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Abstract 

Improving the Observational Temperature Record 

by 

Ezekiel Jon Hausfather 

Doctor of Philosophy in Energy and Resources  

University of California, Berkeley 

Professor Margaret Torn, Chair 

 

The observational temperature record is a critical part of our understanding of changes in 
Earth’s climate. However, large uncertainties remain in our historical measurements of surface, 
ocean, and atmospheric temperatures. Many of these are introduced by changes in 
measurement techniques over time, such as changing instrumentation, time of observation, or 
changes to the surrounding environment not representative of the broader region. Reducing 
these uncertainties is important to improve our understanding of long-term climate change, and 
has implications for assessing the magnitude of inter-decadal climate variability, evaluating the 
performance of climate models, determining the remaining carbon budget to achieve mitigation 
targets, among other issues.  

This dissertation is structured around four lead-authored papers that advance our understanding 
of the observational temperature record. The first paper, titled Quantifying the Effect of 
Urbanization on U.S. Historical Climatology Network Temperature Records, quantifies the 
extent to which changes in urban form surrounding measurement stations have biased long-
term temperature records. By comparing temperature trends at urban and rural stations using 
four different proxy measures of urbanity, we find systematic differences between the raw 
(unadjusted) urban and rural temperature trends throughout the USHCN period of record.  
Based on these classifications, urbanization accounts for 14% to 21% of the rise in unadjusted 
minimum temperatures since 1895 and 6% to 9% since 1960.  The homogenization process 
employed by NOAA effectively removes this urban signal such that it becomes insignificant 
during the last 50-80 years.  In contrast, prior to 1930, only about half of the urban signal is 
removed. This suggests that biases in the land temperature record from urbanization are 
potentially significant, but can be effectively detected and removed when the network of 
observation stations is sufficiently dense to allow for neighbor-based pairwise homogenization. 

The second paper is titled Evaluating the Impact of U.S. Historical Climatology Network 
Homogenization Using the U.S. Climate Reference Network. In this paper the homogenization 
of surface temperature records in the U.S. is assessed by comparing the old weather station 
network (USHCN) to a new state-of-the-art U.S. Climate Reference Network (USCRN). The new 
U.S. Climate Reference Network provides a homogenous set of surface temperature 
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observations that can serve as an effective empirical test of adjustments to raw USHCN 
stations. By comparing nearby pairs of USHCN and USCRN stations, we find that adjustments 
make both trends and monthly anomalies from USHCN stations much more similar to those of 
neighboring USCRN stations for the period from 2004-2015 when the networks overlap. These 
results improve our confidence in the reliability of homogenized surface temperature records.  

The third paper, titled Assessing Recent Warming Using Instrumentally Homogeneous sea 
Surface Temperature Records, seeks to solve a substantial disagreement between warming 
rates in different Sea surface temperature (SST) records over the past two decades. SST 
records are subject to potential biases due to changing instrumentation and measurement 
practices. Significant differences exist between commonly-used composite sea surface 
temperature reconstructions from NOAA’s Extended Reconstruction Sea Surface Temperature 
(ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological 
Agency’s Centennial Observation-Based Estimates of SSTs (COBE-SST) in recent years. The 
update from ERSST version 3b to version 4 resulted in an increase in the SST trend estimate 
during the last 18 years from 0.07°C/decade to 0.12°C/decade, indicating a higher rate of 
warming in recent years and eliminating some of the apparent “pause” in global surface 
temperatures over that period. We show that ERSST version 4 trends generally agree with 
largely-independent, near-global and instrumentally-homogeneous SST measurements from 
floating buoys, Argo floats, and radiometer-based satellite measurements that have been 
developed and deployed during the past two decades. We find a large cooling bias in 
ERSSTv3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to 
present with respect to most series examined. These results suggest that reported rates of SST 
warming in recent years have been underestimated in these three datasets due to biases in 
ship-based measurements. 

The fourth paper, titled Evaluating the Performance of Past Climate Model Projections, looks at 
how well historical climate models published since 1970 have performed compared to observed 
temperature changes in the years after they were published. Climate models provide an 
important way to understand future changes in the Earth’s climate. Model projections rely on 
two things to accurately match observations: accurate modeling of climate physics, and 
accurate assumptions around future emissions of CO2 and other factors affecting the climate. 
The best physics-based model will still be inaccurate if it projects future changes in emissions 
that differ from reality. To account for this, we look at how the relationship between temperature 
and atmospheric CO2 (and other climate drivers) differs between models and observations. We 
find that climate models published over the past five decades were generally quite accurate in 
predicting global warming in the years after publication, particularly when accounting for 
differences between modeled and actual changes in atmospheric CO2 and other climate 
drivers. This research should help resolve public confusion around the performance of past 
climate modeling efforts, and increases our confidence that models are accurately projecting 
global warming. 

Work done in this dissertation has had a notable impact on our understanding and estimates of 
temperatures. This includes ensuring that urbanization is not biasing our record of land 
temperatures, testing the performance of land temperature homogenization, resolving 
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differences between ocean temperature records in recent decades, developing a novel sea 
surface temperature record to help better understand WW2-era uncertainties, and evaluating 
recent changes in ocean heat content. In an encouraging sign of the impact of our work, the new 
HadSST4 temperature product from the UK Met Office prominently features comparisons with 
the instrumentally homogenous sea surface temperature records we developed. 

Similarly, the work that I and coauthors have undertaken has changed the approach used in 
evaluating the performance of GMST climate model projections, demonstrating the need to use 
common coverage and blended SAT/SST fields to ensure like-to-like comparisons with 
observations. Evaluating the future projections of old climate models improves our confidence 
that the current generation of models is accurately capturing the physical processes driving 
GMST change. This work on evaluating old climate models will be featured prominently in 
Chapter 1 of the IPCC 6th Assessment Report, where I serve as a contributing author.
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I. INTRODUCTION 

 

1. ACCURATELY MEASURING THE CHANGING CLIMATE 

 

Global temperature records have long been a critical part of our understanding of changes in 

Earth’s climate. First estimated by Guy Callendar in 1938,1 global temperatures have undergone 

many changes and improvements over the years, including assembling large datasets of 

historical observations and correcting for inhomogeneities introduced by changing 

instrumentation and measurement spatial and temporal characteristics.2,3 The number and type 

of measurements has also expanded dramatically in recent decades, particularly after the 

advent of satellite-based temperature observations in the 1970s and the deployment of buoy 

and ARGO ocean measurement networks in recent decades.  

Estimates of global temperatures tend to paradoxically suffer from both an underestimate and 

overestimate of uncertainty by users. Climate modelers and others who employ temperature 

products for comparisons often underappreciate both uncertainties in specific records and 

differences between observational records, as well as nuances regarding the spatial coverage 

of measurements and what things are actually being measured.4 On the other hand, 

adjustments to temperature records or differences between temperature records have been 

portrayed in front of the United States Congress and in other public venues as calling into 

question the extent to which climate models are accurate or global warming is even occurring.5   

Despite numerous groups of researchers around the world producing global temperature 

records, notable periods of disagreement and uncertainty remain. Figure I.1, below, shows a 

number of global surface temperature records (with a 5-year lagging mean smoothing applied to 

each). These smooth records reduce short-term variability associated with El Niño/Southern 

Oscillation (ENSO) events and reveal a number of different periods where records agree or 

diverge. 
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Figure I.1. 5-year lagging mean of global surface temperature from NASA’s GISTEMP,6 

Hadley/UEA’s HadCRUT4,7 NOAA’s GlobeTemp,8 Cowtan and Way,9 Berkeley Earth,10 and 

ERA511 from January 1880 through October 2019. 

When examining the global temperature record, and a number of periods of substantive 

disagreement stand out. One particular divergence of interest both to policymakers and the 

climate modeling community occurs subsequent to the year 1998, when some estimates of 

surface temperatures show less warming between 1998 and 2014 (the so-called “hiatus” 

period), though these differences have become smaller in later revisions of some surface 

temperature records.12 

There are large differences in temperature records both before and after the World War 2 

(WW2) period, between 1920 and 1980. These emerge primarily from differences in sea surface 

temperatures (SSTs) between the UK’s Hadley Centre HadSST record13 and NOAA’s ERSST 

record14. Smaller differences are present in the post-2000 period, driven by the differences 
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among ocean temperature records and by decisions about interpolation in regions of sparse 

coverage like the Arctic.15,16  

Much of the differences between surface temperature records come down to adjustments made 

to raw observations to account for various measurement inhomogeneities. For land surface 

temperature measurements these include changing temporal and spatial observation 

availability, station moves,17 instrument changes,18 time of observation changes,19 and changes 

in microscale or mesoscale characteristics like urbanization or other land use patterns.20,21 Over 

the oceans much of the difference in records deals with changes in instrumentation, from 

wooden buckets to canvas buckets to engine room intake valves and finally to buoys.3  

An example of the adjustments made to land and ocean components of NOAA’s global surface 

temperature records are shown in Figure I.2, below. These are generally characteristic of the 

adjustments made to all surface temperature records, though notable differences arise over 

some specific periods as previously discussed. 

 

 

Figure I.2. Raw and adjusted to global land temperatures (left) from NOAA GHCNv4 data8 and 

ocean temperatures (right) from ICOADS and ERSSTv4.14 

Adjustments to land temperature records have a relatively modest impact from 1970 to present. 

Adjustments to land temperatures before 1970 reduce global temperatures, increasing the 

overall 1880-2017 land trend by around 16%.  Adjustments to ocean temperatures have the 

opposite effect, increasing past temperatures prior to 1940 and reducing the 1880-2017 ocean 
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trend by around 36%. Overall 1880-2017 global temperature trends are reduced by around 20% 

due to adjustments, but trends from 1970 to present are increase by a modest 4%.  

 

2. THE IMPORTANCE OF GLOBAL TEMPERATURE RECORDS 

 

There are sizable differences between observational temperature records during a number of 

periods over the past 150 years. There are a number of different periods where the divergences 

in observational records are critically important. One that has gotten significant attention in 

recent years is the question about the extent to which there has been a detectable slowdown or 

“hiatus” in global temperatures post-1998. While the question is somewhat problematic given 

the choice of a large El Niño event at the start of the hiatus period, the extent to which a hiatus 

is detectable during the 1998-2014 period depends quite a bit on the choice of global 

temperature records.22 

In particular, a 2015 paper in Science by NOAA’s Tom Karl and colleagues received an 

immense amount of attention after they released a revised global temperature record that 

showed little detectable slowdown between 1998 and 2014.23 This was primarily due to the 

inclusion of an updated SST record (moving from ERSSTv3b to ERSSTv4), which included 

corrections for a bias introduced by the transition from ship-based measurements to buoy-based 

measurements and weighted buoy-based measurements more in the resulting reconstruction.14 

This new temperature record differed noticeably from other SST records like HadSST3,13 and 

resulted in considerably political controversy with the US Congress issuing subpoenas for the 

emails of the scientists involved. Thus understanding why SST records diverge during this 

period and determining which record is the most accurate has significant relevancy for both 

policymakers and the scientific community. 

These post-2000 differences also have had a large impact on model-observation comparisons 

in recent years. Depending on the observational record used there may or may not be 

detectable divergences between model projections and observed temperatures.22 The choice of 

observational record also impacts calculations of observationally-based estimates of transient 

climate response and equilibrium climate sensitivity.24 While many observationally-based 

climate sensitivity estimates show lower sensitivity than seen in models,25 some of this 

disagreement disappears when more spatially complete observational records are used and 
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when they are compared to model fields which similarly sample SSTs over the ocean and 

surface air temperatures over land.24 

Another issue where uncertainty in observational temperature records is important is the 

estimation of carbon budgets. A central point in the debate about remaining allowable emissions 

is the amount of warming that has occurred since the late 1800s. A global temperature target of 

1.5°C or 2°C above preindustrial depends a great deal on how preindustrial is actually defined. 

Unfortunately, the definition of preindustrial is quite vague, and the choice of both baseline and 

observational record has a big impact on remaining carbon budget.26,27 The period prior to 1900 

in particular is subject to large uncertainties, and different groups estimate a range of 1°C to 

1.2°C warming in 2017 with respect to a 1880-1900 baseline, potentially reducing the allowable 

carbon budget to limit warming to 1.5°C by up to 40% depending on the observational record 

chosen. Better accounting for global temperature prior to 1800 as well as in more recent years 

can help narrow the uncertainty surrounding allowable future emissions. 

 

3. EFFECTIVELY EVALUATING CLIMATE MODEL PERFORMANCE 

 

Climate models are one of our most important tools to understand and project past and future 

changes to Earth’s climate. Assessing the performance of climate models compared to 

observations can help identify where current models may be performing poorly, and can inform 

future model improvements. Understanding the historical performance of the current generation 

of climate models can also increase (or decrease) confidence in the accuracy of future 

projections. 

While large differences exist among climate models, as represented in model ensembles-of-

opportunity like CMIP5,28 climate modelers can at times discount the large uncertainties present 

in some observational records. While uncertainties in modern global mean surface temperatures 

are relatively small, differences among observational records are still important when assessing 

short periods (such as the 1998-2014 period). Uncertainties become larger further back in time, 

with particularly large uncertainties in sea surface temperatures around the WW2-era and global 

temperatures prior to 1880. Large uncertainties also exist for tropospheric temperatures, with 

large differences between groups interpreting Microwave Sounding Unit (MSU) and Advanced 

Microwave Sounding Unit (AMSU) data.29,30 Reanalysis products, which are increasingly used to 
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provide spatially and temporally-complete estimates across hundreds of different climate 

variables, may also be subject to temporal inhomogenites in the data they ingest.  

Understanding and properly incorporating observational uncertainties is essential to properly 

evaluating climate model performance. In a number of cases – ocean heat content, for example 

– apparent mismatches between observations and model projections have been due to 

observational biases later corrected.31 

When comparing models and observations it is also essential to make like-to-like comparisons 

of observational and model fields. For example, many observational temperature products have 

gaps associated with limited spatial coverage, particularly in regions like the Arctic and in the 

pre-satellite era.9 Model fields should be masked to ensure the same temporal/spatial coverage 

as observations, instead of comparing globally complete estimates to more fragmentary ones. 

Observations often comprise a combination of different measurement techniques. For example, 

the iconic observational global mean surface temperature (GMST) record is actually a 

combination of surface air temperatures (SAT) over the land and SSTs over the ocean.4 While 

this was previously assumed to be comparable with the global surface air temperature field 

produced by climate models, work by myself and colleagues in 2015 found notable differences 

in the rate of warming between sea surface temperatures and surface air temperatures over the 

ocean in climate models. Creating blended SAT-over-land and SST-over-ocean model fields –

 along with masking models to observational coverage – explained around 40% of the apparent 

model-observational mismatch during the 1998-2014 “hiatus” period.4   

Current-generation climate models are often compared to observations through “hindcasts” 

where observationally-based radiative forcing estimates are used to project historical 

temperatures from the mid-1800s onward. However, these hindcasts are not always an 

independent test of model skill. Some modeling groups have explicitly selected tunable 

parameters to improve GMST hindcast performance,32 while others have implicitly done so, 

using poor hindcast performance as a reason to reassess parameter choices.33 

Evaluating the performance of future projections from past climate models provides a more 

robust test of model skill, though it limits the assessable models to those produced at least 15 

years ago when assessing GMST due to the internal variability.34 In a recent paper we found 

that historical climate models show substantial skill in their future projections, with 10 of 17 

model projections evaluated being statistically indistinguishable from observations on a 
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temperature vs time basis and 14 of 17 on an implied transient climate response (TCR) – e.g. 

the relationship between temperature change and forcing change.34 

 

4. STRUCTURE OF THE DISSERTATION 

 

This dissertation focuses on three distinct but related topic areas: land temperatures, ocean 

temperatures, and climate model/observation comparisons. Each topic area is the subject of 

one of the three dissertation chapters. Four published peer-reviewed papers are included in 

which I was the lead author: two on land temperatures, one on ocean temperatures, and one on 

model/observation comparisons. 

Each chapter includes an introduction and discussion, in addition to the published papers. Each 

published paper includes its own separately numbered references and figures as appeared in 

print. References outside of the published papers are sequentially numbered throughout the 

document, and can be found in the additional references section at the end of the dissertation. A 

conclusions section at the end of the dissertation summarizes the results of each chapter and 

discusses general conclusions, outstanding questions, and additional research projects. 

Finally, the dissertation appendix includes 15 additional papers either published or currently 

submitted on topics included in the dissertation on related subjects. These are divided into 

sections corresponding to the dissertation chapters, as well as an “other subjects” section for 

papers that do not fit under the three topic areas. 
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II. LAND TEMPERATURE HOMOGENIZATION 

 

Land temperature observations come from weather stations located around the world. Different 

observational temperature products contain data from as little as ~5,000 stations (CRUTEM4)34 

to as many as ~32,000 (Berkeley Earth)10. In recent years, there has been a concerted effort by 

different groups including Berkeley Earth and ISTI35 (both of which include the author as a 

member) to improve our collection of historical land temperature observations and increase the 

amount of data available for researchers to use. 

Uncertainties associated with land temperature records arise from factors including instrument 

changes, station moves, time of observation changes, urbanization, and other changes in the 

environment surrounding station. These are generally detected and corrected via pairwise 

homogenization approaches that work by iteratively calculating difference series between each 

individual stations and its geographically proximate neighbors and identifying and removing 

localized breakpoints.36 As long-term climate changes are not expected to result in significant 

localized heterogeneity in temperature changes, breakpoints found at individual stations but not 

in neighboring stations can generally be assumed to be localized biases (though this has 

limitations in regions with more sparse station coverage). 

The research on land temperatures in this dissertation focuses on three areas:  

1) Determining the impact of urbanization and other changes in station characteristics on 

land temperature records through comparison of trends in urban and rural stations.  

2) Examining the efficacy of homogenization through comparisons with both homogenous 

reference networks and tests using synthetic data.  

3) Collaborating with other researchers on the design of a global land temperature 

reference network that would provide more accurate measurements going forward. 

 

1. URBAN HEAT ISLANDS AND OTHER MESOSCALE INFLUENCES 

 

The structure of urban areas around the world has changed dramatically over the past century 

as global population has expanded and people have migrated from rural to urban areas. 

Similarly, land use has changed as agriculture has expanded (or contracted) in different regions 



	9	

and forests have been cleared or allowed to regrow. When a weather station has continuous 

readings for 50 or 100 years, its local environment may experience large changes over that 

period.  

Urbanization has long been considered a potential bias for temperature records.37 The U.S. 

provides a dense network of long-lived measurement stations along with good metadata on 

urban characteristics, providing an opportunity to compare long-term warming differences 

between stations that are currently rural and those currently urban. While in principal stations in 

rural and urban areas should warm at roughly the same rate if their surrounding environments 

remain relatively unchanged, in practice many sites that were originally rural have been 

transformed into suburban or urban areas over the lifetime of the station (in the US, there are 

relatively few situations where the opposite would take place and areas would deurbanize over 

time, apart from cases where the station itself was moved). 

In order to determine the extent to which changes in urban form bias temperature records, 

USHCN stations were categorized into urban or rural based on four different urbanity proxies 

based on remote sensing and other datasets for the square kilometer in which the station is 

located: the brightness of the location at night as measured by satellites, the percent of 

impermeable surface area, the growth in population density at the location between 1930 and 

2000, and an urban boundaries database from the Global Rural-Urban Mapping Project.   

By comparing both spatially gridded fields from urban and rural stations, as well as proximate 

pairs of urban and rural stations, we found that urbanization accounts for 14–21% of the rise in 

unadjusted minimum temperatures in the US since 1895 and 6–9% since 1960 (with smaller 

effects on maximum temperatures). This urbanization bias was effectively removed in the 

adjusted data, such that it was insignificant during the last 50-80 years (prior to that point the 

station network was sparser and only half the urbanization bias was detected and removed). We 

also produced a variant of the homogenized temperature record using only rural stations to 

homogenize, and found the results were nearly identical, suggesting that the composition of the 

network is sufficiently rural to limit the aliasing of urban heat island signals onto temperature 

trends during homogenization. The results were published in the Journal of Geophysical 

Research: Atmospheres and are included in full later in this chapter.38 

One important finding of this work was that additional explicit urbanization bias adjustments –

such as that done by NASA GISTEMP6 – were not necessarily required if the data had 

undergone effective pairwise homogenization. However, pairwise homogenization only works 
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well when networks are sufficiently dense to detect localized breakpoints through difference 

series with neighboring stations. While the recent addition of tens of thousands of stations in 

global databanks used by NASA, NOAA, and Berkeley Earth will improve breakpoint detection 

in many parts of the world, there may still be some areas where the density is insufficient to 

detect and correct for urban-related biases and additional bias adjustments may be warranted.    

 

2. ASSESSING THE EFFICACY OF HOMOGENIZATION 

 

While the effect of homogenization on global land temperatures is relatively modest, resulting in 

an increase of warming trends since 1880 by around 16%, its impact in some regions is much 

larger. In the United States homogenization has a large effect on trends, roughly doubling the 

warming over the past century compared to raw temperature records, as shown in Figure II.1 

below. 

 

Figure II.1. Raw, time of observation adjusted, and fully homogenized contiguous United States 

temperatures from the U.S. Historical Climatological Network.17 
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Because of the large effect on the trend, these adjustments have proven controversial, resulting 

in multiple investigations of NOAA scientists’ work by the U.S. Government Accountability Office 

(GAO). Independent evaluations of these approaches provide an important assessment of the 

U.S. temperature record, and can improve our confidence in their accuracy. To evaluate the 

effectiveness of these adjustments, we have taken a number of different approaches, including 

comparing raw and adjusted stations to the new U.S. Climate Reference Network (USCRN) and 

devising tests homogeneity algorithms using synthetic data.  

 

2.1. REFERENCE NETWORK COMPARISONS 

 

Existing temperature observation networks like the U.S. Historical Climatological Network 

(USHCN)17 and its successor nClimDiv39 (which is based on geographical regions called climate 

divisions) are subject to multiple inhomogeneities over time, with most stations having moved 2 

to 3 times and changed instrumentation and time of observation at least once.  

Many of these inhomogeneities were introduced to maximize the network’s utility for short-term 

weather monitoring rather than long-term consistent climate observations. For example, the time 

of observation (e.g. the reset time of min/max thermometers) was changed at most US stations 

between 1960 and today due to a desire to conduct morning observations of rain gauges to 

avoid evaporation.  
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Figure II.2. Time of observation at USHCN stations. From Menne et al  2009.17 

To avoid this problem going forward, the U.S. Climate Reference Network (USCRN) was 

established starting in 2001. USCRN stations are sited in pristine environments in rural areas 

away from any potential direct urban influence. Stations include three redundant temperature 

sensors that make measurements every 2 seconds and automatically report the data to a 

centralized server via satellite uplink. The USCRN is currently composed of 114 conterminous 

U.S. stations and has had sufficient station density and distribution to provide relatively good 

spatial coverage of the U.S. since the start of 2004.40 
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Figure II.3. A picture of the three redundant temperature sensors at a pristinely sited U.S. 
Climate Reference Network station. Image from Diamond et al 2013.40 

After over a decade of operation, the period of overlap between the USCRN and other 

temperature observation networks is now sufficiently long to effectively assess the impact of 

temperature adjustments using the USCRN as an unbiased reference. We undertook a project 

to compare raw and adjusted USHCN stations to nearby USCRN stations in a paper published 

in Geophysical Research Letters in 2016 and included in full later in this chapter.41 We found 

that adjustments bring raw station anomalies and trends much closer to nearby unbiased 

USCRN stations through an analysis of all proximate USHCN/USCRN pairs.  

In nearly all cases adjustments serve to bring raw temperatures trends closer to those of the 

proximate USCRN station. Some residual trend differences remained in maximum 

temperatures, with USCRN stations warming faster than even adjusted USHCN stations. This is 

possibly due to differences in instrumentation, with the fan-aspirated solar shields employed by 

USCRN stations better capturing changes over the period than the USHCN instruments that 

include no fan. 

The good level of agreement between adjusted USHCN stations and proximate USCRN 

stations increases our confidence that homogenization is effectively detecting and removing 

bias. While the current overlap period of 15 years is still relatively short, the CRN will provide a 

valuable resource going forward, giving access to known-unbiased temperatures for use in 

ensuring the accuracy of statistical homogenization approaches. 
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2.2. TESTS USING SYNTHETIC DATA 

 

While comparisons to reference networks are a useful tool for validating homogenization, they 

are largely limited to the period post-2004 when the USCRN obtained U.S.-wide coverage. This 

was a period of limited systemic network changes (such as instrument changes or time-of-

observation changes), and thus does not necessarily provide a thorough test of the performance 

of homogenization algorithms in more extreme circumstances.41 

To provide a more detailed evaluation of where homogenization algorithms do and do not work 

effectively, we have used synthetic data where the “truth” is known and different types of biases 

are added. In most cases those running the homogenization algorithms are blinded to the actual 

true trends of the data they are evaluating until after the evaluation is completed. An example of 

the results of NOAA’s pairwise homogenization algorithm applied to synthetic data with added 

trend biases is shown below in Figure II.4. 
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Figure II.4. a) Synthetic data trends with added inhomogeneities, b) true trends in the synthetic 

data without inhomogeneities, c) data after being run through NOAA’s pairwise homogenization 

algorithm. Figure via Williams et al 2012 42 and Hausfather et al 2014.43 

These tests using synthetic data have been applied to both NOAA and Berkeley Earth 

temperature records.42,43 They show that homogenization is quite effective in detecting and 

removing biases. Performance is improved when metadata indicating potential breakpoints (e.g. 

station moves, instrument changes, time of observation changes, etc.) is available, but even in 

the absence of metadata localized biases can still be detected and removed. While station 

metadata is generally quite good in the US and Europe in recent decades, the same is not 

necessarily true for other parts of the world or in the more distant past. Thus the ability of 

statistical homogenization to operate in the absence of metadata indicating breakpoints is 

important. 

Tests with synthetic data show that pairwise homogenization is effective as long as station-level 

inhomogenities are somewhat temporally stochastic. In other words, as long as a change in, 

say, observation does not happen simultaneously across the network, its effects can be 

detected and corrected through neighbor comparisons. This is one of the reasons why 

homogenizing satellite records is so much more difficult than surface records, for example, as 

the limited number of instruments and lack of redundancy makes cross-calibration and bias 

detection more difficult. 

The International Surface Temperature Initiative has an ongoing program to develop 

benchmarks for homogeneity algorithm testing using synthetic data.44,45 Early experiments have 

already found a diversity of performance across different groups around the world that provide 

statistical homogenization.46 

 

3. TOWARDS A GLOBAL CLIMATE REFERENCE NETWORK 

 

While the USCRN has been an invaluable resource in evaluating the adjustments made to the 

rest of the US weather stations, similar climate reference networks do not exist in most other 

parts of the world. However, as temperature anomalies are correlated over long distances, a 

much smaller network of only 160 stations well-distributed around the world’s land area would 

provide sufficient coverage to calculate mean global land temperatures with reasonable 
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accuracy (more stations would be desirable for other climate variables such as precipitation). 

This network could be used to help assess the accuracy of regional weather station networks 

similar to the role the USCRN is playing in the United States. 

An international team of surface temperature researcher – including the author of this 

dissertation – recently published a paper laying out what a global climate reference network 

would look like, in terms of siting, instrumentation, data management, and other factors.46 The 

entire project would cost on the order of a few 10s of millions of dollars per decade, 

considerably less than a single satellite launch that only has a 5-10 year expected lifespan. 
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ABSTRACT 

 

An assessment quantifying the impact of urbanization on temperature trends from the U.S. 

Historical Climatology Network (USHCN) is described.  Stations were first classified as urban 

and non-urban (rural) using four different proxy measures of urbanity.  Trends from the two 

station types were then compared using a pairing method that controls for differences in 

instrument type and via spatial gridding to account for the uneven distribution of stations.  The 

comparisons reveal systematic differences between the raw (unadjusted) urban and rural 

temperature trends throughout the USHCN period of record according to all four urban 

classifications.  Based on these classifications, urbanization accounts for 14% to 21% of the rise 

in unadjusted minimum temperatures since 1895 and 6% to 9% since 1960.  The USHCN-

Version 2 homogenization process effectively removes this urban signal such that it becomes 

insignificant during the last 50-80 years.  In contrast, prior to 1930, only about half of the urban 

signal is removed.  Accordingly, the NASA Goddard Institute for Space Studies urban-correction 

procedure has essentially no impact on USHCN version 2 trends since 1930, but effectively 

removes the residual urban-rural temperature trend differences for years before 1930 according 

to all four urban proxy classifications.  Finally, an evaluation of the homogenization of USHCN 

temperature series using subsets of rural-only and urban-only reference series from the larger 

U.S. Cooperative Observer (Coop) Network suggests that the composition of Coop stations 

surrounding USHCN stations is sufficiently “rural” to limit the aliasing of urban heat island 

signals onto USHCN-Version 2 temperature trends during homogenization.    
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INTRODUCTION 

 

Urbanization has long been recognized as having the potential to impact near-surface 

temperature readings by altering the sensible and latent heat fluxes in affected areas [e.g., 

Mitchell, 1953; Oke, 1982; Arnfield, 2003].  The concentration of high thermal mass 

impermeable surfaces in urbanized regions commonly leads to higher surface temperatures 

compared to those in less developed or rural areas, especially at night [Oke, 1982; Parker, 

2010].  To mitigate the potential for an urban bias in temperature records used for climate 

monitoring, stations that comprise the U.S. Historical Climatology Network (USHCN) were 

selected to be largely from rural or small town locations [Quinlan et al., 1987; Menne et al., 

2009].  Still, station locations tend to be correlated with inhabited areas.  Relative to the 

percentage of total land area that is built up, “urban” observation stations are likely 

overrepresented in general, even in networks like the USHCN.   

Given the potential for urban biases, a number of studies have been undertaken to quantify the 

impact of the “urban heat island” (UHI) signal on land surface air temperature trends globally 

(e.g., Peterson et al. 1999; Parker, 2006; Jones et al., 2008; Hansen et al., 2010) and regionally 

within the USA (e.g., Kukla et al., 1986; Karl et al., 1988; Gallo et al., 1999, Gallo and Owen, 

2002; Peterson, 2003; Peterson and Owen, 2005).  Unfortunately, quantifying the impact of 

urbanization on temperature trends faces multiple confounding factors.  For example, an 

instrument originally installed in an urban environment may well have warmer absolute 

temperatures than one in a nearby rural area, ceteris paribus, but will not necessarily show a 

higher trend over time unless the composition of the city or the microclimate around the sensor 

changes in such a way to cause the city observations to further diverge from temperatures at 

nearby rural locations [Jones and Lister, 2010], or the nature of urban land use leads to an 

amplifying of warm events whose frequency may change with time [McCarthy et al., 2010].  It 

follows that urban heat island effects will lead to larger temperature trends compared to rural 

areas only if UHI-related factors cause incremental increases over rural temperatures during the 

period over which the trend is calculated [Boehm, 1998].  Moreover, cooling biases can be 

introduced into the temperature record when stations move from city centers to more rural areas 

on the urban periphery.  This may have occurred, for example, during the period between about 

1940 and 1960 when stations were moved from urban centers to newly constructed airports 

[Hansen et al., 2001] and, in the case of the USHCN, airports, waste water treatment plants and 

other locations that lie outside the urban core [National Climatic Data Center, 2012].  
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Conversely, an instrument that is constructed in a relatively rural area that becomes more urban 

over time may exhibit a warming bias, and stations in small towns are not necessarily free of 

urban influences.   

To further complicate matters, changes associated with urbanization may have impacts that 

affect both the meso-scale (102-104 meters) and the micro-scale (100-102 meters) signals.  

Small station moves (e.g., closer to nearby parking lots/buildings or to an area that favors cold 

air drainage) as well as local changes such as the growth of or removal of trees near the sensor 

may overwhelm any background UHI signal at the meso-scale [Boehm, 1998].  Notably, when 

stations are located in park-like settings within a city, the microclimate of the park can be 

isolated from the urban heat island “bubble” of surrounding built up areas [Spronken-Smith and 

Oke, 1998; Peterson, 2003].   Further, changes in observation practice such as time of 

observation and instrument changes may lead to artifacts (inhomogeneities) in the data record 

that complicate the quantification of urban heat island signals [Peterson, 2003], especially if 

these changes are correlated with urban form.   

Here, an analysis is described whose aim is to quantify the potential UHI contribution to U.S. 

temperature trends by more fully controlling for external factors that impact the trends but are 

otherwise unrelated to urbanization.  A range of estimates for the UHI contribution to average 

U.S. temperature trends is provided by making use of four separate ways to differentiate urban 

and rural station environments to help assess uncertainty associated with identifying urban 

environments.  The impact of data homogenization on the UHI signal is also evaluated.  

Homogenization is necessary to account for shifts in the station-based data caused by historical 

changes in the circumstances behind surface temperature measurement (e.g., changes in 

instrument type, station relocations) rather than by true changes in the climate.  The artifacts 

caused by these kinds of changes have large, systematic impacts on U.S. temperature trends 

[Menne et al. 2009; Williams et al. 2012].  Consequently, homogenized datasets are essential 

for evaluating temperature changes from the observational record [Venema et al. 2012; 

Lawrimore et al., 2011; Hansen et al. 2010; Vose et al., in press].  Benchmarking the approach 

to homogenizing the U.S. monthly temperature data has essentially reaffirmed previous 

assessments regarding the nature and impact of these artifacts on USHCN temperature trends 

[Williams et al. 2012] .   

Homogenization of the USHCN monthly version 2 temperature data does not specifically target 

changes associated with urbanization.  Rather, the procedure used  involves identifying and 
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accounting for shifts in the monthly temperature series that appear to be unique to a specific 

station--the assumption being that a spatially isolated and sustain shift in a station series is 

caused by factors unrelated to background climate variations [Menne et al. 2010].  Given that 

UHI-related changes may manifest as highly localized shifts or creeping changes, the focus in 

this analysis is to determine to what extent homogenization is removing apparent, local urban 

influences on the USHCN temperature record.  Because homogenization may be removing local 

shifts caused by land use changes at non-urban stations, the same methodology used here 

could be applied to evaluating the impact of other types of land use changes.    

The paper is organized as follows.  Some additional background and motivation for the study 

are provided in section 2.  The datasets and methods are discussed in section 3.  Results are 

presented in section 4.  Conclusions are provided in section 5. 

BACKGROUND AND MOTIVATION  

 

Motivation for assessing urban influences on temperature trends comes largely from interest in 

quantifying the contribution of urbanization in overall temperature trends relative to other factors.  

To that end, measures of ambient population [Kukla et al., 1986] and satellite-derived nightlights 

[Gallo et al., 1999] have been used to differentiate urban and rural environments.  Using these 

measures, monthly temperatures from U.S. weather stations designated as urban have been 

found to have decadal trends as much as 0.12°C/decade higher than those classified as rural 

[Kukla et al. 1986].  Because differences of this magnitude represent a non-negligible fraction of 

the likely background climate change signal, Karl et al. [1988] developed a specific adjustment 

to control for the apparent contribution of the urban heat island signal in USHCN temperature 

data.  After adjusting for shifts in the data associated with time of observation and other 

changes documented in station histories, the Karl et al. [1988] evaluation suggested that an 

additional urban bias was present in the USHCN average temperature of about 0.06°C during 

the period from 1900 to 1984.   Essentially all of the bias was associated minimum temperatures 

in urban areas, which were about 0.13°C higher on average than rural areas; maximum 

temperatures appeared to have little urban bias. 

The Karl et al. [1988] UHI correction was used to produce the USHCN (version 1) fully adjusted 

USHCN monthly temperature data until the release of version 2 [Menne et al. 2009].  As in 

version 1, the version 2 release includes bias adjustments for time of observation and other 
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station history changes, but version 2 also includes adjustments for changes (inhomogeneities) 

that are not documented in digital station histories (roughly 50% of all changes).  Providing 

adjustments for both documented and undocumented station changes reduced the overall 

magnitude of minimum temperature trends from USHCN stations more than the fully adjusted 

version 1 temperatures even though version 1 contained the additional Karl et al. [1988] UHI 

adjustment.  The reason for this may be that the more comprehensive homogenization in 

version 2 removes the impact of incremental, but previously unidentified step changes 

associated with meso and micro-scale urbanization factors, or, that signal arising from local UHI 

trend changes are sometimes aliased (i.e., inadvertently accounted for) onto estimates of the 

more comprehensive version 2 step-type adjustments [Menne et al. 2009].  In any case, the 

development of a method for identifying and adjusting undocumented shifts  appeared to 

account for more than of the signal attributed to urban effects on minimum temperatures by Karl 

et al. [1988].  Thus, no separate UHI-specific correction was provided in USHCN version 2.    

Another reason that the Karl et al. [1988] corrections were not used in version 2 is that they are 

monotonic functions of city population; that is, these adjustments always reduced minimum 

temperature trends based on the total population of the city.  In contrast, Hansen et al. [1999, 

2001, 2010] have used a nightlights-based method that forces urban (and “peri-urban”) station 

trends to conform to surrounding rural trends in the NASA Goddard Institute for Space Studies 

(GISS) surface temperature analysis.  In the process, the Hansen et al. approach actually 

increases the trend for about 40% of urban stations.  The fact that so many urban trends are 

larger after the urban adjustment likely reflects the degree to which the confounding factors 

discussed above can mitigate or otherwise obscure potential urban heat island signals.   

For the U.S. data contribution to the NASA GISS analysis, Hansen et al. [2001, 2010] use the 

USHCN data that has been adjusted by NOAA/NCDC for time of observation and station history 

changes, but apply their own UHI adjustment.  The GISS urban adjustment reduced the 

otherwise adjusted USHCN version 1 temperature trends by an additional 0.15°C/century, more 

than twice that of Karl et al. [1988] method [Hansen et al. 2001] even though the NASA GISS 

UHI corrections are not monotonic.  Using the USHCN version 2 adjusted data, the impact of 

the GISS UHI correction is on the order of 0.07°C/century [Hansen et al. 2010].   

The differential impacts of these approaches to assessing and correcting for the UHI are 

indicative of the need to better frame the uncertainty of urban influences on temperature trends 

in the U.S.  As noted more recently by Peterson [2003] and Peterson and Owen [2005], this 
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requires controlling for the many confounding issues like differences in instrumentation and 

other observation practices that may blur the urban signal.  Whereas Peterson [2003] and 

Peterson and Owen [2005] focused primarily on a snapshot of mean urban-rural differences, 

here we build on their work by looking specifically at the time evolution of urban-rural 

differences.   We use four rather than two proxy measures of urbanity and quantify the impact of 

data homogenization on the apparent UHI signal, focusing in particular on the potential 

magnitude of residual UHI contamination and whether there is evidence that homogenization 

transfers UHI bias from urban to non-urban station series.   

METHODS 

 

The Conterminous United States (CONUS) has some of the most dense, publicly available 

digital surface temperature data in the world with over 7000 Cooperative Observer (Coop) 

Network Program stations reporting daily maximum and minimum temperature for at least 10 of 

the network’s 120-plus year history.   A subset of 1218 stations, generally those with long 

records, comprises the USHCN [Menne et al., 2009]. This highly sampled surface temperature 

field allows for the comparison of subsets of station data in a manner that avoids inherent 

biases due to changes in spatial coverage. The Coop Program also now maintains accurate 

geolocational information on the present location of observing stations, with coordinates 

expressed in degrees, minutes and seconds (roughly 30 meter accuracy) available for most 

stations. This also allows for the accurate indexing of current Coop station locations against 

high-resolution georeferenced datasets that are useful to delineating urban and non-urban 

areas.   

Because there is not an obvious meso-scale metric that determines the impact of urban form on 

temperature in all situations, we examined four different measures of urbanity that are available 

as georeferenced datasets: satellite-derived nightlights, urban boundary delineations, percent of 

impermeable surfaces, and historical population growth during the period where high-resolution 

data is available (1930 to 2000).  These four measures, which represent different snapshots of 

urban boundaries, were used to classify a station as urban or non-urban by retrieving the pixel 

values coincident with the each station’s coordinates.  In cases where the proxy for urban form 

involved continuous measurements (all but urban boundaries), a cutoff point to divide stations 

between urban and rural was chosen based on urban designations present in the literature (e.g. 
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Hansen et al., 2010 for nightlights; Elvidge et al. 2007 for impermeable surface area).  Each of 

these proxies is described in section 3.a. below. 

DATASETS USED TO CLASSIFY STATION TYPES 

 

Satellite Nightlights 

Satellite-derived brightness values associated with the COOP Network stations (including the 

USHCN) were taken from the Global Radiance Calibrated Nighttime Lights dataset produced by 

the Earth Observation Group using instruments flown on Defense Meteorological Satellite 

Program (DMSP) satellites. We used the data from the F16 satellite recorded between 2005-11-

28 and 2006-12-24.  The values we associate with each station are linearly interpolated from 

the 4 neighbor pixels in the image file and are converted to radiance by multiplying by 1.51586 × 

10-10 giving a result in Watts sr-1 cm-2 [Baugh et al., 2010].  To determine a radiance value 

threshold for designating urban stations that is consistent with the 32 

microWatts/m2/sr/micrometer used in Hansen et al. [2010] (who used data from Imhoff et al., 

1997), we divided radiance values by the optical bandwidth of the F16 satellite (0.7 

micrometers), resulting in a cutoff of 14.78 (i.e, 32 ÷ 0.7 × 1.51586) as the equivalent value for 

the 2005-2006 satellite nightlight series. This is rounded to the nearest integer (15) for the 

purpose of assigning a cutoff to separate urban from non-urban pixels. 

Urban Boundaries (GRUMP) 

For the urban boundaries urbanity proxy, we use binary designations from the Global Rural-

Urban Mapping Project (GRUMP), produced by the Center for International Earth Science 

Information Network (CIESIN) of the Earth Institute at Columbia University. GRUMP 

designations are based on the identification of urban areas using national census data 

(including the National Imagery and Mapping Agency database of populated places).  GRUMP 

purports to identify cities and towns with populations exceeding 1,000 residents. Urban 

boundaries surrounding identified cities and towns are estimated based on DMSP Operational 

Linescan System (OLS) data from 1994-1995 as well as data from the Digital Chart of the 

World’s Populated Places (DCW) [Balk et al., 2004]. 

Impermeable Surfaces 
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The Impervious Surface Area (ISA) for pixels coincident with Coop stations is taken from the 

Global Distribution and Density of Constructed Impervious Surfaces dataset produced by the 

Earth Observation Group. The 1km resolution data used for this study was derived from 30-

meter ISA data generated by the US Geological survey as described in Elvidge et al. [2007]. 

The data product has a nominal date of 2000-2001 and represents the percentage of the 

surface area that is comprised of manmade structures such as roads, buildings and parking lots.  

Station latitude and longitude were used to reference the dataset and extract the percentage of 

impervious surface in the surrounding 1 km. To determine the urban/non-urban classification a 

cut off of ten percent was employed. As noted by Schuler [1994] and Arnold and Gibbons 

[1996], the impacts to hydrology typically begin above this figure. ISA values below ten percent 

were classified as rural. This approach is consistent with though somewhat more conservative 

than the recent work of Potere et al. [2009], who used a figure of twenty percent for detecting 

urban extent.  

 

Population Growth 

For the population growth proxy, we utilized Gridded 1 km Population Estimates for the 

Conterminous U.S., 1930-2000. This dataset was also used by Peterson and Owen [2005] and 

Peterson [2003] to classify USHCN stations into urban and non-urban categories. The gridded 

population was created using two U.S. Census Bureau data sets: The 2000 U.S. Census 

Bureau 1 km2 population density grid for CONUS (National Geophysical Data 

Center/NESDIS/NOAA, 2002) and tabular U.S. Census county data [U.S. Census Bureau, 

2002].  Urban sites were defined as those characterized by a 1930 to 2000 population growth of 

greater than or equal to 10 people per square kilometer, which yields similar sized numbers of 

urban and non-urban stations as shown in Table 1. While there is no available justification in the 

literature for this or any specific 1930-2000 population growth cutoff as a proxy for urbanization, 

this value was chosen to be reasonably conservative and to produce an urban/rural division 

generally in line with the other urbanity proxies. As Table 1 indicates, the GRUMP, Nightlights, 

and Population Growth urbanity proxies result in a relatively even distribution of stations in the 

rural and urban categories while the ISA proxies identifies the majority of stations as rural.  

Information on retrieving these datasets are provided as supplementary information. 

Proxy Name 
Urban 

Boundaries 
Nightlights ISA Pop Growth 
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Rural Stations 608 594 857 685 

Urban Stations 610 624 357 533 

Table 1: Number of USHCN stations classified by urbanity for each urbanity proxy. Note that 

four stations could not be classified using the ISA urbanity proxy due to dataset limitations. 

 

CALCULATION OF RURAL AND URBAN TEMPERATURE TREND DIFFERENCES 

 

Urban-rural temperature differences were calculated by sub-setting the USHCN station data 

according to the urban/non-urban station classifications described above (for simplicity non-

urban stations are referred to as rural). To examine the possible UHI signal present in the 

USHCN temperature record, we use two different but complimentary methods to compare urban 

and rural station temperatures: station pairing and spatial gridding.  

Station Pairing Method 

The station pairing method creates pairs of nearby urban and non-urban (rural) stations as 

classified by the four urban proxy measures.  Pairs were created by forming all possible 

permutations of urban and rural stations, excluding those that were more than 161 kilometers 

(100 miles) apart; that had differing or unknown sensor equipment types (e.g. Maximum 

Minimum Temperature Sensors [MMTS] versus Liquid in Glass Thermometers in Cotton Region 

Shelters [CRS]); or cases in which both stations currently have MMTS sensors but installation 

dates differ by more than 5 years. This pairing method yields a set of proximate urban/rural 

station pairs for each classification method that should be relatively unaffected by bias 

introduced through sensor-type transitions [Quayle et al., 1991; Menne et al., 2009].  Time 

series of monthly maximum and minimum temperature anomalies relative to a 1961-1990 

baseline were calculated for all urban and rural series.  Difference series for each urban and 

rural station pairings were then created for the full period of the USHCN version 2 records (1895 

to present).  

More specifically, the approach in the station pairing method was to take all permutations of 

urban and rural stations and produce a set containing unique pairs but non-unique occurrences 

of individual urban and rural station series (see Table 2). For example, a specific urban station 
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would create distinct pairs with all surrounding rural stations within 100 kilometers with the same 

instrumentation type. To avoid overweighting regions with large numbers of adjacent urban and 

rural stations (and thus disproportionately more possible station pair combinations) we weight 

the urban-rural differences by the inverse of the number of stations pairs associated with each 

unique urban station. The mean urban-rural differences for unique urban stations are averaged 

for each month to obtain a best estimate of the underlying urban-rural temperature differences.  

Proxy Name 
Urban 

Boundaries 
Nightlights ISA Pop Growth 

Total Station 

Pairs 
1684 1809 1446 1392 

Unique Urban 

Stations 
437 470 271 390 

Table 2: Number of total urban/rural station pairs and unique urban stations by urbanity proxy. 

The trend and confidence intervals for two periods, 1895-2010 and 1960-2010, are calculated 

from the station pair data using a weighted regression with clustered standard errors, with 

unique urban stations used for both the weighting and clustering. Standard errors are clustered 

by unique urban station because station pairs contain non-unique occurrences of individual 

urban and rural stations (e.g. a single urban station might be paired with four different rural 

stations), and treating each station pair as independent would result in erroneously narrow 

confidence intervals. As mentioned previously, each urban-rural pair is given a weight in the 

regression proportionate to the inverse of the number of station pairs that share the same urban 

station.  

The station pairing method allows us to control for both spatial coverage and sensor type, 

avoiding potential complications introduced by differing locations of urban and rural stations as 

well as urban-correlated bias in the transition to MMTS sensors in the 1980s. The results will not 

necessarily be as representative of the entire CONUS temperature field as those produced by 

spatial gridding, however, as station pairing does not explicitly weight based on spatial 

coverage. 

Spatial Gridding Method 
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The spatial gridding method is used to create separate gridded fields for the conterminous U.S. 

using the subsets of urban and rural station series (and separately for maximum and minimum 

temperatures) as classified by each urban proxy measure. Station temperatures are converted 

to anomalies relative to a 1961-1990 baseline period, and station series that fall within 2.5° 

latitude x 3.5° longitude grid cells are averaged together and each grid cell average is cosine 

weighted to produce a CONUS average time series. The CONUS average urban and rural 

station series are then differenced. Trends and confidence intervals for the urban-rural 

differences during the 1895-2010 and 1960-2010 periods are calculated by regressing against 

the date using an AR(1) model to account for autocorrelation. 

The gridding method described above is commonly used by NOAA/NCDC to produce spatially 

averaged time series for climate monitoring.  In addition to this method, results using the 

gridding method described in Menne et al. [2009; 2010] are provided as supplementary 

information.  

USHCN VERSION 2 MONTHLY TEMPERATURE DATA  

 

Urban-rural differences for mean monthly maximum and minimum temperatures were calculated 

using four different versions of the USHCN version 2 monthly temperature data.  The four 

versions were used to help quantify the magnitude of the UHI in the underlying raw 

(unhomogenized) data, to isolate the impact of data homogenization on the UHI signal, and to 

evaluate impact of the GISS UHI correction when applied as an addition correction over and 

above homogenization.  The dataset versions include 

1) time of observation-only adjusted data (called TOB);  

2) adjusted version 2 (TOB + pairwise homogenization adjustments; v2);  

3) adjusted version 2 data produced by running the pairwise homogenization algorithm using 

(a) neighboring series classified only as rural (v2-rural neigh); and, (b) neighboring series 

classified only as urban (v2-urban neigh). 

4) adjusted version 2 data with the GISS UHI correction (TOB + pairwise homogenization + 

GISS UHI adjustments; v2+step2) 

 

Each of these variants is described below. 

Time of Observation Bias-Adjusted data (TOB) 
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The TOB station series are the raw monthly temperature data adjusted only for the time-of-

observation bias [Schaal and Dale, 1977; Karl et al., 1986]. The time of observation bias is an 

artifact of the starting/ending hour for the 24-hour interval over which the maximum and 

minimum temperature occurred.  This bias is unrelated to any physical artifacts associated with 

urbanization and only leads to biased trends when the time of observation changes through 

time.  However, such changes are likely more prevalent at rural stations, which are commonly 

run by volunteer observers who have been systematically transitioning from afternoon to 

morning observation times [Menne et al., 2009].  In order to remove the time of observation bias 

as a confounding factor in assessing UHI impacts, we use data adjusted according the method 

described by Karl et al. [1986] and Vose et al. [2003]. Results using completely unadjusted 

(raw) data are provided as supplementary information using the Menne et al. [2009; 2010] 

gridding method.  

Data adjusted by the Pairwise Homogenization Algorithm (USHCN version 2) 

Running the TOB-adjusted data through the Pairwise Homogenization Algorithm (PHA; Menne 

and Williams, 2009) produces the USHCN version 2 fully adjusted data [Menne et al., 2009].  

The PHA works by identifying and removing abrupt shifts in monthly temperature series that 

appear to be unique to a particular station.  The shifts can be caused by small station moves, a 

change in instrumentation, or, possibly, from the local impacts of any kind of land use change.  

The shifts are identified via automated pairwise comparisons of monthly temperature series in 

which the relative homogeneity of a given station’s series is evaluated by looking for breaks in 

differences series formed between the target station and a number of highly correlated 

neighboring series.  The adjustments are based on the median shift magnitude calculated from 

pairwise temperature differences between the target and neighbors before and after the shift.  

For any particular target adjustment, the neighbor pool is drawn from those that appear to be 

homogeneous according to the PHA for a minimum period (24 months) before and after the 

target shift. The PHA does not specifically target urban station changes.  Rather, the algorithm 

targets all shifts that appear to be unique to a particular station.  Removing these local signals at 

all stations (rural and urban alike) produces temperature trend fields that more accurately reflect 

the general background climate signal than the raw data. 

For version 2, USHCN monthly temperatures were compared to sets of highly correlated 

neighboring series within the larger Coop Network.  Details regarding the mechanics of the PHA 

and evaluations of the algorithm’s efficiency can be found in Menne and Williams [2009] and 
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Williams et al. [2012a].   Version 2.0 of the adjusted monthly data was released in 2008 based 

on PHA version “52d”.  Urban-rural differences in version 2.0 adjusted data are discussed 

below.  An evaluation of the UHI signal in a new version of the dataset—termed version 2.5—is 

provided as supplementary information using the Menne et al. [2009, 2010] gridding method.  

Version 2.5 fully homogenized data are produced by algorithm version “52i”, which contains 

some bug fixes relative to version 52d [Williams et al., 2012b].    

To evaluate the potential for UHI bias to be transferred from urban Coop stations that may be 

used as neighbors in the homogenization of USHCN station records, we also ran the USHCN 

station series through the PHA using only Coop stations that were classified as rural in one case 

and using only stations classified as urban in the other according to the same set of four urban 

proxies.  

Version 2 homogenized data with the additional NASA/GISS “GISTEMP” UHI correction 

Finally, we apply the GISTEMP urban heat island adjustment (described Hansen et al., 2010) to 

the version 2.0 series to see how it addresses any remaining urban-related signal from the 

homogenized monthly temperature records. The GISTEMP UHI correction adjusts the trend of 

stations classified as urban or peri-urban to match the trend of a distance-weighted composite 

record made from nearby rural stations.  An urban station is adjusted only if there are at least 

three nearby rural stations with values that overlap at least two-thirds of the urban station’s 

period of record.  Periods and urban stations that fail the rural station requirement are excluded 

from the GISS analysis.  Rural stations are ideally selected to be within 500 km of the urban 

station, but in some cases could be as far as 1000 km away to meet the selection requirement.  

Note that in performing this adjustment only rural stations from USHCN have been used.  This 

contrasts with the usual GISTEMP analysis which will use any suitable rural stations in GHCN, 

possibly including stations not in USHCN (such as in Canada and Mexico).  Given the spatial 

density of stations in USHCN we expect any differences in adjustment to be minimal. 

The scheme for identifying stations as urban has changed in the history of the GISTEMP 

analysis (see Hansen et al., 1999; Hansen et al., 2001; Hansen et al., 2010); here we use 

nighttime radiances from the DMSP calibrated radiance product described earlier. The analysis 

was carried out using the ccc-gistemp software supplied by the Climate Code Foundation 

[Barnes and Jones, 2011].  The resulting version 2.0 series with the GISTEMP UHI correction 

should be essentially the same as the USHCN data used in NASA’s GISTemp product, albeit 

with a slightly more up-to-date dataset used for determining nighttime brightness and separate 
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application of the Step 2 (UHI correction) process to average monthly minimum and maximum 

data rather than applying it to the mean monthly data only. 

This analysis described above produces estimates of urban-rural differences for each month 

from 1895-2010 for mean monthly minimum and maximum temperatures for the TOB, v2, 

v2+Step 2, and v2-rural neigh/v2-urban neigh variants for each of the four urbanity proxy via 

both station pairing and spatial gridding methods, resulting in 64 different distinct urban-rural 

differences for each month. 

RESULTS 

 

Unhomogenized (TOB-Adjusted) Data 

Figure 1, which summarizes the urban minus rural (urban-rural) trend differences for all data set 

versions, indicates that the USHCN unhomogenized (TOB-only adjusted) data contains 

significant urban warming signals (p < 0.05 for linear trend fit) over the period from 1895 to 

present in both the minimum and maximum temperatures according to nearly all urban 

classification and comparison methods (the exception being GRUMP and Nightlights maximum 

temperatures evaluated via spatial gridding).  
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Figure 1: 1895-2010 trends and 95% confidence intervals in urban-rural differences by proxy 

type. Circles represent TOB adjusted data, Triangles represent version 2.0 data adjusted using 

rural neighbors only (v2-rural neigh), Diamonds represent version 2.0 homogenized data (v2), 

and Squares represent version 2.0 homogenized data with additional corrections using GISS’s 

Step 2 method (Step 2). Solid shapes show results from the station pair method, and hollow 

shapes show results from the spatial gridding method. 

As expected, the urban signal is larger in minimum temperatures than in maximum 

temperatures. Urban-rural difference trends in minimum temperature range between 0.05 and 

0.5 °C per century in minimum temperatures for the 1895-2010 period for the unhomogenized 

data depending on the classification and comparison method (e.g. station pairing or spatial 

gridding).  
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Figure 2: 1960-2010 trends and 95% confidence intervals in urban-rural differences by proxy 

type. Circles represent TOB adjusted data, Triangles represent version 2.0 data adjusted using 

rural neighbors only (v2-rural neigh), Diamonds represent version 2.0 homogenized data (v2), 

and Squares represent version 2.0 homogenized data with additional corrections using GISS’s 

Step 2 method (Step 2). Solid shapes show results from the station pair method, and hollow 

shapes show results from the spatial gridding method. 

As shown in Figure 2, there is also evidence of a significant urban signal in the unhomogenized 

data during the past 50 years, with urban-rural difference trends of between 0.2 and 0.6 °C per 

century across all urbanity proxies for the period 1960-2010. This large urban warming signal 

does not appear to be a result of any correlation between instrument changes and urban form 

because it occurs with a similar magnitude in both the station pairing method (which controls for 

instrument type) and the spatial gridding method (which does not). 
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Figure 3: Running 5-year mean of urban and rural differences for time of observation-adjusted 

min USHCN station data from 1895 to 2010, using both station-pair (solid line) and spatial 

gridding (dashed line) methods for GRUMP, Nightlight, ISA (10%), and Population Growth 

urbanity proxies. 

For minimum temperatures, the urban warming signal over both century and half-century 

timeframes is larger in the more restrictive urban classification—ISA—that contains relatively 

few urban stations, and are smaller in the classifications—GRUMP, Nightlights, and Population 

Growth—that contain a more even split between urban and rural designations. The station 

pairing method often shows significantly larger urban warming than the spatial gridding method; 

however, the pairing method does not account for the potential biases related to the spatial 

distribution of the station pairs. As shown in Figure 3, the divergences between station pairing 

and spatial gridding methods are particularly pronounced prior to 1950, which may be indicative 

of a larger geographic bias to the station pairs during that period. On the other hand, both 

methods produce similar results for periods after 1950.   

As supplementary Figure SI.1 shows, the rural-urban differences are even larger in the raw 

minimum temperatures than in the TOB-adjusted data especially for the period since 1950 when 



	34	

time-of-observation changes were prevalent.  However, as mentioned above, this difference is 

not likely driven by any physical phenomena related to UHI.  Rather it likely reflects a higher 

frequency of time of observation changes at non-urban stations. 

 

Figure 4: Running 5-year mean of urban and rural differences for time of observation-adjusted 

max USHCN station data from 1895 to 2010, using both station-pair (solid line) and spatial 

gridding (dashed line) methods for GRUMP, Nightlight, ISA (10%), and Population Growth 

urbanity proxies. 

Maximum temperature urban-minus-rural trends in the unhomogenized (TOB) data are also 

significantly larger than zero over the period 1895 to 2010 for most urban classifications, but are 

smaller than the trends in minimum temperature urban-rural differences. They also show 

considerably less variation across urbanity proxy, with urban warming trends of around 0.08 to 

0.22 °C per century for the station pairing method and -0.04 to 0.2 °C per century for the spatial 

gridding method. However, maximum temperature urban-rural difference trends are larger over 

the period 1960 to 2010, particularly in the GRUMP and Population Growth proxies where they 

exceed minimum urban minus rural trends. In this case, there is also a greater divergence 

between analysis methods, with the station pairing method showing much larger urban warming 
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than the spatial gridding method, which again, likely reflects a spatial bias caused by the non-

uniform distribution of station pairs. 

By comparing the trends of rural stations to those of all USHCN stations, we can use the spatial 

gridding method to get an estimate of the extent to which overall CONUS minimum temperature 

trends over the past century may have been driven by the urban warming signal (see Table 

SI.1). By this estimate, the unhomogenized minimum temperature data from rural USHCN 

stations yields trends that are between 14 and 21 percent smaller on average over the period 

1895-2010 period than the trends from the full USHCN network.  This difference decreases to 

between about 6 and 9 percent during the last 50 years.   

 

Homogenized Version 2 Data (v2) 

The pairwise homogenization algorithm (PHA) significantly reduces the difference between 

urban and rural minimum temperature trends according to all analysis methods and station 

classifications. This is particularly true over the 1960-2010 period, where a the vast majority of 

the urbanity proxies and methods indicate no significant urban warming in the minimum data. 

Maximum temperatures are a bit more mixed, though most proxies and methods show no 

significant urban warming in the maximum data over the period. As shown in Figure 5, there is 

still a small but significant minimum urban warming prior to 1960 in all urbanity proxies except 

for Population Growth.  The station pairing method suggests some residual urban signal before 

1960, but this residual signal is small in the spatial gridding method for all proxies after 1930. 
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Figure 5: Running 5-year mean of urban and rural differences for v2 homogenized minimum 

temperature USHCN station data from 1895 to 2010, using both station-pair (solid line) and 

spatial gridding (dashed line) methods for GRUMP, Nightlight, ISA (10%), and Population 

Growth urbanity proxies. 

The effect of homogenization is most pronounced in the more restrictive urbanity proxies like 

ISA that contain relatively few urban stations and show larger urban warming trends prior to 

homogenization.  The divergences between urban and rural temperatures that remain prior to 

1930 even after homogenization are likely in part due to the combination or poorer metadata for 

that time period and fewer coop station records that can be used as neighbors.  
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Figure 6: Running 5-year mean of urban and rural differences for v2 homogenized max USHCN 

station data from 1895 to 2010, using both station-pair (solid line) and spatial gridding (dashed 

line) methods for GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies. 

Notably, urban-rural differences in maximum temperatures over the century timeframe are in 

most cases not significantly reduced by homogenization, as shown in Figure 6. 

Comparing homogenized rural HCN stations to all HCN stations, we find that rural stations show 

between 3 and 13 percent less average temperature (tave) warming over the 1895-2010 period, 

and a slight but not significantly different from zero reduction in warming over the 1960-2010 

period (see Table SI.1).  Thus, residual urban signals not removed by data homogenization 

appear to be significant only for the period prior to 1960 and effectively only prior to about 1930.  

In summary, pairwise homogenization effectively removes the urban signal present in minimum 

temperature data from the last 50 to 80 years, and reduces it by around 50% or more for the 

period prior to 1930 (as can be seen when comparing Figure 3 and Figure 5).    
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Homogenized version 2 data with added GISTEMP correction (v2+step 2) 

As reported in Hansen et al. [2010], applying the GISTEMP Step 2 UHI correction to the 

USHCN version 2 data has the impact of reducing the mean CONUS temperature trend from 

0.73°C to 0.65°C over the period 1900-2009.  As shown in Fig. SI.1, this reduction appears to 

result almost entirely from trend adjustments in the data for years prior to 1930.  After 1930, the 

version 2.0 (52d) and version 2.5 (52i) data are not significantly impacted by the Step 2 

adjustment. Moreover, this trend reduction is required only because of an urban signal in the 

early minimum temperature data, which get reduced by about 0.0113°C/decade by the Step 2 

adjustment.  The impact on maximum temperature is only 0.00288°C/decade.   The average of 

these impacts is equivalent to the impact reported by Hansen et al. [2010]. As shown in Figures 

7 and 8, the GISS Step 2 adjustment is effectively removing the residual urban signal in both 

minimum and maximum temperatures across all proxies without any significant over adjustment, 

even for the most restrictive definitions of urbanity.  

 

Figure 7: Running 5-year mean of urban and rural differences for Step 2 min USHCN station 

data from 1895 to 2010, using both station-pair (solid line) and spatial gridding (dashed line) 

methods for GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies. 
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Figure 8: Running 5-year mean of urban and rural differences for Step 2 max USHCN station 

data from 1895 to 2010, using both station-pair (solid line) and spatial gridding (dashed line) 

methods for GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies. 

 

Homogenized version 2 data using only Coop neighbors classified as rural (v2-rural neigh) 

In all of the urbanity proxies and analysis methods, the differences between urban and rural 

station minimum temperature trends are smaller in the homogenized data than in the 

unhomogenized data, which suggests that homogenization can remove much and perhaps 

nearly all (since 1930) of the urban signal without requiring a specific UHI correction. However, 

the trends in rural station minimum temperatures are slightly higher in the homogenized 

minimum temperature data than in the TOB-only adjusted data.    One possible reason for this is 

that the PHA is appropriately removing inhomogenities caused by station moves or other 

changes to rural stations that have had a net negative impact on the CONUS average bias (e.g., 

many stations now classified as rural were less rural in the past since they moved from city 
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centers to airports or waste water treatment plants). Another possibility is that homogenization is 

causing nearby UHI-affected stations to "correct" some rural station series in a way that 

transfers some of the urban warming bias to the temperature records from rural stations.  In 

such a case, a comparison of the homogenized data between rural and urban stations would 

then show a decreased difference between the two by removing the appearance of an 

urbanization bias without actually removing the bias itself.   

To help determine the relative merits of these two explanations, the PHA was run separately 

allowing only rural- and only urban-classified Coop stations to be used as neighbors in 

calculating the PHA corrections for USHCN stations.  In Figure 9, the spatially averaged U.S 

minimum temperature anomalies for rural stations are shown for the four different datasets: the 

unhomogenized (TOB-adjusted only); the version 2 (all-Coop-adjusted; v2) data; the 

homogenized dataset adjusted using only coop stations classified as rural; and the 

homogenized dataset adjusted using only urban coop stations.   
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Figure 9: Comparison of spatially gridded minimum temperatures for the TOB-only adjusted 

USHCN data, v2 USHCN data (homogenized using all Coop station series as reference series), 

USHCN data homogenized using series from Coop stations only classified as rural according to 

the impervious surface method, and USHCN data homogenized using series from Coop stations 

only classified as urban (according to the impervious surface method).  Top Panel: CONUS 

average anomalies for the four versions of the USHCN data.  Bottom Panel: the differences 

between the USHCN v2 data homogenized with all Coop station series and:  data adjusted only 

for the tob-bias (blue); data homogenized using only rural station series (green); and, data 

homogenized using only urban station series (red).  

The large difference in the trends between the urban-only adjusted and the rural-only adjusted 

datasets suggests that when urban coop station series are used exclusively as reference series 

for the USHCN some of their urban-related biases can be transferred to USHCN station series 

during homogenization.  However, the fact that the homogenized all-coop-adjusted minimum 

temperatures are much closer to the rural-station-only adjustments than the urban-only 

adjustments suggests that the bleeding effect from the ISA classified urban stations is likely 

small in the USHCN version 2 dataset. This is presumably because there are a sufficient 

number of rural stations available for use as reference neighbors in the Coop network to allow 

for the identification and removal of UHI-related impacts on the USHCN temperature series.  

Furthermore, as the ISA classification shows the largest urban-rural difference in the TOB data, 

it is likely that greater differences between rural-station-only-adjusted and all-coop-adjusted 

series using stricter rural definitions result from fewer identified breakpoints due to less network 

coverage, and not UHI-related aliasing. Nevertheless, it is instructive to further examine the 

rural-only and urban-only adjustments to assess the consequences of using these two subsets 

of stations as neighbors in the PHA.  

Figure S.I.2 shows the cumulative impact of the adjustments using the rural-only and urban-only 

stations as neighbors to the USHCN.  In this example, the impermeable surface extent was 

used to classify the stations.  The cumulative impacts are shown separately for adjustments that 

are common between the two runs (i.e., adjustments that the PHA identified for the same 

stations and dates) versus those that are unique to the two separate urban-only and rural-only 

reference series runs.  In the case of both the common and unique adjustments, the urban-only 

neighbor PHA run produces adjustments that are systematically larger (more positive) than the 

rural-only neighbor run.  The magnitude of the resultant systematic bias for the adjustments 

common to both algorithm versions is shown in black.  The reason for the systematic 
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differences is likely that UHI trends or undetected positive step changes pervasive in the urban-

only set of neighboring station series are being aliased onto the estimates of the necessary 

adjustments at USHCN stations.  This aliasing from undetected urban biases becomes much 

more likely when all or most neighbors are characterized by such systematic errors. 

Figure S.I.3. provides a similar comparison of the rural-only neighbor PHA run and the all-Coop 

(v2) neighbor run.  In this case, the adjustments that are common to both the rural-only and the 

all-Coop neighbor runs have cumulative impacts that are nearly identical.  This is evidence that, 

in most cases, the Coop neighbors that surround USHCN stations are sufficiently “rural” to 

prevent a transfer of undetected urban bias from the neighbors to the USHCN station series 

during the homogenization procedure.  In the case of the adjustments that are unique to the 

separate runs, the cumulative impacts suggest that the less dense rural-only neighbors are 

missing some of the negative biases that occurred during the 1930 to 1950 period, which 

highlights the disadvantage of using a less dense station network.  In fact, the all-Coop neighbor 

v2 dataset has about 30% more adjustments than the rural-only neighbor PHA run produces.   

Results using the other three station classification approaches are similar and are provided as 

Figures S.I.3 – S.I.8.   

CONCLUSIONS 

 

According to all four proxy measures used to identify station environments that are currently 

urban, there is consistent evidence that urban stations have a systematic bias relative to rural 

stations throughout the USHCN period of record.  This bias has led to an apparent urban 

warming signal in the unhomogenized data that accounts for approximately 14 to 21 percent of 

total rise in USHCN minimum temperatures averaged over the CONUS for the period since 

1895, and 6 to 9 percent of the rise over the past 50 years.   Homogenization of the monthly 

temperature data via NCDC’s Pairwise Homogenization Algorithm (PHA) removes the majority 

of this apparent urban bias, especially over the last 50 to 80 years.  Moreover, results from the 

PHA using the full set of Coop station series as reference series and using only those series 

from stations currently classified as rural are broadly consistent, which provides strong evidence 

that the reduction of the urban warming signal by homogenization is a consequence of the real 

elimination of an urban warming bias present in the raw data rather than a consequence of 

simply forcing agreement between urban and rural station trends through a spreading of the 

urban signal to series from nearby stations.    
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As noted in the introduction, one of the challenges in quantifying the UHI signal in land surface 

air temperature records is that changes affecting urban stations can occur at both the micro and 

meso-scales.  Changes at the micro-scale (e.g., small station moves, growth of a tree) are not 

necessarily of interest in evaluations of the UHI signal because they are highly localized and 

may have no relevance to the broader land use changes associated with urbanization that can 

affect the mesoscale temperature signal.  For this reason, micro-scale changes reasonably can 

be included in the list of inhomogeneities that should be corrected for via homogenization (along 

with instrument changes and time of observation changes).  In contrast, it may be desirable to 

preserve changes in the in the meso-scale signal because these changes encompass a broader 

footprint and are arguably  more likely to be related to larger-scale land use changes.  

Unfortunately, it may not be possible to distinguish (at least automatically) changes occurring at 

the micro-scale from changes at the meso-scale, especially if only one station record is 

available to sample the meso-scale signal.  Whatever the cause, when any station series 

exhibits a sustained change relative to highly correlated surrounding stations, the change is 

likely to be identified by the PHA as uniquely local, and its impact on that stations temperature 

trend will be removed with a bias adjustment.  This happens whether the USHCN station is from 

a rural or urban environment, which means that the same challenge that exists for identifying 

UHI impacts also exists for identifying the impacts of other types of (non-urban) land use 

changes.     

Nevertheless, the pairing of urban and rural stations in a manner that controls for instrument 

type and time of observation changes reveals larger trends at urban stations, which is 

consistent with the understanding that land use changes associated with urbanization lead to 

larger historic temperature trends at urban stations.  However, that this larger trend signal is 

effectively removed through homogenization suggests that the urban environments 

characterized by larger trends do not have large spatial scales that allow them to be sampled by 

a number of Coop stations (or that the urban temperature signal is heterogeneous) and thus the 

local urban signal is being effectively removed via homogenization.   

Because homogenization is largely successful in removing urban bias in the USHCN 

temperature data, it appears that only about 5% of the period-of-record USHCN version 2 

minimum temperature trends across the CONUS can be attributed to local urban influences 

and, further, that most of this contribution is coming from data for years prior to 1930.  This 

residual urban bias for the earlier years in the record may be a consequence of the reduced 

station density of the Coop network in the early part of the twentieth century, which limits the 
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number of pairs available for detecting inhomogenities some of which may be related to 

urbanization.   

NASA GISS’s (GISTEMP) “Step 2” nightlight-based UHI adjustments effectively remove the 

remaining urban-rural differences during this early period, suggesting that the additional UHI-

specific adjustment is achieving the goal of forcing agreement between urban and rural 

temperature trends.  Nevertheless, the recently released USHCN version v2.5 data 

(homogenized with the PHA algorithm version “52i as shown in figure S.I.1) improves the pre-

1930 period considerably vis-à-vis v2.0 (except in the case of GRUMP), which may also mean 

that homogenization procedures may be able to more fully account for urban-related biases in 

the future, at least in areas with sufficient station density.  In any case, at present, the net effect 

of urban-correlated biases on the version 2.5 adjusted data is evidently small, accounting for 

less than 5% of the trend since 1895 (and between 0 and 2% since 1960).   While it would likely 

be worthwhile to further characterize the uncertainty in UHI-related warming in datasets like the 

USHCN (e.g., by exploring a range of cutoffs for classifying a station as urban with the various 

proxies or by quantifying more site-specific aspects of a stations environment), UHI does not 

appear to represent a significant contributing factor in the CONUS-average temperature signal 

over the past 50-80 years.  
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SUPPLEMENTARY INFORMATION 

 

Figure S.I. 1. CONUS average urban and rural minimum temperature differences for five 

different versions of the USHCN station data and four different station classifications.  The five 

different dataset versions are “Raw” (no bias adjustments-dashed red); TOB-only adjusted (solid 

red); v2 fully adjusted data homogenized using the pairwise algorithm version “52d” (dashed 

blue); fully adjusted v2 data homogenized using the pairwise algorithm version “52i” (solid blue); 

and fully adjusted v2 data homogenized using algorithm version “52d” with the NASA GISS 
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(GISTEMP) “Step 2” UHI correction.  CONUS averages were computed as described in Menne 

et al (2009, 2010). 

 

Table SI.1.  Minimum and maximum trends in CONUS temperatures for specified sets of 

stations using the Menne et al [2009] spatial gridding method for time of observation-adjusted 

(TOB), homogenized v2.0 (52d), and homogenized v2.5 (52i) series.  

Stations Dates Series TMIN Trend    TMAX Trend  

All Stations 1895-2010 TOB 0.074 0.028 

All Stations 1895-2010 52d 0.075 0.061 

All Stations 1895-2010 52i 0.070 0.056 

GRUMP Rural 1895-2010 TOB 0.060 0.027 

GRUMP Rural 1895-2010 52d 0.068 0.053 

GRUMP Rural 1895-2010 52i 0.068 0.056 

ISA Rural 1895-2010 TOB 0.064 0.026 

ISA Rural 1895-2010 52d 0.072 0.060 

ISA Rural 1895-2010 52i 0.070 0.060 

Nightlight Rural 1895-2010 TOB 0.062 0.025 

Nightlight Rural 1895-2010 52d 0.069 0.056 

Nightlight Rural  1895-2010 52i 0.068 0.056 

Pop Growth Rural 1895-2010 TOB 0.064 0.025 

Pop Growth Rural 1895-2010 52d 0.076 0.058 

Pop Growth Rural 1895-2010 52i 0.071 0.059 
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All Stations 1960-2010 TOB 0.255 0.127 

All Stations 1960-2010 52d 0.248 0.189 

All Stations 1960-2010 52i 0.236 0.196 

GRUMP Rural 1960-2010 TOB 0.234 0.106 

GRUMP Rural 1960-2010 52d 0.242 0.184 

GRUMP Rural  1960-2010 52i 0.237 0.190 

ISA Rural 1960-2010 TOB 0.240 0.119 

ISA Rural 1960-2010 52d 0.247 0.193 

ISA Rural 1960-2010 52i 0.234 0.198 

Nightlight Rural 1960-2010 TOB 0.233 0.113 

Nightlight Rural 1960-2010 52d 0.244 0.185 

Nightlight Rural 1960-2010 52i 0.234 0.194 

Pop Growth Rural 1960-2010 TOB 0.236 0.120 

Pop Growth Rural 1960-2010 52d 0.248 0.190 

Pop Growth Rural 1960-2010 52i 0.236 0.193 
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Figure S.I. 2.  Cumulative average of PHA-derived minimum temperature adjustments using 

Coop station reference series classified as urban only (red lines) and as rural only (green lines) 

according to the impermeable surface area (ISA10) classification method.  The cumulative 

average of the adjustments that are common to both datasets are shown as solid lines and 

those that are unique are shown as dashed lines. 
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Figure S.I. 3.  Cumulative average of PHA-derived minimum temperature adjustments using all 

Coop station series as reference series-v2-“52d” (red lines) and classified as rural only (green 

lines) according to the impermeable surface classification method.  The cumulative average 

minimum temperature adjustments that are common to both datasets are shown as solid lines 

and those that are unique are shown as dashed lines. 
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Figure S.I. 4.  As in Fig. S.I.2 but from stations classified using GRUMP. 

 

Figure S.I. 5.  As in Fig. S.I.3 but from stations classified using GRUMP. 
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Figure S.I. 6.  As in Fig. S.I.2 but from stations classified using Nightlights. 

 

Figure S.I. 7.  As in Fig. S.I.3 but from stations classified using Nightlights. 
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Figure S.I. 8.  As in Fig. S.I.2 but from stations classified using population growth. 

 

Figure S.I. 9.  As in Fig. S.I.3 but from stations classified using population growth. 
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DATA SOURCES 

 

Urbanity Proxies 

For the satellite nightlights, the Global Radiance Calibrated Nighttime Lights data-set year 2006, 

satellite F16 was used: http://www.ngdc.noaa.gov/dmsp/download_radcal.html 

http://www.google.com/url?q=http%3A%2F%2Fwww.ngdc.noaa.gov%2Fdmsp%2Fdownload_ra

dcal.html&sa=D&sntz=1&usg=AFQjCNEErK-ouoX_mn-v7gQJJuqlmTH8dA 

For population growth and low population proxies, Gridded 1 km Population Estimates for the 

Conterminous U.S., 1930-2000 were used: 

http://www.ncdc.noaa.gov/oa/climate/research/population/popdata.html 

http://www.google.com/url?q=http%3A%2F%2Fwww.ncdc.noaa.gov%2Foa%2Fclimate%2Frese

arch%2Fpopulation%2Fpopdata.html&sa=D&sntz=1&usg=AFQjCNEWRo1mmvTpvi278n0ZXR

V2tjhlig 

For impermeable surfaces, Global Distribution and Density of Constructed Impervious Surfaces 

was used: http://www.ngdc.noaa.gov/dmsp/download_global_isa.html 

For urban boundaries, Global Rural-Urban Mapping Project (GRUMP) data was used: 

http://sedac.ciesin.columbia.edu/gpw/documentation.jsp  

 

Station and Temperature Data 

USHCN TOB min data:  

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/9641C_201105_tob.min.gz 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/9641C_201011_F52.min.gz 

USHCN TOB max data: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/9641C_201105_tob.max.gz 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/9641C_201011_F52.min.gz 
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USHCN v2 homogenized min data: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/9641C_201105_F52.min.gz  

USHCN v2 homogenized max data: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/9641C_201105_F52.max.gz  

USHCN v2 rural-neighbor homogenized min data: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/uhi/ 

USHCN v2 rural-neighbor homogenized max data: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/uhi/ 

Station instrument types:  

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/uhi/ 

MMTS transition dates: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/uhi/ 

 

SOURCE CODE  

 

Code used for both the station pairing and spatial gridding analysis is available for the statistical 

software STATA here: ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/uhi/code/stata 

A Java version of the code is also available: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/uhi/code/java 

Code used in the gridding method described in Menne et al. [2009; 2010] is available here:  

Code used to produce both fully homogenized and rural-homogenized data via the Pairwise 

Homogenization Algorithm in Menne and Williams [2009] is available here: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/uhi/code/pha 

Code used to apply the NASA GISS Step 2 adjustment is available here: 

http://code.google.com/p/ccc-gistemp/  
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Numerical values for trends and confidence intervals for Figures 1 and 2 are available here: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/uhi/trends 
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ABSTRACT 

 

Numerous inhomogeneities including station moves, instrument changes, and time of 

observation changes in the U.S. Historical Climatological Network (USHCN) complicate the 

assessment of long-term temperature trends. Detection and correction of inhomogeneities in 

raw temperature records have been undertaken by NOAA and other groups using automated 

pairwise neighbor-comparison approaches, but these have proven controversial due to the large 

trend impact of homogenization in the United States. The new U.S. Climate Reference Network 

(USCRN) provides a homogenous set of surface temperature observations that can serve as an 

effective empirical test of adjustments to raw USHCN stations. By comparing nearby pairs of 

USHCN and USCRN stations, we find that adjustments make both trends and monthly 

anomalies from USHCN stations much more similar to those of neighboring USCRN stations for 

the period from 2004-2015 when the networks overlap. These results improve our confidence in 

the reliability of homogenized surface temperature records.  

INTRODUCTION 

 

The U.S. Historical Climatological Network (USHCN) is a group of 1,218 stations selected from 

the larger U.S. Cooperative Observer Program to provide a spatially-representative estimate of 

contiguous U.S. temperatures (CONUS) from 1895 through the present [Fiebrich 2009]. These 
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stations were selected based on long, continuous temperature records, rural or small-town 

locations, and other factors intended to produce as unbiased an estimate as possible of long-

term climate changes [Quinlan et al., 1987; Menne et al., 2009]. Despite these selection criteria, 

significant systemic inhomogeneities plague the USHCN. These include time of observation 

changes [Karl et al., 1986; Vose et al., 2003], instrument changes [Quayle et al., 1991; 

Doesken, 2005; Hubbard and Lin, 2006], station location changes [Changnon and Kunkel 2006], 

changes in broader urban form surrounding station locations [Karl et al., 1988; Peterson and 

Owen, 2005; Hausfather et al., 2013], and changes in localized station site characteristics [Fall 

et al., 2011; Menne et al., 2010; Muller et al., 2013]. Most stations in the USHCN have been 

subject to three or more of these inhomogeneities during the past century, and few if any have 

completely homogenous records [Menne et al., 2009]. These inhomogeneities can have large 

non-symmetric effects on estimates of U.S. temperature trends. The two largest trend effects 

are due to correcting time-of-observation changes and instrument changes from liquid-in-glass 

(LiG) to minimum-maximum temperature systems (MMTS).  

 

Time-of-observation changes introduced a large cooling bias due to widespread observation 

time changes from afternoon to morning between 1950 and present. This results in a shift from 

minimum-maximum thermometers occasional double-counting of maximums to a double-

counting of minimums, with a net U.S. average negative bias of about 0.25 °C [Vose et al., 

2003]. The widespread transition from LiG to MMTS instruments between 1980 and 2000 also 

resulted in a cooling bias; MMTS instruments tend to measure maximum temperatures about 

0.5 °C lower and minimum temperatures about 0.35 °C higher than LiG instruments, resulting a 

net negative trend bias of around 0.15 °C [Hubbard and Lin, 2006]. 

 

The raw USHCN temperature records are adjusted (homogenized) to attempt to remove biases 

introduced by these inhomogeneities. Two distinct adjustments are performed on USHCN data: 

a correction for time of observation [Karl et al., 1986], and a Pairwise Homogenization Algorithm 

(PHA) to detect and remove all other biases [Menne and Williams, 2009]. The adjustments to 

USHCN records have been evaluated extensively using synthetic data [Williams et al., 2012; 

Venema et al., 2012], and they generally perform well in removing both regional and local 

biases independent of the sign of the bias. Adjusted USHCN trends are also quite similar to 

results from independent reanalysis datasets, while raw USHCN trends are significantly lower 

[Vose et al., 2012]. Other independent groups have also found similar results to NOAA using 

differing automated adjustment approaches [Rohde et al 2013]. However, the net effect of 
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adjustments on the USHCN is quite large, effectively doubling the mean temperature trend over 

the past century compared to the raw observational data [Menne et al 2009]. This has resulted 

in a controversy in the public and political realm over the implications of much of the observed 

U.S. warming apparently resulting from temperature adjustments. 

 

In part as a response to criticisms of the quality of the USHCN, NOAA began setting up a U.S. 

Climate Reference Network (USCRN) in 2001. The USCRN stations are sited in pristine 

environments in rural areas away from any potential direct urban influence. Stations include 

three NIST-calibrated redundant temperature sensors that make measurements every 2 

seconds and automatically report the data to a centralized server via satellite uplink. Stations 

are actively monitored and regularly maintained by NOAA employees. The USCRN is currently 

comprised of 114 conterminous U.S. stations and has had sufficient station density and 

distribution to provide relatively good spatial coverage of the U.S. since the start of 2004 

[Diamond et al., 2013].  

 

The period of overlap between the records is now sufficiently long to effectively assess the 

impact of temperature adjustments to USHCN stations using the USCRN as an unbiased 

reference. The USCRN has been used to evaluate other observational networks before; for 

example, Otkin et al. [2005] used the USCRN to validate insolation estimates, Gallo [2005] 

examined proximate USCRN station pairs to assess the impact of microclimate influences, and 

Leeper [2015] examined absolute temperature and precipitation differences between proximate 

U.S. Cooperative Observer Program and USCRN stations. 

METHODS 

 

The USCRN record is homogeneous by design, while the USHCN has large known 

inhomogeneities. This means that an effective homogenization algorithm would tend to make 

the USHCN network trends and anomalies very similar to those of the USCRN network, and we 

can use this fact to empirically assess the effectiveness of homogenization during the period of 

overlap between the networks. To evaluate the efficacy of USHCN homogenization with respect 

to the USCRN, we focus on the period between January 2004 and August 2015 where both 

USHCN and USCRN networks have reasonably comprehensive spatial coverage of the U.S. 

We look at CONUS spatially-weighted average temperatures for USCRN and both USHCN raw 

and adjusted series. We also examine individual proximate pairs of USHCN and USCRN 
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stations. In all cases we separately perform the analysis for minimum (tmin), maximum (tmax), 

and average (tavg) monthly temperatures. 

 

The adjusted (version 52j) USHCN series contains the same 1,218 temperature stations as the 

raw USHCN series, but uses the full set of around 10,000 temperature stations available in the 

U.S. for the detection and removal of inhomogeneities. Included in those 10,000 are the 114 

USCRN stations, which raises the possibility that the adjusted USHCN data and USCRN data 

may not be completely independent. To ensure that the USCRN stations can provide an 

independent empirical test, we generated a variant of adjusted USHCN series that excluded all 

USCRN series from the full station population prior to any homogenization. This had relatively 

little effect for most stations, as the PHA requires the agreement of the preponderance of 

neighboring stations to flag inhomogeneities. A figure showing the difference between this new 

without-USCRN adjusted USHCN series and the standard with-USCRN USHCN adjusted series 

is available in the supplementary materials (Figure SM1). 

 

To calculate CONUS temperature anomalies we follow a standard approach of assigning each 

station to a 2.5 by 3.5 latitude/longitude grid cell, transforming monthly values for each station 

into anomalies by subtracting the average for each month over a baseline period (in this case, 

2004 through the end of 2014 to reflect the period of network overlap), average the anomalies 

from all stations within each gridcell, and creating a weighted average of all gridcells based on 

the respective land area of each grid cell (EPA 2013). We further exclude any gridcell-months 

prior to averaging that do not contain at least one USHCN-raw, USHCN-adjusted, and USCRN 

record to ensure that spatial coverage is comparable between the resulting records. Trend 

confidence intervals for the resulting CONUS records are calculated using an ARMA[1,1]  model 

to account for autocorrelation in the data. 

 

To evaluate proximate pairs of USHCN/USCRN stations, we examine all possible permutations 

of USHCN and USCRN station pairs that are within a given distance of each other. We examine 

distances of 50 miles (80 km), 100 miles (161 km), and 150 miles (241 km), though most of the 

figures presented herein focus on the 100-mile (161 km) case (the others are available in the 

supplementary materials). We further limit valid station pairs to those whose record begins prior 

to January 2006 and ends no earlier than July 2014, and exclude them from the analysis if they 

do not have at least 8 years (96 months) of data, ensuring all resulting station pair trends will be 
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calculated over a period of at least 8 years. These values are chosen in an attempt to maximize 

both the overlapping period and the number of station pairs available to evaluate. 

 

These selection criteria result in 191 USHCN/USCRN station pairs (with 68 unique USCRN 

stations) at a distance cutoff of 50 miles (80 km), 651 station pairs (75 unique USCRN) at 100 

miles (161 km), and 1393 station pairs (76 unique USCRN) at 150 miles (241 km). Distances 

are calculated via the spherical law of cosines formula. Each station pair record is trimmed to 

include only months where USCRN, USHCN-raw, and USHCN-adjusted readings are all 

available, to remove any impact of USHCN-adjusted in-filled values when USHCN-raw data is 

not available. Temperature readings for each station are converted into monthly temperature 

anomalies over the full period of overlap between the paired stations. A difference series is 

calculated by subtracting USCRN anomalies from USHCN anomalies for each month: 

 

𝐷𝑖𝑓𝑓! = 𝐻𝐶𝑁! − 𝐶𝑅𝑁! 

 

The trends in these pair difference series are calculated using a simple OLS regression. Mean 

squared differences between pair anomalies are also calculated to provide an additional metric 

of variation. The station pair difference time-series exhibit some residual autocorrelation (as 

verified by examining Durbin's alternative test for autocorrelation for station pair difference 

series), with more than half of the pair-differences having significant autocorrelation (p < 0.05) 

when differencing raw USHCN stations from their USCRN pair. However, because the measure 

of interest is the distribution of difference trends between all pairs pre- and post-adjustment 

rather than the uncertainty in difference trends for individual station pairs, the use of a simple 

OLS trend calculation rather than a more computationally-intensive approach that explicitly 

accounts for autocorrelation should have no meaningful effect on the results. 

 

Additionally, we look at pairs of USCRN/USCRN and USHCN/USHCN stations to determine the 

variation of anomalies and trends as a function of distance within each network, similar to the 

approach taken in Gallo [2005]. The analysis undertaken for these in-network pairs is the same 

as for between-network pairs, though for distances up to 2,000 miles a random subset of 10,000 

USHCN/USHCN station pairs are selected to make the calculations more tractable. Code used 

in performing these analyses is available in the supplementary materials. 

RESULTS 
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Over the past 10 years there is relatively little difference between the raw and adjusted USHCN 

temperature series in the overall CONUS temperature record. The impact of adjustments over 

this period is largely trend-neutral due to a lack of detected systemic trend-biasing 

inhomogenities. Accordingly, at the CONUS-level the USCRN record does not allow for an 

effective differentiation between raw and adjusted USHCN series, as shown in Figure 1. 

 

 
Figure 1: Maximum (Tmax), minimum (Tmin), and mean (Tavg) CONUS values for USCRN, 

USHCN raw, and USHCN adjusted data. Left column: CONUS temperature anomalies for each 

series. Right column: USHCN raw minus USCRN (in blue) and USHCN adjusted minus USCRN 

(in red). CONUS reconstructions are spatially-limited to grid cells where values for all three 

datasets are present for any given month. For detailed statistics of the data shown, see 

supplementary materials Table SM1. 

 

The CONUS-averaged USCRN and both USHCN series are largely indistinguishable for both 

minimum and mean temperatures. These results are similar to those of Menne et al [2010] and 
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Diamond et al [2013], who also found little distinguishable differences between average USCRN 

and USHCN temperatures. However, significant differences (p < 0.05) exist for maximum 

temperatures, where both the raw and adjusted USHCN series have a lower temperature trend 

over the 2004-2014 period than the USCRN series.  

 

While CONUS-averaged temperatures show little difference between USHCN adjusted, USHCN 

raw, and USCRN series, the same is not true when we look at individual pairs of proximate 

USCRN/USHCN stations within 100 miles (161 km) of each other (Figure 2). Here the effect of 

adjustments is to bring raw USHCN station trends much closer to their USCRN counterparts for 

maximum, minimum, and average temperatures. The effect of adjustments is particularly 

pronounced for more divergent trends. These results hold across pair-distances cutoffs of 50 

and 150 miles (80 and 241 km) as well (see Figures SM5 and SM6 in the supplementary 

materials).  

 

 
Figure 2: Maximum (tmax), minimum (tmin), and mean (tavg) trend differences from USHCN-

USCRN station pairs within 100 miles (161 km) of each other for both raw and adjusted USHCN 

data. The top panel shows a scatter plot of trend differences (in degrees °C per year) as a 

function of distance between station pairs; the bottom panel shows the probability density 
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function of station pair trends with kernel density displayed on the y-axis. For detailed statistics 

of the data shown, see supplementary materials Table SM2. 

 

If adjustments to USHCN data removed all inhomogenities present in the data, we would expect 

the trend differences between USHCN and USCRN stations to constitute a mean-zero normal 

distribution, with some variation of trends differences as a function of distance. The probability 

density functions in Figure 2 show a clear narrowing of the distribution around zero trend 

differences, particularly for minimum and mean temperatures. For maximum temperatures the 

distribution is narrower, but has a slight negative mean. This means that adjusted (and raw) 

USHCN stations generally have a lower maximum temperature trend than their nearby USCRN 

pairs, similar to the results from the CONUS-wide analysis. Adjustments move the trend 

difference slightly closer to zero, but a statistically significant (p < 0.01, via a two-sample t-test) 

gap remains.  

 

This maximum temperature trend difference appears to be widespread among USCRN/USHCN 

pairs, and is not a result of any distinct subset of outliers, perhaps suggesting that the 

differences might be instrumental in origin rather than a result of station moves, microsite 

changes, or other inhomogeneities that would only affect a subset of USHCN stations during the 

2004-2015 period. USCRN stations used platinum resistance thermometers in fan-aspirated 

solar shields, while USHCN stations primarily use MMTS instruments with no fan aspiration. 

Interestingly, the max temperature trend bias between USCRN and USHCN stations has the 

opposite sign as the absolute max temperature bias; Leeper et al. [2015] find that fan-aspirated 

USCRN stations read maximum temperatures as 0.48 °C colder than proximate USHCN 

stations, and minimum temperatures 0.36 °C warmer. 

 

There is also a possibility that the PHA is less effective in detecting (and removing) 

inhomogenities near the end of the record, as post-breakpoint records will be too short to allow 

reliable detection [Menne and Williams 2009]. However, the difference between USHCN and 

USCRN maximum temperatures increases fairly monotonically between 2004 and 2015 (figure 

SM4), suggesting that ‘end effects’ are not responsible for the failure of homogenization to 

remove this difference. We also examine how these USCRN/USHCN maximum temperature 

differences vary regionally (figure SM5 in the supplementary materials), and find that the effect 

is easily noticeable in the Eastern and Central U.S. but somewhat smaller in the Western U.S. 
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The variation in trend differences over distances between USHCN-adjusted/USCRN pairs is 

considerably smaller than that of USHCN-raw/USCRN pairs. There is some variation expected 

with distance, so to test whether or not adjustments are producing a realistic distribution of trend 

differences over distance we compare them to the distribution of trend differences between 

pairs of similarly-proximate USCRN stations, as shown in Figure 3. Here pairs of stations within 

150 miles (241 km) are used due to the limited number of CRN stations in close proximity. 

 
Figure 3: Probability density function of tavg trend differences between USCRN and USHCN 

pairs within 150 miles (241 km), with a range of expected trend variation (green shading) based 

on pairs of USCRN-only stations within 150 miles (241 km) of each other, with kernel density 

displayed on the y-axis. 

 

The adjustments to USHCN stations create a spatial structure of trends more similar to the 

USCRN stations over longer distances as well. Figure 4 shows the standard deviation of trend 

differences between within-network station pairs (USCRN to USCRN; raw USHCN to raw 

USHCN; adjusted USHCN to adjusted USHCN) as a function of distance for the period from 

January 2004 to October 2015. Raw USHCN stations have much greater variation in trends 
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between station pairs across all distances; the adjustments consistently reduce this variation to 

the level seen in the homogenous USCRN stations. 

 
Figure 4: Standard deviation of trend differences between in-network station pairs as a function 

of distance.  

 

Mean squared differences between USHCN/USCRN station pair anomalies are also calculated 

(shown in supplementary materials figures SM6 and SM7). These provide a measure of the 

difference in anomalies for individual stations somewhat independent of trend impacts. For 

minimum, maximum, and mean temperature series of station pairs within 100 miles (161 km) 

the mean squared difference of the adjusted data is statistically significantly smaller (p < 0.01) 

than that of the raw data, indicating that adjustments are making anomalies of USHCN stations 

more similar to USCRN stations. 

CONCLUSIONS 
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During the period of overlap between the USHCN and USCRN networks, we can confidently 

conclude that the adjustments to the USHCN station records made them more similar to 

proximate homogenous USCRN station records, both in terms of trends and anomalies. There 

are no systematic trend biases introduced by adjustments during this period; if anything 

adjusted USHCN stations still underestimate maximum (and mean) temperature trends relative 

to USCRN stations. This residual maximum temperature bias warrants additional research to 

determine the exact cause. 

 

While this analysis can only directly examine the period of overlap, the effectiveness of 

adjustments during this period is at least suggestive that the PHA will perform well in periods 

prior to the introduction of the USCRN, though this conclusion is somewhat tempered by the 

potential changing nature of inhomogeneities over time. This work provides an important 

empirical test of the effectiveness of temperature adjustments similar to Vose et al. [2012], and 

lends support prior work by Williams et al [2012] and Venema et al [2012] that used synthetic 

datasets to find that NOAA’s pairwise homogenization algorithm is effectively removing localized 

inhomogeneities in the temperature record without introducing detectable spurious trend biases. 
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SUPPLEMENTARY MATERIALS 

 

These supplementary materials provide links to data, code, and a number of figures and tables 

referenced in the article text. Each figure includes a caption describing its contents and (when 

relevant) how it was calculated.  

DATA AND CODE 

 

U.S. HCN v2.5 raw data: ftp.ncdc.noaa.gov/pub/data/ushcn/v2.5/ (.raw files) 

U.S. HCN v2.5 adjusted data: ftp.ncdc.noaa.gov/pub/data/ushcn/v2.5/ (.FLs.52j files) 

U.S. CRN data: ftp.ncdc.noaa.gov/pub/data/uscrn/products/monthly01/  

 

Annotated Code: http://www-users.york.ac.uk/~kdc3/papers/crn2016/    



	74	

SUPPLEMENTARY FIGURES 

 

 
Figure SM1: Maximum (Tmax), minimum (Tmin), and mean (Tavg) CONUS values for HCN 

raw, and HCN adjusted with CRN, and HCN adjusted without CRN data.  Left column: CONUS 

temperature anomalies for each series. Right column: HCN adjusted with CRN minus HCN 

adjusted without CRN (in black). CONUS reconstructions are spatially-limited to grid cells where 

values for all three datasets are present for any given month. The inclusion of CRN in the 

homogenization process slightly increases Tmax trends (and Tavg trends) but not Tmin trends, 

consistent with the higher Tmax trends seen in CRN stations vis-a-vis nearby HCN adjusted 

stations. 
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Figure SM2. Maximum (tmax), minimum (tmin), and mean (tavg) trend differences from HCN-

CRN station pairs within 50 miles of each other for both raw and adjusted HCN data. The top 

panel shows a scatter plot of trend differences (in degrees °C per year) as a function of distance 

between station pairs; the bottom panel shows the probability density function of station pair 

trends. 
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Figure SM3. Maximum (tmax), minimum (tmin), and mean (tavg) trend differences from HCN-

CRN station pairs within 150 miles of each other for both raw and adjusted HCN data. The top 

panel shows a scatter plot of trend differences (in degrees °C per year) as a function of distance 

between station pairs; the bottom panel shows the probability density function of station pair 

trends. 
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Figure SM4: TMax mean difference between CRN and HCN-adjusted station pairs, with the 

mean calculated by weighting each unique CRN station by inverse of the number of unique 

HCN stations that it is paired with for each month in order to avoid overweighting CRN stations 

with more HCN pairs in the analysis. A lowess fit (bandwidth 0.2) is also shown for reference. 
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Figure SM5: Probability density function of tmax trend differences between CRN and HCN 

adjusted pairs within 100 miles by geographic region. East is > -90 latitude; West is < -110 

latitude; Central is between the two. The East region contains 320 station pairs, the Central 

region contains 255 station pairs, and the West region contains only 76 station pairs. 
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Figure SM6: Probability density of maximum (tmax), minimum (tmin), and mean (tavg) mean 

square errors from USHCN-USCRN station pairs within 100 miles of each other for both raw 

and adjusted USHCN data. Values on y-axis are in degrees C. 
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Figure SM7: Mean squared errors in differences between in-network station pairs as a function 

of distance out to 2000 miles.  

 

Table SM.1: Statistics on CONUS raw/adjusted USHCN and USCRN trends 

Measurement Series Trend  Confidence Interval 

Tmax USHCN Raw -0.058 -1.150 to 1.034 

Tmax USHCN Adjusted -0.055 -1.165 to 1.055 

Tmax USCRN 0.179 -0.916 to 1.276 

Tmin USHCN Raw -0.086 -0.717 to 0.546 

Tmin USHCN Adjusted -0.159 -0.793 to 0.475 

Tmin USCRN -0.176 -0.821 to 0.47 

Tavg USHCN Raw -0.074 -0.897 to 0.749 

Tavg USHCN Adjusted -0.108 -0.938 to 0.722 

Tavg USCRN -0.028 -0.872 to 0.817 
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Tmax USHCN Raw minus USCRN -0.238 -0.300 to -0.176 

Tmax USHCN Adjusted minus USCRN -0.234 -0.244 to -0.225 

Tmax USHCN Adj minus USHCN Raw 0.003 -0.042 to 0.048 

Tmin USHCN Raw minus USCRN 0.09 0.011 to 0.169 

Tmin USHCN Adjusted minus USCRN 0.017 -0.057 to 0.091 

Tmin USHCN Adj minus USHCN Raw -0.073 -0.097 to -0.049 

Tavg USHCN Raw minus USCRN -0.046 -0.102 to 0.009 

Tavg USHCN Adjusted minus USCRN -0.080 -0.134 to -0.026 

Tavg USHCN Adj minus USHCN Raw -0.034 -0.063 to -0.004 

Table SM1: Mean and 95% confidence intervals in trends and trend differences from data 

shown in Figure 1. Trend differences confidence intervals are in degrees °C per decade from 

January 2004 through October 2015. Confidence intervals are calculated using an ARMA[1,1] 

approach to account for autocorrelation. 

 

 

Table SM.2: Statistics on raw/adjusted USHCN/USCRN pair differences 

Measurement Pair Distance Pair Type Trend Diff Mean Trend Diff StDev 

Tmax 50 Raw -0.033 0.063 

Tmax 50 Adjusted -0.021 0.027 

Tmax 100 Raw -0.029 0.071 

Tmax 100 Adjusted -0.022 0.033 

Tmax 150 Raw -0.030 0.070 

Tmax 150 Adjusted -0.021 0.039 

Tmin 50 Raw 0.004 0.071 

Tmin 50 Adjusted 0.001 0.034 

Tmin 100 Raw 0.003 0.073 

Tmin 100 Adjusted 0.000 0.034 

Tmin 150 Raw 0.005 0.079 

Tmin 150 Adjusted 0.000 0.040 

Tavg 50 Raw -0.012 0.050 

Tavg 50 Adjusted -0.007 0.023 

Tavg 100 Raw -0.010 0.058 

Tavg 100 Adjusted -0.008 0.026 
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Tavg 150 Raw -0.010 0.060 

Tavg 150 Adjusted -0.007 0.032 

Table SM2: Mean and standard deviation in trend differences from data shown in Figure 2, 

Figure SM2, and Figure SM3. Pair distance is in miles; trend differences and standard 

deviations are in degrees °C per year (following the convention in Figure 2) from January 2004 

through October 2015. 
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III. OCEAN TEMPERATURES 

 

Oceans contribute the bulk of global surface temperature measurements, as they cover slightly 

over 70% of Earth’s surface. Measuring the temperature of the oceans is subject to large 

uncertainties. While correlation lengths of temperature changes are historically higher than over 

land, sampling of ocean temperatures has been much sparser, particularly for variables like 

ocean heat content. Correcting for changes in measurement techniques over time has posed a 

particular challenge, as the non-stationary nature of most ocean temperature observation 

platforms makes the neighbor-comparison approaches used for land temperatures difficult to 

apply. 

Sea surface temperatures (SST) are the single largest contributor to uncertainty in overall 

GMST records, with the magnitude of adjustments in response to past changes in measuring 

technique dwarfing any changes made to the land record on a global scale. 

Major inhomogeneities have arisen over time in SST records associated with the transition from 

measuring temperature from wooden (and later canvas) buckets thrown over the side of ships to 

temperatures measured in engine room intake valves.48 Bucket-based measurements were 

systematically cooler, due both to the higher ambient warmth of ship engine rooms and (more 

importantly) evaporative cooling that occurs during the period between when the bucket is 

pulled out of the water, hauled onto the ship deck, and finally has its temperature measured. 

Similarly, the transition between engine room intake measurements and those taken by 

automated buoys over the past two decades has introduced a bias. 

The ocean temperature research presented in this dissertation has focused on three areas:  

1) Understanding and reconciling differences between SST records in the last two decades 

(which were the key issue of contention in the controversy surrounding the Karl et al 

paper).23  

2) Better understanding the ocean temperature record in the period around WW2 using 

island and coastal land stations as a more homogenous reference. 

3) Evaluating recent changes in ocean heat content measurements and comparing them to 

climate model projections.  
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1. RECONCILING RECENT DIVERGENCES IN SST RECORDS 

 

In 2015 NOAA updated its sea surface temperature record from ERSST version 3b to version 4. 

ERSSTv3b has long been something of an outlier with respect to other SST records over the 

past decade, showing noticeably less warming. This was due to the combination of warmer 

engine room intake data from ships with cooler buoy data (which began providing SST 

measurements in earnest in mid-1990s and today provide upwards of 90% of all SST 

measurements). Measurements from buoys are cooler because the instrument sits directly in 

the water, compared to the warmer environment of ship engine rooms after water has been 

pulled through the hull. Multiple studies of collocated ships and buoys have found an offset 

between the two of around 0.1C,13,14 though there is some evidence this might have changed a 

bit in recent years. 

However, instead of just bringing their record up to match those of Hadley13 and the Japanese 

Meteorological Agency (JMA),49 the new NOAA data actually showed considerably more 

warming, particularly after 2004. To investigate which of these records provided an accurate 

depiction of SSTs in recent years and to better understand why they differed, we embarked on a 

project to analyze many different sources of SST data.  
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Figure III.1. Different composite SST records from ERSSTv4, v3b, and HadSST3 show notably 

different trends in recent years. Figure based on data in Hausfather et al 2017.50 

Our insight was to create multiple different SST records, each from a different type of instrument 

that would require little or no adjustments to the raw readings. These “instrumentally 

homogenous” SST records (IHSSTs) would each provide an independent assessment of what 

had happened in recent decades. Because the global scientific community has invested so 

much time into monitoring SSTs in different ways over the last 20 years, it was possible to 

create separate SST records from buoys, satellite radiometers, and Argo floats. We then 

compared these new instrumentally homogenous records to the composite records published by 

NOAA, Hadley, and JMA. As most of the uncertainties associated with major SST records 

involve how to adjust for changes in instrumentation, we avoided this with our approach at the 

expense of having more limited temporal series. 

The figure below shows these comparisons for buoys and satellite radiometer data IHSSTs. 

Satellite radiometer data uses measurements from the along-track side radiometer instruments 
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(ATSR) through 2014 combined with the Advanced Very High Resolution Radiometer (AVHRR) 

that extends through present. 

Figure III.2. Instrumentally homogenous sea surface temperature records from buoys and 

satellite radiometers 51,52 agree well with NOAA’s ERSSTv4 record, and show notably more 

warming than ERSSTv3b and HadSST3 records. 

We found that instrumentally homogenous records from buoys, satellite radiometers, and Argo 

floats all showed warming in similar years quite similar to NOAA’s ERSSTv4 (and new v5) 

record, and showed more warming than ERSSTv3 as well as the commonly used HadSST3 and 

COBE-SST datasets. These results were robust across an ensemble of reconstructions for each 

dataset, and were considerably larger than the respective trend uncertainties of each.  

While both HadSST3 and COBE-SST2 include explicit corrections for the ship-to-buoy 

measurement transition, they still show less warming than the IHSSTs we examined. These 

results show that the most commonly used global SST dataset, HadSST3, suffers from a cool 

bias in recent years that contributed to the appearance of a “hiatus” in global surface 
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temperatures in the early 21st century. This appears to be due to those datasets assuming a 

fixed offset of around 0.1°C between ship and buoy measurements over time; in reality, 

changes in the composition of the shipping fleet in recent decades have led to a systematic 

cooling bias when compared to co-located homogenous buoy measurements. 

 

Figure III.3 Buoy-only and ship-only temperature anomalies from January 1997 through 

December 2015. Figure from Hausfather et al 2017.50 

While buoys all use the same instrument type and are largely unchanged over the past two 

decades (apart from more buoys being deployed), the same is not true for ship-based 

measurements. The depth of the hull, the speed of ships, and the type of ships have all 

changed over the past two decades. The number of ship measurements have also fallen by 

about a third over this period. These changes appear to have introduced a spurious cool bias in 

the ship records that impacts Hadley and COBE SST records, but that the new NOAA record 
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mostly avoids by putting more weight on the higher quality (and more homogenous) buoy 

record. 

This residual ship bias has been corrected in the new version of the Hadley SST dataset –

 HadSST4 – that will go into operational use in early 2020. In response to our paper, Hadley has 

included an explicit comparison between their new HadSST4 record and instrumentally 

homogenous records from buoys, satellites (ARC), and Argo floats. 

 

Figure III.4. Comparison of the new HadSST4 dataset to IHSSTs highlighted in Hausfather et al 

2017.50 Figure 11 from Kennedy et al 2019.53 

2. USING ISLAND AND COASTAL STATIONS TO IMPROVE WW2-ERA 

RECORDS 
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One of the main uncertainties in sea surface temperature records occurs during the period 

before and after WW2. Large differences can be seen between NOAA’s ERSSTv4/v5 and 

Hadley’s HadSST3 during this period, due to different approaches used to identify and correct 

for changes in measurement techniques. The wartime years in particular show up quite 

differently, with NOAA’s record exhibiting a large spike in temperatures while Hadley finds a 

much more gradual ramp-up.  

To help better understand sea surface temperatures during this period, we developed an 

entirely new global sea surface temperature record from 1850 through present that used island 

and coastal land stations to homogenize ocean temperatures.54 These island and coastal 

stations were much less affected by WW2 than ship-based ocean measurements, providing a 

more stable and continuous set of measurements.  

 

 

 

Figure III.5. Island and coastal stations used for the hybrid SST reconstruction in Cowtan et al 

2017.54 
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These island and coastal stations are reasonably well distributed around the world and can 

catch large divergences between SST and nearby surface temperature measurements. We 

used high-resolution climate model runs to determine the necessary corrections for the 

difference in temperature changes over various time period in coastal vs. ocean locations, and a 

generalized least squares approach was employed to interpolate island and coastal records to 

create a spatially complete field. 

The results are shown in the figure below, which compares HadSST3, ERSSTv5, and our new 

“Hybrid SST” series. 

 

Figure III.6. Comparison of the hybrid temperature reconstruction (using all coastal and island) 

to co-located data from HadSST3 and ERSSTv5 for the period 1850-2016. The shaded region 

is the 95% confidence region for the HadSST3 anomalies including combined bias adjustment 

and measurement and sampling errors. The lower panel shows the adjustment applied to the 

raw data in the HadSST3 and coastal hybrid records. 
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In the years after 1975 the new hybrid SST record agrees quite well with both HadSST3 and 

ERSSTv5, though it shows more warming than HadSST3 and is quite similar to ERSSTv5 in the 

post-2000 period, adding further support to our prior instrumentally homogenous SST paper. 

The record shows quite good agreement with HadSST3 during the WW2 years, and rejects the 

“spike” that shows up in ERSST records. The hybrid record is cooler after WW2, similar to 

ERSSTv5 during that period, and also shows no cold excursion during the 1900-1910 period. 

The new record shows much better agreement with CMIP5 models during the 20th century than 

other existing SST records. 

This new record is not intended to be a replacement for more conventional metadata-based 

approaches. Rather, it’s a new independent approach that can help settle disputes between 

existing records (e.g. the WW2 “spike”) and pinpoint periods that may deserve more scrutiny 

(the 1900-1910 cool excursion). The paper was published in late 2017 in the Quarterly Journal 

of the Royal Meteorological Society.54 

The recently released HadSST4 record makes a number of changes that bring it more in-line 

with our hybrid SST record, providing a nice independent validation of our approach. The new 

version is significantly cooler for the period from 1950-1975, and also shows more temperature 

change on a centennial timescale. When compared to the coastal hybrid temperature record in 

the figure below, the big step around 1975 has been completely eliminated. 
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Figure III.7. HadSST3 13 and HadSST4 53 records differenced from the Cowtan et al 2017 54 

hybrid SST record. 

 

 

 

3. REEVALUATING OCEAN HEAT CONTENT CHANGES 

 

Ocean heat content (OHC) is one of the main measures of climate change, with around 93% of 

all heat trapped by greenhouse gases in the atmosphere accumulating in Earth’s oceans. The 

“fingerprint” of human influence on the climate is much easier to detect in the oceans, as it is 

much less affected by year-to-year natural variability than more commonly used surface 

temperature records.55 

Back in 2013, the IPCC Fifth Assessment Report (AR5) featured five different OHC estimates 

that generally showed oceans warming more slowly than most models projected.56 However, 

over the past five years the research community has made substantial progress in improving 
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long-term OHC records and has identified several problems with prior OHC estimates. 

Improvements include properly accounting for limitations in some older OHC instruments and 

taking advantage of better methods of accounting for gaps in the coverage and completeness of 

ocean temperature measurements.57 

OHC is a record of the heat content of Earth’s oceans. It is generally given for a range of depths 

from 0-700 meters or 0-2000 meters, as historical measurements below 2000 meters are 

extremely sparse.58 The majority of the heat trapped by greenhouse gases in the atmosphere 

over the past century – over 65% – has accumulated in the top 700 meters of the ocean, with 

most of the remainder in the top 2000 meters. OHC is a very different metric from sea surface 

temperatures, which only measure the top meter or so of the ocean and more closely match 

changes in air temperatures. 

OHC is challenging to measure. However, since the mid-2000s, scientists have had the benefits 

of the Argo network – thousands of autonomous robots that dive down to depths of 2000 meters 

or so and measure temperature, salinity, pH and other ocean characteristics as they slowly 

ascend. Once the Argo floats surface, the data they have collected is relayed to a central data 

repository by satellite.  

Prior to the mid-2000s, measurements were much less frequent and used devices called 

“expendable bathythermographs” (XBTs) – a temperature probe connected by wire to a ship, 

which sinks down into the ocean until the wire runs out and the probe is lost – that required 

extensive calibration to produce a consistent record. 

XBTs are problematic in that they do not measure the depth at which they take temperatures. 

Using them for OHC estimates requires assumptions around the rate of both horizontal and 

vertical movement in the ocean. Differing corrections to XBT measurements, as well as different 

approaches to infilling regions where data is sparse, have led to large differences in OHC 

estimates prior to the Argo era. 

In our paper in Science,57 we analyzed a number of OHC records published by different groups. 

We examined the five records included in AR5, as well as four new or updated records that 

have been published over the past few years. 

The figure below shows the rate of OHC warming in these records, as well as the rate projected 

by the CMIP5 climate models featured in AR5. The rate of warming is shown for the 1971-2010 

period highlighted in AR5; estimates in blue were included in AR5, while those in purple were 
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published more recently. The range of OHC warming across all the CMIP5 models is shown in 

grey. 

Figure III.8. Rate of ocean heat content warming for the top 2000 meters of the ocean, from 

1971-2010, in zetajoules (10^21 joules) per year. For each study the bar shows the 90% trend 

uncertainty, with the mean estimate shown by the black dot in the middle. For CMIP5 models, 

the bar spans the 90% range of models, with the black dot showing the multi-model mean 

OHC records published in recent years show, on average, about 25% – with a range of 6% to 

60% – more warming than the OHC records featured in AR5. These three new records have 

been corrected for issues that were identified in data collected from XBTs. They also employ 

better statistical methods to account for limited coverage of data sampling for OHC, particularly 

prior to the Argo era. 

The figure below shows the change in OHC over time in all four new studies, and compares 

them with the range of OHC changes across the CMIP5 models (grey band). The average of all 

the models is shown by the black line. The climate models and observations are plotted with 

respect to a 1981-2010 baselines, which results in model uncertainties that expand both before 

and after the baseline period. 
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Figure III.9. Change in ocean heat content – in zetajoules – for the top 2000 meters of the 

ocean with respect to a 1981-2010 baseline period in CMIP5 climate models (black line is the 

multimodel mean, grey area represents the 95th percentile range of model runs; RCP8.5 runs 

are used after historical runs end in 2005) and recent observational records (coloured lines). 

Data available here. 

As with the earlier chart, these new records agree well with climate model projections over the 

past few decades, resolving the apparent discrepancy between CMIP5 models and the OHC 

observations featured in the IPCC AR5. 

That four independent groups of researchers have all found similar results for OHC in recent 

years makes us more confident that these results are accurate – and that prior OHC records 

suffered from problems that led them to systematically underestimate OHC changes. The 

agreement between climate model projections and OHC observations over the past few 

decades also gives us confidence that climate models are able to reliably project OHC changes 

into the future. 
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ABSTRACT 

 

Sea surface temperature (SST) records are subject to potential biases due to changing 

instrumentation and measurement practices1. Significant differences exist between commonly-

used composite sea surface temperature reconstructions from NOAA’s Extended 

Reconstruction Sea Surface Temperature (ERSST)2, the Hadley Centre SST data set 

(HadSST3)3, and the Japanese Meteorological Agency’s Centennial Observation-Based 

Estimates of SSTs (COBE-SST)4 from 2003 to present. The update from ERSST version 3b to 

version 4 resulted in an increase in the operational SST trend estimate during the last 18 years 

from 0.07°C/decade to 0.12°C/decade, indicating a higher rate of warming in recent years5. 

Here we show that ERSST version 4 trends generally agree with largely-independent, near-

global and instrumentally-homogeneous SST measurements from floating buoys, Argo floats, 

and radiometer-based satellite measurements that have been developed and deployed during 

the past two decades. We find a large cooling bias in ERSSTv3b and smaller but significant 

cooling biases in HadSST3 and COBE-SST from 2003 to present with respect to most series 

examined. These results suggest that reported rates of SST warming in recent years have been 

underestimated in these three datasets. 
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One Sentence Summary: 

 

Instrumentally homogenous SST records show a cooling bias in composite SST products and 

validate NOAA’s recent record revision. 

 

INTRODUCTION 

 

Accurate SST data are necessary for a wide range of applications, from providing boundary 

conditions for numerical weather prediction, to assessing the performance of climate modeling, 

to understanding drivers of marine ecosystem changes.  However in recent years SST records 

are subject to large inhomogeneities due to a dramatic increase in the use of buoy-based 

measurements and changing characteristics of ships taking measurements3,6. Prior to the past 

two decades, a large majority of SST measurements were taken by ships, first with buckets 

thrown over the side and increasingly through engine room intakes (ERI) after 1940. Since 

1990, the number of SST measurements coming from buoys has increased around 25-fold, 

while the number of observations from ships has fallen by around 25 percent1,7. The 

observations have gone from 80% ship-based in 1990 to 80% buoy-based in 2015. Modern 

ship-based measurements (primarily ERI, though hull contact sensors and other devices are 

also used) tend to be biased warm by around 0.12°C relative to buoys, whose sensors are 

directly in contact with the ocean’s surface2,3,8. As the number of ships actively taking 

measurements available in the International Comprehensive Ocean-Atmosphere Data Set 

(ICOADS) database7 has fallen, a growing portion of ships are also using non-ERI systems that 

may introduce further changes in the combined record3. While buoy records are widely 

considered to be more accurate than ship-based measurements, their integration with ship 

records into longer SST series poses a number of challenges1. 

 

NOAA’s Extended Reconstruction Sea Surface Temperature (ERSST)2, the Hadley Centre SST 

data set (HadSST3)3, and the Japanese Meteorological Agency’s Centennial Observation-

Based Estimates of SSTs (COBE-SST)4 are composite SST series that assimilate data from 

multiple different instrument platforms (ships and buoys from ICOADS, and some satellite data 

in the case of COBE-SST) and measurement methods (wood buckets, canvas buckets, engine 

intake valves, etc.) to create consistent long-term records. These three composite ocean SST 

series are used by the primary groups reporting global temperature records: NASA’s 
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GISTEMP9, Met Office Hadley Centre's and University of East Anglia's Climatic Research Unit's 

HadCRUT10, NOAA’s GlobalTemp11,12, the Japan Meteorological Agency13, Berkeley Earth14, 

and Cowtan and Way15. As the oceans cover 71 percent of the Earth’s surface, changes to SST 

series have large impacts on the resulting global temperature records.  

 

ERSST was recently updated from version 3b to version 4 (ERSSTv4), adding corrections to 

account for the increasing use of buoy measurements and incorporating adjustments to ship-

based measurements based on Nighttime Marine Air Temperature (NMAT) data from the Met 

Office Hadley Centre and National Oceanography Centre’s HadNMAT22,16-18. ERSSTv3b did not 

include any SST bias adjustments after 1941, while ERSSTv4 continues these adjustments 

through present. Although the largest changes to the ERSST record occurred in the WW2-era, 

v4 also resulted in a higher rate of warming after 2003. This led Karl et al.5 to conclude that the 

central estimate of the rate of global mean surface temperature change during the 1998-2012 

period was comparable to that of the 1951-2012 period, in contrast to the IPCC characterization 

of the recent period as a ‘hiatus’19. These updates also created a notable divergence between 

ERSSTv4, HadSST3, and COBE-SST in the period from 2003 to present, and raise the 

question of which composite SST series provides the most accurate record in recent years. 

 

Over the past two decades, reasonably spatially-complete, instrumentally-homogeneous sea 

surface temperature (IHSST) measurements are available from drifting buoys, Argo floats37, and 

satellites (see Methods for the details of each IHSST series). To assess how well the composite 

SST records correct for biases due to changing instrumentation, we compare each of them in 

turn to IHSST series created using only drifting buoys, only Argo floats, and only satellite 

infrared radiometer data. Because these IHSST series are created from relatively homogeneous 

measurements from a single type of instrument, they should be less subject to bias due to 

changing measurement methods, though other factors such as differences in spatial coverage 

or instrumental drift (in the case of satellites) need to be carefully accounted for.  

 

Each of the three IHSST series (buoys, Argo floats, and satellites) span a different period of 

time. Buoy data have reasonably complete spatial coverage of the oceans from the late 1990s 

through present. Argo floats achieve sufficient coverage for analysis from January 2005, while 

reliable satellite data spans 1996 to present. Two sources of infrared radiometer-based satellite 

sea skin temperature are considered: the ARC SST product23 from Along Track Scanning 

Radiometers (ATSR) data, which only provide data through the end of 2011, and the European 
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Space Agency Climate Change Initiative experimental record (hereafter CCI)29 which combines 

ATSR and Advanced Very High Resolution Radiometer (AVHRR) data to obtain a continuous 

record for the whole period. The experimental version of the CCI record is not strictly 

instrumentally homogenous and is not fully independent from in situ SST observations, but 

closely matches the independent ARC SST record during the period of overlap; the next official 

release of the CCI containing AVHRR and ATSR data should be fully independent of in situ 

observations. Three different Argo-based near-surface temperature datasets are examined from 

the Asia-Pacific Data Research Center (APDRC)32, the Japan Agency for Marine-Earth Science 

and Technology (hereafter H2008)33,34, and Roemmich and Gilson (hereafter RG2009)22, with a 

number of different datasets chosen to reflect the uncertainty introduced by attempting to 

reconstruct near-SSTs using Argo data. 

RESULTS 

 

From 1997 to present, ERSSTv3b has the lowest central trend estimate of the operational 

versions of the four composite SST series assessed, at 0.07°C per decade. HadSST3 is 

modestly higher at 0.09°C per decade, COBE-SST is 0.08°C per decade, while ERSSTv4 

shows a trend of 0.12°C per decade over the region of common coverage for all four series.  We 

find that ERSSTv3b shows significantly less warming than the buoy-only record and satellite-

based IHSSTs over the periods of overlap (p < 0.01, using an ARMA[1,1] model to correct for 

autocorrelation), as shown in Figure 1. While v3b is comparable to v4 and the buoy and satellite 

records prior to 2003, notable divergences are apparent thereafter. 
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Figure 1: Comparison of the different ERSSTv3b, v4, buoy-only, and CCI SST monthly 

anomalies during the period from January 1997 through December 2015, restricting all series to 

common coverage. ERSSTv4 is shown as a broad band for visualisation purposes; this band 

does not represent an uncertainty range. The series are aligned on the period 1997-2001 for 

comparison purposes. Spatial trend maps are also available in Figure S1, and a similar 

comparison with Argo data is shown in Figure S2. 

 

Both the buoy-only and CCI series are very similar to ERSSTv4 during their respective periods 

of overlap; trends in differences are insignificant in all cases. This strongly suggests that the 

improvements implemented in ERSSTv4 removed a cooling bias in ERSSTv3b. The ERSSTv4 

record is expected to show good agreement with the collocated buoy record, because of new 

ship-buoy bias corrections and the increased weight attached to buoy observations in 

ERSSTv4. Thus this agreement represents a replication of the ERSSTv4 result from the same 

data using a substantially different methodology. The CCI data are not used in the ERSSTv4 

record, and therefore represent an independent validation of the ERSSTv4 record. 
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Figure 2: 12-month centered moving average of temperature difference series between 

composite and buoy-only, CCI, and ARC SST anomalies. Values below zero indicate that the 

composite series has a cool bias relative to the IHSST record. 

 

In addition to ERSST, we also examine how the other two commonly-used composite sea 

surface records, HadSST3 and COBE-SST, compare with the buoy-only and satellite-based 

IHSST records. Both show significant cool biases in the period from 2003-present relative to the 

buoy-only record, though the magnitude of this cool bias is smaller than that found in 
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ERSSTv3b. Difference series between all four composite records and the buoy-only and 

satellite-based IHSST records are shown in Figure 2. Each difference series is constructed by 

restricting all four composite SST series to common grid cells for each month, and comparing all 

grid cells where the composite records and the IHSST in question have data available.  Our 

conclusions are similar when we consider all-product common coverage or interpolating 

products to global coverage; details of the spatial coverage approach and uncertainty 

calculations can be found in the Methods. 
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Figure 3: 12-month centered moving average of temperature difference series between 

composite and Argo near-SST anomalies.  

 

Two of the three Argo near-SST records assessed, APDRC and H2008, agree well with the 

buoy-only and satellite-based records and suggest a cool bias in ERSSTv3b during the 2005-

2015 period when sufficient Argo data are available (Figure 3). The RG2009 series is more 

ambiguous, with trends that are not significantly different (p > 0.05) from either ERSSTv3b or 

v4. Similarly, while APDRC and H2008 both suggest cool biases in HadSST3 and COBE-SST, 

RG2009 does not show a significant trend in the difference series with the any of the composite 

temperature records (see Figure 4). Differences between the Argo series emerge through 

different interpolation techniques and additional data incorporation; APDRC use Aviso satellite 

altimetry for sea surface height estimates, H2008 use a small amount of data from the Triangle 

Trans-Ocean Buoy Network and conductivity-temperature depth profilers (mostly prior to 

2005)34, while RG2009 relies solely on Argo data. 

 
Figure 4: Trends and 95% confidence intervals (degrees °C per decade) in difference series for 

each IHSST and composite SST series, masked to common composite SST coverage. Each 
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difference series represents a composite series minus a IHSST series. Confidence intervals for 

trends are calculated using an ARMA[1,1] autocorrelation model. Values below zero indicate 

that the composite series has a lower trend than the IHSST series over the period examined. 

The two trend periods examined are Jan. 1997 through Dec. 2015 and Jan. 2005 through Dec. 

2015. 

 

To assess the significance of differences between composite series and IHSSTs, we examined 

whether trends in differences between the datasets were statistically different from zero (i.e. p < 

0.05), as shown in Figure 4. We looked at two periods: 1997-2015 (where buoys, CCI, and the 

four composite series have records), and 2005-2015 (buoys, CCI, three Argo series, and four 

composite series). When comparing ERSSTv4 to all six IHSSTs during both periods, there are 

no significant trends in differences between the datasets except in the case of H2008, which 

showed slightly greater warming over the 2005-2015 period. ERSSTv3b, HadSST3 and COBE-

SST all show a significantly lower warming trend over the period since 1997 compared to the 

buoy-only and CCI records (ARC SST shows nearly identical trends to CCI during its period of 

coverage from 1997-2012, as shown in Figure S3). During 2005-2015, ERSSTv3b, HadSST3, 

and COBE-SST have significantly lower trends than the H2008 Argo record, and ERSSTv3b 

and HadSST3 have significantly lower trends than the APDRC Argo record. For the RG2009 

Argo record, no significant trend difference can be found for any of the composite temperature 

series during 2005-2015. 

 

Both ERSSTv416 and HadSST33  incorporate detailed assessments of fully correlated 

(parametric) and partially correlated (sampling and measurement) uncertainties into their 

respective composite SST series. ERSSTv4 assesses these combined “bias” uncertainties via 

an ensemble of SST reconstructions incorporating a range of parametric setting combinations, 

most recently in an expanded 1000-member ensemble17. HadSST3 provides a 100-member 

ensemble to assess parametric uncertainty, but treats sampling and measurement uncertainty 

separately. We derived a 1000-member ensemble from the HadSST3 ensemble, with each 

member expanded to 10 members by adding an AR1 time-series with standard deviation and 

autocorrelation scaled to match the missing partially correlated uncertainty. We repeat the buoy-

only and CCI IHSST comparisons on each of the realizations masked to common coverage 

(Figure 5).  
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Figure 5: 12-month centered moving average of temperature difference series between 

collocated ERSSTv4/HadSST3 ensemble realizations and IHSST anomalies. The left column 

contains the difference series with the buoy-only record. The right column contains the 

difference series with the CCI record. The top row shows 1000 ERSSTv4 ensemble members, 

with operational versions of ERSSTv3b and v4 highlighted in black (note that the ERSST 
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ensemble runs only go through 2014). The middle row shows the 100 published HadSST3 

ensemble members, with the operational version in black. The bottom row displays the 1000 

expanded ensemble members as discussed in the text. 

 

The ERSSTv4 ensemble is not symmetric around the operational “best” estimate, which is 

based on the most empirically justified combination of parameter settings2; the majority of 

realizations have lower trends, with the lower bound of the ensemble encompassing 

ERSSTv3b. Only 16 of the 1000 ERSSTv4 realizations have a trend greater than that of the 

buoy-only IHSST record. The HadSST3 ensemble, in contrast, is largely symmetric around the 

operational estimate, which is based on the median of the ensemble. All of the 100-member and 

1000-member HadSST3 ensemble realizations have lower trends than the buoy-only record. 

The increased spread of the difference between the HadSST ensemble members and CCI 

compared to the corresponding differences with the buoy record may arise from the interaction 

of the greater regional variability in the difference between HadSST and CCI coupled with the 

time varying coverage of HadSST. 

 

The structural uncertainty in the buoy record can be estimated by comparing two subsets of the 

buoy data, and is about 0.05°C in 1997, dropping to 0.027°C for the period 2005-2015 (Figure 

S4) as the number of observations increases. The structural uncertainties estimated using 

equation (8) (in Methods) from an intercomparison of the IHSST records are 0.024°C, 0.020°C 

and 0.012°C for the buoy, Argo-H2008 and CCI records respectively. The structural 

uncertainties in the trends over the period 2005-2015 using equation (10) are 0.012°C per 

decade, 0.014°C per decade and 0.009°C per decade for the buoy, Argo-H2008 and CCI 

records. If the Argo-RG2009 data are used in place of the Argo-H2008 data, the trend 

uncertainties are 0.014°C per decade, 0.020°C per decade and 0.012°C respectively, 

representing a small increase in the uncertainties for the buoy and CCI records and a larger 

increase in the uncertainty for the Argo data. 

 

The trend uncertainties estimated from equation (8) are very similar to the uncertainty of 

0.013°C per decade estimated from the ERSSTv4 1000 member ensemble. This represents a 

useful validation of the ERSST ensemble, because the methods are independent: the ERSST 

ensemble relies on a bottom-up estimation of uncertainty from the different uncertainties in the 

methodology, while equation (8) yields a top down estimate based on the differences between 

independent data sources. The trend uncertainties estimated from equation (8) are 10-20% of 
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the linear trend uncertainties in the corresponding temperature trends, which include the effect 

of internal variability. The uncertainties are based on the region of common coverage, and 

inclusion of poorly sampled regions will increase the structural uncertainty. The limited time 

span means that uncertainties are somewhat determined by a few outliers in each temperature 

series, however the results show that linear trend uncertainty should not be used as an estimate 

of the structural uncertainty in the trend. 

 

The resulting difference series and trends in the all of the Figures will differ modestly based on 

how spatial coverage is handled. For each IHSST difference series, we restrict coverage for 

each month to that common between the IHSST series in question and the four composite 

records. This serves to maximize the spatial overlap between the datasets and provide a more 

accurate global estimate of differences for each individual IHSST, but also results in difference 

series and trends that are not strictly comparable between IHSSTs due to coverage differences. 

This is particularly pronounced in the 1997-2005 period, when the buoy-only record has less 

coverage than the more spatially-complete ARC and CCI satellite radiometer-based records. 

Some coverage differences also arise in the 2005-2015 period between Argo-based records 

and buoy/CCI records, as Argo data are largely unavailable north of 60°N, south of 60°S, or in 

the Malay Archipelago.  

 

To ensure that our results are robust to the choice of how spatial coverage is handled, we 

performed two additional tests to account for both spatial and temporal-spatial consistency 

across series. In the first test, we restricted all series examined for the two time periods in 

question (1997-2015 and 2005-2015) to only 1x1 lat/lon grid cells containing records from all 

series examined over that timeframe. During the 1997-2015 period we only looked at grid cells 

with common coverage across the four composite series, buoys, and CCI, while during the 

2005-2015 period we examined only grid cells with common coverage between the composite 

series, buoys, CCI, and all three Argo-based series. This results in a record that is less spatially 

complete for any given IHSST-composite series comparison, but is strictly comparable between 

IHSSTs. Difference series and trends for this common coverage approach are shown in Figures 

S5-S7. Results are largely comparable to those in the main paper, with a slightly higher trend in 

CCI difference series during the 1997-2015 period and lower CCI trend during the 2005-2015 

period as the only notable difference. 
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In the second coverage test, we applied a kriging spatial interpolation approach the two series 

(buoys and HadSST3) that contain large gaps in spatial coverage for all months to create fully 

spatially and temporally-complete records (the three Argo series and the other three composite 

series have their own interpolation provided, while satellite records are largely spatially 

complete apart from high latitudes). We then restricted all series to common coverage over the 

1997-2015 and 2005-2015 periods following the approach of the common coverage test. This 

introduces some additional uncertainty due to the kriging, but ensures that the spatial coverage 

represented by the difference series and trends does not change from month to month, and that 

all series have nearly complete coverage over the period of overlap. The results for the kriged 

series are shown in Figures S8-S10. Here the cooling bias in ERSSTv3b, COBE-SST,  and 

HadSST3 is more pronounced with respect to the buoy-only and CCI records, though the overall 

results are comparable. Interpretation of the Argo records is largely unchanged for any of the 

spatial coverage approaches examined. 

 

In addition, the collocated buoy and CCI records show a spatial disagreement which is not 

apparent in Figures 2 and 4, which is only apparent when the CCI coverage is reduced to match 

the buoy coverage (see Figures S11 and S12). This arises from regional differences between 

the CCI record and other records, particularly before 2001. CCI shows greater warming than 

ERSSTv4 in the Southern Ocean, but less in the northern mid-latitudes. The Southern Ocean is 

consistently cloud-covered, so CCI might be expected to be less accurate in these regions. 

Winds can also affect skin temperature retrievals relative to those at depth. In situ observations 

are prevalent in the northern hemisphere, and so may be more reliable. In the Southern Ocean 

in-situ observations are sparse and so temperature trends remain uncertain. The regional 

deviations from the in-situ records and their impact on trends mean that comparisons with CCI 

should be treated with care. 

 

Coverage biases may also be are also impacted by the choice of baseline for geographical map 

series. The results presented use a nineteen year 1997-2015 baseline for both the ERSSTv3 

data to which the other series are then matched, and for the high resolution climatology used in 

constructing the buoy record. Changing either of these to a 30 year 1986-2015 baseline has no 

perceptible effect on the results. 

 

DISCUSSION 
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Trends in IHSSTs constructed from buoy and satellite data agree with ERSSTv4 over the period 

from 1997-2015 but are significantly higher (p<0.01) than the ERSSTv3b trend, supporting the 

conclusions of Karl et al.5. Both buoys and satellites also suggest a significant (p<0.05) cooling 

bias in HadSST3 and COBE-SST. Over 2005-2015, four of five IHSST series agree with 

ERSSTv4 or suggest that it might be slightly cold-biased. By contrast, four of five suggest cool 

biases in both ERSSTv3b and HadSST3, while three of five suggest a cool bias in COBE-SST. 

One of the three Argo series (RG2009) is statistically indistinguishable from all four of the 

composite SST products during the 2005-2015 period. 

 

The difference in IHSST records relative to HadSST3 are particularly noteworthy, as HadSST3 

includes explicit buoy-ship offset adjustments comparable to those used by ERSSTv4 and 

continues ship SST corrections through present3. The source of the apparent cooling bias in 

recent years in HadSST3 is unclear, though it is likely related to biases in ship records 

introduced by the changing composition of shipping fleets and a general decline in the number 

of available ship-based SST measurements7. When comparing IHSSTs to a ship-only SST 

record (restricting to common coverage), we identify a strong cool bias in the ship record, 

particularly since 2010. Not only are ship temperatures lower than the buoys at the start of the 

period of study (due to a ~0.1 °C offset), but the ship record substantially underestimates the 

rate of warming over the later part of the period (Figure S13). This result is supported by the 

satellite observations of skin temperature, the buoy measurements in the top meter of the 

ocean, and Argo observations from three different methodologies over depths spanning 2.5m to 

20m (Figure S14). ERSSTv4 mostly avoids this potential bias in ship records by assigning an 

increased weight to buoys in recent years,2 though the slightly higher trends in buoys, CCI, and 

two of the three Argo series vis-a-vis ERSSTv4 over 2005-2015 (Figure 4, lower panel) might be 

driven by some residual ship-related bias.  

 

The difference in trend between ERSSTv3b and ERSSTv4 is smaller than the difference in 

trend between the buoy and ship records, as ERSSTv3b also incorporates data from buoys but 

does not account for the offset between the ship and buoy temperatures or assign the buoys 

more weight than ship-based measurements. HadSST3 falls between the two versions, 

incorporating an offset adjustment between ships and buoys and some corrections to the ship 

observations but weighting ships and buoys equally. Nighttime Marine Air Temperatures 

(HadNMAT2), which are used as part of the ERSSTv4 homogenization, also appear to show a 
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cool bias comparable to if not larger than that of HadSST3 relative to the IHSSTs in the period 

after 2003 (Figure S15), possibly due to residual inhomogeneities in NMAT records. While 

COBE-SST is also significantly cooler in recent years than the buoy-only record and CCI, a new 

version (COBE-SST2) incorporates buoy adjustments and shows better agreement with the 

IHSST records, but does not extend up to present and is not yet in operational use in the JMA 

global land/ocean temperature product (Figure S16)20.  

 

Interpreting the Argo Results 

 

The Argo records cover a shorter period (11 years rather than 19), and their results are less 

clearcut than the buoy and CCI IHSSTs. The H2008 and APDRC records support ERSSTv4 

(and even suggest that it might be a bit too cool), though APDRC results are somewhat 

sensitive to the choice of start year (Figure S17). RG2009 falls between ERSSTv3 and 

ERSSTv4 in trend and does not reject either. Similarly, while H2008 and APDRC suggest a cool 

bias in HadSST3 and (to a lesser extent) in COBE-SST over the 2005-2015 period, the results 

of RG2009 are ambiguous and do not allow any differentiation between composite record 

trends. 

 

The shortness of the Argo records and their divergence limits the weight which can be placed 

on them. If the faster warming H2008 and APDRC records are accurate, than all of the IHSSTs 

(buoys, satellites, and Argo floats) are in basic agreement in rejecting the slower warming 

ERSSTv3 record. However if the slower warming RG2009 record is correct, this would imply 

that either the buoy and CCI IHSSTs are too warm over 2005-2015 or that there may be a 

variation in temperature trend with depth: the skin record and the top meter show faster 

warming, while the deeper ship and Argo records show slower warming. Different observational 

platforms sample sea "surface" (or near-surface) temperature at different depths in the mixed 

layer, with satellites, buoys, ships and Argo floats observing the temperature at increasing 

depths. If H2008 or APDRC records are more accurate, it seems unlikely that depth plays a role 

in the differences between temperature trends, since the slower warming ship record is 

bracketed in depth by the satellite/buoy records and the Argo records. This would also suggest 

that measurement depth does not explain any part of the slower warming found in the ship 

record. If the RG2009 record is correct, however, it may suggest that the slower warming ship 

record arises from a combination of both depth and the bias in the ship record (since the ship 

record exhibits less warming than even RG2009, as shown in Figure S14).  
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Argo instruments have temperature profiles at depths throughout the mixed layer (and below), 

with the shallowest observations in any of the Argo products in the 2.5-7.5 meter range. While 

the Argo records show no discernable reduction in trends between 5 meter, 10 meter, and 20 

meter depths (Figure S18), the Argo record cannot exclude a difference with the top meter 

measured by the buoys. If there is a significant difference in temperature trend between the top 

meter and the remainder of the mixed layer, this would present a problem in the construction of 

a homogeneous sea surface temperature product from the combination of ship and buoy 

records. Similarly, the majority of CMIP5 climate models have a top layer spanning 0-10 meters, 

and so may not resolve the top meter of the ocean. This could present a challenge in both 

testing for the depth effect in models, and in the comparison of models to observations. 

However, as two of the three Argo-based records analyzed show no significant difference with 

buoy and CCI surface records and the Argo series is rather short, any conclusions about depth-

related effects appear to be premature. 

 

CONCLUDING REMARKS 

 

Adjustments to correct for inhomogeneities in SSTs in recent years have a large impact on the 

resulting decadal-scale global temperature trends. Assessing the effectiveness of these 

adjustments is critical to improving our understanding of the structure of modern climate 

changes and the extent to which trends in recent periods may have been anomalous with 

respect to longer-term warming. Using independent instrumentally-homogeneous SST series, 

we find that NOAA’s new ERSSTv4 effectively corrects a significant cooling bias present in 

ERSSTv3b during the past two decades without introducing any detectable residual trend bias. 

We also conclude that two other widely-used composite SST series, HadSST3 and COBE-SST, 

likely suffer from spurious cooling biases in recent years present in ship-based records.  

 

Some uncertainty remains, particularly in Argo-based near-SST reconstructions. While two of 

the three Argo reconstructions examined agree well globally with the buoy and radiometer-

based IHSSTs, the third does not allow for any effective differentiation between composite SST 

series. Similarly, while CCI and ARC-SST radiometer-based estimates agree quite well with the 

buoy-only record globally, there are significant zonal differences. The time period considered is 

relatively short, with most of the divergence between composite SST records occurring after 
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2003, and sufficient Argo data is only available subsequent to 2005. Nonetheless, SST time 

series from drifting buoys and independent satellite radiometers support ERSSTv4 and suggest 

a cool bias in other series such as ERSSTv3b, while two of three Argo series agree with 

ERSSTv4 and one suggests that it is too cool. Overall these results suggest that the new 

ERSSTv4 record represents the most accurate composite estimate of global sea surface 

temperature trends during the past two decades, and thus support findings15 that previously 

reported rates of surface warming in recent years have been underestimated. 

 

METHODS 

 

We compare composite SST records including ERSSTv3b, ERSSTv4, HadSST3, and COBE-

SST to three separate IHSST records constructed from ICOADS-reporting buoys, near-surface 

measurements from Argo floats, and radiometer-based satellite SST records. We obtain existing 

spatially gridded fields for each SST series (and create novel ones in the case of buoy-only and 

ship-only records), convert each to standardized 1 degree latitude by 1 degree longitude 

uniform grid (hereafter 1x1 degree grid).  

 

Temperature averaging in the presence of varying geographical coverage requires that all of the 

temperature series be aligned on a common baseline. It is common practice to apply an offset 

to each cell and month of the year to bring the mean of that cell and month to zero over a 30 

year baseline period; however, this is impractical for the short buoy record. Fixing the baseline 

for an incomplete record is problematic in the case where the months for which observations are 

present are unusually hot or cold, however the problem may be addressed by aligning the data 

against a more complete record containing the same weather signal. The spatially complete 

ERSSTv3b record was therefore aligned to zero on the period 1997-2015, and then the other 

datasets are aligned to the normalised ERSSTv3b map series. This method is a conservative 

choice in attempting to detect a bias in the ERSSTv3b record, as it may bias the compared 

series slightly towards it. 

 

Data series are carefully aligned to ensure accurate intercomparisons of SST series. The 

process is as follows: OISST is used to construct a high resolution daily  climatology on the 

baseline period (1997-2015) - yielding 365 fields, one for each day (leap days are also treated). 

The buoy series is then calculated using this high resolution daily climatology, yielding 228 
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monthly fields (19 years * 12 months). ERSSTv3b is also aligned to the 1997-2015 baseline. All 

of the composite series and IHSSTs (including the buoy series) are then aligned to the 

baselined ERSSTv3b based on whatever months are available for each grid cell. These are 

then masked to common coverage and plotted in Figure 1. This makes use of the spatial 

completeness of ERSSTv3b to avoid artifacts due baselining temporally incomplete cells on an 

incomplete baseline period; we use ERSSTv3b for this purpose to avoid biasing our results 

towards ERSSTv4. Pairwise difference map series are calculated between the aligned maps. 

The study is restricted to the period 1997-2015, with the start date determined by buoy 

coverage and a data break in the ATSR-based SST data. Details of how each dataset was 

obtained and processed are provided below. 

 

ERSST, HadSST and COBE-SST 

 

Both ERSST v311 and v412 are produced on a 2x2 degree grid, with sea ice cells recorded as -

1.8°C. The ice cells were set to missing, and then the data were expanded to a 1x1 degree grid, 

repeating each value from the original grid to the 4 corresponding cells in the finer grid. 

HadSST33 is produced on a 5x5 degree grid with no values for sea ice cells, and is expanded to 

the 1x1 degree grid by repeating each value from the original grid to the 25 corresponding cells 

in the finer grid. COBE-SST4 and COBE-SST220 are distributed as a 1x1 gridded product; cells 

with sea ice are recorded as -1.8°C similar to ERSST, and were set to missing. As both 

HadSST3 and ERSSTv4 include ensembles of realizations with different parameterizations, for 

the main analysis in the paper (e.g. Figures 1-4) the operational version of each series was 

used. This is the ensemble median in the case of HadSST3, while ERSSTv4 provides a 

preferred realization. 

 

Different approaches are used in the construction of the gridded SST products. In the HadSST 

record, observations only contribute to the grid cell and month in which they occur, leading to 

some cells for which no temperature estimate is available. In the COBE-SST records, optimal 

interpolation is used in both space and time to create a spatially complete field from the 

available data. The ERSST and COBE-SST2 datasets combine a low resolution reconstruction 

with the fitting of empirical orthogonal teleconnections (EOT) to the observations to produce a 

spatially complete field in which local temperatures can be inferred from distant observations 

(up to a specified distance) through teleconnections. All the records include data from ICOADS 

(albeit some from different releases of the database), however in addition to differences in the 
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processing methods, ERSSTv4 attaches an increased weight to buoy observations on the basis 

of their lower estimated uncertainty. 

 

Because some of the composite SST series include interpolation of observations into proximate 

grid cells with missing data, all composite SST series were restricted to grid cells common to the 

HadSST3, ERSSTv4, and COBE-SST datasets for any given month. Since HadSST3 includes 

no explicit interpolation (apart from that implicit in its use of relatively large 5x5 degree grid 

cells), this should remove any differences between series due to interpolation. Failing to account 

for interpolation could lead to difficulty in cross-comparison of difference series between IHSST 

and different composite SST records. 

 

Buoys 

 

The buoy data are from the ICOADS release 2.5 data7. Drifting buoys are selected by the World 

Meteorological Organization buoy identifier and the presence of a value in the SST field (thus 

excluding Argo buoys with WMO identifiers). Moored buoys were excluded from the analysis 

due to an offset in temperatures between drifting and moored buoys (perhaps due to 

measurement depth; see Figure S19), which would introduce a bias as the proportion of moored 

and drifting buoys changes over the period of interest. A large majority of measurements in 

recent years come from drifting rather than moored buoys, and the use of drifting buoys only 

has no major impact on the results. The temperature field is determined by averaging buoy 

observations over the span of a month for each cell in a global grid. The grid consists of cells of 

equal area, with equatorial cells spanning a range of 5 degrees in both longitude and latitude. At 

higher latitudes the longitudinal width of a cell in degrees is increased by calculating the area of 

the latitude band, dividing by the area of a 5x5 cell at the equator, and using that many cells in 

the latitude band to maintain a constant area. 

 

The data are processed one month at a time. For each buoy, data are divided into days. The 

(typically hourly) temperature, latitude and longitude data for that day are averaged. Buoys 

which show temperature variations with a standard deviation exceeding 1°C or positional 

variation with a standard deviation exceeding 0.5° of latitude or longitude during a single day are 

excluded for the whole month: this can occur if a buoy is beached or picked up by a ship. The 

temperature is then converted to an anomaly using a climatology calculated from OISSTv221 for 

that day of the year and for the corresponding latitude and longitude on a finer ½ degree grid. 



	115	

This mitigates the biasing effects of temperature observations at the beginning or end of a 

month or the northern or southern edges of a 5 degree latitude band. The daily mean 

temperature anomaly for the buoy is then added to a list for the corresponding grid cell. Once all 

buoy records have been processed, all temperature anomalies for a given cell are averaged to 

produce a final anomaly value for that cell. 

 

This method for constructing the buoy-only temperature record was chosen for simplicity, with 

the aim of reducing the possibility of methodological artefacts such as infilling distorting the 

result: a consequence of this is that the resulting temperature reconstruction is limited to regions 

where observations are available. However simplicity does not in itself preclude bias: an overly 

simple method might for example fail to detect some faulty observations. This possibility will be 

addressed through internal consistency checks on the buoy data. 

 

Another possible source of bias is mis-calibration of the temperature sensor, leading to 

systematically lower or higher readings. Normally these would contribute noise rather than a 

bias in the trends as the mis-calibrated buoy moves into more or less sampled regions and so 

receives a different weight in the temperature calculation. However if new buoys are introduced 

which are systematically different in calibration relative to older buoys, a bias in the trends could 

result. There is no sign of such a bias in the comparisons between different IHSSTs, and the 

cross-validated uncertainties are lowest for the recent period where the composite records show 

most difference. 

 

Additional inter-buoy comparisons were performed to address this possibility. For each grid cell 

and month where at least 3 buoys contributed observations, a bias estimate was calculated 

from the difference between the mean anomaly for the buoy and the mean of the anomalies for 

all the remaining buoys in that cell. All the bias estimates for a buoy were collected, and buoys 

for which the magnitude of the mean bias or standard deviation of the bias estimates exceeded 

1°C were eliminated, reducing the total number of buoys by about 10%. In a further test, the 

temperature record was recalculated applying the resulting bias adjustment to the readings from 

each buoy in turn. 

 

Four versions of the buoy record were prepared to evaluate the potential impact of buoy biases, 

as follows: 

(a) Using all of the data, omitting the test for daily variability.. 
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(b) Filtering on the basis of daily variability only (the default per-buoy filter, described at the start 

of this section). 

(c) Filtering on the basis of daily variability and inter-buoy variability (i.e. the additional filter 

described in the previous paragraph). 

(d) Filtering on the basis of monthly and inter-buoy variability and application of the bias 

correction (as (c) but then recalculating the buoy record on the after applying a correction to 

each buoy on the basis of its mean difference with passing buoys). 

 

The resulting temperature series are shown in Figure S20, along with the differences of the 

other methods from the default method. The largest difference arises from using all of the data 

without filtering for daily variability. Inter-buoy variability and bias correction make a rather 

smaller difference. The differences between the methods are small compared to the differences 

between the composite records. The default method using a per-buoy filter shows the lowest 

trend over 1997-2015, and is therefore a conservative choice. 

 

The buoy coverage is limited, particularly in the 1990s, and comparisons to other datasets may 

be impacted by coverage bias. In order to produce an unbiased comparison to other datasets, 

all the datasets are expanded onto a 1x1 degree grid. Comparisons are made using only the 

cells for which the datasets being compared have values. The area weighted mean temperature 

is then calculated for each record using the common coverage cells. The percent of global 

ocean covered by buoy measurements varies from around 40% in the mid 1990s to around 70% 

in recent years. 

 

Ships 

 

The ship record is constructed in the same way as the buoy record, with one exception: many 

ships only report once per day, and from 2007 some ship identifiers are masked for security 

reasons (though this has been improved in Release 3 of ICOADS). The test to detect excessive 

motion or variation within a single day is therefore omitted. The only quality control applied to 

the ship record therefore arises from the calculation of the global mean of the sea surface 

temperature field, which excludes observations which fall in land areas. The ship observations 

are subject to significant quality issues, and the limited quality control implemented in this record 

therefore provides no more than a general indication of the presence and scale of any bias in 

the ship record.  
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Argo floats 

 

Three different gridded Argo data provided online by the International Pacific Research Center 

(IPRC) Asia-Pacific Data Research Center (APDRC)32, the Japan Agency for Marine-Earth 

Science and Technology (H2008)33,34, and Roemmich and Gilson (RG2009)22 were used. These 

data are produced on a monthly 1x1 degree grid, and have been smoothed and infilled by the 

data provider using a variational analysis technique to provide global coverage over all cells 

unaffected by seasonal sea ice. Sea surface height was used as part of the interpolation 

process in APDRC, while Cells containing sea ice were represented by missing data. The data 

did not require regridding, and were aligned to the ERSSTv3b data as described previously. 

 

The RG2009 Argo product has temperature values at 2.5, 10 and 20 dbar levels and deeper, 

the H2008 product has temperatures at 10, 20, 30 dbar and deeper levels, and the APDRC 

product has temperature values at 0, 5, and 10 meter and deeper levels. We use the 5 meter 

level for the APDRC product, the 10 dbar (10 meter) level for the H2008 product, and the 2.5 

dbar level for the RG2009 product (which represents measurements ranging from 2.5 to 7.5 

dbar with a mean level of 5 dbar/meters) to provide the most comparable and highest available 

depths; estimated 0-meter temperatures from APDRC are not used as they result from 

interpolation (since no Argo floats sample sea skin temperatures). 

 

Throughout the paper we refer to the record derived from Argo floats as “near-SST”, as the 

highest level of the ocean measured by most Argo floats is approximately 5 meters below the 

surface.22 However, with the exception of satellite radiometer-based estimates, all of the 

instruments used in this analysis record ocean temperatures at depths between 0 and 20 

meters. For example, ships tend to measure temperatures through engine room intake valves at 

depths of 7-11 meters for large ships and 1-3 meters for small ships.1 Moored buoys typically 

measure SSTs at 3 meters of depth, while drifting buoys measure SSTs at around 0.5 meters. 

Recent work35 found no long term difference in warming rates between 0-4 meter and 4-9 meter 

depths in a CMIP5 model; similarly we have established that our results are robust when using 

the next deeper level of each Argo dataset (Figures S19). The different depths sampled by the 

different observational systems provide a basis for assessing whether depth plays a role in the 

rate of recent warming. 
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Argo data have been used to create SST analogues in the past; for example, Roemmich and 

Gilson30 compared ARGO “near”-SST to NOAA’s OISST v1, while Roemmich et al31 compared 

a 5-meter Argo-based SST record to OISST v2. Here we perform a similar analysis using the 

Argo-based fields provided by RG2009, APDRC, and H2008.  

 

Satellites 

 

The Along-Track Scanning Radiometer (ATSR) instruments provide infrared images of the earth 

from which skin temperatures may be derived. ATSR data are incorporated into two gridded 

datasets, the ATSR Reprocessing for Climate (ARC)23 spanning the period from 1996 through 

2012, and the experimental NCEO/ESA SST CCI Analysis L3S version EXP-1.2 (ESA-CCI or 

CCI)29 which also incorporates data from the Advanced Very High Resolution Radiometers 

(AVHRR) and spans the period from 1996 through present (end of 2015). Coverage between 

60S and 60N is largely complete (except for a few cells each month in the ATSR record which 

are affected by cloud, typically in the Southern Ocean or North Atlantic). Both the ATSR-only 

(through mid-2012) and ATSR + AVHRR (through present) CCI data were analyzed, and the 

CCI data are used in the paper as it extends through present (and differences between the two 

are minor during the period of overlap, as shown in Figure 6). 

 

 
Figure 6: 12-month centered moving average of differences between CCI ATSR + AVHRR  and 

ATSR-only ARC SST records during the period of overlap. The earlier instrumentally-

homogeneous ARC SST shows small differences to the newer combined version, however the 

difference are minor compared to the differences relative to the composite SST records. 

 

Spatial Coverage 
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The main figures in the paper were generated by limiting difference series to common spatial 

coverage between the four composite SST series and the IHSST in question. For example, a 

difference series between ERSSTv4 and the buoy-only record would show the difference for all 

grid cells for each month where all four composite SST series and the buoy-only record had 

data available. The requirement that all four composite series share the same coverage is 

intended to remove the effects of interpolation on the results, as all rely on largely the same 

ICOADS data. 

 

Two additional tests described in the discussion were undertaken to ensure that the results 

were robust to choices of how coverage was handled. In the first test the analysis was done for 

the two periods of interest (1997-2015 and 2005-2015) restricting the analysis to only grid cells 

where all series available for that period had coverage. During the 1997-2015 period, this 

means that only 1x1 lat/lon grid cells where the four composite series, the buoy-only record, and 

the CCI record all had coverage for any given month were used. During the 2005-2015, grid 

cells required coverage by the four composites, buoys, CCI, and all three Argo records to be 

used. 

 

In the second test we created fully spatially and temporally-complete fields to control for both 

difference in coverage for any given time period as well as changes in coverage over time. 

Infilling is performed on the gridded data using the original grid sampling for that record: for the 

buoy record this is on the 550km equal area grid, and for the HadSST3 on the 5x5 degree grid. 

The resulting infilled field is then copied onto a 1x1 degree grid as before. Infilling is performed 

using the method of kriging,38 by which the values at unobserved locations are inferred from the 

observed values. Each observation is weighted on the basis of distance from the target location 

using a variogram relating the expected variance between two grid cells to the distance between 

them, which is determined from grid cells for which observations are available, fitted with an 

exponential model controlled by a single range parameter which is the e-folding distance of the 

variance. The kriging calculation also uses the covariance between locations where 

observations are present to estimate the amount of independent information in each 

observation. The buoy record shows longer range autocorrelation that the HadSST3 data, with 

respective e-folding distances of 1400 km and 900 km, suggesting that the buoy record shows 

more spatial autocorrelation. 
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Infilled temperature observations will therefore be a weighted combination of the nearest 

observations if there are observations within a small multiple of the e-folding distance. Locations 

which are very distant from any observation will tend towards an optimal estimate of the global 

mean of the temperature field. 

 

Uncertainty estimation 

 

SST reconstructions include uncertainties due to limitations of both the data and the methods. 

Differences between reconstructions may arise due to random errors in the data or introduced 

during processing, or due to uncorrected biases in the observational data. Identification of a bias 

requires that the difference between reconstructions must be shown to be larger than can be 

accounted for by random errors alone. To that end we now examine different methods for the 

determination of the uncertainty in a reconstruction. Two approaches are used. Firstly, co-

located temperature difference series are used to estimate the significance of the differences. 

Secondly a method is outlined for the use of independent temperature series to directly estimate 

the structural uncertainty in each series. 

 

Significance of the temperature difference series trends 

 

In order to assess the significance of differences in trends between temperature series, we first 

calculate the difference temperature series from the difference map series in order to eliminate 

differences in coverage. The trend in the difference series is then compared to the uncertainty in 

that trend estimated using an appropriate autoregression model, and used to determine whether 

the trend difference is significantly different from zero. 

 

The trend in the difference series is identical to the difference in the trends between the two 

series, assuming both map series are reduced to common coverage. However calculation of the 

trend in the difference series offers a benefit when determining the uncertainty in that trend.24 If 

the trend difference is calculated from the trends of the individual series, the uncertainty in the 

trend difference requires the determination of the covariance between the model residuals. The 

respective residuals contain common internal variability and so are strongly correlated, therefore 

the covariance term is positive. Omission of the covariance term leads to the uncertainty in the 

trend difference being dramatically overestimated. With the covariance term included, estimates 
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of the uncertainty in the trend difference from either the difference series, or from the two 

individual series, give identical results. 

 

The difference series linear trends are estimated with Ordinary Least Squares (OLS) with 

correction of the standard error to account for serial correlation of the residuals25-27. The general 

approach is to estimate the effective sample length (and thus the effective degrees of freedom) 

from an estimate of the positive autocorrelation of the residuals: 

 

𝑛!  = 𝑛! / (1 +  2  𝜚!
!!!

!!!
 ) 

(1) 

where n! is the original series length, n! is the effective sample length and 𝜚! is the 

autocorrelation at lag j of an autoregressive (AR) or autoregressive moving-average (ARMA) 

noise model estimated from the OLS residuals. An ARMA(1, 1) model was used for global SST 

all gridded and global difference series (e.g. ERSSTv4 - buoys). The ARMA model coefficients 

were estimated with maximum likelihood for global series and Yule-Walker (moments) for 

gridded series trends. An ARMA(1, 1) series 𝑋!with white noise series 𝜖! satisfies: 

 

𝑋! = 𝜙𝑋!!!  + 𝜖! + 𝜃𝜖!!! 

(2) 

Then the autocorrelation function (ACF) of an ARMA(1, 1) series is given by: 

𝜚! =1 

𝜚! = (𝜙 + 𝜃)(1 + 𝜙𝜃) / (1 + 2𝜙𝜃 + 𝜃!)   

𝜚! = 𝜚!𝜙!!!, 𝑗 >= 2 

(3) 

where 𝜙 and 𝜃are the respective AR and MA coefficients.  

 

Since the assessed trends cover only 11-19 years (132-228 months), a bias correction was also 

applied to the global difference series trends in order to account for the underestimate of 

autocorrelation in such short series26,28. The original Tjostheim and Paulsen correction for the 

AR(1) estimated coefficient 𝜙 is given by: 

 

𝜙!" = 𝜙 + (1 + 4𝜙) / 𝑛! 

(4) 
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The bias correction of ARMA(1, 1) estimated ACF coefficients 𝜚!,𝜙 generalizes (4) by also 

accounting for the positive difference between 𝜙 and 𝜚!. Note the AR(1) bias correction in (4) 

then becomes the special case where 𝜃 = 0 and 𝜚! = 𝜙. 

 

𝜙!" = 𝜙 + (1 + 4(2𝜙 − 𝜚!)) / 𝑛! 

𝜚!!" = 𝜚! + (1 + 4(2𝜑 − 𝜚!)) / 𝑛! 

(5) 

 

The ARMA coefficient estimates 𝜙!" and 𝜚!!" then can be substituted into the appropriate 

specific form of equation (1). The ARMA(1, 1) formulation in equation (3) can then be 

simplified27: 

 

𝑛!  = 𝑛 / 1 +  2 𝜚!!"𝜙!!!!!
!!!

!!!
  ≈  𝑛/ 1 + 2𝜚!!"/ 1 –𝜙!"    

(6)       

 

IHSST Uncertainty estimation 

 

The methods presented so far allow us to estimate the significance of the differences between 

temperature series. However it would also be useful to be able to estimate the uncertainty in 

each individual IHSST series. Two methods will be used, the first based on internal consistency 

of the buoy data, and the second on intercomparison of the IHSST temperature datasets. 

 

The uncertainty in the buoy data may be estimated by dividing the buoys into two random 

subsets, and calculating gridded temperature data from each subset of the data. Global 

temperature series are then calculated from the collocated values from each map series. A 120-

month moving root-mean-squared difference between the two temperature series provides an 

estimate of the uncertainty in the global temperature for the region of common coverage (after 

scaling by 1/√2). This uncertainty estimate includes the effects of random measurement errors, 

as well as a sampling error which increases with decreasing coverage, however it does not 

include coverage uncertainty or systematic biases affecting all of the buoys. 

 

In the second approach, an estimate of the uncertainties in each of the IHSST series is obtained 

from the difference temperature series for the overlap period 2005-2011. The uncertainty in the 
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difference series between the buoy and Argo data arises from the sum of the variances of the 

two series, assuming that the series are independent: 

 

σ2
buoy-Argo = σ2

buoy + σ2
Argo 

(7) 

and similar expressions for the remaining two series, where σ2
  is the squared uncertainty in the 

given temperature series. The squared uncertainty in the difference temperature may be 

estimated from the variance of the difference series, adjusting the number of degrees of 

freedom to account for the removal of the annual cycle from the difference series. 

 

The uncertainty in a given series may then be estimated using equations of the following form: 

 

σ2
buoy = ½( σ2

buoy-Argo + σ2
buoy-CCI - σ2

Argo-CCI ) 

(8) 

The resulting uncertainty estimates include the effects of random measurement errors and any 

biases in the independent data sources which are not correlated across the data sources, 

however as before they do not include coverage bias. This is similar to the approach outlined in 

O’Carroll et al.36 

 

The uncertainty in the trend in an IHSST series may be estimated from the uncertainty in the 

monthly temperatures obtained from equation (8) using the equation: 

 

𝜎!
!  =

𝜈𝜎!

𝑡! − 𝑡 !
!  

 

 (9) 

where 𝜎!
! is the variance of the trend, 𝜎 is the standard deviation of the time series values, 𝑡! is 

the date of the i'th value in fractional years, and 𝜈 is the number of months of data per effective 

degree of freedom27. Note that this differs from the ordinary equation for the uncertainty in a 

trend in the use of the standard deviation of the time series in place of the standard deviation of 

the residuals - this is because the difference in trends between a pair of series also contributes 

to the uncertainty.  For the trend of a set of contiguous monthly values this simplifies to: 

 

𝜎!
!  = !!!

!"!
  

(10) 
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Where 𝛥𝑡 is the length of the period in years. 𝜈 is about 2 for the buoy series, or about 8 for the 

smoother Argo or CCI series. 
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Argo data from Roemmich and Gilson (RG2009) is available at: http://sio-

argo.ucsd.edu/RG_Climatology.html  

ERSSTv4 data is available at: http://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v4/netcdf/  

ERSSTv3 data is available at: http://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v3b/netcdf/  

HadSST3 data is available at: http://www.metoffice.gov.uk/hadobs/hadsst3/data/download.html  

COBE-SST data is available at: http://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst/cobe-

sst.html  

Python code used in this analysis is available at: 

http://www-users.york.ac.uk/~kdc3/papers/ihsst2016/  

All datasets used were most recently accessed in early July, 2016.                 
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SUPPLEMENTARY MATERIALS  

 

 

 
Figure S1. Trend maps on the period 2005-2015 for all of the composite records, and for the 

buoy, Argo, and CCI records. The HadSST3 and buoy records are determined with no fitting or 

smoothing, and so show sharp grid cell boundaries, in contrast to the other records. The general 
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features are similar between all records, with the most noticeable difference being in the mid-

Atlantic and South Pacific. 

 
Figure S2. Comparison of ERSSTv3b and v4 with three different Argo-based near-SST records, 

using the same spatial restrictions as in Figure 1, but with ERSSTv4 aligned to 1997-2001 

(inclusive), with all other series aligned onto v4 using the 2005-2007 period due to the limited 

timespan with Argo data. 
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Figure S3. Trends and 95% confidence intervals (degrees °C per decade) in difference series 

for each IHSST and composite SST series, masked to common composite SST coverage.  

 

 
Figure S4. Cross validated uncertainties for the buoy record, whether with no climatology or 

with daily climatologies derived from the OISSTv2 daily reanalysis data. The results of using a 

daily climatology on a coarse 5 degree do not differ significantly from the results using no 

climatology, so adjusting for the day of the month has little impact in reducing the errors in the 

global temperature estimates. However adjusting for position within the cell by using a finer grid 
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climatology has a substantial impact, reducing the errors in the global temperature estimates by 

a factor of two. 

 

 

 

 
Figure S5. 12-month centered moving average of temperature difference series between 

composite and buoy-only, CCI, and ARC SST anomalies restricted to common coverage across 

all series shown (four composites, buoys, and ARC/CCI). 
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Figure S6. 12-month centered moving average of temperature difference series between 

composite and Argo near-SST anomalies restricted to common coverage across all series with 

2005-2015 records (four composites, three Argos, buoy-only, and CCI). 
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Figure S7. Trends and 95% confidence intervals (degrees °C per decade) in difference series 

for each IHSST and composite SST series, masked to common coverage for all series 

available. 1997-2015 trends are masked to common coverage for the four composite series, 

buoys, and CCI. 2005-2015 trends are masked to common coverage for the four composites, 

buoys, CCI, and the three Argo series. Confidence intervals for trends are calculated using an 

ARMA[1,1] autocorrelation model.  
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Figure S8. 12-month centered moving average of temperature difference series between 

composite and buoy-only, CCI, and ARC SST anomalies with the buoy and HadSST3 series 

kriged and all series reduced to common coverage to ensure consistent complete spatial and 

temporal coverage. 
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Figure S9. 12-month centered moving average of temperature difference series between 

composite and Argo near-SST anomalies with the buoy and HadSST3 series kriged and all 

series reduced to common coverage to ensure consistent complete spatial and temporal 

coverage. 
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Figure S10. Trends and 95% confidence intervals (degrees °C per decade) in difference series 

for each IHSST and composite SST series, with the buoy and HadSST3 series kriged and all 

series reduced to common coverage to ensure consistent complete spatial and temporal 

coverage. 
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Figure S11. Trend difference maps over January 1997 through December 2015 for the 

difference between ERSSTv4 and CCI. Unlike the other IHSSTs, the differences between 

ERSSTv4 and CCI shows significant long range autocorrelation. CCI shows faster warming over 

much of the southern extratropics, but slower warming elsewhere. 

 

 
Figure S12. Differences between ERSSTv4 and CCI by latitude zone. The regional differences 

between ERSSTv4 and CCI are clear in the zonal temperature series. The biggest differences 

occur before 2002 and after 2012, however the zonal trends differ across the whole record. CCI 

shows faster warming over much of the southern extratropics, but slower warming elsewhere. 
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Figure S13. Buoy-only and ship-only temperature anomalies from January 1997 through 

December 2015, with no matching of coverage. A crude ship-only record was determined using 

the same gridding method as for the buoy record, but with no quality control to eliminate 

erroneous records. Each ship or buoy observation is normalised by subtracting the same OISST 

daily climatology, producing a consistent estimate of the offset in temperature measurements. 

The anomalies shown have the annual cycle removed and the mean of the annual cycle added 

back in. Similar to Huang et al 2015 the results suggest that the bias arises from both (a) ships 

showing lower trends and (b) ships being warmer. Either of the difference due to the transition, 

or the difference in trend, would create a bias in the trends in the uncorrected composite record. 
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Figure S14. Difference between ship-only record and the three Argo series using a 12-month 

centered moving average. All three Argo records show greater warming than the ship-only 

record. 

 

 
Figure S15. Comparison of COBE-SST and COBE-SST2 to the IHSSTs using a 12-month 

centered moving average. The COBE-SST version 2 temperature record is currently only 

available to 2014, however this newer product is much more similar to IHSST records than the 

older version. COBE-SST2 shows slightly more warming than the buoy record, with the largest 

differences in early period when buoy observations are sparse. Agreement with CCI is good 

after 2001. 
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Figure S16. Comparison of HadSST3 and HadNMAT2 to the IHSSTs using a 12-month 

centered moving average. The HadNMAT2 temperature record is currently only available 

through 2010. HadNMAT2 appears to show a cool bias comparable to if not larger than that of 

HadSST3 relative to the IHSSTs in the period from 2003 through the end of 2010. 
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Figure S17. Trends in differences for ERSSTv4 vs. IHSST records with common coverage from 

1997 (buoys and CCI only; dashed lines) and common coverage from 2005 (buoys, CCI and 

Argos as solid lines). Trends to 2015 are shown as a function of start year, with 95% 

uncertainties for trend in differences for ERSSTv4 vs. buoys.  
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Figure S18. Top panel shows 12-month smoothed differences between default Argo records 

used in the paper (e.g. 5 meter depths for RG2009 and APDRC; 10 meter depths for H2008). 

Middle panel shows differences between temperatures at default depths and a depth of 20 

meters. Bottom panel shows differences between default depths and a depth of 50 meters. In 

both cases the change in temperatures with depth is smaller than the difference in temperatures 

between Argo records at the highest available (default) depth. 
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Figure S19. Comparison of buoy records comprised of all buoys (drifting + moored) and only 

drifting buoys. Each buoy observation is normalised by subtracting the same OISST daily 

climatology, producing a consistent estimate of the offset in temperature measurements. The 

anomalies shown have the annual cycle removed and the mean of the annual cycle added back 

in. This suggests that moored buoys are cool-biased relative to drifting buoys, and that the 

conflation of the two into a single record could be biased due to the changing composition of 

each over time. However, the choice of buoy records to include has little effect on the difference 

series relative to composite SST records. 
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Figure S20. Comparison of drifting buoy-based IHSST records for different quality control and 

homogenization choices. The lower panel shows the difference between the alternative 

schemes and the default per-buoy filtering. 

 
Figure S21. 12-month centered moving average of differences between IHSST series from 

January 1997 - December 2015 when reduced to common coverage for each separate pairing. 

The Argo series shown in H2008. 
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Figure S22. Trend difference maps over 2005-2015 for the composite records versus Buoy, 

CCI,  and Argo (H2008). Dots represent trends which are significant at the 2σ level using an 

ARMA(1,1) autoregressive model and no bias correction. Differences with the buoy record are 

localised and noise-like. Differences with the Argo and CCI records are more significant and 

show greater spatial correlation due to smoothing, although the differences still tend to be 

localised. Differences between smoothed map series are more likely to be significant, since the 

noise in an unsmoothed record increases the trend uncertainty. 
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Figure S23. Trends in differences for composite vs. buoy (solid lines) and CCI (dashed lines)  

IHSST records with common coverage. Trends to 2015 are shown as a function of start year, 

with 95% uncertainties for trend in differences for ERSSTv4 vs. buoys.  
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Figure S24. Number of observations over time by instrument type in the ICOADS (v2.5) 

database. The number of observations from buoys has increased dramatically in recent years, 

while the number of measurements from ships has decreased. About 75 percent of current buoy 

measurements come from drifting rather than moored buoys. 

 

 
Figure S25. Similar to Figure S24, but showing the percent of ICOADS observations in each 

year from each instrument type. 
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IV. EVALUATING CLIMATE MODEL PERFORMANCE 

 

Climate models represent one of the most important tools we have for understanding both past 

and future changes to Earth’s climate. Assessing the performance of climate models compared 

to observations can help identify where current models may be performing poorly, and can 

inform future model improvements. Understanding the historical performance of the current 

generation of climate models can also increase (or decrease) confidence in the accuracy of 

future projections. 

Research in this dissertation on evaluating climate model performance has focused on three 

distinct areas: 

1) Accurately comparing climate models and observations through masking, like-to-like 

blended model fields, and improvements to observational records. 

2) Evaluating the performance of post-publication projections of past climate models. 

3) Evaluating the role of internal variability in 20th century temperatures using a simple 

climate model. 

1. ACCURATE COMPARISONS OF CLIMATE MODELS AND OBSERVATIONS 

 

Climate models have frequently been criticized for overestimating the rate of warming compared 

to observations in media reports and Congressional testimony. These critiques are based on 

peer reviewed papers that evaluate temperature hindcasts and limited forecasts (e.g. post-

2005) of CMIP5 models, and either examine the 1998-2014 hiatus period 59 or focus on a 

narrowly defined test – such as tropical (20S to 20N) tropospheric temperatures form 1979 to 

present.60  

When comparing models and observations it is also essential to make like-to-like comparisons 

of observational and model fields. For example, many observational temperature products have 

gaps associated with limited spatial coverage, particularly in regions like the Arctic and in the 

pre-satellite era.9 Model fields should be masked to ensure the same temporal/spatial coverage 

as observations, instead of comparing globally complete estimates to more fragmentary ones. 

Observations often comprise a combination of different measurement techniques. For example, 

the observational GMST record is actually a combination of SAT over land and SST over the 
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ocean, while climate model global SAT fields are frequently used in comparisons, including in 

the IPCC AR5.4 

 

Figure IV.1. Diagram showing the blended SAT/SST fields measured by global mean surface 

temperature observations compared to the global SAT fields generally used by models. Figure 

courtesy of Kevin Cowtan. 

There is also a secondary effect at work here. Global surface temperature records generally 

incorporate air temperatures over sea ice (since the water under sea ice is insulated from the 

surface). However with the loss of Arctic sea ice over recent decades, regions of the ocean 

which were previously given air temperatures switch to sea surface temperatures. This doesn't 

matter if the two temperatures are measured in the same way. However climate scientists 

usually work in terms of temperature changes (or anomalies) with respect to some reference 

period. Air and water temperatures may not be comparable outside of this reference period. In 

practice, because air temperatures have warmed faster than sea surface temperatures, and so 

the loss of sea ice introduces a cool bias in the temperature record at the point when the ice 

melts. 

A like-with-like comparison of models to observations reduces the discrepancy in GMST 

warming trend since 1975 between models and observations by more than a third. Furthermore, 
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the discrepancy is very recent in origin: until the middle of the last decade there is no 

discrepancy in trend between the models and observations. The difference between SAT and 

blended SAT/SST model fields is shown in the figure below. 

Figure IV.2. CMIP5 historical + future projected global mean surface temperatures constructed 

from SAT fields, blended absolute SAT/SST fields, blended anomaly SAT/SST fields, and 

blended anomaly SAT/SST fields masked to HadCRUT4 coverage. From Cowtan et al 2016.4   

When blended fields are used and observations through present are considered, agreement 

between climate models and observations is substantially improved. The figure below shows the 

CMIP5 multimodel mean and model spread compared to surface temperature observations from 

six different groups; of these NASA, Berkeley, Cowtan & Way, and Copernicus (ERA5) all 

provide globally-complete temperature fields over the 1970-2019 period. 
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Figure IV.3. 12-month average global average surface temperatures from blended SAT/SST 

CMIP5 model fields and observations between 1970 and 2020 (observations extend through 

October 2019). Models use RCP4.5 forcings after 2005. Anomalies plotted with respect to a 

1981-2010 baseline. 

Even with like-to-like comparisons between climate models and observations, disagreements 

over temperature changes may remain. It is always important to consider observational 

temperature estimates from different  providers – as well as their published uncertainties – to 

better capture structural uncertainty in observations. For example, some of the apparent post-

1998 differences between models and observations were due to uncorrected biases in sea 

surface temperature records. The transition between HadCRUT3 and HadCRUT4 in 2012 led to 

notably improved agreement between modeled and observed GMST, as did the switch from 

ERSSTv3b to  ERSSTv4/v5 in NOAA and NASA temperature records.61 

Further improvements in model/observation are expected once HadSST4 becomes part of the 

HadCRUT4 product next year. The hybrid SST record we discuss in the Chapter III also show 

improved agreement with CMIP5 models compared to HadSST3, as shown in the figure below.  
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Figure IV.3. (top) Comparison between observational GMST records using HadSST3 and the 

coastal hybrid SST for ocean temperatures with the blended CMIP5 multimodel mean. (bottom) 

Differences of each from the blended CMIP5 multimodel mean. 

A recognition of the uncertainty in observational records is particularly important for temperature 

series with large structural uncertainties, such as lower tropospheric temperatures 29,30 or ocean 

heat content.57,58 Here models may disagree with some observational records and not others, or 

changes in observational records over time may bring observations into (or out of) agreement 

with model projections. 

In the case of ocean heat content, apparent mismatches between observations and model 

projections have been due to observational biases later corrected.57 The figure below, from our 

2019 Science paper, shows that the three updated or new ocean heat content records 

published subsequent to the IPCC AR5 show substantially faster OHC warming than most of 

the five OHC series featured in the AR5 – and agree quite well with the CMIP5 multi-model 

mean. 
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Figure IV.4. Recent 0-2000m observational OHC records compared to CMIP5 model 

projections (top panel), and OHC records featured in the AR5 compared to newer/updated post-

AR5 OHC estimates and CMIP5 models over the 1971-2010 period highlighted in the AR5 

(bottom panel). Figure 1 from Cheng et al 2019.57 
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2. EVALUATING HISTORIC MODEL PERFORMANCE 

 

Current-generation climate models are often compared to observations through “hindcasts” 

where observationally-based radiative forcing estimates are used to project historical 

temperatures from the mid-1800s onward. However, these hindcasts are not always an 

independent test of model skill. Some modeling groups have explicitly selected tunable 

parameters to improve GMST hindcast performance,32 while others have implicitly done so, 

using poor hindcast performance as a reason to reassess parameter choices.33 

Evaluating the performance of future GMST projections from past climate models provides a 

more robust test of model skill. However, given the magnitude of internal climate variability, it is 

difficult to evaluate model projections until at least 15 years after the model was published. 

Other metrics, such as OHC, may have shorter emerge times and allow faster evaluation of 

model performance. 

One challenge of evaluating future model projections is that they are subject to two independent 

sources of uncertainty: uncertainty in the model’s representation of physically processes 

governing GMST, and uncertainty in the future forcings projected by the model. Even if a 

physically-perfect model existed 50 years ago, it still could provide a poor projection of future 

warming if it substantially over or under-estimated future atmospheric CO2 concentrations or 

other forcings. Climate modelers should not necessarily be judged on their ability to forecast 

future emissions – indeed, these are dependent on human factors that are inherently much less 

predictable than atmospheric physics. Many early climate models simply assumed that 

atmospheric CO2 would increase by 1% per year, for example. 

In our 2019 Geophysical Research Letters paper (included later in this chapter), we undertook 

an assessment of all the climate model projections published since the first climate models were 

published in the late 1960s.34 We identified 17 projections from 14 different models published 

between 1970 and 2001 (the original Manabe and Wetherald 1967 model had no temporally-

specific warming projection, while models post-2001 had too short a forecast period for 

evaluation). These include the energy balance models used for the main-text projections of the 

first three IPCC assessment reports. 
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We compared the temperature trends in models and observations in the years after they were 

published. Using this metric (and accounting for uncertainties both in models and observations), 

we found that 10 of 17 model projections were consistent with observations – e.g. differences in 

trends between models and observations over the model future projection period were not 

significantly different from zero. 

To account for mismatches between model and observed forcings post-publication, we 

conducted an additional test where we compared the implied transient climate response (TCR) 

for both models and observations. Implied TCR is essentially just the ratio of the change in 

temperature to the change in radiative forcing, but provides a useful way to control for forcing 

mismatches without having to rerun old climate models using modern observational forcing 

estimates. It is an imperfect metric, as it will not work well when model and observational 

forcings differ dramatically and push the system further from or closer to equilibrium conditions 

(as discussed in more detail in the paper), but is better than not accounting for forcing 

mismatches. Under this metric 14 of 17 models were consistent with observations, though the 

uncertainty in observational implied TCR is relatively large. 

While the old climate models are functionally obsolete and do not include the many 

improvements made by modern Earth System Models, the fact that both classes of climate 

model did so well in projecting future warming should increase our confidence that current 

climate models are getting things right for mostly the right reasons. While there are still real 

uncertainties in future warming associated with climate sensitivity, we can confidently state that 

the rate of surface warming we are experiencing today is pretty much what past climate models 

projected it would be.  

 

3. ROLE OF INTERNAL VARIABILITY IN 20TH CENTURY TEMPERATURES 

 

The role of variability due to natural ocean cycles in global warming is a long-standing debate in 

climate science. The scientific community overwhelmingly agrees that human activities are 

responsible for the observed increase in temperatures for the last half-century. However, the 

relative influences of natural drivers of climate change – such as volcanic eruptions, ocean 

cycles, and the sun – on warmer and cooler phases superimposed on the long-term warming 

trend is still an area of active research. 
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The “early warming period” between 1915 and 1945 has long been a challenge for scientists to 

explain. Prior studies have suggested that about half the observed warming during this period is 

attributable to factors that are “external” to the climate – such as human-caused greenhouse 

gas emissions, volcanic eruptions and variability in the sun’s output.63 The remaining half are 

attributed to “internal” factors – natural fluctuations within the climate system itself. This has led 

to suggestions that there may be long-term ocean cycles operating over 60- to 70-year periods 

which influence global temperatures.64 They are commonly associated with the Atlantic 

Multidecadal Variability index (AMV). 

In a paper published in the Journal of Climate we challenged this prevailing view.65 We found 

that virtually all of the observed changes in global average temperatures over the past 170 

years are caused by external drivers, leaving little room for an “unforced” internal ocean 

contribution. This means that ocean cycles on timescales of 60-70 years are unlikely to be a 

factor in the observed evolution of global temperatures since 1850. Instead, external factors, 

such as periods of strong volcanic activity and the release of aerosol particles (air pollution), 

have caused temperatures to fluctuate. 

To determine the effects of external drivers on global temperatures, we used a two-box impulse 

response model, which transfers the forcing estimate into an associated temperature response. 

This allows us to include both fast and slow climate responses to the different drivers, and 

reflects the role that the ocean plays in buffering the rate of warming observed. Technical details 

of the model used can be found in Haustein et al 2019 in Appendix B. 

The figure below shows observed global temperatures (in black) compared to the model using 

climate forcings (yellow) and climate forcings that include ENSO conditions (light blue). 
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Figure IV.5. Global surface temperatures from observations (Cowtan/Way land temperature 

data combined with HadISST2 sea surface temperature data over ocean, in black) and model 

results for forcings-only (yellow) and forcings plus ENSO (light blue). The temperature 

anomalies are expressed relative to 1850-1879. Based on Figure 5 in Haustein et al 2019.65  

In our model, virtually all (97-98%) of the long-term changes in temperature can be explained by 

external forcing. This approach uses a more precise description of the anthropogenic aerosol 

feedback processes (warming effect of black-carbon pollution and cooling effect of sulphate 

particles from industrial combustion) and removes biases in sea surface temperature (SST) 

records caused by a change in the way measurements were taken around the second world 

war. However, even without these updated forcings and observational estimates, this approach 

captures a substantial portion of the variability in global temperature. 

The model effectively matches temperatures over both land and ocean. The figure below shows 

model results for land (orange) compared to land temperature observations (red), as well as 

similar values for sea surface temperatures (dark blue for observations, light blue for model 

results). 
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Figure IV.5. Global land and ocean surface temperatures from observations and model results 

for forcings plus ENSO (light blue). The temperature anomalies are expressed relative to 1850-

1879; ocean temperatures have been offset by -0.3°C to avoid overlap.  

The model also allows us to attribute temperature changes to different forcings. The figure 

below shows a breakdown of the different factors contributing to global surface temperatures, 

including human forcings (greenhouse gases and aerosols), natural forcings (volcanoes and 

solar) and short-term variations due to ENSO. The black dots show the observed temperature 

record and the grey line shows the model simulation that incorporates all the different drivers. 
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Figure IV.6. Global surface temperatures from observations (black) and model results for all 

factors (grey), greenhouse gases (red), aerosols (dark blue), natural forcings (light blue) and the 

short-term variability due to ENSO (yellow). The temperature anomalies are expressed relative 

to 1850-1879.  

In addition to comparisons with observed temperatures between 1850 and present, we can 

extend the model into the more distant past – back to the year 1500 – using estimates of past 

climate forcings. The results can be compared to temperature reconstructions based on climate 

proxies. 

The figure below shows the results when we extend the model back to 1500 (in red), compared 

both to a palaeoclimate reanalysis dataset (NTrend2015 – in the bold orange line) and individual 

proxy records (orange).66 Temperatures for the Northern Hemisphere are shown, as that is 

where a large number of palaeoclimate temperature reconstructions are available. 
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Figure IV.7. Northern Hemisphere surface temperatures from observations (black) and model 

results for all factors (grey), along with seven different proxy-based paleoclimate estimates.  

During that period from 1500 to present, the model captures most of the multidecadal variability 

present in the proxy data. This improves our confidence that there are not large sources of 

internal variability missing from the model – at least over the past 500 years or so. 

While the climate system continues to be influenced by short-term natural variability from El 

Niño and La Niña events, the hypothesis that oceans have been driving the climate into colder 

or warmer periods for multiple decades in the past – and that they may do so in the future – is 

unlikely to be correct. Most of the complex global climate models strongly support the 

hypothesis that oceans have only limited ability to alter global temperatures on multidecadal 

timescales. This study provides a support for those model results. 

This means that we can expect future warming to be primarily driven by external forcing factors 

– such as human-caused greenhouse gas emissions – along with the variability associated with 

ENSO. 

There are still some differences between past complex climate model simulations and 

observations. However, in our Journal of Climate paper we suggest that these models should 
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use an earlier model start date that includes strong volcanic eruptions in the early 1800s – 

which are still impacting global temperatures in the mid-to-late 1800s and likely even longer – 

which in turn would help improve the agreement between the two. Updated climate forcings – 

which are being included in the upcoming CMIP6 modelling project – will also help resolve some 

of the historical disagreements. 
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KEY POINTS 

 

● Evaluation of uninitialized multi-decadal climate model future projection performance 

provides a concrete test of model skill. 

● The quasi-linear relationship between model / observed forcings and temperature change is 

used to control for errors in projected forcing. 

● Model simulations published between 1970 and 2007 were skillful in projecting future global 

mean surface warming. 

ABSTRACT 
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Retrospectively comparing future model projections to observations provides a robust and 

independent test of model skill. Here we analyse the performance of climate models published 

between 1970 and 2007 in projecting future global mean surface temperature (GMST) changes. 

Models are compared to observations based on both the change in GMST over time and the 

change in GMST over the change in external forcing. The latter approach accounts for 

mismatches in model forcings, a potential source of error in model projections independent of 

the accuracy of model physics. We find that climate models published over the past five 

decades were skillful in predicting subsequent GMST changes, with most models examined 

showing warming consistent with observations, particularly when mismatches between model-

projected and observationally-estimated forcings were taken into account.  

PLAIN LANGUAGE SUMMARY 

 

Climate models provide an important way to understand future changes in the Earth’s climate. 

In this paper we undertake a thorough evaluation of the performance of various climate models 

published between the early 1970s and the late 2000s. Specifically, we look at how well models 

project global warming in the years after they were published by comparing them to observed 

temperature changes. Model projections rely on two things to accurately match observations: 

accurate modeling of climate physics, and accurate assumptions around future emissions of 

CO2 and other factors affecting the climate. The best physics-based model will still be 

inaccurate if it projects future changes in emissions that differ from reality. To account for this, 

we look at how the relationship between temperature and atmospheric CO2 (and other climate 

drivers) differs between models and observations. We find that climate models published over 

the past five decades were generally quite accurate in predicting global warming in the years 

after publication, particularly when accounting for differences between modeled and actual 

changes in atmospheric CO2 and other climate drivers. This research should help resolve public 

confusion around the performance of past climate modeling efforts, and increases our 

confidence that models are accurately projecting global warming. 

INTRODUCTION 

 

Physics-based models provide an important tool to assess changes in the Earth’s climate due to 

external forcing and internal variability (e.g. Arrhenius, 1896; IPCC 2013). However, evaluating 

the performance of these models can be challenging. While models are commonly evaluated by 
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comparing “hindcasts” of prior climate variables to historical observations, the development of 

hindcast simulations is not always independent from the tuning of parameters that govern 

unresolved physics (Schmidt et al. 2017; Mauritsen et al. 2019; Gettelman et al. 2019). There 

has been relatively little work evaluating the performance of climate model projections over their 

future projection period (referred to hereafter as model projections), as much of the research 

tends to focus on the latest generation of modeling results (Eyring et al. 2019). 

 

Many different sets of climate projections have been produced over the past several decades. 

The first time series projections of future temperatures were computed using simple energy 

balance models in the early 1970s, most of which were solely constrained by a projected 

external forcing time series (originally, CO2 concentrations) and an estimate of equilibrium 

climate sensitivity from single-column radiative-convective equilibrium models (e.g. Manabe and 

Wetherald 1967) or general circulation models (e.g. Manabe and Wetherald 1975). Simple 

energy balance models have since been gradually side-lined in favor of increasingly high-

resolution and comprehensive general circulation models, which were first published in the late 

1980s (e.g. Hansen et al. 1988, Stouffer et al. 1989, IPCC 2013).  

 

Climate model projections are usefully thought about as predictions conditional upon a specific 

forcing scenario. We consider these to be projections of possible future outcomes when the 

intent was to use a realistic forcing scenario, and where the realized forcings were qualitatively 

similar to the projection forcings. Evaluating model projections against observations subsequent 

to model development provides a test of model skill, and successful projections can concretely 

add confidence in the process of making projections for the future. However, evaluating future 

projection performance requires a sufficient period of time post-publication for the forced signal 

present in the model projections to be differentiable from the noise of natural variability (Hansen 

et al. 1988; Hawkins and Sutton, 2012).  

 

Researchers have previously evaluated prior model projections from the Hansen et al. (1988) 

NASA Goddard Institute for Space Studies model (Rahmstorf et al. 2007, Hargreaves et al. 

2010), the Stouffer and Manabe (1989) Geophysical Fluid Dynamics Laboratory model (Stouffer 

and Manabe 2017), the IPCC First Assessment Report (IPCC 1990; Frame and Stone 2012), 

and the IPCC Third and Fourth Assessment reports (IPCC 2001; IPCC 2007; Rahmstorf et al. 

2012). However, to-date there has been no systematic review of the performance of past 

climate models, despite the availability of warming projections starting in 1970. 
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This paper analyses projections of global mean surface temperature (GMST) change, one of the 

most visible climate model outputs, from several generations of past models. GMST plays a 

large role in determining climate impacts, is tied directly to international-agreed-upon mitigation 

targets, and is one of the climate variables that has the most accurate and longest observational 

records. GMST is also the output most commonly available for many early climate models run in 

the 1970s and 1980s. 

 

Two primary factors influence the long-term performance of model GMST projections: 1) The 

accuracy of the model physics, including the sensitivity of the climate to external forcings and 

the resolution or parameterization of various physical processes such as heat uptake by the 

deep ocean and 2) the accuracy of projected changes in external forcing due to greenhouse 

gases and aerosols, as well as natural forcing such as solar or volcanic forcing. 

 

While climate models should be evaluated based on the accuracy of model physics 

formulations, climate modelers cannot be expected to accurately project future emissions and 

associated changes in external forcings, which depend on human behavior, technological 

change, and economic and population growth. Climate modellers often bypass the task of 

deterministically predicting future emissions by instead projecting a range of forcing trajectories 

representative of several plausible futures bracketed by marginally-plausible extremes. For 

example, Hansen et al. 1988 consider a low-emissions extreme scenario C with “more drastic 

curtailment of emissions than has generally been imagined,” a high-emissions extreme scenario 

A wherein emissions “must eventually be on the high side of reality,” as well as a middle-ground 

scenario B which “is perhaps the most plausible of the three”. More recently, the Representative 

Concentration Pathways used in CMIP5 and the IPCC AR5 report similarly includes a number of 

plausible scenarios bracketed by a low-emissions extreme scenario RCP2.6 and a high-

emissions extreme scenario RCP8.5 (van Vuuren et al. 2011). Thus an evaluation of model 

projection performance should focus on the relationship between the model forcings and 

temperature change, rather than simply assessing how well projected temperatures compare to 

observations, particularly in cases where projected forcings differ substantially from our best 

estimate of the subsequently observed forcings. 

 

This approach – comparing the relationship between forcing and temperatures in both model 

projections and observations – can effectively assess the performance of the model physics 
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while accounting for potential mismatches in projected forcing that climate modelers did not 

address at the time. In this paper we apply both a conventional assessment of the change in 

temperature over time and a novel assessment of the response of temperature to the change in 

forcing to assess the performance of future projections by past climate models compared to 

observations. 

 

Climate modeling efforts have advanced substantially since the first modern single-column 

(Manabe and Strickler 1964) and general circulation models (Manabe et al. 1965) of Earth’s 

climate were published in the mid 1960s, resulting in continually improving model hindcast skill 

(Reichler and Kim 2008, Knutti et al. 2013). While these improvements have rendered virtually 

all of the models described here operationally obsolete, they remain valuable tools as they are 

in a unique position to have their projections evaluated by virtue of their decades-long post-

publication projection periods. 

METHODS 

 

We conducted a literature search to identify papers published prior to the early-1990s that 

include climate model outputs containing both a time-series of projected future GMST (with a 

minimum of two points in time) and future forcings (including both a publication date and future 

projected atmospheric CO2 concentrations, at a minimum). Eleven papers with fourteen distinct 

projections were identified that fit these criteria. Starting in the mid-1990s, climate modeling 

efforts were primarily undertaken in conjunction with the IPCC process (and later, the Coupled 

Model Intercomparison Projects – CMIPs), and model projections were taken from models 

featured in the IPCC First Assessment Report (FAR – IPCC 1990), Second Assessment Report 

(SAR – IPCC 1996), Third Assessment Report (TAR – IPCC 2001), and Fourth Assessment 

Report (AR4 – IPCC 2007).  

 

The specific models projections evaluated were Manabe 1970 (hereafter Ma70), Mitchell 1970 

(Mi70), Benson 1970 (B70), Rascool and Schneider 1971 (RS71), Sawyer 1972 (S72), Broecker 

1975 (B75), Nordhaus 1977 (N77), Schneider and Thompson 1981 (ST81), Hansen et al. 1981 

(H81), Hansen et al. 1988 (H88), and Manabe and Stouffer 1993 (MS93). The energy balance 

model (EBM) projections featured in the main text of the FAR, SAR, and TAR were examined, 

while the CMIP3 multimodel mean (and spread) was examined for the AR4 (multimodel means 

were not used as the primary IPCC projections featured in the main text prior to the AR4). 



	167	

Details about how each individual model projection was digitized and analyzed as well as 

assessments of individual models included in the first three IPCC reports can be found in the 

supplementary materials. 

 

The AR4 projection was excluded from the main analysis in the paper as both the observational 

uncertainties and model projection uncertainties are too large over the short 2007-2017 period 

to draw many useful conclusions, and its inclusion makes the figures difficult to read. However, 

analyses including the AR4 projection can be found in the supplementary materials. 

 

We assessed model projections over the period between the date the model projection was 

published and the end of 2017, or when the model projection ended in cases where model runs 

did not extend through 2017. An end date of 2017 was chosen for the analysis because the 

ensemble of observational estimates of radiative forcings we used only extends through that 

date. 

 

Five different observational temperature time series were used in this analysis – NASA 

GISTEMP (Lenssen et al. 2019), NOAA GlobalTemp (Vose et al. 2012), Hadley/UEA 

HadCRUT4 (Morice et al. 2012), Berkeley Earth (Rohde et al. 2013), and Cowtan and Way 

(Cowtan and Way 2014). The observational temperature records used do not present a 

completely like-to-like comparison with models, as models provide surface air temperature 

(SAT) fields while observations are based on SAT fields over land and sea surface temperature 

(SST) fields over the ocean. This means that the trends in the models used here are likely 

biased high compared to observations, as model blended field trends are about 7% (± 5%) 

lower than model global SAT fields over the 1970-2017 period (Cowtan et al. 2015; Richardson 

et al. 2016). However, the absence of SST fields from the models analyzed here prevents a 

comparison of blended SAT/SST against observations. 

 

We compared observations to climate model projections over the model projection period using 

two approaches: change in temperature vs time, and change in temperature vs change in 

radiative forcing (“implied TCR”). We use an implied TCR metric to provide a meaningful model-

observation comparison even in the presence of forcing differences. Implied TCR is calculated 

by regressing temperature change against radiative forcing for both models and observations, 

and multiplying the resulting values by the forcing associated with doubled atmospheric CO2 

concentrations, 𝐹!!, (following Otto et al. 2013): 



	168	

 

 𝑇𝐶𝑅!"!"#$%  = 𝐹!!𝛥𝑇/𝛥𝐹!"#!!" 

 

We express implied TCR with units of temperature using a fixed value of 𝐹!!= 3.7 W/m2 (Vial et 

al. 2013). 𝛥𝐹!"#!!" includes only anthropogenic forcings and excludes volcanic and solar 

changes to avoid introducing sharp inter-annual changes in forcing that would complicate the 

interpretation of TCR over shorter time periods. For the observational record, 𝛥𝐹!"#!!" is based 

on a 1000-member ensemble of observationally-informed forcing estimates (Dessler and 

Forster 2018). Model forcings are recomputed from published formulas and tables when 

possible and otherwise digitized from published figures (see supplementary section S2 for 

details). Details on the approach used to calculate implied TCR can be found in supplementary 

materials section S1.2. 

 

Comparing models and observations via implied TCR assumes a linear relationship between 

forcing and warming, an approach that has been widely used in prior analyses (Gregory et al. 

2004; Otto et al. 2013). If forcing varies sufficiently slowly in time and deep ocean temperatures 

remain approximately constant, then a linear relationship is expected to hold with a constant of 

proportionality that depends on the strength of radiative feedbacks and ocean heat uptake (Held 

et. al. 2010). In this regime, our implied TCR metric provides information about model physics 

and is unaffected by the time rate of change of forcing; moreover, previous studies have 

suggested that the temperature response to 20th century anthropogenic forcing falls within this 

regime (Gregory and Mitchell 1997, Gregory and Forster 2008, Held et. al. 2010).  

 

However, sudden increases or decreases such as those associated with volcanic eruptions will 

not engender an equivalent immediate temperature response. For this reason, only 

anthropogenic forcings were used in estimating 𝑇𝐶𝑅!"#$!%&, as all models evaluated lacked 

additional volcanic events during their projection periods with the exception of scenarios B and 

°C of H88. Similarly, thermal inertia in the climate system can affect the relationship between 

temperature and external forcing if forcing increases sufficiently rapidly (Geoffroy et al. 2012). 

Scenarios where forcing is rapidly increasing will, all things being equal, tend to be further away 

from an equilibrium state than scenarios with more gradual increase after a given period of time 

(Rohrschneider et al. 2019) and thus have a lower implied TCR. With a few exceptions (e.g. 

RS71, H88 Scenarios A and C), however, most models evaluated had a rate of external forcing 

increase in the projection period within 1.3x of the mean estimate of observational forcings and 
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thus likely fall into the regime where implied TCR depends largely on radiative feedbacks and 

ocean heat uptake. 

 

In this analysis we refer to model projections as consistent or inconsistent with observations 

based on a comparison of the differences between the two. Specifically, if the 95% confidence 

interval in the differences between the modelled and observed metrics includes 0, the two are 

deemed consistent; otherwise, they are inconsistent. Additionally, we follow the approach of 

Hargreaves (2010) in calculating a skill score for each model for both temperature vs time and 

implied TCR metrics. This skill score is based on the root-mean-squared errors of the model 

projection trend vs observations compared to a zero-change null-hypothesis projection. See 

supplementary materials section S1.3 for details on calculating consistency and skill scores. 

RESULTS 

 

A direct comparison of projected and observed temperature change during each historical 

model’s projection period can provide an effective test of model skill, provided that model 

projection forcings are reasonably in-line with the ensemble of observationally-informed 

estimates of radiative forcings. In about 9 of the 17 model projections examined, the projected 

forcings were within the uncertainty envelope of observational forcing ensemble. However, the 

remaining 8 models – RS71, H81 scenario 1, H88 scenarios A, B, and C, FAR, MS93, and TAR 

– had projected forcings significantly stronger or weaker than observed (Figure 1). For the latter, 

an analysis comparing the implied TCR between models and observations may provide a more 

accurate assessment of model performance.  
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Figure 1. Rate of external forcing increase (in watts per meter squared per decade) in models 

and observations over model projection periods. 

 

Comparisons between climate models and observations over model projection periods are 

shown in Figure 2 for both temperature vs. time and implied TCR metrics (differences between 

models and observations are shown in Figure S2). Overall the majority of model projections 

considered were consistent with overvations under both metrics. Using the temperature vs time 

metric, 10 of the 17 model projections show results consistent with observations. Of the 

remaining 7 model projections, four project more warming than observed – N77, ST81, and H88 

scenarios A and B – while three project less warming than observed – RS71, H81 scenario 2a, 

and H88 scenario C. 
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Figure 2: Comparison of trends in temperature vs time (top panel) and implied TCR (bottom 

panel) between observations and models over the model projection periods displayed at the 

bottom of the figure. Figure S1 shows a variant of this figure with the AR4 projections included. 

 

When mismatches between projected and observed forcings are taken into account, a better 

performance is seen. Using the implied TCR metric, 14 of the 17 model projections were 

consistent with observations; of the three that were not, Mi70 and H88 scenario C showed 

higher implied TCR than observations, while RS71 showed lower implied TCR (see 

supplementary text S2 for a discussion of the anomalously low-ECS model used in RS71).  

 

A number of model projections were inconsistent with observations on a temperature vs time 

basis, but are consistent once mismatches between modeled and observed forcings are taken 

into account. For example, whileN77 and ST81 projected more warming than observed, their 

implied TCRs are consistent with observations despite forcings within – though on the high end 
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of – the ensemble range of observational estimates. Similarly, while H81 scenario 2a projects 

less warming than observed, its implied TCR is consistent with observations. 

 

A number of 1970s-era models (Ma70, Mi70, B70, B75, N77) show implied TCR on the high end 

of the observational ensemble-based range. This is likely due to their assumption that the 

atmosphere equilibrates instantly with external forcing, which omits the role of transient ocean 

heat uptake (Hansen et al. 1985). However, despite this high implied TCR, a number of the 

models (e.g. Ma70, Mi70, B70, B75) still end up providing temperature projections in-line with 

observations as their forcings were on the lower-end of observations due to the absence of any 

non-CO2 forcing agents in their projections. 

 

In principle the same underlying model should show consistent results for modestly different 

forcing scenarios under the implied TCR metric. However, the inconsistency of the H88 scenario 

°C is illustrative of the limitations of the implied TCR metric when the model forcings differ 

dramatically from observations, as scenario C has roughly constant forcings after the year 2000. 

 

The H88 model provides a helpful illustration of the utility of an approach that can account for 

mismatches between modeled and observed forcings. H88 was featured prominently in 

congressional testimony, and the recent 30th anniversary of the event in 2018 focused 

considerable attention on the accuracy of the projection (United States. Cong. Senate 1988; 

Borenstein and Foster, 2018). H88’s “most plausible” scenario B overestimated warming 

experienced subsequent to publication by around 54% (Figure 3). However, much of this 

mismatch was due to overestimating future external forcing – particularly from CH4 and 

halocarbons (Figure S3). When H88 scenario B is evaluated based on the relationship between 

projected temperatures and projected forcings, the results are consistent with observations 

(Figures 2 and 3). 
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Figure 3: Hansen et al. 1988 projections compared with observations on a temperature vs. time 

basis (top) and temperature vs external forcing (bottom). The dashed grey line in the top panel 

represent the start of the projection period. The transparent blue lines in the lower panel 

represent 500 random samples of the 5000 combinations of the 5 temperature observation 

products and the 1000 ensemble members of estimated forcings (the full ensemble is 

subsampled for visual clarity). The dashed blue lines show the 95% confidence intervals for the 

5000 member ensemble (see supplementary text S1.4 for details). Anomalies for both 

temperature and forcing are shown relative to a 1958-1987 pre-projection baseline. 

 

Skill score median estimates and uncertainties for both temperature vs time and implied TCR 

metrics are shown in Table 1 (see supplementary text S1.3). A skill score of one represents 

perfect agreement between a model projection and observations, while a skill score of less than 

zero represents worse performance than a no-change null-hypothesis projection. 
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Model Timeframe ΔT / Δt skill ΔT / ΔF skill 

Ma70 1970-2000 0.84 [0.57 to 0.99] 0.51 [-0.11 to 0.94] 

Mi70 1970-2000 0.91 [0.69 to 0.99] 0.41 [-0.26 to 0.90] 

B70 1970-2000 0.78 [0.45 to 0.97] 0.63 [0.06 to 0.96] 

RS71 1971-2000 0.19 [0.16 to 0.25] 0.42 [0.28 to 0.59] 

S72 1972-2000 0.83 [0.49 to 0.99] 0.83 [0.43 to 0.98] 

B75 1975-2010 0.85 [0.64 to 0.98] 0.72 [0.31 to 0.97] 

N77 1977-2017 0.67 [0.44 to 0.84] 0.79 [0.48 to 0.98] 

ST81 1981-2017 0.76 [0.53 to 0.94] 0.82 [0.52 to 0.98] 

H81(1) 1981-2017 0.93 [0.81 to 0.99] 0.74 [0.59 to 0.93] 

H81(2a) 1981-2017 0.77 [0.66 to 0.91] 0.87 [0.69 to 0.99] 

H88(A) 1988-2017 0.38 [0.01 to 0.68] 0.81 [0.63 to 0.98] 

H88(B) 1988-2017 0.48 [0.08 to 0.77] 0.79 [0.41 to 0.98] 

H88(C) 1988-2017 0.66 [0.48 to 0.89] 0.28 [-0.46 to 0.84] 

FAR 1990-2017 0.63 [0.29 to 0.87] 0.86 [0.68 to 0.99] 

MS93 1993-2017 0.71 [0.20 to 0.97] 0.87 [0.61 to 0.99] 

SAR 1995-2017 0.73 [0.58 to 0.95] 0.66 [0.49 to 0.91] 

TAR 2001-2017 0.81 [0.15 to 0.98] 0.76 [-0.13 to 0.98] 

AR4 2007-2017 0.56 [0.35 to 0.92] 0.60 [0.37 to 0.93] 

Table 1: Model skill scores over the projection period, where 1 represents perfect agreement 

with observations and less than 0 represents worse performance than a no-change null 

hypothesis. Both temperature vs time (ΔT / year) and implied TCR (ΔT / ΔF) median scores and 

uncertainties are shown. 
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The average of the median skill scores across all the model projections evaluated is 0.69 for the 

temperature vs time metric. Only three projections (RS71, H88 scenario A, and H88 scenario B) 

had skill scores below 0.5, while H81 scenario 1 had the highest skill score of any model – 0.93. 

Using the implied TCR metric, the average projection skill of the models was also 0.69. Models 

with implied TCR skill scores below 0.5 include Mi70, RS71, and H88 scenario C, while MS93 

had the highest skill score at 0.87. H88 scenarios A and B and the IPCC FAR all performed 

substantially better under an implied TCR metric, reflecting the role of misspecified future 

forcings in their high temperature projections. It is important to note that the skill score 

uncertainties for very short future projection periods – as in the case of the TAR and AR4 – are 

quite large and should be treated with caution due to the combination of short-term temperature 

variability and uncertainties in the forcings. 

 

A number of model projections had external forcings that poorly matched observational 

estimates due to the exclusion of non-CO2 forcing agents. However, all models included 

projected future CO2 concentrations, providing a common metric for comparison, and these are 

shown in Figure S4. Most of the historical climate model projections overestimated future CO2 

concentrations, some by as much as 40 parts per million over current levels, with projected CO2 

concentrations increasing up to twice as fast as actually observed. Of the 1970s climate model 

projections, only Mi70 projected atmospheric CO2 growth in-line with observations. Many 1980s 

projections similarly overestimated CO2, with only the Hansen 88 scenarios A and B projections 

close to observed concentrations. 

 

The first three IPCC assessments included projections based on simple energy balance models 

tuned to GCM results, as relatively few individual model runs were available at the time. From 

the AR4 onward IPCC projections were based on the multi-model mean and model spread. We 

examine individual models from the first three IPCC reports on both a temperature vs time and 

implied TCR basis in Figure S5. 

CONCLUSIONS AND DISCUSSION 

 

In general, past climate model projections evaluated in this analysis were skillful in predicting 

subsequent GMST warming in the years after publication. While some models showed too 

much warming and a few showed too little, most models examined showed warming consistent 
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with observations, particularly when mismatches between projected and observationally-

informed estimates of forcing were taken into account. We find no evidence that the climate 

models evaluated in this paper have systematically overestimated or underestimated warming 

over their projection period. The projection skill of the 1970s models is particularly impressive 

given the limited observational evidence of warming at the time, as the world was thought to 

have been cooling for the past few decades (e.g. Broecker 1975). 

 

A number of high-profile model projections – H88 scenarios A and B and the IPCC FAR in 

particular – have been criticised for projecting higher warming rates than observed (e.g. 

Michaels and Maue 2018). However, these differences are largely driven by mismatches 

between projected and observed forcings. H88 A and B forcings increased 97% and 27% faster, 

respectively, than the mean observational estimate, and FAR forcings increased 55% faster. On 

an implied TCR basis, all three projections have high model skill scores and are consistent with 

observations. 

 

While climate models have grown substantially more complex than the early models examined 

here, the skill that early models have shown in successfully projecting future warming suggests 

that climate models are effectively capturing the processes driving the multi-decadal evolution of 

GMST. While the relative simplicity of the models analyzed here renders their climate 

projections operationally obsolete, they may be useful tools for verifying or falsifying methods 

used to evaluate state-of-the-art climate models. As climate model projections continue to 

mature, more signals are likely to emerge from the noise of natural variability and allow for the 

retrospective evaluation of other aspects of climate model projections. 
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DATA AND CODE 

  

A spreadsheet with tabs containing data from all of the models evaluated in this study is 

available here: 

https://github.com/hausfath/OldModels/blob/master/Model%20data%20spreadsheet.xlsx 

  

A public GitHub repository with code used to analyze the data, generate figures, and csv files 

containing the data shown in the figures is available here: 

https://github.com/hausfath/OldModels 

  

The 1000-member ensemble of observationally-informed radiative forcing estimates can be 

found here: https://github.com/hausfath/OldModels/tree/master/forcing_data 

  

Observational temperature datasets can be found at the following links: 

NASA GISTEMP – https://data.giss.nasa.gov/gistemp/ 

NOAA GlobalTemp – https://www.ncdc.noaa.gov/monitoring-references/faq/anomalies.php 

Hadley HadCRUT4 – http://www.metoffice.gov.uk/hadobs/hadcrut4/ 

Berkeley Earth – http://berkeleyearth.org/data/  

Cowtan and Way – http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html   

TEXT S1: DETAILED METHODS 

  

S1.0: Additional methods notes 

  

The choice to start the future projection period at the date of publication was made as a 

conservative choice to avoid any possibility of observed temperatures informing model 

development or parameterization. While in some cases the specific date on which the model 

was run prior to the paper publication is known, in most cases (particularly for earlier studies) 

this is not readily available. In other cases (e.g. for the IPCC AR4) models were run with 

projected future forcings that start well before the model was developed, which does not 

completely preclude the knowledge of observed temperatures in the intervening period from 

informing the development and tuning of parameterizations but is unlikely given the multi-year 

timescale of model development. 
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While a more complex two-layer model with ocean heat uptake would be able to better capture 

the relationship between forcing and temperature response than our simple implied TCR metric 

(Rohrschneider et al. 2019), we have purposefully chosen to avoid a situation where we are 

using a more complex model with its own somewhat uncertain parameterizations to evaluate the 

performance of historical climate models. A more complex model may also not provide an 

effective comparison with early climate model projections, many of which (prior to ST81) did not 

include ocean heat uptake dynamics.  is not an optimal metric in all cases, but will provide a 

more accurate evaluation of model projection performance than the conventional approach of 

analyzing changes in temperature over time without accounting for differences in the time 

evolution of modeled and observationally-estimated radiative forcings. 

 

While our analysis uses instantaneous radiative forcings either calculated from modeled CO2 

concentrations or based on published data from past climate models, it does not account for 

differing forcing efficacies (Hansen et al 2005; Marvel et al 2016). When taken into account – 

based on efficacies from the GISS model – efficacy-adjusted forcings are around 3% higher at 

present, and representing an additional source of uncertainty in our analysis. 

 

S1.1: Temperature vs time 

 

To evaluate the performance of model projections against observed temperatures, the linear 

trend in both observations and model projections was calculated over the future projection 

period. An ordinary least squares approach was used to calculate the trend coefficient of all five 

observational temperature records over the future projection period. A first-order autoregressive 

model (AR1) was further used to estimate trend uncertainties, similar to the approach used in 

Hausfather et al. (2017). 

 

Specifically, trend coefficients of temperature with respect to time,𝛽, were estimated with the 

ordinary least squares model: 

 

𝑦! = 𝛽𝑥! + ɛ! 

(1) 

The uncertainty introduced by the choice of observational estimate was calculated from the 

variance of the five coefficients (𝛽!. . .𝛽!): 
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𝑣𝑎𝑟(𝑜𝑏𝑠) = (𝛽! − 𝜇)!/𝑁 

(2) 

where𝜇 is the average of the five coefficients and 𝑁 = 5.  

 

An AR1 model was used to estimate the regression confidence intervals: 

 

𝑋! = 𝑐 + 𝜌𝑋! + ɛ! 

(3) 

where 𝑐 is a constant, ɛ!  is white noise, and𝜌is the model parameter. The variance for the 

regression of a given observational temperature record 𝑖 can be calculated by: 

 

𝑣𝑎𝑟(𝑋!)! = 𝜎!!/(1 − 𝜌!). 

(4) 

The ordinary least squares model provides a more physically meaningful coefficient than the 

AR(1) model, while the AR(1) model provides a better estimate of the variance (accounting for 

autocorrelation). These were calculated separately for each of the five observational 

temperature datasets. In cases where the confidence intervals of the regression coefficient from 

the AR(1) approach were smaller than those from an OLS model, the OLS coefficients were 

used to provide a more conservative estimate. 

 

A mean and combined uncertainty were estimated by averaging the five coefficients and by 

adding the (two-sigma) coefficient uncertainty and the mean AR(1) (two-sigma) trend 

uncertainty in quadrature, assuming that the two are independent:  

 

𝛽 ± 4 ⋅ 𝑣𝑎𝑟(𝑜𝑏𝑠) + 4 ⋅ 𝑣𝑎𝑟(𝑋!). 

(5) 

As the standard deviation is the square root of the variance, 2 ⋅ 𝑣𝑎𝑟
!
= 4 ⋅ 𝑣𝑎𝑟. For models, 

where only a single realization of projected temperatures is available, the same approach was 

used except with a single 𝛽 and 𝑣𝑎𝑟(𝑋!). 

 

S1.2: Implied TCR 
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Implied TCR is defined as the ratio between the change in temperature and the change in 

external forcing over the model projection period, for both models and observations. It is 

referred to as ‘implied’ as it differs from the traditional definition of TCR, which is typically based 

on idealized experiments where CO2 is increased by 1% per year (Cubasch et al. 2001). 

 

When explicit external forcing values were not available, they were estimated from model 

greenhouse gas concentrations using the simplified radiative forcing functions from the IPCC 

AR5 (Myhre et al. 2013). Forcing from a change in atmospheric concentration of CO2 is given 

by: 

 

∆𝐹!!! = 5.35 ∙ 𝑙𝑛
(!!!!!!!!!)

!!!!
. 

(7) 

Here 𝑃!!! represents the initial concentration of CO2 in the atmosphere when the model 

projection period began, while 𝛼!!! represents the additional parts per million CO2 added 

through the end of 2017 (or when the model run ended if prior to 2017). 

 

The direct radiative forcing of a given increase of CH4 and/or N2O in the atmosphere can be 

approximated by: 

 

∆𝐹!!! = 0.036( 𝑃!!! + 𝛽!!! −  𝑃!!!) − 𝑓(𝑃!!! + 𝛽!!! ,  𝑃!!!) + 𝑓(𝑃!!! ,𝑃!!!) 

∆𝐹!!! = 0.12( 𝑃!!! + 𝛽!!! −  𝑃!!!) − 𝑓(𝑃!!! ,𝑃!!! + 𝛽!!!) + 𝑓(𝑃!!! ,𝑃!!!) 

 

where: 

𝑓(𝑀,𝑁) = 0.47 𝑙𝑛(1 + 2.01 ∙ 10!!(𝑀𝑁)!.!" + 5.31 ∙ 10!!"𝑀(𝑀𝑁)!.!"). 

(8) 

In this equation 𝑃!!! is the initial concentration of atmospheric CH4, while 𝛽!!! is the addition 

being evaluated. 𝑃!!! is the initial concentration of N2O, and 𝛽!!! is the addition being 

evaluated. The radiative forcing of both CH4 and N2O is a function of the combination of both, 

reflecting their interacting atmospheric chemistry. 

 

We use a 1000-member ensemble of observationally-informed radiative forcing estimates from 
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Forster and Dessler (2018) to account for uncertainties in forcing associated with aerosol, land 

albedo, and other factors that are relatively poorly observationally constrained. The ensemble 

members are combined with each of the five observational temperature records to regress the 

change in temperature against the change in radiative forcing, following the approach used in 

Eqs. 1-5 but substituting radiative forcing for time and using an OLS rather than AR(1) approach 

for trend uncertainties given the absence of a time variable needed for an autoregressive model. 

 

Specifically, a set of 5000 𝛥𝑇/𝛥𝐹!"#!!"estimates are calculated for each model projection period 

across the five observational temperature estimate and 1000 radiative forcing ensemble 

members. The mean of these estimates is calculated, and uncertainties are estimated based on 

both the variation across these 5000 estimates and on the mean confidence intervals of the 

regression coefficients. These uncertainties and added in quadrature as the two are 

independent: 

 

𝑇𝐶𝑅!"#$!%& ± 4 ⋅ 𝑣𝑎𝑟(𝑇𝐶𝑅!"#$!%&) + 4 ⋅ 𝑣𝑎𝑟(𝛽 ) 

(9) 

where 𝑣𝑎𝑟(𝛽) is the variance of the OLS regression in Eq. 1, but regressing temperature against 

anthropogenic forcing rather than time.  

 

Models, in turn, have a single realization of 𝛥𝑇and 𝛥𝐹!"#!!" over their projection period, and the 

uncertainties are only estimated from 𝑣𝑎𝑟(𝛽). 

 

S1.3: Calculating consistency and skill scores 

 

We refer to model projections as consistent or inconsistent with observations based on a 

comparison of the differences between the two. Specifically, when comparing models on a 

temperature vs time basis, we difference the model and observation global mean surface 

temperature time series for each of the five observational time series. These difference series 

will remove any common variability between model projections and observations (Hausfather et 

al. 2017). Trends and trend confidence intervals for these difference series are then calculated 

following the approach in Eq. 5. Model projections and observations are considered consistent if 

the trend 95% confidence interval of the difference series is inclusive of zero, indicating that 

zero difference in trends cannot be ruled out. 
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When comparing model projections and observations on an implied TCR basis (e.g. change in 

temperature compared to change in forcing), using linear regressions on difference series is 

more problematic given the lack of shared time axis between the two. Instead, we assume that 

the trend uncertainties for each are independent, and add the uncertainties in quadrature to the 

difference in trends. Specifically, we calculate: 

 

𝑇𝐶𝑅!"## ± 4 ⋅ 𝑣𝑎𝑟(𝑇𝐶𝑅!"#$%&) + 4 ⋅ 𝑣𝑎𝑟(𝑇𝐶𝑅!"#) 

 

where: 

 

𝑇𝐶𝑅!"## = 𝑇𝐶𝑅!"#$!%&,!"#$% − 𝑇𝐶𝑅!"#$!%&,!"# 

𝑣𝑎𝑟(𝑇𝐶𝑅!"#$%) = 𝑣𝑎𝑟(𝑇𝐶𝑅!"#$!%&,!"#$%)! + 𝑣𝑎𝑟(𝛽!,!"#$% )! 

𝑣𝑎𝑟(𝑇𝐶𝑅!"#) = 𝑣𝑎𝑟(𝑇𝐶𝑅!"#$!%&,!"#)! + 𝑣𝑎𝑟(𝛽!,!"# )!. 

(10) 

Here we similarly consider model projections and observations to be consistent if the 95% 

confidence interval of the difference between the two is inclusive of zero. This approach 

produces results quite similar to those from the difference series approach used in the 

temperature vs time case, suggesting that the phase of internal variability in model projections 

and observations are largely independent. 

 

Skill scores are calculated following the approach of Hargreaves (2010). The root-mean-

squared errors of the projectioned trend, 𝐸!, is compared to a reference technique 𝐸!"#!, where 

𝐸!"#! is simply the assumption of temperature persistence (e.g. zero trend over time). As 

Hargreaves points out, the assumption of persistence generally outperforms the extrapolation of 

recent trends over any given interval in the historical global mean surface temperature record, at 

least prior to the last few decades. This serves as a reasonable counterfactual, particularly for 

early 1970s and 1980s models where the modern warming trend was less apparent to 

researchers at the time (Broecker 1975). 

 

Skill scores, 𝑆𝑆, are defined as: 

 



	190	

𝑆𝑆 = 1 −
𝐸!
𝐸!"#!

 

where: 

𝐸! = 𝛽!,!"# − 𝛽!,!"#$% 
! 

 

𝐸!"#! = 𝛽!,!"# − 0
! 

. 

(11) 

Skill score uncertainties are estimated based on calculating skill scores separately for each 

model projection using the five different observational temperature records (for the temperature 

vs time metric) and the 5000 permutations of observational temperature record and 

observational forcing ensemble (for the implied TCR metric). The median skill score is 

calculated across all available runs for each metric. This is shown rather than the mean as the 

absolute value nature of the skill score means that a few ensemble members with very low skill 

can drag the mean skill score disproportionately down. 

 

The uncertainties shown span the 5th to 95th percentile of resulting skill scores, accounting for 

both uncertainties from the choice of observational record and forcing series and the trend 

uncertainty due to temporal variability in the underlying time series. These are calculated via a 

Monte Carlo approach that takes the trend coefficient uncertainties into account. For the 

temperature vs time metric, 100 permutations of each of the five observational temperature 

records are estimated, where each randomly samples a value from the Gaussian distribution of 

the resulting regression trend coefficients. For the implied TCR metric, 100 values were 

randomly sampled from the Gaussian distribution of the resulting regression trend coefficients 

for each of the 5000 permutations of temperature record and observationally-based forcing 

series. 

 

S1.4: Temperature uncertainties at a given forcing 

 

The combination of 5 observed temperature time series and 1000 observationally-informed 

forcing time series gives an ensemble of 5000 estimates of how temperature varies as a 

function of radiative forcing. We can not immediately estimate uncertainty in temperature as a 

function of forcing because the forcing data points are not co-located. Thus, we define a regular 

grid of forcings with fine spacing of 0.02 W/m2 and linearly interpolate the 5000 temperature 

values from the annual forcings values to the fine grid. We then calculate the sample standard 
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deviation across the 5000 member ensemble and estimate a 95% confidence interval at each 

forcing value. These confidence intervals for Hansen et al. 1988 and IPCC FAR are shown by 

the dashed blue lines in the lower panels of Figure 3 and Figure S6, respectively.  
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CLIMATE MODEL PROJECTION ASSESSMENT 

 

This section provides detailed descriptions of how each historical climate model projection was 

digitized and analyzed, including what data points were available, if and what interpolation of 

data was applied, and what scenarios were used. When model projections were not available in 

a digital form, they were digitized from published figures using the free OS X application  

plotDigitizer: http://plotdigitizer.sourceforge.net/ 

 

Manabe 1970 

 

Citing results from their previously published Manabe and Wetherald 1967 model, Manabe 

calculates the equilibrium surface air temperature in a one-dimensional radiative convective 

equilibrium model for a given distribution of relative humidity. Citing an increase in surface air 

temperature of 2.3°C as CO2 concentrations are doubled from 300 ppm to 600 ppm, he uses an 

independent prediction of external forcing to predict transient warming in 2000, relative to 1900: 

“suppose the concentration of CO2 increases by about 25% from AD1900 to AD2000 as the 

U.N. Department of Social and Economic Affairs predicts, the resulting increase of surface 

temperature would be about 0.8°C”. It is unclear whether he carried out additional runs of the 

Manabe and Wetherald model to arrive at this number or simply scaled their previously 

calculated ECS of 2.36°C (table 5 of Manabe and Wetherald 1967) using the logarithmic 

dependence of CO2 radiative forcing on CO2 concentrations (equation 7), which gives 

 

2.36 ×𝑙𝑜𝑔(1.25) / 𝑙𝑜𝑔(2.0)  = 0.759 ≃ 0.8°𝐶. 

 

To express this prediction as a change in radiative forcing and GMST between 1970 and 2000, 

we assume a CO2 concentration of 300 ppm in 1900 and 320 ppm in 1970. The 320 ppm value 

is consistent with other papers published at the time (Mitchell et al. 1970; Benson et al. 1970; 

Rascool and Schneider 1971; Sawyer 1972), though lower than our current estimate of 1970 

global CO2 concentrations (325 ppm). The referenced prediction of a 25% increase from 1900 to 

2000 thus predicts 375 ppm of CO2 in 2000. Using equation 7 to convert CO2 concentrations 

into a radiative forcing, we determine a predicted increase of radiative forcing of 𝛥𝐹 = 0.85 𝑊/

𝑚!between 1970 and 2000. To determine the predicted increase in GMST between 1970 and 

2000 from the increase in GMST between 1900 and 2000, we assume, as when calculating 

implied TCR, that a linear relationship between temperature and forcing holds. Then, the 
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increase in GMST between 1970 and 2000 can be calculated by linearly interpolating between 

𝑇 =  0º𝐶at 𝐹 = 0 𝑊/𝑚!and 𝑇 = 0.8º𝐶at 𝐹 = 1.20 𝑊/𝑚!to 𝑇 = 0.23º𝐶at𝐹 = 0.35º 𝑊/𝑚!. The 

resulting changes in radiative forcing and GMST are 𝛥𝐹!"""!!"#$ = 0.85 𝑊/𝑚! 𝛥𝑇!"""!!"#$ =

0.57º𝐶. We linearly interpolate the forcing and temperature to arrive at annual values. 

 

Link: https://link.springer.com/chapter/10.1007%2F978-94-010-3290-2_4 

 

Note: Manabe and Wetherald 1967 itself is not included here because it did not provide a 

prediction for when CO2 would reach a given level, only for the amount of warming that would 

result once that level was reached. It simply provided an equilibrium response to doubled CO2 

rather than a timeseries of transient response. 

 

Mitchell 1970 

 

Similar to Manabe 1970, Mitchell 1970 uses the estimate of ECS from Manabe and Wetherald 

1967 and projections of CO2 levels, implicitly assuming the system instantaneously reaches 

equilibrium, to determine future changes in GMST. 

 

Mitchell states that the increase in CO2 concentrations, “relative to a 19th century base level of 

290 ppm, [...] is projected to accumulate to 11% by 1970, 15% by 1980, 20% by 1990, and 27% 

by 2000 A.D”. We convert CO2 concentrations into radiative forcings using equation 7, with a 

reference of 320 ppm in 1969. Temperatures are taken from Mitchell’s statement that 

“temperature contribution of CO2 changes anticipated in the future, neglecting all other 

mechanisms of climatic change, will consist of a further warming (above 1969 temperature 

levels) of about 0.1°C (0.2ºF) by 1980, 0.3ºC (0.5ºF) by 1990, and 0.5ºC (0.8ºF) by 2000 A.D”. 

We linearly interpolate the forcing and temperature to arrive at annual values. 

 

Link: https://link.springer.com/chapter/10.1007/978-94-010-3290-2_15  

 

Benson 1970 

 

Benson predicts that CO2 concentrations will increase linearly at the contemporaneous rate of 

0.7 ppm per year. Linearly extrapolating from a value of 320 ppm in 1970, he arrives at a 
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concentration of 384 ppm in 2000. Using equation 7, we translate this into an increase in CO2 

radiative forcing of 0.98 W/m2 from 1970 to 2000. 

 

Using Manabe and Wetherald 1967’s estimate of climate sensitivity, expressed as a warming of 

0.3ºC per 10% increase in CO2 concentrations, he finds that temperatures should increase by 

“about 0.6ºC” from 1970 to 2000. Presumably, he used some form of equation 7, which 

expresses the approximately logarithmic dependence of radiative forcing on CO2, to get   

 

𝛥𝑇 =  𝐸𝐶𝑆 ×
𝛥𝐹2000 − 1970

𝛥𝐹2×
= 2.36 ×𝑙𝑜𝑔(1.2) / 𝑙𝑜𝑔(2.0)  = 0.62 ≃ 0.6°𝐶. 

 

We linearly interpolate the forcing and temperature to arrive at annual values. 

 

Link  https://doi.org/10.1073/pnas.67.2.898  

 

Rasool and Schneider 1971 

 

Rasool and Schneider (1971)’s method of projecting GMST change based on an ECS and 

radiative forcing is similar to the above studies but both their projected increases in CO2 

concentrations of 10% from 1971 to 2001 and their estimate 𝐸𝐶𝑆 = 0.8º𝐶are less than half 

those of all other contemporaneous projections discussed above and below (see note below on 

why this disagrees so much with the Manabe and Wetherald 1967 estimate of ECS). They state: 

“if CO2 is augmented by another 10 percent in the next 30 years, the increase in the global 

temperature may be as small as 0.1ºK”. We can reproduce this calculation, following equation 7,  

if we assume the system is always at equilibrium and is described by a constant feedback 

parameter, such that 

 

𝛥𝑇 = 0.8 ×𝑙𝑜𝑔(1.1) / 𝑙𝑜𝑔(2.0)  = 0.11º𝐶 ≃ 0.1º𝐶. 

 

We linearly interpolate the forcing and temperature to arrive at annual values. 

 

Note: Schneider (1975) discusses the difference between the Rasool and Schneider (1971) and 

Manabe and Wetherald (1967)’s estimate of ECS at length, based on simulations by Manabe 

and Wetherald who generously replicated their simulations with Rasool and Schneider (1971)’s 
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assumptions. The differences between their estimates can be summarized by the following: 1) 

Rasool and Schneider assume an isothermal stratosphere, which allows too much radiation to 

space in optically-thick bands as CO2 is increased, and thus limits the amount of heating at the 

surface; 2) Rasool and Schneider do not include near-infrared solar absorption by water vapor 

and CO2, resulting in less heating at the surface; 3) Manabe and Wetherald 1967’s infrared 

radiation transfer scheme was less elaborate than that of Rasool and Schneider 1971, resulting 

in a 0.4ºC warm bias in their ECS relative to the radiation scheme used in Rasool and 

Schneider 1971. 

 

Link: http://dx.doi.org/10.1126/science.173.3992.138   

 

Sawyer 1972 

 

Citing Manabe 1970, he assumes an ECS of 2.4ºC. He speculates that a 25% increase in CO2 

concentrations from 319 in 1969 to 399 ppm in 2000 would lead to a warming of 0.6ºC. We are 

unclear how Sawyer arrived at this value, since the typical scaling would provide a temperature 

change of: 

 

2.4 ×𝑙𝑜𝑔(1.25) / 𝑙𝑜𝑔(2.0)  = 0.77 ≃ 0.8 º𝐶. 

 

Given the fact that 

 

2.4 ×1.25 / 2.0 =  0.6º𝐶, 

 

it seems possible that Sawyer mistakenly approximated CO2 forcing as a linear function of CO2 

concentrations, resulting in a spurious underestimate of the temperature change. It is not clear 

to us how else Sawyer could come up with a temperature change of 0.6ºC from the cited 

values. 

 

Link: https://www.nature.com/articles/239023a0 

 

Broecker 1975 
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Citing the calculation of 𝐸𝐶𝑆 = 2.4º𝐶from the general circulation model in Manabe and 

Wetherald 1975 as the most reliable estimate of ECS (which coincidentally differs only slightly 

from their previous column-model calculations of 𝐸𝐶𝑆 = 2.36º𝐶 in Manabe and Wetherald 

1967), Broecker follows the same approach as Manabe 1970 and projects GMST changes 

forward to 1980, 1990, 2000, and 2010 (see his Table 1 and Figure 1), using a variant of 

equation 7 that gives nearly identical results. We linearly interpolate the forcing and temperature 

between values reported in Table 1 to arrive at annual values between 1975 and 2010. 

 

Link: https://science.sciencemag.org/content/189/4201/460 

 

Note: we only consider the anthropogenically forced response, ignoring projected contributions 

from the assumed sinusoidal cycles of natural variability, which Broecker himself later admitted 

were flawed (Broecker 2017). 

 

Nordhaus 1977 

 

The temperature response for a given trajectory of CO2 concentrations is given by equation 7, 

same as all of the above, using a value of 𝐸𝐶𝑆 = 2º𝐶, the choice of which seems to be mostly 

informed by the Manabe and Wetherald 1967 model but reflects the large spread of estimates in 

the 1970s literature (see above). 

 

Nordhaus 1977 differs from the above models in that he calculates CO2 trajectories based on 

decoupled linear economic and carbon cycle models. While Nordhaus 1977 explores scenarios 

with constraints on the level of allowable CO2 concentrations in the atmosphere, we only 

consider the temperature time-series for the uncontrolled case, which eventually reaches CO2 

concentrations four to five times pre-industrial levels. We note that by 2020, the uncontrolled 

scenario results in CO2 concentrations that, by 2020, are only slightly higher than that of a 

scenario where CO2 concentrations are constrained to never go beyond double the CO2 

concentration from the year 1974. 

 

The temperature time-series is digitized from Figure 1 while the radiative forcing is calculated 

according to equation 7 by digitizing the time series of carbon dioxide content in the atmosphere 

in Figure 9 and converting to parts per million. 
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Note: There appears to be a typo in Nordhaus 1977 monograph in the first footnote of page 5, 

which cites Manabe and Wetherald 1969 when referencing the model for the temperature 

response, which does not appear in the bibliography and is elsewhere cited as Manabe and 

Wetherald 1967. 

 

Links: http://cowles.yale.edu/sites/default/files/files/pub/d04/d0443.pdf (long version) 

https://www.jstor.org/stable/pdf/1815926 (short version) 

 

Schneider and Thompson 1981 

 

In contrast to all of the above, which consider the case of instantaneous thermal equilibrium, 

Schneider and Thompson 1981 consider the transient evolution of surface temperatures in a 

two-box energy balance model. When diffusive heat uptake by the deep ocean (represented by 

the lower box) is included, the transient warming is reduced relative to the instantaneous 

equilibrium case (equivalent, the small thermal inertia or short radiative relaxation timescale 

case). Here, we only consider the case of a diffusive timescale of 550 years for the global deep 

ocean, which is the scenario in Schneider and Thompson 1981 that most corresponds to 

modern understanding of the diffusive and advective timescales for the deep ocean circulation 

and is the middle of the range of diffusive timescales considered in the paper. The ratio 𝑟! of 

instantaneous CO2 concentration over the 1925 value relative is assumed to increase 

quadratically according to: 

 

1.443 𝑙𝑛(𝑟!)  =  7.03 ×10!! 𝑡!. 

 

External forcing is estimated from the CO2 concentrations using equation 7. The temperature 

time series is digitized from Figure 3 for a diffusive timescale 𝜏! = 550 years. 

 

Link: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC086iC04p03135 

 

Hansen et al. 1981 

 

We consider two forcing scenarios for Hansen et al. 1981: scenario 1 (“fast growth”) and 

scenario 2a (“slow growth” without coal phaseout). In both cases, natural gas, oil, and coal 

consumption increases according to a prescribed growth rate (4% and 2% for scenarios 1 and 
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2, respectively). While the prescribed growth rates do technically taper in time, the tapering 

does not come into effect until 2020 so it does not affect the results shown here. When the 

relatively limited gas and oil reserves are depleted by ever-increasing energy consumption, they 

are in principle replaced by coal though in practice none of the reserves are depleted until after 

2020 in either scenario. Energy consumption in Joules is converted to ppm of CO2 according to 

the conversion factors in Table 2 of Hansen et al. 1981. Hansen et al. 1981 do not discuss the 

potential for future carbon sinks; following them, we thus unrealistically assume all emitted CO2 

remains in the atmosphere perpetually. Some of the excess forcing due to the permanence of 

anthropogenic CO2 in the atmosphere is likely offset by observed increases in other greenhouse 

gases, which are not included in the Hansen et al. 1981 projections. CO2 concentrations are 

converted to a radiative forcing using only the terms involving a change in CO2 concentrations 

from equation 9 of Hansen et al. 1981, which agrees with our equation 7 to within 2% for 

historical changes in CO2 concentrations. 

 

Temperature time series corresponding to the forcing scenarios 1 and 2a are digitized from 

Figure 6 of Hansen et al. 1981. 

 

Link: https://pubs.giss.nasa.gov/abs/ha04600x.html 

 

Hansen et al. 1988 

 

We consider the three forcing scenarios for H88: a rapid growth scenario A, a slow growth 

scenario B, and is a scenario C wherein emissions are so dramatically curtailed by the year 

2000 that net emissions vanish. Both annual temperature and forcing values calculated from the 

model were obtained from NASA Goddard Institute for Space Studies (GISS). 

 

Link: https://pubs.giss.nasa.gov/abs/ha02700w.html 

 

Manatabe and Stouffer 1993 

 

Forcings are calculated by digitizing the 4xCO2 time series (1% increase per year) in their 

Figure 1a and converting to a radiative forcing using equation 7. Temperature changes are 

calculated by digitizing panel the time series corresponding to the 4xCO2 experiment in Figure 

1b. 
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Link: https://www.nature.com/articles/364215a0 

 

IPCC First Assessment Report (FAR) 

 

The main text of the IPCC FAR featured projections from a simple box-diffusion upwelling 

energy balance model (EBM) tuned to the individual climate models featured in the supplement 

to the report. We digitized EBM temperature valuesfrom Figure 8 in the Policymakers Summary. 

As the original values are  unavailable in a digital form, the IPCC AR5 took a similar approach in 

digitizing old figures. The values we obtained through digitization were comparable to those in 

the AR5 WG1 Chapter 1 appendix. We chose not to directly use the digitized values reported in 

the AR5 as they only provided a high and low range of projections and did not include a best-

estimate, and digitizing the best-estimate while relying on the digitized high and low values in 

the AR5 would introduce potential inconsistencies in the digitization approach.  

 

The AR5 chose an unusual set of bounds for its reported FAR values, relying on a stringent 

mitigation scenario (Scenario D in Figure 9) as its lower bound and the best-estimate business-

as-usual scenario as its upper bound. We instead use the values reported in Figure 8, which 

show a low estimate, best estimate, and high estimate of temperature change in the FAR 

business-as-usual scenario. The low and high estimates are used as the uncertainty bounds on 

the best estimate. External forcing values for the EMB were digitized from Figure 6 (also Figure 

A.6) using the business-as-usual scenario, with all three scenarios (low, best, and high) relying 

on the same underlying set of forcings.  

 

Individual climate model projections featured in Figure S5 were obtained from the FAR 

supplementary materials. Climate models in the IPCC FAR from UKMET and GFDL use only 

CO2 changes for future forcings. They did not have model years specified, so were aligned such 

that their 1990 value was the model year in which CO2 concentrations were closest to 1990 

observations. GCMs included in the IPCC FAR employ scenarios where CO2 or GHG forcing 

increases by 1% per year, while the simple energy balance models featured in the report used 

the IS92a scenario.  

 

IPCC Second Assessment Report (SAR) 
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We digitized EBM valuesfrom Figure 19, using the 2.5ºC ECS run (including aerosols) as the 

best estimate and 1.5ºC/4.5ºC ECS runs as the low and high-end estimates. Similar to the FAR, 

the original values are unavailable in digital form and the values we obtained through digitization 

were comparable to those in the AR5 WG1 Chapter 1 appendix. Projected FAR EBM CO2 

concentrations were digitized from Figure 5 (IS92a scenario), while total external forcing was 

digitized from Figure 6.  

 

GHG-only model runs (excluding aerosols) were used from the IPCC SAR for the individual 

models shown in Figure S5, as the specific aerosol forcings used differ by models and are 

poorly documented. SAR climate models mostly employ scenarios where CO2 increases by 1% 

per year, while the simple energy balance models featured in the report used the IS92a 

scenario.  

 

IPCC Third Assessment Report (TAR) 

 

Decadal values for both temperatures, total forcings, and CO2 used in the EBM featured in the 

TAR main text were obtained from Appendix I: 

https://www.ipcc.ch/site/assets/uploads/2018/03/TAR-APPENDICES.pdf 

 

These decadal values were transformed into annual estimates via linear interpolation. 

 

Individual climate models featured in the TAR using the A2 SRES scenario were selected and 

shown in Figure S5, as that is the scenario with the most unique model runs available. 

 

IPCC Fourth Assessment Report (AR4) 

 

Coupled Model Intercomparison Project 3 (CMIP3) temperature projections featured in the AR4 

were obtained from KNMI climate explorer. A1B runs were used as they were readily available, 

though over the 2007-2017 period differences between A1B and A2 in CMIP3 are minor. 

External forcing values used in the CMIP3 A1B scenario were based on those used in GISS 

model E, as precise forcing values used by each model are not readily available (and the 

differences within a given SRES scenario in forcings used between models should be small): 

https://data.giss.nasa.gov/modelE/transient/dangerous.html 
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The AR4 best estimate shown in the paper is based on the A1B multimodel mean, while the low 

and high scenarios reflect the 5th and 95th percentile of the ensemble of A1B model runs for 

any given year. 

SUPPLEMENTARY FIGURES S1-S5. 

 

 
Figure S1. Comparison of trends in temperature vs time (top panel) and implied TCR (bottom 

panel) between observations and models over the model projection periods displayed at the 

bottom of the figure. As in Figure 1, but with the 2007-2017 IPCC AR4 projection included. 
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Figure S2. Difference between climate models and observations on a temperature vs time (top 

panel) and implied TCR (bottom panel) basis over the model projection periods displayed at the 

bottom of the figure. Values higher than zero indicate that the model projected more warming 

(or higher TCR) than observed. 
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Figure S3. Greenhouse gas concentrations in Hansen et al. (1988) scenarios compared to 

observations. 
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Figure S4: Model projected CO2 concentrations colored by decade in which the model was 

published compared to observations (black). Observed CO2 concentrations were taken from 

Meinshausen et al. (2017). 
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Figure S5. Comparison of trends in temperature vs time (top panel) and implied TCR (bottom 

panel) between observations and models included in the first three IPCC assessment reports 

over model future projection periods. Main-text projections based on simple energy balance 

models are shown in green (those are also included in Figure 1). 
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Figure S6: IPCC FAR projections compared with observations on a temperature vs. time basis 

(top) and temperature vs forcing (bottom). The dashed grey line in the top panel represent the 

start of the future projection period. The probability distribution in the lower panel represents the 

5000 combinations of the 5 temperature observation products and the 1000 ensemble members 

of estimated forcings. Anomalies for both temperature and forcing are shown relative to a 1970-

1989 pre-future-projection baseline. 
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V. CONCLUSION 

 

Uncertainties in estimates of global surface temperatures, both during the 20th century and 21st 

century, are of critical importance to a number of pressing questions in climate science such as 

how well are models reproducing observed warming, has there been any evidence of a “hiatus” 

in warming temperatures during the past two decades, and what is the remaining carbon budget 

to avoid surpassing 1.5°C and 2°C warming targets. Reducing these uncertainties will improve 

our understanding of prior changes to the climate and our confidence in estimates of future 

projected changes. 

Work done in this dissertation has had a notable impact on our understanding and estimates of 

temperatures. This includes ensuring that urbanization is not biasing our record of land 

temperatures,20 testing the performance of land temperature homogenization,41 resolving 

differences between ocean temperature records in recent decades,15 developing a novel sea 

surface temperature record to help better understand WW2-era uncertainties,54 and evaluating 

recent changes in ocean heat content.57 In an encouraging sign of the impact of our work, the 

new HadSST4 temperature product from the UK Met Office prominently features comparisons 

with the instrumentally homogenous sea surface temperature records we developed.53 

Similarly, the work that I and coauthors have undertaken has changed the approach used in 

evaluating the performance of GMST climate model projections, demonstrating the need to use 

common coverage and blended SAT/SST fields to ensure like-to-like comparisons with 

observations.4 Evaluating the future projections of old climate models improves our confidence 

that the current generation of models is accurately capturing the physical processes driving 

GMST change.34 This work on evaluating old climate models will be featured prominently in 

Chapter 1 of the upcoming IPCC 6th Assessment Report, where I am serving as a contributing 

author. 

There are a number of next steps that can be taken to improve our understanding of historical 

temperatures, improve temperature measurements going forward, and better compare climate 

models and observations. One essential step is to convince World Meteorological Organization 

member countries to fund the creation of the global land Climate Reference Network, using the 

one developed over the past 15 years in the US as an example. As we pointed out in our recent 

paper on the subject,47 a network of as few as 160 well-separated monitoring stations would be 

sufficient to provide an accurate estimate of global mean surface land temperature changes 
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going forward. The correlation lengths are large enough for temperature that a relatively small 

number of stations are needed; though for other climate variables – such as precipitation – a 

denser station network is desirable. 

A global climate reference network would serve a number of purposes. It would anchor our 

estimates of global land temperatures, helping reduce uncertainties going forward, particularly in 

areas currently under-sampled such as parts of Africa, the Arctic, and Antarctica. It would also 

provide a known homogenous test case to use in the evaluation of homogenization of larger 

local weather station networks. Using modern technology, stations can be largely self-powering 

and automatically provide data to a central international repository via satellite uplink, similar to 

the current USCRN. 

A second area of global temperature record improvement would be to explore new methods to 

resolve disagreements between historical sea surface temperature record reconstructions, 

particularly during the first half of the 20th century.67 Our work using coastal and island stations 

is a first step in this direction,54 but more work needs to be undertaken using novel methods to 

detect and correct for often poorly-documented changes in measurement technique (e.g. 

wooden vs canvas buckets), deck height, ship speed, and other factors that affect historical 

measurements. One promising method recently published was to compare spatially and 

temporally-proximate sets of ship-based measurements from different shipping fleets over time 

to empirically determine offsets, assuming similar practices across members of national 

fleets.48,68 This is conceptually similar to the pairwise homogenization approach used for land-

based measurements, and could potentially be expanded in the future to develop ship-specific 

(rather than fleet-specific) corrections. 

Extending satellite radiometer-based sea surface temperature estimates further back in time 

could also help resolve some disagreements between records in recent decades. A new 

satellite sea surface temperature was published in summer 2019 that extends back to the start 

of the satellite era – in 1981 – and could be compared to other composite sea surface 

temperature records.69 

Third, evaluating the performance of climate models through observational comparisons 

requires having model fields that mimic the spatial coverage and field types used by 

observations.4 These fields have been calculated for CMIP5 climate models, but do not yet exist 

for CMIP6. These blended SAT/SST fields also have implications for estimates of climate 

sensitivity, both for ECS and TCR. For example, observationally-based estimates of TCR agree 
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quite well with models when adjusted for differences between SAT and SST warming rates over 

the oceans.24 I’ve developed similar estimates of global SATs for use in ECS calculations in a 

upcoming review paper on climate sensitivity that attempts to reconcile model, emergent 

constraint, observational, and paleo estimates to narrow the likely range of climate sensitivity. 

Fourth, there is work to do to resolve differences between tropospheric and surface temperature 

records. Climate models agree well with surface temperatures, but show less warming than 

most tropospheric temperature records, particularly in the tropics. The disagreement between 

surface and troposphere records is unusual, as even in the absence of anthropogenic forcing 

(e.g. in a hypothetical solar-forced warming plant) tropospheric temperatures over the ocean 

should be amplified relative to the surface. The absence of this behavior in most satellite-based 

records suggest that either large biases remain in the observational record, or our basic 

understanding of tropospheric amplification is inaccurate. Given the large structural 

uncertainties in MSU-based satellite records, and the much smaller uncertainties in surface 

records, if the observations are problematic the fault is likely in the tropospheric record. 

Finally, notable difference among surface temperature records have emerged in the past few 

years, and appear to be driven primarily by differences in Arctic coverage. With the advent of 

modern relatively-homogenous reanalysis products like ERA5, there is the possibility of using 

other types of atmospheric measurements to more effectively interpolate temperatures across 

the sparsely-measured Arctic. This is particularly important for temperature records like NOAA 

and Hadley that have limited coverage in the region and use spatial interpolation approaches –

 such as lat/lon grid cell averages – that are poorly suited to the polar regions. 

Global temperatures are our most iconic indicator the changing climate, and improvements to 

our historical estimates also improve our understanding of likely future changes. The 

temperature record also provides an important means to visualize and communicate the 

changing climate to policymakers and the broader public – as the temperature spiral, climate 

stripes, and my own visualizations have shown over the past few years. The work in this 

dissertation – as well as ongoing projects – have played both scientific and science 

communication roles, leading to hundreds of articles in the popular press, including a front page 

story in the New York Times.70 Substantial uncertainties in temperature records have been 

resolved in the papers included in this dissertation, and we have a good roadmap to try and 

resolve remaining differences moving forward. 
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