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ABSTRACT 

The quasiparticle method is used to find binding energies, 

scattering lengths, and cross sectioJ;ls for one particle in a 
, , 

strong Yult;:awa, Ilulthen, or exponential potentiaL The results 

are excellent in'the lowest approximation • 
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I. INTRODUCTION 

The quasiparticle method1,2,3 allows any non-relativistic 

scattering problem to be solved, in principle, by perturbation 'theory. 

The purpose of this article is to detel~ne by actual calculation whether 

this method gives rapid convergence in practice. 

Our,test problem is that of finding cross-sections, scattering 

lengths, and binding energies for one particle in a strong short-range 

potential. 4 The quasiparticle method is first reviewed in Sec. II, and 

then applied to the Yukawa potential in Secs. III-VI, and to theHulth~n , 

and exponential potentials in Sec. VII. In most of the cases considered 

the ordinary Born approximation either does badly or fails entirely. The 

"quasi-Born" approximation gives excellent agreement with exact results 

(to a few percent, and often much better), for reasons discussed in 

Sec. VIII. A particularly encouraging calculation is performed in 

Sec. V, wherevTe knowingly introduce the quasiparticle in a very crude 

way, but nevertheless find that our error drops from 19% to 5% in going 

from the first to the second order in the modified potential. 

The auti10rs are not skilled in the use of electronic computers, 

so all integrals were done in closed form in terms of tabulated functions. 

This has the advantage of providing analytic approximation formulae, but 

it prevents our being able to say 'VThether the quasiparticle method is 

more or less con-lenient than well-established variational or direct-

integration techniques. However, our'chief purpose here is not to 

establish anothe:r approximation scheme for potential scattering, but 

rather to encourage use of the quasiparticle method in multiparticle 

problems (and, 'VTe hope, relativistic problems) by showing that it gives 

, , 
, ' 
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a rapidly converging sequence of approximations in the simpler case of 

potential scattering. 

., 
II. The Quasi-Born Approximations 

We shall first review the quasiparticle method,5 and use it to • 

derive approximate formluae for scatt~~1ng amplitudes and binding energies. 

The Hamiltonian is taken as 

2 
H = - \l + VCr) . - (1) 

(We use units with -Ii = 2m = 1.) The potentials VCr) used in actual 
, . 

calculation will be the Yukawa, Hulthen, and exponential potentials, but 

the general discussion in this section applies to any VCr) which is 

short-range in the sense that 

[

00 2 2 
IV(r) I r dr < 00 

'0 
, (2) 

We will attack the scattering and bound state problems by 

calculating the operator T(H), defined by. 

T(H) = V + V GO (vI) T(W) 

.' where 

(4) 
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In coordinate space Eq. (3) is an integral equation, with 

exp[ikl r-r' I] 
. '" '" 

(6) 

The scattering amplitude is 

feE, e) = - 2i(*.' I T(E + it) n~) 

wbere 

" " cose = k-k r 
'" '" 

do 2 em= If!, -

The bound-state energies are the locations of the poles of T(W) 'for Vl < 0_ 

Solution of Eg. 3 by iteration gives the Born series: 

T(H) = V Jl + K(H) + ~(Vl) 
l. 

1 
+- •• J (8) 
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where K(W) is the scattering kernel 

But this series is useless in the presence of composite particles, 

because it starts to diverge when any eigenvalue of K(H) leaves the unit 

circle. In particular, . the truncation of the series (8) at any finite 

Qrder can never yield bound states, because none of its terms have poles· 

in vi. Any such approximation is also grossly inaccurate for 10\-1 energies 

and low angular momentum, if V is strong enough to have bound states, 

virtual states, or resonances, because the scattering is then controlled 

by the pole or the near-pole. 

The quasiparticle method rests on the replacement of 'V by a 

reduced potential 

(10) 

It is easy to ShO\-1 that 

where Tl (\-1) is what T(H) would be if the" potential were V 1: . 

Tl (W) = VL~_~~,"~o(~·l) T1 (H) 
' ........ , .. ""--

(12) 

'. 

() 
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and ~(W) is the "Jropag&tor" 

. 6(W) = [1 - J(W))-l (13) 

The reduced T-ope:cator is 'lihen calculated from (12) by iteration: 

(15 ) 

where Kl(W) is the "reduced kernel" 

(16) 

If K(H) has at most one ei3c::nvalue outside the unit circle then Ir) and 

(rl can always be chosen so that tl-.e eigenvalues of Kl (H) are all drawn 

into the unit circle, and tL,erefore so that the series (15) converges. 

The condition (2) ensures that K(v!) can have at most a finite number of 

eigenvalues outside the unit Circle, so (15) can always be made to 

converge 'by a. finite number of subtro.ctions of the form (10). [EQ.uation 

(11) can be interpre"tied as res'cu.ting from the introduction of a fictitious 

elementary particle) 6 bl.ltthis aspe:ct need not concern us here. ] 

If (15:) converges then a bound,-state pole can arise only in the 

propagator .6(W), and therefore the binding energy B is' to be calculated as 

the root of 
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The first IIquas i-Born" approximation to J(W) is given by neglecting Tl 

in (14): 

In the second approximation we approximate Tl ~ Vl , so (llt) gives 

where 

The first quasi-Born approximation, to the T-operator (11) is: 

(17) 

(18) 

(19) 

(20) 

It only remains to describe ho"r we choose the state -vectors I r) 
and (r I. He have considerable freedcm here, because the only requirement ' 

that must be met is that K1(H) have no eigenvalues outside the unit circle. 

" 
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But there is one dhoice that may be called ideal. Let 'll (VI) bie the 

largest eigenvalu.eof K(VI), and assume that all the other eigenvalues lie 

vlithin the unit circle. r.rhen choose lr) and (rl as the energy-dependent 

normalizable eigenvectors: 

K(W) lr) = 'll(W) Ir) (21) 

" ' ........ 

(22) 

normalized so that 

(rl vir) = 1 (23) 

Hith this choice, the reduced kernel K, (~{) will have precisely the same 
,£. 

eigenvalues as K(H), except that 1'1
l

(W) is replaced by the eigenvalue zero. 

If the original Born series diverged (beca\ls~ "'1
1

1 ;:; 1) thEm this cures 

the divergence. If it cunverged then this acce'lerates the rate of 

convergence. 

vie cannot usually hope to find exact solutions to (21) and (22) 1 

but this needn't 110rry us. As long as our guess at lr) and (rl isn It 

too bad, v,e can still carry our calculations to unlimited accuracy by 

using more and more terms in (15). In practice, we guess I r) and (f I . 

by requiring that they match the properties of the ideal choice defined 

by (21)-(23). These properties can be determined by notirtg that (21) 

is just Schroedinger's equation for a fictitious energy eigenvalue Hand 
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a fictitious pote~tial V /1]1 (~l). The largest eigenvalueTll will usually 

correspond to an s;"state, so 

(;clr) = C(k) r(r,k)/r ~f41i 

where 

r(r,k) 

r(r,k) 

. and 

ikr 
ex: e 

ex: r (r ~O) 

Imk > 0 

(24) 

(25) 

(26) 

(28) 

Note that -k* also has positive. imaginary part, so both (24) and (25) are 

nOl'malizable ,.ave functions. The normalization condition (23) gives the 

constants. as 

Once ",e guess a r(i' ,lc) satisfying (26) and (27) He can use 

Eqs. (7), (20), (24), (25), and (29) to calculate the scattering amplitude 

as 

• 

.~. 
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where ~(E,e) is the Born term 
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co 

= - 2k s~ne/2 10 r V(r) sin(2kr sine/2) dr 

andg(E) is an isotropic correction 

UCRL-11399 

(31) 

geE) 
-2 J(E+ie:) 

=.;..k -----
1 - J(E+ie) 

[J~ V(r) r(r;k)sirucrdr][~ V(r) r*(r,Mk) sinkr drJ 

[jC>:J T'*(r,-k) V{r) r(r,k)dr o . 

(32) 

QB. 
a = - f(O,S) = a B +b ·s s 

where as
B is the Born approximation value 

(34) 



and b is the correction 

J(o) 
b = ----

1 ~ J(O) 

-10- . 

If: VCr) r(r,O) r dr 12 

J~ VCr) Ir(r,O) 12 dr 

UCRL-11399 : 

(35 ) 

The function J(W) ,·rhich determines the bound state energy and 

which appears in (32) and (35) is given in the lowest approximation (18) as 

Only the s-wave part of Go(W) contributes, so this is 

i 
J(Vl) = -

2k 

f~ r*(r I ,-k*)V(r I)dr' J~ r(r ,k)V(r )dr [eXP(ik Ir+r' D- exp( ik Ir-r I I) ] 

Joo f*(r,-k*) r(r,k) VCr) dr 
o 

(36) 

At zero energy it becomes 

J(o) 
J~ r*(ri ,0)V(r') dr' .r~ r(r,O) VCr) dr min(r,r') 

= - ------------~------.~~------------------
Joo Ir(r,o)1 2 VCr) dr 
o 

( 37) 

In the bound-state region W is negative, so we must take k in (36) as. 

k = iK K = .r-w > ° (38) 

• 

.' 
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III. YUKAWA POTENTIAL: BOUND STATES 

The next four section~ will apply the results of Sec. II to the 

Yukawa potential 

VCr) = - )..e-r/r 

We are using units in which the range a of the potential is taken as the 

unit of length, so that the unit of energy is ~2 /2::rna2• The vertex function 

will be chosen as the simplest function satisfying (26) and (27), ~, 

r(r,k) = eikr [1 -e -r 1 
. J 

(40) 

[Several advantages of this r(r,k) are listed in Sec. X of reference 2.] 

With this choice the normalization integral (29) is 

[e(k) C(k) ]~l = J~ r(r,k) r*(r,-k*) VCr) = A log {(l - 2ik)(3 - 2ik)} • 

. (2 - 2ik)2 

J(W) = 

(41) 

The function J(W) is given by (36) as7 

¥ [} 10g2(r:~~~) + Li2(i:~il~; + Li2(2:~ik) - Li2(1:~ik) - Li2(r:k)] 
log {(1-2ik)(3-2ik)} 

(2-2ik)2 

(42) 

i 
i 

" . 
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where Li2 'is the ailogarithm 
.. ,' . 

'lz 1 Li2 ( -z):= - 0' x - log(l+x) dx 

Thus the coupling constant '" required for a state with binding energy B 

is given by (17) as 

1 ('r {(1+2K)(3+2K)} 
K 0,:. . 2 

(2+2K) 
}.(K) = -----------------------
\ 

where K = ,.JB. 8 These di10garithms have been tabulated by Lewin. The 

best "exact" numerical results in the literature to compare with (44) 

seem to be given by the interpolation formula of Blatt and Jackson9: 

The comparispn is made in Table 1. The A-values differ at most by 3~~, 

(44)' 

(45) , 

aI}d generally by much less. There is no column in Table 1 for the Born ' 
I 

a»proximation, since it can neveryield··9._.bound state. , -, 
j 
! 

...... '~ ........... 

A particularly interesting object for~OIlipgrison is )..(0), the 

c~upling required to just barely bind a state with zero energy. The 

exact result is knownlO to be 

• 

" 
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TABLE 1 

2 The coupling ), required to give a bound state with binding energy K • 

. H~re "EX" means the B1att-Jackson "exact" result (45), and "QB" 

means the qw:.si-Born appro:l'imation (44). 

).,EX ).,QB 

0 1.683 1.693 

.2 2.129 2.154 

.4 2.570 2.611 

.6 3.036 3.009 
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I, 

We find from (~.4)1.\.[or directly from (37)] that 

).QB(O) - 10 4 3 6 . - log 32 27 = 1. 93 (45) 

so the agreement here is to about .6%. [This may be contrasted with an 

N/D calcuiation
ll 

using the Born approximation to give the discontinuity 

in T across the left-hand cut. The lo~"est order solution of the coupled 

equations for Nand D gives A(O) = 1, the second order solution gives 

11 A(O) = 00, and the exac't solution gives A(O) = 2.80. A comput~r solution 

of the coupled ~rjD equations using second-Born approximation for the left-

hand cut gives ,.(0) = 1.70.] 

IV. YUKA WA POTENTIAL: SCNITERING LENGTHS 

, The Born approximation (34) gives the scattering length here as 

B 
a. = -A • s 

(46) 

The quasi-Born approximation (33) gives instead 

a QB = A r 1 + .' J(O) 1 
S - i 4 log 473 (l- J(O» J 

. ' 

We have already noted that 

J(O) = ~og 32/ 27) A = .590, 6 ), 
\. log 4/3 , " 

(48) 

• 
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! 

so (47) becomes ~ 

.0774 A} 

.5906 A' • 

Blatt and Jackson9 have given an interpolation formula for A as a 

function of a : s 

A = 1.683111.000 + 1.348 a -1 + 1.275 a -2 + 0.322 a -3 _ 3.028 a -4 _ 1.326 a ~51 : s s S . S S .. J 

(50) 

which is expected to be a good approximat~on for A near the critical 

value A(O) = 1.683, where a zero-energy resonance makes as infinite. The 

comparison between (46), (49), and (50) is made in Table 2. We see that 

. the quasi-Born approximation agrees very well with Blatt and Jackson) 

and that the Born approximation does very badly. For IAI < 1.3 the exact 

and quasi-Born results "Till of course both approach the Born approximation. 

For la I < 3 the Blatt-Jackson formula can no longer be relied upon. s 

V. YUKAWA PClrENTIAL: CROSS SECTIONS 

The Born approx~tion (31) to the scattering amplitude is 

(51) 

The quasi-Born approximation adds a correction term 

QB -B 
f (E,S) = ~(E)9) + geE) (52) 
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Table 2 

The 'coupling A. required to give a scattering length a. Here "EX" means , s 

the Bla+.t-Jacltson resu~t (50), "QB" meuns the quasi-Born approximation 

( 49) 1 and liB" means the ordinary Born approximation (46). 

====---'====.==,====~=================== 
a s 

3.0 

5.0 

10.0 

co 

-10.0 

- 5.0 

2.793 

2.220 

1.932 

1.683 

1.478 

1.300 

2.988' .. 3.0 

2.342 .. 5.0 

1.977 .. 10.0 

1.693 co 

1.h73 10.0 

1.298 5.0 

• 

., 
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where g(E) is given by (32) as 

g(E) 
= 4k2 1 - J(E+i€) 

and k = ~E > O. The quasi-Born result for J(E+ie) was presented in 

Sec. III. 

It would be tedious to compare (52) with exact results for a 

large assortment of energies, angles, and couplings. We will instead 

make the com~arison only for the total cross section. The Born 

approximation gives this as 

• <. -............. 

,fB(E,e)',2 sine·~~~'·':""}.~1i),2 ~ 
1+4kc.. 

The quasi-Born approximation (52) gives 

(J'QB(E) = 2lf llf liS(E) e) + geE) /2 sine de 
,0 , 

The comparison of (55) ~·Tith exact results will test not only the validity 

• of the quasi-Born approximation for the s-wave (as was the case in 

Sees. III and IV) but will also check that the other partial waves are 

'given by the Born approximation alone, as. implied by Eq.(52). 
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• 
The caldrlation of OQB(E) fram (55) is quite messy, but it was 

not necessary to use a computer. Unfortunately, we have not been able 
. QB 

to find exact results ill the literature to compare with a (E), so we 

were forced to sum up partial wave cross-sections calculated from 6, p, 
..... 

12 and d-wave phase shifts. The comparison of these "exact" cross sections 

with the quasi-Born approximation (55) ~~1 the Born approximation (54) 

is made in Figs. 1-4, for A = 0.1, 1, 1.5, 2. .'. 

The agreement between exact and quasi-Born ,cross-sections is 

generally excellent, and always very much better than foI' the ordinary 

Born approximation. The exact zero-energy cross-sections become infinite 

at A = 1.683, so the comparison is not very meaningful for k ~ 0.5; the 

scattering lengths in Table 2 provide a more illuminating comparison at 

these low energies. 

VI. YuKAHA POTENTIAL: SECO:ND APPROXIMATIOl'! 

In order to test the speed of convergence of tiE series 

expansion (15) in powers of the reduced kernel, we have performed a 

second-order calculation of the critical, coupling A(O) required to 

just barely give a bound state with zero energy. This is of course a 

quantity that cannot be calculated by any ordinary Born approximation. 

He will calculate it as the root of' 

J(O) := 1 

Where J(W) is given in the second quasi-Born appr9ximation by (19). 

(56) 

• 

.. " 
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I 

The, integrals required to calculate J(2)(0) are difficult to 

do in closed form, though presumably straightforward for a computer • 

To lighten our labor we "Till not use the vertex function (40)· employe~ 

until now, but will instead take13 

r(r,k) ikr = e r 

or since we are at zero energy 

r(r,O) = r (57) 

This behaves correctly at r = 0, but not at r = 00. Since (57) is far 

from ideal, the work of this section will serve to test a statement made in 

reference 2, that even a poor vertex function can give very good results 

if calculations are carried to sufficient order in the reduced kernel. 

The first quasi-Born approximation (37) now gives 

so that the critical coupling in this order is A(O) = 2, about 19% too 

high. 

The functionJ(2)(0) appearing in (19) is 

J(2) (0) = ----------------­

(4rc)31°O V(r) /r(r,O)12 dr 

. ° 

(58) 
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\ . 

A straightforWard\calculation using (57) gives here 

\ 

(59) • 

ThereforeJ(O) is given by the second-order formula (19) as 

. J(O) = ~ A + .0377 A2 (60) 

The convergence is obviously quite rapid in the neighborhood of A = 2. 

The critical value A(O) defined by (56) is now 

A(O) = 1.765 (61) 

as compared wlththc exact va1ue10 A(O) = 1.683 and the first-order value 

2.000. The error is reduced from 19% to 5% in going to second order. 

VII • OTHER POTENTIALS 

The s-wave vertex function we have been uSing. 

(40) 

. , 
happens to be the ideal choice for the Hu1then potential 

(62) 
I,,) 



'. 
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\ 

in the sense of E4. (21), .!..:!..:.' 

\ 

[;: + V(r)/~l (w) - w] r(r,k) = 0 . 

). . = :"'1-----;:2:":'i":"""k ' k = JW 

The reduced kernel Kl(H) will have an eigenvalue zero in place of 'Ill(W), 

so we can expect the series (15) to converge quite rapidly. In particular, 

the functi,on J(W) is given in, the lowest order (Eq. (18)] by 

)., 
J(H) =T)l(H) = ::---=-:-:-

1 - 2ik 

and all higher ord,er terms vanish. Therefore the binding energy is 

given by (17) as 

()., > 1) 

This is the exact answer for B. 

(64) 

It is more useful hel'e to compare solutions' of the scattering 
. 

problem. The scatteri'nl; length in the Born approximation (34) is 

00 

B 
- 2)., ~ 

1 -2), t( 3) (66) as = 3"= 
v 

',1=1 
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l 
where t is the Ri'emann zeta function, ~(3) = 1.202. The quasi-Born 

approximation (33) is 

aQB 
s 

f A I. = - 2A l.~( 3) + 1 - A J 

These results may be contrasted vith the exact value14 

EX 
a = - 2A s 

to 

\' (3 . ) -1 Q;B 2 { 1 1 1.. .. Y -VA =as -2I.:, 8(4-5':)+27(9-A)+'" 

y=l 

For instance, at the critical value A c: 1 the Born approximation gives 

a B = -2.4, while a QB and a EX go to infinity, their difference being 
6 s s 

3.5% of a B. The approxima:cion (67) becomes poor when A approaches 4, s 

where a second bound state appears. 

(68) 

For the record,' '\-Te will give some results for the exponential· 

potential 

() ,\-r 
Vr =-I\e 

Using the vertex function (40), we find nm'l that the lowest quasi-Born 

approximation (37) gives 

J(O) = 11 A ·Ib 

(69) 

(70) 



I' 
I 
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, . ~l; 

so that the ~rit1L1 A for a bound state:at zero energy is A(J) = 16/11 = 
~. I 

1.455, which is .6% higher than the exact value15 A( 0) = 1. 446. The 

scattering lengths (34) and (33) turn c~r. to be 

a 
s 

QB A Jl - .11 A} 
= .. 2 L 1. • 69 )~ . 

VIII. DISCUSSION 

(11) 

(12) 

" 1;'" 

'. 

He must confess to some surpr:i.se that our 10"Test order approxi-' " 

mation works so well. To understand the reason, it is necessary to 

consider the bound-state and scattering pl'oblems separately. The former 

is exactly solved by the lo\o,est quasi-Born approximation if the vertex 

Ir) 'happens to be an eigenfunction of the kernel K(H), as .it was for the 
, 

Hulthen potential in Sec. VII. Hence oUr success in calculating 

binding energies and the critical coupling 1.(0) for the .yukawa and 

exponential potentials might perhaps mean only that the vertex-function 

eikr [1 _ e-rJ ' Hhich is an exact ei!;cnfunction of the Hulthcn kernel, is 

also close to ideal for any potential of unit range. 

But this does not explain why the scattering calculation also 

turns out so \ole 11. 
. 

Suppose we are able to find an ideal vertex function, 

as was the case in Sec. VIII. The reduced kernel'Kl(W) is then not 

zero, but' still has all its original eigenvalues, except the largest. 

The magnitude of the second largest eigenvalue 1)2 (~{) will therefore 

govern the rate of convergence of the expansion (15) in powers of Kl (\.!). 
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I , . 
The correction to \the 1m-lest quasi-Born approximation (20) wi*- be much 

~ than indicated by I Tj2(W) I, because the Born term account~ to some 

extent for all the 11 (ll). [However, the' only case for which the lowest 
\I 

quasi-Born approximation gives the scattering amplitude ex.ac~ly is for 

a separable potential, in "'hich case K(H) has only one non-zero eigenvalue. J 

So "'e can therefore account for the success of th~ lo,,'est 

quasi-Born approximation in scattering problems, provided that the 

second largest eigenvalueTJ2(E+i€) of the scattering kernel K(W) is 

aRpreciably' less than unity in absolute value. And conversely, the 

approximation must obviously be poor if 111
2

(E+i€) I approaches 1, since 

this is the condition for a second bound or nearly bound state. In this 

paper we, have been interested in scattering for which the largest eigen­

value 11
l

(E+i€) never gets very far outside the unit circle; hence we can 

understand our success if the eigenvalues Tl
l

(\-1) and T(2(Vl) are not too 

close in magnitude. 

nOw tightly packed ~ the 11y (H)? 
, 

For the Hulthen potential the 

question can be answered eJ-:actly: . in this case the y.;.th eigenvalue has the 

-t' d 16 magm. u e 

Hence /'1)2 1/ 1111 1 is ,1/4 in the interesting case E « 1 where the eigenvalues 

are J.argest> and 1~21/11111 < 1/2 at all energies. The role of 112 (H) and 

higher eigenvalues cen be seen very clearly from Eq. (68), ,.hich gives the 
, 

exact scattering length for the Hulthen potential. For A ~ 1 the 

'" 
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! I 

\ \ 
percentage error in the quasi-Born approximation .(67) drops tq zero, 

since the scattering length is dominated by the shallow bound,' or Virtual 

state, vT.~1.ich is accounted for exactly by the ideal vertex (40). . The , 

difference between a EX and a QB remains roughly constant, being given s s . 

ill (68) by a sum of terms arising respectively from '11
2

, TJ
3

, •••.• (Hhen 

A ~ 4 a second bound st~te appears and this difference becomes large.) 

The Born approximation (66) accounts approximately for the contributions 

~rcm all eigenvalues TJ , so the success of the quasi-Born approximation 
y 

should not have surprised us. 

For the YukaT,ra potential it is known17 that a second S-vTave 

bound state appears at A~. (The first p-wave state doesn't appear .until 

A ~ 9.] Hence at zero energy 1'I12/TJ1 1 ~ 1.7/5 ~ 1/3. As above, the Born 

term 'VTill partially account for TJ2 , T]3' et.c., so vThe n I TIll :::: 1 (1. e., 

A ~ 2) we should expect the error in the lowest quasi-Born approximation. 

to be quite small. 

In general, it is reasonable to guess that the '11 (~'1) will v 

decrease rapidly Hith·y for any short-range potential, because they 

. 18 
satisfy a sum rule. 

\' 'r1 v(H) = 
L, 

co 11 ikr - k- vCr) e sinkr dr 
. 0 

v 

the sum running over S -.lave eigenvalues only. A purely attractive or 

'repulsive potential '-Till have all T1 (0) of the same sign, so the v . 

convergence of the sum implies that they must vanish rather rapidly for 

v ~ 00, 
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In summary, woe can say that the quasi-Born approximation works 

very well. in scattering problems because ordj.na.ry potentials are 

effectively about 7~ separable at low energies, and because the Born 

term accounts very well for the small higher llvCW), and, of course, 

dominates at high energy. 
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FIGURE CAPTIONS 

Figure 1. Scattering cross sections vs 'k =~E for the Yukawa potential 

at a coupling value A = 0.1. The curves IIEXII, "QB" and liB" 

are respectively exact, lowest order quasi-Born approximation, 

and 1m"est -order ord.J.nary Born approximation. 

Figure 2. Same as Fig. 1, with A = 1.0. 

Figure 3.' Same as Fig. 1, with A = 1.5. Observe that r/~;B and aEX become 

Figure 4. 

very large at low energies, in respon~e to a virtual state 

which becomes bound at A = 1.68. This virtual state is not 

B ,detected by (J • 

Same as Fig. 1, with A = 2.0. QB EX Here a and a are very large 

at low energy in response to a shallol'l bound state at E a ... 04. 

Again, aB is not affected. 
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This report was prepared as an account of Government 
sponsored work. N~ither the United States, nor the Com~ 
m~ss~on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the inform~~ion t6ntained in this 
report, or that the use of any information, appa­
ratus, method j ot process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the ~bove, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such c~tractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or ~ontract 
with the Commission, or his employment with such contractor • 






