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bDepartment of Geography, University at Buffalo, Amherst, New York, USA
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Abstract
The increasing spread of multi-drug resistant malaria in African highlands has highlighted the
importance of malaria suppression through vector control. Its historical success has meant that
larval control has been proposed as part of an integrated malaria vector control program. Due to
high operation costs, larval control activities would benefit greatly if the locations of mosquito
habitats could be identified quickly and easily, allowing for focal habitat source suppression.
Several mosquito habitat models have been developed to predict the location of mosquito habitats.
However, to what extent these models can be generalised across time and space to predict the
distribution of dynamic mosquito habitats remains largely unexplored. This study used mosquito
habitat data collected in six different time periods and four different modelling approaches to
establish 24 mosquito habitat models. We systematically tested the generality of these 24
mosquito habitat models. We found that although habitat–environment relationships change
temporally, a modest level of performance was attained when validating the models using data
collected from different time periods. We also describe flexible approaches to the predictive
modelling of mosquito habitats, that provide novel modelling architecture for future research
efforts.

Keywords
Model generality; Spatial predictive habitat models; Temporal generality; Spatial generality;
Malaria; Mosquito; Larval habitat

1. Introduction
Malaria control efforts have increased considerably in African highland areas (Malakooti et
al., 1998; Shanks et al., 2000; Akhwale et al., 2004) in order to manage recent fatal malaria
outbreaks. However, commonly used malaria control tools, such as anti-malaria drugs, have
become problematic, due to the spread of multi-drug resistant malaria. Consequently, the
importance of transmission reduction through vector control has been highlighted (http://
www.rti.org, Killeen et al., 2002a). Malaria vector control has demonstrated historical
success in several countries (Utzinger et al., 2001; Killeen et al., 2002b). Some theoretical
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studies have demonstrated that vector control via habitat source suppression can be an
effective supplement to the use of Insecticide-Treated-Nets (Gu and Novak, 2005; Yakob
and Yan, 2009, 2010).

A major drawback of vector control strategies, however, is their costs. Vector control
activities would benefit greatly if the locations of mosquito habitats could be identified
quickly and easily, enabling a more focal habitat source suppression. Species habitat models
have been increasingly used in species management and conservation, informing the
targeting of species management locations in order to reduce negative environmental
impacts. Intuitively, the success of focal habitat management is dependent on the predictive
power of habitat models. Several mosquito habitat models have been developed to predict
the location of mosquito habitats (Hay et al., 1998; Brownstein et al., 2002). However,
because species distribution models are often highly dependent on field observations
(Guisan and Zimmermann, 2000), the development of such models is often costly, requiring
both extensive field work and experts with data analysis abilities.

Empirical models based on data from a particular time may lose much of their predictive
power when applied to data at different time points due to the following two reasons. First,
the approach used for the model development may not be able to accommodate the temporal
changes in species–environment relationships (Bulluck et al., 2006). Second, datasets
collected at a particular time may not be representative of the full spectrum of habitat
conditions (Strauss and Biedermann, 2007).

The generality of habitat models requires thorough assessment, prior to making general
inferences or predictions (Strauss and Biedermann, 2007). Whether mosquito habitat models
based on data collected in a particular time can be used to predict habitat occurrence at a
different time is poorly understood.

In this study, we first introduce several commonly used habitat modelling approaches. We
then test the generality of these habitat models using mosquito habitat data collected in
different time periods. Finally, we discuss the impact of generality of mosquito habitat
models in strategy development for malaria control.

2. Background
The goal of most habitat models is to differentiate land-types based on their suitability to a
particular species. This goal is typically achieved by using statistical tools to either compare
the environmental conditions in habitat-present area with such conditions in habitat-absent
areas or with conditions found throughout the entire study area. The former approach is
referred to as a presence–absence model and it requires data on both the presence and
absence of habitats. The latter requires only data on the presence of habitats and is referred
to as a profile-type model (Hirzel et al., 2002). We now describe the mathematical details of
both of these approaches.

2.1. Presence–absence models
The most popular presence–absence model, logistic regression (LR) analysis, is a
generalised linear model and is designed to analyse binary data. It has been successfully
applied to model the habitats of various species and is the most commonly used approach for
habitat modelling (Morrison et al., 1998). A generalised LR function is shown in Eq. (1).

(1)
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where p is the probability of the occurrence of habitats, β0 is a constant, and β1, …, βn are
coefficients associated with the environmental variables x1 …, xn.

When LR is applied to spatial data, however, the problem of spatial autocorrelation often
occurs (Guisan and Zimmermann, 2000). Similar to most of the regression techniques, it is
assumed that the individual observations are independent from each other. However, spatial
autocorrelation frequently occurs for many ecological phenomena, possibly resulting in
unreliable parameter estimation or inefficient estimates for LR. A simple approach to
dealing with spatial autocorrelation in observations is to selectively remove some samples to
reduce the level of spatial autocorrelation in the data (Bian et al., 2006). However, certain
aspects of observation, for example, seasonality, can be removed during the thinning
process. Spatial regression approaches, such as spatial autoregressive modelling, can take
into account this dependence in habitat observations without the thinning process (Mertens
and Lambin, 1997). Spatial autoregressive models that deal with a binary dependent variable
are often referred to as spatial logistic regression (SLR) models. The generic equation for a
SLR is given in Eq. (2):

(2)

where y is equal to ln(p/(1 − p)), W is the neighbourhood relationship continuity matrix and
ρ is a parameter that reflects the strength of spatial dependency between the elements of the
dependent variable. The term, ρ × W × y, is incorporated to correct the error introduced by
the spatial autocorrelation in the dependent variables. As a consequence of introducing this
term, the residual errors become independent.

In both LR and SLR, environmental variables are linearly linked to the dependent variable
via a link function (e.g. the right side of Eqs. (1) and (2)). This modelling structure is not
particularly flexible and cannot depict the non-linear relationships between dependent and
independent variables.

A modelling approach that is considered more flexible than LR is artificial neural network
(ANN). ANNs have been used extensively in artificial intelligence (AI) (Rumelhart et al.,
1986). Using non-linear statistical approaches, ANNs adapt the structure of connectivity of a
modelled system such as neuronal networks. They learn by adjusting the weights on its
neurons to minimise error. This approach is considered a promising area of predictive
habitat distribution modelling, since ANN models can be non-linear and species–
environment relationships can often be non-linear (Guisan and Zimmermann, 2000;
Recknagel, 2001). Some studies have shown that, for non-linear relationships and
interactions among variables, neural networks may be better predictors than the generalised
linear statistical models. These studies were mainly based on the principle of a feed-forward
ANN with back-propagation (Rumelhart et al., 1986). The back-propagation approach is the
most widely used approach for ANN training (Lek and Guagan, 1999).

A back-propagation network typically consists of three neuron layers: an input layer, one or
more hidden layers and an output layer each including one or more neurons, as shown in
Fig. 1. Each input neuron represents an environmental variable. Environmental data
observed at habitat-present locations and habitat-absence locations enter the hidden layers.
In the hidden layers, environmental data are summed up and then fed into an activation
function, which generates the output of the patch. The connections between the input patch
and the hidden layers are expressed as an interconnection weight. Through a learning
algorithm, the weights are adjusted iteratively, increasing the agreement between the
observed and predicted presence of the species (Lek and Guagan, 1999). The output layer
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only has one criterion, indicating the presence or absence of a mosquito habitat. Back-
propagation is a non-parametric approach, making very few assumptions about the data.

A major limitation for presence–absence models is that the data on the absence of habitats
are often difficult to obtain (Hirzel et al., 2001). The common solution to this problem is to
simply generate pseudo-absence data by selecting locations randomly from the areas where
habitats are not observed. The pseudo-absence data are then used to represent the
environmental conditions that are unfavourable to habitats. In the following section, the
process by which pseudo-absence data was generated as part of the construction process of
our models will be detailed.

2.2. Profile-type models
Reliance of habitat modelling approaches on both presence and absence data could be
troublesome for those studies which have difficulties in obtaining absence data (Hirzel et al.,
2002). Profile-type models were developed to deal with this problem. These models assume
that habitats are non-randomly distributed regarding environmental variables. For example,
mosquito habitats are expected to occur preferentially in locations with optimal water
availability. The optimal conditions for habitats may be quantified by comparing the water
availability of locations in which the species was observed with that of the whole study area.
The water availability at these two types of locations may differ with respect to its mean and
its variances.

The most popular profile-type model is environmental niche factor analysis (ENFA). It
identifies optimal habitat conditions by computing habitat suitability indexes using
environmental variables and presence-only data (Hirzel et al., 2002). It first transforms
environmental variables into a set of uncorrelated factors by using an approach similar to
principle component analysis (PCA). The first factor is chosen to maximise the variation
between a “global” space and a “focal” space. The global space represents the collective
environmental condition of an entire area, and is defined by the original variables. The focal
space represents the most preferred habitat condition within the area, and is a part of the
global space. The first factor thus represents the species marginality. Each sequential factor
maximises the ratio between the variance of the global space and that of the focal space
remaining in the data (Hirzel et al., 2002). These factors represent the specialization of the
niche. After obtaining these factors, ENFA develops a suitability index for each location by
calculating a combination of the values of each factor on a per-location basis. In order to
account for the differential ecological importance of the factors, equal weighting was given
to marginality and specialization. Since the entire marginality component falls within the
first factor, the specialization component is apportioned among all factors proportionally,
according to their eigenvalue (Hirzel et al., 2002).

Although all four of the aforementioned approaches have achieved considerable success in
predicting habitats for different species, many questions remain regarding the generality of
habitat models. It is unknown whether and how presence-only or the pseudo-absence data
affect the generality of habitat models. The extent to which spatial autocorrelation in data
and the flexibility of habitat approaches affect the generality of models is also unknown.

3. Methods
3.1. Study area, training data and validation data

The study site is a 4 × 4 km area in Kakamega district, western Kenya. The hilly landscape
of the study area is typical of East African highlands. The African highlands are
characterized by alternating rainy and dry seasons with a clear inter-annual variation in
precipitation (Minakawa et al., 2001; Boken et al., 2005). The rainy season usually starts in
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April and lasts 2–3 months. The dry season starts in December and ends in March
(Minakawa et al., 2002). February and May are the most representative months of the dry
and rainy seasons, respectively.

Data availability is a major constraint of mosquito habitat modelling in African countries.
This study used only one data source on the environment, the most recent aerial photography
survey maps. A 20 m interval contour map was digitised from the survey map with a
1:50,000 scale. This contour map was digitised to derive a digital elevation model (DEM)
with 30 m resolution. It is common practice to derive a DEM with a 30 m resolution from
maps with a scale of 1:50,000 (Defense Mapping Agency, 1980). Because mosquito larvae
are constrained by aquatic environments, a stream map was also digitised from the survey
maps and verified by field surveys (Minakawa et al., 2001). Five environmental variables
were then derived from this DEM to describe the aquatic environments in the study area.
Three variables were used to represent surface water availability: curvature, distance to
streams and wetness index. Wetness index indicates soil moisture level in relation to water
flow patterns, which is calculated based on the local upslope contributing area and slope.
Two variables were used to represent habitat conditions: elevation and heatload index. Heat-
load index presents micro-scale solar radiation variation, which is calculated based on
latitude, slope, and aspect. The definitions of these five variables and sources are provided in
Table 1.

Anopheles gambiae sensu stricto is the primary malaria vector species in western Kenya
highlands, constituting more than 95% of malaria-harbouring mosquitoes (Minakawa et al.,
2002). Thorough searches of all identifiable An. gambiae habitats (referred to from here on
as mosquito habitats) were conducted in weeks 1 and 2 of February and May in 2003, 2004
and 2005, generating a total of six point maps of aquatic habitat locations. Note that
although mosquito habitats refer to discrete water bodies in mosquito ecology, this study
adopts a ecological habitat modelling framework and mosquito habitats here refer to
locations where mosquito larvae are found. Detailed information on the habitat identification
approach can be found in Li et al. (2009). Only the data on the presence of An. gambiae
larvae were used in this study, since the quantification of larval abundance is prone to
sampling errors, particularly in large aquatic environments (Chubachi, 1976). The numbers
of habitats observed in these six field trips were 301, 721, 201, 416, 77 and 410 in
chronological order. Based on the field observations, 99.9% of habitats had a diameter of
<50 m. For habitat modelling purposes, 721 locations that were at least 100 m away from all
habitat-presence locations were randomly selected in the study area and these 721 locations
were used to present habitat pseudo-absence locations. To prepare data for the analysis, we
first split each of the six habitat datasets into two parts: 2/3 for model “training” (hereafter
referred to as training data) and 1/3 for model validation or “testing” which are not used in
model construction (hereafter referred to as validation data). To prepare data for LR, SLR
and ANN, each of the training parts were integrated with an equal numbers of locations
selected from the habitat pseudo-absence locations. For example, for data collected in
February 2003 (301 habitat locations, shown in Fig. 2), we first randomly selected 2/3 of
habitat-presence locations, which resulted in 200 locations. We then randomly selected 200
locations from habitat-absence locations (721 locations). We integrated these 200 habitat-
presence locations with 200 habitat-absence locations and created a training dataset
consisting of 400 samples.

To implement SLR and ANN approaches, there was a need to specify several additional
parameters. To use the SLR approach, it is necessary to calculate a weight matrix (the W
term in Eq. (2)) for the dependent variable. The first-order and second-order contiguity
spatial weight matrices are a recommended method for spatial regression analysis (LeSage
and Pace, 2004). In the first-order contiguity matrix, two geographic location i and j are
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neighbors if directly share a border. The second-order contiguity matrix considers two
geographic units i and j are neighbors if they directly share a border or if they have a
common neighbor with which they directly share a border. To calculate contiguity matrix,
point data are usually converted into teisson polygons. These two matrices were both created
for habitat data and, based on a preliminary analysis, the models using the first-order
contiguity spatial weight matrix were found to have a better prediction accuracy. In this
study, the first-order contiguity spatial weight matrix was used. For the SLR approach, we
selected a Bayesian model fitting approach using a truncated normal prior. It is the
recommended approach for model fitting as it takes into account the spatial uncertainty of
the data (LeSage and Pace, 2009). For the ANN model fitting, we selected a probit link
function. This is the link function recommended for binary output data (Huettmann and
Linke, 2003).

Using four approaches and six training datasets, we generated 24 models. ArcMap was used
for data manipulation (http://www.esri.com). ArcGIS extensions that are used to derive the
environmental variables are listed in Table 1. ENFA was implemented using Biomapper 4.0
(http://www2.unil.ch/biomapper). LR, SLR and ANN were carried out in a MATLAB
environment. The MATLAB extensions used in this study include the Neural Network
Toolbox 6.0 (http://www.mathworks.com/products/neuralnet/) and the Econometrics
Toolbox (http://www.spatial-econometrics.com).

3.2. Assessing the accuracy and the temporal generality of models
There are several metrics that can be used to evaluate model performance, for example, R
square. These metrics typically examine how well a model was fitted to its training dataset.
In the current study, the major concern is the generality of habitat models, hence cross-
validation was used. In cross-validation for habitat models, models are first applied to data
collected at both habitat-presence and habitat-absence locations. The percentages of
correctly predicted habitat-presence and habitat-absence locations are calculated. The
models with the highest accuracies are considered the model with the strongest generality. In
this study, the habitat-absence locations are not based on the field observations and they are
selected based on the assumption that the absence locations are 100 m away from the
habitat-presence locations. To ensure the robustness of the model validation, the datasets
used in the validation are from the field observations and pseudo-absence locations were not
used. To test whether the 24 predictive maps fitted the training data from which they were
calculated, each of them was compared with their training dataset (excluding the habitat-
absence locations). To test whether the 24 models could be applied to the locations that were
not utilised in generating the training dataset, each of them was applied to its testing set
(hereafter referred to as testing data in the same time period). The prediction accuracy based
on training datasets could be biased, since models could be overly fitted to the data. In
comparison, the prediction accuracy based on testing data can be more reliable in defining
the predictive power of models. To examine whether these 24 maps could be applied to
other time periods, each of them was applied to five other habitat datasets collected in
different time periods (hereafter referred to as testing data in different time periods).
Therefore, each of the 24 maps was applied to seven datasets. The outputs are values
ranging from 0 to 1, denoting the probability of occurrence. To decide whether habitats
occur in a location, a cut-off point for the probability of occurrence has to be chosen. If the
probability of occurrence of a location is higher than this cut-off point, this location is
considered a predicted habitat location. In this study, if a predicted value was greater than
0.5, it was considered a predicted habitat-presence location; otherwise, it was considered a
predicted habitat-absence location. To estimate the model accuracy, the percentage of
predicted habitats among the observed habitats was calculated for each model and each
testing datasets. This resulted in 168 percentage values.
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3.3. Spatial comparison of habitat models
To generate habitat probability maps, the 24 habitat models were applied to the five
environmental variables for the entire study area. This resulted in 24 habitat probability
maps, each of which provided any location of the study with a probability predicting the
possibility of the habitat occurrence. To simplify these maps, they were converted to binary
maps predicting habitat-presence and habitat-absence locations. The percentage of habitat
locations was calculated for each of these maps. Each of the 24 binary maps was compared
against two other binary maps developed using the same habitat dataset and a different
approach (e.g. the binary map based on LR and habitat data collected in February 2003 was
compared against three maps: (1) the binary map based on ENFA and data collected in
February 2003; (2) the binary map based on SLR and data collected in February 2003; (3)
the binary map based on ANN & data collected in February 2003). In total, 24 pairs of
models were compared against each other. For each pair, percent-age of pixels where two
maps have the same prediction (i.e. both habitat-presence and habitat-absence locations) was
calculated.

4. Results
4.1. Habitat–environment relationships

Three of the selected approaches have outputs (e.g. the p-values and coefficients) that
quantify the habitat–environment relationships: ENFA, LR and SLR. We omit such outputs
from ENFA, since they are published in our previous study (Li et al., 2009). Table 2 shows
the coefficients and p-values of six LR models and six SLR models. In this study, if a
variable has a p-value > 0.05, we consider that this variable is significantly related to
mosquito habitats. Table 2 demonstrates that elevation, shown in Fig. 2, has the best
predictive power among all variables as it is significant in all 12 models (it is always
negatively related to the habitats). The heat-load index has the poorest predictive power, as
it lacks statistical significance in all six time periods. In general, the results on the
significance levels of variables for most of the LR and SLR models developed using the
same training dataset are similar; it is the coefficients of variables that vary. For example,
that the coefficient of heatload index is negative in LR model and is positive in SLR for data
collected in May 2004. Despite of these differences, we found no obvious seasonal patterns
in the p-values and coefficients.

4.2. Habitat model accuracy
As described in the previous section, our model validation procedure resulted in 168
percentage values. These percentage values are included in Table 3, which consists of three
sub-tables. Each sub-table includes validation results for the models based on datasets
collected in one of the sampling years. Each sub-table includes two parts: the left side
describes validation results for the models based on February datasets, and the right side
describes validation results for the models based on May datasets.

To determine if models based on habitat data from one season can be used to predict habitat
locations at a different season, the prediction values of each method are summarized based
on the seasons of testing datasets (values in grey cells in each sub-table). Based on sub-
tables (a), (c) and (e), models based on data from dry seasons consistently perform about 5–
15% better in predicting habitats in dry seasons in different years than predicting habitats in
wet seasons in different years. Based on sub-tables (b), (d) and (f), models based on data
from wet seasons also consistently perform 1–7% better in predicting habitats in dry seasons
in different years than predicting habitats in wet seasons in different years. Results also
show that models based on wet season habitats perform better in predicting wet-season
habitats than models based on dry season habitats (Table 3).
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The prediction accuracy based on training datasets is described in the third row of each sub-
table. Based on these values, three of the approaches, LR, SLR and ANN can all correctly
predict at least 76% of habitat locations. ENFA has a slightly poorer performance with
prediction accuracies lower than 67%. The highest accuracy, 94.1%, is achieved by the SLR
model based on the February 2005 dataset. Based on the same training dataset, four of the
six ANN models outperform all other models.

The percentages of correctly predicted habitats from testing datasets in the same time
periods are displayed in the fourth row of each sub-table. Based on these percentages, three
of the approaches, LR, SLR and ANN, also produce satisfactory results, correctly predicting
at least 75% of habitat locations. ENFA still has a relatively poor performance with
prediction accuracies lower than 60%. The highest accuracy, 96%, again is achieved by the
SLR model based on the February 2005 dataset. Based on the validation using the testing
datasets, three of the six ANN models outperform other models and three of the six SLR
models outperform other models developed using the same training dataset. By examining
the percentages of correctly predicted habitats based on testing data in other time periods
(the fourth to eighth rows of each sub-table), it is noticeable that more than half of these
percentage values are slightly lower than the percentage values based on testing datasets in
the same time period. However, all approaches can accurately predict over 76% of habitats
in other time periods, except ENFA. When applied to testing datasets in other time periods,
the frequency with which LR, SLR and ANN models outperform each other based on the
training dataset in the same time period is similar. Only one of the six SLR models
outperforms the LR and ANN models developed based on the same testing datasets. Among
all models, the ANN model based on the May 2005 testing dataset achieves the highest level
of prediction accuracy when applied to habitats observed in other areas.

4.3. Spatial comparison of habitat models
As shown in Table 4, the percentages of suitable habitat area in the study area predicted by
24 models range from 14% to 31%, On average, ENFA models predict fewer habitat
locations compared with other models and ANN models predict fewer habitat locations
compared with LR and SLR models.

Table 5 shows the percentages of pixels where any two models based on different modelling
approaches but same habitat dataset have the same predictions. These percentages are used
as an indicator showing the agreements between habitat models produced using different
approaches. Table 5 shows that models based on different modelling methods have
reasonable agreement with each other and in at least 84% of study area, they produce the
same prediction results. Pairs of LR and SLR models in general are more similar to each
other than other pairs of models.

5. Discussion and conclusions
5.1. The generality of spatially predictive habitat models

In this study, we investigated the temporal and spatial generality of four habitat modelling
approaches. Our results provided answers to four critical questions that we asked of
mosquito habitat modelling and management. The results from this study provide a
promising answer to the first and second question – does environment–habitat relationships
change over time and can habitat models based on data collected in a particular time be used
to predict habitat occurrence in a different time? Consistent with our previous analysis using
ENFA (Li et al., 2009), our results indicate that the habitat–environment relationship does
change between different time periods. This indicates that it is better to use the data from the
same season to predict habitat distribution in a particular season. Although we found no
obvious seasonal patterns in the model parameters, our results indicate that dry season

Li et al. Page 8

Acta Trop. Author manuscript; available in PMC 2013 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



habitats are easier to predict than wet season habitats and models based on wet season
habitat data have good predicting power toward dry season habitats. If only one sampling of
habitats is possible, wet season may be a better sampling time periods than the dry season.
We also found that the changes in habitat–environment relationships have a limited impact
on the accuracy of certain habitat models. Using data collected in one field survey in either
the dry or rainy seasons, we have developed habitat models that can be used to predict
habitats in other time periods, with satisfactory prediction accuracies. This has important
implications for habitat management because habitat locations are relatively predictable and
therefore localized habitat management could be considered.

Our third question: are there any benefits to producing pseudo-absence data for habitat
modelling? Our results indicate that although ENFA models are entirely based on field
observation, their accuracies are relatively low. A possible reason is that the difference
between the environmental conditions of habitats and those of the entire areas is not
significant enough for the ENFA models to sufficiently predict areas that are suitable for
habitats. In contrast, the presence–absence models in this study achieved satisfactory results,
providing evidence to support the use of random locations that are at least 100 m away from
habitat-presence locations as pseudo-absence locations.

One further question addressed in this study pertains to the flexibility of modelling
approaches and the impact of flexibility on the temporal generality of models. We found that
the temporal generality of a LR approach is slightly better than an ANN approach based on
the testing datasets in other time periods. This is probably due to the flexibility of ANN
models, which may be overly fitted to the data including the noise in the data (e.g. errors in
GPS data). Our results are consistent with other studies that compare a LR and an ANN
approach (Dreiseitl and Ohno-Machado, 2002). The SLR approach is also more flexible than
the LR approach, since it is capable of taking into account the spatial autocorrelation in
dependent variables (Mertens and Lambin, 1997; Telford and Birks, 2005). Although our
results indicate the existence of spatial autocorrelation in the habitat data (ρ is significant in
all six SLR models in Table 2), the LR models on average outperformed the SLR models.
Spatially, the predictions based on LR models and SLR models are similar. This further
indicates that the flexibility of model approaches might not have a strong influence on the
temporal generality of presence–absence models at least in the case of mosquito habitat
modelling in African highlands. Our last question concerns the impact of spatial
autocorrelation on the temporal generality of models. SLR was the only modelling approach
that explicitly took into account the spatial autocorrelation of the data. We found its
accuracy to be similar to the LR models. The possible explanation could be that the spatial
structure in the dependent variable varies in different time periods. Our previous study
indicates that the clustering level of habitats does indeed change across seasons and years
(Li et al., 2009). Each of the SLR models is calibrated based on the quantification of the
particular spatial structure of the dependent variable observed at a particular time period.
This may limit its ability to generalise to other time periods.

5.2. Recommendations for mosquito habitat models
All four models used in this study have their own characteristics. ENFA does not require the
data on the absence of habitats. Despite its moderate performance in predicting the locations
of mosquito habitats, ENFA would remain as one of the options for habitat modelling if
pseudo-absence data are proven to be unreliable. Based on training data of February 2003,
the SLR model achieved the highest prediction accuracy among all 24 models, which means
that a SLR approach could provide the most thorough understanding of the data. Based on
training data, ANN models consistently outperformed all other models, except two SLR
models. This also indicates that ANN can better identify habitat–environment relationships
than LR and ENFA approaches.
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However, when model generality is taken into account, the best modelling option for
mosquito habitat modelling in African countries appears to be the simplest modelling
approach: LR models. First of all, the models produced by LR have a good ability to
generalise, as they can accurately estimate at least 75% of habitats using habitat data
collected in a single field trip. Secondly, the LR models have a good agreement with more
complex modelling approaches, namely, SLR models and ANN models. Finally, the ease
with which they are constructed suggests that LR models remain the ‘gold standard’ until
their performance is substantially improved upon.

5.3. Limitations and future directions
The use of larval habitat maps has become increasingly popular in malaria control programs
(Coetzee et al., 2000). Our study adds to the confidence of focalized mosquito habitat
management and provides simple solutions to habitat modelling. However, there are several
limitations regarding the current study. First, many malaria endemic areas are lowland areas,
which may have very different landscapes (Coetzee et al., 2000). Further investigations are
needed to confirm that our modelling approach can be applied to other areas or other
geographic scales. Second, we only collected habitat data twice a year and it is largely
unknown whether habitat patterning can be extrapolated to other times of the year.
Additional studies are needed to explore the spatial patterns of habitats in months other than
February and May. Third, in using a threshold of 0.5, our calculations for predictive efficacy
may lose important information. Rather than a binary outcome of presence versus absence, a
per-habitat probability of occurrence may be more informative to program managers.
Finally, as the emphasis of this study is on the generality of habitat models, many other
aspects of the models were not explored here. SLR and ANN approaches may excel the LR
method in other, unexplored ways. For example, the SLR approach can help reveal the
underlying structure in the habitat data. The Bayesian approach for SLR model fitting can
provide useful information on the stability of parameter estimation. The ANN models can be
made more flexible by adding more hidden layers in the structure. Although we recommend
the LR approach for mosquito habitat modelling, the other two approaches may yet prove
better options if the modelling purposes require understanding the underlying structures of
habitat data.

One of our recent studies revealed significant temporal variability in habitat locations and
patterns (Li et al., 2009). Taking these two studies together, our results indicate that
mosquito habitat locations may have great spatial and temporal variability within the areas
suitable for habitats. Where observational studies are inappropriate for practical purposes,
habitat models can be used to guide the targeting of habitats.
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Fig. 1.
Illustration of a three-layered neural network with one input layer, one hidden layer and one
output layer.
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Fig. 2.
Map showing the elevation and distribution of larval habitats in May 2003 (white dots).
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Table 1

Name, definition and ArcGIS extension for environmental variables used in the analysis.

Name Definition Value range ArcGIS extension

Curvature The probable degree of flow accumulation −3.2 to 3.6 Spatial analyst

Digital elevation model Elevation 1420–1540 m Spatial analyst

Distance Distance to the nearest streams 0–565 m Spatial analyst & TAUDEM 4.0

Heat load index The potential solar radiation (McCune and Keon, 2002) 1.0–1.3 Heat load index 1.0

Wetness index Soil moisture level (Beven and Kirkby, 1979) 7.4–26.2 TAUDEM 4.0
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Table 3

Model accuracies.

Approach

(1) Models developed using data collected in 2003

Models based on data in February 2003 (a)

Approach

Models based on data in May 2003 (b)

LR SLR ANN ENFA LR SLR ANN ENFA

Training dataset 86.5% 87.0% 87.0% 56.8% Training dataset 82.7% 84.2% 83.3% 61.3%

Testing dataset 88.8% 82.7% 88.8% 42.8% Testing dataset 79.5% 81.6% 80.3% 59.3%

 May-03 79.1% 78.2% 78.2% 48.9%  February-03 87.4% 87.4% 88.2% 61.1%

 February-04 81.6% 83.8% 81.2% 51.0%  February-04 87.6% 87.2% 86.5% 62.9%

 May-04 84.7% 84.2% 87.0% 47.8%  May-04 90.2% 90.9% 89.1% 64.1%

 February-05 91.1% 89.1% 95.1% 58.9%  February-05 96.0% 95.1% 95.1% 69.9%

 May-05 78.5% 78.4% 71.9% 50.0%  May-05 81.1% 78.0% 81.5% 63.1%

Average of the above five
testing results

83.0% 82.7% 82.7% 51.3% Average 88.5% 87.7% 88.1% 64.2%

February average 86.3% 86.4% 88.1% 55.0% February average 90.3% 89.9% 89.9% 64.6%

May average 80.8% 80.2% 79.0% 48.9% May average 85.7% 84.5% 85.3% 63.6%

Approach

(2) Models developed using data collected in 2004

Models based on data in February 2004 (c)

Approach

Models based on data collected in May 2004 (d)

LR SLR ANN ENFA LR SLR ANN ENFA

Training dataset 87.3% 86.6% 88.1% 56.7% Training dataset 89.2% 92.1% 93.1% 58.5%

Testing dataset 84.9% 84.9% 88.0% 42.7% Testing dataset 81.2% 82.6% 81.9% 40.5%

 February-03 87.9% 86.4% 79.8% 46.9%  February-03 85.4% 86.9% 86.1% 51.5%

 May-03 86.1% 85.7% 88.0% 48.7%  May-03 77.4% 79.1% 77.7% 49.3%

 May-04 86.8% 87.0% 84.6% 48.5%  February-04 80.1% 84.6% 86.5% 53.6%

 February-05 92.1% 95.1% 90.1% 57.5%  February-05 94.1% 93.1% 95.1% 63.0%

 May-05 78.0% 77.6% 64.4% 52.5%  May-05 76.9% 76.3% 76.0% 53.9%

Average of the
above five testing
results

86.2% 86.4% 81.4% 50.8% Average 82.8% 84.0% 84.3% 54.3%

February average 89.1% 90.4% 89.0% 53.1% February Average 85.6% 86.4% 86.3% 54.6%

May average 84.2% 83.7% 76.3% 49.3% May Average 78.5% 80.5% 81.2% 53.8%

Approach

(3) Models developed using data collected in 2005

Models based on data collected in February
2005 (e)

Approach

Models based on data collected in May 2005
(f)

LR SLR ANN ENFA LR SLR ANN ENFA

Training dataset 92.2% 94.1% 88.2% 67.0% Training dataset 75.8% 76.9% 77.7% 56.7%

Testing dataset 92.0% 96.0% 92.0% 59.0% Testing dataset 75.0% 75.0% 75.0% 42.7%

 February-03 87.9% 86.4% 79.8% 47.7%  February-03 87.6% 84.6% 87.4% 44.4%

 May-03 86.1% 85.7% 88.0% 47.1%  May-03 78.2% 77.0% 79.0% 43.2%

 February-04 86.1% 85.7% 88.0% 49.7%  February-04 80.1% 76.7% 85.7% 45.7%

 May-04 86.8% 87.0% 84.6% 50.8%  May-04 88.6% 87.2% 91.2% 46.8%

 May-05 78.0% 77.6% 64.4% 48.6%  February-05 95.1% 95.1% 98.0% 60.3%
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Approach

(3) Models developed using data collected in 2005

Models based on data collected in February
2005 (e)

Approach

Models based on data collected in May 2005
(f)

LR SLR ANN ENFA LR SLR ANN ENFA

Average of the
above five testing
results

85.0% 84.5% 81.0% 48.8% Average 85.9% 84.1% 88.3% 48.1%

February average 86.4% 86.3% 86.3% 48.9% February average 84.8% 82.9% 85.9% 44.8%

May average 84.0% 83.3% 77.4% 48.7% May average 87.6% 85.9% 91.9% 53.0%
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Table 4

Percentage areas that are predicted as habitats by 24 models.

LR SLR ANN ENFA

Models based on data in February 2003 26.7% 27.8% 26.2% 15.1%

Models based on data in May 2003 29.4% 31.7% 25.0% 21.0%

Models based on data in February 2004 28.8% 31.0% 23.2% 15.6%

Models based on data in May 2004 24.5% 26.6% 23.5% 15.1%

Models based on data in February 2005 24.9% 24.9% 29.3% 14.4%

Models based on data in May 2005 25.7% 23.8% 26.6% 14.1%

Average 26.7% 27.6% 25.6% 15.9%
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