	communities	(Mather	et	al.,	2008;	Moutin	et	al.,	2008).	Fourthly,	[DIP]	is	

substantially	higher	in	the	Southern	Ocean	compared	to	Arctic	regions	(Codispoti	et	al.,	

1991)	–	likely	due	to	upwelling	and	iron	stress	(Boyd	et	al.,	2000).	Furthermore,	land	

masses	break	circumglobal	wind	and	current	circulation	patterns	in	the	Arctic	Ocean	
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leading	to	isolated	regional	DIP	sources	and	sinks.	Thus,	it	appears	that	[DIP]	display	clear	

global	variation	related	to	specific	ocean	physical	and	biological	processes.	

Remote	sensing	observations	potentially	related	to	DIP	have	been	collected	for	over	

two	decades	and	overlap	with	many	field	DIP	measurements.	While	there	is	no	known	

direct	optical	signature	of	DIP	within	the	remote	sensing	wavelengths,	multiple	satellite-

retrieved	geophysical	properties	are	mechanistically	related	to	[DIP]	and	thus	provide	a	

potential	avenue	for	estimating	global	surface	DIP	distributions.	For	example,	the	first	axis	

of	variation	in	[DIP]	could	possibly	be	captured	by	satellite	observations	of	sea	surface	

temperature	(SST)	and/or	photosynthetically	active	radiation	(PAR).	However,	we	predict	

that	the	SST-nutrient	relationships	changes	in	time	and	space	and	would	not	capture	the	

additional	axes	of	variation	in	[DIP]	leading	to	high	global	uncertainty.	There	are	several	

possible	satellite	measurements	that	possibly	could	capture	variation	in	[DIP]	due	to	

upwelling	in	low	latitude	regions.	This	could	include	inherent	optical	properties	

(absorption,	reflectance,	or	backscatter)	or	a	metric	of	phytoplankton	biomass	or	

productivity	(Behrenfeld	et	al.,	2008;	Behrenfeld	&	Falkowski,	1997;	Westberry	et	al.,	

2008).	Alternatively,	sea	level	anomalies	and	surface	wind	properties	of	wind	strength,	

wind	stress	and	wind-derived	upwelling	intensity	could	capture	the	impact	of	upwelling	on	

DIP.	Metrics	of	Fe	stress	or	supply	may	enable	a	distinction	of	[DIP]	between	the	

subtropical	gyres.	One	study	has	proposed	using	fluorescence	quantum	yields	to	describe	

physiological	iron	stress	in	phytoplankton	(Behrenfeld	et	al.,	2008)	whereas	the	iron	

supply	may	be	partially	tied	to	aerosol	optical	thickness	(Randles	et	al.,	2017).	Finally,	we	

predict	that	polar	differences	are	due	to	a	combination	of	iron	stress	and	physical	strength	
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of	upwelling	and	circulation.	Thus,	remote	sensing	observations	along	these	four	axes	may	

accurately	describe	the	global	variation	of	surface	[DIP].	

Here,	we	aim	to	develop	a	remote	sensing	approach	to	estimate	the	global	

distribution	of	surface	[DIP]	by	applying	our	mechanistic	knowledge	of	DIP	sources	and	

sinks.	Furthermore,	we	propose	to	use	artificial	neural	network	models	to	describe	the	

complex	nonlinear	response	and	interactions	between	remote	sensing	observations	and	

[DIP].	First,	we	test	which	combination	of	satellite	inputs	leads	to	the	best	prediction	of	

surface	[DIP].	Secondly,	we	describe	the	regional	uncertainty	for	the	best	model	fits.	Having	

a	new	remote	sensing	estimate	of	DIP	provides	high	spatial	and	temporal	resolution	

observations	of	nutrient	stress,	which	impact	biological	processes.	 	

Methods	

DIP	Data	Collection	

	 The	majority	of	DIP	observations	used	in	this	study	were	from	the	GLODAPv2.2019	

database	(Olsen	et	al.,	2016,	2019)	(Figure	S2.1).	DIP	observations	in	GLODAPv2.2019	

were	sourced	from	the	WOCE,	CLIVAR,	and	GO-SHIP	repeat	transects	between	1972	and	

2017.	In	total,	there	were	28,553	DIP	observations	from	the	top	10m.	Following	difficulties	

in	accurately	estimating	DIP	concentration	below	1	µM,	we	added	DIP	observations	from	a	

recent	high	sensitivity	DIP	compilation	(Martiny	et	al.,	2019)	(Figure	S2.1).	Since	several	

cruises	conducted	underway	sampling	over	several	hours,	samples	were	binned	into	0.15˚	

grids	and	by	date	for	a	total	of	32,040	DIP	observations.	As	described	below,	we	matched	

each	DIP	observation	to	weekly,	monthly,	or	monthly	climatology	RS	inputs	where	possible	

(Figure	S2.2).	A	total	of	18025	DIP	observations	contained	all	34	inputs	and	were	used	for	

the	initial	neural	network	model	selection	process.		
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Selection	of	Remote	Sensing	Inputs	

	 Based	on	our	knowledge	of	DIP	sources	and	sinks,	we	narrowed	down	possible	

remote	sensing	inputs	to	four	major	categories	(Table	2.1).	In	total,	thirty-four	RS	inputs	

were	selected	and	matched	to	DIP	observations.	A	more	detailed	description	of	satellite	

data	retrieval	and	resolution	is	available	in	supplementary	information	(Table	S2.1).	

Briefly,	the	following	inputs	were	downloaded	from	https://oceancolor.gsfc.nasa.gov/	

using	the	SeaWiFS	and	MODIS	L3	mapped	files	(a_412_giop,	a_443_giop,	bb_412_giop,	

bb_443_giop,	bbp_443_giop,	Rrs_412,	Rrs_443,	aot_869,	aot_865,	chl_gsm,	chlor_a,	par,	pic,	

poc,	Zeu_lee,	sst).	Three	inputs	were	downloaded	from	

http://www.science.oregonstate.edu/ocean.productivity/	using	the	CbPM	model	for	

SeaWiFS	and	MODIS	(carbon_cbpm,	growth_cbpm,	and	npp_cbpm).	Plankton	fractions	were	

downloaded	from	https://doi.pangaea.de/10.1594/PANGAEA.892211	for	Sfm	(Mouw	et	

al.,	2019),	and	from	https://doi.pangaea.de/10.1594/PANGAEA.859005	for	pico-,	nano-,	

and	micro-	fractions	(Kostadinov	et	al.,	2015).	Salinity	(Lee	et	al.,	2012;	Meissner	et	al.,	

2018;	Wentz	et	al.,	2014)	was	downloaded	from	the	Aquarius		(ftp://podaac-

ftp.jpl.nasa.gov/allData/aquarius/L3/mapped/V5/7day/SCI/2015/)	and	SMAP	satellites	

(ftp://ftp.remss.com/smap/SSS/V03.0/FINAL/L3/8day_running/40km/).	Wind	inputs	

(taux,	tauy,	upwelling,	curl,	and	modStress)	were	downloaded	for	the	QuikSCAT	and	

METOP-ASCAT	satellites	

(https://coastwatch.pfeg.noaa.gov/erddap/griddap/index.html?page=1&itemsPerPage=10

00).	Estimates	of	dry,	wet	and	total	dust	deposition	was	taken	from	the	MERRA-2	NASA	

model	(https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-

2%22&page=1&source=Models%2FAnalyses%20MERRA-2).	Lastly	physiological	iron	
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stress	(phi)	was	provided	through	Toby	Westberry	at	Oregon	State	University	(Behrenfeld	

et	al.,	2008).	

	Physical/chemical	properties	along	the	first	latitudinal	axis:	

The	first	axis	of	variation	was	partially	linked	to	differences	in	water	column	

stratification.	We	chose	RS	inputs	to	differentiate	low	latitude	(increased	salinity,	

temperature,	and	light	availability)	from	high	latitude	(reduced	salinity,	temperature,	and	

light	availability)	environmental	conditions.	The	corresponding	RS	inputs	were	sea	surface	

salinity	(SSS),	sea	surface	temperature	(SST),	and	photosynthetically	active	radiation	

(PAR).		

Water	optical	properties	between	the	second	subtropical	and	tropical	axis	

The	second	axis	of	variation	was	tied	to	differences	in	upwelling	intensity	between	

the	subtropical	gyres	and	equatorial	regions.	We	expected	water	optical	properties	would	

reflect	differences	in	phytoplankton	productivity	and	nutrient	drawdown	between	

upwelling	and	downwelling	regions	at	low	latitudes.	Only	variables	available	as	L3	data	for	

both	SeaWiFS	and	MODIS-Aqua	were	selected	to	improve	matches	to	DIP	observations.	The	

content	of	dissolved	and	particulate	matter	within	the	water	will	change	the	absorption,	

backscattering,	and	reflectance	of	light.	By	choosing	only	shared	variables	as	stated	above,	

we	selected	the	total	absorption	coefficients	(a412,	a443),	total	backscatter	coefficients	

(b412,	b443),	and	remote	sensing	reflectance	(Rrs412,	Rrs443)	at	412	and	443nm	

wavelengths,	as	well	as	the	backscatter	coefficient	for	particles	at	443nm	(bbp443).	

Additional	RS	inputs	derived	from	water	optical	properties	from	

https://oceancolor.gsfc.nasa.gov	included	chlorophyll	a	(chlGSM,	chlOCI),	particulate	

inorganic	carbon	(PIC),	particulate	organic	carbon	(POC),	and	euphotic	zone	depth	
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(ZEULee).	Productivity	RS	inputs	were	included	from	the	Carbon-based	Productivity	Model	

(CbPM,	https://www.science.oregonstate.edu/ocean.productivity/)	for	net	primary	

production	(NPPCbPM),	growth	rate	(growthCbPm),	and	phytoplankton	carbon	biomass	

(carbonCbPM).	Lastly,	estimated	of	plankton	size	class	fractions	were	included	for	micro-

plankton	(SfmMouw,	microKosta),	nano-plankton	(nanoKosta),	and	pico-plankton	

(picoKosta).		

Iron	supply	indicators	between	the	third	subtropical	gyre	axis	

	 Among	subtropical	gyres,	dissolved	iron	was	proposed	as	the	driver	of	[DIP]	

variation.	Iron	is	likely	sourced	from	aeolian	dust	and	continental	margin	sediment	inputs.	

We	only	associated	RS	inputs	with	dusy	supply	using	aerosol	optical	thickness	

(aot869,865)	and	estimates	of	total	dust	deposition	(tot_dd),	total	dry	dust	deposition	

(tot_ddd),	and	total	wet	dust	deposition	(tot_dwd)	across	five	particle	classes.	Dust	

deposition	estimates	are	taken	from	the	NASA	MERRA2	model,	which	assimilates	remote	

sensing	inputs	into	an	atmospheric	process	and	transport	model.	Beyond	supply,	a	remote	

sensing	metric	for	physiological	iron	stress	(phi),	has	been	derived	from	variation	in	

phytoplankton	fluorescence.	Because	this	phi	metric	is	derived	from	water	optical	

properties,	it	is	included	in	two	categories.		

Wind	and	upwelling	indicators	between	the	fourth	polar	ocean	axis	

The	wind	derived	upwelling	indicators	are	expected	to	be	more	accurate	at	high	

latitudes.	These	include	zonal	wind	speed	(taux),	meridional	wind	speed	(tauy),	wind-

driven	upwelling	(upwelling),	the	modulas	of	wind	stress	(Modstress),	and	wind	stress	curl	

(curl).	Sea	level	anomaly	(SLA)	is	also	included	as	an	upwelling	indicator.	
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Neural	network	analysis	

Nonlinear	interactions	between	inputs	and	DIP	were	modelled	using	artificial	neural	

networks.	A	network	was	trained	with	1	to	5	combinations	of	RS	inputs.	The	DIP	database	

was	randomly	split	50/50	into	training	and	validation	datasets.	Three	nodes	were	used	in	

the	network	with	the	Bayesian	regularization	backpropagation	settings	(trainbr	in	

MATLAB).	This	process	was	repeated	100	times	for	each	input	combination.	All	model	

analyses	were	done	using	MATLAB’s	neural	network	toolbox.	

Model	Selection	

	 The	models	were	ranked	according	to	the	Akaine’s	Information	Criterion	to	

determine	the	best	fitting	model:	AIC	=	n	x	log(SSE/n)	+	2p.	The	goodness	of	fit	is	

determined	by	multiplying	the	number	of	training	observations	(n)	by	the	log	of	the	sum	of	

square	error	(SSE)	of	the	training	dataset	divided	n.		As	the	number	of	parameters	

increases,	there	is	a	penalty	expressed	as	2p,	where	p	is	the	number	of	parameters.		

Regional	uncertainty	

	 We	used	the	regional	boundaries	as	described	in	Teng	and	colleagues	for	biome	

definitions	(Teng	et	al.,	2014).	A	0.3	mmol	m-3	DIP	contour	was	used	to	delineate	

subtropical	gyres.	In	the	northern	hemisphere,	regions	approximately	south	of	60°N	were	

defined	as	the	North	Pacific	Temperate	and	North	Atlantic	Temperate	zones.	Above	60°N	is	

defined	as	the	Arctic	Ocean.	In	the	Southern	Hemisphere,	all	regions	south	of	the	0.3	mmol	

m-3	DIP	contour	are	part	of	the	Southern	Ocean.		
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Results	

Patterns	of	predicted	[DIP]	

	 Predicted	(DIPsat)	and	observed	[DIP]	(DIPobs)	were	significantly	correlated	

(Figure	2.1)	and	the	best	model	(lowest	AIC	score)	explained	77%	of	the	variation	in	

surface	DIP	(Figure	2.2A).	The	best	model	had	four	inputs;	i)	sea	surface	temperature	

(SST),	ii)	net	primary	productivity	(NPP)	iii)	sea	surface	salinity	(SSS)	iv)	total	dust	

deposition	(tot_dd)	(Figure	2.3,	Figure	2.4).	It	captured	a	latitudinal	gradient	of	high	

[DIPsat]	at	the	poles,	intermediate	at	equator,	and	lowest	in	subtropical	gyres	and	was	well	

within	the	ranges	of	the	GLODAP	latitudinal	distribution	(Figure	2.2A).		The	model	

successfully	predicted	higher	[DIPsat]	in	the	Southern	Ocean	and	southern	subtropical	

gyres,	as	compared	to	their	northern	counterparts.	However,	at	low	DIP	concentrations	the	

best	fit	model	overestimated	[DIPsat]	in	each	subtropical	gyre	(Figure	S2.3)	and	had	an	R2	

of	0.08	for	[DIP]	<	0.1	µM.	Between	20°N	and	20°S,	our	model	captured	the	spatial	extent	of	

equatorial	upwelling,	but	underpredicted	the	magnitude	of	elevated	[DIPobs]	in	parts	of	

the	Indian	and	Pacific	Oceans	(Figure	2.1).	Spatially,	[DIPsat]	agreed	with	the	GLODAP	

trend	of	reduced	[DIP]	on	the	western	side	of	the	Atlantic	and	Pacific	Ocean	basins.	Thus,	

our	remote	sensing	estimation	captured	most	regional	differences	in	[DIPobs].	

Predictive	ability	of	Remote	Sensing	inputs	

The	combination	of	remote	sensing	(RS)	inputs	matched	our	four	axes	of	variation	

in	[DIP].	When	we	binned	the	models	by	AIC	score,	we	observed	the	best	models	(AIC	score	

<		-19,000)	included	SST,	inherent	optical	properties,	iron	stress/supply	indicators,	and	SSS	

(Figure	2.4).	To	explore	which	inputs	most	closely	predicted	[DIPsat]	along	the	four	axes	

(latitudinal,	equatorial	upwelling,	subtropical	gyres,	and	polar	oceans),	we	ran	neural	
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network	simulations	constrained	by	latitude.	Along	axis	1,	SST	was	notably	the	best	

predictor	of	latitudinal	variation	in	[DIP]	and	described	50%	of	variation	in	[DIP]	(Figure	

S2.5).	However,	SST	predicted	the	lowest	[DIPsat]	at	in	areas	of	equatorial	upwelling,	

demonstrating	the	limitation	of	a	single	remote	sensing	variable	for	predicting	changes	in	

[DIP].	Adding	NPP	to	the	SST	model	allowed	for	the	distinction	of	low	[DIP]	in	the	

subtropical	gyres	vs.	elevated	[DIP]	near	the	equator	(Figure	S2.5;	R2	=	0.34	for	latitudes	

45°N	to	45°S).	Adding	either	iron	indicators	or	salinity	to	the	SST	model	generated	lower	

[DIPsat]	in	the	Northern	Hemisphere	subtropical	gyres.	From	15-45°N	a	model	of	total	dust	

deposition	and	SST	had	a	mean	[DIPsat]	~0.7	µM	versus	~1	µM	from	15-45°S	(Figure	S2.5;	

R2	=	0.45	for	latitudes	15°N/°S	to	45°N/°S).	For	axis	4,	salinity	or	an	inherent	optical	

property,	in	combination	with	SST,	captured	Arctic	geographic	complexity	and	higher	

[DIPsat]	in	the	Southern	Ocean	(Figure	S2.5,	R2	=	0.5	for	latitudes	above	45°N/°S).	

Wind/upwelling	indicators	were	only	significant	in	the	polar	regions.	Among	the	best	

models,	the	inherent	optical	properties	and	dust	deposition	inputs	were	highly	correlated	

(Figure	S2.5)	and	interchangeable	(Figure	2.4,	Figure	S2.4).	Thus,	several	satellite	

observation	types	could	be	substituted	as	long	as	all	four	axes	of	variation	were	included	in	

the	remote	sensing	estimate.		

Interactive	effects	

	 Interactions	among	RS	inputs	suggested	regional	variation	in	regulation	of	DIP.	The	

interaction	between	SST	and	[DIPsa]t	was	consistent	across	regions;	higher	SST	predicted	

reduced	DIPsat	concentrations	(Figure	2.5A).	Above	20°C,	the	other	four	RS	inputs	gave	

rise	to	higher	[DIPsat]	in	equatorial	regions.	NPP	had	a	nonlinear	effect	on	[DIPsat]	

between	the	high	and	low	latitude	regions	(Figure	2.5B).	At	high	latitudes,	increased	NPP	
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predicted	DIPsat	drawdown,	but	at	low	latitudes,	high	NPP	indicated	elevated	DIPsat	

concentrations	–	presumably	through	an	increased	supply.		Higher	salinity	indicates	water	

stratification,	and	here	produced	depressed	DIPsat	values	(Figure	2.5D).	The	exception	was	

for	equatorial	conditions,	where	more	saline	water	was	correlated	with	higher	[DIPsat],	

possibly	indicating	upwelling	of	less	saline	water.	Iron	supply	indicators	had	a	direct	

relationship	with	DIPsat	concentrations	(Figure	2.5C).	Higher	dust	deposition	at	low	

latitudes	generally	predicted	lower	DIPsat	concentrations.	Dust	deposition	though	had	

little	impact	in	polar	areas.	While	the	sign	of	the	NPP	relationships	with	[DIP]	was	

consistently	negative	for	the	Arctic	and	Southern	Oceans,	NPP	had	divergent	[DIP]	curves	

for	low	latitude	Equatorial	and	subtropical	gyre	situations.		The	artificial	neural	network	

successfully	weighted	the	influence	of	the	RS	inputs	according	to	region.	

Regional	uncertainties	

	 We	observed	a	clear	bias	in	the	prediction	of	[DIPsat]	at	low	latitudes.	First,	we	

overpredicted	the	lowest	DIPsat	concentrations	in	the	subtropical	gyres	and	our	remote	

sensing	model	was	unsuccessful	in	matching	DIP	observations	below	0.1	µM	(Figure	S2.6).	

In	subsequent	runs,	we	reanalyzed	the	neural	networks	with	a	high	sensitivity	DIP	

database	and	found	a	RMSE	below	0.35	approaching	0.03	µM	DIP	(Figure	2.2B).	The	

mismatch	between	low	[DIPobs]	and	[DIPsat]	was	most	evident	in	the	North	Atlantic	gyre	

where	the	mode	of	observations	is	between	0.01	to	0.1	µM	(Figure	S2.3).	This	range	of	

[DIP]	was	where	the	satellite-derived	RMSE	increased	substantially	(Figure	2.2B).	Second,	

we	underpredicted	the	DIP	concentrations	across	the	Equatorial	Pacific	(Figure	2.1,	Figure	

S2.3).	The	areal	extent	of	nutrient	enrichment	in	the	Equatorial	Pacific	Ocean	is	well	

bounded,	but	the	predictions	are	consistently	negatively	biased.	This	trend	of	negatively	
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biased	[DIPsat]	in	upwelling	regions	is	also	observed	along	eastern	boundary	current	in	

North	America	and	Africa.	Third,	the	influx	of	DIP	into	the	Arabian	Sea	is	not	resolved	

spatially.	Overall,	the	satellite-derived	estimate	improves	upon	prior	global	estimates	of	

[DIP]	but	regional	challenges	remain.		

Discussion	

Here,	we	develop	a	satellite-derived	estimate	of	the	global	variation	in	sea	surface	

[DIP]	that	predicted	77%	of	the	spatial-temporal	variation	measured	in	the	field.	Our	

estimate	matches	latitudinal	and	regional	gradients	across	diverse	biomes.	Formerly,	

studies	determined	the	absence/pretense	of	a	nutrient	by	the	regional	sea	surface	

temperature	(SST)	at	which	nutrients	(nitrate,	phosphate,	and	sulfate)	become	

undetectable	by	conventional	methods	(Kamykowski	et	al.,	2002;	Kamykowski	&	Zentara,	

1985;	Switzer	et	al.,	2003).	Alone,	SST	covered	nearly	58%	of	the	variation	in	global	

[DIPobs].	However,	SST	alone	fails	to	resolve	differences	in	[DIP]	between	low	and	high	

productivity	low-latitude	regions,	but	can	be	useful	in	predicting	[DIP]	regionally	(Palacios	

et	al.,	2013;	Waldron	&	Probyn,	2010).	SST	has	been	combined	with	RS	chlorophyll	a	

and/or	modelled	mixed	layer	depths	(MLD)	to	estimate	[DIN]	in	productive	regions	

(Arteaga	et	al.,	2015;	Gomes	et	al.,	2000;	Steinhoff	et	al.,	2010).	Like	prior	attempts	to	

estimate	[DIN],	we	employ	additional	water	optical	RS	inputs	to	capture	elevated	[DIP]	in	

warm,	productive	regions.	While	some	studies	have	tried	to	estimate	the	supply	of	DIN	

from	below	by	using	sea	surface	height	(SSH),	sea	level	anomaly	(SLA)	,	or	wind	stress	

estimates	in	combination	with	circulation	models	(Oschlies	&	Garçon,	1998;	Siegel	et	al.,	

1999;	Williams	et	al.,	2000),	we	found	no	substantial	increases	in	explanatory	power	from	

adding	RS	inputs	linked	to	sea	level	or	wind	for	[DIP].	To	our	knowledge,	there	has	not	
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been	a	concerted	effort	to	estimate	nanomolar	gradients	in	[DIP]	via	RS	inputs.		This	

satellite-derived	DIP	estimate	is	a	significant	advance	forward	for	capturing	DIP	availability	

in	oligotrophic	biomes	with	the	addition	of	iron	supply	indicators.	While	not	a	direct	

estimate	of	iron	supply,	two	iron	indicators	were	consistently	in	the	best	models,	strongly	

supporting	the	importance	of	iron	in	modulating	[DIP]	(Mather	et	al.,	2008;	Moutin	et	al.,	

2008).	Our	estimate	not	only	captures	the	depressed	DIP	observed	in	the	Northern	

Hemisphere	gyres,	but	also	the	east-west	gradient	in	DIP	concentrations.	Neural	networks	

provide	a	strong	framework	for	using	RS	observations	to	create	an	open	ocean	DIP	

indicator	that	matches	our	mechanistic	understanding	(Wang	et	al.,	2018).		

Establishing	relationships	between	DIP	and	satellite	observations	heavily	depends	

on	the	accuracy	to	which	we	can	detect	changes	in	situ	[DIP]	(Martiny	et	al.,	2019)	and	the	

ability	of	the	neural	networks	to	discern	regional	interactions	among	RS	inputs	(Wilson	&	

Coles,	2005).	The	satellite-derived	estimate	has	three	major	uncertainties	to	precisely	

predicting	DIP	at	low	latitudes.		First,	we	have	the	poorest	fits	between	[DIPobs]	and	

[DIPsat]	among	subtropical	gyres.	Adding	a	high	sensitivity	database	improved	the	fit	

below	0.03	µM,	but	not	to	the	lowest	observation	near	0.01	µM.	Approximating	DIP	stress	

and	availability	in	low	biomass	ecosystems	is	difficult,	in	part	because	wide	swaths	of	

subtropical	gyres	are	below	the	detection	limit	of	common	assays	(Martiny	et	al.,	2019).	

Multiple	methods	now	exist	to	measure	sub-nanomolar	levels	of	DIP	(Haberer	&	Brandes,	

2003;	Karl	&	Tien,	1992;	Li	et	al.,	2008;	Takahashi	et	al.,	2009),	but	are	not	routinely	used	

on	repeat	hydrography	sections.		Secondly,	our	model	has	a	systematic	negative	bias	in	

equatorial	and	eastern	boundary	upwelling	systems.	We	speculate	the	model	is	limited	by	

the	dynamic	range	of	DIP	concentrations	experienced	in	upwelling	systems	and	fits	the	
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estimated	[DIP]	towards	the	mean	value.	If	true,	we	anticipate	similar	bias	temporally	

during	a	phytoplankton	bloom.	Third,	we	had	mixed	results	in	estimating	[DIPsat]	in	the	

Northern	Indian	Ocean,	where	ocean	circulation	and	productivity	dramatically	change	with	

the	monsoonal	season	(Veldhuis	et	al.,	1997).	While	the	Bay	of	Bengal	experiences	fresh	

water	stratification	via	immense	river	inputs,	the	Arabian	Sea	seasonally	has	increased	

upwelling	during	the	Southwest	monsoon	(Kumar	et	al.,	2002).	Our	combination	of	RS	

inputs	was	able	to	predict	lower	DIP	in	the	Bay	of	Bengal,	but	not	higher	nutrients	in	the	

Arabian	Sea.	Within	unique	and	complex	systems,	a	regional	based	model	may	better	match	

the	local	ecosystem	dynamics.	As	such,	our	[DIPsat]	estimate	is	best	suited	to	open	ocean	

sea	surface	[DIP].	Contrary	to	our	expectations,	sea	surface	salinity	and	not	wind	driven	

upwelling	indices	separated	the	polar	variation	axis	and	additional	subtropical	gyre	

variation.	Sources	for	variation	in	sea	surface	salinity	depend	on	region,	and	range	from	

evaporation-precipitation	patterns,	river	discharge,	ice	melt,	and	ocean	circulation.	

Depending	on	the	source	of	salinity	changes,	the	relationship	with	[DIP]	can	lead	to	better	

estimates	(e.g.,	Arctic	Ocean,	seasonally	stratified	biomes,	and	among	the	subtropical	gyres)	

or	poor	relationships	in	unique	areas	(e.	g.	Arabian	Sea,	Bay	of	Bengal).	Low	saline	waters	

in	the	Arctic	could	either	be	indicators	of	river	inputs,	which	are	generally	DIP	depleted	

relative	to	nitrate,	or	ice	melt	that	contains	varying	amounts	of	P	sources	and	inhibits	

stratification	(Pabi	et	al.,	2008).	Neural	networks	assign	weights	to	the	unique	combination	

of	inputs,	allowing	a	more	accurate	estimation	of	[DIP]	by	region	where	the	exact	

interaction	between	predictors	is	unclear.		

	 Variation	in	surface	[DIP]	is	important	for	many	ecosystem	and	biogeochemical	

processes.	The	availability	of	DIP	shapes	community	interactions	(Tilman	et	al.,	1982)	
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nutrient	uptake	strategies	(Lomas	et	al.,	2014),	and	cellular	stoichiometry	(Galbraith	&	

Martiny,	2015).	At	the	surface	RS	observations	have	impressive	spatial-temporal	coverage	

over	the	past	two	decades,	while	DIP	observations	now	cover	each	major	ocean	biome.	A	

climatological	view	is	excellent	for	estimating	average	nutrient	stress	but	may	not	reflect	

the	in	situ	DIP	stress	for	an	active	community	at	any	given	time.	Future	attempts	to	model	

biogeochemical	processes	via	remote	sensing,	sea	surface	DIPsat	serves	an	important	role.		
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Figure	2.1:	Global	surface	DIP	distribution.	Annual	mean	[DIP]	are	shown	for	A)	
GLODAPv2	observations	interpolated	at	the	surface,	and	B)	Satellite	[DIP]	predicted	from	
the	best	network	model	using	annually	average	RS	inputs	at	1	degree	resolution.				
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Figure	2.2.	Improved	model	fits	at	low	concentrations.		A)	Scatter	plot	of	[DIPsat]	against	
[DIPobs]	for	the	high	sensitivity	database	(red)	and	the	GLODAPv2	database	(black).	B)	
RMSE		binned	by	[DIP]	is	shown	for	the	original	network	model	(GLODAPv2	alone-black)	
and	improved	model	(includes	high	sensitivity	[DIP]-red).		
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Figure	2.3:	Model	fits	with	increasing	network	inputs.	Statistics	are	shown	based	on	the	
best	neural	network	model	fit	(lowest	AIC	score)	with	increasing	input	amounts.	Results	
are	shown	for	RMSE	(dashed	purple),	AIC	score	(solid	blue)	and	R	squared	(yellow	
triangles).		
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Figure	2.4.		Best	model	RS	input.	All	four	combination	models	are	ranked	and	binned	into	
percentiles	based	on	AIC	scores.	In	each	bin,	the	relative	frequency	scales	between	0	
(white)	and	0.25	for	the	categories;	productivity	(blue),	upwelling	(purple),	iron	supply	
(red),	and	physical	(green).	A	red	asterisk	denotes	the	best	fitting	model	(SSS,	SST,	Total	
Dust	Deposition,	and	NPP).		
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Figure	2.5.	Interactions	between	DIPsat	and	remote	sensing	inputs.	Predicted	DIP	is	
plotted	as	solid	line,	and	standard	error	as	shaded	area.	All	but	one	RS	inputs	from	best	fit	
are	held	constant	at	mean	values	within	defined	regions	(Teng	et	al.,	2014),	while	values	
are	varied	for	A)	sea	surface	temperature	(SST),	B)	net	primary	productivity	(NPP),	C)	total	
dust	deposition	(tot_dd),	and	D)	sea	surface	salinity	(SSS).	Colored	scatter	points	are	DIP	
observations	for	the	equator	(orange),	subtropical	gyres	(red),	Arctic	(light-blue),	and	
Southern	Ocean	(dark-blue).	
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Figure	S2.1 DIP	observations	in	the	top	10	m	for	GLODAPv2	(black)	and	the	high	
sensitivity	database	(green).	Increasing	marker	size	indicates	increasing	DIP	
concentrations.	The	background	shades	represent	the	biomes	defined	in	Teng	et	al.	2014.	
Subtropical	gyres	are	outlined	by	a	0.3uM	World	Ocean	Atlas	phosphate	contour	(N.A	gyre,	
N.P.	gyre,	S.A.	gyre,	S.P.	gyre,	and	I.O.	Gyre).	Tropical	upwelling	regions	between	gyres	are	
defined	as	Atlantic	Equatorial,	Pacific	Equatorial,	and	N.I.O.	monsoonal.	The	Arctic	Ocean	is	
defined	above	65°N	(excluding	Labrador	Sea	near	Greenland)	and	the	Southern	Ocean	
below	55°S.	Finally,	the	N.A	temperate	and	N.P.	temperate	are	the	leftover	area	in	the	
Northern	Hemisphere.		
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Figure	S2.2.	Proportions	of	DIP	observations	matched	to	satellite	input.		The	proportion	is	
based	32,040	DIP	observations.	The	blue	represents	monthly-daily	satellite	matches,	green	
monthly	climatology,	and	yellow	the	total	coverage.	Remaining	DIP	observations	had	no	
satellite	match-up	for	that	input.	Only	DIP	observations	with	all	34	inputs	were	used	in	the	
initial	neural	network	analyses	(n	=	18025).	
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Figure	S2.3.	Density	scatter	of	phosphate	observations	VS.	predictions	by	region.	The	black	
line	is	the	1:1	line,	and	red	line	is	the	best	fit	line	in	MATLAB	to	the	observations	and	
predictions.	Yellow	indicated	high	density	of	points,	and	blue	indicates	low	density	of	
points.	(Order	of	regions	is	based	on	lowest	median	DIP	to	highest).	Regions	defined	in	
Figure	S2.1.		
	
	
	 	



71	
	

	

	
Figure	S2.4.	Correlation	heat	map	of	satellite	observations.	Colorbar	indicates	correlation	
coefficient	(red	positive,	blue	negative).	Ocean	optical	propertied	(absorbance,	backscatter,	
reflectance),	algorithms	derived	from	(plankton	size	fraction,	chlorophyll,	productivity,	
carbon	content,	euphotic	depth)	,	and	dust	deposition	fractions	are	highly	correlated	
among		these	categories.	As	shown	in	Figure	2.3,	only	four	inputs	are	needed	to	capture	
77%	of	variance,	with	additional	inputs	lending	little	increase	in	predictability.		
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Figure	S2.5.	Ranking	of	models	with	1,2	combinations	along	proposed	axes.		Models	are	
ranked	by	R	squared	here.	Axes	roughly	correspond	to	the	whole	latitudinal	gradient	(90°N	
to	90°S),	the	tropics/subtropics	(45°N	to	45°S),	the	subtropics	only	(15°N/S	to	45°N/S),	
and	the	polar	oceans	(above	45°N/S).	All	neural	network	are	run	with	a	single	input	for	the	
first	latitudinal	axis,	and	for	up	to	2	combinations	of	34	RS	inputs	for	subsequent	axes.	SST	
outperforms	all	other	inputs	for	the	latitudinal	axis.	The	tropical/subtropical	axis	is	best	
predicted	by	a	combination	of	SST	and	either	a	productivity/IOP	metric	or	iron	supply	
metric.	The	subtropical	axis	is	best	predicted	by	a	combination	of	SST	and	either	salinity	
(SSS)	or	an	iron	supply	metric.	The	final	axis	(polar	oceans)	is	best	defined	by	SST/SSS,	or	
SST/productivity(IOP)	metrics.	Wind/upwelling	metrics	have	a	moderate	contribution	to	
all	axes.	IOP	=	inherent	optical	properties	and	includes	related	algorithm	metrics	(blue).	
Phys	=	physical-chemical	indicators	(light	blue).	Iron	=	iron	supply/stress	(yellow).	
Wind/upwelling	=	wind	speed	and	sea	level	anomaly	metrics	(red).		
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Figure	S2.6.	Global	surface	DIP	distribution	using	GLODAPv2	database	only.	Annual	mean	
DIP	concentration	for	A)	GLODAPv2	observations	interpolated	at	the	surface	and	B)	
predicted	DIP	from	the	best	network	model	averaged	for	annual	mean.	C)	The	mean	and	
standard	deviation	by	latitude	for	GLODAPv2	(blue)	and	the	best	network	model	fit	
(green).	D)	Scatter	of	DIP	observations	and	DIPsat	predictions.	Below	0.1µM,	the	model	has	
a	poor	fit	DIP	observations,	as	seen	in	the	N.A.	subtropical	gyre.			 	
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Table	2.1.	Remote	Sensing	Inputs	to	Neural	Network	Model	
Axis	of	Variation	

1.	Latitudinal	 2.	Tropical/Subtropical	 3.	Subtropical	gyres	 4.	Polar	Oceans	

Associated	Remote	Sensing	(RS)	Category	

Physical-chemical	
environmental	
properties 

Water	optical	properties	and	
algorithms	derived	from	optical	
properties	

Iron	supply	or	stress	
indicators	

Wind-driven	
upwelling	
indicators	

RS	input	by	category	

	
PAR	(E	m-2	day-1)	a,b	
SST		(ºC)a,k	
SSS	(PSU)	f,g	

		
a412	(m-1)	a,b	
a443	(m-1)	a,b	
b412	(m-1)	a,b	
b443	(m-1)	a,b	
bbp443	(m-1)	a,b	
Rrs412	(sr-1)	a,b		
Rrs443	(sr-1)	a,b	
chlGSM	(mg	m-3)	a,b	
chlOCI	(mg	m-3)	a,b	
PIC	(mol	m-3)	a,b	
POC	(mol	m-3)	a,b	
ZEULee	(m)	a,b	
growthCbPM	(day-1)	a,b	
NPPCbPM	(mgC	m-2	day-1)	a,b	
carbonCbPM	(mg	m-3)	a,b	
SfmMouw	a,b,c,d	
picoKosta	b	
nanoKosta	b	
microKosta	b	
phi	(%)	a,b	

						
aot869	a	
aot865	b	
tot_ddd	(kg	m-2	s-1)	j	
tot_dwd	(kg	m-2	s-1)	j	
tot_dd	(kg	m-2	s-1)	j	
phi	(%)	a,b	

						
SLA	e	
taux	(Pa)	h,i	
tauy	(Pa)	h,i	
upwelling	(m	s-1)	
h,i	
Modstress	(Pa)	h,i	
curl	(Pa	m-1)	h,i	

Satellite	sensors,	exception	MERRA2	linked	to	atmospheric	circulation	model	
a	MODIS-Aqua	
b	SeaWiFS	
c	MERIS	
d	VIIRS	
e	AVISO	
f	Aquarius	
g	SMAP	
h	QuikSCAT	
I	Metrop-ASCAT	
j	MERRA2	Model	
k	REMSS	
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Table	S2.1.	Description	of	Remote	Sensing	inputs	to	neural	network	models.	
Varname	 Description	 Units	 Sensors	 Timespan	 					Resolution	

Temporal,	Spatial	
a_412_giop	 total	absorption	

coefficient	at	
414nm	

m-1	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

a_443_giop	 total	absorption	
coefficient	at	
443nm	

m-1	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

bb_412_giop	 total	backscatter	
coefficient	at	
412nm	

m-1	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

bb_443_giop	 total	backscatter	
coefficient	at	
443nm	

m-1	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

bbp_443_giop	 backscattering	
coefficient	for	
particles	at	
443nm	

m-1	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

Rrs_412	 Remote	sensing	
reflectance	at	
412nm	

sr-1	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

Rrs_443	 Remote	sensing	
reflectance	at	
443nm	

sr-1	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

aot_869	 aerosol	optical	
thickness	at	869	

	
MODIS-
Aqua	

2002-
present	

8D,	MO	 0.33	
deg	

aot_865	 aerosol	optical	
thickness	at	865	

	
SeaWiFS	 1997-2010	 8D,	MO	 0.33	

deg	
chl_gsm	 Chlorophyll	

Concentration,	
GSM	Algorithm	

mg	m-3	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

chlor_a	 Chlorophyll	
Concentration,	
OCI	Algorithm	

mg	m-3	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

par	 Photosyntheticall
y	Available	
Radiation,	R.	
Frouin	

einstein	
m-2	day-
1	

MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

pic	 Calcite	
Concentration,	
Balch	and	Gordon	

mol	m-3	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

poc	 Particulate	
Organic	Carbon,	
D.	Stramski,	2007	
(443/555	
version)	

mol	m-3	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

Zeu_lee	 Euphotic	depth,	
Lee	algorithm	

m	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

sst	 Sea	surface	
temperature	

°C	 MODIS-
Aqua	
REMSS	

	 8D,	MO	
Daily	

0.33	
deg	
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growth_cbpm	 growth	of	cells	
from	CbPM	model	

day-1	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

npp_cbpm	 Net	primary	
production	from	
CbPM	

mgC	m-2	
day-1	

MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

carbon_cbpm	 carbon	from	
CbPM	

mg	m-3	 MODIS-
Aqua,	
SeaWiFS	

2002-
present	
1997-2010	

8D,	MO	 0.33	
deg	
	

Sfm_mouw	 Microplankton	
fraction	

	
MODIS-A,	
SeaWiFS,	
MERIS,	
VIIRS	

1997	-	2015	
	

MO	 0.33	
deg	

kosta_pico	 picoplankton	
fraction	

C	
biomass	
fraction	

SeaWiFS	 1997-2010	 MO	 0.33	
deg	

kosta_nano	 nanoplankton	
fraction	

C	
biomass	
fraction	

SeaWiFS	 1997-2010	 MO	 0.33	
deg	

kosta_micro	 microplankton	
fraction	

C	
biomass	
fraction	

SeaWiFS	 1997-2010	 MO	 0.33	
deg	

sla	 Sea	level	anomaly	
	

AVISO	 1993-
present	

MO	 0.33	
deg	

sss	 Sea	surface	
salinity	

PSU	 Aquarius,	
SMAP	

2011-2015	
2015-
present	

7D	
MO	

1	deg	
0.25	
deg	

taux	 Zonal	wind	speed	 Pa	 QuikSCAT,	
METOP-
ASCAT	

1999-2009	
2009-
present	

8D	 1	deg	
0.25	
deg	

tauy	 Meridional	wind	
speed	

Pa	 QuikSCAT,	
METOP-
ASCAT	

1999-2009	
2009-
present	

8D	 1	deg	
0.25	
deg	

upwelling	 Upwelling	
intensity	

m	s-1	 QuikSCAT,	
METOP-
ASCAT	

1999-2009	
2009-
present	

8D	 1	deg	
0.25	
deg	

modStress	 Modulus	of	wind	
stress	

Pa	 QuikSCAT,	
METOP-
ASCAT	

1999-2009	
2009-
present	

8D	 1	deg	
0.25	
deg	

curl	 Wind	stress	curl	 Pa	m-1	 QuikSCAT,	
METOP-
ASCAT	

1999-2009	
2009-
present	

8D	 1	deg	
0.25	
deg	

tot_ddd	 Total	dry	dust	
deposition	

kg	m-2	
s-1	

MERRA2	
model	

1980-
present	

MO	 0.5	deg	

tot_dd	 Total	dust	
deposition	

kg	m-2	
s-1	

MERRA2	
model	

1980-
present	

MO	 0.5	deg	
	

tot_dwd	 Total	west	dust	
deposition	

kg	m-2	
s-1	

MERRA2	
model	

1980-
present	

MO	 0.5	deg	
	

phi	 Physiological	iron	
stress	

%	 MODIS-
Aqua,	
SeaWiFS	

Climatology	 MO	 9	km	
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CHAPTER	3	

Linking	biome	shifts	in	microbial	genome	adaptation	with	ocean	biogeochemistry	

Co-authors:	George	Hagstrom,	Alyse	Larkin,	Lucas	Ustick,	Simon	Levin,	Michael	

Lomas,	and	Adam	Martiny.	

Abstract	

Linking	‘omics	measurements	with	biogeochemical	cycles	is	a	widespread	challenge	in	

microbial	community	ecology.	Here,	we	propose	applying	genomic	adaptation	as	

‘biosensors’	for	microbial	investments	to	overcome	nutrient	stress.	We	then	integrate	this	

genomic	information	with	a	trait-based	model	to	predict	regional	shifts	in	the	elemental	

composition	of	marine	plankton	communities.	We	evaluated	this	approach	using	

metagenomic	and	particulate	organic	matter	samples	from	the	Atlantic,	Indian	and	Pacific	

Ocean.	We	find	that	our	genome-based	trait	model	significantly	improves	our	prediction	of	

particulate	C:	P	(carbon	:	phosphorus)	across	ocean	regions.	Furthermore,	we	detect	

previously	unrecognized	ocean	areas	of	iron,	nitrogen	and	phosphorus	stress.	In	many	

ecosystems,	it	can	be	very	challenging	to	quantify	microbial	stress.	Thus,	a	carefully	

calibrated	genomic	approach	could	become	a	widespread	tool	for	understanding	microbial	

responses	to	environmental	changes	and	the	biogeochemical	outcomes.	

Keywords:	Metagenomics,	Redfield	Ratio,	elemental	stoichiometry	

Introduction	

Linking	genomics	and	other	‘omics	measurements	with	biogeochemical	cycles	is	a	

widespread	challenge	in	microbial	community	ecology.	Currently,	most	‘omics	

observations	are	used	to	quantify	shifts	in	diversity	and	functional	potential.	In	contrast,	
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we	rarely	use	microbial	‘omics	data	to	understand	and	constrain	large-scale	energy	or	

nutrient	fluxes.	This	lack	of	convergence	between	microbial	‘omics	information	and	

ecosystem	or	global	models	may	limit	our	ability	to	predict	future	changes	to	global	

biogeochemical	cycles.	

It	is	well-established	that	the	cellular	and	community	regulation	of	elemental	

requirements	and	composition	(i.e.,	carbon	:	nitrogen	:	phosphorus,	C:N:P)	are	important	

for	linking	the	global	carbon	and	nutrient	cycles	(Sterner	&	Elser,	2002).	There	is	an	

intense	debate	about	the	interaction	between	microbial	diversity	and	environmental	

changes	in	regulating	C:N:P	for	both	terrestrial	and	aquatic	environments	(Moreno	&	

Martiny,	2018;	Sterner	&	Elser,	2002).	The	chemical	composition	of	a	cell	is	affected	by	

many	environmental	factors,	but	nutrient	availability	is	emerging	as	central	(Garcia	et	al.,	

2018).	Nutrient	availability	impacts	the	elemental	composition	of	a	community	in	multiple	

ways.	Physiologically,	the	overall	nutrient	level	impacts	the	growth	rate	(Monod,	1950).	

The	relative	supply	of	N	vs.	P	(and	other	nutrients),	relative	to	the	algal	biomass	ratio,	

determines	which	nutrient	availability	results	in	cellular	stress	(Klausmeier	et	al.,	2004).	

Furthermore,	microbial	lineages	can	have	unique	resource	requirements	and	thus	

experience	the	same	environment	differently	at	a	physiological	level.	For	example,	the	

marine	cyanobacterium	Prochlorococcus	appears	to	have	a	lower	P	requirement	compared	

to	larger	phytoplankton	(Martiny	et	al.,	2013)	and	co-existing	diatoms	can	have	unique	N:P		

(Jenkins,	et	al.,	2015).	Thus,	the	interaction	between	microbial	diversity	and	nutrient	

limitation	plays	a	complex	role	in	regulating	ecosystem	C:N:P.	

It	is	a	challenge	to	define	and	quantify	the	nutritional	environment	experienced	by	

microorganisms.	First,	the	concentrations	of	inorganic	phosphorus	and	nitrogen	are	
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commonly	below	detection	limits	in	marine	environments	(Martiny	et	al.,	2019).	Second,	

most	microorganisms	can	utilize	multiple	alternative	forms	of	nutrients	(Guidot	et	al.,	

2005;	Shilova	et	al.,	2017;	Sosa	et	al.,	2019;	Tapia-Torres	et	al.,	2016).	Ammonium	is	

energetically	the	most	favored	form	of	nitrogen.	When	ammonium	is	in	low	supply,	

microorganisms	can	shift	in	some	order	to	urea,	nitrate,	or	organically	bound	nitrogen	

(Herrero	et	al.,	2001).	There	are	several	unknowns	associated	with	the	use	of	alternative	

resources.	We	rarely	quantify	the	concentration	and	chemical	form	of	alternative	nutrients	

or	the	chemical	nature	organically	bound	N	or	P.	Either	assumptions	are	made	about	what	

substrate	algae	are	using,	or	there	are	difficulties	obtaining	isotopically	labelled	

compounds	for	more	complex	alternative	nutrient	sources.	Furthermore,	the	resource	

costs	associated	with	the	use	of	organically	bound	nutrients	are	broadly	unknown,	leading	

to	ill-defined	trade-offs	for	nutrient	assimilation.	For	example,	cells	need	to	invest	N	when	

upregulating	acquisition	proteins	leading	to	trade-offs	between	nutrient	investments	and	

uptake	(Bonachela	et	al.,	2013).	Finally,	there	is	variation	among	individual	lineages	in	the	

extent	they	can	rely	on	alternative	nutrient	forms	(Zimmerman	et	al.,	2014).	Thus,	it	is	

currently	impossible	to	predict	microbial	nutrient	use	and	associated	biogeochemical	roles	

even	with	a	perfect	chemical	characterization	of	an	environment.	

Marine	microorganisms	show	clear	genomic	evidence	for	adaptation	to	specific	

nutritional	environments	through	gene	gain	and	loss	(Martiny	et	al.,	2015;	Morris	et	al.,	

2012;	Scanlan	et	al.,	2009).	Such	genomic	changes	reflect	a	shift	from	simple	to	more	

complex	forms	under	limiting	conditions.	This	pattern	has	been	detected	in	many	

microorganisms	but	is	clearly	illustrated	in	marine	Cyanobacteria.	In	regions	with	a	replete	

inorganic	phosphate	supply,	Prochlorococcus	genomes	mainly	contain	transporters	directly	
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associated	with	inorganic	phosphate	(Martiny	et	al.,	2006).	However,	Prochlorococcus	

adapts	to	lower	phosphate	using	genes	associated	with	regulation	and	the	direct	uptake	of	

alternative	forms.	In	regions	with	severe	P	stress,	Prochlorococcus	genomes	contain	genes	

for	alkaline	phosphate	to	cleave	off	phosphate	from	organic	molecules	(Coleman	&	

Chisholm,	2010;	Martiny	et	al.,	2009).	Here,		alkaline	phosphatase	and	a	few	other	proteins	

can	be	highly	induced	to	utilize	organic	P	as	an	alternative	P	source	(Antelmann	et	al.,	

2000;	Martiny	et	al.,	2006).	Prochlorococcus	adapts	to	N	limitation	in	a	parallel	fashion,	

whereby	cells	from	high	N	areas	only	contain	genes	for	ammonium	uptake	(Martiny	et	al.,	

2009).	In	regions	with	stronger	N	stress,	Prochlorococcus	genomes	sequentially	include	

genes	for	urea,	nitrite	and	ultimately	nitrate	assimilation.	Thus,	the	genome	content	of	

Prochlorococcus	(and	other	marine	microorganisms)	closely	corresponds	to	the	underlying	

environmental	conditions	and	thereby	describes	the	cellular	strategies	for	nutrient	

acquisition	(Berube	et	al.,	2015).	

We	propose	using	genomic	shifts	among	microbial	communities	as	a	‘biosensor’	for	

in	situ	nutritional	environments	in	order	to	improve	predictions	of	C:N:P	variability	across	

ocean	regions.	Specifically,	we	combine	the	distribution	of	genes	with	a	trait	model	to	

simulate	cellular	investment	strategies	and	predict	C:N:P.	We	show	that	in	comparison	to	

both	traditional	abiotic	and	common	trait	models,	the	incorporation	of	nutrient	trait	

variation	quantified	using	metagenomics	greatly	improves	our	ability	to	predict	shifts	in	

C:N:P.	This	work	illustrates	how	we	can	use	‘omics	observations	to	improve	our	

understanding	of	global	biogeochemical	cycles	in	ways	that	would	be	challenging	to	

achieve	with	abiotic	characterizations	alone.	
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Methods	

Sample	collection	

Seawater	samples	were	collected	from	the	western	Atlantic	Ocean	(AE1319	–	

Aug/Sep	2013,	BV46	–		Oct	2011),	central	Pacific	Ocean	(NH1418	–	Sept	2014),	and	the	

eastern	Indian	Ocean	(IO9N	–	Mar/Apr	2016)	(Figure	S3.1,	Table	S3.1).	On	each	cruise	

samples	for	DNA,	flow	cytometry,	particulate	organic	matter,	uptake	rate	kinetics,	and	

nutrients	were	collected	as	described	previously	(Baer	et	al.,	2017,	2018;	Garcia	et	al.,	

2018;	Kent	et	al.,	2019;	Lomas	et	al.,	2014).	Fifty-four	stations	were	selected	for	

metagenomics	analysis	where	these	corresponding	measurements	were	taken.	Select	data	

(uptake	rate	kinetics,	nutrient	concentrations,	cell	abundances,	and	particulate	elemental	

concentrations)	for	the	Atlantic	AE1319	and	BV46	cruises	is	available	on	BCO-DMO	

(https://www.bco-dmo.org/project/2178)	and	for	the	Indian	I09	(https://www.bco-

dmo.org/project/628972).		Results	have	previously	been	reported	describing	the	

cyanobacterial	diversity	(Kent	et	al.,	2019;	Larkin	et	al.,	2019),	cell	quotas	and	abundances	

(Baer	et	al.,	2017,	2018),	uptake	rate	kinetics	(Baer	et	al.,	2018;	Lomas	et	al.,	2014),	and	

particulate	organic	matter	ratios	(Garcia	et	al.,	2018)	along	several	transects.		

Particulate	organic	matter	

All	particulate	organic	matter	samples	for	carbon,	nitrogen	and	phosphorus	were	

collected	on	pre-combusted	(4	hours	at	500°C)	GF/F	filters	with	a	nominal	pore	size	of	0.7	

µm.	POP	filters	were	rinsed	with	0.17M	Na2SO4	at	time	of	collection	to	remove	residual	

dissolved	organic	phosphorus.		All	filters	were	stored	frozen	until	analysis	in	lab.	POC/PON	

samples	were	measured	using	a	Flash	1112	EA	elemental	analyzer	(Thermo	Scientific,	

Waltham,	MA,	USA)	for	the	I09	transect	against	an	Atropine	(C17H23NO3)	standard	curve	
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(range	0.2-1.5	mg).	For	the	NH1418,	AE1319,	and	BV46	transects	POC/PON	samples	were	

measured	on	either	Control	Equipment	240-XA	or	440-XA	elemental	analyzer	using	

acetanilide	as	a	standard	(Steinberg	et	al.,	2001).		POP	samples	were	analyzed	using	an	

ash/hydrolysis	colorimetric	method	described	previously	(Lomas	et	al.,	2010).	Briefly,	2	

mL	of	0.017M	MgSO4	was	added	to	the	filter	and	KH2PO4	standards	in	acid-washed	

scintillation	vials	and	dried	overnight	at	90°C.	The	filters	were	exposed	to	high	

temperatures	500°C	for	2	hours	and	acidified	in	0.2M	HCL	at	90°C.	After	a	mixed	reagent	

was	added,	the	samples	were	analyzed	on	a	spectrophotometer	at	885nm.		

Uptake	rate	kinetics	

On	the	Atlantic	(AE1319,	BV46)	and	Pacific	(NH1418)	Ocean	transects,	phosphate	

uptake	rate	kinetics	were	taken	for	whole	community	and	taxa-specific	groups	(e.g.	

Synechococcus	&	Prochlorococcus)	using	methods	previously	described	(Michael	W	Lomas	

et	al.,	2014).	Incubations	were	performed	using	10	mL	seawater	aliquots	within	3°C	of	

ambient	temperature	during	time	of	collection	(~23°C).	Kinetics	experiments	for	

phosphate	were	performed	with	increasing	DIP	additions	up	to	100nM,	and	ended	at	a	final	

concentration	of	100uM.	On	the	Indian	Ocean	GO-SHIP	transect	(I09N),	whole	community	

bottle	incubations	were	performed	for	uptake	of	15N-labeled	ammonia,	urea,	and	nitrate	

(Baer	et	al.,	2018).	The	incubations	were	performed	in	2L	polycarbonate	bottles	over	a	6-hr	

period	at	ambient	seawater	temperature.	N	incubations	were	mixed	to	a	final	

concentration	of	0.03µM,	which	is	below	the	detection	limit	and	reflective	of	the	N-limiting	

conditions	throughout	the	I09N	transect.	
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Cell	abundances	using	flow	cytometry	

Samples	for	flow	cytometry	and	cell	sorting	were	collected	previously	and	are	

presented	elsewhere	(Baer	et	al.,	2017,	2018;	Kent	et	al.,	2019).	Briefly,	the	samples	were	

sorted	using	a	FACSJazz	or	Influx	flow	cytometer	(BD,	Franklin	Lakes,	NJ,	USA).	Samples	

were	preserved	using	a	0.5%	paraformaldehyde	solution	(final	concentration),	kept	in	the	

dark	for	1	hour	to	fix	at	5°C,	and	then	stored	frozen	at	-80°C	until	analysis.	Populations	of	

Synechococcus	were	determined	with	a	gate	in	orange	(585nm),	Prochlorococcus	based	on	

forward	scatter	and	red	fluorescence.		

Nutrients	

For	the	NH1418,	AE1319,	and	BV46	cruises,	phosphate	was	measured	using	the	

MAGIC-SRP	high	sensitivity	method	(Karl	&	Tien,	1992).	Nitrate	was	measured	as	using	a	

cadmium	reduction	assay	as	previously	described	(Kent	et	al.,	2019).	

Nutrients	data	for	the	I09N	cruise	were	provided	by	Jim	Swift/SIO	and	Susan	Becker/SIO	

and	is	available	at	https://cchdo.ucsd.edu45.	

Metagenomics	–	library	and	sequencing	

For	DNA,	4-10	L	seawater	samples	were	collected	with	a	0.22	µm	Sterivex	filter	and	

preserved	with	Lysis	Buffer	(50	mM	Tris	-HCl	pH	7.6,	20	mM	EDTA	pH	8.0,	400	mM	NaCl,	

0.75	M	sucrose)	and	frozen	at	-80˚C	until	further	processing.	DNA	was	extracted	as	

described	previously	(Boström	et	al.,	2004;	Kent	et	al.,	2019;	Larkin	&	Martiny,	2017)	and	

diluted	(Atlantic/Pacific:	0.5ng/µl,	Indian:	1ng/µl)	for	sequencing.	Metagenomic	libraries	

were	prepared	using	Nextera	Library	Prep	Kit	(Illumina,	San	Diego,	CA)	with	a	modified	

PCR	mixture.	1	ul	was	0.5-1ng	of	DNA	was	tagmented	using	the	Nextera	DNA	Prep	Kit	

tagmentation	enzyme	and	incubated	for	10	minutes	at	55°C.	The	Nextera	XT	barcodes	were	
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annealed	to	metagenome	fragments	using	the	following	PCR	protocol.	For	PCR,	we	used	

20ul	of	a	master	mix	containing	0.5	μL	Phusion	High	Fidelity	buffer	(New	England	Biolabs,	

Ipswich,	MA),	0.5	μL	dNTPs	(New	England	Biolabs,	Ipswich,	MA),	0.25	μL	Phusion	High	

Fidelity	polymerase	(New	England	Biolabs,	Ipswich,	MA),	and	14.25	μL	of	PCR	water.	

Equimolar	samples	were	pooled	and	the	quality	was	checked	and	quantified	using	a	

Bioanalyzer	(Agilent,	Santa	Clara,	CA).	The	pooled	library	was	sequenced	on	an	HiSeq	-	

4000	(Illumina,	San	Diego,	CA)	producing	paired	end	reads	(2	x	150	bp).	Low	quality	reads	

and	adapters	were	removed	using	trimmomatic	0.35	(Bolger	et	al.,	2014)	with	a	sliding	

window	of	4:15	and	minimum	length	set	to	36.	PhiX	was	filtered	out	using	BBduk2	tool	

BBMap	(BBMap	-	Bushnell	B.	-	sourceforge.net/projects/bbmap/,	k	=	31,	hdist	=	1).	

Sequences	were	aligned	and	mapped	to	a	curated	reference	database	(Table	S3.4)	using	

Bowtie2	(Langmead	&	Salzberg,	2012)	with	the	following	settings;	--local	-D	15	-R	2	-L	15	-

N	1	--gbar	1	--mp	3.	High	quality	contigs	were	assembled	and	processed	with	Anvi’o	(Eren	

et	al.,	2015).	Pangenome	gene	clusters	were	identified	using	the	DIAMOND	algorithm	

(Buchfink	et	al.,	2014)	and	summarized	in	Anvi’o.		

Nutrient	assimilation	gene	frequencies	

Prochlorococcus	and	Synechococcus	genes	associated	with	assimilation	for	iron,	

nitrogen,	and	phosphorus	were	identified	based	on	prior	studies	(Berube	et	al.,	2015;	

Malmstrom	et	al.,	2013;	Martiny	et	al.,	2009;	Martiny	et	al.,	2009;	Robidart	et	al.,	2019;	

Scanlan	et	al.,	2009).	Based	on	these	past	studies,	we	filtered	out	genes	if	present	in	all	

Synechococcus	and	Prochlorococcus	to	detect	variation	in	lineage	coverage.	We	found	the	

relative	gene	f	by	scaling	to	the	median	coverage	of	single	copy	core	genes	(SCCG)	(Martiny	
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et	al.,	2019)	across	54	stations.	We	identified	the	relative	gene	frequency	for	each	nutrient	

per	station,	and	per	taxa	(Synechococcus	and	Prochlorococcus)	as	follows:	
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Next,	we	conducted	three	separate	Principle	Component	Analysis	(PCA)	for	N,	P,	and	Fe	

assimilation	genes,	respectively	(Figure	S3.4).	Each	relative	gene	frequency	was	scaled	

between	0	and	1	across	the	54	stations	as	inputs	to	the	PCA	(n	x	m	matrix	of	n	stations	and	

m	normalized	gene	frequencies).	A	total	of	four	gene	indices	were	produced	for	each	

station,	where	N/P	gene	=	first	component	of	PCA;	

IJKLK	MNDOPQDNDODOORH		

SJKLK	TU21OPDODOORH	

IJKLK	MNDOPQDNDODOORH	

SJKLK	TU21OPDODOORH 	

These	N	and	P	gene	indices	for	Prochlorococcus	and	Synechococcus	were	subsequently	

incorporated	into	a	trait	model	to	predict	C:P.	

ATOM-gene	Model	

We	developed	a	new	version	of	the	ATOM	model	(Moreno	et	al.,	2018)	where	we	

incorporated	gene	frequencies	to	constrain	resource	allocations	to	nutrient	stress.		The	

ATOM-gene	model	describes	phytoplankton	in	terms	of	their	radius	r,	and	relative	

allocation	of	biomass	to	biosynthesis	(E),	photosynthetic	proteins	(L),	and	periplasmic	
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proteins	associated	with	nutrient	uptake	(A).	ATOM-gene	also	represents	a	nutrient	

storage	pool.	Phytoplankton	traits	determine	stoichiometry	according	to:	

(P:C) =
XPY + [P\ + Pstor

XCM + ]CM + [C\ +
^(C_`aCb)

cN

.	

	

ATOM-gene	calculates	phytoplankton	traits	using	an	optimality	model.	For	each	set	of	

traits,	ATOM-gene	determines	a	functional	response	to	environmental	conditions	defined	

by	irradiance	(I),	temperature	(T),	nitrogen	(N),	and	phosphorus	(P)	(Table	S3.2).	Instead	

of	using	in-situ	measurements	of	inorganic	nutrients	to	determine	the	investment	to	

nutrient	uptake,	here	we	instead	predict	uptake	capabilities	using	the	gene	indices	for	

nitrogen	and	phosphate	uptake	genes	in	Prochlorococcus	and	Synechococcus,	respectively.	

	log[Nmodel] = log[Nj] − .NNgene ,			 log[Pmodel] = log[Pj] − .PPgene.	

Environmental	conditions	translate	into	rates	of	biosynthesis	mY ,	photosynthesis	mn ,	

nitrogen	uptake	mN,	and	phosphorus	uptake	mP,	with	overall	growth	rate	determined	by	the	

slowest	of	these	processes:	

m = min(mY, mn, mN, mP).	

The	biosynthesis	rate	depends	linearly	on	the	investment	E:	

mY = rT(s)X,	

where	the	biosynthetic	efficiency	decreases	with	temperature	with	a	tujv = 2.	The	

photosynthesis	functional	response	comes	from	(Geider	et	al.,	1996)	(also	see	Moreno	et.	

al.):	

mn =
+(x, s)]

1 + zT
,	
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where	we	allow	the	photosynthesis	rate	to	have	a	non-trivial	temperature	dependence.	We	

assume	diffusion-limited	growth	to	derive	the	nitrogen	and	phosphorus	dependent	growth	

rates:	

mN =
4|}N[Nmodel]!

tN
,							mP =

4|}P[Pmodel]!~
tP

.	

Here	~E32 < ~ < 1,	and	the	diffusion	coefficients	(}N, }P)	decrease	with	temperature	using	

tujÄ = 1.5.	ATOM-gene	then	finds	the	trait	combination	with	the	largest	m.	At	the	optimal	

solution	either:	

mY = mn = mÇ < mM				(N-limitation),	

mY = mn = mM < mÇ				(P-limitation),	

mY = mn = mM = mÇ			(Co-limitation).	

ATOM-gene	subsequently	determines	C:P	from	this	optimal	strategy.	If	the	strategy	is	N-

limited,	then:	

		 	 	 Pstor = ?stor[Pmodel]max(0, mO − m_opt),		

where	má 	is	a	growth	rate	cutoff	above	which	luxury	storage	stops.		

	 We	selected	a	prior	probability	distribution	over	model	parameters	and	

implemented	ATOM-Gene	within	the	STAN	probabilistic	programming	language	(Carpenter	

et	al.,	2017).	We	integrated	C:P,	N	and	P	gene	indices,	temperature,	and	irradiance	

(averaged	over	the	top	50	meters),	and	calculated	the	posterior	probability	distribution	

over	model	parameters	assuming	a	log-normal	probability	distribution	for	C:P:	

(C:P)obs ∼ lognormal â(C:P)Atom-geneäx, s,Ngene,Pgene, ãåç.	
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We	performed	this	Bayesian	optimization	for	the	gene	indices	computed	from	both	

Prochlorococcus	and	Synechococcus	leading	to	a	statistical	model	of	C:P.		

	

Galbraith-Martiny	and	P-Regression	Model	

The	Galbraith-Martiny	model	(Galbraith	&	Martiny,	2015)	calculates	P:C	as	a	linear	function	

of	phosphate	concentration:	

	

(P:C)GM = 6.9ê10ë[Pobs] + 6.0ê10íë.	

	

We	also	created	a	P-regression	based	model	(Preg)	by	refitting	the	Galbraith-Martiny	GM	

model	just	to	the	dataset	gathered	here,	assuming	a	lognormal	error	model:	

	

(P:C)Preg ∼ lognormaläì[Pobs] + [Pj], ãå.	

	

Yvon-Durocher	Model	and	T-Regression	Model	

The	Yvon-Durocher	model	(Yvon-Durocher	et	al.,	2015)	expresses	phytoplankton	C:P	as	an	

exponential	function	of	temperature:	

log (C:P)YD = î(s − 15) + ï,	

where	î = 0.037DCíuand	ï = 5.010.	We	also	created	a	T-Regression	based	model	by	

refitting	the	Yvon-Durocher	model	to	the	data-set	gathered	here,	assuming	lognormal	

errors:	

(C:P)Treg ∼ lognormal(î(s − 15) + ï, ã).	
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Moreno-Hagstrom	Model	

The	Moreno-Hagstrom	model	(Moreno	et	al.,	2018)	uses	the	radius	(r)	and	allocation	of	

biomass	to	biosynthesis	(E)	and	photosynthesis	(L)	to	model	C:P,	by	calculating	the	trait-

combination	that	leads	to	maximal	growth	for	each	combination	of	irradiance	(I),	

temperature	(T),	and	phosphorus	(P).		The	Moreno-Hagstrom	model	models	luxury-P	

storage	as	a	linear	function	of	P,	so	that:	

(C:P)MH =
1

ä(C:P)structure + +storage[Pobs]å
.	

	

It	should	be	noted	the	relationship	between	polyphosphate	storage	and	ambient	P	

concentrations	has	been	demonstrated	to	have	an	inverse	relationship	in	subtropical	North	

Atlantic	Synechococcus	(Martin	et	al.,	2014),	but	the	direction	appears	to	be	regional	

dependent	(Li	&	Dittrich,	2019).		

Results	

We	quantified	the	variation	in	the	Carbon-to-Phosphorus	(C:P)	elemental	

stoichiometry	across	ocean	environmental	gradients	in	the	Atlantic,	Indian	and	Pacific	

Ocean	(Figure	3.1).	Generally,	C:P	ratios	decreased	with	colder	water	and	higher	nutrient	

concentrations.	This	pattern	was	present	in	the	temperate	region	in	the	North	Atlantic	

(Figure3.	1A)	and	equatorial	upwelling	in	the	Pacific	Ocean.	(Figure	3.1B).	However,	in	the	

Indian	Ocean	C:P	decreased	toward	lower	phosphate	concentrations	and	warmer	water	

(Figure	3.1C)	and	thus	showed	the	opposite	relationship	to	temperature	(Garcia	et	al.,	

2018).	Statistical	models	based	solely	on	phosphate	(G-M)	or	temperature	(Y-D)	were	

unable	to	capture	the	different	trends	in	the	Indian	Ocean	and	showed	significant	biases	
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(Figure	3.2).	All	models	overestimated	C:P	in	large	parts	of	the	Indian	Ocean	and	either	

over-	or	underestimated	C:P	in	the	equatorial	Pacific	Ocean.	This	bias	remained	when	we	

refit	the	G-M	and	Y-D	models	to	only	observations	in	this	study,	suggesting	a	structural	

bias.	We	next	tested	the	more	complex	trait-based	model	but	this	model	had	strong	bias,	

too.	Thus,	existing	models	driven	by	common	abiotic	factors	were	unable	to	predict	shifts	

in	the	elemental	stoichiometry	of	marine	communities.	

The	incorporation	of	genomically-derived	resource	acquisition	traits	into	a	model	

greatly	improved	the	prediction	of	regional	shifts	in	elemental	stoichiometry	(Figure	3.2,	R2	

=	0.45).	We	derived	resource	acquisition	traits	in	Prochlorococcus	and	Synechococcus	(the	

two	most	abundant	phytoplankton	in	these	samples)(Baer	et	al.,	2018)	from	metagenomes.	

We	then	used	the	presence	of	nitrogen	and	phosphorus	acquisition	genes	to	develop	an	

index	for	the	induction	of	nutrient	acquisition	machinery	for	each	nutrient	and	lineage	

(Figure	S3.4).	This	index	assumes	Cyanobacterial	lineages	adapt	to	their	environment	

through	genome	streamlining	and	the	presence/absence	of	nutrient	acquisition	genes	is	

directly	related	to	nutrient	stress.	We	found	that	shifts	in	adaptation	and	investment	

strategies	for	nutrient	uptake	led	to	lower	bias	in	all	the	regions.	For	example,	this	was	the	

only	model	that	captured	the	latitudinal	gradient	in	C:P	in	the	Indian	Ocean.	Thus,	the	

ATOM-gene	model	was	able	to	incorporate	a	previously	unknown	pattern	of	nutrient	gene	

frequencies	to	predict	the	regional	shifts	in	C:P.	

The	frequency	of	nutrient	acquisition	genes	helped	resolve	variation	in	nutrient	

stress	at	very	low	nutrient	concentrations.	We	observed	a	significant	correlation	between	

shifts	in	nutrient	acquisition	gene	frequencies	and	the	ambient	nutrient	concentration	

(Figure	3.3).	This	was	seen	for	both	phosphorus	and	nitrogen	acquisition	genes	and	their	
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respective	inorganic	nutrient	concentrations.	However,	the	ambient	nutrient	concentration	

of	phosphorus	and	especially	nitrogen	was	below	detection	limit	in	many	samples.	Here	we	

detected	large	variations	in	gene	frequencies	suggesting	corresponding	shifts	in	nutrient	

stress.	Thus,	metagenomic	analyses	across	diverse	ocean	regions	provided	a	high-

sensitivity	quantification	of	nutrient	stress.		

The	frequency	of	Prochlorococcus	acquisition	genes	suggested	regional	shifts	in	

nutrient	stress	by	both	a	single	and	multiple	nutrients.	As	seen	in	earlier	studies,	we	

detected	a	high	frequency	of	P	acquisition	genes	for	Prochlorococcus	in	the	subtropical	

North	Atlantic	Ocean	below	39˚N,	where	phosphate	concentrations	were	low	(Figure	3.4A).	

This	included	genes	responsible	for	the	regulation	and	uptake	of	dissolved	organic	P,	

arsenate	detoxification,	and	several	of	unknown	function.	We	also	saw	elevated	P	

acquisition	genes	for	Prochlorococcus	in	the	north	Indian	Ocean	and	Bay	of	Bengal	

(between	1˚	and	17˚N).	In	contrast,	P	acquisition	genes	were	low	in	all	samples	from	the	

Pacific	Ocean	and	south	Indian	Ocean.	Prochlorococcus	N	acquisition	genes	showed	a	

different	biogeographical	pattern.	Urea	acquisition	genes	were	frequent	in	all	samples	with	

the	exception	of	the	high	nitrate	areas	in	the	equatorial	Pacific	Ocean	and	temperate	waters	

in	the	North	Atlantic	Ocean.	Nitrite	and	nitrate	acquisition	genes	were	frequent	throughout	

the	Indian	Ocean	(with	the	exception	of	samples	on	the	equator)	and	in	the	northern	part	of	

the	Pacific	Ocean	transect.	However,	nitrite	and	nitrate	genes	were	less	common	in	the	

North	Atlantic	subtropical	waters.	Iron	acquisition	genes	were	common	in	equatorial	

Pacific	Ocean.	Thus,	we	detected	multiple	regions	of	N,	P,	and	Fe	stress	through	the	

frequency	of	nutrient	acquisition	genes	in	Prochlorococcus.	
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	 We	observed	a	partial	correspondence	between	the	frequency	of	nutrient	

acquisition	genes	in	Prochlorococcus	and	Synechococcus	suggesting	some	lineage-specific	

adaptations	to	the	nutritional	condition	(Figure	3.4A).	Overall,	the	regional	shifts	in	

Prochlorococcus	and	Synechococcus	genome	content	were	significantly	correlated	(Mantel	

test	R	=	0.65,	p-value	<	0.001).	In	Synechococcus,	there	was	also	a	high	frequency	of	P	

acquisition	genes	in	the	subtropical	North	Atlantic	Ocean	and	north	Indian	Ocean	(Figure	

3.4C).	However,	it	appeared	that	the	Indian	Ocean	area	with	high	P	acquisition	genes	

spread	further	south	in	Synechococcus	compared	to	Prochlorococcus.	N	acquisition	genes	

were	also	frequent	in	nearly	all	samples	for	Synechococcus,	whereas	the	genes	were	more	

geographically	restricted	in	Prochlorococcus.	There	was	some	evidence	of	increase	in	

Synechococcus	iron	acquisition	genes	in	the	equatorial	Pacific	Ocean	but	the	pattern	was	

not	strong.	Thus,	the	biogeographical	shifts	in	nutrient	acquisition	genes	were	more	

pronounced	for	Prochlorococcus	compared	to	Synechococcus.	

The	variation	in	nutrient	acquisition	genes	may	be	linked	to	shifts	in	limitation	by	

one	or	more	nutrients	(Figure	3.4B	and	D,	Figure	S3.4).	The	frequency	of	nutrient	

acquisition	genes	suggested	P	stress	but	also	some	N	co-stress	in	the	western	North	

Atlantic	Ocean	and	north	Indian	Ocean.	The	North	Pacific	Ocean	and	south	Indian	Ocean	

appeared	to	be	N	stressed.	The	equatorial	Pacific	Ocean	was	iron	stressed.	However,	the	

gene	frequencies	suggested	that	a	brief	transition	region	around	10˚N	in	the	North	Pacific	

Ocean	experienced	co-stress	by	N	and	Fe.	Synechococcus	appeared	to	be	stressed	by	N	in	

temperate	North	Atlantic	Ocean	waters	whereas	Prochlorococcus	appeared	more	stressed	

by	iron.	Similarly,	Synechococcus	showed	evidence	of	P	stress	in	parts	of	the	south	Indian	

Ocean	but	this	was	not	seen	in	Prochlorococcus.	Shifts	in	the	relative	gene	frequency	
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corresponded	to	shifts	in	clade	ecotypes	(Figure	S3.2).	Thus,	metagenomic	analyses	of	

phytoplankton	populations	suggested	regional	shifts	in	stress	by	one	or	multiple	nutrients.	

We	used	additional	ecosystem	measurements	to	verify	the	predictions	from	ATOM-

gene	and	the	overall	resource	investment	strategies.	In	the	Indian	Ocean,	uptake	kinetics	

for	the	ATOM-Gene	model	were	positively	correlated	with	observed	specific	uptake	rates	

for	nitrate,	ammonium,	and	urea	(Figure	3.5).	The	implied	nutrient	distributions	matched	

our	observations	of	increasing	N	northwards	and	vice	versa	for	P	into	the	subtropical	

Indian	Ocean	gyre.	Increases	in	N	and	P	uptake	rates,	cellular	investment	in	photosynthesis	

and	biosynthesis,	and	cell	volume	corresponded	to	reduced	nitrogen	limitation	(Table	

S3.3).	Phosphorus	limitation	appeared	to	have	little	impact	on	C:P	and	cellular	uptake	traits	

in	the	Indian	Ocean,	unlike	the	other	two	basins	(Figure	S3.5).	This	was	true	for	both	

Synechococcus	and	Prochlorococcus	ATOM-Gene	parameters.	Although	P	investment	

increased	into	the	subtropical	Indian	Ocean	gyre,	there	was	little	influence	on	P	luxury	

uptake	and	storage.	Only	larger	cells	in	the	temperate	North	Atlantic	exhibited	P	storage	in	

the	ATOM-Gene	model.	Overall,	co-limitation	or	N-limitation	reduced	luxury	P	storage	in	

the	surface	Indian	Ocean	despite	high	P	investment.	Thus,	the	interaction	between	N	and	P	

limitation	as	seen	in	the	genomic	observations	could	be	the	underlying	mechanism	leading	

to	latitudinal	shifts	in	C:P	observations.		

Discussion	

Linking	‘omics	with	global	biogeochemistry	is	a	major	research	challenge	and	

opportunity	(Caputi	et	al.,	2019;	Coles	et	al.,	2017;	Hennon	&	Dyhrman,	2019;	Mock	et	al.,	

2016).	A	great	deal	of	molecular	data	is	being	generated	(Sunagawa	et	al.,	2015;	Venter	et	

al.,	2004),	but	there	is	a	limited	current	application	of	this	new	knowledge	towards	
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understanding	large-scale	changes	in	the	Earth	system	(Moran,	2015).	Trait-based	

approaches	are	attractive	for	scaling	from	an	individual	organism	to	key	ecosystem	

functions	by	using	a	model	intermediate	(Kiørboe	et	al.,	2018;	Talmy	et	al.,	2013).	We	here	

use	this	approach	as	an	intermediate	for	linking	genomic	information	with	ocean	

biogeochemical	processes.	By	quantifying	the	spatial	variation	due	to	difference	in	nutrient	

assimilation	genes,	we	better	reproduced	observations	of	C:P	in	three	ocean	basins	(Figure	

3.1,	Figure	3.2).	The	ATOM-gene	model	allowed	for	multiple	nutrient	indexes	(N	and	P)	

where	in	situ	nutrient	observations	were	undetectable,	resulting	in	significant	

improvement	to	the	existing	trait	model	(Moreno	et	al.,	2018).	Importantly,	the	gene	index	

quantifies	cyanobacterial	adaptation	to	nutrient	stressors	where	our	knowledge	is	limiting.	

Nutrient	stress	may	occur	through	diffusive	limitation	of	ambient	concentrations,	the	

magnitude	of	nutrient	fluxes,	the	ratio	of	nutrient	supply,	or	nutrient	co-limitation.	

Additionally,	both	Synechococcus	and	Prochlorococcus	can	utilize	different	P	and	N	sources	

(Moore	et	al.,	2002).	This	method	is	favorable	within	the	relatively	stable	environments	

inhabited	by	Synechococcus	and	Prochlorococcus,	which	selects	for	genome	streamlining.	

Thus,	genome	shifts	integrate	these	unknowns	through	the	selective	pressure	to	retain	

particular	genes	in	nutrient-poor	biomes.	

The	frequency	of	nutrient	assimilation	genes	greatly	improved	our	understanding	of	

nutrient	stress	and	elemental	stoichiometry	of	marine	communities.	In	particular,	the	

results	showed	surprising	patterns	of	P	and	N	limitation	in	the	less	studied	Indian	Ocean.	

Our	results	support	a	recent	analysis	Synechococcus	and	Prochlorococcus	elemental	quotas,	

leading	to	a	gradient	of	N,	P,	and	Fe	stress	in	the	Indian	Ocean	(Twining	et	al.,	2019).	The	

Bay	of	Bengal	showed	evidence	of	P	limitation	but	lower	N:P	and	C:P	ratios.	We	attribute	
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this	contradictory	observation	to	an	interaction	between	N	and	P	stress	as	the	upregulation	

of	P	uptake	proteins	is	restricted	by	N	stress	(Bonachela	et	al.,	2011).	Culture	studies	have	

shown	that	N	and	P	stress	interact	in	controlling	the	overall	cellular	physiology	and	C:N:P	

(Klausmeier	et	al.,	2004).	However,	it	has	been	a	challenge	to	translate	these	findings	to	

field	communities.	Some	of	this	confusion	originates	from	external	N	and	possibly	P	

sources	from	atmospheric	deposition,	as	well	as	N-fixation,	which	can	be	episodic	and	

difficult	to	quantify.	This	leads	to	a	poorly	constrained	N:P	supply	ratio.	It	is	unclear	why	

we	see	evidence	of	increased	P	stress	near	the	Bay	of	Bengal,	but	it	is	tempting	to	attribute	

it	to	elevated	N-fixation	and	P	drawdown	(Martiny	et	al.,	2019;	Wang	et	al.,	2019).	We	also	

saw	a	high	presence	of	Fe	limitation	genes	in	regions	with	low	C:P,	where	Synechococcus	

and	Prochlorococcus	cell	abundances	remained	elevated	(Kent	et	al.,	2019).	As	expected,	

this	was	seen	for	the	equatorial	Pacific	HNLC	region	(Coale	et	al.,	1996).		Our	data	also	

support	past	studies	indicating	that	the	subtropical	North	Atlantic	Ocean	(Rijkenberg	et	al.,	

2014)	and	the	southern	Indian	Ocean	(Twining	et	al.,	2019)	could	experience	some	iron	

stress.	Thus,	our	genomic	techniques	are	unveiling	regions	where	we	have	a	limited	

understanding	of	nutrient	limitation.	

Our	approach	is	based	on	an	assumption	of	rapid	adaptation	leading	to	direct	

association	between	genome	content	and	environmental	conditions	(Giovannoni	et	al.,	

2005;	Partensky	&	Garczarek,	2010;	Swan	et	al.,	2013;	Tripp	et	al.,	2010).	Tropical	and	

subtropical	ocean	regions	have	fast	bacterial	turnover	leading	to	rapid	selection.	However,	

environments	with	slow	bacterial	turnover	may	include	ecotypes	or	genes	that	represent	

past	environmental	conditions	(rather	than	current).	Different	lineages	may	also	

experience	unique	stress	(Alexander	et	al.,	2015).	Our	dataset	includes	few	representative	
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stations	from	high	latitudes,	where	light	or	temperature	may	be	limiting	rather	than	

nutrients	(Dickman	et	al.,	2006;	Thomas	et	al.,	2016).	In	such	conditions,	transcriptomics	or	

proteomics	may	be	more	applicable.	However,	these	techniques	suffer	from	their	own	

caveats	like	strong	diel	cycles	(Ottesen	et	al.,	2014;	Poretsky	et	al.,	2009)	or	low	correlation	

between	RNA	and	protein	expression	(Jayapal	et	al.,	2008;	Maier	et	al.,	2011).	Thus,	the	

exact	link	between	‘omics	measurements	and	biogeochemical	processes	needs	to	be	

tailored	to	the	system	of	interest.	

‘Omics	techniques	can	be	powerful	for	understanding	the	environmental	conditions	

experienced	by	microorganisms.	This	principle	is	also	applied	in	other	ecosystem	settings.	

A	high	presence	of	Proteobacteria	in	the	human	gut	may	be	an	indicator	of	an	imbalance	in	

the	redox	potential	and		‘ecosystem’	dysbiosis	(Shin	et	al.,	2015).	Similarly,	the	presence	of	

ammonia	monooxygenase	may	be	indicative	of	nitrification	(Francis	et	al.,	2005).	In	many	

ecosystems,	it	can	be	very	challenging	to	quantify	microbial	physiology	and	stress.	Thus,	a	

carefully	calibrated	genomic	approach	could	become	a	widespread	tool	for	understand	

microbial	responses	to	environmental	changes	and	the	biogeochemical	outcomes.	
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Figure	3.1.	Observations	and	predictions	of	seston	elemental	stoichiometry.	In	situ	
measurements	of	particulate	organic	matter	C:P	are	shown	in	gray,	with	selected	stations	
in	black	where	nutrient	uptake	incubations	were	performed	for	the	A)	Atlantic	B)	Pacific	
and	C)	Indian	Oceans.	Predicted	C:P	is	shown	by	the	ATOM-Syn	trait-gene	model	(blue)	and	
Galbraith-Martiny	2015	phosphate	regression	model	(red).	
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Figure	3.2.	Trait	model	C:P	bias.	Statistical	results	for	the	predicted	C:P	models	showing	A)	
R2		and	B)	residuals	(predictions	–	observations)	across	stations	where	surface	C:P	
measurements	were	taken.			
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Figure	3.3.	PCA	component	1	versus	nutrient	concentrations.	In	situ	nutrient	
concentrations	for	phosphate	and	nitrate	are	plotted	against	the	first		principle	component	
calculated	from	relative	gene	frequencies	for	A)	Prochlorococcus	phosphorus	assimilation	
genes	(R2	=	0.65,	p-value	<	1E-8	),	B)	Synechococcus	phosphorus	assimilation	genes	(R2	=	
0.52,	p-value	<	1E-8,	C)	Prochlorococcus	nitrogen	assimilation	genes	(R2	=	0.78,	p-value	<	
1E-8),	and	D)	Synechococcus	nitrogen	assimilation	genes	(R2	=	0.02,	p-value	=	0.35).	High	
sensitivity	phosphate	measurements	(magenta	square)	were	done	using	a	MAGIC-SRP	
assay.	Otherwise	nitrate	and	phosphate	observations	were	taken	using	standard	methods	
(blue	diamonds).	DL	=	Detection	limit.	
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Figure	3.4.		Variation	among	relative	gene	frequencies	between	stations.	Green	=	nitrogen,	
Purple	=	phosphorus,	red	=	iron.		Prochlorococcus	(A,B)	and	Synechococcus	(C,D)	matrices	
based	on	normalized	gene	frequency	are	significantly	correlated	(Mantel	test	R	=	0.65,	p-
value	<	0.001).	
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Figure	3.5.	Evaluation	of	nutrient	stress	indices	against	ATOM-Gene	and	in	situ	uptake	
parameters	in	the	Indian	Ocean.	Relative	gene	coverage	of	A)	nitrogen		and	B)	phosphorus	
genes	is	shown	for	Prochlorococcus	(blue)	and	Synechococcus	(orange-red).	ATOM-Gene	
estimates	for	C)	absolute	N	uptake	and	D)	P	affinity	normalized	to	cell	volume	are	
compared	to	the	in	situ	parameters	of	E)	Specific	uptake	of	N	species	(nitrate-magenta,	
urea-blue,	ammonium-yellow)	and	F)	the	ratio	of	particulate	organic	carbon	to	
phosphorus.	In	situ	uptake	rates	and	C:P	are	presented	in	[3,25].	
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Figure	S3.1.	Map	of	transects	AE1319/BVAL46	(Atlantic),	NH1418	(Pacific),	and	I09	
(Indian	Ocean).	Observations	for	the	a)	C:P	ratios	and	b)	temperature	(��Celsius)	are	
shown	with	select	stations	labeled.	Metagenomic	samples	AE1319_124	and	BV46_195	are	
located	at	same	site,	but	collected	on	different	transects.	
	 	

 300° W  270° W  240° W  210° W  180° W  150° W  120° W   90° W   60° W   30° W    0°30° S  

  0°  

30° N  

60° N   (a) C:P ratio

50

100

150

200

 300° W  270° W  240° W  210° W  180° W  150° W  120° W   90° W   60° W   30° W    0°30° S  

  0°  

30° N  

60° N   (b) Temperature (°C)
AE1319_8

AE1319_105
AE1319_227

AE1319_269
AE1319_325

AE1319_124/BV_195

BV46_382
NH1418_17

NH1418_130

NH1418_328

IN231
IN213
IN168

IN135
IN099

IN066

IN021
10

15

20

25

30



104	
	

	

	
Figure	S3.2.		Clade	abundance	of	Prochlorococcus	and	Synechococcus	according	to	Table	
S3.4.		
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Figure	S3.3.		Total	reads	mapped	per	station.	
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Figure	S3.4.		Principle	component	analysis	for	stations	using	normalized	gene	coverages	
related	to	(A)	Nitrogen,	(B)	Phosphorus,	and	(C)	Iron	acquisition.	
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Figure	S3.5.		Boxplots	of	half	saturation	concentrations	for	phosphate	in	the	North	Atlantic	
(NA)	and	Pacific	oceans.	Average	ambient	phosphate	concentrations	are	shown	with	an	
asterisk	(*)	for	each	region.

Temperate NA Subtropical NA North Pacific

0

50

100

150

200

250
K

s (
nM

 P
)

*

*

*

Whole Community
 Prochlorococcus
 Synechococcus
Eukaryotes



108	
	

	
Table	3.1.	Mean	environmental	characteristics	for	each	ocean	cruise	transect.	

Cruise	 POC	 POP	 C:P	 PO4	 NO3	 Pro	
abundance	

Syn	
abundance	

Pro	
Pmax	

Pro	
Ks	

Syn	
Pmax	

Syn	
Ks	

NH4	
uptake	

Urea	
uptake	

NO3	
uptake		

[uM]	 [nM]	
	

[nM]	 [uM]	 [cells	ml-
1]	

[cells	L-1]	 [amol	
cell-1	
hr-1]	

[nmol	
L-1]	

[amol	
cell-1	
hr-1]	

[nM]	 [nM	N	
h-1]	

[nM	N	
h-1]	

[nM	N	
h-1]	

AE1319	 3.0	 23.2	 167.5	 36.5	 6.1	 34690	 12164	 8.9	 10.6	 39.5	 29.9	 NA	 NA	 NA	

BVAL46	 NA	 7.1	 NA	 13.6	 NA	 54894	 4307	 10.4	 5.9	 46.8	 11.4	 NA	 NA	 NA	

NH1418	 1.6	 10.8	 153.1	 74.1	 2.3	 82423	 2858	 0.6	 54.5	 0.6	 56.4	 NA	 NA	 NA	

IO9	 2.0	 14.7	 135.3	 40.5	 BD	 145089	 3236	 NA	 NA	 NA	 NA	 4.9	 4.2	 1.3	

Pro	=	Prochlorococcus,	Syn	=	Synechococcus,	Pmax	=	maximum	uptake	rate,	Ks	=	half	saturation	PO4	concentration.	BD	=	below	
detection	and	NA	=	not	measured.
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Table	S3.2.	Particulate	organic	matter	observations	for	transects	I09,	NH1418,	AE1319.	
Metagenome	
SampleID	

Latitude	 Longitude	 Depth	 Datetime	 POC	 PON	 POP	 CN	 CP	 NP	

unitless	 [°	N]	 [°W]	 [m]	 unitless	 [μmol/L]	 [μmol/L]	 [nmol/L]	 unitless	 unitless	 unitless	
AE1319_8	 55.00	 -49.00	 5.00	 26-Aug-2013		 7.5	 1.04	 89.96	 7.21	 83.37	 11.56	
AE1319_44	 53.00	 -46.00	 25.00	 27-Aug-2013		 11.52	 1.52	 121.62	 7.58	 94.72	 12.50	
AE1319_84	 51.00	 -43.00	 20.00	 28-Aug-2013		 5.29	 0.6	 57.67	 8.82	 91.73	 10.40	
AE1319_105	 49.00	 -40.00	 5.00	 29-Aug-2013		 5.66	 0.63	 48.06	 8.98	 117.77	 13.11	
AE1319_143	 47.00	 -42.00	 45.00	 30-Aug-2013		 12.99	 1.75	 116.54	 7.42	 111.46	 15.02	
AE1319_197	 45.00	 -45.00	 40.00	 31-Aug-2013		 14.51	 1.91	 120.7	 7.60	 120.22	 15.82	
AE1319_192	 45.00	 -45.00	 5.00	 31-Aug-2013		 4.84	 0.44	 36.34	 11.00	 133.19	 12.11	
AE1319_227	 43.00	 -47.50	 20.00	 01-Sep-2013		 7.16	 0.98	 68.43	 7.31	 104.63	 14.32	
AE1319_269	 39.00	 -52.50	 5.00	 03-Sep-2013		 1.61	 0.11	 9.48	 14.64	 169.83	 11.60	
AE1319_325	 35.00	 -57.50	 5.00	 05-Sep-2013		 1.58	 0.17	 11.67	 9.29	 135.39	 14.57	
AE1319_424	 31.67	 -64.17	 5.00	 08-Sep-2013		 1.42	 0.18	 9.8	 7.89	 144.90	 18.37	
BV46_195	 31.67	 -64.17	 5.00	 05-Oct-2011		 nan	 nan	 9.58	 nan	 nan	 nan	
BV46_199	 31.67	 -64.17	 30.00	 05-Oct-2011		 nan	 nan	 11.91	 nan	 nan	 nan	
BV46_205	 31.67	 -64.17	 100.00	 05-Oct-2011		 nan	 nan	 5.49	 nan	 nan	 nan	
BV46_382	 23.67	 -65.07	 5.00	 11-Oct-2011		 nan	 nan	 5.47	 nan	 nan	 nan	
BV46_386	 23.67	 -65.07	 40.00	 11-Oct-2011		 nan	 nan	 6.72	 nan	 nan	 nan	
BV46_394	 23.67	 -65.07	 120.00	 11-Oct-2011		 nan	 nan	 6.24	 nan	 nan	 nan	
NH1418_17	 18.00	 -157.00	 5.00	 20-Sep-2014		 1.48	 0.16	 6	 9.25	 246.67	 26.67	
NH1418_104	 12.00	 -155.22	 80.00	 22-Sep-2014		 1.5	 0.21	 13.26	 7.14	 113.12	 15.84	
NH1418_100	 12.00	 -155.22	 20.00	 22-Sep-2014		 1.5	 0.25	 8.53	 6.00	 175.85	 29.31	
NH1418_130	 10.00	 -154.52	 5.00	 23-Sep-2014		 1.71	 0.25	 9.92	 6.84	 172.38	 25.20	
NH1418_134	 10.00	 -154.52	 50.00	 23-Sep-2014		 2.55	 0.35	 20.64	 7.29	 123.55	 16.96	
NH1418_232	 3.00	 -151.74	 80.00	 26-Sep-2014		 1.99	 0.32	 17.65	 6.22	 112.75	 18.13	
NH1418_258	 0.00	 -150.70	 50.00	 27-Sep-2014		 3.01	 0.53	 29.41	 5.68	 102.35	 18.02	
NH1418_262	 0.00	 -150.70	 5.00	 27-Sep-2014		 3.96	 0.69	 28.35	 5.74	 139.68	 24.34	
NH1418_322	 -3.00	 -149.67	 5.00	 28-Sep-2014		 2.63	 0.42	 20.06	 6.26	 131.11	 20.94	
NH1418_328	 -3.00	 -149.67	 80.00	 28-Sep-2014		 2.34	 0.39	 20.75	 6.00	 112.77	 18.80	
IN231	 17.00	 89.80	 5.00	 24-Apr-2016		 1.66	 0.27	 13.82	 6.19	 119.86	 19.45	
IN221	 14.50	 89.60	 5.00	 22-Apr-2016		 1.65	 0.25	 14.64	 6.70	 112.58	 16.82	
IN213	 12.70	 88.50	 5.00	 21-Apr-2016		 1.71	 0.26	 13.25	 6.57	 128.96	 19.65	
IN205	 10.80	 87.30	 5.00	 20-Apr-2016		 1.90	 0.29	 17.57	 6.62	 107.99	 16.31	
IN176	 9.50	 87.10	 5.00	 16-Apr-2016		 1.94	 0.30	 16.21	 6.42	 119.89	 18.72	
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IN168	 8.00	 88.20	 5.00	 16-Apr-2016		 2.08	 0.33	 18.35	 6.29	 113.25	 18.14	
I09_REG168	 7.98	 94.87	 25.00	 21-Mar-2016		 2.06	 0.31	 15.33	 6.73	 134.44	 19.91	
IN161	 6.50	 89.30	 5.00	 15-Apr-2016		 2.07	 0.32	 17.61	 6.45	 117.44	 18.21	
IN151	 4.70	 90.80	 5.00	 13-Apr-2016		 1.93	 0.30	 15.31	 6.37	 125.80	 19.90	
IN143	 3.00	 91.80	 5.00	 12-Apr-2016		 2.09	 0.33	 16.74	 6.34	 124.86	 19.70	
IN135	 1.50	 92.30	 5.00	 11-Apr-2016		 1.81	 0.31	 14.86	 5.86	 122.09	 20.87	
IN129	 0.50	 93.00	 5.00	 11-Apr-2016		 1.91	 0.30	 17.61	 6.31	 108.49	 17.19	
IN111	 -2.20	 94.10	 5.00	 08-Apr-2016		 1.75	 0.24	 15.29	 7.29	 114.77	 15.77	
IN105	 -3.10	 94.40	 5.00	 08-Apr-2016		 1.92	 0.29	 14.24	 6.68	 134.91	 20.28	
IN099	 -4.50	 94.90	 5.00	 07-Apr-2016		 2.02	 0.28	 15.44	 7.24	 130.93	 18.07	
I09_REG99	 -4.53	 94.87	 20.00	 07-Apr-2016		 1.88	 0.27	 12.75	 7.00	 147.80	 21.26	
IN092	 -6.60	 95.00	 5.00	 05-Apr-2016		 1.70	 0.27	 13.31	 6.32	 127.69	 20.22	
IN086	 -8.20	 95.00	 5.00	 05-Apr-2016		 1.59	 0.24	 13.24	 6.60	 119.89	 18.16	
IN078	 -10.30	 95.00	 5.00	 03-Apr-2016		 1.85	 0.30	 14.71	 6.32	 125.99	 20.13	
IN074	 -11.40	 95.00	 5.00	 03-Apr-2016		 1.78	 0.31	 15.29	 5.84	 116.29	 19.95	
IN066	 -13.60	 95.00	 5.00	 01-Apr-2016		 1.54	 0.26	 12.85	 6.04	 119.96	 19.91	
IN052	 -17.60	 95.00	 5.00	 30-Mar-2016		 1.63	 0.22	 11.76	 7.33	 138.35	 18.92	
I09_REG40	 -20.76	 95.00	 20.00	 29-Mar-2016		 1.59	 0.23	 9.22	 6.81	 172.49	 25.43	
IN040	 -20.80	 95.00	 5.00	 29-Mar-2016		 1.74	 0.22	 12.48	 8.09	 139.77	 17.33	
IN027	 -24.70	 95.00	 5.00	 26-Mar-2016		 1.68	 0.24	 10.32	 7.11	 162.53	 22.85	
IN021	 -26.50	 95.00	 5.00	 25-Mar-2016		 1.68	 0.23	 11.17	 7.64	 150.59	 20.21	
IN017	 -28.30	 95.00	 5.00	 25-Mar-2016		 1.74	 0.20	 11.74	 8.59	 148.37	 17.32	
	
	 	



111	
	

Table	S3.3.	Inputs	to	ATOM	models	for	transects	I09,	NH1418,	AE1319.	
Metagenome	
SampleID	

Temperature	 PAR	 PO4	 Phosphorus	
PCA1	
Prochlorococcus	

Nitrogen	PCA1	
Prochlorococcus	

Phosphorus	
PCA1	
Synechococcus	

Nitrogen	
PCA1	
Synechococcus	

unitless	 [°C]	 [μmol	
m-2	s-1]	

[μmol/L]	 [unitless]	 [unitless]	 [unitless]	 [unitless]	

AE1319_8	 10.4	 262.8	 nan	 -0.85	 -1.66	 -0.86	 -0.01	
AE1319_44	 11.7	 256.7	 0.17	 -0.67	 -1.43	 -0.88	 0.16	
AE1319_84	 13.2	 244.3	 0.07	 -0.67	 -1.40	 -0.57	 -0.30	
AE1319_105	 15.7	 231.7	 nan	 0.34	 -0.98	 -0.51	 -0.34	
AE1319_143	 6.8	 319.6	 0.15	 -0.63	 -1.21	 -0.64	 -0.29	
AE1319_197	 8.4	 322.6	 0.11	 -0.74	 -1.35	 -0.78	 0.39	
AE1319_192	 18.7	 227.0	 nan	 1.18	 -1.21	 -0.33	 -0.69	
AE1319_227	 11.2	 289.4	 0.16	 -0.71	 -1.41	 -0.51	 0.07	
AE1319_269	 26.3	 182.7	 0.001	 2.13	 0.08	 1.03	 -0.60	
AE1319_325	 26.6	 185.2	 0.001	 1.96	 0.28	 0.82	 -0.41	
AE1319_424	 27.9	 181.2	 0.001	 1.94	 0.02	 0.94	 -0.84	
BV46_195	 nan	 318.9	 0.01	 2.23	 -0.18	 1.24	 -0.96	
BV46_199	 nan	 161.7	 0.01	 2.29	 -0.05	 0.87	 -0.79	
BV46_205	 nan	 24.1	 0.08	 -0.34	 -1.08	 0.02	 0.87	
BV46_382	 nan	 414.4	 0.00	 2.11	 -0.51	 1.05	 -0.81	
BV46_386	 nan	 184.5	 nan	 2.45	 -0.14	 0.83	 -0.93	
BV46_394	 nan	 29.0	 0.01	 0.74	 -0.46	 0.39	 -0.10	
NH1418_17	 27.7	 42.5	 0.18	 -0.79	 1.31	 -0.26	 0.82	
NH1418_104	 19.6	 73.2	 0.27	 -0.91	 -1.42	 -0.79	 0.71	
NH1418_100	 28.4	 0.1	 0.19	 -1.01	 0.48	 -0.35	 0.71	
NH1418_130	 28.6	 624.2	 0.18	 -0.99	 0.36	 -0.60	 1.18	
NH1418_134	 20.3	 6.8	 0.35	 -1.01	 -0.98	 -0.47	 0.27	
NH1418_232	 27.3	 34.4	 0.45	 -0.88	 -1.41	 -0.49	 0.13	
NH1418_258	 27.0	 51.4	 0.45	 -0.90	 -1.43	 -0.44	 0.22	
NH1418_262	 27.1	 731.3	 0.43	 -0.88	 -1.40	 -0.47	 0.41	
NH1418_322	 27.1	 714.8	 0.51	 -0.85	 -1.55	 -0.62	 0.13	
NH1418_328	 26.6	 12.8	 0.41	 -0.93	 -1.62	 -0.45	 0.07	
IN231	 29.4	 583.6	 0	 0.44	 0.62	 0.06	 0.17	
IN221	 30.2	 563.3	 0	 1.54	 0.38	 0.59	 -0.18	
IN213	 30.8	 576.5	 0	 1.36	 0.49	 0.37	 -0.24	
IN205	 31.1	 572.7	 0	 1.24	 0.36	 0.51	 -0.33	
IN176	 30.8	 567.9	 0	 1.65	 0.87	 0.50	 -0.47	
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IN168	 31.1	 563.3	 0	 -0.23	 0.62	 0.40	 -0.62	
I09_REG168	 31.1	 215.1	 0	 0.48	 0.45	 0.36	 -0.43	
IN161	 30.8	 520.0	 0.05	 -0.41	 0.61	 0.21	 -0.39	
IN151	 30.6	 497.1	 0.02	 -0.66	 0.64	 0.30	 -0.35	
IN143	 30.5	 421.2	 0.02	 0.09	 0.60	 0.43	 -0.51	
IN135	 30.7	 417.8	 0.01	 0.78	 -0.13	 0.36	 -0.40	
IN129	 30.6	 465.6	 0.01	 1.12	 -0.09	 0.60	 -0.59	
IN111	 30.7	 482.4	 0.03	 0.03	 0.47	 0.32	 -0.37	
IN105	 30.7	 442.0	 0	 -0.47	 0.38	 0.47	 -0.28	
IN099	 30.5	 484.2	 0	 -0.66	 0.98	 0.06	 -0.24	
I09_REG99	 30.5	 327.2	 0	 -0.71	 1.14	 0.14	 -0.14	
IN092	 30.5	 434.6	 0.03	 -0.68	 1.15	 -0.16	 0.05	
IN086	 30.8	 433.5	 0.04	 -0.70	 1.11	 0.10	 -0.17	
IN078	 30.3	 406.2	 0.06	 -0.75	 1.24	 -0.16	 0.64	
IN074	 29.8	 425.3	 0.05	 -0.71	 1.23	 -0.14	 0.76	
IN066	 28.9	 386.9	 0.05	 -0.79	 1.19	 -0.20	 0.24	
IN052	 27.2	 523.8	 0.05	 -0.94	 1.13	 -0.50	 0.50	
I09_REG40	 26.3	 350.5	 0.08	 -0.81	 0.10	 -0.44	 0.76	
IN040	 26.3	 483.1	 0.08	 -0.96	 1.08	 -0.40	 0.95	
IN027	 24.2	 507.0	 0.07	 -0.95	 1.52	 -0.42	 0.98	
IN021	 24.3	 458.3	 0.09	 -0.91	 1.14	 -0.54	 0.86	
IN017	 22.4	 487.8	 0.07	 -0.98	 1.04	 0.00	 0.75	
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Table	S3.4.	Correlations	between	in	situ	observations,	gene	frequencies,	and	ATOM-Gene	
properties.	

R	Correlation	
Coefficient	

Nitrogen	
gene	
frequency	
Prochloro.	

Phosphorus		
Gene	
frequency	
Prochloro.	

Nitrogen		
gene	
frequency		
Synechoco.	

Phosphorus	
gene	
frequency		
Synechoco.	

NO3	
rho	

Urea	
rho	

NH4	
rho	 CPObs	

CPModelGM	 -0.55*	 0.74*	 -0.77*	 0.79*	 0.55*	 0.67*	 0.67*	 -0.62*	
CPModelHM	 -0.53*	 0.74*	 -0.77*	 0.75*	 0.51*	 0.64*	 0.65*	 -0.63*	
CPModelPReg	 0.53*	 -0.72*	 0.79*	 -0.79*	 -0.56*	 -0.68*	 0.69*	 0.64*	
CPModelPro	 0.78*	 -0.48*	 0.55*	 -0.64*	 -0.51*	 -0.55*	 0.44*	 0.26	
CPModelSyn	 0.44*	 -0.47*	 0.73	 -0.61	 -0.64	 -0.66	 -0.70	 0.67*	
CPModelTReg	 -0.37	 0.54*	 -0.87*	 0.63*	 0.67*	 0.63*	 0.81*	 -0.80*	
CPModelYvon	 -0.38	 0.54*	 -0.87*	 0.64*	 0.67*	 0.63*	 0.81*	 -0.80*	
EVecPro	 -0.80*	 0.51*	 -0.59*	 0.67*	 0.54*	 0.57*	 0.47*	 -0.29	
EVecSyn	 -0.44*	 0.48*	 -0.75*	 0.62*	 0.66*	 0.67*	 0.71*	 -0.67*	
LVecPro	 -0.83*	 0.49*	 -0.73*	 0.73*	 0.69*	 0.60*	 0.68*	 -0.47*	
LVecSyn	 -0.44*	 0.42*	 -0.77*	 0.61*	 0.70*	 0.62*	 0.77*	 -0.71*	
LimStatePro	 -0.52*	 0.86*	 -0.37	 0.49*	 0.19	 0.35	 0.32	 -0.46	
LimStateSyn	 -0.67*	 0.68*	 -0.77*	 0.87*	 0.75*	 0.67*	 0.75*	 -0.58	
NAffPro	 -0.82*	 0.43*	 -0.69*	 0.72*	 0.69*	 0.52*	 0.65*	 -0.34*	
NAffSyn	 -0.34	 0.25	 -0.65*	 0.46*	 0.67*	 0.55*	 0.69*	 -0.50*	
NUptakePro	 -0.68*	 0.18	 -0.44*	 0.49*	 0.46*	 0.23	 0.42*	 -0.05	
NUptakeSyn	 -0.05	 -0.09	 -0.28	 0.05	 0.37	 0.25	 0.38	 -0.21	
PAffPro	 -0.84*	 0.45*	 -0.69*	 0.73*	 0.69*	 0.52*	 0.65*	 -0.35	
PAffSyn	 -0.36	 0.27	 -0.66*	 0.48*	 0.68*	 0.56*	 0.70*	 -0.51*	
PInvPro	 0.82*	 -0.45*	 0.66*	 -0.69*	 -0.63*	 -0.57*	 0.58*	 0.35	
PInvSyn	 0.82*	 -0.45*	 0.66*	 -0.69*	 -0.63*	 -0.57*	 	0.58*	 0.35	
PQuotaPro	 -0.71*	 0.22	 -0.48*	 0.54*	 0.51*	 0.26	 0.48*	 -0.11	
PQuotaSyn	 -0.07	 -0.08	 -0.30	 0.08	 0.40	 0.27	 0.40	 -0.21	
PUptakePro	 -0.68*	 0.18	 -0.44*	 0.49*	 0.45*	 0.23	 0.42	 -0.05	
PUptakeSyn	 -0.05	 -0.09	 -0.28	 0.05	 0.37	 0.25	 0.38	 -0.21	
ProVolume	 -0.74*	 0.27	 -0.47*	 0.54*	 0.54*	 0.26	 0.51	 -0.15	
SynVolume	 -0.13	 -0.05	 -0.36	 0.14	 0.47	 0.32	 0.46	 -0.25	
rVecPro	 -0.81*	 0.38	 -0.61*	 0.66*	 0.62*	 0.46*	 0.57*	 -0.25	
rVecSyn	 -0.33	 0.23	 -0.62*	 0.43*	 0.65*	 0.54*	 0.66*	 -0.48*	
Significant	correlations	(p-value	<	0.05)	are	indicated	by	a	star	(*),	with	negative	
relationships	in	blue	and	positive	in	red.	
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Table S3.5. Genomes	and	clades	for	Prochlorococcus	and	Synechococcus 

Taxa	 Genome	 Clade	
Synechococcus	 GEYO	 Syn.CRD1	
Synechococcus	 MITS9508	 Syn.CRD1	
Synechococcus	 MITS9509	 Syn.CRD1	
Synechococcus	 UW179A	 Syn.CRD1	
Synechococcus	 CC9311	 Syn.I	
Synechococcus	 UW179B	 Syn.I	
Synechococcus	 WH8016	 Syn.I	
Synechococcus	 WH8020	 Syn.I	
Synechococcus	 CC9605	 Syn.II	
Synechococcus	 N19	 Syn.II	
Synechococcus	 N32	 Syn.II	
Synechococcus	 REDSEA_S02_B4	 Syn.II	
Synechococcus	 UW86	 Syn.II	
Synechococcus	 WH8109	 Syn.II	
Synechococcus	 WH8102	 Syn.III	
Synechococcus	 BL107	 Syn.IV	
Synechococcus	 CC9902	 Syn.IV	
Synechococcus	 RS9916	 Syn.IX	
Synechococcus	 NKBG042902	 Syn.Other	
Synechococcus	 PCC7335	 Syn.Other	
Synechococcus	 CC9616	 Syn.UC-A	
Synechococcus	 KORDI_100	 Syn.UC-A	
Synechococcus	 WH7805	 Syn.VI	
Synechococcus	 RS9917	 Syn.VIII	
Synechococcus	 KORDI_49	 Syn.WPC1	
Synechococcus	 KORDI_52	 Syn.WPC2	
Synechococcus	 CB0101	 Syn.X	
Synechococcus	 CB0205	 Syn.X	
Synechococcus	 GFB01	 Syn.X	
Synechococcus	 RCC307	 Syn.X	
Synechococcus	 WH5701	 Syn.X	
Synechococcus	 UW106	 Syn.XV	
Synechococcus	 UW69	 Syn.XV	
Synechococcus	 UW105	 Syn.XVI	
Synechococcus	 UW140	 Syn.XVI	
Prochlorococcus	 EQPAC1	 HLI	
Prochlorococcus	 MED4	 HLI	
Prochlorococcus	 MIT9515	 HLI	
Prochlorococcus	 AS9601	 HLII	
Prochlorococcus	 GP2	 HLII	
Prochlorococcus	 MIT0604	 HLII	
Prochlorococcus	 MIT9123	 HLII	
Prochlorococcus	 MIT9201	 HLII	
Prochlorococcus	 MIT9215	 HLII	
Prochlorococcus	 MIT9301	 HLII	
Prochlorococcus	 MIT9302	 HLII	
Prochlorococcus	 MIT9312	 HLII	
Prochlorococcus	 MIT9314	 HLII	
Prochlorococcus	 MIT9322	 HLII	
Prochlorococcus	 MIT9401	 HLII	
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Prochlorococcus	 SB	 HLII	
Prochlorococcus	 SCGCAAA795_I06	 HLII	
Prochlorococcus	 SCGCAAA795_I15	 HLII	
Prochlorococcus	 SCGCAAA795_M23	 HLII	
Prochlorococcus	 UH18301	 HLII	
Prochlorococcus	 HNLC1	 HLIII-IV	
Prochlorococcus	 HNLC2	 HLIII-IV	
Prochlorococcus	 RS50	 HLII	
Prochlorococcus	 XMU1401	 HLII	
Prochlorococcus	 XMU1403	 LLI	
Prochlorococcus	 XMU1408	 LLI	
Prochlorococcus	 MIT0801	 LLI	
Prochlorococcus	 NATL1A	 LLI	
Prochlorococcus	 NATL2A	 LLI	
Prochlorococcus	 PAC1	 LLI	
Prochlorococcus	 MIT0601	 LLII-III	
Prochlorococcus	 MIT0602	 LLII-III	
Prochlorococcus	 MIT9211	 LLII-III	
Prochlorococcus	 SS120	 LLII-III	
Prochlorococcus	 MIT0701	 LLIV	
Prochlorococcus	 MIT1312	 LLIV	
Prochlorococcus	 MIT1313	 LLIV	
Prochlorococcus	 MIT1318	 LLIV	
Prochlorococcus	 MIT1327	 LLIV	
Prochlorococcus	 MIT1342	 LLIV	
Prochlorococcus	 MIT9303	 LLIV	
Prochlorococcus	 MIT9313	 LLIV	
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SUMMARY	AND	FUTURE	DIRECTIONS	

Surface	phytoplankton	exist	at	the	nexus	between	carbon	uptake	and	export.	Microbial	

communities	have	evolved	to	exploit	available	niches	by	optimizing	their	cellular	resources	

(Beck	et	al.,	2017;	Hall,	2009;	Harcombe	et	al.,	2014).	The	range	in	environmental	

conditions	had	led	to	a	latitudinal	gradient	in	particulate	C:N:P	ratios	(Martiny	et	al.,	2013).	

The	flexible	stoichiometric	ratios	observed	in	small	phytoplankton	(Martiny	et	al.,	2013)	

may	provide	a	buffer	against	reduced	carbon	export	across	oligotrophic	biomes	(Tanioka	&	

Matsumoto,	2017).	In	my	dissertation	I	aimed	to	evaluate	the	regional	importance	of	

specific	environmental	gradients	(e.g.	temperature	and	nutrients).	It	is	difficult	to	isolate	

the	primary	biological	stressor	in	complex	ecosystems.	Whole-lake	experiments	completed	

by	Elser	and	colleagues	(Elser	et	al.,	1998,	2000)	remain	among	the	best	modern	examples	

to	isolate	trophic	and	environmental	drivers	regulating	planktonic	C:N:P.		Oceans,	however,	

cover	70%	of	the	Earth’s	surface	and	represent	a	vast	ecosystem	circulating	over	millennia	

timescales.	Perturbation	experiments	cannot	be	conducted,	either	purposely	(Martin	et	al.,	

1994)	or	accidentally	(Mason	et	al.,	2012),	without	unknown	ecosystem	consequences.	

Natural	gradients	present	themselves	as	an	alternative	to	test	lab-based	hypotheses.		

By	using	the	unique	environmental	gradients	in	the	Indian	Ocean,	this	thesis	provides	

evidence	that	nutrients	are	the	primary	stressor	driving	low	latitude	C:N:P	variation	

(Garcia	et	al.,	2018).	Oceanic	subtropical	biomes	are	predicted	in	expand	under	a	warming	

climate	(Polovina	et	al.,	2008).	The	impacts	on	particulate	matter	formation	and	export	will	

partly	be	shaped	by	the	phytoplankton	response	(Tanioka	&	Matsumoto,	2017).	The	

intermonsoon	season	in	the	Indian	Ocean	contains	a	stable	surface	phytoplankton	

community	dominated	by	Prochlorococcus	cyanobacteria	(Baer	et	al.,	2018;	Larkin	et	al.,	
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2019).	Thus,	we	assume	that	C:N:P	variation	is	a	community	response	to	an	environmental	

gradient	of	temperature	or	nutrients.	We	found	no	support	for	increased	ribosomal	

efficiency	(Toseland	et	al.,	2013)	in	the	warmest	ocean	on	the	planet.	However,	it	would	be	

unwise	to	continue	examining	the	impact	of	temperature	on	one	cellular	process	alone.	

Phytoplankton	metabolic	rates	are	predicted	to	increase	with	temperature	under	high	

nutrient	supply,	but	the	metabolic	cost	under	nutrient	stress	is	unknown	(Marañón	et	al.,	

2018).	Looking	forward,	temperature	should	be	evaluated	in	combination	with	nutrient	

stress	via	its	effects	on	nutrient	recycling	(Ayo	et	al.,	2017)	and	stratification	(Goldman	et	

al.,	1996).		

Quantifying	nutrient	availability	remains	a	large	challenge	in	ocean	biogeochemistry.	

Traditionally,	phosphate	is	considered	the	ultimate	nutrient	control	on	phytoplankton	

productivity	(Tyrrell,	1999).	As	such,	current	stoichiometric	models	use	phosphate	as	the	

limiting	nutrient	on	C:P	(Galbraith	&	Martiny,	2015;	Moreno	et	al.,	2018).	For	this	reason,	

we	created	a	satellite	proxy	for	surface	phosphate.	However,	our	results	suggest	multiple	

nutrients	interact	to	limit	phytoplankton	growth.	First,	our	neural	network	analysis	

suggested	a	strong	component	of	iron	supply	in	leading	to	low	phosphate	concentrations.	

Iron	is	widely	proposed	to	limit	nitrogen	fixation	(Moore	et	al.,	2009;	Moore	&	Doney,	

2007).	Second,	while	phosphate	successfully	predicts	C:P	in	traditionally	P-limited	regions	

(Atlantic	Ocean	&	Mediterranean	Sea),	it	was	a	poor	predictor	of	C:P	in	the	South	Indian	

subtropical	gyre	(Garcia	et	al.,	2020).	The	accumulation	of	phosphate	in	the	nutrient	pool,	

and	not	in	the	particulate	pool	may	be	driven	by	N	limitation	(Moutin	et	al.,	2008).	

Cyanobacteria	depend	on	an	N	currency	source	in	order	to	invest	in	uptake	transporters	

needed	to	assimilate	available	phosphate	(Bonachela	et	al.,	2013).	Nitrate	was	below	
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detection	limits	across	the	surface	Indian	Ocean.	This	is	a	large	hurdle	to	evaluating	in	situ	

co-limitation	patterns.	While	low	level	nutrient	assays	exist	(Dore	et	al.,	1996;	Karl	&	Tien,	

1992;	Li	et	al.,	2008),	more	direct	measurements	with	these	novel	assays	will	be	needed	in	

nutrient-poor	regions.		

It	is	currently	impossible	to	predict	microbial	nutrient	use	and	associated	

biogeochemical	roles	even	with	a	perfect	chemical	characterization	of	an	environment.	

Phytoplankton	use	a	variety	of	alternative	nutrient	forms,	both	organic	and	inorganic	forms	

in	a	variety	of	oxidative	states	(Bronk	et	al.,	2007;	Dyhrman	et	al.,	2006;	Huang	&	Hong,	

1999;	Moore	et	al.,	2002;	Sosa	et	al.,	2019).	To	overcome	this	challenge,	we	used	genomic	

shifts	among	microbial	communities	as	a	‘biosensor’	for	in	situ	nutritional	environments	in	

order	to	improve	predictions	of	C:P	variability	across	ocean	regions	(Garcia	2020).	

Recently,	multiple	studies	have	leveraged	the	functional	diversity	of	microbes	to	predict	

biogeochemical	patterns	(Coles	et	al.,	2017;	Hennon	&	Dyhrman,	2019).		The	genomes	of	

abundant	microbial	taxa	are	streamlined	in	nutrient-poor	biomes	(Giovannoni	et	al.,	2005;	

Swan	et	al.,	2013;	Tripp	et	al.,	2010).	Stable,	microdiverse	Cyanobacterial	clades	are	

associated	with	environmental	light,	temperature,	and	nutrient	gradients	(Kent	et	al.,	2019;	

Larkin	&	Martiny,	2017).	Quantifying	the	genomic	variability	in	genes	associated	with	these	

environmental	factors	strongly	suggests	adaptation	to	a	particular	stress	(Malmstrom	et	al.,	

2013;	Martiny	et	al.,	2006).	We	developed	a	nutrient	index	for	N,	P,	and	Fe	that	could	easily	

be	incorporated	into	a	phytoplankton	trait	model	(Garcia	et	al.,	2020).	While	our	method	

was	successful	for	small	cyanobacteria,	larger	phytoplankton	are	able	retain	a	lager	suite	of	

genes.	Generalist	plankton	may	not	show	metagenomic	variation	of	gene	gain	and	loss,	and	

proteomics	or	transcriptomics	may	be	more	appropriate.		Future	studies	should	evaluate	
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conditions	where	‘omics	approaches	can	be	incorporated	into	simple	environmental	

indices.		

Approximating	correct	particle	stoichiometry	has	implications	for	biological	processes	

including	the	regulation	of	primary	productivity	and	the	biological	pump	(Emerson	et	al.,	

2001;	Schneider	et	al.,	2004;	Teng	et	al.,	2014).	The	flexible	stoichiometric	ratios	observed	

in	small	phytoplankton	(Martiny	et	al.,	2013)	may	provide	a	buffer	against	reduced	carbon	

export	across	oligotrophic	biomes	(Tanioka	&	Matsumoto,	2017).	To	what	extent	the	

diversity	of	larger	phytoplankton	impacts	the	variability	of	organic	matter	remineralization	

in	the	deep	thermocline	remains	an	important	question	for	modeling	nutrient	recycling	and	

export	in	the	Southern	Ocean	(Moore	et	al.,	2018;	Lomas	et	al.,	2019;	Weber	&	Deutsch,	

2010)(Moore	et	al.,	2018;	Lomas	et	al.,	2019;	Weber	&	Deutsch,	2010).		There	is	a	strong	

push	to	incorporate	a	more	diverse	plankton	community	structure	(Fu	et	al.,	2016;	Tréguer	

et	al.,	2018),	and	acclimation	to	multiple	nutrients	into	global	biogeochemical	models	

(Buchanan	et	al.,	2018;	Flynn,	2010;	Glibert	et	al.,	2013).	We	evaluate	important	regional	

predictors	with	the	hope	of	improving	dynamic	resource	allocation	models	(Moreno	et	al.,	

2018;	Smith	et	al.,	2016).	However,	introducing	additional	complexity	remains	a	real	

challenge.	By	assuming	balanced	growth	at	equilibrium,	the	trait	models	above	can	bridge	

this	gap	using	an	“instantaneous”	biological	response	instead	of	a	fully	dynamic	model	

(Ward,	2017).	Looking	forward,	particulate	C:N:P	ratios	can	help	evaluate	how	and	where	

changing	temperatures,	nutrient	availability,	and	community	structure	will	impact	

biogeochemical	cycling.	
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