Lawrence Berkeley National Laboratory
Recent Work

Title
POTENTIAL THEORY CALCULATIONS BY THE QUASIPARTICLE METHOD

Permalink
https://escholarship.org/uc/item/7410387pn

Authors

Scadron, M.
Weiriberg, S.

Publication Date
1963-10-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7410387p
https://escholarship.org
http://www.cdlib.org/

<L Ak Lan
5 /“'_) \. Sy M’\\“
= D‘;ﬁ“r
= 0% W;' ;

.;J{

mtm\J

N

Psigo/

‘\nw

Seoe i S

,

_‘:ILb) p[

LIRS L
2 \\:"/?j ‘-1._(71?."5 Y zf’ ”
)i@m e i)

;?‘;'—}l

I
o

H%n P S L
A'm_@@ *[5 |

ﬁ«*’v?

P ‘\\x,.,y?‘/

"" T P 54\‘ _ N ?J]

ﬂ\ ‘/n' L T (.—l Y 1

A / sDZ?iL; Sl N \ J:Eg\i%i}z <L—-;_a2 4t\&’@;’/ 4

BN CTN CAs RN G e ,ﬂ«: e e
\%[L_y} ﬁ"l@‘%f‘@gﬂ"‘“‘“i il \\\3,«/ g" \JD L

53
F:

i L AN
AR
-zt..l/sﬁ\‘ o ‘;;A/jé‘h

&

)/ g;jg/g

i)
S

) w4 ad
,'/,;Q‘;ﬁv:\““ & ;'(/7‘ 3 N ' ‘-‘“ /' T ,(( .r‘"“g‘
; Kioo i on ikl Lotk nd) E—*‘\L}zj}f\-’@ @» Lo L.a_g&@
? N @nw"/‘ E =Ll L\ X N
o ol Ay ol

\\”,m

- &-‘:.3‘““’ ,;_9'
s

e

ak cma: C

‘\’%// 7N

Yini)
m} =
A\if(\\i

LI [ ‘1\‘ :(U‘; SO I \K/ Q/ >
\\\&:{J @5_3@; ey ’,J ELBELJ{N!@i}@@

:;\\?] rm\\ﬁf“

N4 /?‘S\, Y f“',ﬂn’"“‘%:\\{’;aﬁw

TWO-WEEK LOAN COPY

This is alibrary Circulating Copy

N m n‘ : @; - which may be borrowed for two weeks.
2\t For a personal retention copy, call

Tech. Info. Division, Ext. 5545

y

6"*’@\,\ S
u@g\j ey

e g
#




DISCLAIMER -

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
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4. Scadron and S. W‘ein‘oergT
‘ La;wrence Rediation Laboratory; University of California, Berkeley
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ABSTRACT
The quasiparticle mefhod is used to find binaing energies,
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b I. INTRODUCTION

The quasipartic]e methodl’ ’3

| allows any non-relativistic
| scatteflng‘problem to be solved, in principle, oy perturbation theoéry. -
The purpose of this article is to determine by actusl calculation whetﬁer ‘
this method gi#es rapid convergence in practicelr
| Our test broblem is that of finding cross-sections, scattering_
lengths, and binding energies for one particle in a strong shoff-range'
potential.* The quasiparticle method is first reviewed in Sec.viI,;end
Athen applied‘to'the Yukawa potential in Secs. III-VI, and to ﬁhe,Huiﬁhén
and exponential potentlals in Sec. VII. In most of the cases coneidefed
the ordinary Born approximation either does bedly or fails entirely._ The
"quasi-Born" approximation gives excellent agreement with exact results
(to a few percent, and often mnch oetter), fof reasons discussed in
Sec. VIII. A particularly eneouraging calculation is performed in
Sec. V, where we knowingly introduce the quasiparticle in a very crude
way, but nevertheless find that our error drops from 19% to 5% in going
v-'from the first to the second order in the modified potential.
The aﬁthors are not skilled in the use of electronic computers,
50 all integrals were done»in closed forﬁ in terms of tabulated functione.
This has the.advantage of providing analyvic approximation formulae out
it preVents our being able to say whether the quasiparticle method is |
more or less convenient “then well-establlshed variational or dlrect-
integreation technlques. However, our’ chief purpose here is not to |
establish another approXimationvscheme for ?otenfial scatteriog, buti
rathef to enoourage use of the quasiparticle method in multipafticle

problems (and, we hope, relativistic problems) by showing that it gives
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A . ‘

a rapldly converging sequence of approximations in the simpler case of

poteqtial scatterlng.

II. The Quasi-Born Approximations
‘wevshall first review the quasiparticle method,5 and uee it to

derive approximate formulae for scatiering amplitudes and binding energies.

The Hamiltonian is taken as
H=-Y +V(z) . (1)

(We use units with % = 2m = 1.) The potentials V(r) used in actual
calculation will be the Yukawa, Hulthén, and exponential potentials, but
the general discussion in this section applies to any V(r) which is

short-range in the sense thet
f |V(r)| ?ar <o . (@
Jo 5 :

We will attack the scatterlng and bound state problems by

calculating the operator (W), deflned by.

W) =V +V Go() T(W) o (3)

where

Gy (w) - [w+v B ‘ o ' ()
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!
In coordinate spaée Eq. (3) is an integral equation, with
explik| r-r' |]

g (K4 .= o 5‘
('l Gy(x%) _l;) T (5)

']V |z - v(r) 8(;;'-,1:,')'. . o (6)
The scattering amplitude is
25, ©) = - 2P| 7z + 1) o | T
ok [P @lne e ew (- mr)

where

The bound-state energies are the locations of the poles of.T(W)‘fbr W <O,

- Solution of Eq. 3 by iteration gives the Born series:

(W) = _jl + K(W) + Ke(w) + } - N {8)
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where K(W) is the%scattering kernel
K(H) = Gy(H) V . o

But thie series is useiess in the presence of cdmposite particles,
,because it starts to diverge when any eigenvalue of K(W) leaves the unit
circle. In particular, the truncation of the series (8) at any finite |
order can never yield bound states, because none of its terms have poles:
in W. Any such approximation is also grossly inaccurate for low energies‘
and low angular momentum, if V is strong enough to have bound states,
v1rtual states, or resonances, because the scatterlng is then controlled
by the pole or the near—pole. |

The quauiparticle method rests on the replacement of 'V by a

reduced potential |
l-v-v[)(r[v S - (10)

It is easy to show that -

T(w) = Tl(w) .+ {1 + Tl(w) Go(w)} v|r) a(w) | (F[V {1’ N GO(V) Tl(w)} (l;j =

where T, (W) is what T(W) would be if the potential were vy

(w) =V

l+v (J)T(W) - - (12)

&)
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and A(ﬁ)vis the "gyopagatdr"
W) = (1 - 3] R )

J(W) = ('fj'v GO(W) v ir) +(T|v GO(W) Tl(W) GO(W) vr .. (1k)

*

The reduced T-operator is then calculated from (12)'by itefation:
Tl(W) = v, .{1 fK;(»w) + K| (w) ... } (15)
‘where Kl(W) is the "reduced kernel"
Kl(w) = GO(W) v, .(16)

CIf K(W) has et most one eizenvalue outside the unit circle then Ir) end
(T] can always be chosen so that the eigenvalues of Kl(w)‘are ;llfdrawn
into the wnit ciréle, and therefore so that the series (15) converges.
The condition (2) ensures that K(W) can have at most a finite number of
eigenvelues outside the unit circle, so (15) can always be made to

‘ .convefge by & finite nuwber of subtractions of thé form (10).‘ (Equation

(11) can be interpreted as resulting from the introduction of a fictitious

elementary particle,6 but this aspect neéd noﬁ concern us here.]

| If (15) converges then a bOundrstate éolevcén arise}only in the
propégatdr AW, and therefdrevtherbinding energy B is to be‘Calculéted as

the roct of -
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‘The first "quasi-Born" approximation to J(W) is given by neglectingvT'

1
in (14):
' ~ ) = (F W) v ‘ 8
(W) = 3y (0) T (F] Ve (N VD | .(1)
In the second approximation we approximate T, =V, s0 (1) gives
J(W) = (T v 6,(W) v 1) + (F| v 6(W) v Go(W) V [T
(19)
_ =
= W) - W W
where
| : = (7! : \ )
J(a)(w) =4l v GO(W) v GO.(W) vir .
The first quasi-Born approximation to the T-operator (11) is:
(W) = ‘I‘l(W) +V |r) AW) (T| v |
- (20)

J() =
=v+v|r)-l—:(m)ﬁ(1*|v .

4

¢ only remains to describe how we choose the state-vectors lr)-
and (T'|. We have considerable freedom here, because the only requirement

that must be met is that Kl’W) have no eigenvalues outside the unit circle.
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But there is one éhoice that may be called ideal. ILet nl(w) & the

largest éigenvaluefof'K(W), and assume that all the other éigenvalues lie

~ within the unit circle. Then choose [I') and (T| as the erergy-dependent

normalizable eigenvectors:

If(w). T = n (W) [y o (21)
FL K = (T () | o | @

normalized so that T
F] v [f) -1 . o (23)

With this choice, the reduced Kernel Kl(w) will have precisely the same
eigenvalues as K(V), except that nl(w) is replaced by the eigenvalue zero.
If the original Born series diverged (becaﬁsg ]nl] 2 1) then this cures
the divergence. .vaiﬁ coenverged then this accelerates the rate 6f
convergence.

We camnot uéually hope to find exect solutions to (21) and (22),

but this needn't worry us. As long as our guess at |I') and (TF| isn't

' too bad, we can still carry our calculations to unlimited accuracy by

using more and more terms in (15). In practice, we guess |I') and (T|’
by requiring fhat'they'matéh the properties of the ideal choice defined
by (21)-(23). These propertics can-be determined by noting that (21)

is just Schroedinger's equation for a fictitious energy eigenvalue VW and
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a fictitious pote%tial V/nl(W). The largest eigeﬁ%élue.nl wiil usually ;

‘correspond to an s-state, so

ZID) = o) (o) /el (e

(Flz) = B0e) Iz, ) 2 T N
where
P(r,k) « ;m‘ R (26)
Mr,k) «r . (r =0) (27)
- and

x = JiW wk >0 . : (28)

Note that -k* zlso has positive imaginary part, so both (24) and (25) are
normalizable wave functions. The normalization condition (23) gives the

constants. as

o

[

. _ 4 _
*(r,-k*) I(r,k) V(r) dar ] . (29)
v 0 :

c(k) C(k) =[

Once we guess a I(r,k) satisfying (26) and (27) we can use
Eqs. (7), (20), (24), (25), end (29) to calculate the scattering amplitude

as
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L 2(E,9) = £(8,0) + a(a) (30)
vhere = (E,8) is thé Born term
:E‘B(E,e) = - J]-i—:? fd3;c; V(r) exp(ir.[k-k*)
(31)

-]

x f r V(r) sin(2kr sing/2) dr
0 ,

" 2k sing/2

and g(B) is an isotropic correction

- J(E+ie) [f:;° v(r) .I'v‘(r,k)‘sinkr 'dr][‘fz V(r) ™#{r,~k) sinkr dar]
k - ' ' ‘

8(e) = - R o
1 - J(E+ie) [fg *(r,=k) V(r) D(r,k)ar

(32)

Setting W = E + le with ¢ = +0 in (28) shows that k must néw_ be taken as
the Eos:.tive value of \fﬁ.
‘I’he sca‘ctenng leng‘th in this "quasi-Born" ap;iroxj.ma‘bion is

B,
s

:_asQBié*- f(o;e) =8 +b . T (33)

vhere aSB is the Born approximation value

[+]

oo [ Fumae B

.8
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cand b is the corréction

J(0) Uz V(r) 1(r,0) r dr|?

Tl 3(0) 7 v(x) |r(x,0) 2 ar

. (%)

The function J(W) which determines the bound state energy and

which appears in (32) and (35) is given in the lowest approximation (18) as

c(s) T(x) &p ' (e, k%) V(z') (z'] Go(W) |z V() Tzk)

CJ(W) = _
Ln ‘ ' .or'r

Only the s-wave part of GO(W) contributes, so this is

f: ™ (r',-k*)V(r')dr"' fz P(r,k)V(r)dr [exp(ik}r+r'l)-exp(ik[rfr'[)}

J(w) = i.-
o [2 t*(x,=k*) D(r,k) V(r) ar

(36)
'.At zero energy it becomes

| [ m(xt,0) V(r') ar I r(r,o').'v(r') ar min(r,r')‘ -
J(0) = - = 3 — - (37)
| [o In(r,0)|% v(r) ar S

In the bound-state region W is negative, so we must take k in (36) as

kK=ic; xk=NW>0 . - (38)
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IIT. YUKAWA POTENTIAL: BOUND STATES | S
The next four sections will epply the results of Sec. II to the v

Yukawa potential

'

V() = -2eT/r . | (39)

We are using units in which the range a of the pdtential is teken as the

| unit of length, so that the unit of energy is h2/2maa. 'The'vertex function

will be chosen as the simplest function satisfying (26) and (27), i.e.,
M(r,k) = e [1 - e'r] . (ko)

[several advantages of this I'(r,k) are listed in Sec. X of reference 2. )

With this choice the normalization integral (29) is

[o(x) 8x) 1™ = 7 Nz,k) PH(r, k%) ¥(z) = X log {( - 21k)(3 - 211‘)}

(2 - ?ik)
(k1)

The function J(W) is given by (36) as!

ix 1 221K -1 (,-1 L1\

X [é‘ log (1 1k Lie( -21]{ Lt (2 i, - Mo 1-21k>_" Li2(l-ik ]

W) = — , ' -

' '~ log (1 21k)(°—21k)
' (2-21k)

(k2)
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Voo
where Li, is the é.ilogarithin"

Thus the coupling constant > required for a state with binding energy B

is given by (17) as

% log {QZK)HQK)

, : o (2+2n) : o
%\<~>— - (k)

i 2/2+2k\ -1
R | 51 \/1+2K * L /1+2 )+ 1 (2+2.<> Lt (l+2)c> Li (l+|<>

e

where k = ~B. These dilogarithms have been tabulated by Lewin.8 The

best "exact" numerical results in the literature to compare with (Uk)

seem to be given by the interbqlation formula of Blatt and Jacksongr

AMk) = 1.683 [1.000 + 1.349 n'-'o.153 K> + 0,06k k> + 0,261 Kl‘ eer] .
| | (k5).

The'compariépn is made iﬁ Teble 1. The X-values dlffer at most by 3%,
~and generall&hby mucﬁ less. There is no column in Table 1 for the”Born'
aéproximatich, since it can never yield-a. Dbound state. | |
! . A partic&iarly interesting object f;; compqrison is A(O), the
céupling requlred to just barely bind a state wlth zero energy.' The

exact result is knownlO to be

X (0) = 1.683 .
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| TABLE 1

The coupling X required to give a bound state witAh binding energy r:2..' ‘

‘Here "EX" means the Blatt-Jackson "exact" result (L45), and "QB" -

‘means the quasi-Born approximation (Lk).

O

" A ) 3B

0 1.683 1.693
.2 2.129 2.154
L 2.570 2.611
6 3.036 3.009
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We find from (hh)g[or directly from (37)] that

@B, .\ _ log 4/3 o
v (0) = i3§5§§%§7 = 1.693 ' '(h5)

so the‘agreement here is to about .6%. [This may be contrasted with an
| N/D calcuiationll using the Born approximation to give the discéntinuity ‘
in T across tbe left-hand cut. The lowest order solution of the coupled
equations for N and D gives A(0) = 1, the second order solution gives
| A(0) = », and the exact solution gives A(0) - 2.80. 'A computer solution’t
of the coupled N/D equations using second-Born approximation for the left-

hand cut gives X(0) = 1.70.]

IV. YUKAWA POTENTIAL: SCATTERING LENGTHS

The Born approximation (34%) gives the'écattering length here as
g B = L -‘: R o - (L6)
The Quaéi-Born approximationv(33)'gives'instead

5% =->\‘[-l+z+log“/3((lfJ(m] ()

We have already noted that

J(0) = (1413%%——3,2}%3—. A= .55_305 X - (48)
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so (47) becomes |

QB _ 1 - 077k X o
%5 -'Mr-‘.‘s‘g'dﬁ} - (49)

Blatt and Jackson9 have given an interpolation formula for A as a
function of agt
-2

>\=1.683!~1..ooo+1.3h8 as'l- + 1.275 as' + 0.322 as’3 - 3.028 _as')‘L - 1.326 aé'?j

(50) *

which is expected to be & good approximation for A near the critical

value A(0) = 1.683, where a zero-energy resonence makes &, infinite. The
comparison between (46), (L9), and (50) is made in Teble 2. We see that
"the quasi-Born approximation agrees very well wifhvBlaﬁt and Jackson,

-and thet the Born approximation does very badly. For [k|‘< 1.3 the exact

~ and guasi-Born results vill of course both approach the Born épprdximatiqn.

For |a | < 3 the Blatt-Jackson formula can no longer be relied upon.

V. YUKAWA POTENTIAL: CROSS SECTIONS

The Born approximetion (31) to the scattering emplitude is-

P(E,0) = — A ‘ L : (51)
1 +.hk2 sin® 8/2 . , ' ‘

The quasi-Born approximation adds a correction term

B(,0) = £2(,8) + g(B) | B _(52) |
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N
1

Teble 2
The coupling A required to give & scattering length a . Here "EX" means
 the Blatt-Jackson result (50), "QB" means the quasi-Born approximation -

(49), and "B" means the ordinary Born approximation (46).

| &g X B+ B
3.0 2.793 © 2.988 =30
5.0 2.220 2.3 =50
10.0 1.932 1.977 -10.0
% . 1.683 1.693 %
4100 1.478 173 10.0°

- 5.0 1.300 1.298 5.0

[ 3
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where g(E) is given by (32) as

A 3(EHe) 1og” (A2

(53)

E) = _
o bk® 1 - J(E+ic) 1og [2-2ik ]2 \

[1-21k][3-21x )/

end X = VE > 0. The quasi-Born result for J(E+i¢) was presented in

_ Sec. III.

It would be tedious to compare (52) with exact results for a
large assortment of energies, angies, and couplings. We will instead
make the comparison only for the total cross section. The Born
approximation.éives this as

SR

, n : T eem? | |
oB(E) = 2n f ]fB(E,e)lz sing 46 = -@——2- . (54)
. 0 : _ 1+bie™ : :

The qpasi-Bofn approximation (52) gives

GQB(E) = ;z*:r\‘/\:r [fB(E,e) + g(E)]2 sine de
. 0 .
(55)

= B(E) + gz% log(l+hk2) Re g(E) + b4« ]g(E)|2 .
k v

The comparison of (55) with exact results will test not only the validit&
of the quasi-Born approximation for the s-wave (as was the case in _ ‘

Secs. IIT and IV) but will also check that the other partial waves are

‘given by the Born approximation alone, as implied by Eq. (52).
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-; The caléylation of GQB(E) from (55) is quite messy,»but‘it vas
not necessary to uég a computer. Unfbrtunately, we have not been sble
to find éxact resulfs in the literature to compare with UQB(E), éo we
were forced to sum ﬁp parfial wavé cross-sections calculated-from 8, P,
and d-wave phase shifts.12 The comparison of these "exact" cross sectioﬁs
with the quasi-Born approximation (55) and the Born approximation (Sh)
is made in Figs. 1-h, for A = 0.1, 1, 1.5, 2.

- The agreement between exact and quasi-Born‘cross-sections is
generally_excellent,Aand always very much better than for the ordinary
Born spproximation.  The éxact zero=-energy gfoss-sections become infinite
at A = 1.683, so the comparison is not very meaninéful for ¥ £ 0.5; the

scattering lengths in Table 2 provide a more iiluminating‘comparison at

these low energies.

.

VI. YUKAWA PCTENTIAL: SECOND APPRQXIMATION
In order to test the speed of convergence of the series
expgnsion (15) 1in powers of the reduced kernel, we have performed a
' second;order calculation of the critical,éoupling A(0) required to
Just barely give a bound state with zero energy. This is of éoursé a
quantity that.canﬁot be calculated by any ordinary Born approximation.

We will calculate it as the root of:
J(O).= 1 . - ' (56)

where J(W) is given in the second quasi-Born approximetion by (19).
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|
The, integrals required to calculate J(2)(O) are difficult to
~do in closed form, though presumably straightforward for a computer.
‘To lighten our labor we will not use the vertex function (40) employed

until now, but will instead takel3
(r,k) = 15T
or since we are at zero energy

Mz,0) =71 . - (57)

This behaves correctly at r = O, but not at r = .- Since (57) is far

from ideel, the work of this section will serve to test a statement made in

reference 2, that even a poor vertex function can give very good results
if calculations are carried to sufficient order in the reduced kernel.
The first quasi-Born approximation (37) now gives -

\

=3 69

80 that the critical coupling in this order is A(0) = 2, about 19%1t06
high. |

¥

The function-J(z)(O) appearing in (19) is

\/"d3£ &3t adp r*(z;,?}): Y(;)'lv%:)_v;r"l)r{'(r',O) e

J(Q)(O) ‘.= N0 :
| v(}.m)3f v(r) |N(r,0)]? ar
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.A straightforﬁard%calcﬁlation usiog (57) gives here
2 | 2 -

Therefore J(0O) is given by the second-order formula (19) as.

o

- J(0) =

The convergence is obviously quite rapld in the neighborhood of A = 2.

The critical value A(0) defined by (56) is now
A(0) = 1.765 | (61)

as compared with the exact valuelo A(0) = 1.683 and the first—ofder value

' 2.000. The error is reduced from 15% to 5% in going to second order.
 VII. OTHER POTENTIALS

The s-wave‘?ertek.function we have been using_

New) =T .eT) 6y

happens to be the ideal choice for ﬁhe Hulthén poﬁential :

r .

.V(r)'=v-_x[e

X+ .0377 22 . - (60)

2 l]'l | . " , 1 ' (62) |

W
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~in the sense of BEd. (21), i.e., | o o
4
- : {-—5 + V(r)/nl(w) - W] r(r,k) = 0
. .dr ’ '

(63)
(W) = s s k= WL
1 1 =21k ° .
The reduced kernel Kl(w) will have an eigenvalue zero in place of nl(w),
S0 We can expegt thevsgries (lS)‘to converge quite rapidly. In particular,
the function J(W) is giﬁen in the lowest order [Eq. (18)] by

S0 =m0 = rRer | (6k)

end all higher order terms vanish. Therefore the binding energy is-

given by (17) as

- (X- 1>2 (x>1) . | | (655 :

This is the exact answer for B.
It is more useful here to compare ‘solutions of the scattering
problem. The scattering length in the Born approximation (34) is

» o : , ‘ o0

2 © = -2 > Laane3 o o (66)
: VARNE | o |

5
y=1
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vhere { is the Riemann zeta function, {(3) = 1.202. The quasi-Born

approximation (33) is -

(Ze-alun 2y . e

These results may be contrasted with the exact valuelh

w

. EX _ 3 =L QB 442 1 1 ,
»as = - 2\ zgf (v‘ - VA) T = &g = 2\ {g(h -y + 575 = %) S PN }

v=1

(68)

For instance, at the critical value A = 1 the Born approximation gives
aSB = -2.4, vhile aSQB and aSEX go to infihity, their diffefence 5eing
3.5% of asB. The approximation (67) becomes poor when X\ approaches 4,
where a second boﬁnd state éﬁpearé. N |

For the record, we will give some results for the exponential

potential
V(r) = - xeT (9

Using the vertex function (40), we find now that the lowest Quasi-Born
approximation (37) gives . fff"“wmmm£ww '

e,

ORE SO (10)

e
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so that the crltical A for a bound state at zero energy is k(g) = 16/11

=M

1.455, whichils .6% higher than the exact valuet A(O) = 1. hh6

scattering lengths (34) and (33) turn cut to be

al=-2n ()
QB - 1N o |
gs = - 2\ {m} | : (72) ,

VIII. DISCUSSION
We must confess to some surprise that our lovest order approxi-
mation works so well. To understand the reason; it 1is necessary to
consider the bound-state and scattering problems separately. The former

is exactly solved by the lowest quasi-Born approximation if the vertex

" |P) ‘happens to be an eigenfunction of the kernel K(W), as it was for the
Hulthén potential in Sec. VII. Hence our success in calculating
binding energies and the critical coupling A(0) for the Yukawa and

_exponentwal potentials might nerhap° mean only that the vertex-function

uzr [l _ve rJ

also close. to ideal for any potential of unit range.

, which is an exsct elgcnfunCulon of the Bulthén kernel, is

But this does not explain why'the scattering calculetion also

“turns out so well. Suppose we are able to find an ideal vertex function,

as was the case in Sec. VIII. The reduced kernel'Kl(W)-is-then not

- zero, but'still has‘all its original eigenvalues, except the largest.

The magnitude of the second largest eigenvalue ng(w) will therefore

govern the rate of convergence of the expan81on (15) in powers of X (”)
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- The correction to ‘the lowest quasi-Born approximation (20) wilh be much

less then indicated by |7,(W)|, because the Born term accounté to some

<

extent for a;l the nv(w). [Howevér, ﬁhe'only caese for which the lowest |
quasi-Born.approximation gives the scattering amplitude eiactly is for
a separable potential, in vhich case K(W) has only one non-zero eigenvalue.] ‘
So we can thérefore éccduﬁt for the success of the lowvest
quasi-Born approximation in scattering problems, provided that the
second largest eigenvalue;ng(E+ie) of the scattering kernel K(W) is _.' 8
~ appreciably less than unity in absolute value. And conversely, the
approximation must ob#iousiy'be poor if ]nQ(EQié)[ approaches‘l; since
‘vthis is the condition for a second bound or nearly bound staﬁé. In this
paper we. have been interested in scattering for which the largest eigen-
value nl(E+ie) never gets véry far outéide the unit circle; hence we can
undgrstand our success if the eigenvalues nl(w) and qz(W).are not too
close in maghitude. ' | |
How tightly packed are the'nv(w)?_ For the Hulthén ﬁoténtial thei
question can be énswered exactly: :in'this case the v-th eigenvalue has the

magnitudél

(B + ie)]| = ——sd | (13)
- v o hE]l/e'- : o
Hence.]qel/}nl[ is 1/k in the interesting case E << 1 where the eigenvalues
are largest, and fhzl/]nl] < 1/2 at all energies. The role of ne(w) and
higher eigenvalues can be seen very clearly from Eq. (68), which gives the ¥

exact scattering length for the Hulthén potential.” For A = 1 the .’



e

5

_satisfy a sum rule.
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‘percentage error in the quasi-Born spproximation (67) drops to zero,

4

since the scattering length is dominated by the shallow boundfor virtual

state, which is accounted for exactly by the ideal vertex (40). . The

QB

difference between asEX and ag remains roughly constant, being given

in (68) by a sum of terms arising respectively from Tos n3, veee o« [tmen

_K =~ 4 a second bound state appears and this difference becomes large,]

The Born approximation (66) accounts approximately for the contributions

frcm all eigenvalues n, so the success of the quasi-Born approximation
should not have surprised us.

17

For the Yukawe potential it is known ™' that a second s-wave
bound state appears at A =5. [The first p-wave state doesn't appear until

P 95]' Hence at zero enérgy [n?/nl['z 1.7/5 = 1/3. As sbove, the Born

“term will partially account for s Mg etec., so when lnl] =1 (i.e.,"

A 2) we should expect the error in the lowest quaéi-Born approximation.

to be quite small.

In.general, it is reasonable to guéss that the ﬁV(W)'will :

decrease rapidly with.v for any short-range potential, because they
18 | o

’

;r‘ ﬁV(W) =.-:k‘luﬂ;m V(f) eikr sinkr ar | : | :(7hj‘

v

v

the sum running over §-wave eigenvalues only. A purely attractive or

‘repulsive potential will have all nv(Q)'of the same sign, so the

‘convergence‘of.the sum‘implies thét'they must{vanish‘rathef rapidly for

v _-) m. b.
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In summary, we can say that the quasi-Born approximation works
very.well in scattering problems because ordinary potentials are
effectively about 70% separable at low energies, and because the Born

term accounts very well for the small higher nv(W), and, of course,

dominates at high energy.
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|
\  FIGURE cAPTIONS
Scattering cross sections vs 'k =WE for the Yukawa potential
V(r) = = A A ‘

at a coupling value A = O.1. The curves "EX", "QB" end "B"
are respectively exact, lowest order quasi-Born approximation,
and lowest-order ordinary Born approximation.

Same as Fig. 1, with A = 1.0, ;

Same as Fig. 1, with A = 1.5. Observe that UQB and OEX become

" very large at low energies, in response to a virtual state

which beccmes bound at X = 1.68. This virtusl state is not

.detected by GB;

Same as Fig. 1, with A = 2.0. Here GQB

and oEX are very lsrge
at low energy in response to a shallow bound state at E = - Ok,

Agein, o© is not affected.
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