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Abstract

The fbrm of Brillouin's_theorem appropriate for Restricted

Hartree-Fock calculations is used to determine rigorous Self-

Consistent-Field wavefunctions for the 3Al, 3E; 3A2, 1A2 and 1E

states of the ... 2e33e manifold of CHBCO+, a manifold for which
traditional Fock operator techniques are unsuitable. The results

of an approximate method previously reported are compared with

these exact results are found to be in quite good agreement.



'. I. Introduction

In a previous work1 it was shown that the low-lying electronic
states of the acetyl cation (CH3CO+) could be expected to arise
from the following orbital occupancies (0.0.) (assuming the geometry

of thé ion to be C

3v)'
 .1ai 2a2 3a 4ai'5ai 6a2 7a; le* x ?' C (1.1a)
lai Zai 3ai 4ai Sai 6ai 7ai\1e4 Ze? 3e (I.1b)
and
lai Zai 3ai 4ai Sai Gai 7al le4 2e4 3e . (I.1c)

The ordering of the electronic states resulting from these o.0.

is as depicted below1

4
7a12e 3e

7322e




While the wavefunctions used in reference 1 were of sufficient
accuracy for the approximate description of the electronic spectrum

of CH CO+ required in that work, they suffer from a glaring in-

3
consistency. (It will ultimately be shown——aé conjectured in
‘reference 1--that this incbnsistency has onlyvé smali_effect on

the fiﬂal resulté. Although it is possible to obtain rigorous2
self}consisteht—field (SCF) wavefunctions for the electronic states
arising from o.o0. 1la and lc using standard Fock operator‘techniques ’
only the 3E state arising from o0.0. 1b was amenable to ‘such a
proceduie. The remaining five states arising froﬁ this o.o0. were
treated within the fixed orbital (FIXORB) approximation.l’5 The
failure of Fock operator formalisms to tréat these states has its
roots in o.o. 1lb. This 0.0. is seen to contain two partially

filled multiply degenerate shells which must be éoupled togéthér

when the required symmetrized trial wavefunctions w; are c§nstructed.

(See, for ekample, equatidn 2 of Appendix I). The energy

functionals

s 8
5 <Y {8 [Y>

<P |yS>
T'"T

(1.2)

corresponding to these symmetrized w; can be expressed in the form

s _ e
E = es + Z(leaJeBIIReYle6) _ (1.3)

Here es has the form
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€y = Zhi +2(2aij Jij - bij Kij) : (1.4)

where the one electron_(hi%coulomb (Jij)and exchange (Kif

integrals are as defined by Roothaan?a For

(te, jegl|ke feg) = fd?l d?z 1e (1) jeg(1) ke (2) feg(D) (g s

12

no pair (i,a) is repeated in a given integral so that in general
this term cannot be expressed as a linear combination of coulomb
and exchange integrals. For the problem at h;hd three distinct

(iea'jesllkeY QeS) arise

(i) (2ex2ey||3ex3ey) o (1.6a)
(i) (2ex3ex||2ey3ey) | ' (1.6b)
(iii) (2ex3ey||3ex2ey)‘ (1.6c)

Only for the degenerate (toszeroth grder in nuclear displacements)

| | « E |
3k state could a w; = (Y V1 .Y be found which resulted
2

in an energy functional of the form

E2 = ¢ ' (1.7)

Since all standard Fock operator proceduress’4 presuppose an energy
functional of the form of equation 7, they are incapable of
determining SCF wavefunctions for these states.

A similar situation obtains when one considers the excited

electronic states of CO arising from the o.o.
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The correspoﬁding 'additional integrals' (eéuation 5) involved
in fhis problem are exactly those given in expression 6 if the e
identification.ﬁea > Gm—l)ﬁa is made. Thus at first glance it
would appear that the states resulting from this o.o. should be
eQually untractable. However Rose and M’cKoy6 were able to show
that as_a consequence of the continuous azimuthalbsymmetry of the
va point group the'troublesome additional integrals could be
‘expressed as linear combinations of coulomb and exchange integrals.
Thus for linear systems the stétes arising from o.o. éuch as(8)-have.
' become tractable via a standard Fock operator procedure. Unfortunately
this extension of Goddard's procedure by Rose and McKoy is applicable‘
only to these linear systems.

In this work we present a method which is'of'éufficient generality
to be able to treat the states arising from an o.0. such as
1b. This pfocedure, which does not involve in thé.explicit
construction of a Fock operator, uses a geﬁeraliZéd form o
Brillouin's theorem7 and for this reason (see Section II) is réferred
as the Symmetry Restricted AnnihilationAdf Single-Excitations (SRAS)
proceduré. This procedure is discussed in Section II. TIn Section
III its application to the states in question is inveétigated,.the :
results of the computations presented and compéred with the fixed
orbital procedure of reference 1. In Section IV S§me concluding
remarks are presented together with a summary of‘the work presented

herein.



II. . Symmetry Restricted Annihilation of Single-Excitations

In this section the basic ideas behind the_SRAS procedure are |
outlined. A more detailed discussion of these idéas can be found
in reference 5. |

In the SRAS method one seeks the best (éee below) single
configurétion wavefunctioésthat can be constructed from a set
of two eléctron functions {fi} constrained to satisfy the following
conditions:

(i) . the f, are an orthonormal set, i.e., <fi|fj> =
aij and | |
(ii) they can be partitioned into shélls.(sée equation I.1),
each shell carrying a complete irreducible representation of the
group (G) of spatial symmetries of the Hamiltonién.

The wavefunctions possessing these properties are usually referred
to as Restricted Hartree Fock (RHF) wavéfunctions.3.

The determination of the set of 'equivalence restricted'’
functions required to construct these wavefunctidﬁs is accomplished
with the éid of the variational principal. If one assumes that the
spectrum of H (0(H)) is a point spectrum9 [at least for all p < ¥,

' 10

peo(H); XeR] the variational principal asserts that if the eigen-

values of H are ordered as follows:

< .
E; < Ey <Ey ... <X

then



<wT]H|¢T> ' (I1.1a)

for all (¥) Yy satisfying

SUlby> =0 ¥ o1 (11.1b)

where

ij = ijj . (I1.1c)

i is known to be the lowest eigen-

value of a given (space-spin) symmetry, equations. la,b reduce

Therefore if the desired E

to

<vplH|vp>

— 8 8
Ei < W = E (l[)T) (11.2)

where the superscript s implies that wT is appropriately symmetrized

so that equation 1.b is automatically satisfied. Thus according to -

equatioﬁ_2 the "best' set'{fi} will be that which minimizes the
functional Es(w;). In analogy with the theory of a function of
several variables (in fact it is not diffiCu1t to make the anélogy
mathematicaily precise; see for example reference.S) a stationary

point of Es(w;) (which one hopes will be the desired minimum) occurs

where
§EWD =0 . _ | (11.3)

1f Es(w;) is interpreted as a functional of the set {fi} rather



than w;,equatioﬁ 3 becomes
s _ ,
8, E ({fi}) =0 Vi _ (11.4)

where 51 implies that the ith function is varied while the -
remaining functions are held fixed. (In the theory of
functions of several variables the equivalence of equations

3 and 4 is merely the statement that for F(¥): ,RN ~+ R,

dFr =0 oa—F = 0 ¥i).

Bxi
The equations defining the optimum set {fi} can be

deduced from equation 4 with care being taken to require the
variations to satisfy the restrictions outlined at the beginning

of this section. Recall that if wT were a single Slater determinant

(of spin orbitals) the ith component of equation 4 would lead toll

ggilHlug = 0 ¥; | ar.5)
i

where  , is the Slater determinant obtained by replacing the ith

SE;
spin orbi%al in wT by the jth virtual or unoccupied spin orbital.

However it is not hard to see that these brimitiv€ first order
variations (i.e., spin orbital replacements) do not satisfy the
equivalence restrictions described abqve.5 The requiredvequivalence
restricted variations can be obtained as a linear combination ;f

5,12

‘these primitive variations. It can be shown that the required

] e R th
equivalence restricted variations in the 1~ orbital lead to a

system of equations similar to G)where the ¥ . are constructed as

SE,

" follows: J.
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1) Let irz be an element of the ith shéli "which ca?ries
the irreducible representation Fa_of G. Further iet jF% be an
inequivélent occupied or virtual orbital in shell j of the same
symmetry. (Two shells are said to be equivalent iff the energy
fﬁnctional - equation 2 - is invariant‘under.a_nnitary transfor-

mation between the functions in these shelis).—'

(ii) Then ¥ i is given (using a second Quantizationl3 type

| - SE.
notation) by J
a + o s
p =2 (G T vy) AT yIOly (II.6a) °
SEl  g=1,m(r% 23 S |
3 y.ela,B}
J
= sGT% 17 Uy - (11.6b)

where m(Fa) is the dimension of the irreducible representation

% of G, {a;B} are the usual spinors, and j F% is the spatial part
of the one electron spin orbital (j F% Yj) and transforms according
to thevlthkqolumg‘of Fa; (The implementatibn.oﬁggquation 6 is
discuséed in Section III and Appendix I). |

’

The‘system of coupled equations given by équations 5 and 6

. form the basis of the SRAS method and are solved using the

iterative natural orbital (INO) procedure of Bender and Davidson.
In this procedure, an initial set of orbitals {fi} is used to construct

the Hamiltonian matrix corresponding to the set of functions {wT,w i}'
SE.

The lowest eigenvalue of this matrix is found and the approximate J

natural orbitals (a.n.o.'s) for the corresponding eigenvector are
determined. These a.n.o.'s are then taken as the new set of trial

orbitals and the procedure is repeated. The procedure terminates, when

(or if) equation 5 is satisfied ¥ § .
o SE;

i
i |-
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It is perhaps worth noting the following proﬁertiés of the
SRAS equations as given above: | |

(i) Since S(jFa, iFa) is, clearly, a totally symmetric
operator 'y i has the same transformation'properties as wT
so that eqﬁgéion 5 cannot be saﬁisfied idéntically.

(ii). If the equation <Y ilHlﬂ;> = 0, @,)) fixed is
interpreted as describing thésggtimal mixing of the i and j
inequivalent shells of symmetry T it can be seen that the
above proéedure yvields exactly 1 equation (see however Section
ITI) to describe this mixing regardless of the dimensionality
of Faf Thié is required by equivalence restriction (ii) which
renders the mixing of iF% and jF% independent of L.

(i1i) For equivalent shells ir'% and jFa, the antisymmetry
of ﬁ; implies that S(jFa, iFa)wT = 0. This is necessary since
the energy functional is unaffected by a unitéry tranéformation
of the jT® and iI'® shells.

(iv) Equations 5 and 6 can be interpreted as defining the
appropriate generalization of Brillouin's thedrem for the case

of RHF wavefunctions. Once these equations have been solved for

the optimal set {fi} and the appropriate W:C constructed, equation

F

s . . . .
«rw) 18 non-interacting with a

SCF

certain class of singly excited wavefunctions (i.e., those correspond-

5 asserts that this wavefunction (Y

ing to equivalence restricted changes in w:éF)’ and thus represents
a type of Brillouin's theorem.
(v) The most important observation, as far as this

work is concerned, is that the SRAS method does not involve the

»
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explicff construction of a Fock operator. Thus it can be applied
to casés for which the usual Fock operator formal’ismsB’4 break
down. “

We now proceed to the application of the SRAS method to the
problem ;t hand. The SRAS equations required for this computatioﬂ
are discussed prior to the presentation of the results. It is hoped
that this discussion will serve to clarify the admittedly sketchy

development in this section.
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ITI. The ... 2e33e Manifold of'CH3CO+V

In this section the results of SRAS calculations on the

.en 2e33e manifold of CH3

of these calculations is threefold:

CO+ will be presented.vahe purpose

(i) to demonstrate the viability of the SRAS procedure
for a system which cannot be treated by conventional SCF

methods,2’3

(ii) ‘to test the utility of the fixed orbital approximation
previously reported
(iii) to gain an increased understanding of the nature of
the manifold splitting by partitioning the splitting energy into
qontriﬁutions due to (a) the recoupling of the Slater determinanfé
(as measured by the fixed orbital approximation) and (b) due to
the reiaxation of the orbitals (as determined by the SRAS calculations).
To facilitate the achievement of this program it was necessary
to carry out the SRAS calculations at the 'fixed orbital geometry',

i.e., the C 'equilibrium' geometry of the 3E state of CH3C0+ using

3v

the standard-Dunningl443uzinaga15 double zeta quaiity basis of the
previous work.l The 36 basis function resulting from this choice of
basis set can be transformed to a set of symmetry adapted functions,

partitioned according to their transformation properties:

20 a1 functions

8 ex functions

8 ey functions
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of which, according to orbital occupancy Il.b, seven a;, three
e, and three ey funcﬁionS‘are either fully or partially

occupied.

For each of the six states within the manifold in question

the SRAS procedure is equivalent to the determination of two unitary.

matrices.
, a _ .
(i) U ~ which transforms the initial set of 20 al—type functions

onto the optimal set and

(ii) VUe which accomplishes the same end fdf both the 8 e and

8 ey functions.

The fact that only one U® is allowed for both the e and ey orbitals

is, of course, a consequence of the equivalence restriction of Section II.

a
Now U 1 is determined in general by 20+ (20-1)/2 parameters. However

the energ; functional (equation II.2) is invariant under a unitary trans-
formation among the 13 virtual or unoccupied orbitéls and also among the
7 equivalént doubly occupied a; orbitals. Therefofg bnly

20+ (20-1)/2 - 13°12/2 - 7°6/2 = 9;'1

ay ! .

1 : '
parameters are required to specify U . Similarly»Ue is determined by
. . ~ ~ £ ."‘:.,4 R

8+7/2 - 5°4/2 - 1-0/2 = 8
parameters.so that a total of 109 parameters in all are required to -
determine the solution of the SCF problem.

To solve this probleﬁ within the SRAS formalism a total of

109 ¢ j (or S(iFa, jFa)) will be required. In'the discussion that follows

SE
it willjbe shown that for the 3 1° 3E, 3A2, 1

109 equations are uniquely determined by the prescription of Section II.

. -1
A2 and "E states the requisite

. 1 '
However for the A1 state an ambiguity will result as a consequence of the



fact that this state is not the lowest state of its overall symmetry.

It is easily seen that there are exactly

7*13 = 91 (al occupied-to-virtual pairs)

+ 3 5=15 (e occupied-to-virtual pairs)

+ 3 = 3 (e occupied-to-occupied pairs)
109

pairs of shells from which to construct S operators. For each
of the occﬁpied—to—virtual pairs it is possible to construct
only one‘S operator which leads to a non-trivial wavefunction.
The construction of this wavegunction for the 2e > me (m # 3)
excitation with W; taken as wTAl is illustrated.in Appendix I.
The (le, 3e) and (le, 2e) pairs also yield only one S operator
corresponding to a non-trivial wavefunction since the le shell
is fully occupied. The situation is not quite as simple for

the (2e, 3e) pair. For this pair there are two possible S

operators:

S(3e, 2e) - (I1I.1a)

w)
L]

and

[22]
I

S(2e, 3e) (I11.1b)

5 . 3 3, 3 1 1
? ? ] ’
If wT is taken to correspond to the A2 E _Al A2 or E

states, it is not hard to see that

s .
Sle = 926 £ 0 (I11.2a)
SE3e

while
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s _
Ssz Y 3¢ - 0 (II1.2b)
SE :
2e
so that for these five states the required 109 ; are
' ' SE
unambiguously determined. However for the w: corréspond- :
ing to the 1Al state one finds that
1, .
A
Sibp = ¥ 4, # 0 (I11.2c)
SE
2e
and
1A1
S ¥ =¥ 4 = wgsfo | (II1.2d) ;
SE
2e ;
where wgs:denotes the unique wavefunction resulting from the , !
ground state orbital occupancy (I.la). According to Section
II then one can require either
. lAl v ‘
<P [Hp., > = 0 : (1I1I.3a)
SESe T : .
2e :
or
lAl ;
< > =
wgSIHIwT 0 (I111.3b) i

but not both without relaxing the equivalence constraints. If
equation 3a (3b) is used in the SRAS procedure_we shall say that

the resulting wavefunction is variational from abdve (below).
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Not'only does the connection of the 1A1 wavefunction from the

2e33e manifold with the lA ground state wavefunction lead to an

1
ambiguity in the SRAS equations but it also appears to be responsible
for the failure of the INO procedure as descfibed in Section II to
convergé to a solution of these equations (:egérdless of whether equation
3a or 3b ié selected). At present alternétiVe brocedures are being
Qonsideréd which should circumvent this difficulty. However for the
remainder of this work we will have to content ourselves with a discussion
of the five states which are the lowest of their symmetry.

Thus we now turn to a discussion of the SRASvresults for the
five states in question, as given in Table I. Note that for both
the SRAS and FIXORB results the 3A2 and lA2 states are nearly
degeneraée. This approximate degeneracy is not accidental. 1In the
limit Cnv +> C°°v this degeneracy becomes exéct (for the single
configuration approximation used here).s’6 Reference to the actual
wavefuncfions (not presented here) shows that the contributions to
the 2e and 3e orbitals from atomic orbitals located on the H3 cluster
is negligible. Since the remaining portion of the molecule possesses
Coov symmetry the reason for the approximate degeneracy becomes clear.
The next point to be made concerns the correctioﬁs in the manifold

splitting due to orbital relaxation, as defined by equation 4, and given

in the final colummn of Table I.

s 3 3E s Sﬁ
AEorp = CEsras ~ Esras’ = Eprzors ~ Erixors’
REL | ‘
= ES _ ES

SRAS ~ “FIXORB : (I11.4)



~16—-

The method of calculatién, of course, requires ﬁhese numbers
to be negative since ESRAS < EFIXORB' Note, hbﬁever, thaf in
each case these corrections are small, being {IIOZ bf thev
céntribution due to the recoupling of the Slafer‘determinanfs
for the 3 . 3A2 and 1A2 states and v 18% for the g state.
Thus we can conclude thaf for the éype'of manifold splitting
considered here orbital relakation is unimportant and the fixed

orbital approximation should be adequate. Finally we observe

the essentially exact agreement between the 3E energy computed

by the SRAS procedure and the OCBSE method. (The small differences

actually observed are probably the result of an integral truncation

schemeiuéed to speed the OCBSE calculation). This result together'

with the more stringent tests presented in reference 5 demonstrate

the correctness of SRAS procedure.
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IV. Summary

We have presented here the form of Brillouinfs theorem
appropriate for Restricted Hartree Fock (RHF) calculations
(equations II.5 and I1.6). The correctnesé of this formulation
is demdnstfated by comparison Qith existing RHF procedures (see
rema;ks‘at close of Section III). This formuiation of thé
Hartreé.Fock approximation has the advantage of being applicable
to moderately symmetric open shell systems which often cannot be
handled by standard Fock operator proéedures; ‘Although not
discusséd in this work, this formulation is feadily extended éo
a large class of MhltifConfigurationeSelf—ConsistenteField (MCSCF)
problems. The details of this extension are given in reference 5.

Thé SRAS procedure was used to study the ...-2e33e manifold
of CH3CO+. Comparison of exact SRAS results with the approximate
fixed orbital method allowed the manifold splitting énergies to
be partitioned into an orbital relaxation confribution and a
recoupling contribution (Table I, columns 5 and 6). As the orbital
relaxation éontributions were seen to be small'we.conclude that the

fixed orbital approximation is adequate to describe this type of

manifold splitting.
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Appendix T

Here the use of the S operator in constructing the required

Y .i (as defined in Section II) is illustrated fot'the case
SE, ’

]

| W
U] 7e = S(me, 2e) wT @ > 3 (AT.1)

SE
me

In the following all fully occupied shells are omitted for clarity.

.3A1 2 2 .
wT = A(2exa 2ey 3exa + 2ex 2eya 3eya) (A1.2)

and arises from the o.o.

2e33e . | : (AI.3)

' The shell excitation in question converts 0.0.(3) into the following 0.0.

(2e2 me) 3e (AL.4)

In accordance with the variational procedure outiinéd in Section
11, (i.e.,.varying the orbitals one at a time) the (Zez,me) pair
must be 2E coupled since the parent shell (thev2e3 shell) wés so
coupled. However even with this restriction it is possible .to

construct 3 linearly independent 3A wavefunctions {xi}3 corresponding

1 i=1

to, for example, the following partial geneologies

3A2 2¢%) 8 %E (me) = & (AI5.a)
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-~ lA1 (2e2) ® 2E'(me)

i
<]

(AI5.b)

1

(]
=1

E (2¢%) 8 2E (me) (AI5.c)

The 3 particle functions resulting from these geneblogiés

are then coupled to the 3e shellito yield the final 3Al wavefunction.
The threé functions produced in this manner are given in terms of"
Slater Determinants (S8.D.) in Tablé Ii; Note.Fhat the starred S.D.
differ from Eoth of those in equation 2 by more than 1 spin orbital
and thus none of the Xlrcan be constfucted as a linear combinatioﬁ
of primitive (spin orbital) excitationms.

The correct Y 2 which results from
e
SE
me
3A

S(me,2e)1pT L.
e )t (2e o) + (me_B)" (2e B) + (meya)+(v2eya) + (méye)’”(Zeya)}

A . .
(2exa2eya2ey83ex6_+ 2exa2ex82eya3eya) o (AL.6)

is also given in Table II. Note that ¥ 2e contains only S;D. which
o SE :
differ by exactly 1 spin orbital from one of the S.D. in equation 2

Finally we also observe that y se Can be expresséd as the following

linear combination of the X4 me

foud

(9

1 1 :
\p = - X - = X + X (AI.7)
SE:: \/7 L\E 72 273 -
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2e33e Manifold of

CH,,CO

Calculated using SRAS (upper) and OCBSE4 (lower) methods.

c
. Energy
State (SRAS)
3Al_ -151.824115
3' a { ~151.804624(0)
E
. =151.804624(5)
3A2 -151.788011
1
A2 -~151.788010
lE -151.782491
a
b

c
Energy b
FIX ORB

-151.822613
-151.804624
-151.786636(2)
-151.786635(5)

-151.777439

'Splittingd

(FIX ORB)

-0.489

0.489
0.489

0.739

Splittingd
correction
due to Relaxation

~0.041

-0.037

-0.037

-0.137

Fixed orbitals correspond to the SCF orbitais for the'3E state.

Energy in hartrees.

Energy in electron volts.
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Table II. 3A Wavefunctions Resulting from the Orbital ‘Occupan_cy (2e2me)3e

1

Slater Determinant X X '* ' ¢SE29
(open shell part only) 1 2 Ag 3e

2exa2ey8meyq3exa 1/2v§ 0 - 1/v§ - IAJE

2exa2eyoaney83exa -1/ 3 .0 0 A /‘6
*

2exa2ey6me,x63eyoc - 1,4 0 -1 0

2exa2eyamex83eya - lLVﬁ 0 0 - lng'
* ‘ :

2ex62eyameyoc2exa /5hA 0 _1/\/5 0

2ex82eyamexa3eya - l/zvg 0 1ﬁv§‘ 1ng
% _ .

2exa2ex8mexa3exa 0 - 1/2 - ;Avg' 0

2exa2ex8meyoa3eyon 0 -1/ 2 l/vg l/vg'

2eyu2ey6mexa3exa 0 - l/2 ' }«ﬁ; l«ﬁ;

% '
2 2 3 0 -1 -1 0
e o emeeya ea | /9 _«ﬁ;
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