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Abstract 

The form of Brillouin's theorem appropriate for Restricted 

Hartree-Fock calculations is used to determine rigorous Self-

Consistent~Field wavefunctions for the 3A1 , 
. 3 . + 

states of the ••• 2e 3e manifold of CH3co, 

3 . 3 1 1 
E, A2 , A2 and E 

a manifold for which 

traditional Fock operator techniques are unsuitable. The results 

of an approximate method previously reported are compared with 

these exact results are found to be in quite good agreement. 
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I. Introduction 

In a previous work
1 

it was shown that the low-lying electronic 

states of the acetyl cation (CH
3

co+) could be expected to arise 

from the following drbital occupancies (o.o.) (assuming the geometry 

of the ion to be c3v). 

(I.la) 

(I.lb) 

and 

(I.lc) 

The ordering of the electronic states resulting from these o.o. 

is as depicted below1 

2 4 lA 
7a12e ·--------------- 1 
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While the wavefunctions used in reference 1 were of sufficient 

accuracy for the approximate description of the electronic spectrum 

+ of CH3co required in that work, they suffer from a glaring in-

consistency. (It will ultimately be shown--as conjectured in 

reference 1--that this inconsistency has only a small effect on 

the final result~. Although it is possible to obtain rigorous2 

self~consistent-field (SCF) wavefunctions for the electronic states 

. 3 4 
arising from o.o. la and lc using standard Fock operator techniques ' 

3 only the E state arising from o.o. lb was amenable to such a 

procedure. The remaining five states arising from this o.o. were 

treated within the fixed orbital 1 5 (FIXDRB) approximation. ' The 

failure of Fock operator formalisms to treat these states has its 

roots in o.o. lb. This o.o. is seen to contain two partially 

filled multiply degenerate shells which must be coupled together 

when the required symmetrized trial wavefunctions ~; are constructed. 

(See, for example, equation 2 of Appendix I). The energy 

functionals 

(1.2) 

corresponding to these symmetrized ~; can be expressed in the form 

Here £ has the form s 

(I. 3) 
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where the one electron (h
1
),coulomb (J .. ) and exch'ange (K .. ) 

1] 1] 

3a 
integrals are as defined by Roothaan. For 

(1.4) 

+ + 
= /dr1 dr2 iea(l) jeS(l) ~ey(2) ~e0 (2) (1.5) 

r12 

no pair (i,a) is repeated in a given integral so that in general 

this term cannot be expressed as a linear combination of coulomb 

and exchange integrals. For the problem at hand three distinct 

(i) (2e 2e ll3e 3e ) 
X y X y 

(I. 6a) 

(ii) (2e 3e ll2e 3e ) 
X X y y 

(I. 6b) 

(iii) (2e 3e ll3e 2e ) 
X y X y (I. 6c) 

Only for the degenerate 

3
E state could a w; = 

(to zeroth ~rder in nuclear displacements) 
3E E 

(~T x + WT Y) be found which resulted 
2 

in an energy functional of the form 

= £ s 
(I. 7) 

3 4 Since all standard Fock operator procedures ' presuppose an energy 

functional of the form of equation 7, they are incapable of 

determining SCF wavefunctions for these states. 

A similar situation obtains when one considers the excited 

electronic states of CO arising from the o.o. 
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(I.8) 

The corresponding 'additional integrals' (equation 5) involved 

in this problem are exactly those given in expression 6 if the 

identification me + (m-l)n is made. Thus at first glance it a. a. 

would appear that the states resulting from this o.o. should be 

equally untractable. 6 However Rose and MCKoy were able to show 

that as a consequence of the continuous azimuthal symmetry of the 

C point grou~ the troublesome additional integrals could be 
~ 

expressed as linear combinations of coulomb and exchange integrals. 

Thus for linear systems the states arising from o.o·. such as (8) have 

become tractable via a standard Fock operator procedure. Unfortunately 

this extension of Goddard's procedure by Rose and McKoy is applicable 

only to these linear systems. 

In this work we present a method which is of sufficient generality 

to be able to treat the states arising from an o.o. such as 

lb. This procedure, which does not involve in the explicit 

construction of a Fock operator, uses a generalized form 

7 Brillouin's theorem and for this reason (see Section II) is referred 

as the Symmetry Restricted Annihilation of Single-Excitations (SRAS) 

procedure. This procedure is discussed in Section II. In Section 

III its application to the states in question is investigated, the 

results of the computations presented and compared with the fixed 

orbital procedure of reference 1. In Section IV some concluding 

remarks are presented together with a summary of the work presented 

herein.· 
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I~. Symmetry Restricted Annihilation of Single-Excitations 

In this section the basic ideas behind the SRAS procedure are 

outlined. A more detailed discussion of these ideas can be found 

in reference 5. 

In the SRAS method one seeks the best (see below) single 

configuration wavefunction8 that can be constructed from a set 

of two electron functions {fi} constrained to satisfy the following 

conditions: 

(i) the fi are an orthonormal set, i.e., <filfj> = 

oij and 

(ii) they can be partitioned into shells (see equation I.l)' 

each shell carrying a complete irreducible representation of the 

group (G) of spatial symmetries of the Hamiltonian. 

The wavefunctions possessing these properties are usually referred 

to as Restricted Hartree Fock (RHF) wavefunctions. 3 

The determination of the set of 'equivalence restricted' 

functions required to construct these wavefunctions is accomplished 

with the aid of the variational principal. If one assumes that the 

9 spectrum of H (cr(H)) is a point spectrum [at least for all p < x, 
10 

p£cr(H), X£R] the variational principal asserts that if the eigen-

values of H are ordered as follows: 

then 



for all (V) ljJT satisfying 

where 

~6-

<I)JTjHjljJT> 

<ljiTjljiT> 

v j s; i 

Therefore if the desired Ei is known to be the lowest eigen­

value of a given (space-spin) symmetry, equations- la,b reduce 

to 

(II.la) 

(II.lb) 

(II.lc) 

(II. 2) 

where the superscript s implies that ljJT is appropriately symmetrized 

so that equation l.b is automatically satisfied. Thus according to 

equation 2 the 'best' set {fi} will be that which minimizes the 

functional E8
(1jJ;). In analogy with the theory of a function of 

several variables (in fact it is not difficult to make the analogy 

mathematically precise; see for example reference 5) a stationary 

point of Es(ljJ~) (which one hopes will be the desired minimum) occurs 

where 

(II.3) 

If Es(ljJ;) is interpreted as a functional of the set {fi} rather 
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than w;,equation 3 becomes 

0 \Zi 

where oi implies that the ith function is varied while the 

remaining functions are held fixed. (In the theory of 

functions of several variables the equivalence of equations 

3 and 4 is merely the'statement that for F(~): RN + R, 

dF = ,0 ..,. ()F = 0 \Zi). ax. 1. 
The equations defining the optimum set {f.} can be 1. 

deduced from equation 4 with care being taken to require the 

(II.4) 

variations to satisfy the restrictions outlined at the beginning 

of this section. Recall that if WT were a single Slater determinant 

(of spin orbitals) the ith component of equation 4 would lead to11 

<WsE~IHIWT> = 0 Yj 
J 

(II.5) 

where W . is the Slater determinant obtained by replacing the ith 
SE1 

spin orbiial in ~T by the jth virtual or unoccupied spin orbital. 

However it is not hard to see that these primitiv~ first order 

variations (i.e., spin orbital replqcements) do not satisfy the 

equivalence restrictions described above. 5 The required equivalence 

restricted variations can be obtained as a linear combination of 

·these primitive variations. 5 12 It can be shown ' that the required 

i 1 . d . . . h ith bi 1 1 d equ va ence restr1.cte . var1.at1.ons 1.n t e or ta ea to a 

system of equations similar to G)where the W . are constructed as 
SE

1 

j follows: 
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(i) Let if~ be an element of the ith shell which carries 

the irreducible representation ra of G. Further let jf~ be an 

inequivalent occupied or virtual orbital in shell j of the same 

synunetry. (Two shells are said to be equivalent iff the energy 

functional - equation 2 - is invariant under a unitary transfor-

mation between the functions in these shells). 

(ii) Then ~ . is given (using a second quantization13 type 
SE~ 

notation) by J 

[ (j a + (i 
a s 

~ = l: r~ Yj> r~ yj) NT 
SE~ ~=l,m(ra) 

J y .da,B} 
J 

(II. 6a) ' 

S(j ra, i ya) 
s 

= ~T (II.6b) 

a . 
where m(r ) is the dimension of the irreducible representation 

ra of G, {a,B} are the usual spinor~ and j r~ is the spatial part 

of the one electron spin orbital (j r~ yj) and transforms according 

to the ~th column of ra. (The implementation of_equation 6 is 

discussed in Section III and Appendix I). 

The system of coupled equations given by equations 5 and 6 

form the basis of the SRAS method and are solved using the 

iterative natural orbital (!NO) procedure of Bender and Davidson. 14 

In this procedure, an initial set of orbitals {fi} is used to construct 

the Hamiltonian matrix corresponding to the set of functions {~T'~ .}. 
SE~ 

The lowest eigenvalue of this matrix is found and the approximate J 

natural orbitals (a.n.o.'s) for the corresponding eigenvector are 

determined. These a~n.o.'s are then taken as the new set of trial 

orbitals and the procedure is repeated. The procedure terminates, when 

(or if) equation 5 is satisfied V. ~ •• 
SE~ 

J 
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It is perhaps worth noting the following properties of the 

SRAS equations as given above: 

(i) Since S(jfa, Ha) is, clearly, a totally symmetric 

operator ~ . has the same transformation properties as ~T 
s~ . 

so that equa~ion 5 cannot be satisfied identically. 

(ii) If the equation <~ .j HI~> = 0, 6-,j) fixed is 
SE~ 

interpreted as describing the o~timal mi~ng of the i and j 

Cl. inequivalent shells of symmetry r it can be seen that the 

above procedure yields exactly 1 equation (see however Section 

III) to describe this mixing regardless of the dimensionality 

Cl. 
of r . This is required by equivalence restriction (ii) which 

d th . . f ·ra d ·ra . d d f n ren ers e m1x1ng o 1 Q, an J Q, 1n epen ent o ~. 

(iii) For equivalent shells ifa and jfa, the antisymmetry 

of ~~ implies that S(jfa, ifa)~T = 0. This is necessary since 

the energy functional is unaffected by a unitary transformation 

of the jfa and ifa shells. 

(iv) Equations 5 and 6 can,be interpreted as defining the 

appropriate generalization of Brillouin's theorem for the case 

of RHF wavefunctions. Once these equations have been solved for 

the optimal set {f.} and the appropriate ~s constructed, equation 
~ SCF 

5 asserts that this wavefunction (~;CF) is non-interacting with a 

certain class of singly excited wavefunctions (i.e., those correspond-

s 
ing to equivalence restricted changes in ~SCF), and thus represents 

a type of Brillouin's theorem. 

(v) The most important observation, as far as this 

work is concerned, is that the SRAS method doe$ not involve the 
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explicit construction of a Fock operator. Thus it can be applied 

3,4 
to cases for which the usual Fock operator formalisms break 

down. 

We now proceed to the application of the SRAS method to the 

problem at hand. The SRAS equations required for this computation 

are discussed prior to the presentation of the results. It is hoped 

that this discussion will serve to clarify the admittedly sketchy 

development in this section. 
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In this section the results of SRAS calculations on the 

2e33e manifold of CH
3
co+ will be presented. The purpose 

of these calculations is threefold: 

(i) to demonstrate the viability of the SRAS procedure 

for a system which cannot be treated by conventional SCF 

methods.
2

•3 

(ii) to test the utility of the fixed orbital approximation 

1 
previously reported 

(iii) to gain an increased understanding of the nature of 

the manifold splitting by partitioning the splitting energy into 

contributions due to (a) the recoupling of the Slater determinants 

(as measured by the fixed orbital approximation) and (b) due to 

the relaxation of the orbitals (as determined by the SRAS calculations). 

To facilitate the achievement of this program it was necessary 

to carry out the SRAS calculations at the 'fixed orbital geometry', 

i.e., the c3v 'equilibrium' geometry
1 

of the 3E state of CH3co+ using 

. 14 15 
the standard Dunn1ng -Huzinaga double zeta quality basis of the 

. k 1 prev1ous wor • The 36 basis function resulting from this choice of 

basis set can be transformed to a set of symmetry adapted functions, 

partitioned according to their transformation properties: 

20 a
1 

functions 

8 e functions 
X 

8 e functions 
y 



-12-

of whichr.according to orbital occupancy Il.b, seven a1 , three 

e and three e functions are either fully or partially 
X y . 

occupied. 

For each of the six states within the manifold in question 

the SRAS procedure is equivalent to the determination of two unitary 

matrices. 

(i) 
al 

~ which transforms the initial set of 20 a1-type functions 

onto the optimal set and 

(ii) 
. e 

U which accomplishes the same end for both the 8 e and 
- X 

8 e functions. 
y 

The fact that only one Ue is allowed for both the e and e orbitals 
~ . X y 

is, of course, a consequence of the equivalence restriction of Section II. 
al 

Now U is determined in general by 20•(20-1)/2 parameters. However 

the energy functional (equation II.2) is invariant under a unitary trans-

formation among the 13 virtual or unoccupied orbitals and also among the 

7 equivalent doubly occupied a1 orbitals. Therefore only 

20•(20-1)/2- 13•12/2- 7•6/2 = 91 
al 

parameters are required to specify U 
• 

Similarly Ue is determined by 
:::: p<·:: ··:.:.,.>·. 

8•7/2 - 5•4/2 - 1•0/2 8 

parameters so that a total of 109 parameters in all are required to 

determine the solution of the SCF problem. 

To solve this problem within the SRAS formalism a total of 

109 ~ . (or S(ifa, jfa)) will be required. In the disc~ssion that follows 
sEJ 

it will ~e shown that for the 3A1 , 3E, 3A2, 1A2 and 1E states the requisite 

109 equations are uniquely determined by the prescription of Section II. 

However for .the 
1
A1 state an ambiguity will result as a consequence of the 
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fact that this state is not the lowest state of its overall symmetry. • 

It is easily seen that there are exactly 

7•13 = 91 (a
1 

occupied-to-virtual pairs) 

+ 3• 5 = 15 (e occupied-to-virtual pairs) 

+ 3 3 (e occupied-to-occupied pairs) 
109 

pairs of shells from which to construct S operators. For each 

of the occupied-to-virtual pairs it is possible to construct 

only one S operator which leads to a non-trivial wavefunction. 

The construction of this wavefunction for the 2e + 'me (m ~ 3) 
3Al s 

excitation with WT taken as WT is illustrated in Appendix I. 

The (le, 3e) and (le, 2e) pairs also yield only one S operator 

corresponding to a non-trivial wavefunction since the le shell 

is fully occupied. The situation is not quite as simple for 

the (2e, 3e) pair. For this pair there are two possible S 

operators: 

= S (3e, 2e) (III.la) 

and 

S (2e, 3e) (III.lb) 

s 3 3E 3 1 1 
If WT is taken to correspond to the A2' ' Al' A2, or E 

states, it is not hard to see that 

s 
SlWT = w ~ 0 (III. 2a) 

SE2e 
3e 

while 
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s 
1/J 0 (III. 2b) S21/JT = -

SE3e 
2e 

so that for these five states the required 109 1/J • are 
SE1 

unambiguously determined~ However for the 1/J; corr~spond-

ing to the lA 
1 state one finds that 

lA 
1 

Slt/JT = 1/J ; 0 (III.2c) 
SE3e 

2e 

and 

lA 
1 

1/J 1/Jgs ; 0 (III.2d) 5 21/JT = -
SE3e 

2e 

where ''' denotes the unique wavefunction resulting from the •gs . 

ground state orbital occupancy (I.la). According to Section 

II then one can require either 

(III. 3a) 

or 

(III.3b) 

but not both without relaxing the equivalence constraints. If 

equation 3a (3b) is used in the SRAS procedure we shall say that 

the resulting wavefunction is variational from above (below). 
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Not only does the connection of the 1A
1 

wavefunction from the 

3 . 1 
2e 3e manifold with the A

1 
ground state wavefunction lead to an 

ambiguity in the SRAS equations but it also appears to be responsible 

for the failure of the !NO procedure as described in Section II to 

converge to a solution of these equations (regardless of whether equation 

3a or 3b is selected). At present alternative procedures are being 

considered which should circumvent this difficulty. However for the 

remainder of this work we will have to content ourselves with a discussion 

of the five states which are the lowest of their symmetry. 

Thus we now turn to a discussion of the SRAS results for the 

five states in question, as given in Table I. Note that for both 

the SRAS and FIXORB results 
. 3 1 

the A2 and A2 states are nearly 

degenerate. This approximate degeneracy is not accidental. In the 

limit C + C this degeneracy becomes exact (for the single nv oov 
5 6 configuration approximation used here). ' Reference to the actual 

wavefunctions (not presented here) shows that the contributions to 

the 2e and 3e orbitals from atomic orbitals located on the H3 cluster 

is negligible. Since the remaining portion of the molecule possesses 

Coov symmetry the reason for the approximate dege~eracy becomes clear. 

The next point to be made concerns the corrections in the manifold 

splitting due to orbital relaxation, as defined by equation 4, and given 

in the final column of Table I. 

s 3 3E s 3E 
t.EORB = (ESRAS ESRAS) (EFIXORB ~IXORB) 

REL 
s s 

- ESRAS EFIXORB (III.4) 
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The method of calculation, of course, requires these numbers 

to be negative since ESRAS $ ~IxoRB· Note, however, that in 

each case these corrections are small, being < 10% of the 

contribution due to the recoupling of the Slater determinants 

l 3A lA 8 . 1 for the A1 , 2 and 2 states and ~ 1 % for the E state. 

Thus we can conclude that for the type of manifold splitting 

considered here orbital relaxation is unimportant and the fixed 

orbital approximation should be adequate. Finally we observe 

3 the essentially exact agreement between the E energy computed 

by the SRAS procedure and the OCBSE method. (The small differences 

actually observed are probably the result of an integral truncation 

scheme.used to speed the OCBSE calculation). This result together 

with the more stringent tests presented in referenGe 5 demonstra~e 

the correctness of SRAS procedure. 

-. 
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IV. Summary 

We have presented here the form of Brillouin's theorem 

appropriate for Restricted Hartree Fock (RHF) calculations 

(equations II.S and II.6). The correctness of this formulation 

is demonstrated by comparison with existing RHF procedures (see 

remarks at close of Section III). This formulation of the 

Hartree Fock approximation has the advantage of being applicable 

to moderately symmetric open shell systems which often cannot be 

handled by standard Fock operator procedures. Although not 

discussed in this work, this formulation is readily extended to 

a large class of Multi:-Configuration-Self-Consistent-Field (MCSCF) 

problems. The details of this extension are given in reference 5. 

The SRAS procedure was used to study the .•• 2e33e manifold 

+ of CH
3
co . Comparison of exact SRAS results with the approximate 

fixed orbital method allowed the manifold splitting energies to 

be partitioned into an orbital relaxation contribution and a 

recoupling contribution (Table I, columns 5 and 6). As the orbital 

relaxation contributions were seen to be small we conclude that the 

fixed orbital approximation is adequate to describe this type of 

manifold splitting. 
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Appendix I 

Here the use of the S operator in constructing the required 

~ (as defined in Section II) is illustrated for the case 
SE~ 

J 

3A 

= S(me, 2e) ~T 1 m > 3 (AI.l) 

In the following all fully occupied shells are omitted for clarity. 

A(2e a 2e 
2 

3e a + 2e 2 2e a 3e a) 
X y X X y y 

and arises from the o.o. 

3 2e 3e 

(AI. 2) 

(AI. 3) 

· The shell excitation in question converts o. o .. (3) into the following o. o. 

2 (2e me)3e (AI.4) 

In accordance with the variational procedure outlined in Section 

2 
II, (i.e., varying the orbitals one at a time) the (2e ,me) pair 

must be 2
E coupled since the parent shell (the 2e3 shell) was so 

coupled. However even with this restriction it is possible to 

construct 3 linearly independent 3 A
1 

wavefunctio'ns {x. }3 corresponding 
1 i=l 

to, for example, the following partial geneologies 

(AIS.a) 
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(AIS.b) 

(AIS.c) 

The 3 particle functions resulting from these genealogies 

are then coupled to the 3e shell to yield the final 3A1 wavefunction. 

The three functions produced in this manner are given in terms of 

Slater Determinants (S.D.) in Table II. Note that the starred S.D. 

differ from both of those in equation 2 by more than 1 spin orbital 

and thus none of the x
1 

can be constructed as a linear combination 

of primitive (spin orbital) excitations. 

t . 

The correct ~ 2 which results from 
SE e 

me 

{(me a.)+ (2e a.) + (me S) + (2e S) + (me a.)+ (2e a.) + (me S) + (2e a.)} 
X X X X y · y y y 

A (2e a.2e a.2e S3e S + 2e a.2e S2e a.3e a.) 
X y y X X X y y (AI. 6) 

is also given in Table II. Note that ~ 2 contains only S.D. which 
SE e 

differ by exactly 1 spin orbital from onem~f the S.D. in equation 2 

Finally we also observe that ~ can be expressed as the following 
SE2e 

linear combination of the xi me 

(AI. 7) 
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Table I. 
3 . 

The ••. 2e 3e Manifold of CH3co 

Splitting d 
c c d 

- Electron Energy Energy b Splitting correction 
Occupancy State (SRAS) FIX ORB (FIX ORB) due to Relaxation 

3 3A -151.824115 -151.822613 -0.489 -0.041 2e 3e 1 

3E 
a { -151.804624(0) 

-151.804624 0 0 
-151.804624 (5) 

3A 
2 -151.788011 -151.786636 (2) 0.489 -0.037 

lA 
2 -151.788010 -151.786635 (5) 0.489 ....,Q.037 

lE -151.782491 -151.777439 0.739 -0.137 

a Calculated using SRAS (upper) and OCBSE4 (lower) methods. 

b Fixed orbitals correspond to the SCF orbitals for the 3E state. 

c Energy in hartrees. 

d Energy in electron volts. 



-22-

.. 

Table II. 3A1 Wavefunctions Resulting from the Orbital Occupancy ••• (2e2me)3e 

Slater Determinant 
xl Xz x3 

I/JSE2e 
(open shell part only) 3e 

2e a2e Bme a3e a 1/ 2../J 0 - 1/vs -lf.J6 X y y X 

2e a2e ame B3e a 1/.Jj 0 0 1/{6 X y y X 

* - 1/2~ 2e a2e Bme B3e a 0 - 1/vs 0 
X y X y 

2e a2e ame B3e a 1/0 0 0 - 1/{6 X y X y 

* 1/2\13 2e B2e ame a2e a 0 1/vs 0 
X y y X 

2e B2e ame a3e a - 1/¥ 0 1/Ya· 1/{6 X y X y 3 

* 2e a2e Bme a3e a 0 - 112 - 1/{8 0 
X X X X 

2e a2e Bme a3e a 0 - 1/2 li.JB 14J6 X X y y 

2e a2e Bme a3e a 0 - 1/2 1/Vs 14[6 y y X X 

* 2e a2e Bme a3e a 0 - 1/ -1'{8 0 y y y y 2 
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