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ABSTRAGT

In this study, axial dispersion in packed beds has been investi-
gated with particular reference to extraction-tower design,

A new model for dispersion behavior, based upon ''segmented
laminar flow!',"is derived for analysis of breakthrough curves at low
flowrates; its applicability is discussed in comparison with other
theoretical models of mixing.

Axial dispersion coefficients’in single-phase flow were meas-
ured by a step-input method over a wide range of Reynolds numbers
(3 to 2000). Nine different types of packings were used, involving regu-
lar and random arrangements of spheres, and random arrangements
of Raschig rings, Berl saddles, and Intalox saddles. Different con-
stant values of axial Péclet number are found in the turbulent range and
the laminar range, which are separated by a fairly sharp transition
region. Viscosity is found to have a large effect upon axial dispersion;
for two solutions of different viscosity, the Péclet-number values are
identical at the same Reynolds number, The axial Péclet number is
found to vary inversely with bed porosity. No effect of packing arrange-
ment is observed.

For two-phase countercurrent flow of water and kerosene,
axial—dispersion coefficients were measured for the continuous phase;

they were also measured for the dispersed phase, both where the current
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does and does not wet the packing matérial.’ 'The continuous-phase
Péclet number appears to increase With‘decreasing,continuous-phase .

Reynolds number, and also with an increasing ratio of dispersed-phase

flow rate to continuous-phase flowrate.  For a nonwetting dispersed . «

phase, the Péclet number remains practically constant, whereas for

.a wetting discontinuous. phase it decreases somewhat with an increasing

ratio of discontinuous=phase flowrate to continuous-phase flowzate.

On the basis of typical calculations of mass-transfer rates from experi-
mental extraction.data, we conclude that longitudinal dispersion is an
important effect and should be calculated as an independent factor in

extraction column design,

wt



.-GENERAL INTRODUCTION

The development of rational deSign methods for fixed-bed ex-
traction columns, absorption columns and chemical reacdtors requires
a knowledge of the extent of mass transport in the direction of flow.
This phenomenon,called "longitudinal dispersionor "axial mixing, '
tends to decrease the driving forces for transport processes or chemical
reaction and thus limits the separations or conversions obtainable.

Longitudinal dispersion is the result of three effects. The first
is true molecular diffusion in the axial direction. The second is turbu-
lent fluid-phase mixing which occurs in the spaces between the packing.
The third, additional axial mixing, is caused by nonuniform velocity
and subsequent transverse diffusion; this is sometimes called Taylor
diffusion, from G. 1. Taylor's analysis of molecular diffusion effects
during laminar flow in pipes. These mechani‘sms, whether acting sep-
arately or in combination, are known to produce essentially similar in-
tegral effects and hence all'e all describable approximately in terms of
solutions to the diffusion equation. The numerical value of the diffusion
coefficient that results from applying these solutions to experimental
data is known as an '"effective axial-dispersion coefficient. *

This investigation is intended as a step in the direction of de-
veloping extraction-column design methods that take longitudinal dis-
persion into account., This study consists of three parts,

In Part I we propose a new model called "'segmented laminar
flow' for describing the longitudinal mixing process at low flowrates;
for comparison, the most common theoretical models used for analyz-
ing axial-dispersion experiments are also reviewed.

In Part II we report new experimental results on axial dispersion
for liquid flow through fixed beds of diffel;ent packing, with interpreta-
tion and correlation of these results. |

In Part III we make an experimental study of axial dispersion in
two-phase flow. The two liquids used were water and kerosene. The

columns were packed with 3/4-in. ceramic Raschig rings, 3/4-in.



carbon Raschig rings, and 1-in. Berl saddles. The carbon rings were

used to investigate the influence of

in the dispersed phase.

"wetability " upon axial dispersion

. )



PART I. THEORETICAL MODELS FOR LONGITUDINAL
DISPERSION
The subject of lengthwise fluid mixing in continuous-flow packed-

‘column systems has received much attention during the past decade. A
number of studies have shown that longitudinal dispersion {(or 'axial
mixing') can exert a significant effect in reducing the mass-transfer
.performance of columns below that predicted from true mass-transfer
coefficients alone, and hence, that this effect should be accounted for

24,34,38 geveral mixing models have been proposed for

separately.
explaining experimental breakthrough (concentration vs time) data for
the outflow. The problem of these models is essentially that of pre-
dicting the behavior of an initially sharp interface between two miscible
fluids.

The most widely used approach to axial dispersion is the diffusion
-model. In this model the dispersion process is characterized by a dif-
fusion equation, with an axial-dispersion coefficient in place of the usual
molecular diffusivity. A simple sclution to the diffusion model, assum-=
ing infinite boundary conditions, was first obtained by Danckwerts. 10
The main features of the simple diffusion model were further discussed

3
1,7,13,31,33,39 but this model does not

by several other investigators,
give an adequate description of axial dispersion in ''shallow' beds. . An
exact analytic solution to the diffusion model, for miscible fluid dis-
placement in beds of finite length, was first presented by Yagi and
Miyauchi. 42 Extensive numerical results, based on an asymptotic
approximation to this solution, were reported by Brenner,

A second model for axial dispersion, the pe.rfect»mixing cell
model, in which each of the interstices of a packed bed acts as a mixing

29

stage, was proposed by Kramers and Alberta, When the series-
mixer model was appliedv to experimental data, it was often found that
fewer than ten mixers were needed to reproduce the observed data.
Since the beds involved were more than ten packing-particle diameters

in length, Carberry suggested that incomplete mixing in the individual



void cells would reduce the.calculated number of mixers, relative to
the actual number of void cells as indicated by the number of layers of
packing. 6 Accordingly, he introduced a mixing-efficiency factor for
the series-mixer model, which constitﬁted a free parameter for fitting
the model to the experimental data, For "deep! beds (those having 20
or more perfect mixers in series), it has been shown that the diffusion
and series-mixer models predict essentially identical residence-time
distributions and breakthrough curves.

A random-walk model, developed by Einstéin15 for the stream
transport of suspended solid particles, has been extended by Jacques
and Vermeulen24 and Cairns and Prausnitz5 to the problem of longitu-
dinal dispersion in packed beds. This model, describing the random
path of tracer molecules by statistical considerations, also approaches
the simple diffusion model at high flowrates., Here we show that,
for practical purposes, the random-walk model is numerically equiva-
lent to the diffusion model with finite boundary conditions. One should
keep in mind that the longitudinal dispersion coefficients, obtained by
using the random-walk model, are defined by comparison with the dif-
fusion model. :

A different statistical model has been investigated by
de Josselin de Jong, 26 and analyzed more completely by Saffman. 37
In this model the porous medium is considered as an assembly of ran-
domly oriented straight circular-bore capillary tubes of equal length.
The slope of thé breakthrough curve, predicted by Saffman's derivation,

for 'deep' beds is

1/2
U_Od(c/co):<U0h > 1n(54 h/1)
h dt 4ﬂEs . ’\/—9—6—‘

whereas, in the simple diffusion model,

U, dic/c,) :<U0h >1/2

T dat 4'n'ED

-?



In these equations U0 is the superficial velocity, h is the height of
bed, £ is length of capillary, t is time, c is concentration, and E
is the dispersion coefficient. If the capillary-flow model is correct,
the £ and E (=Es)ité uses would be constaﬁt; then, by comparison,
the E (5ED) given by simple diffusion would decrease with increasing
h. Conversely, if the diffusion model is correct, ED would be con-
stant, and Es would increase with increasing h, The capillary model
seems to have two basic defects: ? A packing of spherical particles has
an open-pore structure seemingly not analogous to a capillary structure
except perhaps during laminar flow; further, a streamline through the
packing does not point in every direction with equal probability, but is
strongly weighted toward the average direction of flow.

A number of other models of lesser importance have been pro-
posed in which parallel and series-parallel communication of void
cells14 or material exchange between flowing channels and stagnant

14,19, 28 are used to describe dispersion in packed beds.

pockets of fluid
These models usually include a sufficient number of parameters to allow
fitting the model to the available data; they introduce assumptions re-
garding the frequehcy of communication of neighboring cells and the
relative importance of participating transport mechanisms, which are
not usually verifiable by independent laboratory measurements.
Experimental studies conducted as part of the present investi-
gation indicate.that the random-walk and exact diffusion treatments
give an excellent fit to the concentration vs time curves obtained at
higher flow rates, but give a relatively imperfect fit to those for lower
flow rates. As shown in the next section, the higher flow rates can be
identified with a turbulent flow regime, and the lower rates with a lami-
nar regime. To meet a need for more detailed study of the laminar
regime, a new model is introduced which is statistical in its concept
but explicit in its mathematical behavior, being patterned after

G. 1. Taylor's study of the dispersion effect that results from velocity

distribution in laminar flow through cylindrical tubes.
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For comparison with this ne'wvn;lode‘l, the main features of the
diffusion, random-walk, and void-cell mixing models are reviewed
here and their applicability to laminar-flow ¢onditions discussed. It
is seen that the use of one or another of the‘s'e"-movdéls can lead to axial-

dispersion coefficients differing by a factor of two in "shallow' beds.

A. Segmented-Laminar-Flow Model

1. Nature of the Laminar-Flow Regime in Packed Beds

2
Longitudinal-dispersion studies by Jacques and Vermeulen 3

and by Carberry and Bretton, 7 as well as the experimental part of the
present investigation, show the existence of a laminar and a turbulent
region with a fairly sharp transition region between them.

When these results are compared with a typical packed-bed
where N = .de /v, with dp the

Re)’ Re 0
equivalent-sphere-volume diameter of the packing material, U0 the

friction-factor plot (f vs N

superficial velocity, and v the kinematic viscosity, it is seen that the
transition for axial-dispersion occurs in the same Reynolds-number
range (see Fig. I-1).

A second item of evidence can be found in studies by Garner et al.
of the flow pattern around single spheres, 17 In these studies, the fol-
lowing changes in flow pattern with increasing Reynolds number were
observed: At first, the flow is entirely streamline and satisfies Stokes'
solution. The velocity then begins to decrease on the downstream sur-
face of the sphere, and increases on the-upstream surface. The trend
continues until separation of the forward flow occurs at dem/v of 15
to 25, when a very small, weak, toroidal vortex is forward near the
rear stagnation point. The vortex gains strength as the Reynolds num-
ber increases further; the separation ring advances toward the equator
until at dem/v around 450 (with the angle of separation equal to
104 deg), the wake becomes unstable, oscillating about the axis of mo-
tion, and spilling its content downstream. Ranz has shown that the in-

terstitial velocity in packed beds is often eight to ten times the superficial
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velocity, upon which the packed-bed. Reynolds number (deO/V)is ba.s.eda36
The wake instability can be identified with a flow condition in which the
flow through a void space in the packing changes from predominantly
streamline to near-perfect mixing. In terms of Garner's results, this
change should occur at a dp Uo/v value of around 50 or dp UO/V(I-e) of
80 to 90, where ¢ 1is the porosity.

Using a suspension of fine particles to indicate the fluid motion
Hiby has cited photographic evidence of the transition from turbulent to
laminar flow in packed beds; below NRe:lO, completely laminar flow
was observed.

A somewhat different investigation, dealing with liquid flow in
a falling film over a single-file column of spheres in contact, alsc shows

(evidence forva_lam.inar-tu,rbulent flow transition. 11

The axial disper-
sion of liquid flowing over a system of 128 equal Sphéres in contact in
a vertical line was studied by a tracer te‘chnique‘° 20 The experimental
results indicate the presence of two different regions of behavior., One
is representative of the very lowest flows (dp UO/V<ZO), whereas the
other holds for higher flowrates (dp UO/V >20), with a quite sharp tran-
sition between the two, The reason for these two different regions was
found to lie in the onset of rippling in the column at around NRe=ZO,
. which causes a considerable increase in mixing at the junctions between
the spheres. '

_ Experimental evidence for the presence of a laminar-turbulent
transition region has also been found in heat- and mass-transfer studies.
Gamson and coworkers derived the following' two relations for the Colburn
j factor in mass-transfer:

_jd.= 1.46 Npe

and N
iq=17 NRe"l(l-e)I“Z for llfee < 100.

Due to experimental uncertainties, and perhaps also due to the gradual

N
_0,41(1=€)0,6-§ for lffee > 100,

nature of the transition, the exact occurrence of the breakpoint is not

well known.
Fromthe variousindications, itis concludedthat ample justification

exists for dividingthe axial=dispersion phenomena intotwo different regions

separated by a critical value (or range ofvalues)ofthe Reynolds number,
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2. Description of the Model

As just ment_ibnéd, thé laminar _rééime of packed—b_ed-flow (in
columns having relatively uniform meaﬁ ‘fbl_ow through all éelhi-lar ele-
ments of any one croés section--e. g., in Circ'ularly‘cylindri(ca.lv columns)
requires further'study in order to obtainv :a. physical model that will cor-
respond accurately to the experimental outflow-concentration histories
(breakthroﬁgh curves). A new model, which constitutes a step in this
desired direction, is termed "segmented laminar flow. "

In the a;tual laminar-flow behavior of a column, each fluid fila-
ment undergoes changes in velocity from point to point along its path.
Such filaments can be considered to enter a new column ''segment' each
time their velocity crosses the mean velocity of the fluid. If the distri-
bution of velocities is the same at each cross section as invrandomly
packed beds, one or more other filaments will be reduced in velocity
at the cross section where a particular filament changes from a slow-
moving to a fast-moving segment., The resulting interchange of fast-
moving and slow-moving segments is equivalent to gradual but continual
remixing of filaments. In the idealized model postulated here this grad-
ual mixing is replaced by a sequence of cross sections at uniform inter-
vals, where complete mixing occurs, with complete absence of mixing
. at intermediate points. The interval between the mixing cross sections
becomes equivalent to a weighted average of the actual segment lengths.
In each segment then, laminar flow cccurs with well defined velocity
profiles, and transverse molecular diffusion is treated as negligible.

In this s'tudy, ‘two different velocity profiles are used. The
first one is the usual quadratic (parabolic) profile, u/umale-rZ/RZ,
where u is the mean local velocity of a flow filament, and r/R is the
mean ratio of its radius.to the total radius of the passage. The second
one, which we call *"quartic, ' has the semi-empirical form 4
u/umax = (1 f_rz/RZ_)Z, While the quadratic velocity distribution might
fit the flow through é. bundle of parallel circular-bore tubes, the quartic
distri'bution appears to provide a moré aééurate description of packed-

bed flow,in the laminar regime.
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At the end of each segment the liquid is assumed to be thor-
oughly mixed before it enters the next segment. Mathematically, a
\)flow-average 'cup-mixing " composition is computed after each seg-
ment, which represents the composition of the feed to the fdllowing

2,25
segment.

The boundary condition at the column inlet corresponds
to a step input of a tracer material. The exact solution is not obtain-
able for the response curve after each segment, but a numerical solu-
tion has been derived by digital computation. The resulting theoretical
breakthrough curves for different numbers of segments can be fitted

to the individual experimental breakthrough curves. Each experimental
run will thus exhibit a "number of dispersion units' which can be con-
sidered as a '"column Péclet number' ;" N = h/£ or hUO/E, for pur-
poses of defining an effective axial dispersion coefficient (here h is
column height, { is mixing length, UO is super_ficial velocity, and

E is the superficial dispersion coefficient). From this, a ''packing
Péclet nurn.ber"',“ P= dp/i or deO/E’ is calculated which presumably

is constant over the entire length of the packed bed.

3. General Mathematical Approach

The equations were derived for a cylindrically symmetrical
element of flow path having the cross-section S. The flow is assumed
unidirectional. The concentration is a function of time t, of distance
in the direction of flow z, and of a radius vector T which characterizes
an element dS of ‘the cross-sectional area. The local velocity is also
a function of r as mentioned above. The flow-average concentration
leaving one segment is taken as the feed concentration for the next seg-

ment. This flow-average concentratign is defined as
Jc(r, z,t) u(r,t)ds

ey (z,t) = > — : (1)
ju(r,t)ds

S :
At each of the cross sections where mixing occurs, the r -de-

pendent concentration is replaced by its bulk average; i. e., c(?, z,t)
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s replaced by cb(z t). In'a cylindrical element of flow path (dne with

* uhiform cross section) the velocity profile is only ‘a function of r. For

 steady-state laminar flow the concentration c(r, zk,t) at a point Zy
gives directly the concentration at a downstream point, z > Zqs in the

corresponding radial location. Thus, we have

c(r,z,t) = -c(r,zk, t - tl) , . . (2)
where ty is the time necessary for the fluid to travel the distance
(z-zk), and

ty = 'd-zL = -.>k° , S o (3)

. u@t ) o
k

In physical terms, the element of fluid observed earlier at z is the
same as one which was observed earlier at zk

From these relations the general equation for a segment extend-

1ng from 2 to Z) 41 becomes i - -
jcb[zk,t_ _&;EJM;:) as
» 5 u(r) .
oz, 1,t) = — : (4)
b ktl f u(r)dS
s

In our study, the problem is analyzed with reference to a fluid
in a circularly cylindrical volume element of radius R. For this case,

.Egs. (1) and (4) become

R
u(r) c{r) rdr ) .
eplzt) =g D (5)
J u{r) rdr .
and 0 r .o 214172k )u(r)rdr
J 5) e
ot =R , . (6)
j u(r) rdr
0

By use of these equations, it is possible in principle to compute the
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.-concentration of tracer material after any number of segments, if one
knows : the velocity distribution and the concentra.tmn distribution at the
inlet as a function of time and position. In practice, the multiple inte-
gration required for successive segments becomes progressively more
complex, and soon ceases to give relations in closed analytical form.
The separate application of these basic equations to the quadratic and

"
)

quartic velocity profiles is given in the following sections.

4. Quadraﬁc Velocity Distribution.

For the case of quadratic velocity distribution it is assumed
that the volume elements for flow through the packing have a circular
cross section, in which the fluid moves with the usual laminar parabolic

velocity profile

Do

u(_r):l_

-
max

(7)

PU|H
[\

where Ui 18 the maximum velocity of the f1u1d and r is a radial
coordinate. For the parabolic velocity profile the maximum velocity
is equal to twice the average velocity.

From Eq. (7), the flow-average concentration is given by

4 r '
Cb = > C(r) [:l - T]rdr . (8)
R R
0 :
This relation can be simplified by the followihg change of variable:
rZ o ‘
L=1- | (9)
< .
here also
_— u . ) '
Lo | - (10)
max

{ is thus the fraction of ar_je‘a, enclosed between r and .R. Differ-

entiation gives . :
2x dr Lo (11)

dg = -
RZ
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The integration limits areat r=0, { =1, andat r =R, { =0. Apply-
ing these rél‘atio;’rs to the segment (zk, zk+1) leads to the more specific

relation

1 -
cb(zk+1,t) = Z/ [Cb <zk,t - fhu“i—z—li—>:| ¢ dg . (12)
0 max
Equation (12) proves to be the key expression for evaluating the con-
centration breakthrough after any given number of segments. - Applied
to a column of total length h, divided into a number of segments N,

each of length {, it becomes

1
zZ_ . -Z .
Cb(ZN’t') = Zj‘[cb <zN_l,'t - E-UZLI):' ¢ dg . (13)
0 _ .

max
The initial condition can be described by the relation

c(0, r,t) = cb(-O,t) = COH(t), (14)

where < is the step-input concentration, and H(t), the Heaviside
unit function, is either zero or unity, depending on whether its argu-
ment is smaller or larger than zero. The Heaviside function expresses
the fact that the tracer fluid takes a well defined time to emerge from
the column.

After N divisions each of length {, the remixed concentration

N4
o fN(t) H(c- m )
max

) H<t - -%-) , (15)

where fN(t') is a dimensionless function of t that remains.to be de=

is

cb(Nl ,t)

rived, CN(t) is the corresponding concentration | = o fN(t)] , and U
is the average linear velocity which for this case is equal to half the
maximum velocity U The Heaviside function in the above expres-
sion states that cb(NZ,t) is nonzero only if t = N£/2U. Suppose °N-1

is known after N-1 segments; th_en, at the end of N segments,
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BTN

cp(T) = 2 [ [CN;'I ( - i):l H[T - <§2_1>- 715} Ldt . (16)
/0 \ S

where. T = ‘Ut/l. _ _

‘In the use of this relatibn, the argur'nerit'of the Heaviside func-
tion serves to define a new -10wef_limit of integration. Physically, the
~use of this function .means replacing the lower limit by a quantity that
avoids computing any negative concentration values. -Thus, if we have

. N-1T 1 0, or hence, if we have { Z(ZT-“N.'H??)”'I»» then

z 2T
H[T<_N_£_1>_ 2}4:1. | | (17)

The general relation now becomes

X (T) = ZJ o E{N_I(T- 7&_3]';&; , (18)
(2T-N+1) J

* where X (T) = ¢ (NL, T)/c, and similarly for X ,
position and dimensionless time; with 'XN(T) =0 for T <N/2. These

at its respective

‘equations show that for each added segment, T is replaced by
" T - (1/2¢), and the integration is then performed as indicated.

In dimensionless units, X can be given as a function of N, T,
and {; or as a function of N,®, and ¢, where @N = T/N. For the
latter case, the integrand function 'XN—‘l is known in terms of @an’
but here one wishes to evaluate it in terms of ®N° . This is equivalent
to reducing the length of a column of (N-1) segments from the constant
value h to a new value h''= (N=-1_)h/N; then an extra segment is added
to restore the column to length h. By use of the general definition
©® = T/N we have.

5 .. T 1
On-1 T N-1 7 20(N-1)

a'.nd'. @N E (19)

Al

Hence, we have . . : . o

. | ON L
Xno1 O = X\ o1 - oy ) (20)
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and Eq. (18) takes the form
1 .

J‘ @NN ] )
XN©y) =2 . TXN-1<N 1tz (o4 (8
/[N(2®N-1)+1]‘

The relations rapidly become very complex, and an exact solution seems
to be impossible for N > 2. The sclution must therefore be found by

numerical methods on a high-speed digital computer.

a. Analytic relations. The expressions for beds consisting of only

one or two segments can be derived analytically, and will now be given.
Their mathematical form is of interest to show the complexity that is
reached for beds with a larger number of segments, and also to indicate
possible forms of empirical equations for representing the latter.

For N =1, Eq. (18) becomes

1
X, (T) =7 [X(T - )1 8a. (22)
71
Here XO’ the value of inlet concentration, is constant at unity. From
this,
X (T) = (1 - L) H(T - 0.5). (23)
4T

This relation shows that Xl(T) is zero as long as T <0.5. We recall
that T = Ut/4, where £ is the length of one segment, t is the elapsed
time, and U is the mean linear velocity. Another dimensionless time

can be defined as

o-tU _tU_T
"h " NI N

For N =1 the form of Eq. (23) remains unchanged if @ replaces T.
If N = 2, the column consists of two segments of equal length. The
mixing effluent from the first segment has the concentration Xl’ as

just derived. Then, we have
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) 1 :
1 A
X,(T) = 2 [ — | tdt. (24)

J1 T——)
2T-1 5

This relation is obtained by replacing T by [ T-(1/2¢)] in the expres-

sion for X,, and by changing the.lower limit to avoid computing neg-

1)
b3
ative concentration values. Integration of Eq. (24) between the speci-

fied limits yields

3 2 ’
X,(T) = {Z(t-l) [(ZT) H2T) ‘g! - 124 In (ZT—I)} H(T-1). (25)
(2T)>(2T-1) J (2T) -

The argument of the Heaviside function indicates that X2 is zero for
T <1. Interms of ©, the equation for X2 is of identical form but with

T replaced by 20 throughout.

5. Quartic Velocity Distribution

A major fesﬁlt of the quadratic veiocity profile is that it takes
at least half of the stoichiometric time (i.e., at least ® = 0.5) before
any breakthrough sets in. This is unrealistic physically; many experi-
mental curves start earlier, or have shapes that would correspond to
N values smaller than 1. The reason for this partial failure of the quad-
ratic model is believed to lie in the assumption of a circular shape for
the flow element, in which the maximum fluid velocity is twice the av-
erage velocity. In reality the packing voids have a curved triangular,
rectangular, or still more complex shape, with corners in which the
fluid is practically stagnant. This tends to lead to an average fluid ve-
locity larger than half of the maximum, and in turn frequently to break-
through-curve X:9 slopes smaller than those given by the quadratic . dis-
tribution. As no exact expression for the velocity profile in these com-
plex voids is available, an empirical relation giving umaX/U=3 has been

adopted as a convenient and reasonable starting point.

“Details of the integration are given in Appendix I-1,
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The steps in the derivation for the quartic velocity profile are

identical with those for the quadratic distribution. Hence repetition is

avoided here by showing only the respeétiVe equations with correspond-

ing numbers.

The expression for the quartic velocity profile is

2
u(r) _ (1 _ 2 )
“max \ RZ

Subsequent equations follow:

R 2 2
c=6 /,c(r)l-r r dr
R Jo - - R
rZ
t.-=l' H
RS
2
és(u/umax)l/,
2r dr
dg:—j—,
R

max -

, | |
zZ -Z

i+ [ [l 8] e

o 0 ' u |

g

max

1
; Z. -2
. N "N-1 2

cb(zN,t) =3 ][¢b<zN-l’t - u—-——2—>J £ dg,

0 .
.‘c(o, r,t) = cb(o,t) = Cy H(t) ,
. . '.;N‘e :

o fN(t) H(t -3 )7

max

o 2\
et H(t ‘%) ’

cb(Nl,t)

N

(7a)

(8a)

(92)

(10a)

(11a)

(12a)

(13a)

(14a)

(15a)
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e

If

and

a,

3L 3t
| (17a)
. 1 C : ‘
_ ‘ |
X. (T) =3 / I:X ( - —>] L dt;, . (18a)
(3T-N+1)'1/2 3t
. T 1 . T
1¢) = - — , with O = =, (19a)
N-1~ N-1 3§2(N¢_1) N~ N
&N -
X. (O, )=X [ N 1 | (20a) -
N-1""N-1 N-1] N-1 3;2(N-1)_

(21a)

1
| &N 2
X0y = 3 f s {XN-I T 1)] i
[N(3f®N=1)fl]_ -

Analytic :~i:e1ati§ns. The expres sions for beds consisting of only one

or two segments can again be derived analytically. For N=1,. they are

and

1 _
’ ' o 1 2
X, (T) = 3j [x ( ; )Jc a (22a)
1 150 —
o JiaT)~1/2 .3t |
X (T)v:l:l - (3T)—3/2J'° dH '(T— 1) (23a)

For N = 2, also, the expressions are

1

-,v | . '. l _3/2 2
X,(T) = 3J 1-(3T- = tedy ,  (24a)
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and

/

3 2 : f

X, (T) = {1 . 2BT)° + SBT) '}g;“;T) i 16] : H(T - {Z}) (25a)
(3T)°(3T - 1) 3

6. Numerical Methods of Solution °

For both velocity profiles, the integrations required for succes-
sive segments (beyond N = 2) were computed by two different numerical
methods., In Method 1 we evaluate the integral by a summation scheme
using the exact concentration values calculated for the previous segment.
This method is quite accurate, but very time consuming because of its
use of a time scale with a constant increment which corresponds to a
progressively smaller A® as N increases. In Method 2 we evaluate
the integral by Sirhpson' s integration formula, getting the necessary
concentration values by interpolation among the values calculated for
the previous segment., This method is based on the O scale, and com-
putes the minimum number of concentration values necessary to go up
to a specified maximum N; it is very fast but becomes unstable for
large values of N. It seems possible that an optimum method would
be obtained by combining the favorable features of the two methods, but
this has not been done.

In this section, these two methods are explained, using the
quartic velocity profile for illustration. Results obtained for both ve-

locity distributions are then given.

a. Method 1. This method numerically solves the analytical expres-

sion

1 S
_ 1 2
X (T) = 3 / .,1/2[>(N=1<T - 5?):”; at ,  (26)
H3T-N+1)

with
_ Ut _ Ut
T=7 7N
For ease of computation, a new time variable 7 is introduced, for

which all the curves begin at 7 = 0. The appropriate transformation is



-20-

7=3T - N=N(39 - 1). (27)

Physically, T = 0 corresponds to the time of arrival (at the outflow) of
the maximum-velocity flow filament, for which { = 1. When the X-vs-
time behavior of a bed length corresponding to N segments is evaluated
from that of a length corresponding to N - 1 segments, the values of 7
(and T) used are based upon length N rather than upon length (N-1).
Hence, when 7 =0 for the evaluation of XN, the function of T at which
X is evaluated (which can be termed TN—l) must also be zero when

N-1
£ = 1. To state the problem another way, Eq. (27) can be extended to

give

. 4 3(T (N-1)-N] . (28)

N-1-TN n-1 - T -

From Eq. (26), T is seen to be TN—[ 1/(3(,2)]. Hence, we obtain

N-1
_ 1
™N-1 = ™ " —2—(__, + 1. . | (29)
A test of this relation shows that it does satisfy the condition stated
N=1:0 when § = 1).
To eliminate subscripts, the function TN-1 will be redefined
as a time variable W. Equation (26), the general formula, thus be-

1
3] [xN_l(T+1 i —12—>]czdc
\/ 7T :

1

above (T

comes

X (1)

2
Xy (W)toag . (30)

jl/4/7_4—1

Method 1 involves approximating this integral by a summation,
using directly the X values computed from the previous segment, with
the corresponding { values as shown below. A time increment § is
selected~ such that

T ='mbd ' ' (31)

and - ‘W:.m'é , ‘(32)



~where m and m' are integers. From the definition of W, we have
-1/2 T =172 :
E=(1+71-W) 1/ =[1l+ (m-m')s] / . (33)
with m 2m',{ can take on an infinite sequence of values starting at
unity and tending toward zero. The general equation, in summation

form, becomes

m'=mv—1 >
X (™) =3 [x(W] (&7, AL
m'=0 - av )

m"+

m_=m-1 y 2 2
1.5 ) I Xp(W, (60 L ) (G-t )
m'=0

(34)
Illustration of the use of these equations is given in Appendix I-2.

b. ‘Method 2, Here the dimensionless time. scale ®= T/N is used di-
rectly, time being thus referred to the total length of the column rather
than to the length of the individual segments,. The general formula used
in Method 2 is Eq. (21a):

1

: : : 1 2
X (@):3[ | {x [N o ]}4 at.
N N-1 |N-1 2
JinE0-1y41]71/2 ¢ 3(N-1)8°
(35)
For simplification, a new variable V is defined as
: N 1
ve N _o. L - (36)
N-1 3(N-1) QZ
From this, we have
¢ = [3N®- 3(N - 1)vv]“1‘/2 , | (37)
and 3NO-1
N-1)
_ 4 (N-1) _
’XN(G) = 4°5, XN—I(V) z dav 3 (38)

[ 3NO-3(N-1)V] >

1/3
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To compute the concentration values X, to a dimensionless

N
time value @N, it is necessary to know XN 1 values to a time @le
larger than @N The relation between the different time values is
Nt Ot O3 o B9

where i is an integer. After the largest @ that is needed for the
largest N has been specified, Eq. (39) indicates the largest © that
must be carried for each lesser number of s‘egments,

Compntation was made with the analytic results for N=2 as
vsita'.rti»n:'g, values. In the computation for each new N, © was varied by
constant increments up to the limit. For each ®, Eq. (38) was evalu-
ated by -Simpson's integration rule, with the X wvalues for a specified
“value of the argument V being obtained by interpolation. .The number
of points used in Simpson' s rule was determined by specifying the maxi-
Lmum 1nterva1 between any two successive pomts on the t1me scale.

o The Fortra,n hstlngs for both methods are given.in Appendlx I-2,
Both programs also compute the area between the concentra,tlon versus-
time curve and a horizontal line drawn at X = 1. The stoichiometric
pfoint should occur at © = 1; thus, for correct computation, the above-

'men‘tioned_,area; should also be unity.

c. . Results. Numerical results for the quadratic and the quartic dis-
tribution obtained by Method 1 with & (quadratic) = 0.100 and

5 (quartlc) 0.1667 are given respectively in Tables I-1 and I-II. In
Figs. I-2 and I-3, the same results are presented graphically as semi-
logarithmic plots of X vs @, the time scale being normalized by the
stoichiometric_tirﬁ)e. The numerical results We'fe limited to N <45,due,
to the relatively large amount of computer time involved in going further
(about 0.5 hr on the IBM 7090 was. reqnired for the present range of
values). An exact estimate of the errof involved in the use of Method 1
is not possible; however, trial runs for the quartic distribution up to

N = 10 showed that by reducing the"increme‘nt_ & from 0.1667 to 0.0833

the XlO values changed only by 1 digit in thevthird place. Concentration



Table I-1. Breakthrough concentration values (X) for the segmented laminar-flow model with quadratic velocity

N S

9=0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
1 0.305556 0.489796 0.609375 0.691358 0.750000 0.793388 0.826389 0.852071 0.872449 0.888889 0.902344 0.913495 0.890
2 0.159055 0.366943 0.525802 0.638919 0.719336 0.777410 0.820196 0.852360 0.877001 0.896209 0.911418 0.923632 0.983
3 0.088238 0.287963 0.469662 0.605349 0.702030 0.770727 0.820143 0.856313 0.883281 0.903756 0.919565 0.931966 0.985
4 70.,051324 0.232503 0.427527 0.580729 0.690576 0.767693 0.822088 0.861022 0.889400 0.910474 0.926414 0.938678 0.986
5 0.030608 0.190808 0.393416 0.560988 0.682131 0.766352 0.824747 0.865728 0.895004 0.916332 0.932177 0.944168 0.986
6 0.018543 0.158282 0.364627 0.544343 0.675502 0.765931 0.827667 0.870222 0.900078 0.921456 0.937087 0.948746 0.986
7 0.011357 0.132314 0.339684 0.529868 0.670079 0.766059 0.830657 0.874454 0.904672 0.925972 0.941323 0.952627 0.986
8 0.007013 0.111253 0.317680 0.51698% 0.665512 04766535 0.633630 0.878419 0.908847 0.929985 0.945020 0.955962 0.986
9 0.004357 0.093974 0.2980L4 0.505338 0.661580 0.767241 0.836541 0.882132 0.912657 0.933578 0.948278 0.958863 0.986
10 0.002721 0.079673 0.280262 0.494679 0.658138 0.768101 0.839372 0.885613 0.916149 0.936815 0.951173 0.961411 0.986
11 0.001706 0.067757 0.264113 0.484829 0.655083 0.769069 0.842114 0.888881 0.919365 0.939750 0.953765 0.963668 0.985
12 0.001073 0.057773 0.249331 0.475656 0.652342 0.770110 0.844763 0.891956 (.922337 0.942425 0.956100 0.965681 0.985
13 0.000677 0.049369 0.235729 0.467061 0.649859 0.771202 0.847320 0.894854 0.925093 0.944874 0.958215 0.967489 0.985
14 0.000428 0.042269 0.223161 0.458963 0.647594 0.772329 0.849788 0.897593 0.927658 0.947125 0.960140 0.969121 0.984
15 0.000272 0.036251 0.211506 0.451300 0.645513 0,773478 0.,852170 0.900185 0.930052 0.949203 0.961901 0.970603 0.984
L6 T0.000173 0.031136 0.200664 0.444021 0.643589 0.774641 0.854470 0.902643 0.932293 0.951127 0.963518 0.971954 0.983
17 0.000110 0.026778 0.190551 0.437084 0.641803 0.775811 0.856692 0.904977 0.934394 0.952915 0.965007 0.973191 0.983
18 0.000070 0.023058 0.181097 0.430453 0.640137 0.776984 0.858839 0.907199 0.936371 0.954580 0.966385 0.974327 0.982
19 0.000045 0.019876 0.172239 0.424098 0.638577 0.778155 0.860915 0.909315 0.938233 0.956135 0.967661 0.975375 0.982
20 0.000029 0.0L7150 0.163925 0.417995 0.637110 0.779322 0.862925 0.911335 0.939991 0.957590 0.968849 0.976344 0.981
21 0.000018 0.014811 0.156109 0.412122 0.635728 0.780482 0.864871 0.913265 0.941655 0.958956 0.969956 0.977242 0.981
22 70.000012 0.012801 0.148750 0.406460 0.634420 0.781634 0.866756 0.915112 0.943230 0.960240 0.970990 0.978078 0.980
23 0.000007 0.011072 0.141813 0.400992 0.633181 0.78277/ 0.868585 0.916881 0.944725 0.961449 0.971958 0.978857 0.979
24 0.000005 0.009584 0.135265 0.395704 0.632003 0.783909 0.870359 0.918577 0.946146 0.962590 0.972867 0.979585 0.979
25 0.000003 0.008300 0.129077 0.390583 0.630881 0.785031 0.872081 0.920205 0.947498 0.963669 0,973722 O. 0.978
26 0.000002 0.007193 0.123224 0.385618 0.629810 0.786141 0.873755 0.921770 0.948787 0.964690 0.974527 0. 0.977
27 0.000001 0.006237 0.117683 0.380798 0.628787 0.787239 0.875381 0.923275 0.950016 0.965658 0.975286 O. 0.976
28 _0.000001 0.005411 0.112433 0.376115 0.627806 0.788324 0.876963 0.924723 0.951190 0.966577 0. 0. 0.975
29  0.000001 0.004697 0.107453 0.371561 0.626866 0.789398 0.878502 0.926119 0.952312 0.967450 0. 0. 0.974
30 0.000000 0.004079 0.102728 0.367127 0.625963 0.790459 0.880000 0.927465 0.953386 0. 0. 0. 0.973
31 0.000000 0.003543 0.098240 0.362807 0.625094 0.791508 0.8814%9 0.928764 0.954416 O. 0. 0. 0.972
32 0.0000C0 0.003079 0.093976 0.358595 0.624257 0.792545 0.882881L 0.930018 0.955403 0O« 0. 0. 0.971
33 0.000000 0.002677 0.089922 0.354486 0.623449 0.793569 0.884268 0.931229 0.956350 0. 0. 0. 0.969
34 0.000000 0.002328 0.086065 0.350473 0.622670 0.794582 0.885620 0.932401 O. 0. 0. 0. 0.968
"35 7 0.000000 0.002026 0.082393 0.346553 0.621917 0.795582 0.886940 0.933535 0. 0. 0. . 0. 0.967
36 0.000000 0.001763 0.078897 0.342722 0.621188 0.796570 0.888228 0.934633 0. 0. 0. ‘0. 0.965
37 0.000000 0.001535 0.075566 0.338974 0.620482 0.797547 0.889486 0.935696 0. 0. 0. 0. 0.963
38 0.000000 0.001337 0.072391 0.335306 0.619798 0.798512 0.8907i5 0. 0. 0. 0. 0. 0.962
33 0.000000 0.0061164 0.069353 0.331715 0.619134 0.799466 0.891915 0. 0. 0. 0. 0. 0.960
40 0.000000 0.001014 0.066475 0.328198 0.618489 0.800408 0.893089 0. 0. 0. 0. 0. 0.958




Table I-II.

Breakthrough concentration values (X} for the segmented laminar-flow model with quartic velocity profile

ocn~40\n&\»ha~‘2

D

=0.5

0.455669
0.313635
0.231530
0.176117
0.136300
0.106700
0.084218
0.066889
0.C53388
0.042781
0.034396
0.027730
0.022410
0.018148
0.014723
0.011963
0.009735
0.007932
0.006470
0.005283
0.004318
0.003532
0.002892
0.002369
0.001942
0.001593
0.001308
0.001074
0.000883
0.000726
0.000597
0.000491
0.000404
0.000333
0.000274
0.000226
0.000186
0.000154
0.000127
0.000104
0.000086
0.000071
0.000059
0.000049
0.000040

0.67

0.646447
0.565152
0.512640
0.472610
0.439849
0.411951
0.387589
0.365939
0.346452
0.328740
0.312518
0.297569
0.283723
0.270844
0.258821
0.247563
0.236992
0.227044
0.217661
0.208797
0.200407
0.192456
0.184910
0.177739
0.170918
0.164423
0.158232
0.152327
0.146688
0.141302
0.136151
0.131224
0.126508
0.121990
0.117661
0.113511
0.109529
0.105709
0.102041
0.098518
0.095133
0.091880
0.088752
0.085744
c.082851

0.83

0.747018
0.703622
0.6774T76
0.658340
0.643069
0.630266
0.619182
0.609372
0.6C0544
0.592499
0.585095
0.578226
0.571809
0.565783
0.560095
0.554706
0.549581
0.544692
0.540015
0.535531
0.531222
0527072
0.523069
0.519202
0.515459
0.511833
0.508315
0.504898
C.501576
0.498342
0.495192
0.492121
0.489124
0.486197
0.483337
0.480540
0.477803
0.475123
0.472498
0.469926
0.467403
0.464927
0.462498
0.460112
0.457768

1.0

0.807550
0.784933
0.773386
0.766012
0.760800
0.7568695
0.753860
0.751442
0.749481
0.747873
0.746543
0.745439
0.744519
0.743755
0.743123
0.742604
0.742182
0.741845
0.741584
0.741390
0.741255
0.741173
0.741140
0.741150
0.741200
0.741287
0.741406
0.741556
0.741735
0.741940
0.742169
0.742420
0.742693
0.742986
0.743297
0.743625
0.743970
0.744330
0.744705
0.745094
0.745496
0.745910
0.746336
0.746773
0.747221

1.17

0.847279
0.£83631%
0.832528
0.831148
0.830892
0.831251
0.831978
0.832940
0.834060
0.835289
0.836593
0.837951
0.839349
0.840774
0.842220
0.843680
0.845151
0.846627
0.848108
0.849591
0.851075
0.852558
0.854039
0.855519
0.856995
0.858469
0.859939
0.8614C6
0.862869
0.864328
0.865783
0.867234
0.868682
0.870125
0.871564
0.873000
0.874431
0.875859
0.877283
0.878703
0.880120
0.881533
0.882943
0.884350
0.885754

1.33

.875000

c.870817
0.871183
0.872814
0.874913
0.877198
0.879549
0.881911
0.884257
0.886573
0.888852
0.891092
0.893293
0.895454
0.897578
0.899666
0.901719
0.903740
0.905730
0.907691
0.909624
0.911532
0.913415
0.915275
0.917113
0.918930
0.920728
0.922508
0.924270
0.926015
0.927744
0.929458
0.931158
0.932844
0.934517
0.936178
0.937827
0.939465
0.941092
0.942709
0.944315
0.945913
0.947501
0.949081
0.950652

1.50

0.895243
0.895117
0.897734
0.9008%58
0.904035
0.907137
0.910129
0.913004
0.915768
0.918428
0.920993
0.923473
0.925875
0.928207
0.930475
0.932684
0.934840
0.936948
0.939010
0.941032
0.943015
0.944963
0.946879
0.948764
0.950621
0.952452
0.954258
0.956041
0.957802
0.959543

0.961265

0.962970
0.964657
0.966328
0.967984
0.969626
0.971254
0.972869
0.974469
0.976052
0.977614
0.979149
0.

0.

0.

1.67

0.910557
0.912907
G.916734
0.920568
0.924193
0.927589
0.930773
0.933773
0.936612
0.939313
0.941892
0.944366
0.946746
0.949044
0.951269
0.953428
0.955528
0.957575
0.959573
0.961527
0.963442
0.965319
0.967163
0.968975
0.970759
0.972516
0.974249
0.975958
0.977646
0.979315
0.980964
0.982596
0.984206
0.985787
0.987326
0.988810
0.990228
O.

0.

0.

0.

0.

0.

0.

0.

1.83

0.922472
5.926348
0.930801
0.934930
0.938690
0.942131
0.945307
0.948265
0.951041
0.953664
0.956157
0.958537
0.960821
0.963020
0.965145
0.967204
0.969204
0.971152
0.973053
0.974911
0.976731
0.978516
0.980268
0.981991
0.983688
0.985359
0.987008
0.988633
0.990226
0.991760
0.993204
0.994539
0.995747
0.

0.

0.

0.

0.

O.

0.

0.

0.

0.

0.

0.

2.0

0.931959
0.936769
0.941514
0.945718
0.949457
0.952828
0.955910
0.958759

'0.961420

0.963926
0.966300
0.968564
0.97C734
0.972821
0.974837
0.976790
0.978687
0.980536
0.982340
0.984105
0.985834
0.987531
0.989198
0.990839
0.992451
0.994003
0.995435
0.996703
0.997783
0.

0.

0.

O.

0.

0.

0.

0.

2.33

0.939657
0.945027
0.949870
0.954032
0.957673
0.960925
0.963879
0.966599
0.969132
0.971512
0.973767
0.975915
0.977973
0.979954
0.981869
0.983724
0.985529
0.987288
0.989006
0.990689
0.992339
0.993960
0.995524
0.996932
0.998103
0.999007
0.999627
0.

0.
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values calculated by Method 2 with A8= 0.042 up to N = 10 did not dif-
fer more than 2 digits in the third place from those computed by

Method 1. Beyon[d N = 10, cﬁmulativé errors led to erroneous results
unless AQ was much further reduced, which in turn was very time con-
suming. ‘ ' '

The coordinates of Figs.I-2 and I-3 are very convenient for com-
paring experimental breakthrough curves with the theoretical results,
since a logarithmic scale of the experimental volume or time will only
differ from the logarithm of dimensionless time by a constant additive
term, Dimensionless slopes at the midpoint (X = 0.50), defined as
s =®50(dX/d@), are given in Tables I-III, and I-IV. In this definition
Oy, is the ® value corresponding to X = 0.50, and dX/dO (=s) is the

slope at @5 the tabulated slopes were obtained graphically from plots

of the data c?n rectangular coordinates, These slopes will be used later
to compare the results from different models,

A frequency-response analysis for the quadratic velocity distri-
bution, obtained from the step-input response, is given in Appendix I-3.
A similar approach could be used for the quarticr velocity distribution,

if needed.

C. Diffusion Model

In the diffusion model for longitudinal dispersion, it is assumed
that equations of exactly the same form apply as those describing the

molecular-diffusion process. The governing equation is

E o ¢ 0 0c _ ac (40)

where 2z 1is axial distance, t is time, c is the solute concentration of
interest, E is the superficial axial-dispersion coefficient, € is the

void fraction, and U, is the superficial velocity of the fluid. The solu-

0
tion to this equation has been given for two different sets of boundary

conditions corresponding to a finite-length column and to an infinite



Table I-III. Midpoint slopes for the segmented-laminar-flow model,
with quadratic velocity profile
N O5 s 950" 8
1 0.708 1.45 1.027
2 0.785 1.43 1.123
3 0.825 1.48 1.221
5 0.865 1.62 1.401
7 0.888 1.71 1.518
10 0.905 1.88 1.701
15 0.925 2.14 1.980
20 0.932 2.28 2.125
25 0.940 2,42 2,280
30 0.950 ©2.60 2.470
35 0.952 2.72 2.589
40 0.954 2.80 2.671
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Table I-IV. Midpoint slopes for the'segmented-laminar-flow model

with quartic velocity profile

N 55 s 950 8
’ 1 0.502 1.230 0.691
2 0.615 1.269 0.780
3 0.660 1.285 0.848
5 0.715 1.364 0.975
7 0.741 1.498 1.110
10 0.767 1.557 1.194
15 0.790 1.720 1.359
20 0.813 1.750 1.423
25 0.820 1.859 1.525
30 0.830 1.989 1.651
35 0.839 2.062 1.730
40 0.847 2.150 1.820




-column; . both of these are . reviewed below; a semi-infinite column has

. g y 2
also been treated by Aris 'an_d‘A_mimdson1 and others. A3

1. Finite-Length Column (Bounded Diffusion)

For a column of lehgth .h', the folloﬁving conditions hold. The

feed conditions representing a step-function input are

for z =0, att<0 (-}, ¢ =0,
and

at t =0 (4), c=cqy.
The inlet boundary‘ condition is determined as follows: At the inlet
(i.e., z = 0) the rate of arrivq.l of solute outside by convection is equal
to the rate of removal of solute inside by diffusion and by convection,
plus the rate of accumulation of solute at the interior boundary. To
obtain a solution, the latter term is neglected; this is‘ equivalent to

assuming a steady state at the inlet. Then, from integration of Eq. (40),

the boundary condition at z = 0 and at all .t > 0 is obtained:

E dc(04)

Iz UO C(Q+) = const = - U0 c(0-) . (41)

At the bed outlet, a similar material balance (again assuming a negli-

gible accumulation rate) gives

U, cth-) - E %ﬂz U, clht) . (42)

In a situation of rising concentration (an arriving breakthrough curve),
regardless of the mechanism of material transport, we can never have
a downstream concentration higher than an upstream value. 10, 42
Since Eq. (42), with the negative dc/dz permissible in terms of this

physical picture, would lead to c(h+4) > c(h-), the only physically .accept-

able condition is that, at z = h,

0

(¢}

=0, forall t>0
c(h+).

—
n N

and hence that c(h-
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a. Exact expression. . An exact solution for the diffusion equatlon,

Eq. (40), applied to a column of f1n1te 1ength ha.s been glven by Yagi
and M1yauch1 42 Brenner has shown that the general equatlon and the
boundary cond1t1ons are similar to those governing heat loss to ''sinks'!
at the ends of a slab, for which Carslaw and Jaeger have given the
general solution. ‘

The vériables in Eq. (40) will be made dimensionless by intro-
ducing the relations N=h/8 = h UO/E, X=cfcy, T =Uyt/le,and
Z = z/h. Here N is a "column Péclet number, " or total number of

"dispersion units. ' Thus we have

azx 89X .2 8X

_ = 43
-———-aZZ,NaZN\a—Z (43)

The solution to this equation, at the exit of the column, has the form

n=w 4H2
bl
n= _

‘ an(N sin h, o+ 2 b cos, |-Ln)
Z Z 2 21
[(N/Z) + N+pn_]EN/2) "’“n:l

where Hn is given by the transcendental equation
M .
-1 n N .
p‘n = Ccot W - @—I; . | (45)

b. Asymptotic solution. The formal solution given by Eq. (44) converges,

too slowly to be of much use when N is large or T is small, There-
fore, Brenner developed the following asymptotic expansion by applying
the Laplace ‘cra.nsforma.tion:3
X_=1/2 + 1/2eri [(N/4®)1/2(1-®j - me/m 23+ (N/2)(1 +©)]
| 21,4 ' 2 2
+ exp [-N(l -©) /4@]+ [1~/2+(N/2)(3+4®)+(N /4)(140) J

“eexp(N) - erfc [(N/4®)1/2(1+@)] —_— ‘ (46)
with ®= T/N ,
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" This last expressmn can further be simplified by ut111zmg asymptotlc

expansions for all the error functions except those ‘whose arguments

" are (N/4®) 1/2 (1 @) Brenner therefore presented the ‘modified asymp-

totic expansmn

X, = 1/2 4 (1/2) ert [(N/%)1/2(1-®ﬂ+—6%,; <?_N> 1/2

' ' (47)
-exp{ l\i};@@)—Jw )
where » ‘ ’
$a) = (1 - ba + 4a%) - 2(1(\71/.‘;%’.(1 - 18a 4 24a°%)+ - - -
’ | (48)
K
and
¢K(a) =1,3,5,:-- (2K+1)[2K1—+1 - 69_ + 4(K+1) a?‘] , (49)

and a =®/(®+l)v. A different approach from that of Brenner, based on
a semi-infinite column, has led to the following asymptotic expression

as developed by Aris and Amundson1 and extended by Jacques 23

: -N ' T+N
X = 1/2 1 +erf{ —— |- exp N . erf c< )J (50)
© [ (zﬁ) . 2/T

1 r ] (N-T)% 2t [ 21 127?
+ — eXP[' ‘Tﬁ“—J L sl Ry e s W vt J dT.
2/ 0 JT (N+T)

Th1s relation is believed to glve similar results to Eq. (47), and is only

shown here for reference . It contains the same boundary condition at

= 0, but no1§ at z = h,

c. Numerical evaluations. Calculations of-outlet concentration were

carried out in this. 1nvest1ga.t1on for a large number of N and © values,

| uS1ng the exa.ct expressmn [ Eq. (44)] ‘with 18 roots. The roots of the

transcendental relation.Eq. (45), cilculated ‘on a digital computer, are

given in Appendix I-4. The -_bre'ékth,romigh values are given in Table I-V.
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Table I-V.

Breakthrough concentration values (X) for bounded-diffusion model

9=0.4

N 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2.0
1 0.2547 0.3359 0.4090 0.4742 0.5323 0.5840 0.6300 0.6710 0.7073 0.7397 0.7685 0.7941 0.8169 0.8371 0.8854
2 0.1862 0.2760 0.3613 0.4391° 0.5086 0.5701 0.6241 0.6716 0.7130 0.7493 0.7810 0.8087 0.8330 0.8541 0.9028
3 0.1367 0.2269 0.3185 0.4053 0.4844 0.5547 0.6165 0.6703 0.7169 0.7570 0.7916 0.8213 0.8468 0.8687 0.9173
4 0.1015 0.1879 0.2823 0.3755 0.4623 0.5404 0.6091 0.6687 0.7200 0.7637 0.8008 0.8323 0.8588 0.8813 0.9294
5 0.0761 0.1568 0.2517 0.3493 0.4426 0.5275 0.6025 0.6675 0.7230 0.7699 0.8093 0.8422 0.8696 0.8923 0.9396
8 0.0184 0.0906 0.1821 0.2870 0.3945 0.4962 0.5875 0.6664 0.7327 0.7874 0.8319 0.8677 0.8963 0.9189 0.9617
10 0.0681 0.1502 0.2552 0.3690 0.4798 0.5803 0.6672 0.7396 0.7984 0.8453 0.8821 0.9106 . 0.9325 0.9715
16 0.02842 0.0874 0.1858 0.3102 0.4422 0.5662 0.6733 0.7604 0.8281 0.8786 0.9155 0.9419 0.9605 0.9881
20 0.0150% 0,06142 0.1525 0.2799 0.4226 0.5599 0.6786 0.7734 0.8448 0.8962 0.9319 0.9561 0.9720 0.9932
24 0.0085% 0.04412 0.1267 0.2545 0.4059 0.5552 0.6843 0.7856 0.8597 0.9109 0.9448: 0.9666 0.9801 0.9961
32 0.00282 0.02322 0.08902 0,2135 0.3782 0.5483 0.6962 0.8077 0.8847 0.9339 0.9635 0.9804 0.9898 0.9988
40 0.00092 0.01242 0.06372 0.18152 0.3553 0.5435 0.7066 0.8267 0.9045 0.9504 0.9755 0.9884 0.9947 0.9995
8oa 0.0006 0.0135 0.0886 0.2760 0.5311 0.7539 0.8932 0.9606 0.9873 0.9964 0.9905 0.9998 0.9999

R #Values calculated by Brenner3
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and presented graphically in Fig. I-3. Brenner's results, which be-
came available subsequent to these calculations, have been used to ex-
pand the table in the low-T~high<N range. Outside this range there is
close agreement between comparable values from the two calculations,
but different N values from those shown were usually used by Brenner.
Midpoint slopes are presented in Table I-VII; numerical results for dif-
ferent values of N and © are given in Table I-V and presented graphi-

cally in Fig, I-4.

2. Infinite-Length Column (Unbounded Diffusion)

The second type of boundary conditions applies to a column of
infinite length (extending from z =+ @ toz = - ), Initially, the section
extending from z = - @ to z = 0 is filled with solute; at t = 0 it begins

to flow into the test section. The initial condition can be written

att =0 and z = 0(-), ¢ =0; z = 0(4), c=cqy-
The boundary conditions, as stated by Da.nckwerts, 1 are

at z=wo and t>0 ¢ =0,
and :
at z=-ew and t>0 c=cy-
With the use of these boundary conditions the following solution (in di-

mensionless form) to Eq. (40) is obtained for the outflow concentration:

X=1/2 [1 - erf —@—(-l_—_‘@-] . (51)
24/@

Numerical results for different values of N and ©® are given in

Table I-VI and in Fig. I-5. The "unbounded' solution [ Eq. (44)] and

the 'bounded’ solution [ Eq.- (51)] approach each other at high N.

Table I-VII gives the midpoint slopes, calculated from the relation
s = (n/amt/? (52)

these slopes are pra'c'tiéal_ly’ identicalfor N > 20.



-35.

1.0 T T T Bo > 20/.:_

- —
—~ |/
s
+ 0.8} —
e
e L i
m .,
b= 4
S 0.6 -
(/1]
4 - |
_8 N=1
‘s 04F2 : —
[ =4
[}
£ . 5 i
5
x 0.2} 'S —

20 80,
L 3 .
0 L 1 ] | 1 1 i
06 07 08 09 10 .25 1.5 .75 20
T/N (dimensionless time)
MU-30166

Fig. I-4. Breakthrough curves for bounded diffusion
. model. ' '



Table I-VIL

Breakthrough concentration

values (X) for unbounded diffusion model

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7 2.0
1 0.1831 0.3085 0.3575 0.3999 0.4372 0.4703 0.5000 0.5269 0.5514 0.5738 0.5945 0.6136 0.6479 0.6915
2 0.1006 0.2398 0.3028 0.3600 0.4115 0.4580 0.5000 0.5380 0.5724 0.6038 0.6323 0.6585 0.7043 0.7602
3 0.0588 0.1932 0.2635 0.3303 0.3921 0.4486 0.5000 0.5465 0.5885 0.6264 0.6606 0.6915 0.7446 0.8068
5 0.0217 0.1318 0.2071 0.2854 0.3618 0.4338 0.5000 0.5599 0.6136 0.6613 0.7035 0.7407 0.8020 0.8682
7 0.0084 0.0929 0.1670 0.2512 0.3379 0.4218 0.5000 0.5708 0.6337 0.6887 0.7365 0.7775 0.8424 0.9071
10 0.0021 0.0569 0.1241 06.2113 0.3085 0.4068 0.5000 0.5844 0.6585 0.7219 0.7752 0.8193 0.8850 0.9431
15 0.0002 0.0264 0.0786 0.1631 0.2701 0.3864 0.5000 0.6030 0.6915 0.7644 0.8227 0.8682 0.9293 0.9736
20 0.0000 0.0127 0.0512 0.1284 0.2398 0.3694 0.5000 0.6185 0.7181 0.7973 0.8575 0.9016 0.9552 0.9873
25 0.0062 0.0339 0.1024 0.2146 0.3547 0.5000 0.6320 0.7407 0.8239 0.8840 0.9255 0.9712 0.9938
30 0.0031 0.0228 0.0825 0.1932 0.3415 0.5000 0.6440 0.7602 0.8459 0.9048 0.9431 0.9812 0.9969
40 0.0008 0.0105 0.0544 0.1587 0.3187 0.5000 0.6651 0.7929 0.8803 0.9347 0.9661 0.9918 0.9992
50 0.0002 0.0049 0.0365 0.1318 0.2991 0.5000 0.6832 0.8193 0.9058 0.9545 0.9794 - 0.9964 0.9998
70 0.0000 0.0011 0.0169 0.0929 0.2664 0.5000 0.7136 0.8600 0.9402 0.9772 0.9921 0.9993 0.9999

-99_
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Table 1-VII. Midpoint slopes for diffusion model

Bounded diffusion Simple diffusion

i _@—5_0_ | s @50- s @50- s

1 0.746 0.610 0.455 0.282

2 0.787 0.665 0.523 0.400

3 0.821 0.729 0.600 0.488

5 0.866 0.845 0.732 0.631
7 ©0.896 0.922 ~0.826 0.746
10 ©0.920 1.044 0.960 0.892
15 0.942 1.195 1.126 1.092
20 0.954 1.330 1.265 1.261
40 0.962 1.855 1.786 1.784
60 ©0.968 2.259 2.183 2,182
. 80 0.973 2,592 2.520 2.520
100 0.976 ' 2.888 2 2.820

.820
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D. Random-Walk Model

The random-walk model applies to the motion of tracer mole-
cules traveling through the column. . Their path is made up of a succes-
sion of motion and. rest phases, where the motion phases require negli-
gible time compared to the rest phase. Physically, the motion phase
may correspond to the narrow void channels in a packed bed, through
which the liquid moves at high velocity; whereas the rest phases will
then represent the wider void spaces. Diffusion, also, could be viewed
as a random-walk process of individual molecules or of fluid packets,
but one occurring with equal ease in the upstream and downstream di-
rections. The distinguishing feature of the present model is that the
random walk occurs in the downstream direction only.

In the derivation the fluid is considered to travel with a charac-
teristic velocity u, in a series of discrete jumps corresponding to a
mean free path £, 5,23 For a column of length h, in which a particu-
lar portion of fluid has stayed for a time t, a number of mixing lengths
N = h/f and a dimensionless time scale T' = ut/f can be defined.

The analysis is based upon the probability of finding any one
packet of fluid at N mixing lengths away from the inlet at time T',
after it has taken (n+1)A jumps away from the inlet in its random walk;(
all possible paths for arriving at N at time T' are taken into account.

This probability is

PN, T') = - (53)

This relation can be converted to a continuous function, which has the

normalized form
p(N, T')dT' =] exp(-N-T")]1, (2/ NT') dT" . (54)

Here IO is the zero-order Bessel function of the first kind with imagi-
nary argument. If a step input of tracer is fed in continuously starting

at time n = 0, the equation for the concentration at plane N is
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T
Xegem [ ewtN @M, e
0

o

‘with. X increasing from zero toward unity as T! increases toward

infinity, It may be noted that X = 1-J(T',N), using a function J derived
18,22

" to describe heat and mass transfer in fixed beds. Two useful sim-

plifications for Eq. (55), as developed by Klinkenberg, 27 are

o
o~
=

X = 1/2{1+er£(fT—“ -N S}W - 8‘1/_1_“_?>]

and

X =1/2(1 4 erf (JTT - 1/4 - JNTI7Z). (57)
It is useful to define a time scale © such thét, for any value of N, the
stoichiometric point will occur for @=1. A material balance yields
the result that when t = h/U, with U being the average linear velocity,
T' = N 4 1. The derivation of this important result is given in"
Appendix I-5. Through this relation, the characteristic velocity is re-
lated to the average linear velocity by the equation u = U (N + 1)/N;
the dimensionless time becomes T' = (Ut/f) . (N+1)/N . These con-

siderations lead to the following definition of ©:

o-T_ T (58)

N~ N+T
Also, evidently, we have T = Ut/f = T'N/(N+1).

With these definitions, the Klinkenberg approximations become

, . |
X=1/2|1+4erf |/ (N+1}O - /N - L. L J _ (59)
[ ( 8,/N 84/ (N+1)©
and , .
X = 1/2{1 + erf[ A/ (N+1)O-1/4 - /EN+1/4]} . 5 (60)

Values of X for different valu.es of © and N corhpU.téd from Eq. (60)
are given in Table I-VIII and Fig. I-6. Dimensionless slopes @50' s are
given in Table I-IX, @50 being the time when X=0.5, and s being dX/d® at
this point.



Table I-VIII, Breakthrough concentration values (X) for-the random-walk model
N 2=0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7 2.0

2 0.2305 0.2955 0.3596 0.4217 0.4808 0.5363 0.5880 0.6356 0.6791 0.7185 0.7540 0.7857 0.8390 0.8974

4 0.1487 0.2140 0.2845 0.3573 0.4298 0.4999 0.5661 0.6272 0.6826 0.7322 0.7758 0.8137 0.8740 0.9331

6 0.1011 0.1623 0.2345 0.3136 0.3958 0.4773 0.5551 0.6271 0.6920 0.7490 0.7980 0.8393 0.9016 0.9562

8 0.0705 0.1259 0.1970 0.2799 0.3693 0.4603 0.5482 0.6297 0.7024 0.7652 0.8180 0.8612 0.9228 0.9710
10 0.0499 0.0991 0.1676 0.2522 0.3474 0.4465 0.5434 0.6333 0.7127 0.7803 0.8356 0.8796 0.9390 0.9807
12 0.0357 0.0787 0.1437 0.2289 0.3285 0.4347 0.5398 0.6373 0.7227 0.7941 0.8512 0.8953 0.9516 0.9870
14 0.0258 0.0630 0.1240 0.2088 0.3118 0.4244 0.5370 0.6414 -0.7322 0.8068 0.8651 0.9086 0.9614 0.9912
16 0.0187 0.0507 0.1075 0.1911 0.2968 0.4151 0.5347 0.6457 0.7413 0.8185 0.8774 0.9200 0.9692 0.9940
18 0.0137 0.0409 0.0936 0.1755 0.2832 0.4066 0.5328 0.6499 0.7499 0.8293 0.8884 0.9299 0.9753 0.9959
20 0.0100 0.0332 0.0817 0.1616 0.2707 0.3988 0.5311 0.6540 0.7580 0.8392 0.8982 0.9384 0.9801 0.9972
22 0.0073 0.0270 0.0715 0.1491 0.2592 0.3915 0.5297 0.6581 0.7658 0.8484 0.9071 0.9458 0.9840 0.9981
24 0.0054 0.0220 0.0627 0.1378 0.2485 0.3846 0.528% 0.6621 0.7732 0.8570 0.9150 0.9523 0.9871 0.9987
26 0.0040 0.0180 0.0551 0.1275 0.2385 0.3782 0.5274 0.6660 0.7802 0.8650 0.9222 0.9579 0.9895 0.9991
28 '0.0030 0.0147 0.0485 0.1182 0.2291 0.3721 0.5264 0.6698 0.7870 0.8724 0.9288 0.9628 0.9915 0.9994
30 0.0022 0.0121 0.0427 0.1097 0.2203 0.3663 0.5255 0.6736 0.7934 0.8793 0.9347 0.9671 0.9931 0.9996
40 0.0015 0.0100 0.0231 0.0765 0.1831 0.3407 0.5222 0.6910 0.8218 0.9080 0.9572 0.9819 0.9975 0.9998
50 0.0700 0.0127 0.0543 0.1540 0.3192 0.5198 0.7067 0.8452 0.9290 0.9715 0.9899 0.9991 0.9999
60 0.0071 0.0389 0.1307 0.3006 . 0.5181 0.7209 0.8647 0.9448 0.9809 0.9943 0.9999 0.9999
80 0.0023 0.0205 0.0957 0.2693 0.5157 0.7459 0.8954 0.9661 0.9912 0.9982 0.9999 0.9999
100 0.0008 0.0110 0.0711 0.2435 0.5141 0.7672 0.9182 0.9788 0.9959 0.9994 0.9999 0.9999
120 0.0060 0.0535 0.2216 0.5128 0.7859 0.9355 0.9866 0.9980 0.9999 0.9999 0.9999
150 0.0025 0.0353 0.1939 0.5115 0.8099 0.9544 0.9932 0.9993 0.9999 0.9999 0.9999
200 N 0.0006 0.0182 0.1575 0.5100 0.8423 0.9738 0.9977 0.9999 0.9999 0.9999 0.9999
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Fig. I-6. Breakthrough curves for the random-walk
model.



‘Table I-IX. Midpoint slopes for the random-walk model -

-43-

650

0.8333
0.8750
0.9000
+.0.9167
0.9444
.9546
.9688
.9763
.9808
i9839
.9878
.9901

o O O O O O O

N =~ e =~ O O O O O O

.568
.639
.695
.750
.894
.981
164
.323
.466
.596
.832
.036

@

N = = = = = O O O O O O

50

473
.559
626
.688
.844
.936
128
.292
.438
.570
.810
016




-44.

An eddy-dispersion coefficient E and a Péclet number P for

the random-walk model are defined by comparison with the diffusion

modei:
= I 6
E=Ut, (1)
and dp dp Uo
P = - = —5— (62)

Consistent with this, we have N=h/{ = Ph/dp = hUO/E,

E. Mixing-Cell Model

Kramers and Alberta, 29 followed by other investigators, 1,6,7,33

proposed that the mixing effects occurring in process equipment could
be described in terms of a cascade of mixing cells. In packed columns,
the voids between the packing particles can be considered as unit cells
for such mixing, the influent to a cell acting as a jet which sustains a
mixing condition. At high Reynolds-number values, well within the
turbulent-flow regime, the individual voids may each approach perfect
mixing. Even if local mixing is not complete, a series of voids may

be represented theoretically by a mixing cell.

In each ''cell, " perfect mixing is assumed to occur, such that
the effluent from the cell has the same composition as the fluid at all
points within the cell. For a step-function feed of a tracer solute (at
concentration co) at the inlet to a sequence of mixing cells of equal éize,
the effluent from the Nth cell in the series has the dimensionless con-

centration

T\ 2 \N-1 -
_ ‘ t 1(t 1 t -t/t 3
Ay =1- [1 to z“;(%) * (—mz({_) Je (63)

where t is the average residence time in the sequence.

| The mixing-cell model is identical with a random-walk process
in which the time for each step is variable, but the step length is fixed.
The probability of encountering a tracer molecule in the outflow from

the Nth cell, at a time t after it has entered the first cell, is
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-T..N

p(N, T) = i — NF:F - | (64)

Integrating with respect to time, from T =0 to T, leads to Eq. (63).
By comparing the diffusion model and the mixing-cell model,

L -29.’ 33 and two-phase studies30’ 35

several investigators for one-phase
have shown that the cell size in the mixing-cell model corresponds to
twice the mixing length in the diffusion model.. This comparison can
be most easily seen by using the finite-difference form of the diffusion

equation, The diffusion equation has the form

E 8°x _Joex _ax_, (65)
€ aZZ E 8z at -

With division by UO,

the finite-difference form, this becomes

and replacement of E by IZUO ,. and adoption of

. AZX CAX e dXN:0 (66)
(AZ)Z. Az U0 dt :

where AX and AZX stand for the first and second differences, evalu-

ated at plane Npy- We now adopt Az = 24 (=2dp/P), and obtain

dX .
4fe N
ALX - 28X - g, & (67)
By evaluating the finite-differences over a distance of 24 upstream

and downstream from plane ND’ we obtain

dX

44 N _ '
R TS S O e U NS I V5 Lt ey i (68)
or '
dax
_ 2fe N
XN-1 "N 7 I_J—O'_ dt (69)

The unsteady-state stirred-tank equation; without chemical re-

action, can be written in the form

X X =T N, (70)
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't being the average residence time in the tank. If the unit length is
28, t becomes equal to 2£e/U0; and hence
w2t XN
N-1~"N"T, dt
which is seen to be idéntical with Eq. (69). The key to this matching of

(71)

the two models lies in the choice of Az = 24.  Only. for this particular

interval will Eq. (67), the function of XN—I’ XN, and XN+1’ reduce
-to a function solely of XN-l -and .XN., .The stirred-tank equation like-
wise involves a function of . XN-l and XN; .and perhaps fortuitously,

it is found to be the same function. The weak point in the match lies in
the initial adoption of t}:fe finite-difference form; this is valid only if

Az < <h, or hence if N( = h/f) is large. A somewhat more explicit re-

29

" lation, as stated by Kramers and Alberta 1s
" U.h )
© 00 1 h
Ne-l=ag=327 (72)

the relation dNC/dz =1/24[ =(1/2) dND/dz] , which is equivalent to the

where Nc is the number of mixing cells in series. Differentiation gives

comparison just made. If every void in a packed bed were to be a per-
fect mixer, then 22~0.8d and P = 2.5. Experimentally, P = 2 is
often encountered. P

Numerical results for different values of N, as given by Eq. (63),
are presented in Table I-X and Fig. I-7. For comparison with other
models, the dimeﬁsionless siopes for.the cellv' model are given in

Table I-XI, as compﬁted analytically from the expression

dx N ’ |
N _ N -NO . N-1
dae - W-n1T € g . (73)

For large values of N, Stirling's approximation for the factorial
Nt = e N NN /TN leads to

N (%) .,e-N(Q-l)@(N:-l)-. (74)



Table I-X. Breakthrough concentration values (X) for the mixing cell model

N 9=0.3 0.5 0.6 0.7 0.8 0.9 0.95 1.0 1.05 1.10 1.2 1.30 1.40 1.5 1.7 2.0
1 0.2592 0.3935 0.4512 0.5034 0.5507 0.5934 0.6133 0.6321 0.6501 0.6671 0.6988 0.7275 0.7534 0.7769 0.8173 0.8647
2 0.1219 0.2642 0.3374 0.4082 0.4751 0.5372 0.5663 0.5940 0.6204 0.6454 0.6916 0.7326 0.7689 0.8009 0.8532 0.9084
4 0.0338 0.1429 0.2213 0.3081 0.3975 0.4848 0.5265 0.5665 0.6046 0.6406 0.7058 0.7619 0.8094 0.8488 0.9072 0.9576
6 0.0104 0.0839 0.1559 0.2469 0.3490 0.4539 0.5050 0.5543 0.6012 0.6453 0.7241 0.7898 0.8427 0.8843 0.9401 0.9797
8 0.0033 0.0511 0.1133 0.2030 0.3127 0.4311 0.4900 0.5470 0.6014 0.6522 0.7416 0.8137 0.8693 0.9105 0.9607 0.9900
10 0.0011 0.0318 0.0839 0.1695 0.2834 0.4126 0.4782 0.5421 0.6029 0.6595 0.7576 0.8342 0.8906 0.9302 0.9739 0.9950
12 0.00c4 0.0201 0.0629 0.1429 0.2588 0.3969 0.4684 0.5384 0.6050 0.6668 0.7722 0.8519 0.9080 0.9451 069825 0.9975
14 0.0001 0.0128 0.0475 0.1214 0.2376 0.3831 0.4599 0.5356 0.6075 0.6740 0.7857 0.8673 0.9222 0.9566 0.9882 0.9987
16 0.0000 0.0082 0.0362 0.1037 0.2190 0.3707 . 0.4524 0.5333 0.6102 0.6809 0.7979 0.8808 0.9341 0.9656 0.9920 0.9993
18 0.0000 0.0053 0.0277 0.0889 0.2025 0.3594 0.4456 0.5314 0:6130 0.6876 0.8093 0.8927 0.9439 0.9726 0.9945 0.9996
20 0.0000 0.0034 0.0213 0.0765 0.1878 0,.3491 0.4394 0.5297 0.6157 0.6940 0.8197 0.9032 0.9522 0.9781 0.9962 0.9998
24 0.0000 0.0015 0.0127 0.0571 0.1624 0.3305 0.4283 0.5272 0.6213 0.7061 0.8385 0.9208 0.9650 0.9860 0.9982 0.9999
30 0.0000 0.0004 0.0059 0.0374 0.1321 0.3065 0.4140 0.5243 0.6293 0.7227 0.8621 0.9409 0.9779 0.9927 0.9994 0.9999
34 0.0000 0.0002 0.0036 0.0284 0.1158 0.2925 0.4055 0.5228 0.6345 0.7328 0.8755 0.9511 0.9836 0.9952 0.9997 0.9999
40 0.0000 0.0001 0.0017 0.0190 0.0956 0.2737 0.3941 0.5210 0.6419 0.7469 0.8927 0.9630 0.9894 0.9974 0.9999 0.9999
44 0.0000 0.0000 0.0011 0.0146 0.0844 0.2624 0.3871 0.5200 0.6467 0.7556 0.9026 0.9692 0.9921 0.9983 0.9999 0.9999
50 0.0000 0.0000 0.0005 0.0098 0.0703 0.2468 0.3774 0.5188 0.6535 0.7678 0.9156 0.9765 0.9949 0.9991 0.9999 09999
60 0.0000 0.0000 0.0002 0.0052 0.0523 0.2240 0.3629 0.5172 0.6642 0.7861 0.9331 0.9999 0.9999 0.9999 0.9999 0.9999
70 0.0000 0.0000 0.0000 0.0028 0.0392 0.2044 0.3499 0.5159 0.6741 0.8023 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

- Lv—
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Fig. I-7. Breakthrough curves for the mixing-cell model.



Table I-XI. Midpéint slopes for the mixing-cell model
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o~

2.212
2.402
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F. Relations Between the Different Models

Chemical-engineering interest in axial dispersion; up to the

- present, has centered upon fluid mixing in the turbulent (or nearly tur-
bulent) flow regime. In this region, the diffusion, random-walk, and
void-cell-mixing models are nearly equivalent, and all appear to

give consistent descriptions of the experimental results. The analysis
of liquid-liquid extraction in packed columns places new emphasis on
the interpretation of longitudinal-dispersion behavior in laminar flow.
From a theoretical viewpoint the void-cell mixing model cannot apply to
this region, at least for liquids, owing to the fact that perfect mixing'no
longer is approached in each void cell, ‘The diffusion model with finite
boundary conditions and the random-walk model, as empirical treat-
ments, may é,pply relatively well to all flow conditions. Clearly the
segmented-laminar-flow model, with an appropriate velocity profile,

is applicable only to the laminar-flow regime. For the most part, the
step responses given by the different models do not coincide over their

- entire -rise. Quantitative comparison hence has to be made at some ref-
erence condition; this is selected here as the {(dimensionless) midpoint
slope. A plot of dimensionless slopes for the different models, as func-
tions of N, is given in Fig. I-8. This figure shows that, for small
slopes, the use of one or the other model to analyze experimental data
can easily lead to N values (or to packing Péclet numbers) differing by
a factor of two.

The finite-boundary diffusion model and the random-walk have
very similar midpoint-slope values, The entire breakthrough curves
given by the two models have quite similar shapes, with the result that
the teg values for the diffusion model are only about 2% less than those
for random walk. This small difference can be eliminated by use of a
dimensionless midpoint slope as a comparison criterion; thus, for
practical purposes, we can assume that the two models are identical.

The segmented-laminar-flow result with a quartic velocity distri-

bution approaches the diffusion model at large values of N; in the
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Fig. I-8. Midpoint slopes for different models.
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low-N-value range, at any given N, it predicts less axial dispersion

|
than the preceding models. The segmented-laminar-flow result with '
quadratic velocity profile (not recommended for use) seems to indicate

that, for large N's, approaches ND/Z“

Nsrp
For reference purposes only the unbounded-diffusion results are

also shown, which for large N values become equivalent to the diffusion

model with. finite boundary conditions. The void-cell model at high N

is approximately equivalent to the diffusion model (with Nc = ND/Z). At

.low N's it approximates the unbounded diffusion model.

' In the low-N (shallow-bed) range the difference between the dif-
fusion model and the segmented-laminar-flow model (quartic) is quite
.liar_ge., The proper choice BéfWé_en thesekmo.dels; for laminar flow in
backed beds, must depend at present upon coﬁparisons with experi-

‘mental breakthrough curves.
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G. Notétion fbr Part I

A Amplitude of inlet concentration wave.
Bl’ B2 Variables defined by Egs. (38) and (39).
c Concentration.
y Flow average concentration.
<o Feed concentration.
Cm Mean composition above which the concentration oscillates.
dp Particle diameter,
E Longitudinal-dispersion coefficient  based on superficial
velocity, U,L. 5 v
" erf Error function;- dx .

2 X -X
o J e
LT '

erfc Complementary error function; l-erf X .

£ Friction factor.

f(t) Dimensionless function of time, o

F Laplace transform of time-dependent functions.
“h . Total height of bed.

h' Modified height of bed = (N-1)h/N.
'H Heaviside unit function.

i Integer.

0 Bessel function of zero order, with imaginary argument.,
jd Colburn j factor, for mass.transfer.

J Function used in regenerative heat and mass transfer operations.
KG System transfer function.

I Mixing length.

.m,m' Integers. y
n Number of random-walk jumps under consideration.
Number of dispersion units (mixing lengths), laminar-flow

segments, or mixing cells.

NRe Reynolds number, Uodp/V.
P Probability.

P - Péclet number, dp/i.

T Radial coordinate,
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Radius vector.

Total radius.

Slope of the breakthrough curve at: X = 0.5 (based on O scale).

Dimensionless midpoint slope (based on t}/t50 scale).
Cross section.

Time.

Time defined by Eq. (3)..

Residence time.

Diniler;_sioples s time.

Dimensionless time,.

Characteristic,or local, velocity in.segmented laminar-flow
| model, ‘

Characteristic velocity in random-walk.

Maximum velocity.

Interstitial velocity or mean linear velocity.

Superficial velocity; €U.

Asymptoticcuniform velocity of fluid past a single sphere.
Variable defined.in Eq. (36).

Variable defined . in Eq. (30).

Dimensionless concentration, C/CO'

- -Axial distance. -

Dimensionless length; -z/h.

“Dimensionless time , @/(©+1). -

Time increment.
Void-fraction.

Variable defined by Eq. (9), (é-zl—rz/RZ); fraction of surface

..i - enclosed between r and  R.

Dummy variable.

. Dummy variable.

Roots of transcendental equation| Eq. (45)] .
Kinematic viscosity.

Time,variable.

'Dimensionless time T/N.
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Time corresponding to X = 0.5.
Phase shift of outlet wave.
Angular frequency.

Dimensionless frequency.
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Appendixes for Part I

1-1. Analyti¢ Integration for Columns Having One or Two Segments

For beds con51st1ng of one or two segments exact analytical ex-

press1ons can be derived for the breakthrough curves.

A. Quadratic Velocity Profile

For N = 1, Eq. (18) can be written

r 1 H . N .
=z [ oxg(re e 0
because XO, the inlet concentration, is unity, Eq. (1) simplifies to
1 . Zjv
X (Ty=2 [ B o 2
X, (1) 2] cag = [<ZT> | (2)
T i : ' -

b

’ “Finally, we have

1 o
X(T) :,[1 - <ﬁ> J-H(T-O.S_) . : (3)

For N = 2, Eq. (18) can be written

1 .
X, (T) =2 e —0— tdy (4)
2 TVv2(>=¢ ,
| /_1_ - =)) | |
. 2T-1 o ‘ :
3 N
=2 | §'4 t.u > ]d?; ) (5)
2T-1 .. S

This integral can be solved in two parts; the first one is straightfor- -

ward and leads to

f tdb= -3 <2T-1> . s (6)

2T =1
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The solution to the second part is given in standard integral tables as

follows: 1

" > &r, I [l(zrrg-l)‘z.%é(zf.g-lﬂ)
1 oeTre-nt . ent [P
ZT-1
+ 38n (2TL-1) - TQ—IJ 1
| ZT-1
. 2
1 1 2 1/1
- Ler.nye- L
2m)* [2 o 2,(”“):
F4(2T-1) Ly + 6 ﬁn(ZT-l)J \
and » .
2
; 1. (2T-1) 1 8(2T-1)
X (T)=1~ - + -
2 et-1° et enfer-n® en?
+ 8 -2 _anger-n.

(ZT)4(2T-1) (2T)

(7)

(8)

(9)

This expression can be further simplified by regrouping the following

terms: )
- 1 _ 2T(2T-2)
(2T-1)2 (2'1*-1)2
(2T-1)2+ 1 . (ZT-Z)[(ZT-I)ZH]
B ! ! 2° 7 3 2 ’
(2T) (2T)"(2T-1) - (2T)7(2T-1)
and ) .
_8(2T-1) 8 __ 8 . 2T-2
(_ZT)4 (2T)4(2T-1) (2T)3 (eT-1)

Adding these terms gives the following final form:

X (T) =—

2T-2
2 3

s {[(ZT,)ZH] .(2T+1-)'-;(2T-1)-8}
(2T)”(2T-1) L
o 12
(21)*

In(2T-1)

(10)

(11)



-60-

or

3 2
X,(T) :{(ZT_Z)[(ZT) +3(2T) -6]_ 12 . zn(ZT-l)} HIT-1) (12)
- : (2T) " (2T-1)_J (2T) " - .

For columns of more than two segments, no exact analytical expression

was found.

B. Quartic Velocity Profile

The steps in the derivation of the exact analytical expression for
the quartic velocity profile are very similar to those for the quadratic

distribution For N =1, Eq. (18a) becomes

1
X (T) 3 [ El £~ dg ; (13)
ary /2 L
with XO = 1, this equatlon 51mp11f1es to
1 .
2 3
Xl(T)=3f _1/24 g = |¢ l(3T)'1/2 : (14)
| oooen e
or o ‘ ‘
X (T) = [1 - (3T);3/2:|-.H(T-1/3) . (15)

For N =2, Eq. (18a) becomes

_ o ' - ) -3/2 >
X,(T) = 3] {1 - <3T— 7) t”at (16)
,(3T-1)'1/2 | : | |

1 . 5 :
2 4
3 L* - ag . (17)
/(3'T-1)-’1/2[ (3T¢:2-1)3/2] ) o

This in_tegral will be solved in two parts; the first integral leads to

1 N - :
3/2
3/ £%dg = 1 - <—3T1 1) . (18)
“(3‘T_l)—1/2 -

The solution ofthe secondintegralis givenin standardintegraltables:
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1

45 1 §5
3 - d=3 at
/3T-1)‘1/2 (1L /(3T-1)'1/2 614 - )%

A

(19)
. 3/2 !
- L [(3T§2-1) s 63Tt 1)/2 . — 1/2]
(3T) (3T¢"-1) (3T_1)-1/z
(20)
1 3 2
= (3T-1)" + 6(3T-1)" - 3(3T_—1)]
3T(3T7-1)>/ [ ‘ ,
- 3 1 - '{1 4 6(3T-1)-3(3T-1)°] (21)
(3T)°(3T-1)°/
3 2
_(3T)° + 6(3T) - 24(3T)+16 (22)
(3T)°(3T-1) >/
Finally, we have
| 3 2
X,(T) = [1 - 28T+ 20T '3224(3““6] H(T-2/3) . (23)
(3T (3T-1)7

For N > 2, no analytical expression for the breakthrough curve could

be derived.
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I-2. Numerical Solutions for Segmented Laminar Flow

A. . Graphical _Illustratioh of: Method 1

Method 1 uses a complex summation.scheme which can be most
easily explained by a graphical illustration as follows:
The general equation of Method 1| Eq. (34)] is
o o m'=m-1 |
XN(‘T) = 1.5 [X (W)]

m'=0

2 ‘ +'§2
av m' m'+1

{8

m! -gm+1)'

In the calculations based on Method 1, simple arithmetic averages were
used starting with the exact analytical eXpression for N=1and N =2,

. The pattern of calculation is shown schematically in Fig. I-9.
This flgure is dra.wn for calculatlons from N =1to N =2, with a.time
interval & = 0. 50 The upper half of the graph shows XN-l (in this
case X ) vs T on linear coordinates. The lower half shows 1ines of
constant 'TN = mb ., the ordinates being a logarithmic scale of ({ ) AL.
The calculation method 1nvolves obtaining the product of a value of XN=1
by a corresponding value of ({ ) AY{. Since a linear average of X is
used, the lower part of the graph is displaced horiiontally bgr the distance
+8/2, to give.an exact correspondence of abscissas (at the same m!')
between two p01nts on the TN- 1 'scale. Then for each value of m (or TN),,
the products are added together and the sum multiplied by 1.5.

- A sample calculation for 7, = 2.0(m= 4, § = 0.50).

At m' = 0 (g?-)avAg =0.0404 X | =0.2279  Product = 0.0092
1 = 0.0672 = 0.5511 = 0.0370

2 = 0.1274 = 0.6967 = 0.0888

3 = 0.3061 = 0.7773 = 0.2379

Sum = 0.3730

The resulting concentration X2 = 1.5XSum = 0.5595. The same pro-
cedure is repeated for all the values of m (or 'rN). The calculation is
ended at an arbitrary high value, m_ o which is kept the same for all

values of N.
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1.0

MU-30162 -

Illustration of Method 1 for numerical integration.

Fig. I-9.
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_ The true value of X, at 7, =2.0 (or®, = 0.667) as given by
‘Eq. (25a) is 0,5667. In the computer calculations, the error shown here
was largely eliminated by taking 6§ = 0.25, and by starting with the exact
analytical expression for N = 2 which gives a less steep curve.

The X-value output from the computer was tabulated at specified
values of © (=T/N) corresponding to particular values of 7 included

among those at which calculations were made.

1. 'Fortran-P"rogra_,rns for Numerical Methods

The IBM-7090 Fo'rtra.n programsfor both velocity profiles and
both methods are given in the follow1ng pages (see Table I-XII). A
part1al list of variable names follows the - ma.themat1ca1 symbols are

those given in the nomenclature.

a. Variables having the same meaning in all programs

N __number of segments; N vari_es‘ from 1 to NMAX
T . dimensionless time © v'
DT time increments A® . ‘
Cc,Cl ™ dimensionlves"s' concent"rati'on X
CP,CT arrays used for prmtout
AR area computed. for checking purposes AR should be close
to 1. ' .

b. Variables used in 'Methéd 1

A corresponds to CZ
TAU tifne variable T
"DT1 time increment §

Al € (used only in quartic distribution)

c. Variables used in Method 2

F1 time increment at which concentration values are printed
out

T3 maximum time value for N = NMAX_



65—

DT11,DT12 distances separating the points used in Simpson's rule
TMI1 quantity at which either DT11 or DT12is used. If the
. variable is smaller than TM1l, DT11 is used
TMAX1 maximum time value for which concentration values are

calculated for each "N value

> .

product under the integral sign of Eq. (38)

v integration variable
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Table I-XII. Fortran prograrh for both ‘veiocity profiles and both methods.

20

25

3C

55

SEGMENTED LAMINAR  FLOW MODLL. QUADRATIC METHOD- 1 AL HENNICO
DIMENSION Cl4000G),CLI4CO%) ,A(4300),CP(1.00),CT(105)
READ. IN DATA CHARACTERIZING NUMBER OF SEGMENTS,NUMBER OF 11MC
INTERVALS AND NUMBER UF PRINT OUT VALUES DESIRED
READ INPUT TAPE 24500, NMAX MMAX, LMAX,DT,DT1

DG 10 L=1,MMAX c
A(L)=1o/{1+FLOATF(L)I®CTLI-0T1 ) =n?2

CCNTINUE BRI . i

C(l)=G.

SUML=v .50

EXACT EXPRESSIUN FOR FIRST SEGMENT

N=1

LMAX1=LMAX+]

DC 20 M=2,LMAX1

T=0.5+FLOATF(M)=DT~-DT

CiM)=le=1a/(2.%T) %2

CliMmy=T7

SUMLl=SUML+(1.-C(M))

CCNTINUE

AREA CALCULATION FOR CHECKIRG PURPOSES

M1 =MMAX

SUML=SUMLI-(l.-C{M1))/2.

AR=SUM1«DT + G.5

HEADINGS FGR PRINT OUT

SET UP RESULTS FOR PRINT OUT

DG 25 Li=1,LMAX

M=]1+L1

ChP{LL)=C(M)

CT(L1I=Cl(M)

CONTINUE

WRITE CUTPUT TAPE 3,30C

WRITE GUTPUT TAPE 3,400,(CT(L1)sLL=1,yLMAX)
WRITE CUTPUT TAPE 3,600,Ny (CP{LL}L1=1,LMAX) AR
EXACT EXPRESSION FOR SECCOND SEGMENT

N=2

C(l)=C.C

SUML1=0.5

DC 30 M=2,MMAX

TAU=FLCATF(M)=+DT1-DT1

Tl=(TAU+2.)1/2.
CiM)=(2.#T1-2.)n{(2.#TL)*e34(2.uT1)muz~6,)/((2.8T1-1,)8( .2T1
Jex3)-(12./(2.#T1)*%4)# OGF(2.2T1~1.)
SUM1=SUM1+{1.-C(M))

CCNTINUE

AREA CALCULATION FGR CHECKING PURPOSES

M1=MMAX

SUML=SUML1-(1.-C(M1})}/2.

Z2=CTL/FLOATF{2=aN)

AR=SUNM1®#Z2 + (.S

SET UP RESULTS FOR PRINT OQUT

DC 55 Ll=1,LMAX

B=L1

M=1.,1+FLOATF(2sN)=B#(DT/DF1)

CPILLII=C(M)

CONTINUE

WRITE CUTPUT TAPE 3,600,N,(CP(L1},L1=1,LMAX},AR

START OF NUMERICAL COMPUTATION FOR COLUMNS OF 3 OR MORE SEGMENTS

DC 200 N=3,NMAX
M=1

C(M)=0.0C
SUM1=0.5

DG 80 M=2,MMAX
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SUM=0.90
DG 50 M1=2,M
J=M-M1+1 .
SUM=SUM+ (A(J)-A(J+1) )= (CIMLI+C(ML-1))/2.
56  CCNTINUE
[F(SUM=1.)70,79,60
60 SUM=1.0
70 CL{M)=SUM
SUML=SUM1+(1.=Cl(M})
8C CCNTINUE
DG 86 M=1,MMAX
86 CI(M)=CLIM}
AREA CALCULATION FOR CHECKING PURPOSES
M1=MMAX
SUML=SUMI~(1.~C(M1))/2.
12=CT1/FLOATF(2%N)
AR=SUM1#Z2 + C.5
SET UP RESULTS FOR PRINT GUT
DG 120 L1=1,LMAX
B=L1
M=1.1+FLOATF(2N)»Be(DT/DT1)
© CPILL)=CIM) v
126 CONTINUE
200 WRITE QUTPUT TAPE 3,600,N, (CPILL),LL=1,LMAX) AR
300 FORMAT(1H1,40X,38HSEGMENTED LAMINAR FLOW MODEL METHOD 1 )
400 FORMAT(2X31HI 43X, 2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4,2
3Ky 2HT=F4.2,3X e 2HT=F 4,2, 3%, 2HT=F4,2,3X,2HT=F4.2,3X,2HT=F4.2,
2 33Xy 2HT=F4.273X s 2HT=F4.2,3X4 2HT=F4.2,5X,2HZ1)
500 FORMAT(315,2F6.3)
60G FORMAT(I3,1H ,12F9.6,F8.3)
CALL EXIT
END

—
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SEGMENTED LAMINAR FLOW MODEL QUADRATIC METHOD 2 A. HENNICO
DIMENSION C{4000),C1(4000),A(4000),CP(1000),CT(100)

READ IN DATA CHARACTERIZING NUMBER OF SEGMENTS,NUMBER OF TIME
INTERVALS,NUMBER OF PRINT OUT VALUES DESIRED AND NUMBER OF POINTS
USED IN SIMPSONS FORMULA.

READ INPUT TAPE 2,500,NMAX,LMAX,DT,F1,73,TM1,DT11, DT12

EXACT EXPRESSIGN FOR FIRST SEGMENT

N=1

MAX. TIME AT WHICH CONC.VALUES ARE COMPUTED TO AVOID EXTRAPOL.
Al1=NMAX~-N

A2=N

TMAX1=T3+{T3-0.5)%{A1/A2)

M1=(TMAX1-0.5)/DT

MMAX=M1+1

C(1)=0.0

SUM1=0.5

DO 10 M=2,MMAX

T=0.5+FLOATF(M)#DT-DT

CiMI=1.~1./(2.+T}an2

CL{M)=T :

AREA CALCULATION FOR CHECKING PURPQOSES

SUM1=SUML+(1.-C(M))

CCNTINUE

M1=MMAX

SUM1=SUM1-(1.~C{M1}}/2.

AR=SUM1#DT + 0.5

HEADINGS FOR PRINT QUT

SET UP RESULTS FOR PRINT QUT

D0 30 L1=1,LMAX :

B8=L1

M=1.1+4B#{F1/DT)

CPILL1)=C{M)

CT{L1)=Cl(M)

CONTINUE :

WRITE OUTPUT TAPE 3,300

WRITE QUTPUT TAPE 3,400,(CT(LL1),L1=1,LMAX)

WRITE QUTPUT TAPE 3,600,N, (CP{L1),L1=1,LMAX]},AR

EXACT EXPRESSION FOR SECOND SEGMENT

N=2

MAX. TIME AT WHICH CONC. VALUES ARE COMPUTED TO AVOID EXTRAPOL.

'AT=NMAX-N

A2=N

TMAX1=T3+(T3<0. S)O(AI/AZ)
M1={TMAX1-0.5)/0DT

MMAX=M1+1

C{1)=0.0

SUM1=0.5

DG 40 M=2,MMAX

T=0.5+FLOATF(M)#DT-DT

T1l=2.+T
CiMI=(2,#T1-2.)%((2.%T1)aa3+(2.2T1)#22-6.)/((2.8T1-1.)2{2.%T1
}#e3)-(12./02.%T1)#%4)# 0GF(2.2T1~1.)
AREA CALCULATION FOR CHECKING PURPOSES
SUM1=SUM1+({1.-C(M))

CONTINUE

M1=MMAX

SUM1=SUM1-(1l.-C(M1l)}/2.

AR=SUM1%*DT + 0.5

SET UP RESULTS FOR PRINT OUT

DG 60 L1=1,LMAX

B=L1

M=1.1+8#(F1/0T7)
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CP{L1)=CI(M)
6C CCNTINUE
WRITE CUTPUT TAPE 3,600,N,(CP(LL),LL=1,LMAX},AR
START OF NUMERICAL CUMPUTATION FOK COLUMNS OF 3 OR MORE SEGMENTS
DU 200 N=3,NMAX
SUML=¢.5
MAX. TIME AT KHICH CONCL.VALUES ARL COMPUTED T0O AVOID EXTRAPOL.
ALl=NMAX~-N
A2=N
TMAXL=T3+{(T3-C.5)«(A1/A2)
MI=(TMAX1-0.5)/0T
MMAX=ML1+1
Y=FLOATF(N)
OC 130 M=2,MMAX
T=0.50+FLOATF(M)=#DT-DT
IF(T-TM1) 90,93,92
90 O0Ti=DT1l1
G0 TO 93
92 Dr1=Dr12
NUMBER OF POINTS USED IN SIMPSONS INTEGRATION FORMULA
93 Joa=((2.#T=yY-1.)/(2.#(Y-1.)1}=-D S)IDII
Kl=2#J4+1
B=((2.#TuY-1.)/(2.5({Y=-1,))=-0.5)/(FLOATF(K]1-11})}
VTEL=C.5
DC 110 K=1,Kl
V=0.5+(FLOATF(K~1))+«B
CONCENTRATION VALUES COMPUTLED BY INTERPOLATION ROUTINE TLUDX
CALL TLUDX(V VTIBL MMAX,CaF,4DT)
D={Y=1,}/{YeT—(Y-1.)#V]}#s3
A(K)=0=F
11C CCNTINUE
SIMPSCNS. FORMULA FCR INTEGRAL EVALUATION
CALL ARSIMP(K1 ByA,4R)
SUMM=0.5#R
IF (SUMM-1.} 125,125,120
126 SuMM=1.0
125 C1(M)=SUMM
AREA CALCULATICON FOR CHECKING PURPOSES
SUML=SUML+(1.-Cl(M}}
130 CCNTINUE
DG 135 M=1,MMAX
135 C{(M)=C1(M)
M1=MMAX .
SUM1=SUMI-(1.-C(M1)})/2.
AR=SUM1sDT + 0,5
SET UP RESULTS FOR PRINY CUT
DC 140 L1=1,LMAX
g=L1
M=1,1+B*{F1/0T)
14C CP{LL)=C(M)
200 WRITE CUTPUT TAPE 3,60C,N, (CP{LL1),L1=1,LMAX}), AR
400 FORMAT(2X,1HI 43X 42HT=F4,2,3X¢2HT=F4,2,3X42HT=F4.2,3X¢2HT=F4.2,
3X,2HT=F4.2,3X 4 2HT=Fa.243X92HT=F4,2¢3X92HT=F4.2,3X,2HT=F4,.2,
2 3Xy2HT=F4,243Xy2HT=F4.2,3X42HT=F4.245X,,2HZ1)
30C FURMAT(1H1,40X,38RSEGMENTED LAMINAR FLCW MODEL METHOD 2 )
50C FORMATI(215,6F6.3)
608 FCORMATI(I3,1H ,12F9.6,F8.3)
CALL EXIT
ENC
SUBROUTINL TLUDX{V,VIBL,MMAX,C,F,DT)
SUBROUTING TLUDX USES A LINEAR INTERPULATICN FORMULA
DIMENSION CL4COC)

=



11C
115

120

125

130

15

-70-

FN=NMMAX
VEIN IS THE LAST ARGUMENT FOR WHICH INTERPOLATION IS PUSSIBLE
VEINSVTBL#(FN-1.)#DT

IF V IS LARGER THAN VFIN THE ROUTINE GIVES COUNC.VALUE FOR VFIN
IF v IS SMALLER THAN VTBL THE RUUTINE GIVES CUNC.VALUE FOR VTQL
I[F (V-VFIN)110,125,125

IF (V-VT8L)120,120,115

ZEL=(V-VTBL) /DT

L=ZEL

ZELL1=FLOATF(L)

PERCEN=ZEL-ZELL

LP=1+L

LPl=LP+1 o

THE INTERPOLATED CGNC.VALUE OESIRED IS GIVEN AS F
F=C(LP)+(PERCEN)*(CILPL)I-C(LP))

GC TO 130 )

END

SIMPSCNS INTEGRATICGN FORMULA
SUBROUTINE ARSIMPIKL,8,A4R)
THE NUMBER OF POINTS USED IN SIMPSONS RULE IS COMPUTED BY
THE MAIN PROGRAM

THE RESULT OF THE INTEGRATION IS GIVEN AS R
DIMENSION A(4C00)
SET=A(1)+A(K1)

Nl=Kl-1

N2=K1-2

SUM=0.

SUML=U.

DO 5 K=2,N1,2
SUM=SUM+4 . 0sA(K)

CCNTINUE

DC 15 K=3,N2,2
SUM1=SUML+2.0%A(K)

CONTINUE
R={SET+SUM+SUM1)*B/3.0 ..
RETURN

ENC
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SEGMENTEDC LAMINAR FLOW MODEL QUARTIC METHOD 1 ALPHONSE HENNICD
DIMENSION C(4005),CLU4C0G) 4AL4CG0) ALE400C),CPLLOCO),CTI LD
READ [N DATA CHARACTERIZING NUMBER OF SEGMENTS,NUMBRER OF 11IME
INTERVALS AND NUMBER GF PRINT UUT VALUES DESIRED

READ INPUT TAPE 2,500 ,NMAXyMMAX,LMAX,DT,DI1

0C 10 L=1,MMAX

A(L)=1./(1.+FLOATF(L)#CT1-DT1)

v=A{L)

AL(L)=SQRTF(V]

CCNTINUE

C(l)=3.

SUML=y,.5

EXACT EXPRESSICN FOR FIRST SEGMENT
N=1

LMAX1=LMAX+]
DC 20 M=2,LMAX1
T=(1./3.)4FLOATF (M} *DT-DT
T1=3,#T
CiM)=1.-1. /((Tl)*SQRTF(Tl))
Cl(M)I=T
SUML=SUML+{1.-C{M))
CNTLINUE
AREA CALCULATICN FCR CFECKIVG PURPUSES
M1=LMAXL
SUML=SUML-{1.-C(M1))/2.
AR=SUM1=CT+(1./3.)
HEADINGS FOR PRINT CUT
SET UP RESULTS FOR PRINT 0QUT
0C 25 L1l=1,LMAX

‘M=1+L1

CP{L1)=C(M)

CT(LL)Y=Cl(M) -

CCNTINUE

WRITE QUTPUT TAPE 3,3CC

WRITE. CUTPUT TAPE 3,40C,{(CT(L1)yLI=1,LMAX])
WRITE CUTPUT TAPE 3,60U0yNy(CPILL),LL=1,LMAX), 4R
EXACT EXPRESSICN FCR SECCND SEGMENT

N=2 Do . H .

C{l)=0.

SUML=0.5

DO 30 M=2,MMAX

TAU=FLOATF(M)=DT1-0T1

Tl=TAU+Z.

C(M)-l.—(z.l(Tl)¢¢3+6 s(Tl)es2-24,aT1+16, )0/ ({TL)#s3)e(T1l-1.)
“«8l,5)

SUM1=SuML+{1.-C(M))

CONT[NUE

AREA CALCULATION FCR CHECK[Nb PURPCSES

M1=MMAX

SUML=SUML1-(1l.-C(M1))/2.

22=CT1/FLOATF(3=N)

AR=SUMI*Z2+{1./3.)

SET UP RESULTS FOR PRINT OUT

DC 35 L1l=1,LMAX

8=L1

M=1.1+FLOATF(3#N)=«B={DT/DT1)

CP{L1)=C(M)

CCNTINUE :

WRITE QUTPUT TAPE 3,600G,N,(CP(L1},LL=1,LMAX),AR
START CF NUMERICAL COMPUTATION FOR COLUMNS OF 3 OR MOKE SEGMEnNTS
DU 200 N=3,NMAX

M=1
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CitM)=0.0

SUM1=0.5

DU 80 M=2,MMAX

SUM=0.C

DG 50 M1=2,M

J=M-M1+1 .

SUM=SUM+ [A{J)+A(J+1) )2 (AL(J)I=AL(J+1} )= (C{ML)+C(ML1-1))
CCNTINUE

SUM=0,75#SUM

I[F(SUM=1.)70,7C,60

SUM=1.0

Cl{M})=SUM .

SUML=SUML+(1.-C1(M})

CCNTINUE

DC 86 M=1,NMMAX

C{M)=C1(M)

AREA CALCULATION FUOR CHECKING PURPUOSES

M1=MMAX s .
SUML=SUM1-(1.-C(M1))/2.

22=DT1/FLOATF(3#N)

AR=SUM1#Z2 + . (1./3.)

SET UP RESULTS FOR PRINT OUT"

CC 120 L1l=14LMAX

8=LL o

M=1.1+FLOATF(3=N)eBe(DT/0T1)

CPL1)=C(M)

CUNTINUE .

WRITE OQUTPUT TAPE 3,600,N,(CPILL),L1=1,LMAX),AR
FORMAT(1H1,35X,46HSEGMENTED .LAMINAR FLOW MODEL QUARTIC MCLTHOD 2

)

FORMAT (2X s LHI 33X, 2HT=F 4.2, 3K 2HT=F4.2,3X42HT=F4.2,3X+2HT=F4.2,
3Xe2HT=F4.2,3Xy2HT=F4,2,3X42HT=F4.243X,2HT=F4.243X,2HT=F4.2,
3X92HT=F4.2,3X92HT=F4.2,3X,2HT=F4.2,5X42HAR)
FORMATI(315,2F9.6)

FORMAT(I3,1H ,12F3.6,F8.3)

CALL EXIT
END
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SEGMENTED LAMINAR FLOW MODEL . QUARTIC METHUD 2 ALPHOWSE HENNICU
DIMENSION C(4000),C1(400C) 4A{4GC00) CP{400L),CT{10)

INTERVALS 4NUMBER UF PRINT GUT VALUES DESIKED AND #UMBER OF POINTS
READ IN DATA CHARACTERIZING NUMBER OF SEGMENTS,NUMBER OF TIME
USEC IN SIMPSONS FGRMULA.

READ INPUT TAPE 2,500 NMAX,LMAX,DT,F1,T3,TM1,0T11, 0712
T13=(1./3.)

Cl(1)=0.

SUM1=D.5

EXACT EXPRESSIGN FOR FIRST SEGMEVT

N=1 .

LMAX1=LMAX+]

DC 20 M=2,LMAX1

T=TL3+FLOATF(M)®FL-F1

T1=3,s7 .

CUMI=1l.-1./L(TL)eSCRTF(TL))

Cl{M) =T

AREA CALCULATION FOR CHECKING punposes

SUML=SUMI+(1.~C(M))}

CCNTINUE -

M1= LMAX1
SUML=SUMI-(1.~CIM1))/2..
AR=SUM1#F1+T13 . ’
HEACINGS FOR PRINT QUT

SET UP RESULTS FOR PRINT QuT |
DG 25 L1=1,LMAX

M=1+L1

CPILL)=CM)

CT(LL)=CL(M)

CCNTINUE

WRITE OQUTPUT TAPE 3,300 .
WRITE QUTPUT TAPE 3,40C,(CT(LL},L1=1,LMAX)

WRITE GUTPUT TAPE 3,6G0sNy(CPILL)sLL1=1,LMAX) AR

EXACT EXPRESSIGN FUR SECOND SEGMENT

N=2

Ct1)=0.

SUML=3.5

MAX. TIME AT WHLCH CONC.VALUES ARE ‘COMPUTED TO AVOID EXTRAPOL.
Al=NMAX-N

A2=N .

TMAX1=T3+4(T3- 113)»(A1/A2)
M1=(TMAX1-T13)/DT
MMAX=M141

DG 30 M=2,MMAX
T=T13+FLOATF{M)sDT-DT

i

T1=6,aT

CUM)=1e={2.8(TL)ue346.#(T1)ew2-24,2T1+16.)/(((T1)es3)u(TLl-1.)
##1.5)

SuMl= SUMI*(I.-C(M))

CCNT[NUE

‘M1=MMAX

SuMl= SUMl—(l.—C(Ml))/Z.
AR=SUML#DT+T13’
SET UP RESULTS FOR PRINT GUT

DC 60 Ll=1,LMAX

B=L1 ., . ) S
M=1. l*BG(Fl/DT) ' S0

CP{L1)=C(M)

CCNTINUE

WRITE OUTPUT TAPE 3,60C, N (CP(LI).Ll 1,LMAX) 4AR

START OF NUMERICAL COMPUTATION FOR CULUMNS (OF 3 OR MORE SEGMENTS
DC 200 N=3,NMAX
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SUM1=1.5
MAX. TIME AT WHICH COUNC.VALUES ARE COMPUTED TO AVGID CXTRAPOL.
A1=NMAX-
A2=N
TMAX1=T3+4(T3-T13)=(A1/A2)
MLI={(TMAX1-T13}/0DT
MMAX=NM1+1
Y=FLOATF(N)
DG 130 M=2,MMAX
T=T13+FLOATF(M)eDOT~-0T
[F(T=TM1) 90,9092
9¢ DT1=DT1l
GG TO 93
92 DT1=DT12 )
NUMBER GF POINTS USED IN SIMPSONS INTEGRATION FORMULA
93 J4=((3,.8Tay- 1.)/(3 e{Y=-1.))-T13)/DT1
Kl=2#J4+1
B={(3.#Tay~ 1.)/(3.»(Y l.))—Tl3)/(FLUAlF(Kl 1))
VIBL=T13 -
DC 110 K=1,K1
V=T13+(FLGATF(K-1))*B
CCNCENTRATIUN VALUES COMPUTED BY INTERPOLATION ROUTINE TLUDX
CALL TLUDX(V,VTBL yMMAX,4CyF,DT)
D=(Y-1.1/(3.%YaT-3 6(Y= 1) ev)#e2.b
A(K)=D#*F
110 CCNTINUE
SIMPSCNS FORMULA FCR INTEGRAL® EVALUATION
CALL ARSIMP({K1,B,A4R)
SUMM=4,52R
IF {SUMM=1.) 125,125,12¢C
120 SUMM=1.0
_ 125 CliM)I=SymM -
" AREA CALCULATION -FGR CHECK ING PURPOSES
: ‘SUML= SUM1+(1.—C1(M))
130 COCGNTINUE
DC 135 M=1,MMAX
135 C(M)=C1l(M)
M1=MMAX
SUML=SUM1=~(1.-CIML})/2.
AR=SUM1*DT + T13
SET UP RESULTS FOR PRINT QUT
DC 140 L1l=1,UMAX ’
B=L1
M=1.1+B*{FLl/DT)
140 CP{L1)=CIM)
200 WRITE OUTPUT TAPE 3,600,N, (CPILL),L1=1,LMAX} AR
300 FCRMAT(1H1,35X,46HSEGMENTED LAMINAR FLOW MODEL QUAKRTIC METHUD 2
| S ’ )
400 FORMAT(2Xy1HI3X32HT=F4.2,3X¢2HT=F4.2,3X42HT=F4.2,3X+s2HT=F4.2,
1 3X,2HT=F4.2,3X,2HT=F4.2,3X2HT=F4.2,3X42HT=F4.2,3X,2HT=F4.2,
2 3X,2HT=F4.2,3X,2HT=F4.,2,3X,2HT=F4.,2,5Xy2HAR)
50C FCRMAT(215,6F9.6)
600 FCRMAT(I3,1H ,12F9.64F8.3)
CALL FXIT
ENC
SUBROUTINE TLUDX(V,VTBLyMMAX,C,F,0T)
SUBROUTINE TLUDX USES A LINEAR INTERPGLATION FORMULA
DIMENSIGN C{4C00) -
FN=MMAX
VFIN IS THE LAST ARGUMENT FOR 'WHICH INTERPOLATION IS POSSIBLE
VFINSVTBL+{FN=1.)«CT
IF V IS LARGER THAN vﬁIN'rHE 'ROUTINE GIVES CONC.VALUE FOR VFIN
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IF V IS SMALLER THAN VTBL THE ROUTINE GIVES CONC.VALUL FUR VTSL
IF (V-VFIN)1L1G,125,125
110 IF (V-VIBLI12G4120,115
115 ZeL=(v- VTBL)/DT
L=ZEL :
ZELL= FLOATF(L) ]
PERCEN=ZEL-ZELLl: . o R e
LP=1+L
LPLl=LP+1
THE INTERPOLATED CCNC. VALUF DESIRED 13 ulth AS F
F=CILP)Y+(PERCEN)*(CILPL}=C(LP)) . P
G0 TO 130 ’
12¢G F=C(1)
©6C TO 3¢
"125° M1=FN-1l.
‘ L=MMAX
F=C(L)
130 ~RETURN
ENC
SIMPSCUNS INTEGRATTUN FCRMULA
SUEROUTINE ARSIMP(KI1,B,A,R) N
THE NUMBER OF POINTS USED IN SIMPSONS RULL IS ™ COMPUTED BY
THE MAIN PROGRAM
THE RESULT OF THE INTEGRATION IS »IVEN AS R
DIMENSION A(40D0) .
SET=A(1)+A(K])
Nl1=K1-1
N2=K1-2
SUM=Q.
SUM1=0%. .
DC 5 K=24N1l,y2
SUM=SUM+4 . 0= A{K) o N
CCNTINUE
DC 15 K=3'N2v2
SUML=SUML+2.0#A(K)
15 CONTINUE
R= (SET*SUM#SUMI)HB/B 0
RETURN -
ENC

i

1}
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I-3. Frequency-Response Analysis for Segmented Laminar Flow
(with Quadratic Velocity Distribution)

A. General

Experimental studies of packed-bed characteristics frequently
involve using a sinusoidal concentration wave as the input. It is im-
portant to be able to interpret the response of a packed bed to this type
of input in relation to the properties of the packed bed. We now assume

that the input disturbance has the form

c(0,t) = c__ + A(0).sin «t , (1)
. where S is the mean composition above ‘which the concentration
oscillates, A(0) is the amplitude of the inlet concentration wave, and

*
w is the angular frequency of the oscillations. It can be shown that

the respohse to this sinusoidal dis.tur:ba'n-ce has the form
c(#,t) = c_ + A(0) | KG(jw)| sin (at +¥), (2)
where |KG(jw)| is the absolute value of the complex transfer function

KG(jw), and ¥ is the phase shift of the outlet wave. We can calculate

. ¥ from the relation .

B -1 [ Imaginary part of KG(jw) ,
¥ = tan ( Real part of KG(9) : (3)

These relations show that the frequency response can be calculated from
a known KG(jw), which in turn can be obtained from the step-input re- '

sponse.

1. Derivation of System-Transfer Function from Step Response

From the definition of the system transfer function KG(S), the

following relation holds:

E3
‘S. B. Brown, and D. P. Campbell, Principles of Servomechanisms

(John Wiley and Sons, Inc., New York 1948), p. 94.




Ryl =KGE) E(s), @)

where F.(s) is the Laplace transform of the input signal f. (t), and
F (s) is the La.place transform of the output signal f (t) the Laplace

transform being by definition

F(s) =f f(t) e 5t at ‘o | (5)
0

In this study the step input response is not known in exact ana-
lytical form; therefore, a numerical method is used. To use this
method the following characteristics foi' the system are assumed:

(a) The system is linear.
(b) The system is at rest before the transient is a.pplied
(c) For a unit step function applied to the input at t = 0, the output
'approaches some constant value as t increases W1thout limit.
. - When.a unit step function is applied at t =0, F,(s = 1/s and
,f (t) h (t) The system relationship is stated as

Fo(s) = KG(s) - F,(s) = 2SE1 ' ()

The Laplace transform of the first derivative of the output with respect
to time is '
dFO(s)

—a s Fo(s) - hO(t0+) . (7)

From assumption (b), the last term is zero. Therefore, the transfer

function is KG(s) = dFO(s)/dt and

dh (t)

KG(s) = —3— " ¢
: 0-
From assumption (c), dh (t)/dt approaches zero as 't increases to .

-Stogt . (8)

The integral therefore converges if the real part of s = s. ¥t jw is taken
as zero (i.e., 5. 2 0. and s = jw). Then,
- m b2 .
r dhe(t) N RS "
_]wt -Jjwt
KG(Jw) -j —qr— ¢ .. dt j e _4.[1‘10@)] . (9)
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Previously, it has been shown that the system does not respond to any
disturbance as long as t <7/2 where 7 is the average residence time.
" Thus, oné can replace the lower limit of integration by 7/2 and Eq. (9)

becomes
- .

dho(t)
KG(jw) = X
T/2
By introducing the dimensionless time © = t/7 and defining a dimen-

-sionless frequency w'= 7w, Eq. (10) can be written

e I gt . ' (10)

dh_ (©) . - .
” 0" -jw'® ~-jw'® :
] — o —_ 4
KG(jw') = | —d5 e d® -f e dhO(O) . (11)
0.5 0.5
: . 3
This last equation is solved numerically in the following way: As in-

dicated in Fig. I-10 the step response is approximated by the sum of a
series of s_tép functiops of magnitude (AXO)I’ (AXO)Z, te (AXO)i e
The first step function is delayed by time A&/2, the second step func-
tion is delayed by time 3A©/2, the ith step function is delayed by time
(2i-1)AD/2. Let k.1 = (2i-1)/2, then for numerical calculations,

- Teasdale's formula can be written

Lo

KG(jw') = Z (AXO)i L - w'ki AO, (12)

i=1

- Equation (12) indicates that the phase of the output with respect to in-
put for each component is -w'kiA@ where w' is a dimensionless fre-
quency (7Tw) and kiAe is the time delay of the nth step function com-

ponent. For digital calculation the formula is rewritten as

| = <?_
KG(jw') = 2_ (AX ), cos(w'k, AB)-j ) (AX), sin(w'k AQ) (13)
i=1 i=1

>kW. I. Caldwell, G. A. Coon, and L. M. Zoss, Frequency Response
for Process Control (McGr‘aw-Hill Book Company, Inc., New York
1959), p. 364, |

A. R. Teasdale.Jr., Control Eng. 2z, 56 (1955).
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Fig. I-10. Approximation of response curve by a series
: of step functions.
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Let o
— ’ 1
Bl = G (AXO)i cos(w kiAQ (14)
0
- S :
B2 = I-Ll (AXO)i s1n(w'kiA®), {15)
then we have -
KG(jw') = B, - j B, (16)
and N 21 >
|KG(je') | = (B] + By) . (17)
The phase angle is
$ = - tan" ! (BZ/BI) . | (18)

However, for tlr;i's numerical calculation the origin has been changed
from 0 to 0.5 because of the system's dead time. From process con-
trol theory it is well kﬂoWn'x:.t};at dead time h:a.s5 the characteristic of
a pure phase shift and that in combination with other dynamic elements
the phase lag of dead time is added to obtain fhe total phase lag., For
a dead time of t ='7/2 the phasé lag is wT/2 radians or w'/2 radians,
Thus, - | |

U= -tan"! B/A - w'/2 (19)

"For a column 'ofv.oniy Q.;lé:-s_égrfiéﬁt, _.E.q. (11) can be solved ana-

lytically. For this special case we have

hy@) = 1 - (1/20)%, ( (20)
dh(g(;@) _ 13’ 1)

20

-and o e=—jw'®

KG(jw') = ~——— d© (22)

0.5 29
:/ |—C'°s(3°°'@)”'_.; ; 8in 4(‘;'@)} 40 (23)

ool 0 |

"D. P. Eckman, Automatic Process Control (John Wiley and Sons,

Inc.,) New York,l958).,.} p. 288.




-81-

The solution to these integrals is given in standard reference tables.

jet/2 -p
KG(jw') = S__Z_ {cos(w'/2)-(w'/2)sin(w'/2) + (w'/Z)ZCi(w'/Z) ;

- ':sin(w' /2)4(0! /2)cos (' /2)+(w" /Z)Z(Si(w'/Z)-ﬂ/Zﬂ} ,
V (24)

where w
Si(X) =] 81:11 Y du = sine integral
0

~and - X
Ci(X) = f Coz Y du = cosine integral.
e

Numerical results, obtained by digital computer for N = 1, 2,
5,10, and 20 are given in Table I-XIII, and plotted in Fig. I-11. For
N = 1, the exact expression [ Eq. (24)] for the frequency response was
used; for N = 2, the computer used (AXO)i values computed by the ana-
lytical expression for the step response, whereas for other N's, the
(AXO)i values were taken from graphs. For N = 2, the A@ selected
was equal to 0.01; for N =5, 10, and 20, A® was set equal to 0.025.
The results show that for columns of one and two segments . the system
gain is almost identical, and that for «'> 3.0 the numerical method was

not accurate enough to differentiate between them.



Table I-XIII. Frequency response for segmentedlaminar-ﬂo‘w model with quadratic velocity distribution

NN = 1 2 5 10 20

o N\UIKGG@) | -4 g KGGe)| -y IKGG@)] o -e g [KGG| - e [KGGe)| by
0.5 0.9496 0.4457 0.9601 0.4668 0.9669 0.4679 0.9796 0.4832 0.9853 0.4909
1.0 0.8779 0.8290 0.8967 0.8876 0.9353 - 0.9303 0.9544 0.9624 0.9671 0.9790
1.5 0.8164 1.1866 0.8346 1.2838 0.8873 1.3823 - 0.9157 1.4339 0.9390 1.4620
2.0 0.7571 1.5227 0.7725 1.6598 0.8289 - 1.8197 .- 0.8680 1.8949 0.9038 1.9385
2.5 0.7075 1.8465 0.7171 2.0217 0.7665 2,2401 . 0.8157 2,344] 0.8643 2,4078
3.0 0.6606 2,1597 0.6645 2,3722 0.7057 2.6433: 0.7627. 2.7816 '0.8227 2.8704
3.5 0.6210 2.4647 0.6178 2,7127 0.6504 3.0315 0.7117 3.2086 0.7804 3.3276
4.0 0.5836 2.7641 0.5742 3.0463 0.6019 3.4090 0.6641 3.6271 0.7382 3,7782
4.5 0.5515 3.057 0.5354 3.3719  0.5597. 3.7803 0.6199 4.0393 10.6967 4,2246
5.0 0.5213 3.3470 0.4994 3.6932  0.5223 - 4.1490 0.5790 . 4.4467 0.6561 4.6666

-28-
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Fig. I-11. Frequency-response amplitudes and phase shifts
for quadratic segmented laminar flow.
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I-4. Numerical evaluation of bounded-diffusion solution

CARD Roots of transcendental equation | Part I, Eq. (45)]
CARD 2%
CARD 3 N=1

I 4 0.960193 3.431015 6.4382C2 9.529614 12.645414 15.771352
CARD™ S5« 18.902444 22.036520 25.172465 28B.309657 31.447724 34.586424
CARD b 37.725618 40.865170 44.005023 47.145103 50.285363 53.425790
CARD T N=2 .

" CARD 84 1.306537 3.673192 -6.584625 9.631683 12.723239 15.8341{(1
CARD 9s 18.954971 22.081664 25.212025 28.344867 31.479434 34.615283
CARD 10+ 37.752079 40.889606 44.027721 47.166291 50.305233 53.444497
CARD 11+ N=3
CARD 12+ 1.542722 3.8794756 6.722276 9.73C673 12.799686 15.896132
CARD 13+ 19.007066 22.126521 25.2514GC5 28.379944 31.51106C 34.644057
CARD lax 37.778481 . 40.913994 44,05C371 47.187443 50.325078 53.,463169
CARD 15« “N=4
CARD 16+ . 1.720664 4.057513 6.851238, -9.826367 12.874600 15.957335
CARD 17+ 19.058670 22.171078 25.290569 28.414878 31.542567 34.672759
CARD 18+# 37.804821 40.938334 44,072998 47.208571 50.344888 53.481828
CARD 19+ N=5
CARD- 20= 1.861514 4.212757 64971799 9.918597 12.947835 16.(17615
CARD 21= 19.109723 22.215276 25.32S506 28.449633 31.573953 34.701353
CARD 22¢ 37.831091 40.962614 44.095563 47.229651 50.364675 53.500463
CARD 23+ N=6
CARD 24n 1.976479 4.349257 7.084331 1C.007293 13.019321 16.G76926
CARD 25# p 19.160188 22.259090 25.368167 28.484207 31.605196 34.729852
CARD 26+ 37.857277 4C.986834 44.118082 47.250696 50.384424 53.519063
CARD 27+ N=T7
CARD 28+ 2.072388 4.470142 7.189300 10.092416 13.088949 16.135181
[oF BN 29=# 19.209995 22.3024713 25.406541 28B.518566 31.636295 34.75823C
Ca. . 30= 37.883367 41.010983 44.140553 47.271704 50.404138 53.537639
CARD 31« N=8
CARD 32% 2.153749 4.577856 7.287199 10.173969 13.156672 16.192322
CARD 33= 19.259118 22.345413 25.444602 28.552709 31.667226 34.786489
CARD 349 37.90936G 41.035047 44.162951 47.292653 50.423804 53.556178
CARD 35+ N=9
CARD 364 ) © 24223677 4.6T4377 '7.378495 10.252010 13.222441 16.248324
CARD 37« 19.307522 22.387861 25.482329 28.586600 31.697966 34.8146C4
CARD 38 37.935258 41.059027 44.185289 47.313541 50.443435 53.574670
CARD 39+ N=1C
CARD 40 2.284449 4,761266 7.463679 10.326612 13.286245 16.303128
CARD 41+ 19.355159 22.429806 25.515696 28.620252 31.728525 34.842575
CARD 42+ 37.961C036 41.082923 44.207543 47.334369 50.463005 53.593126
CARD 432 N=15 -

CARD bbn 2.498463 5.090553 7.813091 1G.651732 13.575820 16.558547
CARD 45 19.581122 - 22.631164 25.700621 28.784124 31.878065 34.979339
CARD 464 38.087961 '41.200836 44.317583 47.4374%4 50.560C17 53.684685
CARD 474 N=20 .

CARD 48w 2.6276177 5.307323 8.067132 1G.908759 13.819196 16.782688
CARD 49+ 19.785501 22.817255 25.870438 28.939739 32.021323 35.112424
CARD 50% . 38.2110638 41.315%64% 44,425117 47.538557 50.655292 53.774795
CARD Sle N=25

CARD 52+ 2.713987 54459595 8.257226 11.112920 14.022484 16.977268
CARD 53% : 19.968188 22.987263 26.028186 29.086126 32.157404 35.2392065
CARD ~ S4= 38.329598 41.426799 44.526632 47.637115 S0.748492 53.863142
ch - 55% N=30

CARD & Sé6+ 2.7T75646 5.571863 8.403457 11.277056 14.192480 17.145414
CARD 5T+ 204130334 23.14135%6 26.173542 29.222794 32.285779 35.359922

CARD " .- 58+ 384443149 41.533854 44.630754 47.7132845 50.839297 53.949452

CARD 5G9«

CARD 60 N=4G

CARD 614« 2.857738 5.725548 8.611599 11.521114 14.456217 17.416629
CARD =~ 62+ | 20.400531 23.405357  26.428375 29.466949 32.518728 35.581666
CARD 630 38.654071 41.734481 44,821699 47.914741 S51.612769 54.115098
CARD b4e N=50

CARD 65 2.909845 5.825329 8.751335 11.691482 14.647964 17.621595
cs 66 20.612160 23.618748 26.640040 29.674551 32.720782 35.77732C
CAaRD 6T+ 38.842870 41.916282 44.396561 48.082832 51.1764339 54.270437
CARD 68+ N=6C

CARD 69= 2.945834 5.895125 8.850996 11.815962 14.791798 17.779559
CARD 70+ 20.779591 23.791752 26.815525 29.850144 32.894733 35.948406
CARD 71= 39.010253 42.079423 45.155124 48.236673 51.323411 54.414787
CARD 72= N=80

CARD 73« 2.992261 5.986085 8.982966 11.984185 14.990820 18.GC3700
CARD Tée= 21.023338 24.550060 27.083960 3C.12493C 33.172791 36.221220
CARD 75+ 39.287868 42.354341 45.426231 48.503118 51.584631 54.670387
CARD 762 N=100

CARD T7= 3.020903 6.042651 9.066028 12.091815 15.120621 18.153035
CARD 78+ 21.189463 26.,230230 27.275551 30.325546 33.380214 36.439532

CARD 79+ 39.503392 42.571651 45.644116 48.720607 51.8C089Y9 54.884796
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I-5. Determination of Stoichiometric Time for the
Random-Walk Model

The stoichiometric time is défined as the time necessary to fill
one column volume with fluid. Usually a time scale © is adopted such
that the stoichiometric time corresponds to 9 = 1. From a material
balance, this is equivalent to chosing a time scale such that the area
between the breakthrough curve (X vs ©) and the horizontal line cor-
responding to X = 1 is equal to unity.

The general equation for the random-walk model is

ST
X(T', N) =f e MM 1 (2./Rm) an | (1)
0 .

with X(e,N) = 1. The area, mentioned abovei which should be 1 is

S(N) =] [1-x(T',N)}aT!
0

[ ] [ ]

=de'j e~ 1 (2 /) an. @)
0 T

Integrating by parts leads:to

@ o0

vs(N) - [T,f e-(N+n) IO(Z =) d'n] - )
TI

0

+] n e~ (N4M) I, (24/N7) dn .
0

We first show that

oo

[T'f e'(NM)16(2;/Nn)dﬂ]ﬁ:°" (4)
" Ip(24

0

This expression can be simplified by the following change of variable:

€ = 2,/Nnf thén n = §2/4N, and dn= (2£/4N) d€ .



Equation (53) becomes -

N 2 o |
YIS , e } -;g /4N ) . i
[T ZN .f e | Io(é)édé} =0. (5)
o /IZ,/NT' - - 0 .

We first note that the expression under the integral is always positive

and that the function _IO(E,) satisfies the inequality

NGRS | e
for all positive values of £. From this, the expression between brackets
clearly vanishes when T' = 0. To show that the same expression is zero
at the upper limit, the éxpression will be feplaced by a simpler and
lariger function which tends to zero when T'-—> e , Uéing Eq. (6) we

can write

ury
o
~
oy

2
1
W
z
+
v
1
ure

e 4 I(E) <e <e (7)

for all £ > .€-1 . Note that this relation holds for €1 > 8N. Then, we

have

o

o

yre

an

j e 4 Io(i) §d§<j e
2/ NTW | 2/ NT

} - - / f
This last integral is equal to (1 + 2,/ NT') e 2 NT . Finally,
Eq. (5) can be replaced by the dominating function

o N | ' -2 /NT'
f=1 Z—N——(1+24/NT')e ' , (9)

which tends to zero when T' tends toward . As the expression be-

2

> £dE . (8)

tween brackets in'Eq. (5) is always positive and smaller than f, it also

vanishes for T'- « . Now, the area is given by
m_,
S(N) = [ l e'@“fﬂ?io (2/Nm) dn . , (10)

<0
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Using the same change of variable as above, Eq. (10) becomes

. . w g2
s = &N %j 57 B RGITTS (11)
- 4N
or " 62
s = e N & / Ny (§)§d€> . (12)
Also, Eq. (1) can be written | "
| N 2, /NT
X(T"', N) =ATN e IO_(é.) £dE . (13)

0
Since we have X(wm,N) =1 when: T'» =, we get
- .gZ- . .
%f e mlo(g)gdézNeN. ‘ (14)
. O - : :
Using Eq. (14) in Eq. (12) it follows that

-N 8

S(N) = (N e ) = N+1 . ‘ (15)

Thu89 to normahze the breakthrough curves for the ra.ndom Walk model,

the follow1ng time scale has to be used:
© = T'/N¢1 . S (16)

With this time scale, the stoichiometric time occurs for © = 1.
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' PART'II. LONGITUDINAL DISPERSION IN LIQUID FLOW
THROUGH ORDERED AND RANDOM PACKINGS

A, Introductlon

Although the extent of axial mixing is of primary interest with
respect to steady-state mass-transfer operations, it can most easily
be evaluajted‘qiiantitatively as.a separate factor by unsteady-state tracer-
injection techniques independently of mass transfer between phases. A
tracer amount of a component is 1n_]ected in a pa.ttern approachlng one
of several kinds of idealized disturbance, and the concentration history
(or "brea.'kthvr'o'u'gh curve') of t:racer at a fixed distance downstream from
the injection points is measured.

The characteristics of the expéerimental breakthrough or response
curve may be compared with the forms predicted by a mathematical
mixing model. The value of the mathematically calculated mixing pa-
rameter that gives the best fit té the experimental curve is designated
as being characteristic of the experimental system. o

Several different methods of analysis have been used to measure
the breakthrough or response curve. These jnclude ionization-current
counting of radioactive ‘tracers, élé'ctrical conductivity or electrode po-
"cential',_ and.abéorptidn of ultraviolet or visible lig:ht.

Three different forms of input disturbance are commonly used:

a sinusoidal variation, a delta or pulse function, and a step function.

. The frequency-response technique measures the result of a sinu-
smdally varying inlet concentration. When a sinusoidal concentration
wave is passed through a packed bed, the wave suffers a reduction in
amplitude and a phase lag which are characteristic of the longitudinal
dispersion. A disadvantage of this method is that relatively complicated
apparatus is required for production of the wave, and that it is very dif-
ficult to measure the phase lag. /

In the pulse-wave method one determines the outlet concentration-
history of an experiment in which tracer is injected over a short period

of time; i.e., in the form of a unit pulse. The impulse response is also
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called the residence-time distribution function (rtdf), in recognition of
the fact that the normalized concentration function arising f;c‘)_im an input
pulse of identifiable (tracer) molecules gives the age distribution of all
molecules passing through the system. Disadvahta.geé of this method
lie in the experimental difficulty of producing a unit pulse, and in the
attendant need often encountered of having to measure extremely low
concentration values on both sides of the peak. ,

A third method involves the response to an inlet step function.
Experimentally this can be carried out by flowing a clear solution and
a tracer solution successively through a fixed bed and determining exit
concentration vs a function of time. Special care must be taken to ob-
tain a sharp, uniform step function at the inlet. In the present investi-
gation, the step input method is used., As tracer, a solution of NaNO3
is injected into the system, and the breakthrough curve is measured by

electrical conductivity.

1. Previous Studies

Until recently the transport of matter in the direction of flow by
axial dispersion has been neglected in the study of rate processes in
packed beds. . Since 1953 several experimental investigations have been
made to determine the nature and the ndagnitude of the axial dispersion
mechanisms. |

In one of the first studies of axial dispersion, Danckwerts pre-
sented a general discussion of residence-time distributions in pipes,
packed beds; and stirred vessels, 8 He r'epofted several measurements
of axial dispersion in the flow of water through beds of 3/8-in. Raschig
rings at a mean linear velocity of 0.4 cmm/sec. These measurements
involved the response of the system to a step change in the inlet con-
centration, ' | '

Using the response to a sinusoidally varying in‘put, Kramers
and Alberta investigated axial diépersion in water flowing .through a
column packed with 1-cm. Raschig rings at Réynolds numbers of 100
and 200. 15 Their phase-shift data yielded dispersion coefficients dif-
fering by 50 to 100% from the values based upon amplitude; the discrepi-. =

ancy was attributed to 'trapping'' in the interior of the rings.
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McHenry and Wilhelm reported axial-dispersion data for gas
flowing through a bed packed with. 3-mm. spheres. 18 They usved a sinu-
‘soidal-input’ signal and determined values of the axial-diépersion coeffi-
cient from the amplitude change. A value of the Péclet number (de-
fined»as Uodb/E) equal to about 2 was found in a Reynolds-number range
“of from 26 to 1000.

Ebach and White reported the results of liquid;phase logitudinal-
dispersion studies for beds of glass spheres, Raschig rings, Berl sad-
~dles ,9 and Intalox saddles over a Reynolds-number rangé from 0.1 to
160.

packed with 1-mm. spheres for a flow rate corresponding to a Reynolds-

They also investigated the influence of viscosity in a column

number of 0.25 for water. In this flow region a change of viscosity from
0.95 to 27 cP did not inﬂuence the axial—dispersion-coeffiéient values;

" however, it does not necessarily follow that viscosity changes have no
effect at higher Reynolds.numbers. In comparisons between the differ-
ent packings, the product of Péclet number and void-fraction was found
to be nearly constant. In their experiments, both periodic and transient
input signals vwere used, dnd the detection method was that of light ab-
sorption due to a dye tracer in the water stream. v

Cvarberry a.nd.Bretton5 evmploye_d pulse-injection t“echniques very
similar to those of Ebach and White. They obtained dispersion coeffi-
cients at various flowrates in.systems of 0.5, 1, 3, and.S-mm, spheres
and 2 and 6-mm. Raschig rings, in a 1.5-in. -i, d. column. Their data
consistenﬂy showed the presence of 'long tails' in the output pulses;
the authors sugg_ésted thaf the concept of '"bed capacitance'! woﬁld explain
this phenomeﬁon, but they did not include it in their analysis.

Jacques and Vermeulen investigated the axial dispersion during
the flow of water throﬁgh beds of ceramic spheres, Raschig rings, and
Berl saddles. 14 The present work is a continuation of that study, and
certain of those results will be inqluded below,

| Strang and Geankoplis studiéd axial dispersion through beds of
glass be.a.ds_, perous alumina Spheresv, and Raschig rings by the fre-
quency-response technique, using 2-naphthol as a tracer. 24 Their
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investigation, carried out over a relatively short Reynolds number
‘range in the laminar region, gave results similar to thdse of Carberry
and Bretton and Ebach and White. , '

Cairns and Prausnitlzv investigated longitudinal-mixing properties
for a water stream flowing through a 2-in. column packed with 3.2-mm.
glass spheres, 6ver the Reynolds number range of 22 to 4500. 3 A step
input was used in their experiments, with .Na,NO3 solution as the tracer.

Besides the previously mentioned axial-dispersion studies, which
are of primary importance for chemical engineers, many investigations
reported in the literature have dealt with the mixing between miscible
fluids in beds of sand or sandstone at very low flow rates. 1,6,21,22
For these conditions the effect of molecular diffusion becomes significant,
and unstable flow behavior, resulting from density and viscosity differ-
ences, occurs, These studies, of primary interest to petroleum en-
gineers and hydrologists, will not be discussed here.

Thus, previous investigations have resulted in many data con-
cerning the axial mixing of liquids in packed beds. However, as pointed
out by Hofmann, serious discrepancies exist between the results re-
ported for low Reynolds numbers. 13 Further, no study of the influence

of viscosity has been found in the literature for Reynolds numbers larger

than 0.25.

¢

B. Apparatus

1. General Specifications

Specifications for the experimental equipment were based upon
the following objectives for single-phase breakthrough experiments:

(1) To develop the best possible experimental conditions for de-
termining axial-dispersion coefficients. The Qariables to be considered
were the concentration and proportion of tracer, the direction of injec-
tion (top or bottom of the column), and the sharpness of the step input.
Electrolytic conductance was selected as the measure of tracer con-

centration,
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(2) To study the influence of viscosity on the axial dispersion
coefficient. Whereas the gas-phase axial dispersivity appears to re-
main nearly constant over a wide range of Reynolds numbers (for rea-
sons to be discussed latter in this article), the liquid phase is believed
to show a transition from a "laminar'' to a "turbulent' flow reg‘imeS’ 14
coincident with changes in slope of the friction-factor and mass-transfer
j-factor curves. '

(3) To investigate the influence of different packing-particle
types, size, and arrangements upon axial dispersion, over a range sig-
nificant for predictions on industridl-scale packed-tower apparatus,
Ordered arrangements of sphere packing were included so as to de-

- termine the possible occurrence of packing-orientation effects in axial
dispersion, and to obtain a controlled variation of packing void-fraction.

Apparatus was designed for study over a wide range of flow rates
with various sizes and types of packing, as just indicated. The experi-
mental needs led to the following specifications:

(a) Owing to the labor involved in packing a column and in in-
stalling conductivity probes and an injection head in any chosen arrange-
ment, a column once packed was kept intact for repeated experiments.
‘Consequently, different column sections were designed and built, cor-
responding to the different packing arrangements chosen for investi-
gation. For each column the packing was locked between retaining grids
of suitable design. Table II-I lists the columns and their correspond-
ing specifications.

(b) In order to avoid an expensive duplication of the accessories,
everything except the packed column sections was a single installation,
while the packed columns were interchangeable. The upper and lower
column heads with their accessories (level control, pressure taps, and
nozzles) were mounted permanently on the frame in a manner that per-
mitted rapid exchange of the packed sectiohs., A hand-wheel-operated
sling supported the head for lifting or lowering, so that we could sub-
stitute any of the different column sections. Metallic flexible hoses

were connected to the inlet and outlet manifolds for both the top and bottom
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of the column. The packed sections (weighing approximately 100 1b.)
were transported between the column frame and the storage bench by a
hoist supported by an overhead rail. '
. (c) To meet the flow-rate requirements for one or two main

phases plus a tracer strearh, a complex assembly of valves, pumps,
and rotameters had to be used.

| (d) To provide the needed ﬂeiibility “in breakthrough-curve meas-
urements, conductivity cells in the individual columns were manifolded
throuvgh switches into a plug connection; this plug was jAoined by a cable

to a recording potentiometer through a second set of switches on the

main operating panel.

2. Column Bodies

The adoption of regular as well as random packing arrangements
placed many limitations upon the column design. First of all, the tri-
angular and square arrangemer};cs chosen necessitated flat-sided columns;
thus, hexagonal and octagonal columns of calculated cross section were
built, in order to simulate as closely as possible a cylindrical symmetry.
Considerations of corrdsion resistance, minimum weight, cost, and de-
formation during the needed welding operation led to the choice of alumi-
num rather than stainless steel for the project. Specifically, 3/16-in.
61ST aluminum sheet (alloyed with 0.25% copper, 0.6% silicon, 1% mag-
nesium, and 0.25% chromium) was used. Cylindrical columns of the
same material were built for random packings. Fins were welded on
the sides of each column for strengthening and to facilitate handling.
Further, the design of each of the grids 'that. locked the packing inside
the column had to be selected according to the packing geometry.

The photograph in Fig. II-1 shows Column 1 (see Table II-1}),
before packing and before dfilling for the introduction of conductivity
leads and sampling :tubes,r'I.‘he'bottom grid is attached to the body; the
top grid and the corresponding spacer plate are removed. There are
two rings of bolts at each end; the inside rings are used for locking the

grid to the 'body, and the outside rings to attach the column to the



Table II-I. Dimensions and packing of experimental columns
Column Packing Effective Equivalent Arrange-- Distance Fraction Column  Useful Cross-
number diam (in.) diam (in.) -ment ‘L:iween of voids height height sectional
layer (in.) (%) (in.) {in.) area(in.®)

1 Spheres 0.75 0.75 Tetragonal 0.53 32.0 26.9 23.6 - 30.3

2 Spheres 0.75 0.75° Ortho- 0.65 38.0 25.8 23.0 30.3
) rhombic-1 :

32 Raschig 0.25 0.22 Random 0.29 73.0 26.4 26.0 30.7

- Rings .

42 Pellets 0.25 0.23 Random 0.21 35.0 26.4 26.0 30.7
(Tenite ‘ ‘ _ . ‘
polyethylene) o -

5 Spheres 0.75 0.75 Random 0.71 41.2 26.0 25,0 30.7
6 Spheres 0.75 0.75 Ortho- 0.75 39.5 26,3 24,0 30.6
rhombic-2
7 Raschig 0.75 0.65 Random . 0.88 64.8 26.3 23,6 30.7

TINgS
e Intalos 1.0 0.72 Random 0.96 74.0 26.4 26,0 30.7
b saddles ‘
9 Berl 1.0 0.76 Random — 68.6 26.4 25.0 30.7
b ' saddles .
10 Spheres 0.38 0.38 Random 0.35 42.0 26.4 25.0 30.7

aPacking used only by Jacquesl4

b‘[—‘acking used only in the present investigation

_v6-
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ZN-1818

Fig. II-1. Octagonal column before assembly.
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permanent head and bottom; the four slots in the grid were cut out for
the bolts attaching the bottom to the frame. We used O-rings to pro-
vide leakproof seals between the flanges. Finally, 3/16-in. reinforcing
plates were welded on to provide needed thickness for installation of the
sampling outlets. These outlets were placed at nominal distances of
.0, 3, 6, 12, and .18 in, .from the leve'l of the injection manifold, the
spacer plate corre‘sponding,,to 24 in. . The holes in the fins are for in-

sertion of the lifting hoist,

3. Column Packing

The ordered arrangements of uniformly sized spheres corre-
spond to known types of»crysfallographic lattice. For such arrange-
ments in packed colurnns, one must select two parallel planes through ‘
the lattice that will represent tne ends of the column, and several planes
each perpendicular to these thafvwill constitute the column walls. The
different lattice structures for spheres, each available for columns in
one or more orientations, have been reported by Graton and Frazer,
and Martin, McCabe, and Monrad, !

In the present investigation, three different regular packing
arrangements of spheres were used: tetragonal sphenoidal (Column 1),
orthorhombic-1 (Column 2) and orthorhomblc 2 (Column 6). Spheres
0.75-in. in dlam were obtained.as over- S1zed ceramlc balls with rough
surfaces. They were wet-ground in'a ball mill w1th granular alundum,
and classified between 0.740 and 0.760 inch. Because of the geometry
of the ordered packing, a boundary problem arose as the design called
for the spheres in one layer to be tangent to the wall some of the spheres
in the next layer would have to be either omitted or cut. This difficulty
was avoided by insertion, in alternate layers, of spacers between the
walls and the balls. Wall spacers for the second layer for Column 2
are shown in Fig, II-2, (The second layer is drawn in light lines; the
first layer in heavy lines.)

 Column 1, also equlpped w1th wall spacers was originally in-
tended to have a rhombchedral arrangement (25.9% voids). It appears

to have been packed somewhat loosely, as its measured void-fraction
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Fig. 1I-2, Arrangement of packing and spacers, column 2
(orthorhombic-1, octagonal).
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was 32%. If this packing density is uniform, the packing corresponds

11,17 hence, this designation is

to the tetragonal sphenoidal structure;
used for Column 1. From Fig. II-2, we see that each sphere in the
second layer is astride two in the first layer, and that these three
spheres form an equilateral triangle that is perpendicular to the ends

of the column. The tetragonal sphenoidal and rhombohedral structures
are very similar, with each layer again in a square order, but with

the equilateral triangle tilted so that the upper sphere lies more deeply
in the hollow ceﬁter of the square in the first layer. In the tetragonal
structure, the angles of tilt (from the vertical) are 30 deg and 26 deg,

34 min; and in the rhombohedral structure, they are 30 and 30 deg.

The lattice structures ofColumns 2 and 6 are identical, but the
arrangement of Column 6 is perpendicularvtdthal.t of Column 2, In
AColumn.46 the triangles are parallel and the squares perpendicular to
the ends of the column, Table II-T gives details on all the types and
arrangements of packing used for the investigation.

The randomly packed columns were stacked by pouring the
packing into the column with attendant shaking of the bed. They in-
cluded not only spheres of 0.75-in. and 0.38-in. diam, but also
0.75-in, and 0.25-in., Raschig rings, 0.25-in. polyethylene pellets, and
l1-in. Berl saddles and Intalox saddles,

The void fraction € was measured for all packings by measur-
ing the amount of water necessary to fill a column of known dimensions
to a well specified height. The void-fraction of randomly packed
spheres is generally close to that for the ordered rhombohedral arréngea
ments. For packings other than spherical balls, several different
5'equiva1ent" diameters can be defined. The most common one is the

2,16 which corresponds to a

"'equivalent spherical diameter, " (dp)v,
sphere having the same volume as the packing unit. Prattzo introduced
the '"equivalent hydraulic diameter of the void space, " (dp)h, as

_ 4 Xfree space

4e -
(dp)h T T periphery = p (1)
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In the case of a stacked ring.packing the periphery (ft/ftz) is identical
with the superficial area (excluding edges) expressed as ft?_/ft . The
determination of the periphery of random packing is much more dif-
ficult; thus, it has been convenient'to adopt empirically the same def-
inition for the periph‘ery as that just.stated for regular )packingsn A
third definition is.the diameter of a sphere with the same surface-to-
volume ratio as a packing particle. ,19 From the propertieé of a sphere

this diameter is defined as
. ' 3 6(1- - R
@), = 2=, (2)

where ap is the surface area per unit volume. , .

Another property of packed beds is the sphericity () of the
‘particle. --This is defined as the area of a sphere having the same vol-
ume as the particle, divided by the area of the particle, We note that

d = Y(d ) .
(), = ¥ld )
The values used for the above mentioned parameters in this

study are given in Table II-II.

4. Conductivity Probes

The tracer used was a sodium nitrate sclution, with tap water
was used as the main stream; the detection method was that of elec-
trical conductivity. In the concentration range used, the electrical con-
ductance of the aqueous salt solution was proportional to the concentra-
tion of the salt, Therefore a knowledge of the conductance of the mixed
stream containing the salt tracer allows the direct determination of the
concentration behavior in this stream.

The probes used to measure conductivity were constructed of
two spherical sectors of 3/4-in, Bakelite balls connected by a pair of
rhedium-plated pins, as shown in Fig. 1I-3. They were installed at
different heights in the column (nominal 0, 3, 6, 12, 18 and 24 in.)
with the plane of the probe being in each case perpendicular to the main

direction of the fluid flow. Originally the equipment was also used for
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Table II-II. - Packing characteristics

A d d d a
Packing € ( P) ( P)h ( P)a 5> Pg P 2
(in.) (in.) (n.) (f6%/8) (f/8°)
3/4-in. Raschig :
rings 0.648 0.67 10,47 0.28 80 66 0.42
1-in. Berl - |
saddles 0.686 0.76 0.42 0.25 78 77 0.33
1/4-in. Raschig .
rings 0.720 0.22 0.16 0.079 240 216 0.36
l-in. Intalox
saddles .0.740 0.70 0.40 .0.24 78 89 0.34
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- Fig. 1I-3. Construction of conductivity cell.
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the study of radial dispersion, and thus several conductivity probes
were installed at different radial positions, 14 In the present investi-
gation, only longitudinal dispersion was studied, and only the conduc-

tivity probes at the center of the cross-section were selected for use.

5. Injector System

The injection device consisted of several tubes (0.0625-in.0.d.,
0.031-in. i.d.) connected to a manifold. At the end of each injection
tube an aluminum ball, 3/4-in. in diam, was fixed. For the central
injector, the aluminum ball had 6 holes (0.059-in. diam) drilled, 60 deg
'va,part, around 2 horizontal circle (perpendicular to the injection tube,
here vertical). The arrangement and the number of injection tubes was
dependent on the form of the cross-section; however, the number was
normally around 8, The end of each off-¢center injector were anchored
in the bed by being run through a 3/4-in. aluminum sphere. In Column
7, each such aluminum sphere was provided with six outlets.

A small pump continuously recirculated the tracer solution. A
3-way solenoid valve installed near the column allowed a very rapid
action for either starting or stopping the flow of the injectant (tracer)
into the test section. The pressure drops in the injection path and in
the recirculation path were equalized by means of valves in each line

adjacént to the solenoid valve.

6. Column Heads

Expanded end sections, identical in construction, were con-
nected above and below the particular packed section in use (see Fig.
II-4). As the columns were designed to operate in upward as well as in
downward flow (see Figs. II-4 and 5), the same accessories were a-
dopted for both upper and lower end sections: two windows for visual
observation, a 6-in. -diam inlet nozzle with interchangeable orifice
plates designed to give a velocity profile as flat as possible (see Fig.
II-6), two symmetrically placed outlets, and a liquid-level control

probe for subsequent two-phase experiments.
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Fig. 1I-4. Diagram of column head.
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Fig. II-5. Exploded diagram of column assembly.
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Fig. II-6. Detail of nozzle construction.



-106-

7. Circuitry

The basic electronic circuit used to measure the conductivity
is shown in Figs. II-7, II-8, and II-9. It consists of four parts: an
amplitude-stable oscillator, a low-impedance voltage source, an ampli-
fier, and a self-balancing potentiometer which feeds the strip~chart \
recorder,

The IOOO;cycle oscillator circuit employed (Vl’ V,) is of bridge
"T" type, with thermal nonlinear-element stabilization. Negative feed-
back is supplied from the output of the grid of vy through the frequency
determining network. The lamp and 600-%2 cathode resistor of Vl form
a variable positive-feedback path.

The output of the oscillator is fed into a power amplifier con- |
sisting of a cathode-coupled phase-inverter (V39 V5) driving a push-pull
output stage (V4, Vé)., Power is delivered to the probes through an out-
put transformer with a nominal output impedance of 4-Q. = A large a-
mount of negative feedback is employed to reduce the output impedance
further. In series with the probe is a resistor (R25) across which a
voltage is developed that is proportional to the current drawn by the
probe and thus also proportional to the conductance of the probe. This
voltage.is amplified (V7, V8) and transformer-coupled from a cathode-
follower (Vg) to the detector (V].O)" The detector output is fed to the
recorder through a high impedance (R41). Through the use of manual
potentiometric span control on the input to the recorder, and of gain
congrols in iche cathode circuit of tube V7, a range of conductance from
10 "to 10

A panel board for wiring was attached to each column body, as

mho can be monitored,

shown in Fig. II-10. All the conductivity-cell leads of the column were
connected to a rotary switch on the panel, corresponding to up to five
combinations of six electrodes. Tke injection-tube manifold installed
on the panel is also shown in Fig. II-10. Six double-pole double-throw
switches on the column panel allowed the selection of any cell for meas-
urement. Finally, an eight-wire-cable plug on the panel board pro-
vided a separate connection to the electronic measuring and recording

system.
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Fig. II-7. Oscillator circuit for conductance measurement,
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8. Layout and Accessories

As noted in the s.pecifica.tions,_. the design and construction of
a compiete pilot-plant unit with extensive manifolding was needed. The
flow arrangement is shown in Fig, II-11, and the completed assembly
in Figs. II-12 and II-13. A set of five pumps, five tanks, and six ro-
tameters made it possible to feed and meter three different types of
liquids at the same time for a range of 0.005 gpm to 40 gpm.

Water for the experiments was provided from a 150-gal con-
stant-head tank mounted on the roof of the building, about 25 ft above
the column.

The rotameters were each calibrated by weight-flow of water.
Flow rates for kerosene were corrected by aséurning that equal-weight
flow rates gave equal readings, and by using standard correction charts
supplied by the Fi.scher-Porter Company. The working ranges of water
| flow through the six rotameters were 0 to 40 gpm, 0 to 6 gpm, 0 to 6
 gpm, 0.to 0.8 gpm, 0 to 0.3 gpm, and 0 to 0.005 gpm.

C. Experimental Measurements

1. Determination of Optimum Conditions

The equipment as designed allowed the injection of tracer solu-
tion at fhe top or at the bottom of the column. Theoretically, the same
result should be obtained for either injection or shut-off of the tracer
" for either end of the column; however, it was found experimentally that
for low flowrates large differences in behavior could occur. It thus be-

came necessary to find experimentally the operating conditions that
would minimize these differences. The smoothness of the breakthrough
~curve, and the proper correspondence between the calculated and meas-
ured stoichiometric times determined in two different ways (that is, by
.dividing the measured flowrate into the column void volume, and by in-
tegrating the experimental breakthrough.curve) were also used as cri-

teria for satisfactory operation.
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ZN-1816

Apparatus assembly, showing control valves

Fig. 1I-12.

and instruments.
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Fig. II-13. Apparatus assembly, showing storage and
piping.
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Preliminary studies were .therefore made of two columns with
different packings: Column 1 (3/4-in. spheres, tetragonal arrange-
ment) and Column 7 (3/4-in. Raschig rings). From this preliminary
study, with water as the main stream, it was found for _injection of salt
(NaNO3) at the top of the column that the purging curve resulting from
shutting-off of tracer injection gave better breakthrough curves than
the start-up of a step input of tracer. For the latter, the empirical
stoichiometric point was much higher than the "exact' value. For in-
jection at the bottom the start-up of tracer injection was Bettere

These experimental findings were believed to be caused by a
‘hydrodynamic instability, resulting from the density difference between
the main stream and the tracer solution, which may cause a prefer-
ential but irregular downward flow of the denser fluid (or upward flow
of the lighter one). Such an effect is well known in displacement proc-
esses;7’ 12,23, 26 the boundary between adjacent dissimilar bands of
liquid can become peculiarly distorted by having 'fingers® or '‘channels®
of the displacing liquid intrude deeply into the liquid being displaced.

In principle, this gravity effect may be partially or even com-
pletely offset by a viscosity effect, although viscosity seems to have
had very little influence in the present study. Displacement by the more
viscous liquid favors stability of the boundary, whereas displacement by
the less viscous one favors instability. The viscosity effect has been
described by Helfferich in the following terms:12 '"Due to packing irregu-
‘larities, the displacing liquid will slightly bulge out the boundary. If
the displacing fluid is the less viscous, the flow resistance in the bulge
is smaller and the flow larger than elsewhere; thus the fingers grow.
On the other hand, if the displacing fluid is more viscous than the liquid
being displaced, the flow resistance is larger in the bulge than next to
it, and thus the channels vanish, "

- Thus the tendency toward 'instability" could explain why 'top-
out' and '"bottom-in"™ run conditions give the better breakthrough curves.
The curves corresponding to the reverse conditions (indicating unstable

behavior) show an unusual breakthrough shape, with a very fast response
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at the start followed by a very long tail which eventually approaches
saturation; such a shape can result from the presence of "ﬁngérsc "

In our experiments it was also found that by reducing the salt
concentration from 1 N to 0.05 N, the shape of the curves was improved,
the two stoichiometric times showed better agreement, and a good match
was obtained between equivalent tracer-in and tracer-out runs except at

flowrates smaller than 0.3 gal/min.
2, Procedure

As a result of the preliminary runs, the following experimental
conditions were adopted: For flowrates smaller than 0.5 gal/min
0.05 N NaNO, solution was injected at a rate corresponding in all cases
to less than 5% in volume (in most cases around 1 to 2%). For higher
flowrates, the amount of tracer injected was.less than 1% in volume,
but the salt concentration was increased to 0.1 N. The injection was
made at the top of the column for nearly all experiments. Both injec-
tion- and purge-breakthrough curves were recorded; in the low-flow-
rate region, when the two curves did not agree, data were taken from
the tracer-out or purging curves.,

‘The experimental procedure for typical runs was as follows:
Preliminary experiments determined the input "span'' to the recorder
and the amplifier-gain setting in the cathode circuit to tube V7 (Fig. I1-8)
that were needed for the recorder to span nearly the full chart width for
the breakthrough curve, for a specified salt injection. Before each set
of runs, the electrical measuring unit was tested for linearity by re-
placing the conductivity probe by a potentiometer; for all the runs this
error was within 1%. Then, the actual run was started, with tap water
from a constant-head tank flowing through the column at a chosen flow
rate. The tracer (NaNO3) solution was started through the recirculation
line at the appropriate flowrate (usually around 1 to 2 volume-percent
of the main stream), and the pressure drops in the injection line and the
recirculation line were equalized by means of two manual valves adjoins

ing the solenoid valve.
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, After a final check of the flowrates, tracer injection into the
column was started by opening the solenoid valve, with the ‘s"ta,l_'ting
time for injection marked electrically on the recorder c.ha..rvto_, The volt-
ages reco.rded during ea.ch.run_wére proportional to the conductance of
the main stream, and thus, as nqted previously, proportional to the con-
centrations of the injected component., Tracer injection was stopped
after a constant reading was reached on the chart; the condﬁctivity was
again followed as a function of time to give the purging breakthrough

curve, The recorder results were then a'na.lyz'edvas explained below.

3. Calculation of Data

From a critical review of the different mixing models (see Part
1) it was concluded that for low flowrates, the data would be analyzed
both by the random-walk model (which is equivalent to the diffusion
model with finite boundary conditions) and by the segmented-laminar-
flow model with quartic velocity profile., For high flowrates the data
would be analyzed solely by the random-walk model.

Output concentrations measured by the recorder were plotted as
percentages of the total concentration-increment range, against the
logarithm of relative time, t/t5o, where the reference time, tgy» COT-
responds to the 50% concentration point. The experimental breakthrough
curve was then compared with theoretical breakthrough curves pre-
dicted by the mixing models. This graphical method has the advantage
of comparing entire curves, and tvhus shows whether the theoretical
model used is pfedicting the right overall shape. Once the theoretical
models were shown to be applicable, it was found more convenient to
compare experimental slopes for different values of column Péclet
number N. ' .' -

For the random-walk model, the dimensionless slope s can be

converted to a column Peclet number by the relation
4Trs - 0,80 - (3)
as derived in Appendlx II-1. For the segmen’ced lamlnar ﬂow model,

the column Péclet number was obtained from a graph giving the
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theoretical slopes for different values of N (Fig. I1I-14). Finally, the
" packing Péclét number (P) is obtained by multiplying column Péclet

number (N) by the ratio of packing diameter to column height (dp/h).

D. Results and Discussion

The variables affecting axial mixing which were investigated
.were viscosity, column length, packing characteristics, and liquid ve-
locity. As indicated above, the experimental breakthrough curve can
be analyzed either by curve matching on logarithmic time coordinates,
or by taking the midpoint slope on linear t/t50 coordinates. Figure
II-15 is a plot of data from both injection and purging breakthrough steps
of a run in Column 2 at a Reynolds number of 31.4, matched to the ran-
dom-walk model with .N = 24 and to the segmented-laminar-flow (quartic)
model with N = 18. The method of data analysis is discussed in de-
tail in Appendix II-2.

Full results as obtained from 60 run conditions (approximately
400 separate breakthrough curves) are tabulated in Appendix II-3. A
separate table is given for each column; within each table, for the dif-
ferent flow rates used, values are listed for Reynolds number, mid-
point slope, and the number of mixing units N and the Péclet number

for each theoretical model used.,

" 1. Effects of Viscosity and Velocity

To study the effect of varying the viscosity, breakthrough curves
were measured in three different columns; numbers 2, 5, and 7.
Aqueous solutions of glycérol were used to obtain a kinematic viscosity
of 5 to 6 centistokes. In Fig. II-16 the results are given and compared
with those obtained from pure water (v = 1.0 centistokes) under the same
| experimental conditions. All runs were made at ambient temperature,
68+ 2°F. The figur‘e shows that for the viscosity range considered,
there is a definite variation in axial dispersion as the velocity changes.
The Péclet number for pure water and for water-glycerol solution are-

found to be equal for the same Reynolds number.
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2. Effects of Packing-Particle Characteristics

Various types of packing were investigated to determine the ef-
fects of particle shape and packing arrangement, as listed in Tables
II-I and II-II. Empirical shifting of the plots in Fig. II-15, and others,
has shown that the points can be consolidated into a single curve, pro-
vided the ordinate (Péclet number) is multiplied by the void-fraction e
to give

eP (=c¢ dp/i)

and the abscissa (Reynolds number) is divided by (l-¢) to give

Nge =(Uo dp) - " )
1-¢ (I-€)v
where v |
¢ = void fraction,
dp = particle diametéxf (quivalent spherical diameter for non-
spherical particles),
{4 = mixing length,
U0 = superficial velocity,
and

v

kinematic viscosity.

The dependence of axial rn{ixingupon the factor NRe/(l—e) was adoptidlo
from Carman's and Ergun's work on pressure drops in packed beds. ’
The factor (l-¢) relates the area per unit volume of particles to the area
per unit volume of packed bed. In Ergun's correlation the Reynolds num-
ber was not based upon the equivalent spherical diameter, as here, but
upon t}}e diameter (dp)a of a sphere with the same surface-to-volume
ratio as a packing particle. Quite possibly a more complex function of

¢ and of ¢ (the sphericity) is involved, which we were not able to de-
velop from data only on high-y- low=¢ packings and low-y high-e pack-
ings. In any event, the form of Reynolds number selected by Ergun and
Carman to bring together the pressure-drop data differs from the form

that we have needed to use in order to match the Péclet-number shifts

for different packings.
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3. Effect of Bed Length; Choice of Theoretical Model

A cru01a1 factor in determ1n1ng a long1tud1nal d1spers1on co-
4e£f1c1ent is the selection of the proper theoretical model for 1nterpret1ng
the- experimental data. ’

At least three experimental criteria are available for choosing
from among several diffefent theoretical models, in order to determine
which model provides the most accurate measure of dispersions be-
havior. These are:

(1) The shape of the experimental breakthrough curve, in re-
lation to the shapes predicted by the various models.

(2) Related to the shape criterion, the agreement between the
observed and the empirical stoichiometric times, (The empirical time
is obtained by matching the experimentél breakthrough curve to one of
a family of theorét.ical curves, with observation of the point on the actu-
al time scale that matches the stoichiometric point. given by the theory.)

(3) Constancy of the Péclet number, or mixing length, for dif-
ferent bed lengths. The different theoretical models all peostulate a con-
stant mixing length for the entire packing.

To measure the effect of the bed length, one column unit (Column
10, packed with 0.38-in. ceramic spheres in random arrangement) was
equipped with conductivity probes at its .center (12-in, level) as well as
~at the downstream end, Experiments in this column were conducted at
four different flowrates; the results are summarized in Tables II-III
and II-IV,

In Table II-IV the Péclet-number values in parentheses were
determined by the random-walk model; in the high-N region, these ap-
proach the values for the segmented-laminar-fiow model. The values
calculated from the random walk or bounded-diffusion model indicate
no effect of bed length, confifming the observations of other investi-

3

gators; whereas the values given by the segmented-laminar-flow

model do vary with the bed length.
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Table II-III. Effect ’6£ bed length; data analyzed
by the random-walk model

Flowrate: N N N P P

(gpm) “VRe  T993%m. IT=120n. T=23.6n. TL=1Z.0in.
0.3 9.6 36.2 15.5 0.595 0.526
0.5 16.3 36.3 17.3 , 0.605 0.586
1.0 32.0 46.3 23.4 0.774 0.794
2.0 64.0 61.0 31.4 1.020 1,040

Table II-IV. Effect of bed length;data analyzedby
the segmented-laminar-flow model (quartic)

Flowrate Npe N N P P
(gpm) . L=2361n. L=12.0 in.  T=23.% in. L=12.0 in.
0.3 9.6 34.9 8.5 0.576 0.288
0.5 16.3 35.0 10.0 0.579 0.339
1.0 32.0 (46.3) 17.3 (0.774) 0.585

2.0 64.0 (61.0) 29.0 (1.020) 0.980
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For the run plotted in Fig. II-15, both models represent the ex-
perimental data equally well for the range of X between 0.30 and 0.70;
outside this range, the experimental curve lies between the two theo-
retical predictions. Similar comparisons on other runs have shown
that there were curves where the segmented-laminar-flow model with
quartic velocity profile gave a better prediction of the experimental
curve shape than the random-walk model, for X between 0.1 and 0.9.

In all cases, however, the segmented-laminar-flow model predicted
stoichiometric times that were at least 10% higher than the ''exact''values.

This discrepancy, accompanied by the fact that the Péclet num-~
ber calculated by segmented-laminar-flow does depend upon column
_,Iength, indicates that the random-walk model is somewhat more satis-
factory even in the laminar-flow region. At the same time, the seg-
mented—laminar-‘flow model, based as it is on the fi_laméntal nature of
laminar flow in packed beds, should be viewed as a necessary step in
the development of a better understanding of axial-dispersion phenomena.
Its partial failure might be due fol' the velocity profile selected, and to

the particular methods it involves of averaging the broperties of the flow.

-4, Graphical Correlation of Results

ﬁsing the modified dimensionless parameters just discussed,
\x)e have vplqtted all the éxperimental points of the preseﬁt study (on
logarithmic coordinate's) in Fig. II-17. Our data clearly show the pre-
dicted laminar- and turbulent-flow regimes,with a well defined transition
‘region occurring,.for an ‘. NRe/(1=e) of from 25 to 1000. The data given
at high flowrates, for NRé/(l-e) about 700 (a.111d only these) arye from a
previous investigation in the same apparatus. Figure 18 shows the
data corresponding to the laminar-flow regime and part of the transition
region, for a 2-ft column length, analyzed by the segmented-laminar-
flow model with a quartic velocity profile, It is seen that the Péclet-
number values thus obtained are appreciably smaller-at low flowrates
than those given by the random-walk model, whereas at higher flowrates

they are more nearly equal. As already shown, however, the laminar-
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flow Péclet values obtained from the segmented-flow model appear to
depend upon column length. If points had been shown at different lengths,

it would not be possible to represent them by a single curve.

5. Comparison with Other Studies

a. Liquid phase. The experimental results of the present study

are compared in Fig. II-19 with the data of several earlier investi-
gations., Collectively these data confirm the presence of a transition
effect between lower and higher values of Reynolds number. Beyond
this generbal feature, the reproducibility of measurements within any
one study seems much better than its agreement with any other one.

Strang and Gea.nkopolis24 used a sinusoidal imput of dye, for
0.23-in. glass spheres and 0.27-in, Raschig rings in a 1.65-in. diam
column 22,5-in. in height.

Jacqﬁes' s da.ta14 are from a preliminary study using the pres-
ently described apparatus. Subsequent to that study, improvements
were made in both the recording and the injection systems, and the
tracer-concentration level was greatly reduced.

Cairns and Prausnitz used 0.125-in., glass spheres in a column
2,0 in. in diam and 24 in. high, 3 A step-function input was selected
with upward injection of NaNO3 tracer solution, and purging-step curves
were used for the analysis,

Ebach and White used sinusoidal injection and also pulse injec-
tion in a Z;O—ijao -diam column 2.0 to 5.0 ft high, with glass spheres
0.0083, 0.04, 0.13, or 0.27 in. in diam and 0.25-in (nominal) Raschig
rings, Berl saddles, and Intalox saddles. 9

Carberry and Bretton used pulse injection of dye tracer in a
1.5-in.~ diam column at various bed lengths, with spheres ranging from
0.02 to 0.20-in. in diam, 0.08-in. doughnut rings, and 0.25-in, Raschig
rings. |

- To compare these experiments, a number of possible sources

of error must be kept in mind:
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-130-

(1) Hydrodynamic instability

(2) Adsorption of tracer on particle surfaces

(3) Instrument lags

(4) Injection end effects

(5) Flow irregularities in tracer-injection system

(6) Column wall effect and other channeling.

A possibility exists that the correct plotting functions have not
yet been found, and that the different curves of Fig. II-19 are in better
agreement than this plot indicates. However, it would be difficult to
“reconcile the different results for small glass spheres on any such
basis. '

The present results were obtained on the largest particles used
in ahy study. Wall effects could have occurred in the randomly packed
columns, but not in the ordered ones (Columns 1, 2, and 6). Injection
end effects could occur; but both the close agreement of the stoichio-
metric times observed from the input and the output, and the good
agreement between 1-ft and 2-ft column lengths, suggest that such end
effects are minimal. The possibility of hydrodynamic instability, which
clearly interfered with our reproducibility at higher tracer-concentra-
tion levels, has been almost entirely excluded,byfhe agreement be-

tween injection and purging runs for both upflow and downflow operation.

b. Gas phase. McHenry and Wilhelm have reported the only thorough
study of gas-phase longitudinal dispersion in packed beds, with sinu-
soidalinput of hydrogen or ethylene into a nitrogen stream. 18 Their
measurements were made with 0,127-in, glass spheres in a column
1.94.in. in diam, with several different bed heights. With some evi-
dence for a dip at Nl':{e = 250, their data led to a P value of 1.,88+0.15
or a ¢ P value of 0.73£0.06 over the range of Npe from 20 to 1000.
Carberry and Bretton reported a few values for helium tracer in air in
the fine-particle low-flowrate region, > Taken together, these results
indicate that the gas-phase Péclet-number values are essentially the
same in the turbulent and the laminar regimes, but that at sufficiently

low Reynolds numbers molecular diffusion predominates and causes the

Péclet number to decline.
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As already noted, the liquid-phase values from both this and
other investigations tend to join McHenry's gas-phase data in the tur-
bulent region, but then decrease to a.level one-fourth to one-third of
this value in the laminar region. It appears likely that, in gas-phase
laminar flow, lateral molecular diffusion in the void spaces compen-
sates for the segregation due to velocity distribution, and maintains the
individual voids in an almost entirely mixed condition.

Figure II-20 has been drawn to examine and illustrate the logical
consequences of this assumption. Except for axial molecular diffusion,
the range of possible modified Péclet numbers appears to be bounded by
a segregated-flow value of 0.202 and a void-cell-mixing value of 0.75.
A justification for the upper limit to P will be given shortly. Thus,

.the actual gas-phase behavior is indicated by-dashed lines, and liquid
‘behavior is indicated by solid lines.

G.I. Taylor has shown for laminar flow inside pipes that the
segregation of residence times (resulting from the velocity profile)
can be represented by an effective axial-dispersion ('"Taylor-diffusion')
coefficient. 25 As radial dispersion becomes appreciable, it serves to
reduce the apparent axial coefficient; for this region, in a.tube of di-
ameter dt’ in which the average fluid velocity is U, the longitudinal-
dispersion coefficient is E and the molecular-diffusion coefficient is

D, Taylor derived the relation

E 1 t ] (5)

For a column randomly packed with spheres we may assume a "tube"
diameter equal to half the particle diameter. Then, with ¢ = 0.40, we
have
E .1 %% (6)
Wp 123 "D

where UO is the superficial velocity ( = Ue). Introduction of the di-

mensionless groups,
UOd
Procp- 0P, (7)
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N! __NRe= UOdp o o (8)
Re (l-¢) v({l-¢)’

and NSc = V/D, provideg the relation
205 ' . .. )
. (9)
]
NScNRe ’

.PI =

Thus, for any glven Schmidt number, reduc1ng the Reynolds number
should eventually increase the Péclet number from the lower curve to
the upper curve. The lines of constant NSc rising from right to left
‘correspond to the behavior indicated by Eq. (9). With gases, having
Ng = 1, the rising curves are intersected almost before the fully tur-
bulent region is departed from (McHenry's curve does show a relatively
narrow dip at N}" = 250 of perhaps 15%).

With liquids, the rising curves apparently are not reached with-
in the usual range of chemical engineering measurements, i.e., at
Ni{e values of 1 and greater. Raimondi et al. used pulse injection of
radioactive tracer in a 1.22-in. -diam column 35.4 in. high, with glass
beads 0. 0045, 0.0214 and 0.0256 in. in diameter, 2l Their data led to
‘a P value of 1.45%0.2 (or ¢P of 0. 57540, 07) over the range of NRe
from 0.015 to 0.28. Although this Péclet number value is lower than
the upper limit (or P! = 0.75), which might be caused by channeling,
it is much higher than the lower limit (P'= 0.2).' This one éxpe.rimen«
tal finding is in favor of the idea that Taylor diffusion can cause a rise
in the Péclet ﬁumber for liquids at NI'{eb< 1. The teason that P values
seem not to exceed the values found by McHenry and Wilhelm may be
that the local velocities are always much higher in the chanﬁels be-
tween the voids than within the voids. Within each void, both axial and
tra.nsverse molecular diffusion occur at comparable rates, so that the
v01d is reconverted to a near-perfect m1x1ng cell.

At very low flowratesv, molec_ula.r d1ffusu_>n in the_axial direc-
tion becomes predominant This effect is indicéte»d by'the lines of con-
Sc that fall off to the left in Fig. II-20. In this region, the

axial- d1sperS1on coefflc1ent E must be multlphed by the por031ty to

stant N
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obtain the coefficient of static. diffusion Fin a porous medium. 6 In ;
turn,og/ls related to the coeff1c1ent of molecular dlffu51on, in the ab- o
sence of the porous medium, by the relation B//D = e/,,/_, the factor

A/ 2 is commonly adopted to represent the tortuosity of a packed bed.

Thus, for low flowrates, where the molecular diffusion becomes im-

portant, E will be replaced by D/,/2 and the modified Péclet num-

ber P' will be given by -

v = =, 2 [ o )
P ( ‘ U, dp/E) v/ Uy dp/D c | (10)
The same definitions for Ni{e and ’NSC as above give the relation
I . ‘ { ;
P! =0.85 Ng_ Np_ . : (11)

The gas- phase data of Carberry and Bretton fall in the range of molec-

ular-diffusion curves shown here.

‘E. Conclusions

The experlmental results from this 1nvest1gat10n lead to the fol-

‘ 1ow1ng conclus1ons

(2a) The data show separate constant values for the Péclet num-
‘ber in the laminar and in the turbulent region, and the ex1stence of a
fairly sharp transition curve between these two regions.
(b) The segmented laminar-flow model, der_ived to provide a
physical model for laminar.—fIO\;v conditions, was found to give a poorer
fit to experimental data under such conditions than the random-walk
model. | v _ v
(c) Experi.ments using water-glycerol solutions indicate that
viscosity has a 1arge effect on axial dispersion over the range investi- .
gated. The Péclet numbers for pure anter and for water-glycerol solu-
tionhs‘avre found ’to' be equal for the same Re_Yr;olds number, -
(d) Axial Péclet numbers rﬁay be cofre'lated as a function of
Dofosity and of Reynoids nurn'be-r A plot of modified Péclet number
(e PYvs amodified Reynolds number N /(l €), shown in Fig. I1I-17,

applies to the whole range of exper1menta1 results.
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(e) No effect of packing arrangement was observed in this study;
regular-and random packing give identical results for the same porosityo

(f} An elementary derivation shows that thev‘_difference between
gas and liquid Péclet numbers (in laminar-flow conditions) can be ex-
plained by molecular diffusion in the pacrkin.g void spaces. At quite low

N axial molecular diffusion causes P to decrease.

Re’
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-.F.  Notation for Part II.. . Cy

Surfacearea per unit volume =~
" ‘Concentration =~ o

‘Conceéntration for ’perfe'ct mixing

Particle diameter -

Equivalent diameter [defiﬁed .b.y Eq. (2)]

Equivalent hydraulic diameter

Equivalent spherical diameter | defined by Eq. (1)]
Tube diameter

Molecular diffusivity
Effective diffusivity within a packed bed

Superficial dispersion coefficient

- Height of bed

Mixing length
Column Péclet number (h/li)

Schmidt number

‘Reynolds number

Modified:Reynolds number | NRe/(l-e )]

Periphery of packing
Packing Péclet number: (dp/E)
Medified Péclet number {¢P)

- Midpoint slope (based on O scale)
Midpoint slope of breakthrough curve (based on t/t50 scale)

Midpoint slope (equals [ N/(N+1)] - s)
Time

Time corresponding to X equals 0.5
Dimensionless time

Intersticial velocity or mean linear velocity
Superficial velocity, equals Ue

Dimensionless concentration (c/co)
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Correction factor to N calculation based on midpoint slope

.Bed void fraction

Dimensionless time T/N

Kinematic viscosity

~Sphericity
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19.
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Appendixes for Part II .

II-1. Computation from Experimental Midpoint' Slopes
(Using the Random-Walk Model)

- Once:the applicability of the random-walk model has been as-

‘certained for any given breakthrough curve by matching its entire shape

to.the:shapes given by the model, the most convenient and often the most

accurate method for evaluating the Péclet groupis to measure the slope
/

ata.well defined point.

-~ The: random-walk model describes the breakthrough curves by

‘thevt,e’xpre}ssion' : C B L T
T .

X = gc—=/ exp(-N-T"') IO(ZVNAT"‘)d,T’ - (1)
0

- Differentiating Eq. (1) with respect to a time sc_al.e‘l _ T/N gives_ for the

"~ dimensionless slopes

e 8X D d S K
o R : Co
St =TT N)_NKHT'> (2)
and
IO(Z.,/NT') :
st= N . ; (3)
exp{s/N -4/ T'") exp(2,/NT")
a different slope can be defined as
_ 98X _ N+l g n o (4)

s=38° N "
where O = T/N., It is not possible to determine directly the T or T'
for which X = 0.5, Trial-and-error determinations were therefore
performed on the computer; the results are presented in Table I-IX
of Part I. It is found empirically that the following relation holds be-
] N
tween (T )X=O°5 and N:

(T')g_ o 5 = N +0.50 (5)

which can be used in subsequent calculations. A simple form for the
slope at this T' can be obtained by using infinite-series expressions

for the various terms in Eq. (3).
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2,/NTV
IO(Z /NT!) = - € 172 <1 + 1 l/fz.'. 9 ' +>
W/ T(NT') 16(NT!') 512(NT")

(6)

From known algebraic expansions, using Eq. (5), it can be shown that

-1
[exp(/N - //TT)? ] =I'T61W+5_29_2'°'° (7
12N
and / /
-1/4 -1/2 1 5
(NT') = N <1‘—+_‘Z""> (8)
| 8N © 128 N

Substitution in Eq. (3) leads to

w_ N <,1_ 1, _7 _) (9)
y Zﬁ 8N 2 -

128N
As it is not possible to determinewthe location of the point T' = N from

the data without resorting to trial and error, it is convenient to meas-

ure a slope s' with reference to a time scale t/t50:

dX T'(X=0.5)
- = "
7 N st (10)
and 0 '
o (et L g e )
2,/m 128N
This last equation gives a simple relation for computing N from the
slope s':
N = 41T(s')2/[3
3 1
B - <1 + - + e " ) «
SN 128N°

For convenience a plot of - B—.l versus 4m(s' )2 is given in Fig. II-21.
A good approximation to the exact relations is given by
N = 411(5')2 - A

> : (13)
4m(s')” - 0.80 .

0
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Fig. II—_;Zi'. Midpbipt-siope correction factor.
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At N=1, A=0.809; at N=5; A'=0.778; and in the upper limit
A = 0.750. Equation (13) is therefore quite useful in analyzing experi-

mental breakthrough curves by the random-walk model.
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II-2.  Sample Calculation

The Callcﬁlé.tiOn method used will be demonstrated with the data

from a .run (Run'4-12) in ‘Column 2 (3/4 in. spheres - orthorhombic-1;

= 38%; flowrate 0.51 gal/min). The data from the recorder chart,
and the calculations made on the breakthrough curve, are given in
Table II-V. The calculations are made for both ''salt-in'' and '"salt-out"
breakthrough curves. A plot of the concentration (in percent) vs the
ratio of the elapsed time to the time at the 50% concentration point is
shown in Fig. II-22, From the slope (s'), taken at t/t50 = 1, the

Péclet number is calculated by the relation

2
p— ] o
NRW = 4ms = 0,80
and

dp
P :TN

RW RW '’

where _dp is the packing diameter and h is the height of the bed (dis-
tance between the injection plane and the plane of measurement). For
the represented run s' = 1.41, Npw = 24.3 and PRW = 0.790,

The analysis of the data by the segmented laminar-flow model
is made on a modified semilog plot (X vs ©); the advantage in this plot
is that one can compare entire curves. Due to the nature of the loga-
rithmic abscissa scale, the comparison can be made by sliding the ex-
perimental curve horizontally over master plots giving the breakthrough
curves for the different models. A plot showing the experimental curve
with the best match from the random-walk and the segmented-laminar-
flow models, is given in Fig. II-16. For this particular run NSLF=18.5
-and PSLF_O 602,

The experimental breakthrough curve is plotted on a t/t50 scale,
and thus the theoretical stoichiometric point and the exper1menta1
stoichiometric points for the two models (@RW =1 and @SLF=1) occur
beyond 't/t50 = 1. For this column, the theoretical stoichiometric
point, equal to the ratio of column void-volume ( = cross section
X height X porosity = 1.246 gal) to volumetric flowrate (0.51 gpm), is
2.44 min.



-145-

Table II-V. Sample calculations of an experimental breakthrough curve

Injection at top of column, Re
Concentration of tracer = 0.05 N Na.NO3.
Amount of tracer = 2 volume %.

Tracer in Tracer out
Recorder breakthrough C Recorder breakthrough C
C -C

a . 0
Cc t(sec) C/CO(%) t/t50 C,-C t(sec) <, % t/t50
0 0 0 0 0 0 0 0
0.4 92.1 7.7 0.686 0.3 82.5 5.8 0.632
0.9 103.2 17.3 0.768 0.8 100.9 15.4 0.772
1.4 111.9 26,9 0.832 1.3 110.0 25.0 0.842
1.9 121.5 36.5 0.904 1.8 117.8 34.6 0.901
2.4 130.5 46.2 0.971 2.3 125.2 44.2 0.960
2.6 134.5 50.0 1.000 2,6 131.0 . 50.0 1.000
2.9 139.7 55.8 1.039 2.8 134.5 53.8 1.029
3.4 148.9 65.4 1.107 3.3 144.0 63.5 1.103
3.9 162.0 75.0 1.207 3.8 157.0 73.1 1.202
4.4 179.0 84.6 1.332 4.3 174.0 82.7 1.331
4.9 203.0 94.2 1.507 4.8 204.0 92,3 1.562
5.2 oo 100 o0 5.2 e 100 &)

2Concentration given in recorder chart units,
Conditions:

Column 2, orthorhombic-2, ¢ = 38%.
Flowrate = 0.51 gal/min (N, = 31.4).




X (dimensionless concentration)
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1.O—— T T T m I l
Column 2 (Orthorhombic - 1)
.Flow=0,5! gal/min -
0.8 Alnjection
¢ Purging

.6 ‘=14l -
C.4+ —
0.2} —

) ] ] - | l ] 1

O 02 04 06 08 1.0 1.2 1.4 1.6

Relative time (t/tg,)
MU-30178

Fig. II-22. Dimensionless breakthrough curve.



II-3. Experimental Data
A. Column 1: 0.75-in. Spheres; Tetragonal Arrangement; Porosity 3_2‘70;Sing1¢-Phase, Water

Re Random-walk Segmented laminar flow
Flow- NRe T Slope N B B gN =B B No. of
rate measurements
(gal/min)

“ 0.1 6.2 9.2 1.29 19.6 0.6200.205 11.2  0.354 0.117 8
0.2 12.3 18.4 1.28 19.7 0.629 0.209 11.3 0.360 0.119 8
0.3 18.4 27.6 1.48 27.8 0.890 0.297 21.0 0.666 0.220 10
0.51 31.4 46.8 1.59 30.7 0.976 0.322 22.0 0.697 0.230 10
1.0 61.5 91.8 1.78 38.9 1,240 0.411 37.0 1.180 0.391 10
2.0 123.0 183.5 2.04 51.3 1.631 0.544 6
3.0 184.5 275.3 2,24 62.1 1,980 0.653 6
4,86 298.8 446.0 2.22 60.9 1,935 0.639 6

-L¥1-




B. Column 2: 0,75-in. Spheres; Orthorhombic Arrangement; Porosity 38%; vSir-lgle-Phase, Water

_ N , IR ;
Re : Random-walk . Segmented laminar flow

Flow- NRe - Slope N =2 B 1% =) B No. of
rate-- - - - : . measurements
('ga'l_/min.)

0.1 . 6.2 9.9 1.15 16.0 0.5200.198 . 9.0 0.293  0.112 7

0.2 12.3 19.8 1.19 16.9 0.550 0.209 9.7 0.315 0.120 9

0.3 - 18.4 - 29.7 1.24 18.6 -0.606 0.231 - 11.2 0.364 0.138 - 8

0.51 31.4 50.6 - 1.41 24.3 0.790 0.301 18.5 0.602 0.229 6

1.0 61.5 99.2 1.68 34,8 1.135 0.431 33.0 1.074 0.608 6

2.0 123.0 198.3 1.85 42.2 1.380.0.525 6

3.0 184.5 297.5 2.03 51.20 1.665 0.631 6

4,86 298.8 481.9 2.08 53.8 1.755 0.668 6

“8%1-




C. Column 2: 0.75-in. Spheres; Orthorhombic Arrangement;
' Porosity 38%; Single-Phase, Water-Glycerol

- : Re Random-walk Segmented laminar flow
Flow- NRe Toc Slope N B B lg\l = =L No. of
rate measurements
(gal/min) ' :
0.31 3.2 5.2 1.17° 16.3 0.532 0.202 9.0 0.294 0.111 6
0.55 5.6 9.0 1.17 16.3 0.532 0.202 9.0 0.294 0.111 8
1.0 10.3 16.6 1.18 16.5 0.546 0.207 9.2 0.300 0.114 6
1.43 14,7 23.8 1.22 17.8 0.580 0.220 10.6 0.346 0.131 6
1.93 19.8 32.0 1.31 20.8 0.680 0.258 13.0 0.425 0.162 6
2.85 29.0 46,9 1.55 29,1 0.915 0.348 6
4.7 48.3 78.0 1.63 32,5 1.120 0.425 4
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D. Column 5: 0.75-in.

Spheres; Random Arrangement; Porosity 41.2%; Single-Phase, Water

; Re Random-walk Segmented laminar flow

Flow- NRe - Slope N B B Ig\I =) B No. of
rate : measurements
(gal/min) ‘ o R

0.3 18.4 30.8 1.21 17.5 0.525 0,216 11.0 ~ 0.330 0.136 6

0.51 31.4 52,4 1.40 23.8 0,714 0.294 18.0 0.540 0.223 . . 8

1.0 61.5 102.2 1.68 34.6 1.038 0.415 33.0 0.99 0.396 6

2.0 123.0 205.0 1.94: 46,4 1.390 0.572 : S 6

3.0 184.5 308.0 2.06 52.2 1.570 0.645 6

-0g1-



E. Column 5: 0.75-in. Spheres; Random Arrangements;
Porosity 41.2%; Single-Phase, Water-Glycerol '

L N . .

Lo Re Random-walk Segmented laminar flow
Flow- Npe — Slope - 1 1g\1 5 5 No. of
rate . measurements
(gal/min) '

1.0 10.2 17.0 1.21 17.0 0.510 0.210 9.5 0.284 0.117 6

2,85 29.1 48.5 1.42 24,4 0,730 0.306 18.8 -~ 0.56 0.231 4

4.7 47,9 80.0 1.65 33.2 0.993 0.398 28.1 0.840 0.346 4

F. Column 6: 0.75-in, Spheres; Orthorhombic-2 Arrangement; Porosity 39.5%; Single-Phase, Water

N .
Flow- NRe lie Slope 1E\?a.ndor;;l wall;)' Selg\]mented;arnmarpﬂlow No. of
rate measurements
(gal/min)
0.3 18.3 30.2 1.26 19.2 0.606 0.238 12.0 0.376 0.149 6
0.51 26.8 44,3 1.46 26.1 0.819 0.324 18.5 0.580 0.229 6
1.0 52.6 86.9 1.68 34.8 1.086 0.429 31.5 0.985 0.389 6

i 0



G. Column 7:

0.75-in, Raschig Rings;*Random Arrangement; Porosity 64.8%; Single-Phase, Water

N
Re Random-walk Segmented laminar flow
Flow- Npe T—< Slope N 5 B gN = B No. of
rate : measurements
(gal/min)
0.3 16.5 46.8 1.19 16.1 0.487 0.316 10.1 0.275 0.178 8
0.51 28.1 76.6 1.32 20.9 0.603 0.392 15.3 0.416 0.269 14
1.0 55.0 156.1 1.50 27.50 0.792 0.514 25,2 0.685 0.445 10
2.0 110.0 312.1 1.65 33.4 0.961 0.622 32.0 0.870 0.564 8
3.0 165.1 468.2 1.71 35.91 1,032 0.671 6
4.86 267.4 758.5 1.76 38.101.100 0.710 6

I

FEquivalent-volume sphere diam , 0.68 in.

281~




H. Column 7: 0.75-in. Raschig Rings;*Random Arrangement;
Porosity 64.75%; Single-Phase, Water-Glycerol
‘ NRe Random-walk Segmented laminar flow

Flow- Npe T—¢ Slope N B B R T B No. of
rate measurements
(gal/min)

0.32 2.9 8.2 1.02 11.5 0.313 0.202 6.0 0.163 0.106 6

0.54 5.0 14,2 1.02 11.5 0.313 0.202 6.0 0.163 0.106 6

1.0 9.2 26.1 1.15 15,6 0.450 0.292 8.4 0.228 0.148 8

1.93 17.8 50.5 1.20 17.3 0.499 0.324 11.0 0.299 0.195 8

2,85 26,2 74.4 1.31 20.2 0.574 0.379 15.3 0.418 0.272 4

4.7 43.2 122.8 1.414 24,3 0.701 0.455 4

“Equivalent-volume sphere diam , 0.68 in.

R



I. Column 9: 1l-in. Berl Sa.ddlesz:< Random Arrangement; Porosity 68.6%; Single;Phase, Water

N
Re Random-walk Segmented laminar flow
Flow- NRe o< Slope N B B lg\I = B No. of
rate measurements
(gal/min)
0.3 18.4 58.8 1.22 17.7 0.537 0.368 11.2 0.340 0.233 10
0.51 31.4 99.9 1.36 22,2 0.675 0.463 17.3 0.525 0.360 6
1.0 61.5 195.8 1.52 28.2 0.858 0.588 25.0 0.758 0.521 8
2.0 123.0 391.7 1.62 32.4 0.985 0.676 30.1 0.945 0.646 4
3.0 184.5 587.5 1.70 35,7 1.085 0.744 ' 4
4,86 299.9 951.7 1.73 36,5 ‘1.111 0.764 4

Equivalent-volume sphere diam , 0.76 in.

“ySl1-



%k
J. Column 10: 0.38-in. Spheres; Random Arrangement; Porosity 42%; Single-Phase, Water

Flow- N NRe Mlscizglent Random-walk Segmented laminar flow No. of
Re 1-¢ N P P! N P P!
rate measurements
(gal/min)
Column height; 23.7-in.
0.3 9.6 16.6 1.72 36,20 0.595 0.252 .34.9 0.576 0.240 6
0.51 16.3 28,1 1.73 36.3 0.605 0.254 35.0 ° 0.579 0.243 6
1.0 32,0 55.3 1.94 46.3 0.774 0.325 (46.3) (0.774) (0.325) 6
2.0 64.0 110.5 2.22 61.0 1.020 0.428 (61.0) (1.020) (0.428) 6
Column height; 12.0-in.
0.3 9.6 16.6 1.14 15.5 0.526 0.221 - 8.5 0.288  0.121 8
0.51 16.3 28.1 1.20 17.3 0.586 0.246 10.0 0.339 0.142 6
1.0 32.0 55.3 1.39 23.4 0.794 0.333 17.3 0.585 0.244. 6
2.0 64.0 110.5 1.60 31.4 1.040 0.437 29.0 0.980 ‘0.410 8

%
':Equivalent-volume sphere diam , 0.76 in.

-GG~
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Summary of Jacques's Data for High Flow Rates

N NRe

Column Packing description Re I P P!
No. - €
1 Tetragonal (0.75-in. spheres) 646 950 2.442 (0.781
€ = 0.32 1940 2853 2.448 0.783
2 Orthorhombic-1 (0.75-in. 646 1042 1.893 0.719
spheres) € = 0.38 1940 3129 1.881 0.715
4 Random (0.25-in. polyethylene
pellets) ¢ = 0.35 528 812 2.082 0.729
5 Randoin (0.75-in. spheres) 646 1099 1.838 0.757
e = 0.412 1940 3299 1.858 0.765
6 Orthorhombic-2 (0.75-in, 646 1068 1.885 (.745
spheres) € = 0.395 1940 3207 1.903 0.752
7 Random (0.75-in

Raschig rings) ¢ =0.648 560 1.591 0.909 0.589
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PART III. LONGITUDINAL DISPERSION IN
COUNTERCURRENT LIQUID FLOW

A. _,Introduction

The usual textbook method for designing a packed extraction
column, as introducéd by Colburn, involves computing the number of
transfer units (NTU) required to bring about a given extraction, and
multiplying this number by a height factor (the HTU) determined from
direct or indirect experience. ! For extraction columns, the HTU
values vary widely with the physical properties of the two phases, the
nature and amount of solute, and rates of flow, making it necessary to
obtain very specific data for the contemplated design. . Numerous experi-
mental studies have been conducted to measure effective mass-transfer
coefficients and HTU's in extraction columns; these have been reviewed
by Elgin and Wynkoop4 by Treybal, 13 and by Vermeulen et al. L

The mathematical definition of HTU is based upon a piston-
flow model for each of the two counterflowing phases. The actual
phases would appear to be far from homogeneo{ls at any one cross-sec-
tion, and the cofnplex flow behavior within the packing would seem to
produce considerable 'back mixing' within each phase. For systems
with still more evident internal mixing, such as multicompartment
agitated rea.ctors18 and pulsed extraction columns, 16 longitudinal dis-
persion is known to control the performance.

' The phenomenon of axial mixing or longitudinal dispersion arises
from the fact that a molecular-scale '"packet! of fluid does not move
through a bed at a constant velocity, nor usually at the same local ve-
locity as other packets passing a given point. These fluctuations appear
to result from (a) separation of the flow into filaments taking different
paths through the packing, and (b) eddy motion of the fluid. The former
appears to be more characteristic of a laminar-flow regime, and the
latter is probably more characteristic of turbulent flow, but the possi-
bility also exists of the two effects occurring together.

Longitudinal dispersion in an extraction column has the effect

of reducing the driving potential for mass-transfer substantially, so
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that a longer column (for any given mass-transfer coefficient) is re-
quired to produce the same overall separation. It thus becomes evi-
dent that any design correlation of mass-transfer coefficients or HTU
values should account separately for longitudinal dispersion rather than
~submerge its effect into apparent mass-transfer behavior. Mathematical
relations have been developed for this purpose which are described be-
low. Therefore, the present investigation was conducted to measure
the longitudinal-dispersion coefficien;cs in counferflowirig ligquid-liquid
~systems (in the absence of actual extracfion), in ordér to provide the
numerical pérameters needed for both interpretation and design of
steady«»staté extraction operations in packed beds.- Measurements have
been made for both the continuous and the dispersed phase, with sep-
arate results for the latter in the cases where it does or does not wet

the packing material,

1. Mathematical Treatment

A diffusion model for describing the influence of longitudinal
dispersion in countercurrent systems undergoing mass transfer between
the phases has been developed by Miyauchilo and Sleicher. 12 The dis-
persion effect for each phase is described by an effective longitudinal
diffusivity E.. The basic equations obtained by material balance in a
differential slice of the column, for the X phase and Y phase re-

spectively, are

dZC /dZZ-vPBdC /dZ - N P B(C_-mC_)=0 (1)
x X X oxX X X Yy
and
2 2
d°C /dz" + P BdC /dZ + N_ P B(C_-mC )=0 (2
Y/ y y/ OYY(X Y) (2)

~with the boundary conditions:
at Z=0, dC_/dz =P_B(l1-C_)
X X X0
and dcy/dZ =0 ;
at Z=1, dC /dZ =0
Y ' 1

and dC /dZ = P B(C - C7);
Y/ Y(Yl, Y)
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where:
= Uidp/Ei’ Péclet number of ith phase,
h/dp = dimensionless length,

= column height,

ar oWy
I

= particle diameter,

dimensionless length va.ria.ble‘, ranging from zero at the

N"U
il

X-feed end to unity at the Y-feed end of the column,

. C = dimensionless concentration in the i phase measured
at a point Z expressed relative to X-feed concen-
tration. The number accompanying C, if a subscript,
is the Z value inside the column; if it is a super-
script (0 or1l), it is the Z wvalue in the feed or
product stream outside the columns,

3 - - >;<
= slope of equilibrium curve, d.CX/dCy,

oi = True overall number of transfer units for the ith phase,

N = AN __,
oy ox
m(UO)x
A = ———w" = extraction factor,
To)
y
U, = mean linear velocity of the ith phase,
and

(U0 )i' = superficial velocity of the ith phase.

Equations (1) and (2) are differential equations of the second
order with constant coefficients. Their solution, obtained by differen-
tiation and subsequent integration of a single fourth-order equation,
gives the concentration of any point inside the column. 10 Figure III-1
shows representative behavior of the concentration_;;ofiles in an ex-
tractor, for piston flow (broken lines) and for axial dispersion (solid
lines). The decrease in driving force due to axial mixing is shown by
the arrows. Graphical and tabular results corresponding to the solution
of Egs. (1) and (2) have been provided by McMullen, Miyauchi and

8,9

*Vermeulen. The solutions are obtained in the form
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4
it

X(N _,A,P.B, B B, Z) (3)
oX X y

and

Y =Y(N,.A PB, PB,2). ‘ (4)

The outlet concentrations are, at Z = 1,

1
C 1-(Q+mCy)

X, = — . (5)
1-(Q+ mC)
y
and,a.t Z =0,
'm(c -cl)
Y = 2 YL - (6)
° 1-(Q+mCy

Here Q 1is the intercept of a linear-equilibrium plot,

*
CX =Q+ mCY . (7)
Ideally one should be able to establish the value of any one parameter
from a knowledge of the other parameters. The practical use of Egs. (3)
and (4) has been facilitated by the derivation of several empirical rela-
tions between the different parameters; ? An apparent NTU, as given

from Underwood's result, 14 has been defined as

: - 1 - A(1-X))
NoxP R in Xl . (8)

The subscript P indicates that the definition stems from a 'piston-

flow'" model.  The true NTU can be related to the apparent NTU by

a difference in reciprocals:

- = . (9)

He;’e NoxD is related to PxB and PyB by an approximate empirical

equation

1 A 1
- = + ’ (10)
mA/B-T) LPB 'TPB

N’oxD -
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where fX and f are weighting factors which are functions of Nox

Yy
and &K.9 At R = 1, the term (dn A)/(A-1) reduces to unity, and
f =1
X Yy
out any of the following calculations:

1. By the use of these relations, it should be possible to carry

1

(1) From an experimental Xl’ and experimental PXB and
P B, to determine the true N __ .
y ox
(2) From an experimental Xl’ and a correlational Nox’ to de-~
termine an experimental NoxD .
(3) From experimental or correlational PxB’ P B, and N_.

values, to predict the X1 value for a column to be designed or operated.

2. Analysis of Experimental Data

The column Péclet-number values (PiB) for the individual phases
can be determined independently of any extraction operation by use of
tracer techniques for unsteady-state flow, Such methods involve the
injection of a tracer into one phase, the tracer being insoluble in the
other phase. . Similarly to the ''one-phase'’ study,a step input of salt
solution was used as a tracer and a breakthrough curve was obtained
by conductivity measurements. The resulting breakthrough curve is
related to the dispersion coefficient by a suitable mathematical model.
Van de Vusse has shown that the diffusion model is applicable to both
continuous and discontinuous phases. 15 For convenience we analyzed
our data by the random-walk model, which as we have shown (Part I)
is equivalent to the diffusion model with finite boundaries. An alternate
model, that of segmented laminar flow, was not used because it was
found to fit more poorly than random walk or diffusion in the single-
phase studies (Part II).

Based on the random-walk model, Péclet numbers were obtained

by comparing the experimental curve with theoretical ones on semilog

coordinates,or by applying the simple relation

N = 4m(s')2 - 0.80, (11)

~where s' is the midpoint slope measured on a t/t50 time scale -(see

Part II).
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B. Apparatus and Procedure

1. Columns

Nine different columns were used for'the investigations, three
with ordered packings and octagonal or hexagonal cross-sections and
six with random packings and circular or octagonal cross-sections. The
column dimensions are given in Table III-I and described in more de-

tail in Part II.

2. Conductivity Cells

Conductivity was used to determine the breakthrough curve for
the aqueous phase. When water is the continuous phase, the conductivity
cells were the same as those used for single phase experiments; they
were constructed of two spherical sections of 3.4-in. Bakelite spheres,
connected by a pair of rhodium-plated pins. . When the aqueous phase
was the disperséd one, the breakthrough curves were recorded by a
-special conductivity cell used by Dunn et al., 3 in their study of gas-ab-
sorption columns. A photograph of the cell used is shown in Fig. III-2,
_and a cross-sectional drawing in Fig. III-3. The conducting discontinuous
phase entered the sampler through the funnel-shaped top and left through
the post in the side. The probe was fixed just under the packed column
in the expanded column head. The conductance of the solution between
the pins.was determined by the same electronic equipment as the one

that is used in the continuous-phase and single-phase work (see Part II).

3.  Feed Nozzle

Special consideration was given to the nozzle through which the
discontinuous phase is introduced. Uniform drop size was desired in
order to achieve uniform drop rise or fall with minimum of coalescence
of the drops. According to Johnson and Bliss, velocity at the hole has
to be maintained between 1000 and 1500 ft/hr and a hole diameter of
0.10-in, seems to be the optimum. ! Consequently the distribution nozzle
was designed with a set of six removable plates, varying in number of

holes (from 37 to 169) to provide the wide range of flow rates required.



Table III-I. Discussions and packing of experimental columns

Column Packing deff {d )V Arrange- Fraction Sphericity Height for Height for Cross-
number (g) ment of voids continuous dispersed sectional
' (%) phase runs phase runs area (inZ)
? Spheres 0.75 0.75 Tetragonal 32.0 1.0 23.6 24.0 30.3
2a ' Spheres 0.75 0.75 Ortho 38.0 1.0 23.0 24.1 30.3
a rhombic-1
5 Spheres 0.75 0.75 Random 41,2 1.0 25.0 24.0 o307
62 ' Spheres 0.75 0.75 Ortho 39.5 " 1.0 24.0 25,2 30.6
rhombic-2
74 Ceramic rings 0.75 0.65 Random 64.8 0.42 23,6 24,0 30.7 .
9 Berl saddles 1.0 0.76 Random 68.6 0.33 25.0 25.0 . 30.7 —
10b Spheres 0,38 0.38 Random 42.0 0.95 25.0 24.0 30.7 o~
1P Ceramic rings 0.50 0.48 Random 62.0 0.54 24.0 24.0 30.7 S
12 . Carbon rings 0.75 0.72" Random .67.0 0.40 23,6 24.0 30.7 1

aPacki.ng used by Jacques5

bPacking used by Cotter®
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ZN-2876

Fig. III-2. Liquid conductivity cell,



~-166-

Teflon-coated wire

4

Teflon
Lucite
L g
- P %
13 z
© 9 | _
L . _/_  My 7 /»-éo,d. lucite tube
00935 diam g —f 2
rhodium- plated : ]
nickel pins
” \\ 1.025
0.0
935 \\\A\\\\\ I
| 8
1
Section A-A
MU -24352
Fig. III-3.

Cross-sectional drawing of a liquid-
conductivity cell.




-167-

Five of these had 0.10-in. -diam holes, while the sixth, for high flow-

rates, had 0.15-in. holes to avoid too. great a drop in pressure.

4, Liquid-Level Control

The interface could be maintained at the fop or bbttom of.the
packing, depending on whether the water phase. was continuous or dis-
persed. Two Teflon-covered nickel-rod probes were mounted in each
head section for this purpose, These probes were slightly staggered in
level to provide a neutral zone. Originally, they were connected to a
solenoidal ya.l‘ve or to the outlet water line, which was bypassed by a
manually a&justable gate valve., Later,.a single-speed floating control
was adapted, with all probes connected to a motorized-valve controller,
and the column grounded to complete the circuit. With this system, a
probe would . conduct when immersed.in the water phase. The outlet
water valve opened when both probes conducted and closed when neither

did.

5. Piping Arrangement

The organic phase (kerosene) and tracer solution were piped
from storage tanks with centrifugal pumps. Water was supplied from
a cons_tant%head tank, about 25 ft above the column, under gravity flow.
The incoming flows were manifolded and valved, so as to meter each
of them through the appropriate unit in a bank of six rotameters. The
organic phase was returned to the supply tanks through an overhead

line, and the water was drained to the sewer.
6. Start-Up

At the beginning of a run, continuous phase was allowed to fill
the column, and flow of the dispersed phase was then started. Experi-
mental measurements were made only when the interface was made
stationary by close adjustment of the outlet flow rates. This precaution
was essential for the following reasons. First, if the interface changes,
the flowrates in the column are different from those indicated by the
rotameters. Second, due to the level change, the outlet valve closes,
causing an abrupt change in the continuous-phase flowrate, which affects

the dispersion rates in both phases.
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7. Conductivity Measurements

a. Water as the continuous phase, When steady-state flow was

reached for both phases, a solution of sodium nitrate (0.1N) was in-
jected in an amount from 0.25 to 2.0 volume-percent of the water stream.
The starting time was noted by a"pip Sh' the strip-chart recorder. When
the breakthro‘ugh cﬁrve leveled off to a steady-state value, injection

was stopped, and a second strip-chart record was taken to measure the
purging of the tracer solution. The breakthfough curves recorded were
not as smooth as in single-phaée experiménts‘ because of the.interference
of droplets of the discontinuous organic phase in the conductance path;

these fluctuations were averaged out for Péclet-number computation,

b. Water discontinuous. For water dispersed, the breakthrough

curves were again measured by conductivity, using the special probe
described above. The same steps already outlined were taken to estab-
lish steady-state flow in the column, to set the liquid level below the new
conductivity probe, to inject the tracer, and to record the brea:kthrough
curves, As the organic phase was excluded from the intérior of this
probe, the curves were as smooth as in single-phase experiments,

All runs were made at an ambient temperature of 68+2°F, At
this temperature, the kerosene used had a viscosity of 2.46 ¢P and a

density of 0.820 g/cm3°

C. Results and Discussion

1. Continuous Phase

The results of measurements of longitudinal dispersion in the
continuous phase, using the methods just described, are shown in
Appendix III-1. . Related data taken by Ja.cques5 and Cotter, 6 which will
be used to obtain a generalized correlation, are also given in ‘Appendix
III-1. These tables report both the packing Péclet number PC itself

and the product ¢ Pc’ which will be used in the correlation to account for

the effect of Yoid space available to the continucus phase; In'each system

studied, the modified Péclet number for the continuous phase e PC was
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found to increase with increasing superficial velocity of the continuous
phase, and to decrease with increasing superficial velocity of the dis-
persed phase.

One would also expect Péclet numbers to be functions of the type
of channels encountered by the flowing fluid. Some measurable variables
that affect the channel shapes are the size (dp), sphericity (), .and
porosity (e€) of the packing material. The particle sphericity is defined
as the ratio As/Ap, where As is the surface area of a sphere having
the same particle volume, and Ap is the surface area of the particle.
The data from Appendix III have been correlated in terms of these
variables. The runs available are insufficient to distinguish between
th.e effects of sphericity and void-fraction. A linear regression based
on the four factors UCO’ , UdO’ dO" and Y showed a 98% correlation

coefficient for a dependence of ¢P wupon the terms

0.53 _ 0.46
b Uao

029U 00,76
P c

(12)

d

In using this correlating function we assumed a straight-line relation
between logarithms, whereas, in fact ¢P should converge asymp-
totically upon the single phase value as Ud decreases. Nevertheless,
the regression was of major assistance in determining a suitable plotting
function.

It also appeared that '"backmixing' in the continuous phase is
produced by entrainment of that phase by the dispersed-~phase droplets.
This effect would increase with the kinematic viscosity; introduction of
a viscosity term would render the correlating group dimensionless.

With some further trial of the effects of different exponents, the follow-

ing correlation was tentatively adopted:

1/2/U0,
e, - (=) (02 )] 03
N'p c0 c0

A dimensional correlating factor of somewhat different form,

> :
dedO/kpUcO’ was suggested by Cotter, 6 based on a smaller number of
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run conditiops, In his calculations, the runs at sg:naller‘vdp ~and high
Y were weighted differently by a preponderence of low UCO values. Un-
like his correlating factor, the one now adopted does provide the prospect
of accounting for a possible viscdsity effect, in an entirely dimensionless
form. Another correlational possibility that has not yet been éxplored,
but should await further experimental data, is.the use of Pcpo as the
ordinate, where Po is the Péclet number for single-phase flow in the
same packing. (The same superficial velocity and the same mean linear
velocity should both be tried as possible bases.) Jacques5 and Cotter6
both appear to have used Pc/Po’ ‘but their P0 was always taken as the
limiting laminar-flow value, thus giving an ordinate really proportional
to our ordinate «P_ o

Figure III- 4 shows the data of Appendlx I1I-1, plotted on the
coordinates indicated by Eq. (13). This figure indicates the different

asymptotes for different continuous-phase Reynolds numbers.,

2. Dispersed Phase

The results of a few dispersed-phase measurements are shown
in Appendix III-2 and in Fig. III-5. The different packings used were:
{Column 7) 3/4-in. ceramic Raschig rings; (Column 9) 1-in, Berl saddles;
and {(Column 12) 3/4-in. carbon Raschig rings.

For the carbon packing (nonwetting phase discontinuous), the
Péclet number remains practically constant over the full range of
UCO and Udo values studied; whereas, for ceramic Raschig rings,

P decreases slightly with increasing UdO’ although it increases
slightly with increasing Ucg.

In previous studies®’® with kerosene dispersed in water, and
with the breakthrough curves (for a step input of dye) obtained by photo-
electric measurement, the dispersed-phase Péclet numbers were much
smaller than those found here. It is possible, in the earlier measure-
ments, that additional mixing occurred in the measuring region, thus
leading to unduly low Péclet-number values. It appears to be simpler

and more accurate to monitor the continuous phase in the presence of



-171-

I‘O T I 1 T - l R 1 1 I

05} 1%:80 o .

0.2

C e
.g' O'l o Spheres, tetragonol (075 in.,e=32%) <
oW o Spheres, orthorhombic -1 (0,75 in., e=38%)
8 Spheres, random {075 in.,e = 41 %)

0.05 B Raschig rings (0.75 in.,e=65%)
" ) o Berl saddles (1.0in.,e=67%)
A Spheres, random (0.38 in.,e=42%)

T

002 | <O Raschig rings (0.50 in.,e=62 %) ]
0.0I 1 L l i | l | L I |
lo—3 2 5 IO-Z 2 5 lo’l 2 5 | 2 5
()" (52)
decO Uco
MU.30175

Fig. III-4. Dimensionless correlation for continuous-
phase Péclet number.
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dispersed phase than the reverse. In general it is necessary to collect
an appreciable quantity of dispersed phase in order to measure its prop-
erties. It is essential to do this collecting under piston flow conditions,
and then a correction must be made for the time lag involved. (In the
present study, this time lag is estimated at 2 to 5% of the total time
elapsed at the point of measurement. )

Since the present measurements are higher than previous values,
they show the need for much more data before correlation can be at-

tempted.

D. Application to Packed-Column Extraction

The experimental Péclet-number values obtained should be of
direct use, in conjunction with experimental extraction data from an
operating column, to determine the true mass-transfer rates in such
a column. To illustrate the calculation, and also toc determine the
typical magnitude of the correction from apparent to actual rates, data
. from Colburn and Welsh2 have been selected, in which the transfer re-
sistances lie almost ehtirely in a single phase,

The method outlined previously [ Eqs. (8) to (10)] does not give
precise results when applied to this limiting case. However, since no
appreciable change in concentration (or activity) occurs in the "inactive"
phase which does not offer a transfer resistahce (to water or to iso-
butanol) a separate algebraic result by Miyauchi can be applied. 10

Complete mixing of the inactive phase can be assumed, indicated by

P_B = 0. The applicable relation is then
Y “h, N -\, -\
N _le - e + )\l e - )\2 e
N = 4n 2% . (14)
oxP 1/2
P_B(l + 4r)
where : - ‘
A = (P,B/2) [14(1+ 4r)1/2], (15)
1/2 ’
A= (BB/2) [1- (14 4n'/?], (16)
and
r =

= NOX/PXB . | (17)
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This relation is illustrated graphically in Fig. III-6 where N__ . is
plotted against Nox for several values of P_B. A simple empirical
relation, equivalent to Eq. (14) but explicit in Nox’ has been developed

by Moon:11

2
N N i} 0.,96(NOXP) 18)
ox oxP PXB +0.63
Smoothed values for the apparent HTU were taken from Colburn and
Welsh's work, at superficial velocity values (GX) of 1000 lb/hrmft2 for
the "active' phase. The steps involved in estimating the actual HTU
values are given in Table III-II, and the resulting values are compared
with the apparent HTU in Fig. III-7 for the continuous phase only. In
this particular system, the ratio HCP/HC is seen to vary from 1.1 to
1.8 for the continuous phase.

If the higher P values found for the dispersed phase are con-
firmed for further studies, then the ratio HdP/Hd will be much nearer
to 1.0 probably in the range 1.10 to 1.20 for usual operating conditions.

Although the example chosen was a somewhat simplified case,
where transfer resistance lies only in one phase, the conclusion drawn
should apply even more to cases where dispersion occurs in both phases.
The exact calculations for the general case are quite complicated but
can be substituted for by rapid approximate methods,

From the values obtained, it is seen that for cases where simul-
taneously the dispersed-phase flowrate is large and the continuous-phase
flowrate is small, the dispersion effect may dominate the effective
HTU. For small dispersed-phase flowrates with large continuous-phase
flows, mass transfer will often provide the principal resistance; how-
ever, in scaling-up to larger packings,both effects should still be con-
sidered. Thus, it can be concluded that the longitudinal dispersion will

often have a substantial influence on the efficiency of an extraction column.
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Table III-II. Single-phase extraction studies of
water-isobutanol system?@
(G_ = 1000 Ib/hr #t4; Column height, 1.75 ft)

GY pr pr ¢P_ P_B N_ pr /N, H_
Continuous phase: water

250 3.50 0.50 0.125 6.12 0.536 0.931 3.264

500 1.50 1.17 0.095 4,29 1.437 0.814 1.218

750 0.87 2,01 0.075 3.39 2,975 0.676 0.588

1000 0.64 2,74 0.065 2,94 4,760 0.575 0.367
Continuous phase: isobutanol

500  3.50  0.50  0.086  3.90 0.553  0.904 3.160

750 2,60  0.68 0.065 2.94 0.804 0.846 2,177

1'000 2.00 0.88 0.052 2.34 1.130 0.779 1.549

dFrom Ref, 2.




-177-

5 | 1 ‘ I ! | I i l 1
L\ o« - i
N ISOBUTANOL
, N CONTINUOUS
l ) O U i
k2_ ) CP H —
\\
a
(8]
I
v I ]
o L i
L L i
I B _
o5F = WATER .
al CONTINUOUS . i
i Hep values from Colburn and Welsh |
cP ¥ 2
0.2 S¢ _||Oooxlb/pr'ff T 1

200 500 . 1000 3000
Gy (Ib /hr-ft?)

MU—17104

Fig. III-7. Nc and NCp for isobutanol-water system.



-178-

E. Conclusions

Analysis of the results obtained in this study of axial dispersion
in two-phase countercurrent flow through packed beds leads to the fol-
lowing conclusions:

(1) The axial Péclet number of the continuous phase increases with
.increasing ,continuous_—.phase flow rate and decreases with .increasing
discontinuous-phase flowrate. It is believed that the decrease relative
to the single—pha.se behavior may be caused by intermittent entrainment
of the continuous phase by droplets of the dispersed phase. The modified

Péclet number (¢ P) is believed to. be a function of the dimensionless

¢1/2< v ) 1/2 ( Ucb) :
S \d U U ’
p. co do

the effect of viscosity, only, has not yet been confirmed quantitatively.

parameter

(2) The axial Péclet number of a wetting discontinuous-phase de-
creases somewhat with decreasing continuous-phase flowrate and with
increasing discontinuou}s‘-p‘ha.se flowrate. For a nonwetting dispersed
phase, the Péclet number remains practically constant over the full

range of Uco and Udo values studied. Previous invetigations gave
Péclet values much smaller than obtained in the present study; this ap-

pears to be a result of the experimental methods used.

(3) True mass-transfer rates were computed from experimental ex-
traction data, 2 using the‘measured continuous-phase axial-dispersion
coefficients. For the particular 5yétem used it is seen that the true
HX is from 10 to 80% smaller than the piston flow HxP’ Although only
~a simplified example, for which the mass-transfer resistance lies in
one phase, was investigated, its result should apply to the general case

where approximate methods of solution are available.
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F.' Notation for Part III

Surface area of packing particle.
Dimensionless height, h/dp
Dimensionless concentration, c/c:'x
Concentration

Particle diémeter

Superficial dispersion coefficient

. Weighting factor in correlation, Eq. (10)

Superficial mass velocity

Overall height of transfer unit, relative to X pha.se

Total helght of packed section of column

Mass-transfer coefficient

Partition ratio; cx/cy at e'qgilibrium

Péclet number for the column; hU/E

Overall number of transfer units, relative to X phase

Reynolds number; dp(Uo)c/v

Péclet number for the packing; Np.

Dimensionless midpoint slope of breakthrough curve (based on
1:/t50 scale) v

Time

Mean interstitial velocity

Dimensionless height, z/h

Height within column

Void-fraction or porosity

Extraction factor; m(UO)X/(UO)

Kinematic viscosity

Sphericity of the packing; (area of a sphere having the particle

volume)/(actual area of particle)

Superscripts

Feed end of column, outside the column

Solvent-entering end of column, outside the column
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Subscripts

Continuous phase
Dispersion unit

Dispersed phase

Final

For the 'i' phase; as yet undesignated
Overall

Initial

Superficial

Exterior apparent value, conforming to piston-flow model

For the X phase (usually the feed or raffinate)

For the Y phase (usually the solvent extract)
Feed end of column, inside the column

Solvent-entering end of column, inside the column
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Appendix for Part III

III-1. Experimental Data

A. Continuous-Phase Péclet Numbers for Kerosene in Water, .
l1-in. Berl Saddles

1/2 U No. of
F U F U U /U vips do meas-
c co d do do’ “co <&_U_—> T Nc P ¢P ure-
(gal/min) (ft/hr) (gal/min) (ft/hr) p co co ¢ € ments
2,21 83.2 0.15 5.6 0.0673 0.0033 22,80 0.693 0,478 6
0.31 11.7 0.1406 0.0069 18.90 0.574 0.396 6

0.58 21.8 0.2620 0.0129 15.60 0.474 0.327 4

0.71 26,7 0.3209 0.0158 14.60 0.443 0.306 6

1,53 57.6 0.15 5.6 0.0972 0.0058 - 19.5 0.593 0.409 6
0.31- 11.7 0.2031 0.0120 16.2 0.492 0.339 6

0.58 21.8 0.3785 0.0224 12.3  0.373 0.257 4

0.97 36.5 0.6337 0.0375 8.0 0.243 0.168 6

0.85 32 0.15 5.6 0.1750 0.0139 11.3  0.343 0.237 8

: 0.31 11.7 -0.3656 0.0290 11.0 0.334 0.230 6

0.58 21.8 0.6813 0.0540 8.0 0.243 0.168 6

1.23 46.5 1.450 0.1152 4.20 0.128 0.0883 6

0.5 19.2 0.31 11.7 0.6094 0.0624 7.24 0.220 0.152 6
0.58 21.8 1.1354 0.1162 4.5 0.137 0.0945 6

-0.97 36.5 1.9010 0.1946 3.20 0.097 0.0669 6

0.33 12.4 0.31 11.7 0.9435 0.1202 5.43 0,165 0.1138 6
0.58 21.8 1.7581 0.2239 3.20 0.097 0.0669 6

1.50 56.4 4,5484 0.5793 1.66 0.050 0.0345 8
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B. Continuous-Phase Péclet Numbers for Kerosene in water,

0.75-in. Raschig Rings
No. of

_— \1/2 Udo meas -
Fc Uco Fd Udv:) Udo/Uco d U ] U Nc Pc EPc ure-
(gal/min) (ft/hr) (gal/min) (ft/hr) ‘ p co co ments

.0673

2.21 83.2 0.15 5.6 0 0.00404 25.2  0.685 0.445 6
0.31  11.7 0.1406 0.00845 21.3  0.579 0.376 6

0.44  16:6 0.1995 0.0120 19.1 . 0.519 0.337 6

0.66 24,8 0.2981 0.0179 18.8 0,511 0.332 6

1.3 48.9 0.15 . 5.6 0.1145 . 0.00896 #21.9 0.596 0.387 6
: 0.31 11.7 0.2393 0.0187 17.2 0.468 0.304 6
0.58  21.8 0.4458 " 0.1104 " 12,7 0.345 0.224 6

0.85 . 32 0.31.  11.7 0.3656 0.0659 13,40 0.364 0.237 6
0.71 26.7 0.8344 0.1495 ‘ 7.90 0.215 0.140 6

0.97- 36.5 1.1406 0.2044 5.6 0.152 0.099 6

1.50 56.4 1.7625 0.3160 3.8 0.104 0.0676 6

0.51 19.2 0.31 11.7 0.6094 0.0761 8.49 0.231 0.150 6
0.58  21.8 1.1354 0.14181 5.60 0.152 0.0988 6

1.50  56.4 2.9375 0.3669 2.86 0.077 0.0501 6

0.33 12.4 0.15 5.6 '0.4516 0.0702 9.0 0.246 0.160 6
0.31 11.7 0.9435 0.1466 6.12 0.166 0.108 6

0.58  21.8 1.7581 0.2732 3.88 0.106 0.0689 6

0.97 36,5 . 2.,9435 0.4560 2.46 0.070 0.0455 6
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C. Continuous-Phase Péclet Numbers for Kerosene in Water,
0.75-in. Spheres, Tetragonal (Jacques)

v 1/2 U No of
’ v do meas-
l:‘c Uco Fd Udo Udo/Uco <d U U Nc pc Epc ure-
(gal/min) (ft/hr) (gal/min) (ft/hr) p co . co ments
0.6 22,6 0.16 5.95 0.264 0.0436 14,44 0.454 0.145 5
0.3 11.3 - 0.16 5.95 0.526 0.1232 7.95 0.250 0.080 4
0.3 11.3 0.61 22.6 2.00 0.4681 4,45 0.142 0.046 5
D. Continuous-Phase Péclet Numbers for Kerosene in Water,
0.75-in., Spheres, Random (Jacques)
yam \/2 Ugo No. of
FC U'o Fa Udo Udo'/Uco d—k‘LU— U Nc pc EPc meas-
(gal/fhin) (£t/%) (gal/min) (ft/hT) %pYco co ure-
: ments
0.6 22.6 0.98 . 36.6 1.63 0.2680" 3.37 0.105 0.043 5
0.3 11.3 0.61 22.6 2.00. 0.4710 2,21 0.069 0.028 5
0.3 11.3 1.21 45.5 4.01 0.9421 1.57 0.049 0.020 5
Ev. Continuous- Phase Péclet Numbers for Kerosene in Water,
0.75-in. Spheres, Orthorhombic-2 (Jacques)
i vy \1/2 "Udo No. of
Fc Uco Fd ) Udo Udo/Uco <&r Uco) E Uco Nc Pc Epc meas-
(gal/min) (ft/hr) (gal/min) (ft/hr) - P ’ ure-
» ) o ments
1.0 37.6 0.95 35.8 0.95 0.1221 8.73 0.270 0.107 5
0.3 11.3 0.95 35.8 3.17 0.7414 2,20 0.068 0.026 4

]
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F. Continuous-Phase Péclet Numbers for Kerosene in Water,
0.75-in. Spheres, Orthorhombic-1 (Jacques)

No. of
1/2 U
vis ~do meas-
Fc, -Uco Fd ) Udo Udo/Uco (& U o) Nc Pc EPc ure
(gal/min) (ft/hr) (gal/min) (ft/hr) pc ce ments
2.0 76.0 0.23 8.7 0.114 0.0103 14.54 0.474 0.180 4
0.46 17.5 0.230 " 0.0208 14.45 0.471 0.179 4
1.0 38.0 0.16 6.0 0.158 0.0201 15.28 -0.498 0.189 4
0.22 . 8.3 0.218 0.0279 13.01 0.424 0.161 6
0.49  18.5 0.486 0.0621 10.31 0.336 0.128 10
0.95  36.1 0.950 0.1212 8.44 0.275 0.104 14
0.8. 30.4 0.22 8.3 0.273 0.0390. 8.53 0.278 0.106 5
1.00  38.0 1.250 0.1788 6.38 0.208 0.079 5
0.6 22.8 0.16 6.0 0.264 0.0433 9.48 0.309 0.117 6
0.22 8.3 0.364 0.0600 8.71 0.284 0.108 6
0.43  16.2 0.710 0.1171 5.52 0.180 0.068 6
0.95  36.1 1.590 0.2608 4.26 0.139 0.053 5
0.3 = 1l1.4 0.22 8.3 0.730 0.1698 5.15 0.168 0.064 5
0.95  36.1 3.200 0.7378 2.21 0.072 0.027 4
1.82  69.0 6.050 1.4120 1.66 0.054 0.021 5
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G. Continuous-Phase Péclet Numbers for Kerosene in Water,
0.50-in. Raschig Rings (Cotter)

" /2 Ud No. of

v (o] meas-
Fc Uco Fd Udo Udo'/Ucc. <& UC UC Nc Pc el:’c ure- -
(gal/min). (ft/hr) (gal/min) (ft/hr) VP - co ments
0.850  31.80 0.100 3.74 0.118 0.0151. . 13,0 0.271 0.168 3
0.578  21.60 0.100  3.74 0.173 . 0.0269 9.8 '0.204 0.126 3
0.351  13.10 0.100 3.74 0.285 0.0570 6.6 0.137 0.085 3
3.1  0.063 0.039 3

0.154 5.76 0.100 3.74  0.649 . 0.1941

H. Continuous-Phase Péclet Numbers for Kerosene in Water,
0.38-in. Spheres (Cotter)

. . No. of
: 1/2U0 g
: v do meas-
Fc ) Ucvo Fjd Udo Udo/Uco (3 Uco) U ) Nc Pc Epc ure-
(gal/min) (ft/hr) (gal/min) (ft/hr) P co ments
0.10 3.73 0.056 2,09 0.560 0.3127 6.9 0.107 0.045 3
0.10 3.73 0.105 3.90 1.045 0.5836 5.9 0.092 0.039 3
0.05 1.86 0.100 3.73 2.000 - 1.5850 2.6 0.040 0.017 3

©
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I. Dispersed-Phase Péclet Numbers for Water Dispersed in Kerosene;
o 0.75-in. Ceramic Raschig Rings

F 8) - F .U Uu_/u N . P No. of

) d v do c _ co co’ "do ) meas -
(gal/min) . (ft/hr) (gal/min) v (ft/hr) : urements

1.30 489 0.0 0.0 0.000 16,6 0.452 10

0.15 T 5.6 0.116 15.6 0.424 10

20.31 . 117 - 0.238 15.6 0.424 10

0.85 32 - 0.0 0.0 0.0 16,3 0.442 10

0:15 * 5.6 0.176 14,5 0.394 10

70.31 T11.7. 0.364- - 13,1 0.362 10

0.58 21.8 0.684 13.2 0.368 10

0.51 19.2 0.0 0.0 . 0.0 15.1 0.416 10

0.15 5.6 0.293 13,3 0.368 10

0.31 11.7 0.606 ~  12.3 0.340 10

0.58 21.8 1.140 10.8 0.295 10

0.87 32.73 1 6.7 0.184 10

.705




~-189-

. Dispe.r'sed-Phase‘Péclet Numbers for Water Dispersed in Kerosene;
1.0-in. Ceramic Berl Saddles .

F 16} F U U _/u N P No. of
d do c co co’ “do meas -
(gal/m1n) (ft/hr) (gal/m1n) (ft/hr) Urements
0.85 32 0.0 0.0 0.0 16.3 0.492 12
0.15 5.6 0.176 . 15,8 0.476 10
0.42 15.8 0.494 15.8 0.476 6
0.68 24.8 0.774 14.8 0.446 6

K. Dispersed-Phase Péclet Numbers for Water Dispersed in Kerosene;
' 0.75-in. Carbon Raschig Rings

F U F U U _/u N P No. of
d do [ co co’ “do meas -
(gal/min) (ft/hr) (gal/min) (ft/hr) urements
1.3 48,9 0.0 0.0 0.0 18.7 0.510 10

0.15 5.6 0.116 18.2 0.494 10

0.31 11,7 0.238 16.4 0.445 10

0.85 32 0.0 0.0 0.0 17.7 0.480 8
: 0.15 5.6 0.176 18.9 0.515 6

£ 0.31 11.7 0.364 18.6 0.505 6

0.58 21.8 0.684 18.4 0.500 8

0.51 ©19.2 0.0 0.0 0.0 18.0 0.490 6
0.15 5.6 0.293 16.4 0.445 8

0.31 11.7 0.606 17.5 0.475 8

0.58 21.8 1.140 17.6 0.478 8

©
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