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ABSTRACT OF THE DISSERTATION 

 

Ultralight Microlattice Materials with Unique Combination of Stiffness and Damping  

 

By 

 

Ladan Salari Sharif 

 

Doctor of Philosophy in Mechanical and Aerospace Engineering 

 

 University of California, Irvine, 2016 

 

Professor Lorenzo Valdevit, Chair 

 

Ultralight hollow microlattice materials offer tremendous potential for energy dissipation, 

thanks to a unique form of structural damping associated with local buckling of the hollow bars.  

This dissertation provides a comprehensive study of this damping mechanism and exploits it for 

the design of hollow microlattices with superior combinations of stiffness and damping at low 

mass. To encompass a wide design space, both metallic and hybrid (metal/elastomer) hollow 

microlattices are investigated. This structural damping mechanism is studied in detail and a simple 

mechanical model is developed and validated by experimental characterization. The model is 

adopted to optimize the microlattice geometry for maximum values of a damping figure of merit, 

expressing optimal combinations of high stiffness, low density and high damping coefficient. We 

find that hollow metallic microlattices exhibit exceptionally large values of this figure of merit; 

however, this level of performance requires extremely low relative densities (<0.1%), thus limiting 

the actual amount of energy dissipated. 

In order to increase the damping figure of merit at higher densities, hollow microlattices 

with metal/elastomer/metal sandwich walls are investigated. The sandwich construction provides 
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increased local buckling strength, thus increasing the amount of energy dissipated by the lattice in 

a loading cycle.  At the same time, the elastomer provides additional energy dissipation through 

the classic intrinsic constrained-layer damping mechanism, which is active even at relatively high 

densities and low deformation amplitudes. An analytical model for stiffness and damping (both 

intrinsic and structural) of hybrid hollow microlattices is derived, and verified via Finite Elements 

analyses and experimental characterization. Finally, the model is adopted in optimal design studies 

to identify hybrid microlattices with ideal combinations of the same figure of merit used for 

metallic lattices. The results indicate that hybrid lattices are clearly superior.  

Over the course of this work, significant discrepancies between predicted and measured 

values of the mechanical properties (e.g., stiffness, strength) of ultralight hollow microlattices were 

consistently observed. Such discrepancies are attributed to a complex stress state around the 

hollow nodes and the existence of a variety of manufacturing-induced geometric imperfections 

(e.g. cracks, non-circularity of the bars). The ultralight nature of the lattices investigated in this 

study makes them particularly sensitive to these defects.  Here, a detailed study of such 

imperfections is performed with the aim of quantifying their effects on the mechanical 

performance of the lattices. The results confirm that the major discrepancy between analytical and 

experimental results can indeed be attributed to manufacturing-induced imperfections.  

.  
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CHAPTER 1. INTRODUCTION 

Cellular materials have been heavily investigated over the past decades, by virtue of their 

low densities and unique mechanical, acoustic, thermal, and electrical properties [1–5]. In 

particular, these materials are used for their high mechanical efficiency (specific stiffness and 

strength) [6–9], sound absorption [2] and impact protection [10–13], and have found broad 

industrial applications, ranging from packaging and impact absorption [14], to filtration [15], tissue 

engineering [16], heat dissipation and heat exchange [17, 18]. 

When fabricated with open cell topology, cellular metals provide exceptional potential for 

multi-functionality. An example is a sandwich structure with a cellular core offering unique 

combinations of mechanical properties (specific stiffness and strength) and thermal properties  

(heat transfer by active cooling [19, 20]). These attractive properties can be further enhanced if 

cellular materials are carefully architected to possess an ordered periodic geometry rather than a 

stochastic arrangement of matter. A careful topological design of the architecture enables a precise 

control on property variations from macro-scale to the unit-cell scale, resulting in order-of-

magnitude improvements on specific stiffness and strength, among other properties [6, 8]. 

Importantly, the periodic nature of topologically designed cellular materials enabled a large-body 

of optimization studies, with an emphasis on specific strength [7–9], active cooling [18], and 

protection from high-velocity impact [11]. A classic example of periodic cellular materials are 

lattices, where solid or hollow bars are joined at nodes to form two or three-dimensional unit cells 

that can be repeated to fill the space. Recently, multi-scale numerical models have been developed 

to characterize the deformation behavior, stiffness, yield strength, and buckling strength of macro-

scale components made up of lattice materials of different topologies [21–23]. These models have 
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been used to optimally design lattice materials for specific engineering systems (e.g., bone 

implants [24]). Although most models are linear and assume infinitesimal deformations,  some 

recent examples have been extended to the non-linear deformation regime [25]. 

When loaded by external compression, typical cellular metals (whether stochastic or periodic) 

exhibit a stiff linear response, followed by plastic deformation: the plastic regime results in a stress 

plateau that remains fairly flat all the way to the densification strain, ~ 1d  , with   being the 

relative density of the material. Upon unloading, only the elastic portion of the deformation is 

recovered, which is often significantly smaller than d . This behavior makes sandwich structures 

with cellular metallic cores particularly suitable for impact and blast mitigation [10, 12, 26–28]. 

The challenge is designing a suitable cellular core with compressive strength low enough to 

guarantee force protection, and maximum energy dissipation per unit volume upon densification 

[29]. The minimum thickness of the core necessary to guarantee impact protection depends on the 

magnitude of the transmitted impulse and the allowable level of stress transfer to the protected 

structure. Unfortunately, maintaining the plateau stress low enough to ensure force protection 

requires unreasonably thick panels [30]. Even when an appropriate thickness can be selected, 

substantial vibration and transmission can be detrimental to delicate electronics and personnel.  

Such vibrations can be isolated by various methods, which can be categorized in two 

approaches: (1) passive isolation [31], e.g., provided by pneumatic or air isolators [32], mechanical 

spring-dampers [33], pads or sheets of flexible materials such as elastomers [34], rubbers [35], 

corks, laminate materials [36], and structures incorporating negative stiffness elements [37]; and 

(2) active isolation [38, 39], e.g. provided by piezoelectric polymer actuators [40]. All these 

mechanisms significantly increase the weight and complexity of the system.  
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Integrating high specific stiffness and strength, impact and blast protection, and vibration 

isolation into a single cellular structure could result in potentially dramatic weight savings for a 

variety of engineering systems [41] (Figure 1.1). 

 

Figure 1.1 Multifunctional cellular core with ideal combinations of low weight, high 

stiffness, high energy absorption and high damping performance.   

Cellular materials have been widely used for vibration isolation in the past decades [1, 42, 

43]. The loss coefficient of stochastic cellular materials,  , scales with the loss coefficient of their 

constituent materials over the relative density of the cellular material ( /s   ) [1], effectively 

limiting the amount of damping that can be achieved by these materials. However, damping in 

cellular materials can be enhanced by using carefully selected periodic unit cell architectures, 

incorporating intrinsically dissipative elements (e.g., elastomers) [44] or negative stiffness sub-

components [45, 46].  

A comprehensive study by Evans et. al. [10] on foams, honeycombs, and hollow-truss 

based lattices revealed that hollow-truss based lattices exhibit superior impact resistance. The 

lattices in that study were fabricated with a process developed at HRL Laboratories (Malibu, CA). 

The general process consists of three steps: (i) fabrication of a polymeric template by a self-

propagating photopolymer waveguide process (SPPW) [47, 48]; (ii) coating of the template with 
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a metallic thin film (or multiple films)  by suitable deposition processes; (iii) removal of the 

polymeric template by chemical etching, thus resulting in a hollow metallic or hybrid cellular 

materials, as schematically depicted in Figure 1.2. This process is very scalable, and it allows a 

range of bar diameters from ~50 microns to many millimeters. Pushing the diameter to its lower 

bound allows fabrication of structurally robust hollow lattices with walls as thin as a few hundred 

nanometers. As explained below, this allows deposition of films with very small grain size, and 

hence exceptionally high yield strength [19, 49].  

When designed with a density of ~8%, those lattices were proven to be near-optimal for 

blast protection [29]. Remarkably, as explained below, the very same lattices, designed at a density 

of ~0.1%, possess unusually high vibration damping compared to any other metallic system [50]. 

Furthermore, hollow lattices possess among the highest specific stiffness and strength among any 

cellular material [51]. The implication is that optimally designed cellular cores with hollow-truss-

based lattices might provide unique combinations of low weight, high stiffness, impact resistance 

and vibration damping. Such architected materials are investigated in this dissertation.  

 

Figure 1.2 Unit cell schematic of an octahedral lattice that can be manufactured by the 

SPPW technique with two possible wall designs: metallic (containing a single layer of 

metal) or hybrid (containing two metal layers sandwiching a polymer layer). 
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 The mechanical response of hollow nickel microlattices to external uniaxial compression 

has been previously investigated experimentally [52], and models for stiffness and strength have 

been proposed and adopted for optimal design studies [53, 54]. A key feature of these metallic 

systems is that the compressive behavior under large strain is strongly dependent on the relative 

density of the lattice: while high-density (~1-10%) lattices deform by plastic hinging of the nodes, 

resulting in an irrecoverable plastic deformation as illustrated in Figure 1.3a (similarly to 

conventional cellular metals, as discussed above), lattices with density lower than ~0.1% deform 

by local buckling and/or partial node fracture followed by large rotation of the truss members, 

resulting in a nearly flat stress plateau from which the material can fully recover after compressive 

strains in excess of 50% (see Figure 1.3b). 

  

Figure 1.3 Compressive response of microlattices at (a) wall thickness t=26μm and 

relative density 8.45%  ;and (b) wall thickness t=150nm and relative density of 

0.01%  . 

The transition between these two regimes has been investigated in detail in [52], and at 

first order depends on a single geometric parameter of the lattice, a critical wall thickness-to-

diameter ratio, (t/D)cr : 
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where ,y s  is the yield strength of the wall material, sE  its Young’s modulus, max  is the maximum 

compressive strain, and   is the angle that the lattice bars make with the horizontal plane. For 

/ ( / D)crt D t , individual truss members can locally buckle or partially fracture close the their 

conjunctions (nodes) and subsequently undergo large rotations without plastic deformation up to 

a macroscopic strain, max . This simple equation (Eq.(1.1)) has been shown to capture the 

transition for hollow lattices made with a variety of film materials [55]. From Eq.(1.1), it is evident 

that the recovery from large compressive strains requires a very high yield strain of the constituent 

material and very low truss member aspect ratios, both of which are uniquely enabled by the three-

step fabrication process described above (the former by using very thin and strong nanocrystalline 

nickel films and the latter by careful chemical etching of the polymeric preform). This explains 

why this behavior was never observed before in cellular metals. Although the mechanism for 

recovery is well understood, the physical mechanisms for energy loss upon cycling are still elusive, 

and will be thoroughly investigated in this thesis.  

A qualitatively similar compressive response (exhibiting exceptional elastic recovery and 

energy dissipation) has been recently documented in a number of multiscale material systems, for 

example forests of carbon nanotubes in thin-film form [56] and ultralight boron nitride foams [57]. 

The mechanism for recovery is similar in all of these cases: elastic instabilities in discrete members 

enable large rotations of members relative to each other without the introduction of irrecoverable 

plastic strain. Franternali et al. [58] modeled the recovery and damping behavior of carbon 

nanotube forests using a bi-stable spring model. Moreover, in recent years, a number of studies 

have introduced materials that are capable of achieving stable geometrical changes using the 



7 
 

concept of bi-stable negative stiffness elements [45, 46, 59, 60]. These designs generally require 

elastomeric constituents with very large yielding or fracture strain in order to achieve the required 

reconfigurable behavior without material failure. This results in shape reconfigurable materials 

with fairly low strength and limited energy absorption capabilities.   

A unique characteristic of hollow microlattices (in contrast with nanotube films and foams) 

is that the geometric parameters can be carefully chosen to meet a desired performance metric, 

thus providing an excellent platform for optimal design. However, this unique energy dissipation 

mechanism is only applicable to ultralight lattices ( 0.1%  ). In order to design higher density 

lattices with exceptional combinations of specific stiffness, damping and energy absorption, 

alternative damping mechanisms must be sought. A possible way to achieve this combination is 

the use of lattices with hybrid (sandwich) walls, where two metallic layers enclose a lossy 

polymeric film (Figure 1.2). When the hybrid lattice is compressed, the lossy layer deforms 

(primarily in shear), dissipating energy. This approach is akin to the classic constrained-layer 

damping, widely exploited in flat aircraft structure design [35, 61]. Moreover, the metallic films 

increase stiffness and strength, potentially resulting in higher values of structural damping. This 

intrinsic damping can emerge as the main damping mechanism in lattices of high relative density 

or it can appear in tandem with the structural damping mechanism discussed above (albeit, 

exclusively in ultralight lattices). These two mechanisms in hybrid hollow microlattices will be 

characterized, modeled and demonstrated in this thesis.   

Previous studies on strength and stiffness analysis of metallic microlattices produced with 

this technique [53, 54] have shown that the experimentally measured stiffness and strength are 

always significantly lower than predicted by analytical and numerical models, thus compromising 

the reliability of the optimal design studies based on these models (including those presented in 
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this thesis). Incidentally, similar discrepancies were observed in other 3D micro/nano-lattices with 

the polymeric preform manufactured by different techniques, such as projection 

microstereolithography [51], and two-photon lithography 3D direct laser writing (3D-DLW) [62], 

[63]. In all these works, this large discrepancy is generally attributed to the complex stress state 

around the nodes (not predicted by simple models) and the presence of manufacturing-induced 

geometric imperfections. Note that due to the buckling dominated [53] nature of ultralight samples, 

the effects of defects can be even more significant in ultralight samples compared to denser 

counterparts. Wallach [64] performed a sensitivity analysis on the 3D solid truss lattices, where 

imperfections were artificially introduced (by randomly removing bars from structure) to quantify 

their effect on stiffness and strength. However, to the best of our knowledge, no work has been 

performed to quantify the magnitude of defects naturally introduced by the manufacturing process 

in hollow lattices, and their quantitative effect on mechanical properties.  

In this dissertation, such an analysis is provided for hollow microlattices produced with the 

three-step process described above. Although the shape and size of the defects are specific to this 

manufacturing approach, the methodology presented here is entirely general and applicable to all 

architected materials. 

To summarize, this research aims to develop a lightweight lattice-based cellular material 

with optimal combinations of stiffness, strength and vibration damping. This objective will be 

reached by addressing the following fundamental research challenges: 

 Developing a physics-based understanding of the multi-scale mechanisms that lead to 

damping in metallic ultralight lattice-based cellular materials, and incorporating it in 

optimal design tools to identify the best architecture for combined specific stiffness and 

damping. 
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 Developing a physics-based understanding of the multi-scale mechanisms that lead to 

damping in hybrid lattice-based cellular materials, and incorporating it in optimal design 

tools to identify the best architecture for combined specific stiffness and damping. 

 Developing a methodology to rigorously describe manufacturing imperfections in 

ultralight metallic microlattices and quantify their effect on the lattice strength, with the 

aim of ultimately improving the reliability of analytical/numerical models and the optimal 

design studies that are based on such models. 
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CHAPTER 2. APPROACH 

To achieve the objectives of the research in an efficient and feasible manner, a 

methodology needs to be determined. The following tasks are developed to address each of the 

objectives defined in the previous chapter, individually. 

Task 1: Developing a physics-based understanding of the multi-scale mechanisms that lead to 

damping in metallic ultralight lattice-based cellular materials, and incorporating it in optimal 

design tools to identify the best architecture for combined specific stiffness and damping. 

As the first step in Task 1, an extensive literature review is performed on cellular materials 

in general and microlattice structures in particular. Importantly, advantages and disadvantages of 

the SPPW fabrication process are investigated. This fabrication process is discussed in detail in 

chapter 3.  

A quantitative assessment of energy loss under cycling compression and harmonic 

excitation of ultralight metallic lattices is performed, to separate and quantify several energy loss 

mechanisms that can potentially be responsible for the unique damping characteristics of hollow 

microlattices. A structural damping mechanism based on local buckling of the hollow bars is 

identified as the key contributor to the energy loss, and an analytical model is suggested to relate 

the amount of energy loss by this mechanism to the geometric features of the lattice. The accuracy 

of the model is validated by experimental results and finite element simulations. Finally, optimal 

geometries are identified based on the model, for maximum values of a damping figure of merit. 

This figure of merit incorporates the product of two terms: (i) 1/3 /E    with E  the Young’s 

modulus and    the density of the microlattice, and (ii) the damping coefficient (Ψ). The modeling 

and optimization procedures are discussed in detail in chapter 5.  
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In order to calculate the figure of merit, an accurate estimate of the Young’s modulus of 

the ultralight lattices is required. Experimental validation of this model in turns requires accurate 

measurement of the Young’s modulus. The challenges associated with measuring stiffness of 

ultralight buckling-dominated lattice structures are discussed in detail in chapter 4, where a novel 

approach is proposed.  

Task 2: Developing a physics-based understanding of the multi-scale mechanisms that lead to 

damping in hybrid lattice-based cellular materials, and incorporating it in optimal design tools to 

identify the best architecture for combined specific stiffness and damping. 

The investigation performed in Task 1 reveals that the unique structural damping 

mechanism discussed above is only present in hollow microlattices with a relative density 

0.1%  , which limits the total amount of energy dissipation in these architected materials. An 

alternative mechanism is proposed in chapter 6 to increase the amount of damping coefficient in 

microlattice materials. In this design, the hollow lattice is fabricated with the wall consisting of 

two metallic layers enclosing a lossy polymeric film. The specific design increases damping of 

microlattices by taking advantage of the constrained-layer damping mechanism, while the metallic 

layers provide stiffness.  

We formulate an analytical model for both intrinsic (constrained-layer) and structural 

(buckling-induced) damping mechanisms of hybrid microlattice materials, followed by numerical 

validation and experimental verification with the overarching goal of designing lattices with 

unique combinations of high stiffness, high damping, and low density. Finally, the analytical 

models are adopted for optimal design studies. In order to assess the effectiveness of this approach, 

the performance of hybrid microlattices is compared to that of the metallic microlattices discussed 

in Chapter 5. The details of modeling, experiments and optimization are presented in chapter 6.  
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Task 3: Developing a methodology to rigorously describe manufacturing imperfections in 

ultralight metallic microlattices and quantify their effect on the lattice strength, with the aim of 

ultimately improving the reliability of analytical/numerical models and the optimal design studies 

that are based on such models.   

Nearly any published study on the modeling of mechanical response of hollow microlattice 

materials have shown severe discrepancies between the analytical models and the experimental 

data. These discrepancies are usually explained by geometric imperfections of the structure. 

Hence, clear understanding and quantifying the defects in microlattices is essential to minimize 

the imperfections during the manufacturing process.  

In particular, we study the effects of geometric defects on the strength of ultralight hollow 

microlattices. The geometric defects at the individual strut level are investigated and finite 

elements (FE) simulations based on Nano-CT scan data are used to investigate the buckling 

strength of a single bar in a hollow microlattice, from which an indication of the imperfect lattice 

strength can be obtained. Subsequently, statistical analysis is performed on the imperfection data 

gathered from Nano-CT scanning of a number of single bars within a metallic microlattice to 

identify the dominant imperfection modes and build a probabilistic representation that is used to 

generate thousands of statistically significant samples of imperfect bars. These imperfect samples 

are used for the statistical analysis of the effects of imperfect geometry over the strength variation 

in a sample. The detailed study on geometric imperfections is explained in chapter 7.   

  

  



13 
 

CHAPTER 3. FABRICATION PROCESS 

In order to better understand the damping and energy dissipation mechanisms of hollow 

microlattice materials, an adequate explanation of the manufacturing process of such materials is 

necessary. In this chapter, we look into manufacturing process of hollow nickel microlattices and 

hollow hybrid microlattices in detail.  

3.1 Hollow Nickel Microlattices 

The nickel microlattice materials are fabricated at HRL Laboratories (Malibu, CA), with 

the following three-step process (schematically illustrated in Figure 3.1): (i) fabrication of a 

polymeric template by a self-propagating photopolymer waveguide process (SPPW) [48, 50, 65]; 

(ii) coating of the template with a thin film by a suitable deposition process (e.g., electroless nickel 

plating using commercially available process; OM Group Inc., Cleveland, OH; and/or 

electroplating); (iii) removal of the polymeric template by chemical etching. 

 In the first step, the polymer microlattice templates are fabricated by exposing a thiol-ene 

liquid photomonomer to collimated ultraviolet (UV) light through a patterned mask at different 

angles. When UV light reaches the thiol-ene liquid, it creates a periodic array of tubes, and when 

the UV beams intersect with each other, they create nodes, hence forming an octahedral unitcell. 

This polymeric waveguide formation process happens in few seconds, making this technique 

significantly faster and more scalable than any competing technology. A wide range of 

architectures can be fabricated by changing the mask pattern and the angle of the UV light rays. 

The polymeric lattices are then used as a template for depositing the structural film. Different 

materials can be deposited on top of the polymeric sample (e.g. nickel, copper, gold, etc.) [55].   
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To prepare the surface for electroless deposition, the samples are first dipped in an aqueous 

solution of potassium permanganate and sodium hydroxide, then palladium catalyst is deposited by 

immersion in activator solution containing hydrochloric acid and tin(II) chloride (Fidelity 1018, OM 

Group Inc.), followed by an etch in accelerator solution containing fluoboric acid (Fidelity 1019, OM 

Group Inc.). The samples are then dipped in electroless nickel plating solution with nickel sulfate as 

nickel source, sodium hypophosphite as reducing agent, and sodium malate and acetic acid as 

complexing agents (9026M, OM Group Inc.). The electroless nickel plating bath is kept at pH 4.9 by 

addition of ammonium hydroxide and plating is performed at 80ºC. For electroless nickel samples, the 

plating time is adjusted to achieve the desired coating thickness. A wall thickness t of 500 nm is 

achieved by electroless nickel plating of approximately 3 minutes. The electroless deposition is 

limited to 3 micron wall thickness. For thicker walls, an electroplating process can be used. Note 

that the chemical compositions of electroless (Ni-P) and electroplating (pure Ni) nickel are 

different. The nickel samples which were studied in this work were are prepared by electroless 

deposition. 

 After deposition of the wall material, the top and bottom edges of the sample are sanded 

to expose the underlying polymer at each node.  Finally, the polymeric template is etched out by 

using a chemical solution (3M NaoH at 60°) for 24hrs, resulting in a hollow tube microlattice 

sample. Samples produce with this technique can span up to three orders of magnitude in relative 

density (0.01%-14%), depending on the choice of the geometric parameters (wall thickness, 

diameter, bar angles, etc…)  

 

Figure 3.1 Schematic of the SPPW fabrication process for nickel hollow microlattice 

materials. 
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This process was used to generate hollow lattices with the octahedral topology shown in  

Figure 3.2, where  denotes the length of each bar, D its diameter, t  its wall thickness, and  the 

angle between the diagonal bars and the horizontal plane.  

 

Figure 3.2 Unit cell topology and definition of dimensional parameters for hollow 

microlattices. 

The mechanical properties of the base nickel layer have been previously measured [50, 52]. 

The electroless nickel layer has density of 38900 /kg m  , a Young’s modulus of 210GPaE  , 

and a yield strength of 2.5GPay  . This exceptional strength is entirely due to its fine 

nanocrystalline grain size, a direct result of the electroless thin film deposition process.   

3.2 Hollow Hybrid Microlattices 

The hybrid hollow microlattice materials are fabricated with a slight variation of the 

process described in sec. 3.1 (schematically illustrated in Figure 3.3): (i) fabrication of a polymeric 

template by a self-propagating photopolymer waveguide process (SPPW) [48, 50, 65]; (ii) coating 

of the template with a film of metal by a suitable deposition process (e.g., electroless and/or 

electroplating); (iii) coating of the resulting metal layer with a film of polymer by a suitable 

deposition process; (iv) coating of the resulting polymeric layer with a film of metal by using a 
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suitable deposition technique (electroless or electroplating); (v) removal of the inner polymeric 

template by chemical etching.  

 

Figure 3.3 Schematic of the SPPW fabrication process for hybrid hollow microlattice 

materials. 

Polymeric templates coated in nanocrystalline nickel by electroless deposition are 

produced as described in sec. 3.2 (steps (i)-(ii)). In order to deposit the polymer on top of the first 

metal layer, the lattices are immersed into a polymeric bath for few seconds. Although a variety of 

polymers can be applied, parylene is chosen for this study due to its combination of high damping 

and stiffness. Subsequently, another layer of metal is deposited on top of the polymeric layer. 

Finally, the top and bottom of the samples are sanded to expose the underlying base polymer at 

each node.  The polymeric base template is etched out by using a chemical solution (3M NaOH at 

60°) for 24hrs (the solution must be chosen in a way to remove only the base inner polymeric 

template and not the polymer in the constrained-layer), resulting in hybrid hollow tube 

microlattices. 

 

Figure 3.4 (a) Octahedral unit cell topology and defining dimensional parameters for 

hybrid hollow microlattices. (b) A tetrahedral hybrid hollow microlattice manufactured by 

HRL laboratories. 
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The discussed process results in hybrid hollow microlattices consisting of periodic octahedral unit 

cells shown in Figure 3.4a, which is built of bars with length , diameter D  , inner layer metal 

wall thickness 
i

mt , polymer wall thickness pt , outer layer metal wall thickness o

mt , and truss angle

 . Figure 3.4b shows a half-layer tetrahedral hybrid lattice. Thanks to the large scale of this 

sample, the truss angle, length, and diameter of the lattice can be readily measured with a Dino 

Digital microscope. This lattice contains bars with a length of 22.4mm , diameter of  

3.2mmD  , and truss angle of 47  . (Figure 3.5a). The wall thickness of the three different 

layers was measured by scanning electron microscopy (SEM) of one bar. The bar was extracted 

from the lattice and fixed in epoxy resin. The epoxy is sanded with various roughness sand paper 

(the softest one was 1μm  sand paper) to achieve a uniform cross section. During the whole process 

the sand wheel was perpendicular to the bar. The thickness of three different layers of the bar was 

carefully measured by SEM. The inner and outer nickel layer appears to be pretty uniform with an 

average thickness of 19.5μmi

mt   and 15.1μmo

mt  , however, the thickness of the parylene layer 

is non-uniform and varies between 1.5μmpt   to 31μmpt  (Figure 3.5b and c). Electroplating or 

electroless nickel plating result in conformal coatings with a uniform thickness that can be 

controlled by the plating time. However, the polymer layer is coated by immersing the lattice into 

a polymeric bath for a few seconds. Therefore, the thickness varies a lot according to the angle of 

resting orientation. Gravity is the main factor in the thickness of polymer which results in very 

non-uniform polymeric layer. Note that this is only one cross section of a single bar in the lattice, 

hence, this variation can be even larger in the whole structure. 
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Figure 3.5 (a) Bar length and angle measurements of hybrid hollow microlattices via a 

Dino Digital microscope; (b) and (c) variations in polymer layer thickness of hybrid hollow 

microlattices measured via SEM at different locations in a single cross section of a single 

bar. 

The mechanical properties of the base nickel and parylene layer were measured at HRL 

laboratories. The nickel layer has a density of 38900kg/m  , a Young’s modulus of 

165.8GPaE  , and a yield strength of 607.2MPay  , whereas the parylene layer has a density 

of 31040kg/m  , a Young’s modulus of 1.4GPaE  , and a damping coefficient of tan 0.25 

. 
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CHAPTER 4. STIFFNESS 

MEASUREMENTS OF ULTRALIGHT 

HOLLOW METALLIC MICROLATTICES 

Previous studies on microlattice materials [54] show that measuring the compressive 

stiffness of these ultralight lattices with conventional contact techniques presents a major 

challenge, as the lattice bars buckle or locally fracture immediately after contact with the loading 

platens is established, with associated reduction in stiffness. Therefore, a novel technique is needed 

to capture the stiffness of these lattices accurately. Non-contact resonant approaches have been 

successfully used in the past for modulus measurements in solid materials, at both small [66–69] 

and large scales [70–72]. In this research we demonstrate that Laser Doppler Vibrometry [73, 74] 

coupled with Finite Elements Analysis (FE) is a suitable technique for the reliable extraction of 

the Young’s modulus in ultralight microlattices. The experimental methodology is explained in 

detail in section 4.1. The finite element model used to extract the Young’s modulus of the lattice 

from the experimental data is described in section 4.2. The results are compared with those 

obtained with conventional uniaxial compression tests, and the accuracy of this method is validated 

by FE simulations of microlattice unit cells in sec. 4.3. The summary of this chapter is available 

in [75]. 

4.1 Experimental Approach 

Ultralight nickel hollow microlattices (Figure 4.1) were fabricated as described in chapter 

3, and glued to carbon/epoxy face sheets using Epoxi-Patch Adhesive glue, resulting in a sandwich 

configuration. The planar face sheets are essential for reliable laser surface tracking. All sample 

dimensions are reported in Table 4.1. All vibrometry measurements were performed with a Polytec 
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Micro Systems Analyzer (MSA-500), a fully integrated structural dynamics system. This 

instrument enables real-time, non-contact in-plane and out-of-plane vibration analysis (only the 

latter is used in this work). From the detection of resonant frequencies, the effective Young’s 

modulus, E, of the sample in the direction normal to the face sheets can be obtained by close-form 

analytical solutions or fitting to Finite Elements models.  

To verify the accuracy of this approach, an aluminum cantilever bar (E=69GPa) was 

excited acoustically and the first two resonant modes were measured at 409 kHz and 2,560 kHz. 

The Young’s modulus, E, was extracted from the analytical expression of the resonant frequency 

of each mode n, 
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 the wave number associated to the nth vibration mode) [76]. The modulus 

extracted from the first two modes was 68.6GPaE   and 68.4GPaE  , respectively. The 

consistency between the two measurements and the agreement with the known value for aluminum 

demonstrate the robustness of the approach.  

The microlattice sandwich samples were mounted on a piezoelectric actuator with a travel 

range of 15μm. The actuator excited the sample from one side in the direction normal to the face 

sheet; the actuation was sinusoidal, with frequency swept in the 0-4 kHz range. The velocity of the 

opposite face sheet along the same direction was measured by scanning laser vibrometry. Multiple 

points on the face sheet were scanned, to capture the three-dimensional movement of the sample 

(and hence enable the identification of the different modes). The instrument and the test 

configuration are shown in the inset in Figure 4.1. 
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Figure 4.1 The experimental setup, Laser Doppler Vibrometry, and microlattice core 

with facesheets. 

The Response of sample C (Table 4.1) is shown in Figure 4.2. For this sample, two 

eigenmodes were detected within the excitation range at 1,746 Hz and 2,302 Hz.  

 

Figure 4.2 Frequency response of a sandwich panel with ultralight micro-lattice core, 

captured by Laser Doppler Vibrometry. 
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4.2 Young’s Modulus Calculation  

Finite element simulations were performed in ABAQUS to extract the relation between the 

Young’s modulus and the natural frequencies. The sample was modeled as an effective isotropic 

solid core within two perfectly bonded face sheets. The density of the core was determined by 

weighing the microlattice sample and dividing the mass by the bounding volume.  

As the Poisson’s ratio, ν, of these lattices is difficult to measure, selected Finite Elements 

simulations were performed with ν=0 and ν=0.5. For all cases, the difference in the natural 

frequencies was ~ 10%, inducing a change in the predicted Young’s modulus of less than 12%, 

and hence generally negligible. Consequently, a Poisson’s ratio of 0.3 for the core was assumed 

for all subsequent calculations.  

The effective Young’s modulus of the solid core was swept within a reasonable range, 

chosen based on analytical estimates according to the sample density [54]. The six lowest vibration 

modes and corresponding eigenfrequencies were obtained via eigenvalue extraction. The effect of 

the Young’s modulus of the core on the natural frequencies for the first six modes is depicted in 

Figure 4.3b. The first and second modes involve primarily shear motion in the xy plane, along the 

x and y directions, respectively (z being the out-of-plane axis for the sandwich configuration); as 

the z-motion is negligible, they are generally undetectable with z-direction actuation/detection. 

The third mode is a twist about the z-axis, and does not contain any z-component of displacement; 

as such, it is undetectable with out-of-plane vibrometry and is not included in the figure. The fourth 

mode is the classic extensional mode. Finally, the fifth and sixth modes are combination of 

extensional and bending modes about the X and Y axes, with displacement primarily in the z-

direction. In the experiments, these two modes appeared combined, as indicated by the X and Y 
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components of the rotation axis of the top face sheet (see inset in Figure 4.3a). Hence, an average 

curve was added to the numerical results (dotted line in Figure 4.3b).  

 

Figure 4.3 (a) Frequency response of a sandwich panel with ultralight micro-lattice 

core, captured by Laser Doppler Vibrometry. The mode shapes are displayed. (b) Natural 

frequencies of a sandwich panel with homogenized core, as a function of the Young’s 

modulus of the core (from Finite Elements analysis). The mode 4 peak in (a) can be used in 

(b) to extract the modulus Ez of the core. 

It is important to notice that the microlattices under consideration are orthotropic. If the x 

and y directions are equivalent, six elastic constants would be needed to fully characterize the 

elastic response of the material. As the presence of the face sheets (essential for optical detection) 

and the single-axis detection limit the number of modes that can be observed, fitting the entire 

elastic tensor to the observed peaks presents significant challenges. For the sake of simplicity, here 

we concern ourselves with the determination of the Young’s modulus in the z direction (which is 

one of the critical engineering properties for lattice materials). For a more rigorous extension of 

this technique to orthotropic architected materials, see Appendix A.  

As the fourth mode depends almost exclusively on Ez, its detection and identification 

allows extraction of the modulus. Once Ez is extracted, the modeling/experiment agreement on the 

frequency of other detected modes provides some information on the deviation from isotropy. For 
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the sample depicted in Figure 4.3b (Sample C in Table 4.1), the modulus Ez extracted from the 

experimentally measured mode 4 frequency (Figure 4.3a) is 2.3MPa. As modes 5 and 6 also 

depend almost exclusively on Ez, a fitting from the mode 5/6 peak would result in a modulus 

prediction that is fairly similar (~7% larger). Fitting on higher modes that involve other elastic 

moduli would obviously not provide realistic results, unless the lattice under investigation was 

isotropic. In conclusion, this approach provides a simple methodology to calculate the modulus in 

a single direction via a non-contact technique that allows detection and identification of the 

suitable mode (mode 4) or combination of modes.  

4.3 Comparison with Uniaxial Compression 

Measurements and Finite Element Simulations 

The Young’s modulus of micro-lattice materials extracted with this technique is compared 

to FE and experimental results previously published [54] (Figure 4.5). All samples exhibit relative 

density between 0.08% and 0.32%. All FE simulations were performed on single unit cells, meshed 

with a dedicated geometry modeling code [53, 54] ( Figure 4.4). Notice that these FE analyses are 

very different from those used for the extraction of the Young’s modulus of the lattice 

(Figure 4.3b): while those were solid models of an effective cellular medium, in this case a single 

unit cell of the truss lattice is meshed with shell elements. Two different boundary conditions were 

used: fully periodic BCs, and free-edge BCs. In the latter, no translational or rotational constraint 

is imposed along the sides of the unit cell [54], simulating a deformation process where each cell 

is only minimally constrained by the adjacent cells (e.g., as a consequence of local buckling or 

fracture events at the nodes [52]).  

Figure 4.4 displays contours of Mises stress, for the same lattice under the same applied 

external strain, for the two different boundary conditions. Much higher stress levels are noticeable 
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for the periodic boundary conditions, indicating higher strain energy (and higher stiffness). Notice 

that as expected, the free-edge BC localizes the strain energy at the nodes with the bars carrying 

minimal stress. As shown in Figure 4.5, the difference in modulus prediction between the two BCs 

can be in excess of an order of magnitude.  

 

Figure 4.4 The insets represent contours of the Von Mises stress in Finite Elements 

simulations, with free edge (left hand) and periodic (right hand) boundary conditions. 

The results of conventional stiffness measurements performed upon unloading with a 

universal (Instron) test frame (Figure 4.5) result in Young’s moduli even lower than predicted by 

the free-edge BC simulations, generally by a factor 2-3. This is attributed to the fact that the 

necessary load application results in the characterization of a post-buckled or post-fractured lattice, 

which can easily be an order of magnitude more compliant than the pristine material. Although the 

free-edge BCs limit the constraining effects of the neighboring cells to a minimum (hence 

mimicking some nodal fracturing and buckling), the simulations nonetheless model a pre-buckled 

unit cell. Importantly, traditional Instron measurements provide moduli that are more than an order 

of magnitude lower than those predicted by FE simulations with periodic boundary conditions (the 

typical BC of choice for periodic materials). Conversely, the vibrometry measurements presented 
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in this research are generally ~5 times higher than the Instron measurements, and approach the 

simulation results obtained with fully periodic BCs (generally within a factor of 2, with the 

exception of sample B, 0.09%  , for which the experimental result is 10 times lower than the 

FE result; we surmise that this is due to its “stubby” geometry, see Table 4.1). This confirms that 

non-contact vibrometry allows extraction of moduli of a pristine structure, without introducing 

damage during the measurement. The factor of 2 discrepancy with the simulations can be attributed 

to deviations from the idealizations assumed in the simulations (in particular the assumption that 

all unit cells deform identically), and to manufacturing imperfections.  

 

 

Figure 4.5 Comparison of experimental results and Finite Element simulations for the 

compressive modulus of ultralight micro-lattices. Notice that Laser Doppler Vibrometry 

(MSA) captures moduli that are consistently ~5X larger than provided by conventional 

compression (Instron) tests.  
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CHAPTER 5. CHARACTERIZATION, 

MODELING AND OPTIMIZATION OF 

DAMPING MECHANISMS IN HOLLOW 

METALLIC MICROLATTICES 

In this chapter, we investigate the damping and energy dissipation mechanisms in hollow 

metallic microlattices and optimize their design for maximum energy dissipation and damping 

figure of merit [1], defined as 1/3 tan /E    , with E the effective Young’s modulus of the 

lattice (in compression), tanδ the effective loss factor (damping coefficient) and  the lattice 

density. This material index expresses how fast a clamped plate subject to forced vibrations reaches 

rest when the forcing term is removed. The chapter is organized as follows: section 5.1 presents 

the experimental protocol adapted to separate and quantify several energy loss mechanisms 

possibly responsible for the unique damping characteristics of microlattices; the dominant 

mechanism is identified; in section 5.2, this mechanism is captured by a simple mechanical model, 

which is then used for optimal design studies. The summary of this chapter is available in [77].  

5.1 Experimental Investigation of Energy Loss 

Mechanisms 

5.1.1 Synopsis 

All nickel hollow microlattices were fabricated with the process discussed in chapter 3. 

Table 5.1 reports the geometrical parameters of all samples used in this chapter.  

The cyclic compressive behavior of lattices with thickness-to-diameter ratio below the 

critical value (Eq.(1.1)) is shown in Figure 5.1. Four nominally identical lattices (see Table 5.1 for 

details) were cycled to different strain amplitudes, for ~100 cycles. A few key characteristics 



29 
 

clearly emerge: (i) The material initially undergoes elastic deformation, which is followed by a 

long, fairly flat stress plateau. (ii) Upon unloading, the initial shape of the sample is almost entirely 

recovered. (iii) During a cycle, substantial hysteresis is observed, indicating energy dissipation 

(damping). (iv) The loading portion of the first cycle is substantially different from the second one, 

indicating irreversible fracture events; but after a few cycles of ‘shakedown’, the subsequent cycles 

quickly become self-similar, resembling the behavior of a non-linear viscoelastic material. The 

energy dissipated in each cycle is attributed to a number of physical mechanisms:  

(i) Fracture energy and plastic work. Particularly important during the first few cycles, 

these mechanisms are expected to largely disappear after ‘shakedown’. 

(ii) Elastic buckling. When a lattice bar buckles, it dissipates strain energy, which is 

recovered upon unloading.  

(iii) Macro-scale friction. When the lattice is compressed to large strains, members 

enter in contact with each other and dissipate energy by frictional interactions. 

(iv) Viscous dissipation. Viscous air damping within and around the very thin hollow 

bars is a cause of energy loss. 

(v) Micro-scale friction. Small micro-cracks present in the lattices dissipate energy 

through frictional interaction at the crack edges, even at very small applied strain.  

(vi) Intrinsic material damping. Intrinsic damping in the constituent material 

contributes to energy loss. 

This section describes an experimental protocol aimed at separating and quantifying the 

six mechanisms discussed above. Large-strain quasi-static cyclic compressive tests are performed 

to separate mechanism (i) from (ii) and (iii) and are described in section 5.1.2 Mechanisms (v) and 

(vi) are isolated by resonant experiments, performed at nearly zero strain (section5.1.3). Finally, 
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mechanism (iv) is separated by repeating all tests in air and vacuum (section 5.1.4). The 

observation and quantitative analyses of section 5.1.2-4 are ultimately summarized in section 5.1.5. 

5.1.2 Large-strain measurements 

All large-strain quasi-static compression tests were performed with a servo electrical 

INSTRON 8862 frame and a National Instrument SCXI data acquisition system. The actuator, 

featuring an integral concentrically mounted LVDT for precise measurement of position, moved 

at testing speeds of 100 mm/min to 1 μm/hr and accuracy of 10 μm/s. The load was measured by 

a 250gr Honeywell load cell. The LabVIEW software was used to collect load and displacement 

data. Engineering strain and stress are defined as ε=δ/L0, σ=P/A0 where δ is displacement measured 

by the LVDT and P is the load measured by external load cell. L0, and A0 represent the initial 

length and the cross section area, respectively. Figure 5.1 shows results from samples A-D 

(Table 5.1) at different strain levels (5%, 10%, 25%, and 50%). All samples were without face 

sheets and tested for ~100 cycles. 

Dissipated energy and damping capacity were extracted from the stress-strain data. The 

dissipated energy over a cycle, U  , is by definition the area within the hysteresis loop, whereas 

the loss coefficient, , was simply obtained by normalizing U  with the energy under the 

loading curve, U, i.e., /U U   [76, 77].  


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Figure 5.1 Multi-cycle compression experiments on hollow metallic microlattices: 

results for nominally identical samples A-D (see Table 5.1 for geometric details) at different 

strain amplitudes. (a) Sample A under 5% strain amplitude; (b) Sample B under 10% stain 

amplitude; (c) Sample C under 25% strain amplitude; and (d) Sample D under 50% strain 

amplitude. All samples have been cycled ~100 times.  

The evolution of the dissipated energy per cycle with cycle number is plotted in Figure 5.2, 

for different values of compressive strain amplitude. The dissipated energy monotonically 

decreases with cycle number for all strain amplitudes, but with a slope that is dramatically reduced 

after approximately 10 cycles. The difference between the initial energy dissipation and the 

“plateau” value expresses the contribution of irreversible mechanisms, i.e., partial nodal fractures 

and possible localized plastic deformation. Conversely, the “plateau” value expresses the 

combination of all the other mechanisms mentioned above; this energy loss is recurrent in every 
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cycle and hence is available for damping applications. This plateau might include loss mechanisms 

that are related to large-strain phenomena (namely buckling-related damping) as well as micro-

strain phenomena (intrinsic material damping, frictional losses at crack edges, etc…). Isolating 

these two classes of energy loss requires performing tests at virtually zero strain, hence eliminating 

buckling-related modes. This was accomplished as discussed in the next section.  

 

Figure 5.2 Dissipated energy vs. cycle number for nominally identical samples A-D (see 

Table 5.1 for geometric details) at different strain amplitudes.  

We notice that a zero-slope plateau is not exactly reached after 100 cycles, indicating 

continued (although much reduced) damage upon cycling. This behavior would somewhat limit 

the applicability of these materials for high-cycle applications. This deficiency could be addressed 

by an increase in the toughness of the constituent material. 
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5.1.3 Small-strain measurements  

Resonant measurements at infinitesimal strain were performed to capture intrinsic damping 

mechanisms, i.e. mechanisms that are not related to large deformation (or buckling) of the lattice 

members. All experiments were carried out with a Laser Doppler Vibrometer (Polytec MSA-500). 

A microlattice sample was bonded to carbon-epoxy face sheets. The lower face sheet was 

oscillated with a piezoelectric actuator within a sinusoidal signal at very low amplitude (~10nm), 

sweeping the frequency within the range 0-5kHz. The velocity of the upper plate was monitored 

with the Doppler Vibrometer in scanning mode (to identify the modal shapes). A representative 

frequency response of a sample (Sample E in Table 5.1) is shown in Figure 4.2. 

As the mass of the face sheets is ~10 times larger than the mass of the sample, the sandwich 

panel can be modeled as a discrete oscillator, with two masses connected by a spring and a damper 

in parallel. This simplification allows fitting of the measured frequency response on a classic 

oscillator model, thus allowing extraction of the damping properties of the microlattice. 

Incidentally, the location of the peaks provides information of the stiffness of the sample, from 

which the compressive Young’s modulus of the microlattice can be extracted as discussed in 

chapter 4. Two different methods can be used to extract the damping coefficient of the material 

from the shape of the resonant peak: (i) the curve fit method, where the theoretical shape of the 

peak is fitted on the experimental frequency response; (ii) the half-bandwidth method, where the 

aspect ratio of the peak is directly correlated to the damping coefficient.  

The equation of motion for the relevant mass-spring-damper can be expressed as: 

 
2 22 2n n n nx x x y y           (5.1) 
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with   and n   the damping ratio and natural frequency of the microlattice, respectively, 

and x and y the displacement of the two masses (face sheets). If the lower face sheet is oscillated 

with a harmonic sinusoidal wave, , the response  can be written as [80]: 

 ( ) ( ) i tx t X i e    (5.2) 

with: 

 

1 2

2

2
2 2

( ) 1 (2 )

1 ( ) (2 )

n

n n

X i

A

  

   

 
 

     

  (5.3) 

For method (i), Eq. (5.3) was fitted on the experimentally measured frequency response, 

and the damping ratio,   and natural frequency, n , were extracted. The results of the fit for 

sample E in Table 5.1 are reported in Figure. 5.3 and the extracted damping ratio was 0.0328 

. 

 

 

Figure. 5.3 Extraction of the damping coefficient from the frequency response of sample 

E (see Table 5.1 for geometric details), captured by Laser Doppler Vibrometry by using 

curve fit method.  

( ) i ty t Ae   x t
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Wong et al. [78] have reported that for loss factors 0.28  , the half-bandwidth method 

(method (ii) mentioned above) is accurate enough to measure damping. In this method, the loss 

factor  is extracted from the ratio of the resonant peak width (measured at an amplitude of 1/√2 

of the peak amplitude) to the resonance frequency [81]. Figure. 5.4 schematically demonstrates 

the application of the half-bandwidth method for sample E (Table 5.1), from which a loss factor 

of 0.0654  was calculated. For small damping ( 0.07  ), the loss factor   is linearly related 

to the damping ratio,  as 2   [78]. Hence for this sample, both methods produce nearly 

identical results.  

 

Figure. 5.4 Extraction of the damping coefficient from the frequency response of sample 

E (see Table 5.1 for geometric details) captured by Laser Doppler Vibrometry, by using the 

half-bandwidth method. 

For small damping, the loss factor is also linearly related to the loss coefficient,   [78]. 

If  is calculated on a quarter-cycle (compressive loading-unloading), as indicated in 

section 5.1.2, the correlation is: 

 
4

5


    (5.4) 


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This correlation allows direct comparison of the results from small-strain and large-strain 

experiments, hence facilitating the quantitative assessment of energy loss mechanisms in ultralight 

microlattices. We also notice that the loss factor, η, is equal to tanδ, with δ the phase angle between 

stress and strain under sinusoidal loading. This notation will be used in section 5.1.5.  

5.1.4 The effect of viscous dissipation 

As the ultralight microlattices under consideration are made of thin hollow bars (with 

diameters of the order of 100 microns), the effect of viscous dissipation by air trapped in the hollow 

tubes and air displaced during deformation on damping might be significant. To quantify this 

effect, two representative samples were tested with both the large-strain (INSTRON cyclic test) 

and the small-strain (Doppler vibrometry) techniques, both in air and under vacuum. The vacuum 

chamber pressure was less than 5mTorr. The results, reported in Figure 5.5, indicate that the effect 

of viscous dissipation on damping is fairly small, even under resonant conditions (less than 1% for 

quasi-static large-strain loading and approximately 15% for the resonant test). 
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Figure 5.5 The effect of viscous damping. Stress-strain curves obtained for sample I in 

air (a) and vacuum (b), and resonant peaks obtained for sample E in air (c) and vacuum 

(d). See Table 5.1 for geometric details. Notice that viscous dissipation increases the 

damping coefficient by 1% in large-scale compression experiments, and by 15% in 

resonant experiments. 

5.1.5 Quantitative assessment 

In order to quantify the effect of each energy loss mechanism on the damping behavior of 

ultralight microlattices, it is useful to combine the results of the experiments detailed in 

section 5.1.2-5.1.4 as indicated in Figure 5.6. Although sample E (Table 5.1) is chosen as a 

representative material, the behavior is qualitatively similar for all samples under investigation.  
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Figure 5.6 Damping capacity vs. maximum compressive strain for different cycles. The 

damping capacity measured by resonant tests at infinitesimal strain is consistent with the 

compression test results at small strain amplitude. This figure allows quantitative 

identification of the contributions of different damping mechanisms. The dominant 

mechanism (Region 2) is a unique form of structural damping, largely induced by 

coordinated local buckling and elastic recovery of the bars upon cycling. 

The damping capacity (loss coefficient) extracted from quasi-static large-strain 

compression tests is reported for different maximum strains (1, 2, 5, 10, 25, and 50%) and 5 cycle 

numbers (only 5 cycles are reported for clarity). The damping capacity extracted from the resonant 

tests was reported on the same plot at zero strain. In general, the damping capacity of materials is 

frequency dependent; as the two experiments are performed at very different frequencies (f<0.1 

Hz for the compression tests, and f~1,500Hz for the resonant tests), there is no guarantee that the 

damping obtained with resonant tests would be meaningful in quasi-static situations. Notice, 

though, that the resonant damping capacity (~0.16) agrees well with the damping capacity at the 

smallest finite strain (5%), suggesting minimal frequency dependence in this range and providing 
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confidence in the approach. Finally, the amount of viscous damping on the resonant tests (15%, 

see section 5.1.4) is presented as well. Notice that the damping capacity is initially a strong 

function of the strain amplitude, but saturates at amplitudes ~30%.  

The combined results allow clear separation of the various energy loss mechanisms, and 

quantitatively express their contribution to the damping capacity of the microlattice. For each 

strain amplitude, four distinct regions are evident (Figure 5.6): Region 1, expressing contributions 

of fracture and plasticity, which are not really a damping phenomenon (mechanism (i) in the 

classification section 5.1.1); Region 2, which displays the contribution of buckling-related and 

frictional damping (mechanisms (ii) and (iii)), which cannot be easily separated with this 

experimental protocol; Region 3, expressing the contribution of viscous damping (mechanism 

(iv)); and finally Region 4, expressing the contribution of intrinsic material damping phenomena 

(responsible at most for 0.0006   [82]) and micro-friction (mechanism (v) and (vi)). 

The relative importance of the 4 regions is a strong function of the strain amplitude. Region 

2 (largely attributed to buckling-related damping) plays a significant role at strain amplitudes 

larger than 10% and becomes the dominant mechanism at strains in excess of 25%. The relative 

contributions do not change at amplitudes larger than ~30%. If we discard fracture/plasticity-

related energy loss, at 50% strain, for sample E, we have: Region 2: 60%; Region 3: 4%; Region 

4: 17%. 

The dominant contribution of Region 2 justifies the modeling efforts presented in the 

following section, ultimately aimed at optimizing the microlattice geometry to maximize this 

damping mechanism. 

It is instructive to compare the damping performance of the materials tested in this research 

with the universe of existing metallic materials. As discussed, the conventional figure of merit for 
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the damping performance of plates, 1/3 tan /E     [1], is used for comparison. For all 

microlattices, the loss coefficient /U U   is extracted from quasi-static measurements, and 

 is estimated from Eq. (5.4) (recall that η=tanδ). The Young’s modulus, E, is extracted from 

the linear elastic portion of the stress-strain curve, and the density,  , is obtained by measuring 

both the weight and the volume of the samples. The envelope of all experimental results (Table 5.1) 

is presented in Figure 5.7 alongside the universe of metallic materials (monolithic metals, metal-

matrix composites and metallic foams). With this choice of axes, design lines (loci of uniform 

) have slope of -1. Notice that ultralight nickel microlattices are vastly superior to any metal 

available. It is important to emphasize, though, that the extremely low density of these samples 

implies that the actual amount of energy that can dissipated in each compression cycle is rather 

low, potentially forcing the designer to adopt unreasonably large volumes. In the next section, a 

simple analytical model for the dissipated energy per cycle (and for ) will be derived and 

subsequently adapted in an optimization problem to identify the geometric designs that will 

maximize the damping performance of microlattices. 

tan
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Figure 5.7 Material selection chart for vibration management of plates. All metallic 

materials (including Metal Matrix Composites) are depicted, alongside the hollow metallic 

microlattices tested in this work (the ellipse represents the envelope of experimental 

results). 

5.2 Modeling of Buckling-related Energy 

Dissipation  

The experimental results presented in section 5.1 clearly show that the surprisingly high 

energy loss exhibited by ultralight hollow microlattices upon large-strain cycling can be mostly 

attributed to a unique form of structural damping. This mechanism is related to coordinated local 

buckling of individual bars, and is explained here. Experimental evidence indicates that upon 

macroscopic compression, individual lattice bars locally buckle (generally near the nodes), and 

subsequently undergo large rotations to accommodate the global lattice strain. Buckling generally 

occurs in a layer-by-layer fashion (the layer of bars connected to one of the compression platens 

buckles first, followed by the adjacent layer, and so on until the maximum applied strain is 

reached). The mechanical response of an individual bar can be clearly understood with a simple 
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Finite Elements simulation of a hollow cylinder loaded in a cantilever mode (Figure 5.8a). The 

simulation is performed in dynamic mode with ABAQUS Explicit under displacement control, as 

convergence for these extremely unstable systems is difficult with quasi-static algorithms; 

nonetheless, a sufficiently small strain rate was chosen to render inertia effects negligible (the 

kinetic energy was verified to be very small compared to the elastic energy during the entire 

simulation). The cylinder is 4mm long, has a diameter of 500m and a wall thickness of 500nm. 

One end is fully clamped and the other end is displaced vertically by 1mm with a displacement 

rate of 0.67m/s, and subsequently displaced back to the original position with the same rate. The 

material is modeled as elastic-perfectly plastic, with properties representative of nano crystalline 

Nickel (Young’s Modulus, E=200GPa, Poisson’s ratio, =0.3, yield strength, =2.5GPa and 

density, =8000kg/m3). The element used is a 4-node shell, with reduced integration hourglass 

control and finite membrane strain (S4R). The cross-section at the free end is maintained circular 

during the entire cycle. Self-contact (hard, frictionless) is imposed on the cylinder to realistically 

capture large post-buckling deformation. The shape at the end of the loading cycle, together with 

contours of the Von Mises stress, are presented in Figure 5.8a. The load-displacement relationship 

for the cylinder is shown in Figure 5.8b. After a linear-elastic response, the cylinder buckles with 

a sudden and almost complete drop in the load; subsequently, it continues to deform fairly linearly, 

but with a much reduced stiffness. Upon unloading, the cylinder retraces the post-buckling loading 

curve until the buckling point, and then snaps back on the pre-buckling curve. During an entire 

cycle, the cylinder dissipates an amount of energy given by the nearly triangular area shaded in 

Figure 5.8b. This energy is dissipated through high-frequency vibration of the bar. Although the 

bars in a microlattice sample experience a more complex loading scenario (with combinations of 

compression, bending and shear, and non-trivial bar-bar interactions), the fundamental behavior 

s y
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does not change. The energy that is lost in a large-scale compression cycle of a microlattice can 

be estimated by adding the energy contributions of each bar that buckles. The next sub-section 

details such a model.  

 

Figure 5.8 (a) Finite Element simulation of a clamped hollow cylinder loaded in a 

cantilever mode. (b) Load-displacement curve, showing the energy dissipated in a cycle.  

Incidentally, the macroscopic compressive behavior of microlattices (Figure 5.1) can be 

interpreted in the context of local negative stiffness phenomena  [81, 82], a mechanism that is well 

known to generate effective stress-strain curves similar to those in Figure 5.1 [58, 83]; the load-

displacement curve of a single bar can be modeled by a tri-linear spring, with two positive stiffness 

sections interrupted by a sharp negative stiffness portion. Although a model of the collective 

behavior of tri-linear springs in series has been recently published to predict the compression 

behavior of carbon nanotube mats [58], the application of that model to the hollow microlattice 

presents a number of difficulties (largely due to bar-bar interactions and local fracture at the nodes). 

For the sake of this work, the simple model described below suffices to capture the main behavior 

of the system. 
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5.2.1 Mechanical model 

A free-body diagram for a bar within the microlattice under compression is depicted in 

Figure 5.9. Notice that as the lattice topology is not stretching dominated, each bar experiences a 

combination of axial compression, bending and transverse shear. 

 

Figure 5.9 Schematic of the deformation of a unit cell of the lattice under external 

compression, and free-body diagram of a single bar. Note that each bar experiences a 

combination of axial compression, bending and shear loads. 

Local buckling can occur by shell compression near the clamped end (where the normal 

compressive stress due to bending and axial load is maximum, see Figure 5.8a) or by shell shear 

(throughout the beam length). Because the shear stress is nearly zero where the normal stress is 

maximum (and vice versa), the two mechanisms are not heavily coupled. The implication – 

verified by FE simulations as explained below – is that the buckling load of the cylinder can be 

estimated as the minimum between the shell compression and the shell shear critical loads. 

Expressing the axial load and the moment on the bar as a function of the compressive load applied 

on one unit cell, P, the maximum normal compressive stress in the bar can be written as:  

 
2

cos sin

2 4
max

P P

tD tD

 


 
    (5.5) 

where t, D,  and θ are the thickness, diameter, length and inclination of the lattice bar, respectively 

(Figure 3.2). The bar will buckle by shell compression when the maximum stress in the bar equals 
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the critical local buckling stress. According to classic buckling theory [86], local buckling in a 

cylindrical shell of circular cross section under combinations of axial compression and bending 

occurs when the normal stress on the compressive side of the shell reaches the critical stress for 

axisymmetric (compression-only) buckling i.e.: 
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  (5.6) 

with E  and   are the Young’s modulus and Poisson’s ratio of the material. For the Nickel 

microlattice under consideration, 210GPaE  and 0.3  , respectively. By equating Eqs. (5.5) 

and (5.6), the buckling strength of the bar under compression-bending (equal to ¼ of the strength 

of the unit cell) can be expressed as:  
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The critical stress for shear buckling in a cylinder of circular cross-section can be estimated 

analytically as [87]: 
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E

D
    (5.8) 

Shear buckling occurs when the maximum shear stress in a single bar (given by 

cos / (2 )P Dt  ) equals the critical stress, which leads to:  
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The ratio between the shell shear and the shell compression buckling loads will then scale 

as:  

 

1/2 1/4

~
sh

cr

b c

cr

P t

P D D

   
   
   

  (5.10) 
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As / D  and /t D  increase, shell compression buckling becomes the dominant failure 

mechanism. Although Eqs. (5.7) and (5.9) predict comparable buckling loads for all samples in 

Table 5.1, numerical buckling analyses (eigenvalue extractions) performed with ABAQUS on 

single cantilever bars clamped at one end and subjected to an inclined load at the other end reveal 

that Eq. (5.7) is very accurate while Eq. (5.9) is too conservative. The implication is that all samples 

under investigation fail by local shell compression buckling, at a critical load that is very well 

captured by Eq. (5.7). This is in agreement with visual observations during the compression 

experiments. To verify that shear buckling is also inconsequential for all optimal geometries 

presented in section 5.2.2, numerical buckling analyses (eigenvalue extraction) were performed on 

a number of samples, with three conclusions: (i) for / 4D  , buckling occurs by shell 

compression for / 0.0025t D  ; (ii) for / 8D  , buckling occurs by shell compression for 

/ 0.001t D  ; (iii) in all cases, the critical loads are in good agreement with Eq. (5.7). As all 

optimal designs satisfy the geometric conditions (i) or (ii) (see Figure 5.12), shear buckling is never 

a concern, and will henceforth be neglected.  

An energy method is used to calculate the stiffness of bar. Upon global compression, the 

elastic energy stored in the entire unit cell is the sum of axial, shear and bending contributions (the 

shear term is the smallest, but not always insignificant):  
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with G the shear modulus of the material ( ). 

The unit cell stiffness can be defined as /K P  , with   the vertical displacement of 

the unit cell. The strain energy in the unit cell can be related to the displacement by 
1

2
U P . By 

imposing that this equation be equal to Eq.(5.11), the stiffness of each bar can be calculated as: 

/ (2(1 )) 81 GPaG E   
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Assuming that the entire elastic energy is dissipated upon buckling (a slight overestimation, 

as noted in Figure 5.8), the energy loss from each bar can be expressed as:  
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In order to calculate the energy dissipation of the whole lattice, the number of bars that 

buckle at any given applied compressive strain must be evaluated. Assuming an infinite lattice 

experiencing layer-by-layer deformation, and assuming that each bar folds onto itself upon 

buckling (so that the compress cell has a thickness equal to 2D), the fraction of bars, f, that needs 

to buckle in order to accommodate the global lattice strain is given by: 
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The number of bars in the whole lattice is given by 16b x y zN n n n , where xn , yn , and zn

are the number of unit cells in X , Y , and Z directions, respectively.  

The dimensions of the lattice are related to the dimensions of the unit cell by 2 cos yL 

, 2 sin zH n , and 2 cos xW  . 

Finally, from a simple energy balance, the energy dissipation in the bulk structure is 

extracted as: 

 3 2
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sin cos

b bar barf N E f E
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 
     (5.15) 

The continuum approximation underlying Eq. (5.14) is expected to be reliable for samples 

containing a large number of unit cells. As all samples available for characterization in this work 
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contained at most 3 unit cells, experimental verification of Eq. (5.15) presents some challenges. 

These challenges are exacerbated by the presence of manufacturing imperfections in most samples. 

To address these difficulties, and verify the reliability of the model, the following analysis was 

performed. 

Figure 5.10 shows the dissipated energy per cycle after 100 cycles for four nominally 

identical samples (samples A-D in Table 5.1) tested at different strain amplitudes. The red markers 

represent experimental measurements, while the three lines are model predictions. The solid line 

is a plot of Eq. (5.15), for the nominal dimensions of the sample. Notice that the model significantly 

underpredicts the dissipated energy. This discrepancy is attributed to (i) finite size effects and (ii) 

manufacturing imperfections, and justified as follows. The dashed staircase curve represents 

predictions of the energy dissipated for each full layer collapse (one layer equals ½ unit cell), with 

the strains for layer collapse based on experimental observation (0 collapsed layers observed at 

5% strain, 1 at 10% strain, 2 at 25% strain and 3 at 50% strain). This line represents the discrete 

version of Eq. (5.15) for a 2-unit cell sample. Finally, the dash-dot curve corrects for 

manufacturing imperfections, by estimating the dissipated energy per layer on the actual (counted) 

number of bars in each layer for the specific test samples (rather than calculating the number of 

unit cells based on measured overall sample sizes and unit cell nominal dimensions). Notice that 

the dash-dot curve is in very good agreement with the experimental measurements, for all values 

of compressive strain amplitude.  
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Figure 5.10 Dissipated energy in each cycle for samples A-D (the samples are nominally 

identical, see Table 5.1 for details) after 100 cycles, as a function of the maximum 

compressive strain applied in each cycle. The red markers represent experimental results, 

whereas the solid line depicts the analytical prediction from Eq. (5.15). The dashed line 

corrects the analytical model for a sample with only 4 unit cells across the thickness, based 

on visual observation of layer-by-layer buckling. The dash-dot line incorporates measured 

geometric imperfections in the samples. 

In order to verify the model-experiment agreement for other sample geometries and relative 

densities, four different samples (samples D-G in Table 5.1) were tested at 50% compressive strain 

amplitude for ~100 cycles. The results are reported in Figure 5.11. Notice that the simple analytical 

model (Eq.(5.15)) can capture the dissipated energy per cycle quite accurately (with a discrepancy 

of ~13% - 45%, depending on sample geometry). 
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Figure 5.11 Dissipated energy in each cycle for samples D-G after 100 cycles. The black 

square markers represent experimental results, whereas the red circular markers depict 

the analytical prediction from Eq. (5.15). 

It is worth emphasizing that the mechanical models presented in this section assume that 

the lattice response (both in terms of stiffness and strength, including the non-linear post-buckling 

behavior) is fully represented by the response of a single unit cell (or even a single bar). A number 

of recent studies have clearly indicated that this is not necessarily the case [23, 25]: this is 

particularly important for the buckling behavior, where different lattice topologies requires multi-

cell Representative Volume Elements (RVE) of different dimensions to accurately capture the 

infinite lattice response [25]. A recent study showed that the situation is even more complex for 

hollow lattices dominated by local shell buckling, where details of the boundary conditions on the 

sides of the RVE have a dramatic effect; in some cases, single bar models can overpredict the 

buckling strength of a lattice by 2-5X [53]. Similar trends were observed for stiffness predictions, 

where the overprediction can be even more dramatic [54]. We emphasize that the goal of the 

analytical model contained in this work is to provide an order-of-magnitude estimate for the energy 
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loss in loading-unloading cycles on ultralight hollow lattices. The fact that simple (albeit somewhat 

inaccurate) models can capture the order of magnitude of the energy loss is used to (i) support the 

claim that structural damping is in large part due to local kinking of the bars, and (ii) extrapolate 

the best damping performance that can be expected from this kind of materials (see next section).   

5.2.2 Trends for optimal design 

The mechanical model described in the previous section can be used to explore the 

parameter space and identify optimal designs. Two optimization problems will be addressed: the 

maximization of the energy dissipated per cycle, U , and the maximization of the damping figure 

of merit, 1/3 tan /E    . 

5.2.2.1 Maximization of dissipated energy per cycle, U  

Expressed in non-dimensional form, the geometric parameters of the system are the truss 

angle,  , the bar aspect ratio,    D /  and the cross-section aspect ratio, /t D .  

The objective function (to be maximized) can be expressed as: 

 
3 2 2 2

2 2

8 ( / ) [1 3tan ( / ) / 2 6(1 )( / ) ]

9(1 )sin (sin 2cos / ( / ))

f E t D D D
U

D

  

   

  
 

 
  (5.16) 

The range of the geometric parameters is dictated by manufacturing constraints, beam 

theory limitations and the recoverability condition (Eq.(1.1)), and can be expressed as follows:  

 

510 / ( / )

2 / 16

/ 0.25

45 75

cr

o o

t D t D

L D

D



  

 



 

  (5.17) 



53 
 

where L is the cell size (   L = 2 cosq , see Figure 3.2), and ( / )crt D  is given by Eq.((1.1))1.  

The relative density of the samples is calculated from simple hollow truss geometry [19]: 

 2

2

2
( )

cos sin

D t

D




 
    (5.18) 

The relative density is swept in the range 0.01–2%, and for each density the constrained 

optimization problem described above is solved with the “fmincon” algorithm in MATLAB. 

The energy loss versus the relative density of the material for different compressive strain 

amplitudes is depicted in Figure 5.12a, with optimal dimensions in Figure 5.12b-d. Importantly, 

and conveniently, the optimal lattice geometry is independent of the maximum compressive strain, 

whereas obviously the dissipated energy is monotonic in the maximum strain amplitude. 

                                                 
1 To be consistent with a layer-by-layer deformation model (implicit in Eq.(5.14)), Eq. (1.1) is 

modified by assuming max 50%   regardless of the actual values of max . This is a conservative 

choice based on the observation that each layer deforms by ~50% before the next layer starts 

buckling.  
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Figure 5.12 (a) Map of achievable energy loss for nickel microlattices as a function of 

relative density for different compressive strain amplitudes. (b-d) Optimal lattice 

dimensions. 

Initially, /t D  increases rapidly with relative density, with the angle constant at its upper 

bound (75o) and /D  constant at its lower bound (0.032). The dissipated energy is increasing 

very fast with the relative density. Very soon, the / ( / )crt D t D  constraint becomes active, at 

which point a further increase in /t D  (and hence the energy) is only possible with a steep decrease 

in angle and an increase in /D . When the angle reaches its lower bound (45o), /t D  reaches a 

plateau and the density can only increase by further increasing /D ; in this density range, the 

dissipated energy still increases with density, but at a much lower rate. Finally, at a relative density 
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of 0.75%, /D  reaches its upper bound (0.25), at which point a further increase in density 

requires a drop in /t D  and an increase in angle; the dissipated energy first drops quickly, and then 

starts increasing again at a very low rate. The peak in dissipated energy occurs at the relative 

density of 0.75%, for all applied strain levels.  

Figure 5.13a compares the energy dissipation of the existing samples strained to 50% 

amplitude (samples D-H (Table 5.1)) with the optimal designs. As all experimentally characterized 

samples have 60o  (Table 5.1), the optimal results for this constant angle are reported as well. 

According to the optimization results, for a relative density of 0.17%, the maximum energy loss at 

50% strain would be 1,293 J/m3, which is ~26 times larger than the model predictions for sample 

G (Table 5.1), which has the same density but different geometry. Conversely, notice that the 

energy dissipation for sample F (~456 J/m3), at a relative density of 0.15%, is very close to the 

prediction for optimal 60o lattices at that density (511 J/m3). A comparison of the actual and 

optimal geometries reveals a striking similarity (Table 5.2), confirming the validity of the 

analytical model and the optimization process. 

 

Figure 5.13 (a) Dissipated energy for a number of samples (D-H) of different relative 

densities (experimental results vs analytical model), compared with the energy that could 

be dissipated by optimally designed lattices (for the blue line, the lattice member angle is 

treated as a variable, whereas for the green line, the angle is fixed at 60o). (b) Calculated 
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relative density vs wall thickness over truss diameter for samples D-H (see Table 5.1 for 

details). The dotted red line represents the transition between recoverable and 

unrecoverable behavior. This confirms that the poor agreement between theory and model 

for sample H ( 0.3%  ) is due to the fact that the sample was not designed to withstand a 

50% compressive strain (see stress-strain curve in inset, confirming lack of recoverability).  

Notice that the analytical model cannot capture the experimental results for sample H 

(Table 5.1), at a relative density of 0.31%, and that the prediction for sample H largely exceeds 

the optimal results at that relative density. This discrepancy is easily explained looking at the 

dimensions of sample H: the cross-section aspect ratio ( /t D ) of this sample exceeds the critical 

value for recoverability (Eq.(1.1)) (see Figure 5.13b). The inset in the figure confirms that sample 

H does not undergo elastic recovery from a strain of 50%. Once again, these observations reinforce 

confidence in the model. 

Collectively, the optimization results indicate that an energy dissipation per cycle as large 

as 9,000 J/m3 is theoretically possible from a nickel microlattice with 45o  , / 0.25D  , and

/ 0.007t D  , compressed to a strain amplitude of 50%. This value is ~20 higher than the largest 

energy dissipation measured to date. However, an increase in dissipation energy does not 

necessarily guarantee an increase in damping. The next section addresses the optimization of the 

damping figure of merit, 1/3 tan /E    . 
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5.2.2.2 Maximization of damping figure of merit,    

Analytical prediction of the damping figure of merit requires reasonable estimates of 

relative density, Young’s modulus and tan . It is well known that analytical models overpredict 

(often dramatically) both stiffness and strength of hollow microlattices [53], [54]. In this case, the 

challenge is exacerbated by the substantial structural damage that ultralight samples receive upon 

large amplitude straining (see Figure 5.1). A crude analytical model will be attempted nonetheless 

and used to optimize  . The goal is a prediction of the trends of the optimal   with relative 

density (and information on the optimal designs), rather than a reliable prediction of   itself. 

As suggested in [84], [88], tan  for a non-linear dissipating material can be estimated by 

the shape of the stress-strain curve of a linear viscoelastic material with the same stress and strain 

amplitudes, max  and max . The area under the compressive portion of the stress-strain curve 

(Lissajous figure) for a linear material can be expressed as max max(2 / 5) sindW     . By equating 

this area to the dissipated energy in a cycle, i.e., dW U  , and taking max  as the buckling strength 

of the lattice, given by [53]: 

 
2

max 3 2

2 ( / )( / )

cos 3(1 )(1 ( / ) tan / 2)

sE D t

D




  


 
    (5.19) 

an estimate for  can be obtained.  

As equation (5.19) overpredicts the buckling strength even at the first cycle, and the lattice 

strength is greatly reduced after the first cycle (Figure 5.1), the resulting estimate for  results 

grossly conservative.  

The Young’s modulus of the lattice, /E   , can be estimated analytically by 

normalizing the unit cell stiffness expression (Eq. (5.9)). As 2 2/ (2 cos )P  , / (2 sin )    

and /K P  , where K is the unit cell stiffness given by Eq. (5.12) we obtain:  

tan

tan
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3

4
2 2 2

3 sin ( / ) ( / ) 1

3cos
1 ( ) tan 6(1 )( )

2

sE D t
E

D D

 

  



  

   (5.20) 

As ultralight hollow microlattices immediately buckle upon compression, this estimate 

dramatically overpredicts the stiffness measured by the slope of the stress-strain curve under quasi-

static loading [54]. As, it was shown in chapter 4 the agreement is much improved if the stiffness 

is measured in non-contact methods, e.g., by laser Doppler vibrometry. At any rate, the use of Eq. 

(5.20) somewhat offsets the over-conservative estimate of tan discussed above. 

For all samples, the relative density is calculated from the geometric parameters in 

Table 5.1 using Eq.(5.18). 

To get a sense of the possible error in using this model to estimate  , Table 5.3 compares 

density, stiffness, strength, energy dissipation, and damping figure of merit extracted from the 

experiments and the analytical models. As expected, the model consistently overestimates 

stiffness, density, and strength, while slightly underestimating the energy dissipation. Clearly the 

actual value of the figure of merit is not reliable number, and tends to underestimate the 

experimental results by a factor 5-30. However, the trends of   with relative density are expected 

to be reliable.  

The damping figure of merit, 1/3 tan /E    , was maximized under the same 

geometrical and physical constraints adapted in previous section (5.2.2.1) (Eq.(5.17)). Figure 5.14 

shows the optimal damping figure of merit as a function of relative density. Notice that the results 

are independent on the compressive strain amplitudes, with all the curves collapsing on a master 

curve. Interestingly, the optimal geometrical parameters are identical to those for optimal energy 

dissipation (Figure 5.12). 
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Figure 5.14 Damping figure of merit for optimal designs, as function of relative density. 

The result is independent on the strain amplitude. Note that the damping performance of 

buckling-dominated hollow metallic microlattices rapidly drops when the lattice density is 

increased above ~0.1%.  

The damping performance   increases very fast with increasing relative density (by 

increasing /D  and /t D ), until the angle reaches its minimum value and /t D  saturates to 0.007 

(equal to ( / )crt D  for 45o  ), at a relative density, ~ 0.1% . Beyond this point, the angle 

maintains its minimum value, /t D  remains at the critical value and    D /  increases, as discussed 

above; this results in a dramatic decrease in   with further increases in relative density (the drop 

occurs even as the dissipated energy continues to increase, see Figure 5.14). At a relative density, 

~ 0.75% ,    D /  reaches its upper bound, after which further increases in density require an 

increase in the angle and a decrease in /t D ; this results in a second sudden drop in the damping 

figure of merit  . Eventually,   reaches a plateau, after which it continues to decrease very 

slowly.  

The results clearly show that the damping performance peaks at very low relative density 

(~0.1%) and dramatically decreases as the density is increased. This confirms that the exceptional 

buckling-related damping of these novel material systems is limited to the ultralight regime. If 
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higher relative densities are required (for examples, to meet stiffness and/or strength constraints), 

additional damping mechanisms should be introduced. One possibility is the fabrication of multi-

layer hollow microlattices, where one layer possesses significant intrinsic damping. 
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CHAPTER 6. CHARACTERIZATION, 

MODELING AND OPTIMIZATION OF 

DAMPING MECHANISMS IN HOLLOW 

HYBRID MICROLATTICES 

In this chapter, we formulate an analytical model for both intrinsic and structural damping 

mechanisms in the hybrid microlattice materials schematically depicted in Figure 6.1, with the 

overarching goal of designing lattices with unique combinations of high stiffness, high damping 

and low density. This chapter is organized as follows: section 6.1 presents an analytical model for 

stiffness and intrinsic damping mechanism followed by numerical validation and experimental 

verification; the structural damping mechanism is studied numerically and the mechanical model 

is presented in section 6.2; the models presented in section 6.1 and section 6.2 are used for optimal 

design studies in section 6.3.  

 

Figure 6.1 Schematic of a hybrid (metal / polymer / metal) lattice. 

6.1 Stiffness and Intrinsic Damping Analysis 

In this section, a mechanical model is presented to capture stiffness and constrained-layer 

(intrinsic) damping (section 6.1.1), and the accuracy of this model is validated by finite element 
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simulations (FE) in section 6.1.2. Finally, experimental measurements performed to confirm the 

accuracy of the model are presented in section 6.1.3. 

6.1.1 Modeling stiffness and intrinsic damping  

A free body diagram of a bar within the microlattice material is depicted in Figure 6.2. 

Notice that the bars within the lattice experiences a combination of axial compression, transverse 

shear, and bending moment.  

 

Figure 6.2 Schematic of the deformation of a unit cell of the lattice under external 

compression, and free-body diagram of a single bar. Note that each bar experiences a 

combination of axial compression, bending moment, and shear load. 

The correspondence principle is used to model stiffness and damping capacity of hybrid 

lattices with a constrained lossy layer. The energy stored in the entire unit cell of microlattice 

materials, upon global compression, consists of axial, shear and bending contributions. Each of 

these energy terms can be readily expressed in analytical form. By imposing that the energy stored 

in the unit cell is equal to 
1

2
U P , with P being the external load and   the displacement, the 

unit cell stiffness (defined as /k P  ) can be calculated and properly rescaled to obtain the 

effective Young’s modulus of the lattices (which in this case is a complex number). The end result 

is: 
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1
2 23 * *

* 2

_ 4 4 * *

3 sin 3
1 tan 3 / 1

cos 2

i o
total voigt voigt total m m m

unit cell

p p p p

D t E ED t D t t G
E

G t t G

 






     
                 

  (6.1) 

where D is diameter,  is length, and θ is truss angle for each bar; 
i

mt , 
o

mt , pt , and totalt  are inner 

metal layer thickness, outer metal layer thickness, polymer layer thickness, and the total thickness 

of all three layers, respectively. Note that in the analytical model the thickness of inner metal, outer 

metal, and polymer are all assumed to be uniform. When the bulk modulus of polymer is very 

large compared to its shear modulus (hence the material is incompressible), the shear modulus of 

the polymer is 

*

*

3

p

p

E
G  . The shear modulus of metal is defined as 

2(1 )

m
m

E
G





. Finally, 

*

voigtE  

is the effective longitudinal Young’s modulus of the hybrid wall, i.e.: 

 * *
i o

pm m
voigt m p

total total

tt t
E E E

t t


    (6.2) 

where 
*

pE , and mE  are the Young’s modulus of the polymer (a complex number) and metal, 

respectively.  

Since the effective Young’s modulus is a complex number (
*

_ _ _unit cell unit cell unit cellE E iE   ), 

the intrinsic damping coefficient can be extracted from the storage modulus ( _unit cellE ) and loss 

modulus ( _unit cellE ) as: 

 
*

_ _

*

_ _

Im( )
tan

Re( )

unit cell unit cell

unit cell unit cell

E E

E E



 


  (6.3) 

The density of these lattices is expressed by simple geometric consideration as:  

 2

2
( )

sin cos

i o
pm m

m p

tD t t
  

 


    (6.4) 
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where m  is the density of metal and p  is the density of the polymer. Note that any mass 

accumulation at the nodes is neglected. 

6.1.2 Numerical validation of stiffness and intrinsic damping 

models 

Numerical analyses were performed using the commercial Finite Element package 

ABAQUS both on a single bar and a unit cell level lattices to validate the accuracy of the analytical 

model.  

The nickel (metal face sheets) with 210GPamE  , 38900kg/mm  , and 0.3   was 

modeled as a linear elastic material, while the parylene (polymeric core) with 

* 1.358 0.3396  GPapE i  , tan 0.25  , 31200kg/mp  , and 0.49   was modeled as a 

viscoelastic material in frequency domain. The long term Young’s modulus of parylene was 

assumed to be 0.37GPaE  , according to the measurements of Andressen [89]. The steady-state-

dynamics-direct algorithm is used to capture the behavior of hybrid lattices with polymeric layer 

as a lossy material (with Young’s modulus being a complex number). In order to verify the 

accuracy of the steady-state-dynamics-direct algorithm, classic composite topologies (Voigt and 

Reuss) were simulated with ABAQUS, and the results were compared with both analytical models. 

According to the correspondence principle, the Voigt composite modulus is calculated from Eq. 

(6.2) and the Reuss shear modulus is expressed as: 

 
* *

/1 ( ) /i o
p t m m t

t p m

t t t t t

G G G


      (6.5) 
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A composite lattice (nickel / parylene / nickel) with length and width of 3.5μm , polymer 

thickness of 2.5μmpt  , and inner and outer metal thickness of 0.5μmi o

m mt t  is modeled in 

ABAQUS both under shear and compression. 

 Analytical Model FE Model 

Voigt Model * 61.78 0.0535  GPavoigtE i    
* 61.75 0.0541  GPavoigtE i   

Reuss Model  *

Re 1.161 0.0347  GPaussG i   
*

Re 1.168 0.0349  GPaussG i   

Table 6.1 Comparison between analytical and FE models for Voigt and Reuss 

composites. 

Analytical and FE models are in very good agreement (Table 6.1), confirming the accuracy 

of the steady-state-dynamics-direct algorithm in modeling the frequency-domain viscoelastic 

response of materials.  

To validate the analytical model proposed in Eq. (6.1) with Finite Element simulations, 

two nickel / parylene / nickel samples (sample A was slender and sample B was stubby) were 

modeled in ABAQUS, at two different scales: single bar and single unit cell level, to isolate the 

effects of the nodal geometry. 

Note that for FE simulation, shell elements are best suited for sample A, due to its slender 

nature, and similarly, solid elements are best suited for sample B due to its stubby nature. 

As mentioned, shell elements are used to model sample A with 4000μm , 500μmD 

, 60o  , 2.5μmpt  , and 0.5μmi o

m mt t  . The Young’s modulus of the lattice was extracted 

from the simulations and compared with the analytical prediction from Eq. (6.1) and the results 

are presented in Table 6.2. The results indicate that the analytical model can capture the behavior 

of a single bar accurately; however, it is over-estimating the unit cell stiffness. The same 

discrepancy was also observed in single layer metallic lattices with the same aspect ratios as that 



68 
 

of sample A in previous studies [54]. We attribute this discrepancy to the fact that simple beam 

model does not capture the effects of the nodes.  

Sample B with 1000μm , 250μmD  , 60o  , 16.66μmpt  , and 4.16μmi o

m mt t   

was modeled using solid elements. The Young’s modulus of the lattice was extracted from the 

simulations and compared with the analytical prediction from Eq. (6.1) and the results are 

presented in Table 6.2. The results indicate that the storage modulus captured by the FE simulation 

for the single bar and single unit cell are very close; however, the analytical model is under-

predicting the modulus in both simulations by ~19.5%. We attribute this discrepancy to the sample 

geometry: i.e. the wall thickness in sample B ( / 0.1tt D  ) violates the thin-wall assumption in the 

analytical model. On the other hand, the loss modulus of the lattice captured by the FE simulation 

on the unit cell mesh is ~3x higher than from the single bar model. We attribute this difference to 

the nodal geometry: i.e. the polymer accumulates large shear strain in the nodal region of this 

stubby sample, which results in higher loss than single bar simulations. Figure 6.3 depicts the 

maximum principle strain in the polymeric layer of samples A and B, which clearly shows higher 

nodal strain in sample B compared to sample A. 
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Figure 6.3 Maximum principle strain of parylene layer in (a) sample A and (b) sample B 

under axial compression 

Altogether, the results of the FE simulation confirm that the analytical model predicts the 

single bar behavior accurately when the total thickness is small relative to the diameter. 

Furthermore, when it comes to the unit cell level, although the analytical model shows some 

discrepancies in predicting the storage modulus, the trend of the discrepancies is the same as in 

single layer lattices [54]. The model predicts the loss modulus accurately when / D  is large and 

the node is small relative to the whole unit cell (sample A) but is under-predicting when / D  is 

small and the node is large relative to the whole unit cell (sample B). 
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6.1.3 Experimental verification of intrinsic damping  

Resonant measurements at infinitesimal strains were performed to capture the intrinsic 

damping mechanism of the hybrid lattices at two different length scales; single bar, and single unit 

cell. A half layer tetrahedral hybrid hollow microlattice manufactured by HRL laboratories is used 

in these experiments. Therefore, the analytical models are modified for tetrahedral lattices and 

compared with the experimental results. Note that, the results of these comparisons can be applied 

to the octahedral lattices as well since they both exhibit the same mechanisms.  

All experiments were carried out with a Laser Doppler Vibrometry (PSV-500, Polytec 

GmbH, Irvine, CA) depicted in Figure 6.4a . The single bar measurement is used to investigate the 

accuracy of the analytical model and the single unit cell measurement is used to study the effects 

of nodes on the intrinsic damping.  

A single bar was extracted from a hybrid lattice and press-fitted to the aluminum base to 

create a fixed boundary condition (cantilever bar) as depicted in Figure 6.4b. The bar was 

assembled on top of a shaker (Labworks Inc. ET-132-2) by using petro mounting wax. The 

aluminum base was oscillated via a shaker with a FFT sinusoidal signal at a very low amplitude, 

sweeping the frequency within the range of 0-15kHz. The velocity of the aluminum base and 

hybrid bar were monitored with the Doppler Vibrometer in scanning mode (to identify the modal 

shapes).   
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Figure 6.4 (a) Laser Doppler Vibrometry (PSV-500); (b) single bar in cantilever mode; 

(c) half tetrahedral unit cell bounded between two aluminum facesheets. 

The response of the base plate and the bar is depicted in Figure 6.5a and b, respectively. 

An eigenmode was detected at ~13kHz with an out-of-plane axial mode for the aluminum base. 

To eliminate the effects of aluminum base excitation, H1 transfer function,
Y( )

1
( )

H
X




 , is used 

where ( )X   is the average response of the aluminum base and ( )Y   is the response of individual 

points on the bar with respect to the ( )X   excitation. The frequency response of every single point 

on the bar is calculated by using the above transfer function and the response of a single point is 
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depicted in Figure 6.5c. Note that in the previous measurements on metallic samples (section 

5.1.3), the H1 transfer function was not used to extract the damping coefficient. This was due to 

the fact that the natural frequencies of the sample were below the resonance frequency of 

piezoelectric actuator; therefore, the excitation was uniform and the response was purely 

originating from the materials. However, in this measurement the natural frequencies of the sample 

are very close to the resonance mode of the shaker; therefore, the results is a combination of 

responses of the shaker and the hybrid bars, which need to be decoupled. 

 

Figure 6.5 Frequency response of (a) aluminum base; (b) hybrid bar with respect to the 

aluminum base excitation captured by Laser Doppler Vibrometry; and (c) the result of H1 

transfer function of a single bar. 
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As Figure 6.5c indicates, two modes are coupled at ~12kHz frequency with a first bending 

mode shape (inset in Figure 6.5c). A Gaussian function is used to decouple these modes from each 

other and the result is depicted in Figure 6.6. 

 

Figure 6.6 Decoupling the two frequency modes by using Gaussian function.  

Two different methods can be used to capture the damping of the structure from the 

resonant response: (i) half bandwidth method and (ii) structural damping method. In the first 

method, the loss factor   is extracted from the ratio of the resonance peak width (measured at an 

amplitude of 1/ 2  of the peak amplitude) to the resonance frequency [81]. The second method is 

useful when the structure is damped by internal friction [80]. This damping can be calculated by 

equating the work done by external harmonic excitation ( ( ) i tF t Ake  which A is a constant and 

k is the spring constant) of the structure to the energy dissipated per cycle of vibration (

2 /

0
cyc

cyc

E Fdx Fxdt
 

    ). Assuming the response to this harmonic excitation is 

( ) ( )( ) ( ) i t i tx t A G i e Xe       , the energy dissipated per cycle is: 
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2 /

2 2 2

0
( ) cos .sin( ) ( ) sincyc nE kA G i t t dt m A G i

 

               (6.6) 

where 
2

sin ( )
n

c
G i

m


 


 ; therefore, the energy dissipated per cycle can be simplified to 

2

cycE c X   where c is viscous damping coefficient. Moreover, experiments performed using 

a variety of materials show that energy loss per cycle due to internal friction is proportional to the 

square of the displacement amplitude, 2

cycE X   [80]. Under these circumstances the equation 

of motion of the structure can be written as:  

 ( ) ( ) ( ) ( ) i tmx t x t kx t F t Ake 


      (6.7) 

Since x i x  and 
2 /n k m  , equation (6.7) can be rewritten as:  

 
2 2( ) (1 ) ( ) i t

n nx t i x t Ae       (6.8) 

where 
k





 . The steady state solution of Eq.(6.8) is 

** ( )( ) Re[ ( ) e ]i tx t A G     where 

*

2

1
( )

1 ( / )n

G
i


  


 

 is the equivalent of the frequency response of the structural damping. 

For the sample in the test, both methods generate identical results. Figure 6.7 shows the 

results of the curve fit method on the two curves captured from decoupling the modes. The 

extracted damping ratio form both peaks are very close to each other and is equal to ~ 0.02 . 
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Figure 6.7 Extraction of the damping coefficient from the frequency response of a 

hybrid sample captured by Laser Doppler Vibrometry, by using the curve fit method (a) 

first curve; (b) second curve. 

Frequency extraction (also known as linear perturbation analysis) was performed on a 

single bar with the same dimensions of the bar in the test ( 15.59mm , 3.2mmD  , 19.5μmi

mt 

, and 15.1μmo

mt  ) in ABAQUS/Standard. The thickness of the polymer was swept between 

4.7 30μmpt   to capture the effects of the polymer layer on the natural frequencies of the single 

bar. The four lowest vibration modes and corresponding eigen frequencies were obtained via 

eigenvalue extraction. In the sample with 4.7μmpt  , the first and the second modes are distortion 

modes with identical frequencies of ~10kHz; the third mode and the fourth modes are first in-plane 

and first out-of-plane bending modes respectively, with identical frequencies of ~13kHz. By 

increasing the polymer layer thickness, the first and the second modes are switching with the third 

and the fourth modes and the frequencies of the bending modes are decreasing. Therefore, the two 

bending modes (in-plane and out-of-plane) that were captured in FE simulations are actually the 

two coupled modes in the experiment. The difference in the frequencies of these two modes is due 

to the manufacturing defects (e.g. non-uniformity of the polymer layer).  



77 
 

According to the modified analytical model presented in section 6.1.1, for a hybrid 

cantilever beam with a dimension of 15.59mm , 3.2mmD  , 19.5μmi

mt  , and 15.1μmo

mt  , 

the intrinsic damping for samples with 4.7μmpt  , 30μmpt  , and , 100μmpt   are 42.7 10  

, 0.0018  , and 0.005  , respectively. Comparing the experimental measurement ( ~ 0.02 ) 

and the prediction by analytical model shows at least 4x difference in intrinsic damping. In the 

analytical model, the metal damping was neglected and only the intrinsic damping of the polymer 

was studied; however, a study on damping of nickel hollow microlattice materials (chapter 5) 

indicates that the nickel structure possesses some intrinsic damping as well. Therefore, to verify 

the analytical model, a single layer nickel bar with the same dimensions ( 15.59mm , 

3.2mmD  , ~ 40μmmt ) was tested with a Laser Doppler Vibrometry to capture its intrinsic 

damping. The experiment was repeated with exact same conditions as explained above. The 

extracted damping coefficient for the single layer nickel bar is 0.016   for the first bending 

mode. The difference between the damping of hybrid bar and single layer nickel bar is ~ 0.004

which is within the range of analytical model predication when the polymer thickness varies 

between 4.7 100μmpt   (since the polymer layer thickness is not uniform throughout the sample, 

a damping within the range of thickness is acceptable). 

Similarly, a single half unit cell is extracted from hybrid microlattice structure and bounded 

between two aluminum face sheets (Figure 6.4c). The bottom face sheet is a 5cm thick aluminum 

rod (which is chosen based on FE simulations to prevent having any eignmodes below a resonance 

frequency of the lattice) and a top face sheet is a 20mm 20mm 4mm   plate which is ~10x heavier 

than the lattice (Figure 6.4c). The bottom plate was excited by the shaker with frequencies within 

the range of 0-10kHz and the top and bottom plates were scanned by Laser Doppler Vibrometry 
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and their responses were captured. The curve fit method is used to extract the damping coefficient 

of the microlattice. The result of curve fit is reported in Figure 6.8a. The damping of half unit cell 

hybrid lattice is 0.018  . 

 

Figure 6.8 Extraction of damping coefficient from the frequency response of (a) half 

hybrid tetrahedral unit cell and (b) half nickel tetrahedral unit cell microlattices captured 

by Laser Doppler Vibrometry.  

The same procedure was repeated for a half unit cell nickel lattice with ~ 40μmmt  and a 

damping coefficient of 0.015   (Figure 6.8b). The difference between the intrinsic damping of 

the hybrid half unit cell and the nickel half unit cell is ~0.003, which is predicted accurately by the 

analytical model. According to these experiments, the damping of microlattices has been increased 

by 20% by adding the constrained polymeric layer. It is worth mentioning that for this specific 

lattice, the damping coefficient of a single bar and half unit cell are very close; however, according 

to FE simulations, the damping coefficient can be increased by stacking up several unit cells due 

to the effects of the nodes.   
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6.2 Structural Damping Analysis  

As discussed in the previous chapters, the mechanical response of hollow lattice materials 

is a very strong function of their relative density: (1) For dense lattices, the typical plastic 

deformation plateau is observed with no recoverability. Therefore, these lattices only have intrinsic 

damping (intrinsic metal layer damping and constrained-layer damping) at small strains as their 

damping mechanism. (2) For ultralight lattices, where the thickness to diameter ratio of the bars 

are very small, a unique pseudo-super-elastic behavior is observed whereby full recoverability is 

achieved upon very large straining (in excess of 50%). In chapter 5.2 we have shown that the 

pseudo-super-elastic behavior in ultralight regime is due to buckling of the bars upon compression. 

Therefore, the ultralight lattices have two different damping mechanisms: intrinsic damping at any 

strain and structural damping due to buckling of the bars at large strain. In this section the structural 

damping mechanism for hybrid ultralight microlattices is studied. Section 6.2.1 presents a 

numerical analysis of the existence of this damping mechanism in hybrid hollow microlattices and 

section 6.2.2 presents an analytical model for it. 

6.2.1 Buckling related energy dissipation mechanism 

In chapter 4, a unique form of structural damping under large compressive strain was 

identified for metallic hollow microlatices and shown to be related to the local buckling of 

individual bars. In this section, we show that hybrid hollow microlattices also exhibit the same 

behavior under compressive strain; with a caveat that the wall thickness to diameter ratio be kept 

below the necessary limit to ensure that no plastic deformation occurs upon local buckling of the 

members and large rotations about the kinks.  

This mechanism can be clearly elucidated with a simple FE simulation of a single hybrid 

bar loaded in cantilever mode (Figure 6.9a). To address convergence issues, a dynamic simulation 
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is performed in ABAQUS/Explicit under displacement control. In order to have negligible inertia 

effects, a very small strain rate was chosen and the kinematic energy was verified to be very small 

compared to the elastic energy during the entire simulation; additionally, a smooth function for 

displacement was used to prevent sudden shocks at the beginning of the simulation. A hollow 

cylinder with the diameter of 1mm, length of 4mm, polymer wall thickness of 100nm and nickel 

wall thickness of 538nm was chosen for the simulation. One end of the cylinder is fully clamped 

and the other end is displaced vertically by 200nm with a displacement rate of 0.2m/s and then 

unloaded to its original position. In the simulation, a nickel layer with Young’s modulus of 

210GPa, Poisson ratio of 0.3, yield strength of 2.5GPa, and density of 8900kg/m3 was used; the 

polymer layer has Young’s modulus of 1.4GPa, Poisson ratio of 0.45, yield strength of 26MPa, 

and density of 1040kg/m3. Both materials are modeled as elastic perfectly plastic. Since we are not 

interested in the intrinsic damping behavior in this simulation, no viscoelastic properties are 

inserted. A 4-node shell element was used with reduced integration hourglass control and finite 

membrane strain (S4R). The cross-section at the free end is maintained circular during the entire 

cycle. Self-contact (hard, frictionless) is imposed on the cylinder to realistically capture large post-

buckling deformation.  

The shape at the end of the loading cycle together with contours of the Von Mises stress 

are presented in Figure 6.9a. The load displacement relation for a cylinder is shown in Figure 6.9b. 

After a linear-elastic response, the cylinder buckles with a sudden and almost complete drop in the 

load. It continues to deform fairly linearly thereafter, albeit with much reduced stiffness. Upon 

unloading, the cylinder retraces the post-buckling loading curve until the buckling point, and then 

snaps back on the pre-buckling curve. During the entire cycle, the cylinder dissipates an amount 

of energy given by the nearly triangular shaded area shown in Figure 6.9b.  
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In a bulk lattice under compression, a large number of bars can dissipate energy through 

this mechanism. The energy dissipated by the entire lattice in a cycle is roughly given by the sum 

of these contributions for all the bars that buckle. This energy dissipation can be approximately 

modeled using classic local buckling theory (discussed in the next section). The same behaviors 

have been observed for nickel based hollow microlattice materials; for those systems, the 

experimental data agreed remarkably well with the simple analytical model as shown in chapter 5. 

 

Figure 6.9 (a) Finite element simulation of a clamped hollow cylinder loaded in a 

cantilever mode. (b) Load–displacement curve, showing the energy dissipation in a cycle. 

Before introducing the mechanical model, it is worth noting that not all the bars show the 

same behavior as shown in Figure 6.9. According to the previous studies [52] for single phase 

lattices, a simple condition can be derived to ensure that plastic deformation do not ensue during 

the large bar rotation induced by large compression of the cycle. This condition is here extended 

to hybrid lattices, and can be expressed as:  
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where m  is the yield strength on the metal layer and max  is the maximum compressive strain 

imposed on the lattice. Note that since the yield strain of polymer is higher than the metal, the 

metallic layer in the bar is first going through plastic deformation. 

6.2.2 Mechanical model of buckling related energy dissipation 

mechanism 

As shown in the previous section, the hybrid hollow microlattice materials, with certain 

geometry, under large compressive strain, show full recoverability. During the unloading process, 

such structures dissipate energy which we are going to model in this section.  

As free-body diagram of a bar in the microlattice (depicted in Figure 6.2) shows, each bar 

in a lattice under compression experiences a combination of axial compression, bending moment, 

and transverse shear. Neglecting the shear load with respect to the axial and bending moment, and 

the effects of polymer layer, the maximum normal compressive stress max  on the metal layer of 

the bar in the lattice can be found as a function of the compressive load applied on a single unit 

cell, p, as:  

 max
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(sin cos )

4 ( )i o

m m
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  (6.10) 

The bar buckles when the maximum stress in the bar equals the critical local buckling stress 

and the local buckling occurs by shell compression near the clamped end. As shown in [90], in 

sandwich-wall hollow cylinders with small relative ratio of the polymer thickness over the 

diameter of the bar, the local buckling stress can be written as:   
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where:   
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and mE  and m  are Young’s modulus and Poisson ratio of the metal layer. This model assumes 

that the thicknesses of the inner and outer metal layers are identical (
i o

m m mt t t  ). The 

optimization results also confirm that having the same metal thickness outside and inside of the 

polymer yields the optimal solution. By equating Eq.(6.10) and Eq.(6.11), the buckling strength of 

sandwich hollow bars can be expressed as: 
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This model was verified by the FE simulation on a single bar loaded in cantilever mode 

shown in Figure 6.9b. The FE simulation predicts a critical buckling load of 64.4mN while the 

analytical model prediction is 66.6mN, clearly showing the accuracy of this model. On the other 

hand, the stiffness of one bar in the lattice can be derived from Eq. (6.1) as:  
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  (6.14) 

Assuming the entire elastic energy dissipated upon buckling, the energy loss from each bar 

can roughly modeled as:  
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The number of bars in the whole lattice is given by 16b x y zN n n n , where xn , yn , and zn  

are the number of unit cells in X, Y, and Z directions, respectively. The dimensions of the lattice 

are related to the dimensions of the unit cell by 2 cos yL n , 2 sin zH n , and 2 cos xW n

. Finally, from a simple energy balance, the energy dissipation in the bulk structure is extracted as: 
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where f  is the friction of the bar that needs to be buckled to accommodate the global lattice strain. 

Assuming layer by layer deformation and taking into account that each bar is folded onto itself 

upon the buckling.  f is expressed as: 
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6.3 Trends for Optimal Design 

The mechanical models described in the previous sections can be used to explore the 

parameter space and identify optimal designs. Two optimization problems will be addressed in 

this section: (1) Maximization of the damping figure of merits,
1/3

* tan /E   , where damping is 

originated from the viscoelastic nature of the polymer (modeled in section 6.1.1). Damping figure 

of merit, 
1/3

* tan /E   , expresses how fast a clamped plate subject to forced vibrations reaches 

to the rest state when the forcing term is removed. (2) Maximization of the dissipated energy ( U

) in a compression cycle, originating from structural damping (modeled in section 6.2.2).  

6.3.1 Maximization of intrinsic damping figure of merit, 
1/3

* tan /E     

The geometric parameters of the system are expressed in non-dimensional forms, the truss 

angle ( ), the bar aspect ratio ( /D ), the ratio of metal wall thickness over length of the bar (

/mt ), and the ratio of polymer wall thickness over length of the bar ( /pt ). The objective 

function is 
1/3

* tan /E    where *E , tan ,  are given by Eq.(6.1), Eq.(6.3), and Eq.(6.4), 
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respectively. The range of the geometric parameters, imposed by manufacturing constraints and 

beam theory limitation, is expressed as:  
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  (6.18) 

where 2 cosL   is the cell size. As optimization studies performed with the above constraints 

produce optimal lattices with very high ratio of polymer to metal wall thickness ( / 500p mt t ), 

which presents substantial manufacturing challenges, we include an additional manufacturing 

constraint: / 10p mt t  .  

The density of the lattice, given by Eq.(6.4), is swept in the range 10–1000kg/m3, and for 

each density the constrained optimization problem described above is solved with the “fmincon” 

algorithm in MATLAB. 

To elucidate the effects of the viscoelastic properties of the polymeric layer (modulus and 

damping coefficient) on the lattice performance, we repeat our optimization study for eight 

different polymers with the same * 8tan 10E   . The Young’s modulus is changed between the 

range of 100MPa to 50GPa and damping is changed from 0.002 to 1. The material index (
1/3

* /E 

) is plotted versus the loss coefficient ( tan ) for nickel and eight different polymers in 

Figure 6.10a, and optimal dimensions are shown in Figure 6.10b-e.  
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Figure 6.10 (a) Map of achievable  
1/3

* /E    of hybrid microlattices with eight different 

polymers. (b-e) Optimal lattice dimensions. 
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At the lowest densities, /pt  and /mt  remain constant while truss angle   and /D  

increase as the density of the lattice is increased, leading to the decrease of the figure of merit for 

all the samples. As the density increases, truss angle   and /D  both hit their upper bounds, while 

/pt  and /mt  increase, thus leading to the decrease of the figure of merit (
1/3

* /E  ) with a 

steeper slope. Throughout the whole density range, the / 10p mt t   constraint is active.  

Young’s modulus versus density and loss factor for the same optimization results are 

depicted in Figure 6.11. These maps allow optimal design. For example, if a minimum allowable  

Young’s modulus is prescribed, the minimum density of the lattice and the maximum values of 

the damping coefficient can be identified.  

 

Figure 6.11 Young’s modulus versus (a) density and (b) loss factor for hybrid hollow 

microlattices for eight different polymers. 

Not surprisingly, polymers with the highest modulus yield the stiffest lattices. The effect 

of the polymer choice on the damping coefficient of the lattice is less trivial. For polymers with  

tan 0.5  , increasing the damping coefficient of the polymer yields lossier lattices. But the trend 

is inverted for polymers with tan 0.5  ; increasing the damping coefficient of the lattice while 
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maintaining * 8tan 10E    results in very soft polymers, which are incapable of dissipating 

substantial amounts of energy, thus reducing the damping performance of the lattice.   

It is worth mentioning that by removing the / 10p mt t   constraint, the lattices show higher 

damping and lower Young’s modulus (due to the tendency to pick thicker polymer layer and 

thinner nickel layer); unfortunately, those lattices are very challenging to manufacture. 

The results indicate that the maximum achievable damping for the lattice is equal to the 

damping of the polymeric layer (without adding the / 10p mt t   constraint); however, the stiffness 

of the lattice would always exceed the stiffness of the polymeric layer.  

In order to understand the advantages of hybrid lattices, optimized nickel / parylene / nickel 

lattices are compared to (1) optimized single layer nickel lattices, (2) optimized single layer 

parylene lattices, (3) a Reuss and Voigt composite of nickel / parylene, (4) solid nickel, and (5) 

solid parylene. In this study, parylene with properties of * 1.4GPaE  , tan 0.25  , 

31200kg/m   and nickel with properties of 210GPaE  , and 38900kg/m   is used. The 

densities of all the lattices are changed between the range of 10-1000kg/m3 and the densities of 

both Voigt and Reuss composites are changed between the range of 1200–8900kg/m3. Hybrid 

lattices with two different /p mt t  constraints ( / 10p mt t  and / 25p mt t  ) are used to better 

understand the effects of manufacturing constraints and the advantages of having thicker layer 

polymer. Figure 6.12a shows the material index (
1/3

* /E  ) versus loss factor for the above 

materials. Not surprisingly, the optimized nickel lattice has the highest performance in this material 

index and the lowest performance in loss factor, whereas the optimized parylene lattice has the 

best performance in loss factor. Our hybrid lattices are clearly superior to both Voigt and Resuss 

composites. The optimized hybrid lattices with the  / 10p mt t   constraint activated result in lower 
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damping but higher stiffness; however, hybrid lattice with a / 25p mt t   constraint result in higher 

damping but lower stiffness (due to thicker layer of polymer and thinner layer of nickel).  

 

Figure 6.12 Comparison of optimized hybrid microlattices with two different constraints ((

/ 10p mt t  and / 25p mt t  ), optimized nickel microlattices, optimized parylene 

microlattices, solid nickel, solid parylene and Reuss and Voigt composites. (a) 

Material index 
1/3

* /E   versus loss factor, (b) Young’s modulus versus 

density, 

Note that the selection line (Figure 6.12) suggest that the parylene lattices have the highest 

damping figure of merit; however, as Figure 6.12b indicates, the Young’s modulus of parylene 

lattices is very small. Therefore, the hybrid lattices provide the best practical choice when high 

stiffness and high intrinsic damping is needed. 

6.3.2 Maximization of the dissipated energy per cycle, U , due to 

structural damping  

Finally, in this section, we show how to maximize the bar buckling-induced dissipated 

energy per cycle in ultralight hybrid microlattices (modeled in section 6.2.2), which leads to 

maximization of structural damping in hybrid hollow microlattices.  
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In addition to the manufacturing constraints expressed in Eq.(6.18), we also impose the 

recoverability constraint (Eq.(6.9)). Furthermore, to avoid yielding preceding buckling as a failure 

mechanism, we request that: 

 0.9
lb

bar

y

bar

p

p
   (6.19) 

where 
lb

barP  is the critical local buckling of the bar derived from Eq.(6.13) and 
y

barP  is the yielding 

load of the bar and is calculated as:  
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The constrained optimization problem described above is solved with the “fmincon” 

algorithm in MATLAB for each density within the range of 10–200 kg/m3 to find the optimized 

dimensions i.e. truss angle ( ), bar aspect ratio ( /D ), ratio of metal wall thickness over length 

of the bar ( /mt ), and ratio of polymer wall thickness over length of the bar ( /pt ). 

Figure 6.13 shows the dissipated energy as a function of density for the hybrid lattices 

constructed with eight different polymers (as described in the previous section with constant 

* 8tan 10E   ). Note that in all of these hybrid lattices, nickel is used as the metal layer. 

Figure 6.14 shows the optimal dimensions for each of the hybrid lattices. 
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Figure 6.13 Map of achievable ΔU of hybrid microlattices for the eight different polymers 

compared to nickel microlattices. 

As indicated in Figure 6.13, adding a polymer layer to a metallic lattice increases the energy 

dissipation due to the structural damping ~6-8x by increasing the local buckling load. Such gain 

varies only slightly for polymers with different properties. In fact, there is only a 15% difference 

between the increase in energy dissipation yielded by using the polymers with the lowest damping 

coefficient and the polymer with the highest damping coefficient. This is because the critical 

buckling load is a function of metal stiffness and the geometry of the lattice Eq.(6.13) rather than 

the properties of the polymer.  Hence the properties of the polymer can be chosen exclusively 

based on the considerations discussed in sec. 6.3.1.  
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Figure 6.14 Optimal lattice dimensions for hybrid lattices that maximize the energy 

dissipation per cycle, ΔU. 

Notice that the lattice dimensions for lattices optimized for intrinsic (section 6.3.1) and 

structural damping are completely different. The implication is that it is not feasible to design a 

single hybrid hollow lattice exhibiting both high intrinsic and structural damping. 
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CHAPTER 7. DEFECT ANALYSIS OF 

ULTRALIGHT HOLLOW METALLIC 

MICROLATTICES 

The apparent topological simplicity in hollow microlattices suggests that mechanical 

properties should be accurately predicted by simple analytical models [53, 54]. However, in 

practice complex stress states around the hollow nodes and the presence of a variety of 

manufacturing-induced geometric defects throughout the lattice depress mechanical properties, 

making analytical estimates often grossly non-conservative. As ultralight lattices are buckling 

dominated, they are expected to be exceptionally affected by these imperfections.   

SEM imaging of hollow microlattice materials is useful to identify the sources 

imperfections on these lattices. Figure 7.1 shows the hollow microlattice materials from different 

angles. According to these images, the defects can be categorized as follows: (1) geometric 

properties variations across the sample (Figure 7.1a); (2) non-circular cross section of the bars 

(Figure 7.1b); (3) geometric imperfections at nodes (Figure 7.1c); and (4) cracks at nodes 

Figure 7.1c) or along / across the bars (Figure 7.1). In this work we want to investigate the first 

two categories (imperfection in the bars) in great detail and investigate their effect on the 

mechanical properties of microlattices. Note that Ruvalcaba et al. [91] studied the effect of nodal 

cracks on the mechanical performance of microlattices. 
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Figure 7.1 Typical geometric defects observed in hollow metallic microlattice materials. 

The chapter is organized as follows: section 7.1 quantitatively presents the effects of 

geometric defects on the density of microlattice materials, and subsequently their strength. Section 

7.2. investigates the geometry of the defects at the individual strut level. Finite elements (FE) 

simulations and Nano-CT scan data are used to investigate the buckling strength of a single bar in 

a hollow microlattice in section 7.3. The strength of the microlattices then is predicted by 

accounting for geometric imperfections. In section 7.4, a statistical analysis is performed on the 

imperfection data gathered from Nano-CT scanning of a number of hollow bars within the metallic 

microlattices to identify the dominant imperfection modes and build a probabilistic representation 

that can be used to generate samples of imperfect bars. A statistical analysis of the imperfect 

samples generated in section 7.4 is finally correlated with strength scatter in a typical sample in 

section 7.5. 

7.1 Analysis of Geometric Variability at the 

Lattice Level 

The dimensions of the microlattice materials (angle, truss length, truss wall thickness and 

truss diameter) are measured by scanning electron microscope (SEM) with an accuracy of ±2°, 

±3%, ±10%, and ±15%, respectively. The diameter shows larger uncertainty due to the fact that 

the truss is narrower in the middle than the nodes; D represent the average value.  
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The geometric variations captured by SEM measurement on the hollow microlattices are 

investigated in more details in this section and their effects on density and strength of lattices are 

studied.  

The bulk microlattice sample in our study is approximately 10 10 1.5cm cm cm   which 

containing bars with the diameter of 650µm; length of 4660µm; wall thickness of 1µm; and finally 

truss angle of 60o (based on SEM measurement). The density of the lattices was measured at 

several scales: first the density of the whole sample was measured; subsequently, the sample was 

cut into four stripes and the density of each stripe (Figure 7.2) was measured; finally, each stripe 

was cut into three blocks and the density of each block was measured. The density of the 12 small 

blocks (Figure 7.2) shows a standard deviation of ~5% and maximum difference of ~15%. 

 

Figure 7.2 The bulk sample cut into smaller blocks. 

The relative density of the samples is calculated by using analytical and CAD models, 

using the dimensions of the lattices provided by SEM imaging. In the analytical model, the density 

is expressed as:  
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where D, t,  , θ are diameter, wall thickness, length, and angle of the truss members, respectively. 

This model is first-order accurate and results in overlap of material at the nodes; thus, it is expected 

to result in density overprediction. In the CAD model, on the other hand, the surface area of a unit 
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cell (with idealized geometry expressed by the PMAT mesh generator, as discussed in [53, 54]) is 

multiplied by the film thickness (assume to be 1µm uniformly across) to calculate the density. As 

shown in Figure 7.4, both of these models underpredict the relative density (the CAD model by as 

much as 30%). This can be tentatively explained by: (1) material accumulation specifically on the 

top and the bottom of the specimen, (2) non-circular cross sections, and (3) inaccuracy in 

measuring the dimensions using SEM.  

To better understand the reason for the discrepancy, one sample was imaged in nano 

computed tomography (Nano-CT, with 25µm scan resolution) (Figure 7.3) and the dimensions of 

the bars were captured. Since the thickness of the specimen is ~1µm, the Nano-CT scan cannot 

capture the wall thickness of this sample (due to the minimum scan resolution with desired field 

of view being 25µm); however, the diameter and the length of the bars can be measured accurately, 

and so can the geometric defects associated with these quantities.  

‘  

Figure 7.3 Nano-CT image of a microlattice material. 

The dimensions of ~150 bars extracted from CT data are measured. The average diameter 

is measured as ~728µm and the average length of the bars is measured as ~3900µm. The diameter 

of 650µm and length of 4662µm was measured by SEM. Note that in SEM method, the length is 
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in fact calculated by substituting the measured SEM diameter in to the L/D ratio of the mask used 

in the fabrication process. The difference in the diameter measurement is due to both changes of 

the diameter along the sample and the non-circularity of the bars. Moreover, the difference in the 

length is because of slight misalignment in the UV light beams that change the location of the 

nodes from its ideal location leading to longer or shorter bars.  

The relative density of the lattice is again calculated by using analytical and CAD models, 

but this time the length and diameter are average values obtained by Nano-CT scans, with the 

thickness provided by SEM imaging. The results presented in Figure 7.4 show that the CAD model 

along with Nano-CT measurements, captured the measured density accurately and not 

surprisingly, the first-order analytical model overpredicts the density. These results indicate that: 

1) the SEM measured dimensions are inaccurate and 2) the thickness is uniform all around the 

sample. 

 

Figure 7.4 Relative density calculations using analytical and CAD models. The 

dimensions are measured with Nano-CT scan and SEM imaging. 

To further investigate the effects of this geometry variation on the properties of the 

microlattice materials, the strength of all the 12 samples used above are measured under large 
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quasi-static compression test. All quasi-static compression tests were performed with a servo 

electrical INSTRON 8862 frame and a National Instrument SCXI data acquisition system. The 

actuator, featuring an integral concentrically mounted LVDT for precise measurement of position, 

moved at testing speeds of 100 mm/min to 1 μm/hr and accuracy of 10 μm/s. The load was 

measured by a 250lb Honeywell load cell. The LabVIEW software was used to collect load and 

displacement data. Engineering strain and stress are defined as ε=δ/L0, σ=P/A0 where δ is 

displacement measured by the LVDT and P is the load measured by external load cell. L0, and A0 

represent the initial length and the cross section area, respectively.  

Representative stress-strain curve of the behavior of these samples is depicted in 

Figure 7.5a. Note that these samples show full recoverability under 30% strain (samples with ultra-

low relative densities exhibit elastic recovery under compressive strain in an excess of 50% [52]).  

 

Figure 7.5 (a) Stress-Strain curve for hollow microlattices materials under 30% 

compressive strain (b) Maximum ultimate strength for different samples extracted from 

same bulk structure. 

Figure 7.5b shows the relations of the maximum ultimate strength vs the density of the 

lattices. The results indicate that the strength of the samples correlate fairly well with the density; 

however, a significant scatter (as high as a factor of 2) is observed which cannot be explained by 
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density variation in the bulk sample. In order to farther investigate the effect of the geometric 

imperfections on the strength of the microlattices, the geometric defects in the individual bars are 

studied in detail in the next section. 

7.2  Analysis of Geometric Defects at the 

Individual Strut Level  

According to SEM (Figure 7.1) and Nano-CT (Figure 7.3) images, the geometry of 

individual bars in the hollow microlattice differ from one another and the cross section of the bars 

are non-circular. Moreover, investigating individual bars extracted form Nano-CT image of the 

whole sample (Figure 7.6a) shows that the geometry of the cross section of a single bar varies 

alongside the bar (Figure 7.6b,c). Therefore a detailed study is needed to understand the geometric 

imperfections of the bars in the lattice. In this section we quantify such geometric defects. 

 

Figure 7.6 (a) Nano-CT image of a microlattice material (b) Nano-CT image of a single 

bar (c) Cross sections of a representative bar at different locations along the bar, as 

obtained by Nano-CT characterization. 

By using the SIMPLEWARE software ~150 bars are extracted from Nano-CT imaging and 

disconnected from the nodes. The bars aligned and perfectly cut in order to have a flat surface at 

both edges (Figure 7.6b). A shell mesh of every single bar is extracted from the Nano-CT data 
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(depiction in Figure 7.7). Note that since the minimum resolvable feature of the Nano-CT is much 

larger than the bar thickness, the CT scan shows an artificially larger wall thickness (red edge in 

Figure 7.6b). Therefore two different shell mesh models were extracted from Nano-CT bars (1) 

outer layer mesh (2) inner layer mesh (Figure 7.6b).   

A C++ program was written to analyze the hollow bar meshes extracted from Nano-CT 

data and measure the diameter accurately. This program divides each individual mesh into several 

sections 5µm apart along the x axis (perpendicular to the cross section) and measures the perimeter 

of each section. The perimeters are used to extract the nominal diameter of a circle with the same 

perimeter. In order to calculate the effective diameter of each bar, we averaged the inner and outer 

diameters. Figure 7.7 shows the effective diameter of the inner and outer layer at different cross 

sections for a single bar. The average value of the inner and outer diameter is shown as a dashed 

line.  

 

Figure 7.7 Inner, outer and average diameter of a single bar extracted from Nano-CT 

image (depiction of meshed single bar extracted form Nano-CT images). 

Note that the results demonstrated in this paper are from a test with 50µm resolution in 

order to decrease computational costs. More specifically, we ran our experiments using 50µm and 



101 
 

25µm (the best possible resolution of Nano-CT scan for this sample). The max error observed 

between these two resolutions were only ~4% and moreover no difference is seen in the cross-

sectional geometry, therefore low resolution data is used for all the analysis.  

It is worthy of mentioning that due to the artificial thickness of the bar the extracted shell 

meshes are from outer and inner layers, however in reality the main bar shell is somewhere in the 

middle of these two models. By using the SIMPLEWARE software (ScanIP) the middle shell bar 

between the outer and inner layer is extracted. This model is analyzed with C++ code and again 

the diameter at different cross sections is measured. The results indicate that the average diameter 

(captured from average of the inner and outer shell model) is very close to the middle shell data 

(less than ~1% error). Therefore for further analysis the middle shell model is used instead of two 

inner and outer shells to decrease the computational cost.  

~150 bars are detached from Nano-CT data and their middle bar shell models are extracted 

and the C++ program is used to capture the diameter at different locations. Figure 7.8 shows the 

diameter as a function of the location along the bar, for all bars within the lattice block. The results 

indicate that the diameters of the bars at the bottom layer tend to be bigger than the diameters of 

the ones in the middle and top layers of the lattice. This is mostly due to the changes in the diameter 

of the UV beam as it passes through the monomer bath (if the intensity of the UV beams is high 

enough to propagate into the monomer and the exposure time is large enough, it results in 

increasing in the diameter of the bars by moving through the monomer). 
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Figure 7.8 The average diameter of the bars within different layers in the lattice.  

Hence we showed that the diameter of the bar is not uniform along the bar, while the 

average bar diameter varies with sample location; furthermore, the bars are highly non-circular. 

The variation of each bar from a perfect cylinder is calculated as follows.  

By using a C++ program, the centroid of each cross section is calculated and the average 

of the centroid for each bar is captured, in addition to the average diameter. At each section, a 

circle is drawn with the average diameter of the whole lattice (~728µm calculated from averaging 

the diameter of each bar at each cross section) and the center of the average centroid of that bar 

(Figure 7.9a). Finally, the offset of the scanned bar from circular cross section is found at different 

angles (the offset is measured at intervals of 1 degree).  Figure 7.9b shows the results for a specific 

bar, in terms of deviation from circularity as a function of axial and angular coordinates.  
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Figure 7.9 The deviation of (a) cross section from from a perfect circle and (b) single 

bar from cylinder at different angular and axial locations.   

As Figure 7.9b shows there is a large deviation from circularity, which might be 

responsible for the high scatter in the strength data that was seen in the previous section 

(Figure 7.5b). In the next section we quantify the effect of these deviations on the strength of bars. 

7.3 Effects of Bar Shapes on Buckling Strength 

In order to investigate the effects of non-circularity on the strength of microlattices, the 

bars derived from Nano-CT scan were modeled by Finite Elements (FE) analysis, and the buckling 

load for each of them was extracted. A single bar in a microlattice under compression load 

experiences a combination of shear and axial load. Since the bar is non-circular, the angle of the 

shear load changes the amount of the load it can tolerate before buckling; therefore, the shear 

component of the load was circled around the bar to test all possible orientations of the bar relative 

to the loading direction (Figure 7.10a).  

Shell elements (S3) were used to model the bars and 1μm thickness was assigned to them. 

One end of the bar was fully clamped and the other end was loaded under compression and shear 
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load (no rotation is allowed, to best approximate the loading condition within a lattice sample). In 

the simulation, a nickel layer with the Young’s modulus of 210GPa, Poisson ratio of 0.3, and 

density of 8900kg/m3 was used. To capture the effects of geometric nonlinearity, the bar was 

preloaded in a static simulation, followed by a buckling analysis. The shear load was applied along 

20 different directions around the circle (18 degrees apart depicted in Figure 7.10a), resulting in 

20 FE simulations per bar and total of ~3000 simulations. In order to prepare the input deck for 

FE simulation as well as extract buckling loads from FE results, a Python program was written. 

The simulations were run on the HPC cluster using ABAQUS CAE.  

The behavior of one CT-derived bar in the microlattice under uniaxial compression is 

depicted in Figure 7.10b. The results show the critical buckling load at different orientations of the 

bar relative to the loading direction along with their mode shapes. It is clear that the critical 

buckling load is a strong function of the bar orientation. The bar extracted from the CT image 

could fail by local buckling in either shear or compression, depending on their orientations in the 

unitcell. Note that, according to buckling modes (depiction in Figure 7.10b), if the bar buckles 

under shear instead of compression, it carries more load.   
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Figure 7.10 (a) Schematic view of one bar in the unit cell under uniaxial compression 

load. (b) The critical buckling load of the CT-derived mesh and their buckling mode 

shapes.  

The critical buckling load captured from CT-derived bar was then compared to the 

analytical model and FE simulation to better understand the effects of non-circularity. According 

to a previous study [53] on failure mechanism of hollow microlattice materials, in the ultralight 

regime the structure fails under local buckling. The local buckling occurs by shell compression 

near the nodes where the normal compressive stress due to bending and axial load is maximum or 

by shell shear throughout the beam length. For slender bars, compression buckling is generally the 

dominant failure mechanism, but this conclusion changes for stockier bars. 

The bar will buckle by shell compression when the maximum compressive stress in the bar 

on the unitcell equals the critical local buckling stress. Therefore, the buckling load of the bar 

under compression-bending can be expressed as: 
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The same conclusion can be driven for shear buckling. Shear buckling occurs when the 

maximum shear stress in single bar equals the critical stress, leading to:  
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For the particular bar demonstrated in Figure 7.10b with the length of 1.28mm and the 

average diameter of 708µm, the critical buckling load is calculated both from analytical model and 

FE simulations (Figure 7.11a). According to both the analytical model and FE simulation, the bar 

with geometry specified above buckles under shear load (the loads captured from analytical model 

and FE simulation are very close). Importantly, the results depicted in Figure 7.11a show that the 

critical buckling loads for an actual bar is always lower than those for a circular bar with the same 

length and diameter. 

 

Figure 7.11 (a) Comparison of the critical buckling load of a CT-derived bar and an 

idealized circular bar of the same mass; analytical model and FE simulations (b) 

Comparison of the critical buckling load of a CT-drived bar and idealized circular and 

elliptical bars of equal mass.   

Visual inspection of various cross sections of the bars in microlattice materials suggests 

that the cross sections are closer in shape to ellipses than circles. Therefore, the mechanical 

strength of the CT-derived bar was compared with that of an elliptical bar with the same perimeter 

(and hence mass). The comparison was repeated for three elliptical bars with different aspect ratio 

of the major axis to the minor axis ( / 1.5a b  , / 2a b  , and / 3a b  ). The major and minor axes 



107 
 

are calculated for the bar with the average diameter of 708µm and length of 1.28mm. The elliptical 

bars were loaded at different directions and the critical buckling loads were extracted. Figure 7.11b 

compares the critical buckling load of CT-derived bars and ideal circular and elliptical bars. The 

results indicate that elliptical bars are weaker than the circular bar. The CT-derived mesh critical 

buckling load for this specific bar is very similar to the elliptical bar with / 2a b  . 

It is worthy of mentioning that in practice bars used in the microlattices are longer than a 

CT-derived bar for various reasons (e.g. CT-derived bars are disconnected from nodes and hence 

are shorter); therefore, to confirm that the same pattern exists in the longer bars, the circular and 

elliptical bars were modeled with a 3.9mm length (the average length of the bar in the unitcell). 

The results confirm that elliptical bars are weaker than the circular bar and they even become 

weaker as the length is increased.  

The results of single CT-derived bar were presented in this section and compared to the 

circular and elliptical bars as a representative behavior of all the bars. However, the behavior of 

all the bars are important for predicting the behavior of the lattice. Therefore, as mentioned before, 

all the CT-derived bars were modeled in FE simulation and their critical buckling load were 

captured. The results of each bar were compared to the behavior of a circular bar with the same 

perimeter and length as the length of each individual bar. The magnitude of the average deviation 

of critical buckling load of the CT-derived meshes from perfectly circular bars is calculated for 

each individual bar. Figure 7.12a shows the deviation of CT-derived bar from circular bar versus 

the ratio of the diameter over the length of the bar. The results indicate that by decreasing the 

aspect ratio, the deviation of the critical load of the CT-derived meshes from the circular bar is 

increasing. The aspect ratio of the bars in this lattice is / ~ 0.18D  (with average diameter of 
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728µm and average length of 3900 µm); therefore, the deviation of the critical load of CT-derived 

meshes from circular bar is expected to be around 80%. 

 

Figure 7.12 (a) Average deviation of the critical load of CT-derived mesh from circular 

bar versus bar aspect ratio. (b) The comparison of experimental data and analytical model 

predictions of the strength of a bulk lattice calculated based on local buckling with and 

without taking into account micro and geometric imperfections. 

The buckling strength of the ultralight microlattice can be expressed as 

2 2/ (2 cos ( ))
lb cr

p  where crp  is the critical buckling load of the unitcell (calculated from 

eq. (7.2) or eq.(7.3)) and 2 22 cos ( )  is the effective area of the unitcell. By using this equation, 

the critical buckling stress for the tested microlattices (with average length of 3900µm, average 

diameter of 728µm, wall thickness of 1µm and angle of 60 degree) is calculated. The relative 

strength (critical strength of the lattice over the yield strength of nickel (2.5GPa)) versus the 

relative density, plotted in Figure 7.12b, indicates that the analytical prediction for strength of the 

lattice is 20X higher than the experimental results. According to [92], in practice, the load carrying 

capacity of hollow thin wall cylinders are always lower than predications by elastic buckling 

theory. This is mainly due to micro imperfections and usually addressed by adding a knock down 
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factor. Buckling load of the bar under compression-bending with knock down factor can be 

expressed as [92]: 

 
,

2

2

2

2 cos4
3(1 )(sin )

cr bar

b c
b c crP Et

P

D




 


  

 

  (7.4) 

where the knock down factor can be expressed as:  

 1 0.901(1 e )   (7.5) 

where:  
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The critical buckling strength for the lattice is decreases by factor ~2.5X when the micro 

imperfection knock down factor is used. On the other hand, according to sensitivity analysis of 

hollow bars in the microlattices, Figure 7.12a, the deviation of critical load from perfect cylinder 

for the bar with aspect ratio of ~0.18 ( / 728 / 3900D ) is ~80% which can be used to analytically 

predict the failure of non-circular bars in the structure. As Figure 7.12b shows, the analytical 

prediction considering geometric and micro imperfections in the bar, agrees well with the 

experimental data; however, there is still a 2X difference between the analytical prediction and 

experimental data. This difference can be explained with the presence of the crack at the structure 

that suppresses the strength of the lattice [91]. However, the high scatter seen in experimental data 

is not justified yet. In the next section statistical analysis on Nano-CT derived mesh is presented 

to identify the source of distribution in experimental data.  
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7.4 Statistical Analysis of Imperfection Data via 

POD 

One of the most common ways to represent (stochastic) variabilities is through the use of 

random processes (fields) that are numerically constructed to encapsulate the available information 

such as the correlation structure or the marginal probability density functions. As the information 

available, even in the case of a continuously varying field such as geometric imperfection, is often 

limited to a finite number of sets of measurements collected at certain spatial positions, the path 

taken towards any probabilistic construction must ensure the consistency; that is as more data is 

gathered the more closely the statistical properties of the constructed random field should resemble 

those of the underlying stochastic process. In what follows we perform a statistical analysis of 

imperfection data gathered from Nano-CT scanning of a number of bars within the metallic 

microlattices with two goals (i) identifying the dominant imperfection modes (ii) building a 

probabilistic representation that can be used to generate samples of imperfect bars. While the first 

of this two goals is more of an exploratory nature the second goal, if achieved, would allow for a 

statistical analysis of a particular mechanical response of bars, e.g. their instability behavior. 

The idea we follow here is similar to that adapted in Ghanem et. al. [93] and is based on a 

dimension reduction scheme, Karhunen-Loeve Transform or KLT [94], that allows for writing a 

random process in terms of series representation that involves a set of uncorrelated random 

variables and a set of “deterministic” functions. No particular form for the statistics, e.g. 

correlation, and marginal probability distribution, of the stochastic field will be assumed. Instead 

the mean, correlation function, and the marginal (and potentially the joint) distribution of the 

reconstructed field will be matched with those of the measurements. To further explain the idea 

here let g(x,θ) be the random field representing the geometric flaws. Using KLT this stochastic 

field can be written in the form of following series representation: 
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In the above equation ( )g x  denotes the mean (average) geometric flaw field and stochastic 

quantities are identified by their dependence on θ. The real connection between Eq.(7.7) and the 

gathered data on geometric flaws is that in practice we deal with samples of a discretized version 

of the random process that is samples of a random vector. The above equation is therefore re-

written in the following form: 

 G( ) ( )      i i i

i

G   (7.8) 

where G and i  now denote vectors. Furthermore, the eigenpairs ( i , i ) of the 

covariance matrix of G(θ) are approximated using the eigenpairs of the sample covariance matrix 

for geometric imperfection data Eq. (7.8) is called a Proper Orthogonal Decomposition (POD)–

since the eigenvectors i  are orthogonal–and allows for transforming the high dimensional vector 

G to a few “uncorrelated” random variables i , samples of which can be obtained from samples 

of G and the orthogonality property of eigenvectors i . 

7.5 Practical Implementation on Nano-CT Data 

Figure 7.13a shows how a sample from geometric imperfection field measured along the 

length of a typical CT-derived bars and at different angular positions is turned into a 2D sample. 

Assuming the imperfection measurements are recorded at discrete points on the surface, a typical 

sample is stored in a matrix resembling a digitized version of an image (see Figure 7.13b). A 

sample of the random vector G in the above discussion is the vector obtained by concatenating the 

columns (or rows) of such a matrix. 
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Figure 7.13 (a) Transforming geometric imperfection measurements into a 2D sample. 

(b) Sample imperfection fields; the vertical access shows the longitudinal direction of the 

bars while the horizontal axis shoes the circumferential direction. 

Figure 7.14a shows the first few dominant imperfection modes obtained from POD of 

imperfection data while Figure 7.14b shows four imperfect bars generated by sampling from 

random variables i  in Eq. (7.8) and plugging them back in Eq. (7.8). 

 

Figure 7.14 (a) The first 6 dominant imperfection modes. (b) first four imperfect bars 

generated by sampling from random variables.  
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To further investigate the source of scatter seen in the experimental data, ~120 bars are 

extracted from Nano-CT data and used in order to generate 2000 imperfect bars with the length of 

1.1mm. Note that since the bars in the Nano-CT are detached from the nodes, it is impossible to 

have a bar with the actual length of 3.9mm. However, the statistical analysis of the effect of the 

deviations from circularity on the strength of shorter bars can be extended to the bars used in the 

structure in practice. Finite element (FE) buckling analyses were performed on these bars using 

the same material (i.e. nickel), same meshes (i.e. S3 shell elements), same boundary conditions 

(i.e. one end clamped and no rotational freedom at the other end), and the same load as in the 

simulation described in section 7.3. The shear load was applied in 20 different angles around the 

circle (18 degrees apart depicted in Figure 7.10a), resulting in 20 FE simulations per bar and total 

of 40000 simulations. Python program was used to generate the input deck and to post process the 

data.  

The critical buckling load captured from these simulations were compared to the critical 

buckling load of a cylindrical bar with length of 1100µm, diameter of 728µm (the average diameter 

of lattice), wall thickness of 1µm. The deviation of the critical buckling load of generated imperfect 

bars from perfect cylinder were found. Figure 7.15a shows the frequency of deviation of the critical 

buckling strength of generated imperfect bars from perfect cylinder. According to the data, the 

standard deviation is ~14% (Figure 7.15a). The critical buckling load prediction from previous 

section taking into account both micro and geometric imperfections is then used and the standard 

deviation of 14% is applied to it.  
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Figure 7.15 (a) Frequency of deviation of critical strength of imperfect bars from the 

circular bar. (b) The upper and lower limits of the strength of a bulk lattice calculated 

based on buckling response of non-circular bars both analytically and experimentally. 

Figure 7.15b shows the analytical prediction of strength of the lattice taking into account 

the micro and geometric imperfection knock down factor as well as standard deviation of strength 

of the lattice base on the geometric imperfection variations from bars to bars. According to 

previous work on the strength of microlattice materials [52], trend line with a slope of 2.5 is 

measured, for relative strength vs relative density in the ultra-light regime. Therefore, the trend 

line with slope of 2.5 is fitted to our experimental data (red solid line) and the standard deviation 

for the relative strength of those data is calculated (dashed green line).   

According to Figure 7.15b the variation in the relative strength of the twelve tested 

specimen can be explained by the variations in the geometric imperfections from bar to bar. Note 

that the deviation from analytical model is smaller than the deviation captured in experimental 

results, this can be due to the experimental error and handling damages of the samples.  
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CHAPTER 8. CONCLUSIONS 

In the course of this dissertation, the stiffness and damping mechanisms in metallic and 

hybrid hollow microlattices are investigated. Analytical models are proposed and validated by 

finite elements simulations and experimental characterization. The models are then adapted in 

optimization studies. The highlights of conclusions for each chapter are as follows: 

In chapter 4, we showed that contact measurement techniques are not applicable to 

Young’s modulus measurements on ultralight cellular materials with deformation governed by 

localized buckling and/or fracture events, as the necessary load application results in the 

characterization of a post-buckled or post-fractured lattice. We demonstrated that a combination 

of non-contact scanning Vibrometry experiments and Finite Elements simulations yields values of 

the Young’s modulus that are as much as 10 times higher than those obtained by traditional 

compression tests, and close to those predicted by FE simulations with periodic boundary 

conditions. As these BCs correctly capture the symmetry of the sample as well as loading 

conditions, and predict a compatible deformation field (unlike the free-edge BCs in good 

agreement with the compression test results), we conclude that the proposed technique 

significantly increases the accuracy of the measurement. With fabrication of additional samples, 

all the three Young’s moduli of an orthotropic lattice material can be obtained. A similar approach 

based on in-plane detection can be used for the extraction of shear moduli. 

In chapter 5, the damping performance of ultralight hollow metallic microlattices is 

investigated. Through a combination of large-strain quasi-static compression experiments and 

infinitesimal-strain resonant tests, the physical mechanisms responsible for energy loss in each 

compression cycle (and hence damping) were separated and quantified. For strains larger than 

~10%, the dominant mechanism is a unique form of structural damping, whereby elastic local 
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buckling of individual bars releases energy upon loading. A simple mechanical model is 

introduced to relate the energy loss per cycle to the geometric parameters of the microlattice and 

the maximum strain amplitude. While being extremely simplistic, this model has a good agreement 

with a wide range of experimental results obtained on samples of different relative densities (and 

hence dimensions) at different strain amplitudes. Finally, the mechanical model is adapted in an 

optimal design study, where the geometric properties of the lattice are optimized for maximum 

values of a well-known damping figure of merit. The results show that hollow metallic 

microlattices are superior to any existing metallic material in terms of damping performance, and 

hence can provide an excellent platform for vibration isolation. The caveat is that buckling-related 

damping (the unique and dominant damping mechanism) employed by hollow microlattices, 

requires relative densities well below 1%, limiting the strength, stiffness and energy absorbed per 

unit volume that microlattices can provide. 

This deficiency can be obviated by fabricating hollow lattices with a more complex wall 

topology, incorporating elastomeric materials with substantial intrinsic damping; this would allow 

combining two different damping mechanisms (structural buckling-related damping and intrinsic 

viscous damping in the elastomer), with a potentially substantial increase in the damping figure of 

merit. In chapter 6, the damping performance of hollow hybrid microlattices is investigated. An 

analytical model is introduced to capture the intrinsic damping mechanism due to constrained-

layer damping phenomenon. The analytical model is validated by finite element simulations at 

single bar and single half unit cell levels with two different geometries. Infinitesimal-strain 

resonant tests were performed on both hybrid and single layer nickel microlattices at single bar 

and single unit cell levels to verify the accuracy of this model. At ultralight regime, single layer 

lattices show full recoverability under large compressive strain hence dissipating energy. This 
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mechanism is investigated by finite element simulation for hybrid unit cell and the same 

performance as single layer unit cell was observed. A simple analytical model is proposed to relate 

the energy dissipation per cycle to the geometric parameters and its accuracy is validated by FE 

simulations. Finally, the mechanical models are adapted in an optimal design study where the 

geometric properties of the lattice are optimized for maximum well-known figure of merit and 

maximum energy dissipation per cycle due to intrinsic damping and structural damping 

mechanisms, respectively. The results show that the constrained-layer damping increases the 

damping performance of microlattices. The energy dissipation mechanism increases by 6-8x in 

ultralight regime and the experimental data indicates 20% increase in intrinsic damping. Hence, 

by choosing optimal geometries the amount of damping increases even more. The caveat is that 

the optimal geometry maps for these optimization studies are different from each other, therefore, 

at ultralight regime we cannot obtain lattices with maximum intrinsic and structural damping 

performances. Moreover, the optimization study shows that polymers with high stiffness and high 

damping results in hybrid lattices with better vibration isolation performance. 

In chapter 7, the effects of manufacturing defects on the mechanical performance of 

ultralight hollow microlattice materials are investigated. The density and strength variations across 

a bulk sample are measured. The results show that the strength correlates quite well with the 

density, albeit with a significant scatter. Nano-CT scans were performed to accurately measure the 

dimensions of each bar in the sample, identify the source of imperfections and quantify the effects 

of this imperfection on the strength of the lattice. Aided by a rigorous statistical analysis, these 

results indicate that the significant non-circularity of the bars is largely responsible fro the scatter 

in experimental strength data. This suggests that by controlling the manufacturing process of these 
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lattice more carefully and by decreasing the bar non-circularity we can obtain lattices with much 

better mechanical performance. 
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APPENDIX A: STIFFNESS MEASUREMENTS OF 

ORTHOTROPIC LATTICES 

As mentioned in chapter 4 the microlattices under consideration are orthotropic. If the x 

and y directions are equivalent, six elastic constants would be needed to fully characterize the 

elastic response of the material. As the presence of the face sheets (essential for optical detection) 

and the single-axis detection limit the number of modes that can be observed, fitting the entire 

elastic tensor to the observed peaks presents significant challenges. However, this technique can 

be adapted to capture all the elastic constants by eliminating the undesired factors such as face 

sheets and single axis detection. Since, the face sheets are essential for optical detections in hollow 

microlattices, lattices with different topology can be used to expand the method developed in 

chapter 4.  

Micro-architected metallic lattice materials manufactured through a non-crimp 3D 

weaving technique [95] has received attention during past years. The wires in this structure can be 

tailored to optimize specific properties such as fluid permeability [96], high damping at high 

temperatures [97], and high stiffness, by bounding wires together. Measuring all components of 

stiffness matrix of these lattices is important for future practical applications; however, using the 

known standard techniques (e.g. uniaxial compression, 3-point bending) is challenging due to the 

deformation and movement of the wires as well as bounding between them. Therefore, the non-

contact method introduced in chapter 4 can be suitable for measuring the stiffness of these lattices. 

3D woven lattices are built of wires with diameter ranging between micrometer to 

millimeter of either OFHC Cu (oxygen free high conductivity copper) or Chromel-A (a NiCr alloy 

of 80% nickel and 20% chromium). The 3D weaving process essentially stacks pairs of 
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orthogonally oriented warp and fill wires, which are then bound in process, with Z-wires that pass 

through the thickness. The wires are bounded together to create high stiffness lattice. In this 

section, we discuss how method explained in chapter 4 is adapted to capture the elastic constant 

of 3D woven metallic lattices: the material assumed to be orthotropic instead of isotropic.  

Measuring natural frequencies  

Resonant test at very small strain were performed to capture the natural frequnies and mode 

shapes of 3D woven metallic lattices. The experiment was carried out with a Laser Doppler 

Vibrometer (Polytec PSV-500). The experimental setup is depicted in Figure A. 1.  

 

Figure A. 1 (a) Resonant test setup for Laser Doppler Vibrometer, (b) Piezoelectric with 

3D woven lattice attached to it.  

The 3D woven material was excited with a piezoelectric actuator with a harmonic signal at 

a very low amplitude, sweeping the frequency between 0-5kHz. The sample was attached to the 

piezoelectric by using Petro wax. The velocity of the top wires in the sample at various locations 

were monitored by LDV to identify the frequency response and mode shapes. The average 

frequency response is depicted in Figure A. 2. It is worthy of mentioning that the in-plane modes 

cannot capture by this setup. 
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Figure A. 2 Average frequency response of 3D woven lattice captured by Laser Doppler 

Vibrometry. 

As shown in Figure A. 2 the natural frequencies are ~700Hz, ~2400Hz, ~3600Hz, and 

~4800Hz. The mode shapes captured by LDV at these frequencies indicate that the first mode (at 

~700Hz) is first bending mode, the second mode (at ~2400Hz) is first torsional mode, the third 

mode (at ~3600Hz) is second bending mode, and the forth mode (at ~4800Hz) is second torsional 

mode (see insets in Figure A. 2). 

Finite element simulations 

As shown in chapter 4, the stiffness of microlattices can be accurately measured by using 

non-contact resonant approach. The LDV measurements coupled with Finite Elements Analysis 

(FE) is used to extract the Young’s modulus in ultralight microlattices.  The same technique is 

applied in this study to measure the normal and shear stiffness of 3D woven metallic lattices; 

however, the material is defined as orthotropic in 3D woven lattices. Finite Element simulations 

were preform with ABAQUS to extract the relation between natural frequencies and all stiffness 

components. The sample with dimensions of 4.8 3 22mm mm mm   (Figure A. 3) was modeled as 

orthotropic solid with nine engineering constants ( xy , xz , yz , xE , yE , zE , xyG , xzG , and yzG ). 
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The rectangular sample were meshed with 8-node linear solid elements (C3D8R) and linear 

perturbation analysis were performed to extract natural frequencies of the sample. The density of 

the core was measured by weighing the lattice and dividing the mass by the volume (3043kg/m3). 

 

Figure A. 3 Sample modeled in FE simulation and the corresponding coordinate system. 

In order to investigate the sensitivity of natural frequencies of the sample to each 

engineering constant, few simulations were preform on ABAQUS and at every simulation one of 

the constants was changed. The results indicate that changes in natural frequencies are negligible 

when the Poisson ratios varies between 0-0.5, therefore 0.3xy xz yz      is used for all 

simulations. Moreover the results show ~0.8% changes in natural frequencies when xE , zE , and 

xzG  varies by factor of 5-10. Since the stiffness constants, xE , zE , and xzG , are not affecting 

natural frequencies, they are assumed to be 1Gpa, 1GPa, and 0.5GPa, respectively for all 

simulations for the sake of finding other engineering constants. Note that out of nine engineering 

constants for orthotropic materials, three of them ( yE , xyG , and yzG ) affect the natural frequencies 

and can be measured by using this technique. 

Thousands of input decks were generated by using Python code in which the longitudinal 

stiffness, yE , was swept from 100MPa to 5GPa with the step size of 100MPa and the in-plane 

shear stiffness, xyG , and out-of-plane shear stiffness, yzG , were swept from 50MPa to 2GPa with 
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the step size of 100MPa. These simulations ran on the HPC cluster. The results were analyzed and 

the natural frequencies are extracted as a function of longitudinal stiffness yE , in-plane shear 

stiffness xyG , and out-of-plane shear stiffness yzG . 

Natural frequencies captured from FE simulations were matched to the natural frequencies 

of the 3D woven sample measured with LDV and the longitudinal stiffness, yE , in-plane shear 

stiffness, xyG , and out-of-plane shear stiffness, yzG were extracted for the sample.  

According to the continuum FE simulations, the first four eignmodes (Figure A. 4) are first 

bending mode, first in-plane mode, first torsional mode, and second bending mode; however, the 

sequence varies according to the stiffness properties in each simulation. 

 

Figure A. 4 Mode shape captured by FE simulation. From left to right: first bending, 

first in-plane, first torsional, and second bending modes. 

The first bending, second bending, and first torsional modes captured by resonant 

measurement are matched within 5% error to the first bending, second bending, and first torsional 

modes captured by the FE simulations, respectively. Note that the second torsional mode is 

coupled with in-plane mode due to the geometric imperfections and cannot be used to extract the 

stiffness. The comparison indicates that out of 19000 simulations, there are three simulations in 

which the first 3 modes match to the experimental results. These three simulations have an in-

plane shear modulus of 250xyG MPa , and out-of-plane share modulus of 150yzG MPa ; 

however, the longitudinal stiffness yE varies between 1.6-1.8GPa.  
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The 4-point bending test was performed on the same sample, and 1GPa longitudinal 

stiffness was measured. The 4-point bending measurement underestimated the stiffness of the 

material due to the deformation and movement of the wires as well as bounding between them. 

Moreover, the finite element simulation is performed on woven cantilever sample 

represented with the wire models (Figure A. 5). The wires were modeled using: (A) solid elements 

and (B) beam elements. Brazing was modeled with the solid elements in model A, and with beam 

elements in model B. Eigen analysis requires all components to have well defined boundary 

conditions with no rigid translations; therefore, ‘freely floating’ fill wires were removed from 

model A to enable the eigenvalue analysis. Such model ‘treatment’ has negligible effects on the 

stiffness since loose wires do not contribute directly to the stiffness; however, removing such wires 

reduces the overall mass of the system and increases its natural frequency. Eigenvalue analysis of 

the solid element model A returned the following modes: 1200 Hz (first bending mode), 2600 Hz 

(first torsional mode), 4200 Hz (second bending mode). The eigenvalue analysis of the solid 

element model A showed qualitative agreement with the experiment and the sequence of modes 

was well predicted but the modal frequencies were higher than anticipated. The first natural 

frequency (bending) was predicted as 1200 Hz, whereas the measured value was ~700 Hz; and, 

second mode (torsional) was simulated as ~2600 Hz whereas it was measured as 2400 Hz. The 

discrepancies can be explained by the fact that FE simulation underestimates the mass. 

The beam model B, employs beam elements where the rigid motions of the ‘floating’ fill 

wires were eliminated by attaching one end of each fill wire to a fixed boundary point via a soft 

spring (less than 0.5% of each wire stiffness). This approach ensures that fill wires can move 

‘freely’ (with negligible resistance), while enabling the eigenvalue analysis. Eigenvalue analysis 

yields ~500 Hz for first bending mode frequency, and ~1000 Hz for first torsional frequency. 
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Figure A. 5: Woven lattice model consisted of solid element.  

   

Natural frequencies of the solid elements (A) and beam elements (B) enveloped the 

experimental results. The beam model under predicted natural frequencies because beam elements 

underrated the true stiffness and the bonds; On the other hand the solid element model assumes 

solid connection between all neighboring nodes, whereas according to previous studies, the woven 

lattice bonds are not achieved perfectly for all nodes, hence resulting in overestimating 

frequencies.  

To summarize, the engineering constants of the 3D woven materials are measured by using 

Laser Doppler Vibrometry and FE simulations. The out-of-plane measurements used to captured 

longitudinal stiffness yE , in-plane shear stiffness xyG , and out-of-plane shear stiffness yzG  while 

in-plane measurements can be used to measure xE , zE , and xzG . The comparison between the 

measured frequency and the FE simulations confirms the accuracy of the model.   

 

 




