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EPIGRAPH

The conservation of natural resources is the fundamental problem. Unless we solve

that problem it will avail us little to solve all others.

– Theodore Roosevelt

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 From green hawks to brown doves: A model behind the monikers
of U.S. environmental politics . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Basic model . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Hierarchical model . . . . . . . . . . . . . . . . . . 12
1.3.3 Alternative model . . . . . . . . . . . . . . . . . . . 13
1.3.4 Implementation . . . . . . . . . . . . . . . . . . . . 16

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 Extreme legislators . . . . . . . . . . . . . . . . . . 25
1.5.2 As The World Burns . . . . . . . . . . . . . . . . . 28
1.5.3 The role of political contributions . . . . . . . . . . 31

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.A MCMC convergence . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 2 Consumption-based accounting of carbon emissions and its rela-
tionship to congressional climate change policy . . . . . . . . . . 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Electricity generation and emissions embodied in trade 49
2.3.2 A spatial model of climate change voting . . . . . . 52

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



2.5 Counterfactual results . . . . . . . . . . . . . . . . . . . . . 64
2.6 Cross-chamber predictions . . . . . . . . . . . . . . . . . . 69
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.A The Clean Power Plan . . . . . . . . . . . . . . . . . . . . 74
2.B League of Conservation Voters roll calls . . . . . . . . . . . 76
2.C Electricity generation and emissions embodied in trade . . 79
2.D MCMC convergence . . . . . . . . . . . . . . . . . . . . . . 82
2.E Heteroskedastic extension . . . . . . . . . . . . . . . . . . . 84

Chapter 3 Self-enforced international environmental agreements: A role for
bargaining power . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3 Numerical application . . . . . . . . . . . . . . . . . . . . . 103

3.3.1 C-DICE . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.2 STACO . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.3 Bargaining protocols . . . . . . . . . . . . . . . . . 107
3.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

vii



LIST OF FIGURES

Figure 1.1: Comparison of standard deviations . . . . . . . . . . . . . . . . . 19
Figure 1.2: The most pro- and anti-environment representatives during the

103rd to 112th Congress . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 1.3: The most pro- and anti-environment senators during the 103rd to

112th Congress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 1.4: Identity of the filibuster pivot in the 111th Senate . . . . . . . . . 29
Figure 1.5: Leadership contributions during the ten days prior to the Waxman-

Markey vote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 1.6: Political contributions during the ten days prior to the Waxman-

Markey vote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 1.7: Party-specific political contributions by LCV margin and category 35

Figure 2.1: Traded electricity and the Clean Power Program . . . . . . . . . 43
Figure 2.2: Comparison of estimated ideal points and DW-NOMINATE scores 61
Figure 2.3: Average excess error rates . . . . . . . . . . . . . . . . . . . . . . 63
Figure 2.4: Comparison of estimated ideal points and counterfactual ideal points 65
Figure 2.5: Aggregated congressional district data compared with state data 80
Figure 2.6: Average excess error rates . . . . . . . . . . . . . . . . . . . . . . 88

Figure 3.1: Contractual equilibrium with two and three countries . . . . . . . 100
Figure 3.2: Simulations - two countries . . . . . . . . . . . . . . . . . . . . . 101
Figure 3.3: Simulations - three countries . . . . . . . . . . . . . . . . . . . . 102
Figure 3.4: Equilibrium slack relative to slack required for the social optimum 111

viii



LIST OF TABLES

Table 1.1: League of Conservation Voters Scorecard votes for the 103rd to the
112th Congress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 1.2: Table of means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 1.3: Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 1.4: Spearman rank-order correlation coefficients . . . . . . . . . . . . 18
Table 1.5: Estimates of γ0, γ1, and δ in the hierarchical model . . . . . . . . 20
Table 1.6: Estimates of δ in the alternative model . . . . . . . . . . . . . . . 23
Table 1.7: Party-specific political contributions and the Waxman-Markey bill 34
Table 1.8: MCMC convergence diagnostics . . . . . . . . . . . . . . . . . . . 39

Table 2.1: Table of means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 2.2: Per-capita carbon emissions (metric tons) 1996 to 2015 . . . . . . 57
Table 2.3: Estimates of the hierarchical model in the House . . . . . . . . . . 59
Table 2.4: Estimates of the hierarchical model in the Senate . . . . . . . . . 60
Table 2.5: Simulated results of roll call votes on climate change legislation . . 68
Table 2.6: Estimates of the hierarchical model in both chambers . . . . . . . 71
Table 2.7: Simulated results of cross-chamber roll call votes on climate change

legislation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 2.8: Reduction goals and assumptions for existing generators . . . . . . 75
Table 2.9: Climate change roll calls in the House . . . . . . . . . . . . . . . . 77
Table 2.10: Climate change roll calls in the Senate . . . . . . . . . . . . . . . 78
Table 2.11: Estimates of state-level per capita electricity use . . . . . . . . . . 79
Table 2.12: MCMC convergence diagnostics . . . . . . . . . . . . . . . . . . . 83
Table 2.13: Estimates of the robust model in the House . . . . . . . . . . . . . 86
Table 2.14: Estimates of the robust model in the Senate . . . . . . . . . . . . 87
Table 2.15: Simulated results of roll call votes on climate change legislation . . 89

Table 3.1: Coalition Dynamic Integrated model of Climate and the Economy
(C-DICE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 3.2: STAbility of COalitions model (STACO) . . . . . . . . . . . . . . 106
Table 3.3: Bargaining ranks in C-DICE . . . . . . . . . . . . . . . . . . . . . 108
Table 3.4: Bargaining ranks in STACO . . . . . . . . . . . . . . . . . . . . . 108

ix



ACKNOWLEDGEMENTS

I would like to thank Professor Joel Watson for his support as the chair of my

committee. His patience and guidance were essential and made this work possible.

I am also very grateful to the other members of my committee: Professor Richard

Carson, Seth Hill, Mark Jacobsen, and Junjie Zhang for their help and advice along

the way. In addition, I would like to acknowledge Professor Sam Bazzi for his helpful

feedback while completing this project.

This work benefited form the support of the National Science Foundation

under IGERT Grant No. 0333444.

x



VITA

2007 B.S. in Economics cum laude with Distinction, University of
Washington, Seattle

2007 B.S. in Mathematics cum laude, University of Washington, Seat-
tle

2008-2014 Teaching Assistant, University of California, San Diego

2013 Instructor, California State University, San Marcos

2014 Instructor, University of California, San Diego

2016 Ph.D. in Economics with a Specialization in Interdisciplinary
Environmental Research, University of California, San Diego

xi



ABSTRACT OF THE DISSERTATION

Essays in Decisions, Institutions, and the Environment

by

Jacob R. Johnson

Doctor of Philosophy in Economics with a Specialization in Interdisciplinary
Environmental Research

University of California, San Diego, 2016

Professor Joel Watson, Chair

The successful implementation of environmental policies is directly related to

the functioning of government institutions. As such, the study of how these insti-

tutions – and the policymakers that serve them – make decisions is an important

area of research. This dissertation makes two contributions in this area; the first and

second chapters provide an empirical assessment of environmental voting in the U.S.

Congress while the third chapter considers some theoretical aspects of international

environmental agreements. In particular, chapter one explores how the environmen-

tal preferences legislators can be estimated from voting behavior and to what degree

xii



these estimates can inform policy questions. Chapter two targets the question how

does the accounting of carbon emissions influence individual voting behavior on cli-

mate change legislation. Chapter three applies a new equilibrium concept – one that

includes a formal model of negotiation – to a standard pollution abatement game.
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Chapter 1

From green hawks to brown doves:

A model behind the monikers of

U.S. environmental politics

1.1 Introduction

The environmental preferences of legislators – as revealed by their voting

records – has been a subject of interest at least since the League of Conservation Vot-

ers (LCV) began tracking and publishing the environmental votes made by members

of Congress in 1971. The ratings produced by the LCV – defined as the percentage

of times a legislator voted for the pro-environment position – serve at least two useful

purposes. First, they provide a meaningful way to describe and compare the environ-

mental preferences of legislators. For example, an individual who is pro-environment

may direct a political contribution toward a legislator who is rated highly by the LCV.

Second, the ratings represent a quantifiable measure of environmental ideology which

1
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can then be used to explore alternative theories of legislative choice. For example,

one could test whether legislators who receive higher levels of environment-related

political contributions also have higher rates of pro-environment voting.

Consider this second purpose. Aside from environmentally-motivated political

contributions, there are likely to be a variety of factors that contribute to a legislator

voting for the pro-environment position. One of these is undoubtedly the legislator’s

own environmental preferences. However, if environmental preferences are typically

described using LCV ratings – consistent with the first purpose described above–

how can one control for these preferences when trying to explain why some legislators

vote more pro-environment? After all, pro-environment votes determine LCV ratings.

Researchers typically solve this problem by using an alternative measure of prefer-

ence. Two common examples are Americans for Democratic Action (ADA) ratings or

NOMINATE scores derived using the methods of Poole and Rosenthal (1997, 1991,

1985). These are thought to provide a useful proxy for preferences that fit within the

familiar spectrum ranging from the liberal-left to the conservative-right. While it is

certainly true that liberals are generally more pro-environment than conservatives the

relationship is not perfect. One wonders what might be gained by finding a better

proxy.

The key insight of this paper comes from the recognition that estimating leg-

islator preferences toward the environment and also determining the correlates of

environmental voting need not be done separately. In fact, I demonstrate how both

tasks are readily accomplished by the direct inclusion of covariates into a roll call

scaling method similar to that of NOMINATE. The analysis can be considered com-

prehensive in that it draws on twenty years of environmental voting in both the House
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and Senate which were linked to data on each of the individual legislators – such as

party affiliation, age, gender, election results, and political contributions – as well as

to data on their constituencies – such as demographic composition, income, unem-

ployment, and energy production. The resulting panel is comprised of nearly 160,000

observations.

The analysis makes four contributions. First, it improves on LCV ratings

by combining the spatial voting model with the environmental specificity associated

with LCV votes. Ratings implicitly weight each roll call vote equally which likely

diminishes the significance of certain votes. In fact, the LCV will occasionally count

especially important roll calls as two votes in recognition of this fact. Scaling meth-

ods account for this by modeling each roll call uniquely. Snyder Jr (1992) and Poole

and Rosenthal (1991) also show that interest group ratings typically make legislators

appear more extreme than is actually the case and can obscure rankings due to the fre-

quency of ties. Furthermore, Rivers et al. (2004) point out that an additional benefit

of the spatial model is that the ideological estimates produced are also accompanied

by estimates of their uncertainty. Improved estimates might better serve research

such as Jenner et al. (2013), Langpap and Kerkvliet (2012), and Carley (2009) which

rely on LCV ratings as a proxies.

Second, by eschewing the need for ideological proxies practical issues of collinear-

ity and measurement error are avoided. Consider Jacobsen (2013) who looks at how

unemployment influences LCV ratings using ADA ratings as a control. It is certainly

possible that if pro-environment voting is significantly influenced by the unemploy-

ment rate then more liberal voting – as measured by the ADA ratings – is also

significantly influenced by the unemployment rate. This exact issue is the main topic
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of discussion in Carson and Oppenheimer (1984).1 Additionally, when used as depen-

dent variables, ideological proxies introduce measurement error which may lead to

inconsistent parameter estimates. Although not considering the estimation of legis-

lator preferences, Herron and Shotts (2003) find noticeable bias when inferred voting

rates based on precinct returns are used in place of actual voting rates based on

ballots. This result motivated Lewis and Poole (2004) to assess the degree of mea-

surement error associated with NOMINATE scores using the parametric bootstrap.

Snyder and Groseclose (2000) – who actually find that measurement error leads to

very small changes in their estimates of preferences – point out that the issue is

frequently ignored.2 Clinton and Meirowitz (2003) also point out that second-stage

hypotheses may not be neutral with respect to the the models generating the ideolog-

ical proxies. The approach taken here capitalizes on the wisdom in Herron and Shotts

(2003) who argue that “the only guaranteed way to avoid second-stage inconsistency

is to avoid second stage regressions altogether.”

Third, previous research on environmental voting has focused on only one or

two key variables. For instance, Herrnstadt and Muehlegger (2014) are interested

in Google search intensity of climate change keywords as well as weather, Jacobsen

(2013) considers the unemployment rate, Cragg et al. (2013) focus on carbon emis-

sions, Kahn (2007a) examines Green Party membership, and Kahn (2007b) looks at

shocks associated with the occurrence of environmental disasters. To be sure, these

1 From Carson and Oppenheimer (1984): “... it is obvious that while the ADA rating is correlated
with [ideology] (and hence a possible proxy for [ideology]), it is also correlated with everything else
in the equation [of interest], giving rise to problems of extreme multicollinearity (and its associated
problems: large standard errors in parameter estimates and unreliable tests of significance).”

2 From Snyder and Groseclose (2000): “One way to deal with this problem is simply to ignore it
and proceed with least-squares estimation as if the preferences were measured without error. In fact,
this is the typical approach taken in previous studies – dozens of analyses have used roll call based
scores from interest groups such as the ADA, or the parameter estimates from a scaling procedure
such as NOMINATE, and treated these as errorless measures of preferences or ideology.”
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authors also include additional covariates as controls but nothing comparable to the

data used here.

Finally, measures of ideology – like LCV ratings or NOMINATE scores – are

derived from roll call data alone. This makes it difficult to discern to what extent these

estimates reflect voting based on a legislator’s own preferences or instead reflect the

preferences of their constituents. This point is emphasized in Jackman (2009), Rivers

et al. (2004), Carson and Oppenheimer (1984), and Kalt and Zapan (1984).3 By

incorporating additional data it becomes possible to disentangle the very plausible

relationships between the voting behavior of legislators and the characteristics of

their constituencies. From a consensus-building perspective, the distinction between

legislators who vote pro-environment because of their district or in spite of their

district is an important one since it may provide insights on who to whip or lobby.

The reminder of the paper is organized as follows. Section 2.2 discusses the

data used in the analysis. Section 2.3 develops the spatial model of voting used with

the data. Section 2.4 presents the main empirical results. Section 1.5 illustrates how

the methods and results can be used to inform topics related to environmental policy

in Congress. Section 3.4 concludes.

3 From Jackman (2009): “A legislator’s voting record reflects a number of different influences
including personal ideology, the ideology of the legislator’s constituency, lobbying by interest groups,
and pressure from the party leaders. Without considerably more data... the effects of each these
plausible sources of influence can not be ascertained. Accordingly, [the estimates from a spatial
model] should not literally be treated as a measure of a [legislator’s] personal ideology.”
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1.2 Data

The main outcome of interest is legislative voting on the set of roll call votes

identified by the LCV for the 103rd to 112th Congress.4 Basic descriptions of the

votes considered are provided in Table 1.1. For both the House and Senate votes

are categorized by the environmental issue they are most relevant to. The number

of times the result of the vote was consistent with the LCV’s position is also shown.

Apparent from the table is the relatively hostile environmental record of Congress

during this period; the House voted with the LCV 38% while the Senate voted with

the LCV 45% of the time. The political party of the vote’s sponsor is also shown

in Table 1.1. Not surprisingly, the sponsorship data on its own illustrates a clear

relationship between political party and sentiments towards the environment; since

1993, Democrats have sponsored 73 percent of the roll calls identified by the LCV

by as pro-environment while Republicans have sponsored 83 percent of the roll calls

deemed anti-environment.

Actual voting histories for the roll calls were taken from Poole and Rosen-

thal’s website Voteview.com. Data specific to each legislator were collected from

multiple sources. Party affiliation, first dimension DW-NOMINATE scores, age, and

gender were compiled by linking datasets found at Voteview.com, GovTrack.us, and

Project Vote Smart.5,6 Election results were taken from Federal Election Commission

records. Announced retirements were gathered from the “casualty lists” kept by CQ

4 As the number of climate change votes is relatively small, I added fourteen additional climate
change related votes (2 in the House and 10 in the Senate) to those considered by the LCV.

5 Some of the data provided by Voteview.com are based on research by Martis (1989).
6 As a simplification I reclassify Independents as either Democrats or Republicans. In the Senate,

Dean Barkley, Jim Jeffords, and Bernie Sanders were reclassified as Democrats. In the House, Jim
Jeffords and Bernie Sanders were reclassified as Democrats while Virgil Goode was reclassified as a
Republican.

http://scorecard.lcv.org/scorecard/archive
https://www.woteview.com
https://www.voteview.com
https://www.GovTrack.us/
https://www.votesmart.org
https://www.fec.gov/
http://www.rollcall.com/politics/casualtylist.html?lpolmr
http://www.rollcall.com/politics/casualtylist.html?lpolmr
http://www.rollcall.com/politics/casualtylist.html?lpolmr
http://www.rollcall.com/politics/casualtylist.html?lpolmr
https://www.voteview.com
http://www.rollcall.com/politics/casualtylist.html?lpolmr
http://www.rollcall.com/politics/casualtylist.html?lpolmr
http://www.rollcall.com/politics/casualtylist.html?lpolmr
http://www.rollcall.com/politics/casualtylist.html?lpolmr
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Table 1.1: League of Conservation Voters Scorecard votes for the 103rd to
the 112th Congress

LCV votes by chamber Sponsorship by party

House Senate Anti LCV Pro LCV

Votes LCV X Votes LCV X D R D R
Air 16 4 8 6 3 17 3 1

Clean Energy 23 17 28 9 8 9 25 9

Climate Change 17 6 21 13 3 22 11 2

Dirty Energy 25 5 29 11 8 21 21 4

Drilling 28 14 21 10 4 23 19 3

Lands/Forests 85 36 39 15 6 48 46 24

Oceans 5 2 1 0 0 3 2 1

Other 58 14 41 22 7 49 25 13

Toxics/Public Right to Know 15 6 18 2 3 16 11 3

Transportation 3 2 1 1 1 1 1 1

Water 33 12 21 12 2 21 25 6

Wildlife 17 7 8 4 2 7 9 7

Total 325 125 236 105 47 237 198 74

Notes: The LCV X column provides the number of votes whose result was consistent with the
LCV’s position. Sponsorship totals do not match totals by chamber due to the fact that roll calls
on Presidential nominations are not included.

Roll Call. Political contributions were calculated using the Campaign Finance Data

tables maintained by OpenSecrets.org; these include contributions from groups with

an interest in environmental policy: agribusiness, environmental groups, energy, nat-

ural resources, and transportation. Contributions from political action committees

associated with the two major parties and their leaders were also kept. In the Senate

only, a dummy for an election cycle and whether a senator was appointed to a vacant

seat is also used.7 The former corresponds to the Congress in which, at its conclusion,

the seat is up for reelection

Complementing this legislator-specific data are constituent-specific data. Un-

employment statistics are from the Local Area Unemployment Statistics series main-

tained by the Bureau of Labor Statistics. Race, education, income, and workforce

7 There are no counterparts to these in the House since all seats are up reelection at the end of
each Congress and Representatives are not appointed to vacant seats.

http://www.rollcall.com/politics/casualtylist.html?lpolmr
http://www.rollcall.com/politics/casualtylist.html?lpolmr
http://www.opensecrets.org/index.php
http://download.bls.gov/pub/time.series/la/
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Table 1.2: Table of means

House Senate

Mean SD Mean SD
Republican 0.50 0.50 0.50 0.50

DW-NOMINATE score 0.11 0.49 0.03 0.41

Age 55.17 10.02 61.01 9.94

Election margin 0.69 0.15 0.23 0.20

Female 0.14 0.35 0.12 0.33

Retire 0.05 0.22 0.07 0.25

Democrat Leadership PACs 332327.78 1720519.51 567503.76 2533599.30

Republican Leadership PACs 801578.44 4131151.62 854088.50 3845520.91

Democrat committees 262366.52 1432206.49 233463.28 5460411.74

Republican committees 159174.70 953762.40 27740.07 224747.53

Agribuisness 711770.95 2860761.58 5508370.92 77695759.08

Energy / Natural resources 941531.85 3759942.50 11733393.76 180358011.36

Environment 58631.52 835172.95 2272262.03 62422988.94

Transportation 445392.79 1360162.80 4175307.07 58798034.06

Pct. 65 or older 12.62 3.07 12.70 1.89

Pct. black 12.44 15.49 9.93 9.39

Pct. Hispanic 12.70 16.50 8.06 9.13

Pct. college degree 31.18 10.09 31.06 6.12

Pct. employed in industry 44.07 13.30 44.67 12.36

Median income (household) 51088.73 15036.44 49206.98 10707.22

Avg. unemployment rate 6.00 2.01 5.58 1.94

Energy production (fossil fuels) 1435.67 2629.95 1044.49 2031.32

Energy production (renewables) 219.92 242.95 120.60 170.13

Notes: Data sources are discussed in the text. Employment in industry is the sum of employment
in construction, manufacturing, and resource extraction. College degrees include associate,
bachelor, and graduate.

composition statistics are from the U.S. Census. Energy production totals – in trillions

of British Thermal Units – are from the State Energy Data System maintained by

the Energy Information Administration; fossil fuel production includes coal, natural

gas, and petroleum products while enewable production includes ethanol, geother-

mal, hydro, solar, wind, and wood waste. Note that only the U.S. Census data are

available at the district level; in the other cases state values are used as a substitute.

Further note, that the U.S. Census data is not annual but instead updated in 1993,

1999, 2005, and 2009. For those years without an update the most recent update in

http://factfinder.census.gov/
http://www.eia.gov/state/seds/
http://factfinder.census.gov/
http://factfinder.census.gov/
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the past was used.

Summary statistics for these data are provided in Table 2.1. Although I main-

tain the notation xij throughout this analysis, the data are in fact more accurately

described as xit since the indexing occurs by legislator and year. However, it is

possible to refine this data even further which I demonstrate in Section 1.5.

1.3 Methods

Analysis of the data is based on the scaling methodology introduced by Poole

and Rosenthal (1997, 1991, 1985). Their NOMINATE procedure – the core of which

rests on the formalization of legislator choice using a spatial model of voting – has

arguably become the predominant way in which ideology is measured in the social

sciences. The model assumes each legislator’s preferences can be represented as an an

ideal point θi which occupies some position in an n dimensional space. The choices

the legislators face – in the form of roll call votes – are also represented in this space

with corresponding “yea” and “nay” positions. The theory predicts a legislator will

vote for the outcome that is nearest their own position.

I make two assumptions concerning the spatial model. First, I assume that

a single dimension – interpreted as a spectrum ranging from the pro-environment

left to the anti-environment right – can accurately reflect environmental preferences.

This assumption is very common in the literature and Poole and Rosenthal (1997,

1991) show that even when considering all the roll calls from a particular meeting of

Congress, this unidimensional model fits the all data quite well. Second, I assume

that the ideological positions of legislators are fixed. This assumption is relatively

strong but is also consistent with the results found in Poole (2007).
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Given a set of legislators i ∈ {1, ..., n} and a set of roll call votes j ∈ {1, ...,m}

all that is required to operationalize the scaling procedure is an appropriate specifica-

tion for each legislator’s preferences. For example, I assume a legislator’s preferences

over roll call j are defined by the two utilities:

uijy = −||θi − zjy||2 + εijy (1.1)

uijn = −||θi − zjn||2 + εijn (1.2)

where zjy and zjn denote the “yea” and “nay” outcomes respectively and || · || denotes

the operator for the Euclidean norm. The error terms εijy and εijn are assumed to

be independent and identically distributed type I generalized extreme value random

variables:

εijy ∼ GEV(µ, σj, 0) (1.3)

εijn ∼ GEV(µ, σj, 0) (1.4)

so that the probability of a legislator i voting “yea” on rollcall j is:

P(“yea” on roll call j) = P(uijy > uijn) = logit−1(βjθi − αj) (1.5)

where βj =
2(zjy−zjn)

σj
and αj =

(z2jy−z2jn)

σj
.8

A similar specification as (2.20) has also been used in Clinton and Jackman

(2009), Bertelli and Grose (2009), Bafumi et al. (2005), Clinton et al. (2004), Bai-

ley (2001), and Jackman (2001, 2000a,b). In each of these papers, estimation and

8 This is a logit model with an unobserved regressor θi. It can also be interpreted as an item-
response model with two-parameters.
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inference are based on Bayesian or Markov Chain Monte Carlo (MCMC) simulation.

Clinton and Jackman (2009) offer a variety of reasons why a researcher conducting

roll call analysis might prefer the Bayesian approach over a maximum likelihood pro-

cedure like NOMINATE. For the purposes of this paper, foremost among them is

that the procedure is well-suited to the analysis of smaller sets of roll calls and it is

readily altered to use additional data.

Note that because the θi’s are unobserved in (2.20) the model is unidentified.

For example, the estimates θ̂i and θ̃i are observationally equivalent when:

θ̃i = mθ̂i + b (1.6)

β̃j = β̂j/m (1.7)

α̃j = α̂j − β̃jb (1.8)

The above equations characterize what are commonly referred to as scale and location

problems.9 One reason the Bayesian approach is useful is that both these problems can

be solved by specifying appropriate priors for the θi’s. For example, in this analysis

I assume that Democrats have θi’s that are distributed normally with mean negative

one and variance one while Republicans have θi’s are that distributed normally with

mean one and variance one.

Additionally, I use a post-estimation transformation consistent with Bafumi

9 Economists might better understand this by noting that the ideal points are similar in nature
to a preference relation defined using ordinal utility theory. Thus, they are preserved under affine
transformations.
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et al. (2005) and Jackman (2000a,b) whereby the final estimates are normalized to:

θFi = (θi − θ̄)/sθ (1.9)

αFj = αj − θ̄βj (1.10)

βFj = sθβj (1.11)

where θ̄ and sθ are the mean and standard deviation of the raw θi’s.

1.3.1 Basic model

The first specification I consider is the basic one given by:

P(“yea” on roll call j) = logit−1(βjθi − αj) (1.12)

θi ∼

 N (-1, 1) if legislator i is a Democrat

N (1, 1) if legislator i is a Republican

(1.13)

αj ∼ N (0, 25) (1.14)

βj ∼ N (0, 25) (1.15)

This serves as a reduced form benchmark of the spatial model and is similar to the one

implemented by default using the ideal() function built for R by Jackman (2015).

1.3.2 Hierarchical model

The next specification incorporates the data described in Table 2.1 is via a

hierarchical model for the θi’s. Such a specification is consistent with the notion

of “constituent capture” discussed in Kalt and Zapan (1984) whereby a legislator’s
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ideal point is presumed to be a function of the characteristics of their constituency.

Formally:

P(“yea” on roll call j) = logit−1(βjθi − αj) (1.16)

θi ∼ N (µi, 1) (1.17)

µi = γ0 + γ1 IRi + x̄′
iδ (1.18)

αj ∼ N (0, 25) (1.19)

βj ∼ N (0, 25) (1.20)

γ0 ∼ N (-1, 1) (1.21)

γ1 ∼ N (2, 1) (1.22)

δ ∼ N (0k, 25× Ik) (1.23)

where IRi is an indicator for being a Republican, k is the number of regressors included

in x̄i, 0k is an k× 1 vector of zeros, and Ik represents the k× k identity matrix. The

data included in x̄i are modified from the data described in Table 2.1 by averaging

xij over j.10 The priors for γ0 and γ1 provide a similar effect as the priors used for

the θi in the basic model.

1.3.3 Alternative model

As noted earlier, several papers emphasize that ideological estimates in the

absence of additional data should not necessarily be interpreted as measures of per-

10 In the economics literature, a similar version of this specification is often referred to as Cham-
berlain’s random effects probit model. Although presented in the context of inference based on
maximum likelihood, Chamberlain (1980) observes in the original paper “This approach introduces
additional information and is most naturally formulated in Bayesian terms.”
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sonal ideology. This provided part of the motivation for the analyses found in Carson

and Oppenheimer (1984) and Kalt and Zapan (1984). In both cases, the authors were

essentially interested in a model like:

vij = f(θi + x′
ijδ) (1.24)

where vote vij is function of personal ideology and other relevant data. Recognizing

that θi is unobserved both papers propose two-stage methods to estimate it. Carson

and Oppenheimer (1984) propose a proxy for personal ideology based on the the

correlated portion of the residuals from (1.24) using even and odd years separately.

Kalt and Zapan (1984) propose first estimating:

θLCV
i = x′

iζ + νi (1.25)

and then proxying for personal ideology in (1.24) using the residual from (1.25):

θ̂i = θLCV
i − x′

iζ̂ (1.26)

This “splits” ideology into a constituent-specific component x′
iδ̂ and a legislator-

specific component θ̂i.
11

Using the spatial model, a similar interpretation can be specified by altering

11 From Kalt and Zapan (1984): “In the following analysis we assume that [measures of senatorial
ideology... stand in for a detailed list of constituent characteristics]. We [split] measured ideology
into that part that can be explained by constituent characteristics and the remaining senator-specific
component. Our primary object is to examine whether the latter has any explanatory power.”
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the utilities to:

uijp = −||θi − zjp||2 + x′
ijδ

p + εijp (1.27)

uija = −||θi − zja||2 + x′
ijδ

a + εija (1.28)

where zjp and zja denote the “pro” and “anti” LCV outcomes respectively. A legisla-

tor’s utility for a given outcome now depends on both the distance of that outcome

from their ideal point and the data in xij . The alternative model is then defined as:

P(“pro” on roll call j) = logit−1(βjθi − αj + x′
ijδ) (1.29)

θi ∼

 N (-1, 1) if legislator i is a Democrat

N (1, 1) if legislator i is a Republican

(1.30)

αj ∼ N (0, 25) (1.31)

βj ∼ N (0, 25) (1.32)

δ ∼ N (0k, 25× Ik) (1.33)

where k is the number of regressors included in xij , 0k is an k × 1 vector of zeroes,

and Ik represents the k × k identity matrix. Note that in (1.29):

δ = δp − δa (1.34)

and thus represents the net incentives to vote “pro” corresponding to each of the

regressors in xij . This may lead to indeterminacy since δk = 0 does not necessarily

imply that δpk = 0 and δak = 0. However, one might reasonably expect these effects to

be mutually reinforcing. For example, if environment-related political contributions
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Table 1.3: Summary of results

Model
House Senate

θ̄Dem θ̄Rep Correct X β 6= 0 θ̄Dem θ̄Rep Correct X β 6= 0
Basic -0.98 0.78 0.89 0.99 -0.87 0.86 0.89 0.97

Hierarchical -0.99 0.79 0.89 0.98 -0.86 0.86 0.89 0.97

Alternative -0.99 0.81 0.90 0.98 -0.88 0.86 0.90 0.95

Notes: The θ̄Dem and θ̄Rep columns report the average position of Democrats and Republicans.
The ‘Correct X’ column reports the percentage or votes correctly predicted by the model. The
‘β 6= 0’ columns reports the percentage of βj ’s whose 95% HPD interval did not include zero.

increase uijp then presumably they decrease uija.

1.3.4 Implementation

MCMC simulation for each of the models above was implemented using Stan

and its R interface rstan built by the Stan Development Team (2015a,b,c). For each

chamber and specification, four separate MCMC chains were simulated starting from

dispersed initial values. 1,000 samples from each of these chains were subsequently

saved leading to a total of 4,000 samples to draw inferences from for each model. Fur-

ther discussion regarding the details of the implementation can be found in Appendix

1.A.

1.4 Results

Table 1.3 presents a basic summary of the results from estimating ideology

using the the three methods just described. Not surprisingly, the ideal points exhibit

a bimodal distribution. In the House, the average Democrat is further left than the

average Republican is right while in the Senate, the average ideal positions of each

party are roughly symmetric about zero. Two assessments of model fit are shown.
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The ‘Correct X’ columns provide classification statistics indicating the percentage of

correct votes predicted by the models. The values are based on the standard def-

inition where a predicted probability greater than or equal to one half is assumed

to indicate a “yea” or “pro” vote. For both chambers, all the models have classi-

fication rates near 95% with the alternative specification performing slightly better

than the basic and hierarchical. The ‘β 6= 0’ column shows the percentage of the βj’s

whose 90% percent highest posterior density (HPD) interval does not include zero.

Jackman (2001) argues that βj distinguishable from zero suggests that roll call j is

supplying substantive content about the underlying policy dimension. In this case,

the fact that so many of the βj are distinguishable from zero lends support to using

a unidimensional model.

Of course, an important point of comparison for the specifications is how they

ultimately rank the legislators. Table 1.4 shows the Spearman rank-order correlations

between the estimates using the three models and with the LCV ratings and DW-

NOMINATE scores. Two things are apparent. First, the rankings using only LCV

votes are all strongly correlated. This is an important result since it demonstrates

that the ideological estimates with and without additional data are relatively stable.

Second, there are clearly differences between the rankings using only LCV votes and

DW-NOMINATE scores – which use all votes. This suggests that something may be

lost when proxying for environmental preferences using such scores. I return to both

of these points again in Section 1.5.

The precision of the estimates offers an additional point of comparison. Figure

1.1a shows how the standard deviations of the hierarchical and alternative specifica-

tions compare with the basic. In the House, the additional data leads to a modest
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Table 1.4: Spearman rank-order correlation coefficients

Estimate
House Senate

B H A L D B H A L D
B: Basic 1.00 - - - - 1.00 - - - -

H: Hierarchical 1.00 1.00 - - - 1.00 1.00 - - -

A: Alternative 0.98 0.97 1.00 - - 0.96 0.96 1.00 - -

L: LCV Rating 0.96 0.96 0.92 1.00 - 0.97 0.96 0.92 1.00 -

D: DW-NOMINATE 0.87 0.87 0.89 0.82 1.00 0.92 0.92 0.92 0.90 1.00

Notes: A Spearman rank-order correlation coefficient of one occurs when each of the variables are
a perfect monotone function of the other. To match the spatial orientation of the scaling estimates,
the negative values of the LCV ratings were used.

increase in precision. As indicated by 1.1b, this result does not hold in the Senate

where the precision of all three specifications are roughly the same. Both figures

illustrate that the ideal points are estimated with a fair amount of uncertainty. In

most cases, the higher standard deviations observed in Figure 1.1 are associated with

having only a few votes to make inferences from. Regardless of magnitude, a major

benefit of this approach is that this uncertainty is explicitly characterized. Consider

the somewhat extreme example of representative Thomas Foley (D-WA). There is

only one recorded vote made by Foley in the data set and he voted with the LCV’s

position in this case. Thus, his LCV rating is exactly 1. Consistent with this pro-

environment vote, the posterior mean of Foley’s estimated ideal point using the basic

model is -0.83. However, the 95% HPD interval for his ideal point ranges from −2.01

to 0.31 indicating there is a high degree of uncertainty in his position. This of course

would be expected given that only one choice has been observed but it highlights how

LCV ratings can be potentially misleading.

Table 1.5 provides the posterior means, standard deviations, and 95% HPD

intervals for γ0, γ1, and δ in the hierarchical model. I follow the suggestion in Gelman

(2008) by presenting the estimates after subtracting the mean and dividing by two
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Figure 1.1: Comparison of standard deviations

times the standard deviation of each of the continuous input variables. Each coeffi-

cient can then be interpreted as the change in µi associated with moving from a low

to high value of the observed input variable.12 The distinguishable effects found in

Table 1.5 illustrate how the ideal points of legislators are ultimately shaped by party

affiliation, age, gender, political contributions, and constituent characteristics.

Immediately, one will notice that in each chamber the coefficients associated

with party affiliation – the constant term and the indicator for Republican – are both

distinguishable from zero. Recall that these coefficients provide the scale for the spa-

tial model. Thus, it should come as no surprise that party affiliation has the largest

single influence on the ideal points. The stronger influence of constituent characteris-

tics in the House – as reflected by the number of parameters that are distinguishable

from zero – suggests that a representative’s ideology does seem to reflect the pref-

12 For example, if this transformation were to be imposed on an indicator then the coefficient
would correspond to a change from 0 to 1.
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Table 1.5: Estimates of γ0, γ1, and δ in the hierarchical model

House Senate

Mean SD 95% HPD Mean SD 95% HPD
(Intercept) -1.21∗∗∗ 0.08 (-1.37, -1.05) -1.18∗∗∗ 0.17 (-1.53, -0.86)

Republican 1.51∗∗∗ 0.04 (1.43, 1.59) 1.46∗∗∗ 0.10 (1.26, 1.66)

Democrat x Age -0.03 0.05 (-0.13, 0.06) -0.05 0.14 (-0.31, 0.23)

Republican x Age 0.01 0.05 (-0.08, 0.10) -0.07 0.12 (-0.32, 0.17)

Democrat x Female -0.21∗∗∗ 0.06 (-0.34, -0.09) 0.15 0.19 (-0.22, 0.51)

Republican x Female -0.11 0.08 (-0.26, 0.05) -0.34 0.23 (-0.79, 0.10)

Democrat Leadership PACs 0.08 0.07 (-0.06, 0.23) -0.03 0.11 (-0.25, 0.17)

Republican Leadership PACs -0.02 0.06 (-0.13, 0.08) 0.06 0.11 (-0.15, 0.28)

Democrat committees 0.07 0.07 (-0.06, 0.20) -0.01 0.08 (-0.18, 0.15)

Republican committees 0.01 0.05 (-0.09, 0.11) 0.01 0.11 (-0.20, 0.22)

Agribuisness 0.07∗∗ 0.04 (0.00, 0.15) -0.17 0.99 (-2.07, 1.79)

Energy / Natural resources -0.00 0.04 (-0.07, 0.08) -0.15 0.82 (-1.82, 1.38)

Environment -0.08∗∗ 0.04 (-0.15, -0.01) -0.07 0.38 (-0.81, 0.68)

Transportation 0.01 0.04 (-0.07, 0.08) 0.25 0.56 (-0.85, 1.34)

Pct. 65 or older -0.13∗∗∗ 0.04 (-0.21, -0.05) -0.13 0.13 (-0.37, 0.12)

Pct. black -0.20∗∗∗ 0.04 (-0.28, -0.11) 0.03 0.17 (-0.29, 0.35)

Pct. Hispanic -0.31∗∗∗ 0.05 (-0.39, -0.21) -0.14 0.12 (-0.37, 0.12)

Pct. college degree -0.41∗∗∗ 0.07 (-0.54, -0.27) -0.05 0.20 (-0.47, 0.33)

Pct. employed in industry 0.13∗∗∗ 0.04 (0.05, 0.21) 0.18 0.12 (-0.07, 0.41)

Log median income (household) -0.00 0.07 (-0.14, 0.14) -0.26 0.23 (-0.75, 0.18)

Avg. unemployment rate 0.18∗∗∗ 0.04 (0.10, 0.27) -0.03 0.12 (-0.24, 0.22)

Energy production (fossil fuels) 0.24∗∗∗ 0.06 (0.14, 0.36) 0.26∗∗ 0.12 (0.03, 0.47)

Energy production (renewables) 0.12 0.07 (-0.03, 0.26) -0.03 0.12 (-0.27, 0.22)

Notes: Dummies for U.S. Census division included but not shown. Continuous inputs are
standardized by substracting their means and dividing by two times their standard deivations.
∗0 /∈ 90% HPD; ∗∗0 /∈ 95% HPD; ∗∗∗0 /∈ 99% HPD

erences of their district. By the same logic, it appears that a senator’s ideology is

perhaps more a reflection of their own personal preferences as opposed to those of

their state. A partial explanation for this difference might be that Representatives

face reelections after each meeting of Congress giving them a greater incentive to vote

in manner consistent with their constituents.

Representatives who are more pro-environment receive more environment-

related political contributions. They also tend to come from districts with higher per-

centages of people over the age of 65, higher percentages of minorities, and higher rates
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of educational attainment. These trends are consistent with explanations put forth

in Kahn (2002) who posits that older people might support environmental preserva-

tion in order to leave a legacy, minorities might support environmental preservation

because they are often disproportionately exposed to pollution, and educated people

might support environmental preservation since they are more well-informed about

the social costs associated with environmental degradation. Table 1.5 also shows that

women tend to be more pro-environment than their male counterparts although the

effect is only distinguishable for female Democrats.

Conversely, one can see in Table 1.5 that representatives who receive more

political contributions from pollution-intensive sectors such as agribusiness tend to be

more anti-environment. They also tend to come from districts with higher percentages

of people employed in industry, higher unemployment rates, and higher levels of

energy production. With the debates over many environmental policies often being

framed as choices between environmental preservation or economic activity, these

relationships would be expected.

Interpreting the empirical magnitudes of the coefficients in Table 1.5 is chal-

lenging given the nonlinearity of (1.16) and the fact that each roll call has its own

set of estimated parameters. For example, ceteris paribus moving from a low to high

level of the percentage of people with a college degree would change the probability

of voting “yea” on roll call j by:

∆ij = logit−1(βj(θi − 0.41) + αj)− logit−1(βjθi + αj) (1.35)

Even if one were considering a political moderate with an ideal point of zero, (1.35)

still depends on which roll call is being considered. Furthermore, one would need to
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know whether the LCV’s position on roll call j was “yea” or “nay.”

Framing the effects using the spatial dimension is more useful. For example,

the same change in educational attainment would shift a Republican from the New

England U.S. Census division toward the political center since:

δ(Intercept) + δRepublican + δCollege = −1.21 + 1.51− 0.41 = −0.11 (1.36)

Alternatively, moving from low to high levels of the percentage of people employed in

industry, average unemployment, and energy production from fossil fuels results in a

similar shift for a Democrat from the New England U.S. Census division since:

δ(Intercept) + δIndustry + δUnemployment + δFossil fuel = −1.21 + 0.13 + 0.18 + 0.24 = −0.66

(1.37)

Both these effects are easy to interpret spatially and also seem plausible.

Table 1.6 provides the posterior means, standard deviations, and 95% HPD

intervals for δ in the alternative model. Once more the continuous inputs have been

standardized by subtracting their means and dividing by two times their standard

deviations. Unlike the hierarchical model, the distinguishable effects found in Ta-

ble 1.6 illustrate how factors other than the ideal points of the legislators influence

environmental voting. The question now is not how are these variables related to a

legislator’s preferences toward the environment but rather how are they related to en-

vironmental voting directly. In their analysis of a similar model, Clinton et al. (2004)

refer to these effects as “inducements” since they are thought to induce legislators –

regardless of their own ideological preferences – to vote one way or the other.
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Table 1.6: Estimates of δ in the alternative model

House Senate

Mean SD 95% HPD Mean SD 95% HPD
Democrat x Age -0.41∗∗∗ 0.05 (-0.51, -0.31) -0.16 0.13 (-0.41, 0.10)

Republican x Age -0.32∗∗∗ 0.05 (-0.43, -0.22) -0.48∗∗∗ 0.13 (-0.74, -0.23)

Democrat x Appointed - - - 0.48 0.48 (-0.42, 1.45)

Republican x Appointed - - - 0.08 0.46 (-0.82, 0.99)

Democrat x Election cycle - - - -0.05 0.09 (-0.23, 0.14)

Republican x Election cycle - - - 0.34∗∗∗ 0.10 (0.12, 0.53)

Democrat x Election margin 0.13∗∗∗ 0.04 (0.05, 0.20) 0.04 0.11 (-0.18, 0.24)

Republican x Election margin 0.02 0.04 (-0.06, 0.10) -0.01 0.09 (-0.19, 0.17)

Democrat x Female 0.33∗∗∗ 0.07 (0.20, 0.48) -0.06 0.18 (-0.40, 0.32)

Republican x Female 0.01 0.09 (-0.16, 0.19) 0.32 0.22 (-0.11, 0.75)

Democrat x Retire -0.15∗∗ 0.07 (-0.29, -0.01) -0.25 0.17 (-0.58, 0.07)

Republican x Retire -0.08 0.07 (-0.22, 0.06) 0.04 0.19 (-0.33, 0.40)

Democrat Leadership PACs -0.10∗∗∗ 0.03 (-0.17, -0.04) -0.14∗∗ 0.07 (-0.27, -0.01)

Republican Leadership PACs 0.03 0.03 (-0.04, 0.09) 0.07 0.07 (-0.07, 0.21)

Democrat committees 0.01 0.02 (-0.04, 0.06) 0.57∗ 0.40 (-0.04, 1.35)

Republican committees 0.03 0.03 (-0.02, 0.08) -0.11∗∗ 0.05 (-0.22, -0.01)

Agribuisness -0.10∗∗∗ 0.03 (-0.16, -0.04) -0.09 0.29 (-0.64, 0.52)

Energy / Natural resources -0.01 0.04 (-0.09, 0.06) -0.44 0.33 (-1.07, 0.23)

Environment 0.16∗∗∗ 0.05 (0.06, 0.26) 0.55 0.37 (-0.13, 1.27)

Transportation -0.02 0.03 (-0.08, 0.04) -0.04 0.29 (-0.62, 0.54)

Pct. 65 or older 0.14∗∗∗ 0.04 (0.06, 0.22) 0.61∗∗∗ 0.14 (0.34, 0.88)

Pct. black 0.10∗∗ 0.05 (0.00, 0.20) -0.56∗∗∗ 0.18 (-0.93, -0.24)

Pct. Hispanic 0.38∗∗∗ 0.05 (0.28, 0.48) 0.61∗∗∗ 0.12 (0.37, 0.84)

Pct. college degree 0.86∗∗∗ 0.07 (0.71, 1.00) -0.33 0.21 (-0.75, 0.08)

Pct. employed in industry 0.22∗∗∗ 0.07 (0.07, 0.36) 0.28 0.27 (-0.27, 0.77)

Log median income (household) 0.47∗∗∗ 0.07 (0.33, 0.61) 1.35∗∗∗ 0.25 (0.89, 1.85)

Avg. unemployment rate -0.16∗∗∗ 0.06 (-0.27, -0.03) 0.02 0.12 (-0.24, 0.24)

Energy production (fossil fuels) -0.30∗∗∗ 0.06 (-0.43, -0.19) -0.16 0.13 (-0.39, 0.10)

Energy production (renewables) 0.06 0.08 (-0.10, 0.20) 0.10 0.14 (-0.16, 0.37)

Notes: Dummies for U.S. Census division included but not shown. Continuous inputs are
standardized by substracting their means and dividing by two times their standard deivations.
∗0 /∈ 90% HPD; ∗∗0 /∈ 95% HPD; ∗∗∗0 /∈ 99% HPD

In the House, covariates associated with an increased probability of voting

pro-environment include: environment-related political contributions, the percent-

age of people over the age of 65, the percentage minorities, the percentage with a

college degree, and the log of median household income. This latter relationship is

consistent with the Environmental Kuznets Hypothesis. Curiously, the percentage of
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people employed in industry also correlates positively. Covariates associated with a

decreased probability of voting pro-environment include: political contributions from

agribusiness, the average unemployment rate, and energy production from fossil fuels.

In the Senate, covariates associated with an increased probability of voting

pro-environment include: the percentage of people over the age of 65, the percentage

of Hispanic people, and the log of median household income. One can see this latter

effect is quite strong. Covariates associated with a decreased probability of voting

pro-environment include only percentage of black people.

The variables that have been interacted with party merit a separate discussion.

Perhaps the most natural way to interpret these coefficients is to assume that each

variable has a heterogeneous effect on voting which depends on party. For example,

Democrats in the House with stronger election performances tend to vote more pro-

environment and Republican senators tend to vote more pro-environment during elec-

tion years. An alternative explanation for these effects is that party influence depends

on the characteristics of the legislators themselves. This interpretation is consistent

with the analysis of Snyder and Groseclose (2000) and Clinton et al. (2004) and may

be more suitable in some cases. For example, Table 1.6 shows that older legislators

tend to vote more anti-environment. Rather than being interpreted as a decline in

support for environmental policy as legislators age, this could instead indicate that

older members receive more pressure from their party to vote anti-environment. If

the LCV’s positions are relatively extreme then this explanation would be consistent

with the idea that older – and possibly more experienced – legislators tone down their

environmentalism perhaps in an effort to build a consensus.
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1.5 Applications

In this section, I illustrate how the estimated ideal points using the three

models differ from DW-NOMINATE. In Sections 1.5.1 and 1.5.2, I draw on a nice

feature of the MCMC approach which is the ability to derive posterior distributions

for the rank of each legislator. These in turn can be used as a basis for identifying

both extreme and moderate legislators. In Section 1.5.3, I use a parsimonious version

of the alternative model to assess the role of political contributions on the passage of

contentious environmental bills.

1.5.1 Extreme legislators

Rivers et al. (2004) use the basic model to assess the National Journal’s claim

that John Kerry was the most liberal Senator in 2003.13 Here I provide similar

inferences for who the most pro- and anti-environment legislators were during the

103rd to the 112th Congress. To do so, I calculated the proportion of times a given

legislator occupied the most extreme positions using the 4,000 samples from each

model.

Figure 1.2 and Figure 1.3 present the five legislators with the highest propor-

tions of occupying these positions. For example, Figure 1.2a shows that Represen-

tative Henry Waxman occupies the most pro-environment position with the highest

proportions – approximately 25% using the basic and hierarchical models while Lloyd

Doggett does using the alternative model. In contrast, Figure 1.2b shows that the

prediction for who occupies the most anti-environment position is even less sharp with

13 Similar analyses of National Journal votes can be found in Clinton and Jackman (2009) and
Jackman (2009).
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H. Berman (D-CA) [112]
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Figure 1.2: The most pro- and anti-environment representatives during the
103rd to 112th Congress

Notes: The x-axis shows the percentage of samples that the legislator listed on the y-axis occupied
the most extreme position. Legislators sorted by total frequency across the three models. Average
rank of the legislator’s DW-NOMINATE score shown in [·].

each of the models favoring a different Representative. Figure 1.3a shows that in the

Senate, Jack Reed occupies the most pro-environment position using the basic speci-

fication, Barack Obama does using the hierarchical specification, and Paul Wellstone

does using the alternative specification. Similarly, in Figure 1.3b one can see that

Frank Murkowski occupies the most anti-environment position using the basic model,

Jim Bunning does using the hierarchical model, and Patrick Toomey does using the

alternative model.

Importantly, both figures illustrate two things. First, that there is a fair degree

of uncertainty inherent in the estimation of these ideal points. Second, the rankings

based on only the LCV votes do differ substantively from alternative measures of

ideology. This is apparent by noting that the differences between these extreme rank-
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E. Kennedy (D-MA) [6]

D. Bumpers (D-AR) [18]

H. Metzenbaum (D-OH) [3]

B. Cardin (D-MD) [13]
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Figure 1.3: The most pro- and anti-environment senators during the 103rd
to 112th Congress

Notes: The x-axis shows the percentage of samples that the legislator listed on the y-axis occupied
the most extreme position. Legislators sorted by total frequency across the three models. Average
rank of the legislator’s DW-NOMINATE score shown in [·].

ings with the average rank of each legislator’s DW-NOMINATE score. For example,

Waxman is on average the 56th most liberal representative. Equally interesting in

this regard is that some of these average rankings are quite close or the same. For

example, Waxman and Holt, Pallone and Doggett, Thornberry and Herger, Reed and

Kennedy, Whitehouse and Metzenbaum, Toomey and McConnell, as well as Bunning

and Wallop each have identical average rankings. This suggests these legislators are

ideologically similar both with respect to the environment and more generally.

Analyzing these extreme positions also allows for a qualitative assessment of

model fit. For example, it is worth noting that the two committees responsible for

environmental quality in Congress – the House Committee on Energy and Com-

merce and the Senate Committee on Environment and Public Works – are both
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well-represented in Figure 1.2 and Figure 1.3. In the House, Waxman was formerly

the ranking member and Pallone is now the current one. In the Senate, Cardin,

Metzenbaum, Obama, Whitehouse, and McConnell were all members at one point.

Attitudes toward climate change – a common bellwether for environmental

ideology – also adds plausibility to these names. In the House, Waxman spon-

sored numerous pieces of legislation aimed at addressing climate change including

co-sponsoring the American Clean Energy and Security Act (commonly known as the

Waxman-Markey bill). Rush Holt – a Ph.D. physicist – is now the chief executive

officer of the American Association for the Advancement of Science (AAAS) which re-

cently took the rare step of becoming a policy advocate in regards to climate change.

In the Senate, Sheldon Whitehouse recently sponsored the American Opportunity

Carbon Fee Act and has delivered weekly speeches on the Senate floor urging legisla-

tors to act on climate change.14 Obama – although acting as President – is instituting

strict standards on coal-fired electricity plants. Conversely, McConnell (2015) has ad-

vocated that states oppose such an initiative arguing that the administration lacks

the appropriate legal authority.

1.5.2 As The World Burns

In As The World Burns, Lizza (2010) chronicles the efforts of the so-called

Three Amigos – Senators John Kerry, Joseph Lieberman, and Lindsey Graham – to

pass companion legislation to the American Clean Energy and Security Act during

the 111th Congress. It describes in detail how the Senators attempted to build a

coalition of support for their draft legislation – the American Power Act – only to

14 The series is known as “Time to Wake Up.”

http://www.whitehouse.senate.gov/news/speeches
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C. McCaskill (D-MO) [46]

T. Cochran (R-MS) [68]

R. Wicker (R-MS) [79]

M. Begich (D-AK) [44]

L. Alexander (R-TN) [67]
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Figure 1.4: Identity of the filibuster pivot in the 111th Senate

Notes: The x-axis shows the percentage of samples that the legislator listed on the y-axis occupied
the 60th most pro-environment position. Average rank of the legislator’s DW-NOMINATE score
shown in [·].

see it ultimately fail to even be referred to committee. Explanations for this outcome

include a lack of support from a Presidential administration weakened by fighting

for healthcare, pressure from the Tea Party on potential Republican supporters, and

significant demand for concessions by other Senators and special interest groups.

The subtitle of the article suggests that the Senate missed its “best chance” to

address climate change since the Three Amigos seemed – at least initially – capable

of getting sixty senators to support their proposal.15 In an op-ed for the New York

Times, Kerry and Graham (2009) acknowledge the sixty vote threshold explicitly

as a precondition for any bill’s subsequent passage and emphasize the importance

of bipartisanship in this regard. Aside from Graham, Lizza discusses how the Three

Amigos actively sought – and anticipated – support from Republican moderates Scott

Brown, Susan Collins, George LeMieux, and Olympia Snowe.

15 The sixty vote threshold is significant since it is required to invoke cloture and thereby overcome
a filibuster.
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In the context of this analysis, Lizza’s “best chance” conclusion generates two

testable hypotheses. First, was the the 111th Senate more pro-environment than

other recent sessions? Second, were the Republican moderates being sought for likely

to be pivotal? Affirmative answers to both of these questions would certainly support

the notion that an important opportunity was missed.

With respect to the first question, the answer seems to be yes. Regardless of

specification, the 111th Senate ranks first in terms of most pro-environment mean,

median, and 60th quantile. Of course, the 111th Senate was also comprised of 58

Democrats, one Independent, and 41 Republicans; only the 103rd Senate had a com-

parable Democratic majority.

With respect to the second question, the answer is less definitive. Figure 1.4

illustrates why this is the case by showing the proportion of times an individual

senator occupied the 60th most pro-environment position. The alternative model

- as well as the DW-NOMINATE scores – support the conclusion that Collins or

Snowe were likely to occupy the filibuster pivot. However, the basic and hierarchical

models point to Mary Landrieu or Ben Nelson. One explanation for this difference is

that the alternative model is providing an estimate for personal ideology which fails

to account for other factors that might further influence voting. For example, the

alternative model ranks Landrieu 53rd but this is before accounting for the fact that

she was one of the top recipients of energy-related political contributions which – as

Table 1.6 – shows correlates negatively with pro-environment voting. Interestingly,

she was one of only four Democrats who voted against invoking cloture on a filibuster

of the Lieberman-Warner Climate Act in 2008. Also worth noting is that Ben Nelson

was the pivotal vote needed to pass the Affordable Health Care Act. Roberts (2010)
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Figure 1.5: Leadership contributions during the ten days prior to the
Waxman-Markey vote

Notes: Data from OpenSecrets.org

argues that “centrist Democrats” such as Landrieu and Nelson likely played a role

in the legislation’s failure. As opposed to Lizza, he concludes “there was probably

no combination of policy and messaging that had a chance [of leading to a successful

outcome].”

1.5.3 The role of political contributions

Lizza’s story would be less interesting if the House had not actually passed

the Waxman-Markey bill. The bill is well-known if for no other reason than it is the

only piece of legislation aimed at regulating carbon dioxide to be passed in either

chamber of Congress. As such, it is not surprising that the vote was controversial and

passed by the narrow margin of seven votes which included three abstentions. Also

not surprising is the fact that the vote was highly partisan although not perfectly so;

44 Democrats voted “nay” with one abstaining while eight Republicans voted “yea”

with two abstaining.

http://www.opensecrets.org/index.php
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Figure 1.6: Political contributions during the ten days prior to the Waxman-
Markey vote

Notes: Data from OpenSecrets.org

Thrush (2009) points out that Democratic leaders in the House made thou-

sands of dollars in campaign donations in the days leading up to the vote. Although

suggestive of “quid pro quo” behavior he notes that campaign dollars were also likely

to be flowing since the the vote coincided with the end of a Federal Elections Com-

missions filing deadline.16 Figure 1.5 illustrates this point. Contributions made by

the bill’s co-sponsor Henry Waxman, Speaker Nancy Pelosi, Majority Leader Steny

Hoyer, and Majority Whip Jim Clyburn skewed towards legislators who voted for the

bill’s passage. Similarly, contributions made by Minority Leader John Boehner, Mi-

nority Whip Eric Cantor, and Chief Deputy Minority Whip Kevin McCarthy skewed

towards those who voted against the bill. Figure 1.6 expands on this point showing

that environmental contributions, although small, skewed towards supporters of the

bill while contributions from agribusiness and energy skewed toward its opponents.

Transportation-related contributions were distributed relatively evenly.

16 Indeed, Thrush mentions that a spokesman for Waxman indicated that the contributions were
part of normal of normal “end-of-quarter-activity.”

http://www.opensecrets.org/index.php
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To examine the relationship between contributions and voting more rigorously

I applied a strategy similar to one used in Snyder and Groseclose (2000) and Clinton

et al. (2004). First, I identified the 49 LCV votes in the House that concerned

the passage of a bill which were also decided by a margin less than 60%. This

captures instances where the political stakes were likely to be highest and therefore

more likely to stimulate contribution activity. Next, I identified all legislators who

received contributions associated with the categories listed in Figure 1.6 during the

ten days prior to each of these vote.17 These data were added to the alternative model

to determine whether contributions are associated with changes in voting behavior.

Formally:

P(“pro” on roll call j) = logit−1
(
βjθi − αj + IDijx′

ijδ
D
j + IRijx′

ijδ
R
j

)
(1.38)

θi ∼

 N (-1, 1) if legislator i is a Democrat

N (1, 1) if legislator i is a Republican

(1.39)

αj ∼ N (0, 25) (1.40)

βj ∼ N (0, 25) (1.41)

δDj ∼ N (0k, 25× Ik) (1.42)

δRj ∼ N (0k, 25× Ik) (1.43)

where xij now denotes political contribution data, IDij (IRij ) is an indicator that leg-

islator i is a Democrat (Republican) that received a contribution prior to roll call j,

k is the number of regressors included in xij , 0k is an k × 1 vector of zeroes, and

Ik represents the k × k identity matrix. Note that (1.38) is still identified since δDj

17 The two restrictions used to identify each vote resulted in no overlap of these ten-day periods.
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Table 1.7: Party-specific political contributions and the Waxman-Markey
bill

Democrats Republicans

Mean SD 95% HPD Mean SD 95% HPD
αj 1.29∗∗∗ 0.37 (0.61, 2.03) 1.29∗∗∗ 0.37 (0.61, 2.03)

βj -5.64∗∗∗ 0.78 (-7.14, -4.13) -5.64∗∗∗ 0.78 (-7.14, -4.13)

Agribusiness -0.04 0.32 (-0.67, 0.59) -1.49 1.80 (-5.17, 1.23)

Energy / Natural Resources 0.12 0.22 (-0.30, 0.56) -2.63 2.07 (-6.65, 0.93)

Environment 2.74∗ 1.62 (-0.14, 6.08) 3.74 3.10 (-2.05, 10.06)

Transportation -0.01 0.33 (-0.64, 0.63) -0.81 0.93 (-2.62, 0.93)

Candidate committees -0.36 0.25 (-0.85, 0.12) -0.77 0.94 (-2.81, 0.85)

Leadership PACs 0.14 0.17 (-0.18, 0.47) 0.72 0.53 (-0.33, 1.75)

Notes: Dummies for U.S. Census division included but not shown. Continuous inputs are
standardized by substracting their means and dividing by two times their standard deivations.
∗0 /∈ 90% HPD; ∗∗0 /∈ 95% HPD; ∗∗∗0 /∈ 99% HPD

and δRj are only estimated if roll call j concerns the passage of a bill and also has

a deciding margin of less than 60%. Additionally, the indicators are not exhaustive

since some legislators did not receive any contributions prior these particular votes.

Table 1.7 shows the estimated party-specific relationships between receiving a

low or high amount of political contributions and the probability of voting in favor

of the Waxman-Markey bill. There is a positive association between environment-

related contributions and voting pro for Democrates but there is no statistical evidence

that supports the notion that Democrat-related contributions were associated with an

increased likelihood of voting for the bill. In fact, the results are mixed. Contributions

from Democratic candidate committees are associated with a decreased probability

of voting “pro.” while contributions from Republican leadership PACs are associated

with an increased probability of voting “pro.” However, neither of these relationships

are distinguishable from zero.

Going beyond just the Waxman-Markey vote, Figure 1.7 illustrates all the

distinguishable party-specific coefficients by percentage of legislators who voted for
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(f) Leadership PACs

Figure 1.7: Party-specific political contributions by LCV margin and cate-
gory

Notes: Solid points correspond to Republican-specific contributions. The y-axis denotes the change
in the logit of the probability of voting for the LCV’s position.
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the LCV’s position and by category. The relationships are shown as the change on

the logit scale of comparing a candidate who received a low contribution to one who

received a high one. Once again there is no statistical evidence that candidate commit-

tee and leadership PAC contributions are associated with Demorats and Republican

voting for or against the LCV’s position. Moreover, most of the other expected rela-

tionships between contributions and voting with the LCV are not prominent. For ex-

ample, only energy-related contributions has the expected negative relationship with

voting for the LCV and even in this case the relationship does not always hold with

Democrats. Similarly, there are no roll calls where environment-related contributions

to Republicans were associated with a noticeable increase in pro-environment voting.

In fact, Figure 1.7 shows that there were two roll calls where environment-related

contributions to Republicans were associated with decreases in the probability of vot-

ing with the LCV. Contributions from agribusiness and transportation have similarly

mixed effects.

Of course, it’s important to point that the relationships shown above are not

causal and should not be regarded as evidence of “quid pro quo” behavior between

contributors and legislators. However, the analysis does illustrate how the spatial vot-

ing model can be used to better inform conclusions that might otherwise be suggested

by a graphic like Figure 1.5. In this case it would appear that although leadership

contributions from each party certainly skewed toward either supporters or opponents

of the Waxman-Markey bill there is little evidence to suggest that these additional

dollars actually caused legislators to vote differently than would already be expected

given their ideal point.
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1.6 Conclusion

That the LCV has for nearly 50 years continuously produced an annual ranking

of legislators based on their environmental voting record is perhaps evidence enough

that people – voters, lobbyists, politicians, and researchers – are interested in envi-

ronmental ideology. This in turn makes the determinants of such ideology interesting.

This paper provides a concise methodology to explore these topics by harmonizing

the spatial model of voting with additional variables of interest. This provides an

arguably clearer description of environmental preferences and their correlates. The

reasoning for this is simple: previous models of environmental voting rely on ideolog-

ical proxies which are themselves derived from other models of voting. The analysis

above illustrates how such redundancy is unnecessary.
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1.A MCMC convergence

MCMC simulation done using Stan – an increasingly popular programming

language which implements Bayesian inference using the No-U-Turn Sampler intro-

duced by Hoffman and Gelman (2014). Each chain of the four MCMC chains were

run for a total of 2,000 iterations with the first 1,000 iterations being used to tune

the sampler. The chains were initialized by taking the random draws:

θ0
i ∼

 N (-1, 1) if legislator i is a Democrat

N (1, 1) if legislator i is a Republican

(1.44)

α0
j ∼ N (0, 25) (1.45)

β0
j ∼ N (0, 25) (1.46)

In the hierarchical model, initial values for γ0
0 , γ0

1 , and δ0 were obtained by regressing:

θ0
i = γ0

0 + γ0
1 IRi + x̄′

iδ
0

In the alternative model, initial values for δ0 were taken from the random draws:

δ0
k ∼ N (0, 25) (1.47)

where k is the number of regressors in xij .

Gelman and Shirley (2011) note that two of the main difficulties with using

MCMC methods – regardless of sampler – are ensuring that the chains run long

enough to converge and that the samples accurately reflect the target distribution.

Stan conveniently outputs two statistics which can help diagnosis whether these dif-
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Table 1.8: MCMC convergence diagnostics

Model Parameter
House Senate

R̂ neff R̂ neff

Mean SD Mean Mean SD Mean

Basic
αj 1.00 0.00 1517.64 1.00 0.00 3897.39

βj 1.02 0.01 239.62 1.00 0.00 1422.75

θi 1.03 0.04 1325.59 1.00 0.01 1813.07

Hierarchical

αj 1.01 0.01 3008.65 1.00 0.00 3731.27

βj 1.00 0.00 3893.56 1.00 0.00 3967.30

γ, δ 1.00 0.01 3849.12 1.00 0.00 3368.97

θi 1.08 0.04 209.86 1.00 0.00 2102.83

Alternative
αj 1.02 0.01 933.06 1.01 0.00 500.74

βj 1.00 0.00 3599.62 1.00 0.00 2093.46

δ 1.01 0.02 1864.34 1.00 0.00 1316.76

θi 1.00 0.00 3791.24 1.01 0.01 1252.40

ficulties have been overcome.

The first statistic is the “potential scale reduction factor” originally proposed

by Gelman and Rubin (1992). Generally denoted R̂, this value measures the ratio

of the average variance of the samples within each MCMC chain to the variance of

the pooled samples between all the MCMC chains. If the chains were sampling from

the same distribution – suggesting convergence – then this value would equal one.

Gelman and Rubin (1992) recommend that each of the chains be initialized with

diffuse starting values – like those above – and to continue sampling until R̂ is less

than 1.1 for all of the model parameters.

The second statistic is the effective sample size neff which estimates the number

of independent samples within each chain after correcting for autocorrelation. Stan

uses a variogram-based approach – see Stan Development Team (2015c) for a more

detailed discussion – to provide these estimates.

Table 2.12 provides a summary of the two statistics. The average R̂’s across all
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parameters are close to one suggesting the chains converged. Furthermore, the table

shows that the 4,000 actual samples stored from the simulations generally provide

several thousand effective samples for each of the parameters. It is impossible to

formally demonstrate convergence but the combination of results shown above does

provide some confidence that the two difficulties highlighted by Gelman and Shirley

(2011) at the beginning of this section have been overcome.



Chapter 2

Consumption-based accounting of

carbon emissions and its

relationship to congressional

climate change policy

2.1 Introduction

Most of the recent congressional bills aimed at addressing climate change have

two aspects in common: they regulate carbon emissions from the electric power sector

and they almost never pass. In fact, very few even result in an actual votes related to

their passage.1 For example, a search of GovTrack.us returns a total of 569 proposed

bills – out of over 100,0002 – between 1996 and 2015 which contain the subjects

1 They may still result in other types of votes such as those concerning amendments, motions to
table, and cloture motions.

2 Some bills are proposed multiple times or are almost identical. For example, the Lieberman-
Warner Climate Security Act of 2008 appears as S. 2196 and S. 3036. The former resulted in no

41

https://www.GovTrack.us/
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“climate change and greenhouse gases” and “environmental protection.” Of the 569,

114 include the word “energy” or “power” in its title. Of the 114, 17 resulted in a vote

relating to their passage. Of the 17, only one included a mandatory cap on carbon

emissions: the American Clean Energy and Security Act of 2009 or Waxman-Markey

bill.

Neither of these trends are particularly surprising. Since 1980, the electric

power sector has – on average – accounted for 37% of all the carbon emitted by the

U.S. and it is the largest stationary source of such emissions. A lack of congressional

action is also not surprising. One would expect this in general and especially on

an issue as divisive as climate change. Indeed, with legislation lacking, President

Obama (2013) acted by directing the Environmental Protection Agency (EPA) to

begin regulating carbon emissions from power plants. At the end of last year, the

EPA (2015b; 2015a) released the final rules of its Clean Power Plan which aims to do

just that. Within months, the House and Senate both responded by passing symbolic

votes of disapproval of two of these new rules. The plan is currently on hold while

being challenged in court.

That regulating the electric power sector is significant for addressing climate

change is obvious. Less obvious is whether the decisions on how this sector is regulated

will significantly influence congressional support. In particular, because a substantial

amount of electricity is traded across political boundaries, whether emissions inven-

tories are based on where electricity is produced or where it is consumed is likely to

be important. Figure 1 illustrates why. Figures 2.1a and 2.1b show the difference

between electricity consumed and electricity produced in 2013. For example, one can

votes while the latter passed one cloture vote. It was then referred to committee and ultimately
died after one of its amendments – S.A. 4825 – failed a cloture vote.
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Figure 2.1: Traded electricity and the Clean Power Program

Notes: GWh stands for gigawatt hour. MtC stands for metric ton of carbon. Alaska and Hawaii
are excluded from the CPP and Vermont has no affected power plants. Data from the EIA and the
EPA. See Section 2.3 and Appendix 2.A for details.
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see that California was a large importer of electricity while Pennsylvania was a large

exporter. Figures 2.1c, 2.1d, 2.1e, and 2.1f show the production-based goals outlined

in the Clean Power Plan; these are defined both in terms carbon intensity reductions

and in emissions reductions.3

What the figures make clear is that the regulatory burdens falling on congres-

sional districts and states are heterogeneous and the choice of inventory may poten-

tially alter these burdens. This motivates an important question: would an approach

aimed at regulating emissions where they are consumed result in different legislative

voting than one that uses the traditional approach of regulating them where they are

produced? This paper addresses this question.

I follow previous work by constructing production- and consumption-based

emissions inventories at the district and state level after accounting for interstate

trade of electricity. I then show how production-based inventories of carbon emis-

sions correlate with roll call voting on climate change via each legislator’s idealogical

position. The consumption-based inventories are then substituted into the model to

estimate counterfactual ideal points and the voting outcomes these imply. I find that

the consumption-based measure leads to increased polarization in the House and a

general reshuffling of ideology in the Senate. These patterns alter the probabilities

of pro-climate outcomes occurring. For example, I find that the probability of major

climate bills passing increases in the House but decreases in the Senate. More recent

votes on the Keystone XL pipeline and the Clean Power Plan also become less likely

to pass.

The discussion and quantification of emissions embodied in trade has tradition-

3 To be clear, the Clean Power Plan is a state-based program. However, it is straightforward to
extend its goal calculations to the district level. I discuss this in Appendix 2.A.
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ally been at the international level and was in large part a response to the ratification

of the Kyoto Protocol. A significant cause for concern was that carbon-intensive pro-

duction might move to – or already be located in – unregulated nations and that this

production would then flow back to regulated nations through international trade.

Since emissions inventories are typically based on production this results in “carbon

leakage” whereby emissions are simply shifted geographically rather than abated.

Davis and Caldeira (2010), Peters and Hertwich (2008), and Matthews and Weber

(2007) all find that these flows are significant – and in some cases quite large – with

developed countries typically being large importers of emissions. Whether and how

this issue might be addressed – including a discussion of the technical and political

challenges likely to be encountered – is provided by Peters (2008).

At the national level, Aldy (2006, 2005) constructs production- and consumption-

based emissions for each state in the U.S. after accounting for the interstate trade

of electricity and tests the validity of the Environmental Kuznets Curve hypothesis

using each inventory. He confirms the hypothesis using the production-based measure

finding that carbon emissions peak and decline with income. With the consumption-

based measure, however, he finds that emissions peak and then plateau. Another

national-level study can be found in Springmann et al. (2014). They look at the im-

pacts of production-based versus consumption-based policies in regulating emissions

at the province-level in China finding that a balanced measure reduces overall losses

in welfare by more equitably distributing mitigation.

Evidence that production-based emissions correlate with environmental voting

is provided by Cragg et al. (2013). They find a statistically significant negative

relationship between emissions and the probability of a legislator voting in favor of
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carbon mitigation policies. The votes analyzed include the two most recent bills

aimed at direct regulation: the American Clean Energy and Security Act of 2009 in

the House and the U.S. Climate Security Act of 2008 in the Senate.

Other studies of environmental voting and its correlates include Holland et al.

(2014), Herrnstadt and Muehlegger (2014), Jacobsen (2013) and Kahn (2007a,b,

2002). Particularly relevant here are Holland et al. (2014) and Jacobsen (2013) since

both represent attempts at making counterfactual inferences of legislative voting. The

former estimate how the impacts from the American Clean Energy and Security Act

correlated with voting in the House and then use these estimates to infer how they

might have impacted voting in the Senate. The latter considers the impact of un-

employment on pro-environment voting and then estimates the counterfactual voting

that might have occurred if unemployment rates were always at their minimums.

The reminder of the paper is organized as follows. Section 2.2 discusses the

data used in the analysis. Section 2.3 discusses how consumption-based emissions

are derived and develops the spatial model of voting used with the data. Section

2.4 presents the main empirical results using the production-based measure. Section

2.5 illustrates how the results change when using the consumption-based alternative.

Section 2.6 extends the spatial model in order to predict how representatives might

have voted on important Senate roll calls and vice versa. Section 3.4 concludes.

2.2 Data

The outcome of interest is legislator voting on roll calls related to climate

change. To identify such roll calls I rely on the League of Conservation Voters (LCV)

http://scorecard.lcv.org/scorecard/archive
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Table 2.1: Table of means

District State

Mean SD Mean SD
Republican 0.50 0.50 0.50 0.50

DW-NOMINATE score 0.12 0.50 0.03 0.42

Median income (household) 51450.94 14979.91 49374.72 10447.60

Pct. employed in industry 44.63 12.82 45.28 11.82

Pct. employed in trade 33.05 8.47 32.21 7.00

Pct. 65 or older 12.68 3.07 12.78 1.87

Pct. black 12.44 15.34 9.98 9.39

Pct. Hispanic 13.19 16.72 8.39 9.27

Pct. college degree 31.85 10.22 31.75 6.27

Pct. homes w/ electric heat 30.95 22.87 28.36 18.49

Avg. unemployment rate 6.03 1.93 5.61 1.88

Cooling degree days 92.66 133.90 1100.82 777.44

Heating degree days 1450.23 766.32 5161.50 2024.63

Coal price 0.99 0.27 0.91 0.29

Electricity price 13.48 3.65 12.35 4.10

Natural gas price 4.06 1.25 4.07 1.49

Oil price 7.59 3.02 7.69 3.10

Notes: Employment in trade is the sum of employment in retail and wholesale trade. Employment
in industry is the sum of employment in construction, manufacturing, and resource extraction.
College degrees include associate, bachelor, and graduate. Energy prices are adjusted for inflation
and are in dollars per million British thermal units (BTU).

national scorecards for the 104th to 113th Congress.4 As the number of climate change

votes identified by the LCV is relatively small, I added twelve additional votes – 2 in

the House and 10 in the Senate – relating to this issue. These were identified using

the THOMAS database maintained by the Library of Congress. The LCV also tracks

more recent votes – in this case for 2015 – which may eventually be on the next

scorecard. These roll calls provide another 19 climate change votes. Appendix 2.B

provides additional information on each of these votes. Legislator voting records for

these roll calls come from Voteview.com with additional information regarding each

individual roll call coming from GovTrack.us.

4 This range decreases to the 108th to the 113th Congress when considering the Senate only since
the LCV did not categorize any votes as relevant for climate change.

http://thomas.loc.gov/home/thomas.php
https://www.woteview.com
https://www.GovTrack.us/
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The analysis also relies on additional data for the models of legislative vot-

ing and of electricity use. Party affiliation and DW-NOMINATE scores – discussed

subsequently – for each legislator come from Voteview.com.5,6 Income, workforce

composition, race, education, and housing statistics are from the U.S. Census and

the American Community Survey. Unemployment data are from the Local Area Un-

employment Statistics series maintained by the Bureau of Labor Statistics (BLS).

Cooling and heating degree day data at the district level were constructed by linking

monthly climate data from the PRISM Climate Group with congressional district

boundaries taken from Lewis et al. (2013). Corresponding degree day data at the

state level are from the National Oceanic and Atmospheric Administration (NOAA).

Energy prices by source – which include coal, electricity, natural gas, and petroleum

products – are from the State Energy Data System maintained by the Energy Infor-

mation Administration (EIA).

Its important to note that the data above are not perfect in scope. For exam-

ple, the BLS and EIA data are only available at the state level and so these values

were used as proxies at the the district level. The U.S. Census data is available for

1993, 1999, 2003, 2009, and 2013. Additionally, EIA data are only available through

2013. For those years without updates the most recent update in the past was used.

5 Some of the data provided by Voteview.com is based on research by Martis (1989).
6 As a simplification I reclassify Independents as either Democrats or Republicans. In the Senate,

Dean Barkley, Jim Jeffords, Angus King, and Bernie Sanders were reclassified as Democrats. In the
House, Jim Jeffords and Bernie Sanders were reclassified as Democrats while Virgil Goode was
reclassified as a Republican.

https://www.woteview.com
http://factfinder.census.gov/
https://www.census.gov/programs-surveys/acs/
http://download.bls.gov/pub/time.series/la/
ftp://ftp.cpc.ncep.noaa.gov/htdocs/degree_days/weighted/daily_data/
http://www.eia.gov/state/seds/
https://www.voteview.com
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2.3 Methods

2.3.1 Electricity generation and emissions embodied in trade

Let epst denote state s’s annual production-based carbon emissions from the

electric power sector and let gst denote state s’s total generation of electricity in year

t. Additionally, let Xt denote the set of states that exported electricity in a year t

with xst denoting state s’s exports and let Mt denote the set of states that imported

electricity in year t with mst denoting state s’s imports. Consumption-based estimates

for an exporting state are defined as:

ecst = epst −
[
epst
gst

]
xst (2.1)

where the bracketed term in (2.1) represents the average carbon-intensity of the state’s

electricity sector. Total emissions embodied in the trade of electricity in year t is

defined as:

Et =
∑
s∈Xt

[
epst
gst

]
xst (2.2)

with consumption-based estimates for importing states then defined as:

ecst = epst +

[
mst∑

σ∈Mt
mσt

]
Et for s ∈Mt (2.3)

where the bracketed term in (2.3) represents the share of total imports going to state

s in year t.7

7 Aldy (2005, 2006) uses the equation:

ecst = epst +

[∑
σ∈Xt

epσt∑
σ∈Xt

gσt

]
mst for s ∈Mt
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The values of epst, gst, xst, and mst can be found in Tables 7 and 10 of the EIA’s

State Electricity Profiles. The above procedure is made slightly more complicated by

first partitioning X and M into subsets based on which interconnection they mostly

belong to: the Eastern or the Western.8 This accounts for the fact that electricity is

traded regionally and that the electricity sectors of each region have different emissions

profiles.9

At the district level, I first calculated plant-level electricity generation gpt and

emissions egpt using fuel combustion data taken from EIA forms 795, 906, 920, and 923.

The geographic locations of these plants –found in EIA form 860 – were combined

with congressional district boundaries – taken from Lewis et al. (2013) – to obtain

corresponding district-level generation gdt and emissions egdt from the electric power

sector. Emissions from the residential, commercial, transportation, and industrial

sectors were calculated as:

eρdt = λpopd eρst (2.4)

eχdt = λdend eχst (2.5)

eτdt = λdend eτst (2.6)

eιdt = λindd eιst (2.7)

where λpopd , λdend , and λindd correspond to district d’s population share, population

density share, and industrial employment share in its corresponding state s. Estimates

to estimate consumption-based emissions.
8 Texas – which technically constitutes its own interconnection – is assumed to lie in the Eastern

connection. Alaska and Hawaii represent their own interconnection and therefore satisfy ect = ept for
all t. Imports and exports out of the country are not considered.

9 The EPA also makes this distinction in the Clean Power Program while Aldy (2005, 2006) does
not.

http://www.eia.gov/electricity/state/
http://www.eia.gov/electricity/state/
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of the state totals eρst, e
χ
st, e

τ
st, and eιst are from the EIA’s State CO2 Profiles. District

d’s annual production-based carbon emissions is given by:

epdt = egdt + eρdt + eχdt + eτdt + eιdt (2.8)

Obtaining consumption-based estimates is more complicated since district-level trade

in electricity – xdt and mdt – are not observed. Using state-level data, I estimated the

following model for determining per capita electricity use:

qst = αs + γt + c′stβ + +w′
stδ + p′stη + εst (2.9)

where αs is a state fixed effect, γt is a year fixed effect, c′st contains demographic

data, w′
st contains degree days data, and p′st contains energy price data. Per capita

electricity use at the district level is then estimated by the predicted values:

q̂dt = α̂s + γ̂t + c′dtβ̂ + +w′
dtδ̂ + p′stη̂ (2.10)

The sets of exporting and importing districts in year t are defined as:

X̂t = {d : q̂dt < gdt} (2.11)

M̂t = {d : q̂dt > gdt} (2.12)

with total traded electricity in year t estimated as the average:

Ĝt =
1

2

∑
d∈X̂t

(gdt − q̂dt) +
1

2

∑
d∈M̂t

(q̂dt − gdt) (2.13)

http://www.eia.gov/environment/emissions/state/
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Corresponding estimates for district-level trade of electricity are then defined as:

x̂dt =

[
gdt − q̂dt∑

δ∈Xt
(gδt − q̂δt)

]
Ĝt (2.14)

m̂dt =

[
q̂dt − gdt∑

δ∈Mt
(q̂δt − gδt)

]
Ĝt (2.15)

where the bracketed terms represent district d’s export or import share respectively.

District-level consumption-based estimates ecdt are then calculated using equations

analogous to (2.1), (2.2), and (2.3). Appendix 2.C provides a more detailed discussion

of this district-level procedure including the estimated results of (2.9).

2.3.2 A spatial model of climate change voting

Roll call voting on climate change is assumed to follow a spatial model of

the sort pioneered by Poole and Rosenthal (1985, 1991, 1997). I use their DW-

NOMINATE scores as a benchmark for comparison in the next section. In its simplest

form, the model assumes that legislators and roll call can be represented using a single

spatial dimension. Each legislator i is defined by an ideal point θi and each roll call j

is defined by “yea” and “nay” points zjy and zjn. Legislator i’s preferences over roll

call j are defined by the two utilities:

uijy = −||θi − zjy||2 + εijy (2.16)

uijn = −||θi − zjn||2 + εijn (2.17)
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In this paper I asuume the error terms εijy and εijn are independent and identically

distributed type I generalized extreme value random variables:10

εijy ∼ GEV(µ, σj, 0) (2.18)

εijn ∼ GEV(µ, σj, 0) (2.19)

so that the probability of a legislator i voting “yea” on rollcall j is:

P(“yea” on roll call j) = P(uijy > uijn) = logit−1(βjθi − αj) (2.20)

where βj =
2(zjy−zjn)

σj
and αj =

(z2jy−z2jn)

σj
.11

Estimation of the model above is based on a Bayesian approach identical to the

one used in Johnson (2015) and similar to the one used in Bailey (2001). The primary

difference between this empirical strategy and that of previous work is the fact that

the θi’s are estimated directly. As Bailey describes: “The key to the approach is that

it models ideal points as stochastic functions of district and personal characteristics.”

Including this additional data in the model helps in measuring the θi’s more precisely

without having to use more votes. Jackman (2009) demonstrates this with an example

using National Key votes. Furthermore, the relationship between these characteristics

and the θi’s are of direct interest.

10 In Appendix 2.E, I make a less restrictive assumption concerning the error terms by allowing
for their variance to depend on legislator i. As shown in that section the results are comparable to
those shown below.

11 A similar specification is used frequently in the political science literature. Examples include:
Bertelli and Grose (2009), Bafumi et al. (2005), Clinton et al. (2004), Bailey (2001), and Jackman
(2001, 2000a,b), with differences between these papers largely depending on the assumed distriubtion
of the error terms.
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Formally, voting on climate change is represented by the following model:

P(“yea” on roll call j) = logit−1(βjθi − αj) (2.21)

θi ∼ N (µi, 1) (2.22)

µi = γ0 + γ1 IRi + x̄′
iδ (2.23)

αj ∼ N (0, 25) (2.24)

βj ∼ N (0, 25) (2.25)

γ0 ∼ N (-1, 1) (2.26)

γ1 ∼ N (2, 1) (2.27)

δ ∼ N (0k, 25× Ik) (2.28)

where equations (2.23) and (2.22) characterize a hierarchical model for the θi’s. There

are k regressors included in x̄i thus 0k is an k×1 vector of zeros and Ik represents the

k×k identity matrix. The IRi term is an indicator that legislator i is a Republican and

x̄i includes averaged data relevant to legislator i and their constituency: log per capita

production-based carbon emissions, log median income, the average unemployment

rate, percentage of the population 65 or older, percentage of the population that is

black, percentage of the population that is Hispanic, percentage of the population

that has a college degree, and percentage of the population employed in industry.

These covariates also used by Cragg et al. (2013), Jacobsen (2013), and Kahn (2002).

The priors for αj, βj, and δ are intentionally vague so that their role is minimal

in the posterior distributions. The priors for θi, γ0, and γ1 are less vague to help

identify the model. The former solves the scale invariance problem arising from the

fact that any estimated θ̂i and β̂j are observationally equivalent to θ̃i = aθ̂i and
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β̃j = β̂j/a for a > 1. The latter two solve the rotational invariance problem arising

from the fact that any estimated θ̂i and β̂j are also observationally equivalent to

θ̃i = −θ̂i and β̃j = −β̂j. An intuitive way to understand the latter priors is that

they are akin to implementing a non-hierarchical model where the priors for the ideal

points are:

θi ∼

 N (-1, 1) if legislator i is a Democrat

N (1, 1) if legislator i is a Republican

(2.29)

Note that this also generates a positive association between the values of θi and being

a Republican which imposes the conventional assumption that conservatives occupy

the right portion of the policy dimension.

Additionally, I use a post-estimation transformation consistent with Bafumi

et al. (2005) and Jackman (2000a,b) whereby the final estimates are normalized to:

θFi = (θi − θ̄)/sθ (2.30)

αFj = αj − θ̄βj (2.31)

βFj = sθβj (2.32)

γF0 = (γ0 − θ̄)/sθ (2.33)

γF1 = γ1/sθ (2.34)

δF = δ/sθ (2.35)

where θ̄ and sθ are the mean and standard deviation of the raw θi’s.

With the policy dimensions oriented via the priors, it becomes easier to under-

stand the role the model’s covariates are likely to play. Naturally, one would expect
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that log per capita production-based carbon emissions would correlate positively with

the θi’s since higher emissions translate to increased regulatory burden. Percentage

of the population employed in industry and the average unemployment rate would

also be expected to correlate positively since regulation is perceived to be bad for

jobs generally and bad for industrial jobs especially. Conversely, one would expect

that log median income and percentage of the population with a college degree cor-

relate negatively with the θi. This would be consistent with the widely held notions

that richer and more educated people support environmental regulation. The role of

age and race are arguably less clear although Kahn (2002) provides arguments for

why they might also correlate negatively. In the case of the former, he argues older

generations may prefer carbon regulation since it preserves the environment for pos-

terity. In the case of the latter, he argues that because environmental degredation

disproportionately affects minorities they are more likely to support legislation.

Markov Chain Monte Carlo (MCMC) simulation of the model was done sepa-

rately for the House and Senate using Stan and its R interface rstan written by the

Stan Development Team (2015a,b,c). In each case, four MCMC chains were simu-

lated for 1,000 iterations after an initial 500 iterations were used as “warm-up” to

tune the sampler. Each chain was initialized with the random draws:

θ0
i ∼

 N (-1, 1) if legislator i is a Democrat

N (1, 1) if legislator i is a Republican

(2.36)

α0
j ∼ N (0, 25) (2.37)

β0
j ∼ N (0, 25) (2.38)
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Table 2.2: Per-capita carbon emissions (metric tons) 1996 to 2015

District State

Min Max Mean SD Min Max Mean SD
Production-based 0.40 37.09 5.33 4.46 2.23 38.36 6.83 5.49

Consumption-based 0.38 36.35 5.32 3.41 2.31 21.58 6.24 3.43

with values for γ0
0 , γ0

1 , and δ0 resulting from ordinary least squares estimatation of:

θ0
i = γ0 + γ1 IRi + x′

iδ (2.39)

Appendix 2.D provides further discussion on the implementation.

2.4 Results

Table 2.2 provides summary statistics for the estimated per capita production-

based and consumption-based inventories of carbon emissions. The reasonableness of

the estimates is confirmed after comparing them with previous research. At the

district level, Cragg et al. (2013) estimate a per capita production-based mean of

5.47 using Project Vulcan data. I estimate this value to be 5.33. To my knowledge,

there is no comparable estimate of consumption-based emissions at the district-level.

At the state level, Aldy (2005) estimates a production-based mean and standard

deviation of 5.74 and 3.81 and a consumption-based mean and standard deviation of

5.34 and 2.34. I estimate a production-based mean and standard deviation of 6.83

and 5.49 and a consumption-based mean and standard deviation of 6.24 and 3.41.

The differences are most likely due to the fact that Aldy (2005) considers the period

1960 to 1999 while I consider the period 1996 to 2015.

Tables 2.3 and 2.4 show the posterior means and standard deviations of the
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parameters in (2.23). Note that the µi’s – as well as the θi’s – lack substantive

numerical meaning. While convention typically dictates a lower and upper bound

for the θi’s in the range of −1 to 1 there is no empirical justification for this. The

real content comes from both the relative size and sign of the estimates as well as

whether they can be statistically distinguished from zero. I follow the suggestion in

Gelman (2008) by presenting the estimates after subtracting the mean and dividing

by two times the standard deviation of each of the continuous input variables. Each

coefficient can then be interpreted as the change in µi associated with moving from a

low to high value of the observed input variable. For example, if this transformation

were to be imposed on an indicator then the coefficient would correspond to a change

from 0 to 1.

In the House, each of the input variables has a relationship with µi that is

distinguishable from zero.12 These are consistent with results found in Cragg et al.

(2013), Jacobsen (2013), and Kahn (2002). Being a member of the Republican party,

log per capita carbon emissions, average unemployment, and percentage employed

in industry are all positively associated with µi. The last specification in Table 2.3

shows that the relationship between log per capita carbon emissions and ideology is

party dependent when using the additional covariates and is only distinguishable for

Republicans Log median income, percentage of the population 65 or older, percentage

of the population that is black, the percentage of the population that is Hispanic, and

the percentage of the population with a college degree are all negatively associated

with µi.

Similar results hold for the Senate with the exception that only being a mem-

12 Distinguishable in this case means the 95% HPD interval of the parameter does not include
zero.
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Table 2.3: Estimates of the hierarchical model in the House

(1) (2) (3) (4) (5)

(Intercept) −0.96∗∗∗ −0.97∗∗∗ −0.97∗∗∗ −0.93∗∗∗ −0.93∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
Republican 1.74∗∗∗ 1.76∗∗∗ 1.76∗∗∗ 1.69∗∗∗ 1.69∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03)
Log production-based emissions 0.28∗∗∗ 0.13∗∗∗

(0.05) (0.05)
D x Log production-based emissions 0.23∗∗∗ 0.09

(0.06) (0.06)
R x Log production-based emissions 0.31∗∗∗ 0.16∗∗∗

(0.06) (0.06)
Log median income (household) −0.27∗∗∗ −0.28∗∗∗

(0.08) (0.08)
Avg. unemployment rate 0.08∗ 0.09∗

(0.05) (0.05)
Pct. 65 or older −0.17∗∗∗ −0.17∗∗∗

(0.05) (0.05)
Pct. black −0.16∗∗∗ −0.15∗∗∗

(0.05) (0.05)
Pct. Hispanic −0.19∗∗∗ −0.19∗∗∗

(0.05) (0.05)
Pct. college degree −0.23∗∗∗ −0.22∗∗∗

(0.08) (0.08)
Pct. employed in industry 0.14∗∗∗ 0.14∗∗∗

(0.05) (0.05)

Notes: Continuous input variables are standardized by subtracting their means and dividing by
two times their standard deviations. ∗0 /∈ 90% HPD; ∗∗0 /∈ 95% HPD; ∗∗∗0 /∈ 99% HPD.

ber of the Republican party, log per capita carbon emissions, log median income, and

percentage of the population 65 or older are distinguishable from zero and have the

expected sign. The percentage of the population that is black is also distinguish-

able from zero but is positively associated with µi in this case. In addition, the

party dependence of log per capita carbon emissions is now distinguishable for both

Democrats and Republicans when using the additional covariates

Figures 2.2a and 2.2b illustrate how the estimated ideal points of each legis-

lator compare with their average first dimension DW-NOMINATE scores using the

specification in column four of Tables 2.3 and 2.4. Overall, the estimates have a
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Table 2.4: Estimates of the hierarchical model in the Senate

(1) (2) (3) (4) (5)

(Intercept) −0.87∗∗∗ −0.77∗∗∗ −0.76∗∗∗ −0.70∗∗∗ −0.70∗∗∗

(0.05) (0.04) (0.05) (0.04) (0.04)
Republican 1.71∗∗∗ 1.52∗∗∗ 1.52∗∗∗ 1.38∗∗∗ 1.38∗∗∗

(0.08) (0.07) (0.07) (0.07) (0.07)
Log production-based emissions 0.71∗∗∗ 0.49∗∗∗

(0.07) (0.10)
D x Log production-based emissions 0.75∗∗∗ 0.51∗∗∗

(0.10) (0.13)
R x Log production-based emissions 0.63∗∗∗ 0.46∗∗∗

(0.14) (0.14)
Log median income (household) −0.46∗∗∗ −0.46∗∗∗

(0.14) (0.15)
Avg. unemployment rate −0.08 −0.08

(0.09) (0.09)
Pct. 65 or older −0.23∗∗ −0.23∗∗

(0.09) (0.09)
Pct. black 0.21∗∗ 0.21∗∗

(0.09) (0.09)
Pct. Hispanic −0.05 −0.05

(0.09) (0.09)
Pct. college degree 0.09 0.09

(0.13) (0.14)
Pct. employed in industry 0.08 0.08

(0.09) (0.09)

Notes: Continuous input variables are standardized by subtracting their means and dividing by
two times their standard deviations. ∗0 /∈ 90% HPD; ∗∗0 /∈ 95% HPD; ∗∗∗0 /∈ 99% HPD.

Spearman rank order correlation of 0.82 in the House and 0.91 in the Senate. How-

ever, comparing the two methods within party illustrates how they differ. In the

House, the correlation decreases to 0.45 and 0.17 when comparing only Democrats

or only Republicans respectively; the corresponding values in the Senate are 0.69

and 0.57. These differences are apparent in the figures by noting that the clusters

of points in the positive and negative portions of the dimensions – corresponding to

the shaded regions – have a less discernible relationship than when comparing all the

points together.

Importantly, the differences appear to be consistent with the notion that the
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Figure 2.2: Comparison of estimated ideal points and DW-NOMINATE
scores

estimates are recovering ideology specific to climate change. For example, John Mc-

Cain (R-AZ) – who has a history of being involved with climate legislation13 – ranks

17th using the estimated ideal points and 29th using DW-NOMINATE scores among

Republicans. Furthermore, McCain’s estimated ideal point of 0.38 differs from his

colleague Jon Kyl (R-AZ) who has identical covariates in equation (2.23) but an esti-

mated ideal point of 0.99. Similarly, Joe Lieberman (D-CT) – co-sponsor of two major

efforts to regulate carbon – ranks 16th using the estimated ideal points and 76th using

DW-NOMINATE scores among Democrats. Finally, Lindsey Graham (R-SC) – who

attempted to pass comprehensive carbon legislation in 2009 – ranks 11th using the

estimated ideal points and 39th using DW-NOMINATE scores among Republicans.

13 McCain co-sponsored the Climate Stewardship Act of 2003 (S. 139) and the Climate Stewardship
and Innovation Acts of 2005 and 2007 (S.1151 and S. 280). The vote that defeated the former bill
– Senate roll call 420 on October 30th 2003 – is included in this analysis. In his 2013 State of
the Union Address, President Obama referenced McCain and these bills explicitly while discussing
climate change legislation.

http://www.presidency.ucsb.edu/ws/index.php?pid=102826
http://www.presidency.ucsb.edu/ws/index.php?pid=102826
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One way to assess model fit is with the classification rates. This value reflects

the percentage of votes that are correctly predicted by the model using the assumption

that a predicted probability of 0.5 represents the cutoff between voting one way or

the other. Regardless of the specifications listed in Tables 2.3 and 2.4, the correct

classification rates for the House and Senate are 96% and 94% respectively. Such high

rates are consistent with Poole and Rosenthal (1997) who find that a single policy

dimension fits most Congresses in the U.S. very well.

Jackman (2001) also suggests using the percentage of βj’s distinguishable from

zero as a means for accessing fit since it indicates to what extent the roll calls are

supplying information about the underlying policy dimension. For instance, looking

back at (2.21), a βj equal to zero implies that the θi’s do not provide any information

regarding how roll call j was voted on. Once more regardless of the specifications

listed in Tables 2.3 and 2.4, all of the βj’s are distinguishable from zero in the House

while in the Senate 89% of them are.

Finally, Bafumi et al. (2005) propose using the excess errors observed in indi-

vidual samples of the posterior as a way to access fit. This error is defined as:

EXk
ij = PEk

ij − EEk
ij (2.40)

where PEk
ij is the prediction error:

PEk
ij =


1 if logit−1(βkj θ

k
i − αkj ) < 0.5 and vij = 1

1 if logit−1(βkj θ
k
i − αkj ) > 0.5 and vij = 0

0 otherwise

(2.41)
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Figure 2.3: Average excess error rates

Notes: A total of 35 votes were analyzed in the House and 38 in the Senate.

and EEk
ij is the expected error:

EEk
ij = min

{
logit−1(βkj θ

k
i − αkj ), 1− logit−1(βkj θ

k
i − αkj )

}
(2.42)

assuming the model is true.

Using the specification in column four of Tables 2.3 and 2.4 once again, the

average excess errors for each legislator are plotted by number of observed roll calls

and by estimated ideal point in Figures 2.3a and 2.3b respectively. For the majority of

legislators, excess error generally differs by less than 10% of what would be expected

if the model were true. Not surprisingly, the highest rates are more common among

legislators who made less than five votes; fewer votes make ideal points harder to

estimate. For example, the highest error rate belongs to Martin Hoke (R-OH) who

cast just a single vote. The posterior mean for Hoke’s ideal point is 0.35 but the 95%
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HPD is bounded by -0.32 and 1.01. Thus, Hoke’s apparent moderateness should more

appropriately be attributed to the uncertainty of his position rather than his actual

politics.

Higher excess error is also more common in the Senate which has fewer leg-

islators and thus fewer observations to use in fitting the hierarchical model. Several

of these higher rates belong to senators such as Robert Byrd (D-WV), Kent Conrad

(D-ND), Mary Landrieu (D-LA), and Jay Rockefeller (D-WV) who each have high

vote percentages but also represent states with higher average per capita carbon emis-

sions. Excess error would be expected in these cases since the model has difficultly

resolving the voting implied by their party affiliation with the voting implied by the

emissions in their states. John McCain – who cast 34 of the 38 votes considered – is

another senator with higher excess error; this would also be expected given that his

support of climate change legislation runs counter to his party affiliation.14

2.5 Counterfactual results

To further explore the relationship between carbon emissions and voting I

calculated each legislator’s ideal point after replacing the production-based measure

of emissions in the hierarchical model with its consumption-based counterpart. Once

again I used the specification in column four of Tables 2.3 and 2.4. Specifically, for

each sample k of the parameters γ0, γ1, and δ I also calculated the counterfactual

ideal point:

ζki = γk0 + γk1 IRi + x̄′
iδ

k (2.43)

14 See supra note 13.
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Figure 2.4: Comparison of estimated ideal points and counterfactual ideal
points

Notes: The dashed lines are at 45 degrees.

where x̄i contains log per-capita consumption-based carbon emissions.

Figures 2.4a and 2.4b show the counterfactual ideal points compared to the

originals for each chamber separately. In the House, there are two patterns that can

be seen. First, most moderate representatives who are either slightly left or slightly

right of center move further in that same direction. Second, representatives with more

extreme ideal points are relatively stable. In the Senate, the result is mixed all along

the dimension with Democrats and Republicans moving in both directions. Overall,

the consumption-based inventories seem to have a polarizing effect in the House and

a reshuffling effect in the Senate.

To determine what effect consumption-based inventories would have had on

the outcome of each roll call I used the posterior means to calculate each legislator’s
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predicted vote using the production-based inventory:

vθij =

 1 if logit−1(β̄j θ̄i − ᾱj) ≥ 0.5

0 otherwise

(2.44)

and the predicted counterfactual vote using the consumption-based inventory:

vζij =

 1 if logit−1(β̄j ζ̄i − ᾱj) ≥ 0.5

0 otherwise

(2.45)

Using the votes defined by (2.44), none of the predicted outcomes change.

Recall, that in both chambers the correct classfication rates were quite high so this

would be expected. Using (2.45) instead, five votes have predicted outcomes that

differ from their actual ones: two in the House and three in the Senate. In what

follows I paraphrase the LCV’s descriptions of these roll calls. First is House roll call

332 in the 105th Congress. This was an amendment to override language that would

have prevented the EPA from conducting educational programs on climate change.

This vote actually passed but is predicted to fail. Second is House roll call 323

in the 106th Congress. This was an amendment to clarify language that would have

prevented the EPA from engaging in already authorized activities that reduced global

warming pollution. This vote also actually passed but is predicted to fail. Third is

Senate roll call 149 in the 109th Congress. This was a motion to kill a “Sense of the

Senate” resolution aimed at putting senators on the record that global warming is

real and that mandatory limits are necessary to curb global warming pollution. This

vote actually failed but is predicted to pass.15 Fourth is Senate roll call 142 in the

15 The resolution was eventually agreed to by voice vote on June 22nd, 2005.
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111th Congress. This was an amendment to provide a point of order against climate

change legislation that would result in significant job losses in manufacturing- and

coal-dependent regions. This vote actually passed but is predicted to fail.16 Last

is Senate roll call 115 in the 114th Congress. This was an amendment to create a

reserve fund to respond to economic and national security threats posed by climate

change. This vote actually passed but is predicted to fail.

Comparing the models based on just these predicted outcomes has the lim-

itation that it ignores the uncertainty inherent in the estimates of the parameters.

For example, I noted earlier the variability associated with legislators who only voted

on a small subset of the roll calls considered.17 To account for this, I calculated the

predicted probabilities of a legislator voting “yea” on each of the roll calls using the

two sets of ideal points:

ρkij = logit−1(βkj θ
k
i − αkj ) (2.46)

πkij = logit−1(βkj ζ
k
i − αkj ) (2.47)

for each sample k. These were used to generate two sets of 100 simulated votes:

V k
ij =

{
v
k(1)
ij , ..., v

k(100)
ij

}
vkij ∼ Bernoulli(ρkij) (2.48)

Ṽ k
ij =

{
ṽ
k(1)
ij , ..., ṽ

k(100)
ij

}
ṽkij ∼ Bernoulli(πkij) (2.49)

which corresponds to a total of 200,000 simulated outcomes for each of the roll calls

16 This is one of the votes that I added and was not considered by the LCV.
17 Alternatively, consider the American Clean Energy and Security Act vote which corresponds

to House roll call 477 in the 111th Congress. This vote is predicted to pass using either emissions
measure. However, using production-based emissions there are 231 predicted “yea” votes while using
consumption-based there are 255. Clearly, something is different.
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Table 2.5: Simulated results of roll call votes on climate change legislation

Legislation Type
Production-based Consumption-based

P(“pro”) Margin P(“pro”) Margin
Waxman-Markey billa Passage 0.89 7.05 1.00 30.27

Keystone XL pipelinea Passage 0.00 -42.89 0.00 -26.61

CPP standards for new plantsa Passage 0.00 -29.72 0.00 -28.04

CPP standards for existing plantsa Passage 0.00 -24.53 0.00 -28.59

Lieberman-McCain billb Amendment 0.02 -7.18 0.00 -8.08

Lieberman-Warner billb Cloture 0.20 -2.91 0.07 -4.34

Keystone XL pipelineb Passage 0.70 1.49 0.88 4.64

CPP standards for new plantsb Passage 0.04 -2.06 0.01 -1.87

CPP standards for existing plantsb Passage 0.04 -2.04 0.01 -1.87

Notes: a House vote. b Senate vote. Based on 200,000 simulations. The P(“pro”) columns show
the percentage of simulations where the pro-climate outcome occurs. The Margin columns show
the average difference between the total “pro” votes and the number of votes required for the
pro-climate outcome.

using each measure.

Overall, switching from the production-based to the consumption-based inven-

tory lowers the average probability of pro-climate outcomes occurring. In the House,

the value falls from 16.8% to 12.8% while in the Senate it falls by a much smaller

amount. Table 2.5 provides a more detailed summary of the simulated outcomes of

several major votes from each chamber; these include the votes on bills seeking to

directly regulate carbon emissions, votes to automatically approve the Keystone XL

pipeline, and votes of disapproval of the EPA’s Clean Power Program.

In the House, the consumption-based measure of emissions leads to an increase

in the probability of the Waxman-Markey bill passing from 89.0% to 100.0%. The

average margin – measured as the difference between the total number of “pro” votes

and the number of votes required for the pro-climate outcome – also increases from

7.0 to 30.3. The Keystone XL pipeline is automatically approved using either inven-

tory although the vote is less secure using the consumption-based measure since the

average losing margin increases from -42.9 to -26.6. With respect to the Clean Power
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Program, there is effectively no difference between the two inventories.

In the Senate, using the consumption-based inventory has roughly the opposite

effect on bills seeking to directly regulate carbon emissions. The probability of the

Lieberman-McCain bill passing falls from 1.8% to 0.1% with the average margin

decreasing from -7.2 to -8.1 votes. The probability that the Lieberman-Warner bill

passes also falls from 20.3% to 6.7% with the average margin decreasing from -2.9 to

-4.3 votes. The probability that the Keystone XL pipeline is automatically approved

decreases slightly when switching to the consumption-based measure but in both

cases this outcome is quite unlikely. Finally, the consumption-based measure makes

congressional disapproval of the Clean Power Plan more likely although using either

measure this outcome is all but certain.

2.6 Cross-chamber predictions

I also estimated the hierarchical model treating the House and Senate as a

single legislature. Voteview.com, for example, provides such “common space” DW-

NOMINATE scores. The idea is to use the legislators that have served in both the

House and Senate as so-called “bridges” between the chambers. This allows all the

legislators to be compared – either directly or indirectly – to one another. This

approach is used in: Bertelli and Grose (2009) who use the congressional testimony

by cabinet secretaries to compare them with members of Congress, Bailey (2007)

who links members of Congress and Presidents with the Supreme Court by using

public positions taken on court cases, and Gerber and Lewis (2004) who treat interest

groups that took positions in the California Assembly, the California Senate, and the

U.S. House as pseudo legislators and use them as “bridges” to compare the actual

https://www.woteview.com
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legislators across these bodies.

For the case considered here, 52 of the legislators served in both the House

and Senate during the period analyzed and together these legislators cast at least

one vote on all but 7 of the roll calls considered. Note that this latter point is not

an issue since the “bridges” can still be compared to legislators who did cast votes

on these missing roll calls. In fact, I strengthened the link between the chambers

by also using four of the roll calls as “bridges.” The Keystone XL pipeline and the

Clean Power Plan votes shown in Table 2.5 represent each chamber’s own version of

the same legislation. The House and Senate also voted on identical versions of the

Homeowner Flood Insurance Affordability Act of 2014. I restricted the model so that

the αj’s and βj’s corresponding to these roll calls were equal.18

Table 2.6 shows the posterior means and standard deviations of the param-

eters in (2.23) after using the combined observations from the House and Senate.

Comparing these values with those in Tables 2.3 and 2.4 one can see that they closely

match the results for the House alone. This would be expected given that the House

represents the majority of observations. Two of the assessments of fit are also con-

sistent with previous results: 96% of the votes are correctly classified and 94% of the

βj’s are distinguishable from zero.

A nice feature of the “common space” method is that it not only allows the

θi’s to be compared across chambers but also the αj’s and the βj’s. Thus, inferences

can be made as to how representatives (senators) might have voted on roll calls that

occurred in the Senate (House). For example, one can predict how the House might

have voted on the roll calls related to the Lieberman-McCain and the Lieberman-

18 Although not done, there may be additional roll calls from each chamber that could be linked
in this fashion by carefully examining differences between individual House and Senate votes.
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Table 2.6: Estimates of the hierarchical model in both chambers

(1) (2) (3) (4) (5)

(Intercept) −0.93∗∗∗ −0.95∗∗∗ −0.95∗∗∗ −0.91∗∗∗ −0.91∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
Republican 1.73∗∗∗ 1.75∗∗∗ 1.75∗∗∗ 1.68∗∗∗ 1.68∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03)
Log production-based emissions 0.34∗∗∗ 0.17∗∗∗

(0.04) (0.04)
D x Log production-based emissions 0.34∗∗∗ 0.17∗∗∗

(0.06) (0.06)
R x Log production-based emissions 0.34∗∗∗ 0.18∗∗∗

(0.06) (0.06)
Log median income (household) −0.27∗∗∗ −0.28∗∗∗

(0.07) (0.07)
Avg. unemployment rate 0.07 0.07∗

(0.04) (0.04)
Pct. 65 or older −0.17∗∗∗ −0.17∗∗∗

(0.04) (0.04)
Pct. black −0.14∗∗∗ −0.15∗∗∗

(0.04) (0.05)
Pct. Hispanic −0.18∗∗∗ −0.18∗∗∗

(0.04) (0.04)
Pct. college degree −0.20∗∗∗ −0.20∗∗∗

(0.07) (0.07)
Pct. employed in industry 0.14∗∗∗ 0.14∗∗∗

(0.05) (0.04)

Notes: Continuous input variables are standardized by subtracting their means and dividing by
two times their standard deviations. ∗0 /∈ 90% HPD; ∗∗0 /∈ 95% HPD; ∗∗∗0 /∈ 99% HPD.

Warner bills. Similarly, one can predict how the Senate might have voted on the

Waxman-Markey bill had such companion legislation actually reached the Senate

floor.19

Cross-chamber votes were simulated for the three major climate legislation

roll calls listed in Table 2.5 in a manner identical to the one characterized by (2.46),

(2.47), (2.48), and (2.49). In order to ensure that these simulated votes made sense,

two assumptions were made. First, the votes in the House were assumed to pass

with a simple majority while the vote in the Senate was assumed to pass with a 3/5

19 Johnson (2015) provides some background and references on why an actual vote did not take
place in the Senate.
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Table 2.7: Simulated results of cross-chamber roll call votes on climate
change legislation

Legislation Date
Production-based Consumption-based

P(“pro”) Margin P(“pro”) Margin

Lieberman-McCain billa October 30, 2003 0.02 -27.73 0.01 -27.86

Lieberman-Warner billa June 06, 2008 0.99 40.96 1.00 40.86

Waxman-Markey billb June 26, 2009 0.00 -9.92 0.00 -6.23

Notes: a House vote. b Senate vote. Based on 200,000 simulations. The P(“pro”) columns show
the percentage of simulations where the pro-climate outcome occurs. The Margin columns show
the average difference between the total “pro” votes and the number of votes required for the
pro-climate outcome.

majority. Second, the simulated cross-chamber votes were assumed to take place on

the same date as the actual vote. This ensures that the appropriate total number

of legislators were simulated: 435 representatives and 100 senators.20 This latter

assumption also implies that none of the legislators missed the vote either by chance

or strategically.

Table 2.7 summarizes the simulated outcomes. Using the production-based

measure, the probability that the Lieberman-McCain bill passes in the House is 1.83%

with an average margin of -27.7; these values change slightly to 0.6% and -27.9 respec-

tively when using the consumption-based measure. The probability that the House’s

version of the Lieberman-Warner bill passes is 99.46% with an average margin of

approximately 41.0 using the production-based inventory; these values are essentially

the same when using the consumption-based inventory. Finally, the probability that

the Waxman-Markey bill passes in the Senate is 0.07% using the production-based

measure and 0.2% using the consumption-based alternative. In essence, it would ap-

pear that at least in 2008 and 2009 the House was in a position to pass climate change

legislation with the Senate continually being the roadblock.

20 In the case of the simulated Lieberman-Warner vote in the House there were only 434 repre-
sentatives since one seat was vacant when the actual Senate vote occurred.
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2.7 Conclusion

Previous research generally takes an international view toward the carbon

emissions embodied in trade with a focus on the degree of “carbon leakage” that may

occur due to incomplete coverage of regulations across nations. While there is no

national level counterpart to this issue, the distinction between where carbon is pro-

duced and where it is consumed may still important in that in may influence legislative

outcomes. Prior research also typically takes estimates of ideology as an exogenous

input and only considers carbon’s role in congressional voting from the production

side. This analysis demonstrates how estimates of ideology and the determinants of

voting on climate change can be recovered in one step. Moreover, by accounting for

trade in electricity I am able to uncover how a shift to consumption-based emissions

impacts voting behavior.

My results show that switching from the traditional production-based measure

to a consumption-based measure can significantly impact the probability of climate

legislation passing. Although these effects can be small in some cases, it is important

to note that in an increasingly polarized Congress the loss or gain of even one vote may

be pivotal. Furthermore, congressional action at some point is likely to be crucial.

The Clean Power Program is currently vulnerable both to the presidential election

and the Supreme Court. In addition, should the Paris Accords evolve into a binding

treaty congressional approval is required. In the case of formal treaty ratification,

Senate 67 votes in the Senate would be necessary.



74

2.A The Clean Power Plan

The Clean Power Plan’s main impact on emissions is through the carbon intensity

rules established for both new and existing electricity generating units. The latter rule

establishes gradually declining intensities for fossil fuel-fired generators and natural

gas-fired combined cycle generators which are listed in Table 2.8.

The EPA defines state s’s rate-based carbon intensity goal in year t as:

ist = λfs i
f
t + λns i

n
t (2.50)

where ift and int denote the fossil fuel and natural gas intensities listed in Table 2.8

and λfs and λns denote the share of state s’s electricity from impacted fossil fuel and

natural gas generators in 2012 repsectively. Alternatively, the EPA also allows states

to comply with the rule using a mass-based goal. This is defined as:

mst = ist (gfs + gns ) + 2 ist λ
g
s BB3 (2.51)

where gfs and gns denote state s’s electricity generation from fossil fuel and natural gas

in 2012, λgs denotes state s’s share of total generation from fossil fuel and natural gas

in 2012, and BB3 denotes the Building Block 3 generation shown in Table 2.8. This

is the amount of generation from zero-carbon sources that the EPA assumes will be

available each year that is not already being used to meet current rate- or mass-based

goals.21

21 Note that if a state adds one GWh from a zero-carbon source then it can also add one GWh
from a source that emits 2× ist since its average carbon intensity remains ist. If a state were to add
all of the zero-carbon generation available to it – assumed to equal λgs ×BB3 – then it can also add
an equal amount of generation that emits 2× ist × λgs ×BB3.
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Table 2.8: Reduction goals and assumptions for existing generators

2022 2023 2024 2025 2026 2027 2028 2029 2030
Fossil fuel-fired carbon intensitya 215 208 197 191 186 180 174 168 161

Combined cycle carbon intensitya 111 108 106 103 101 99 98 96 95

Building Block 3 generationb 95 91 93 103 111 113 132 150 166

Notes: a MtC/GWh. b 1000 GWh.

Importantly, because the above calculations are derived solely from the per-

formance of individual generators in 2012 the same procedure can be used to define

the goals at the district level. The corresponding λfd , λ
n
d , λgd, g

f
d , and gnd are found

by combining the generator data found in the EPA Clean Power Plan State Goal

Visualizer, the geographic data found in EIA form 860, and the congressional district

boundaries taken from Lewis et al. (2013).

http://www.epa.gov/cleanpowerplantoolbox
http://www.epa.gov/cleanpowerplantoolbox
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2.B League of Conservation Voters roll calls

Tables 2.9 and 2.10 provide summary information of the roll calls used in the

above analysis. Each vote was either categorized as related to climate change by the

LCV or deemed relevant to the climate change issue after examining its description

on THOMAS.

http://thomas.loc.gov/home/thomas.php
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Table 2.9: Climate change roll calls in the House

Year Rollcall Type Description Result

1996 207 Amendment Climate Change Research Rejected

1998 332 Amendment Global Warming Gag Rule Agreed to

2000 323 Amendment Global Climate Change Agreed to

2007 337 Amendment Global Warming and National Security Rejected

2007 555 Amendment Reducing Global Warming Rejected

2009 477 Passage Climate Change and Clean Energy Passed

2009 558 Amendment Defunding Environmental and Energy Staff Rejected

2011 230b Procedural Agreed to

2011 231b Passage Passed

2011 249 Passage Global Warming Pollution Passed

2011 448 Amendment Climate Change Adaption Agreed to

2011 650 Passage Keystone XL Tar Sands Pipeline Passed

2012 170 Passage Environmental Assault in the Transportation Bill Passed

2012 241 Amendment Climate Change Education Agreed to

2012 292 Procedural Keystone XL Tar Sands Pipeline Agreed to

2012 593 Amendment Carbon Pollution Endangerment Finding Rejected

2012 71 Passage Drilling Everywhere to Fund Transportation Passed

2013 179 Passage Keystone XL Tar Sands Pipeline Passed

2013 430 Amendment Social Cost of Carbon Agreed to

2013 601 Amendment Methane Emissions Rejected

2014 103 Amendment Climate Change Science Rejected

2014 106 Passage Carbon Pollution Passed

2014 267 Amendment Blocking Climate Action in Trade Agreements Agreed to

2014 389 Amendment Social Cost of Carbon Agreed to

2014 39 Amendment Climate Change and Public Lands Rejected

2014 397 Amendment Impacts of Climate Change Agreed to

2014 519 Passage Keystone XL Tar Sands Pipeline Passed

2014 91 Passage Undermining Flood Insurance Reform Passed

2015 209a Amendment Blocking Climate Research Agreed to

2015 381a Amendment Climate Science and Benefits of Action Rejected

2015 384a Passage Carbon Pollution Limits for Power Plants Passed

2015 400a Amendment Social Cost of Carbon Rejected

2015 513a Amendment Considering the Social Cost of Carbon Rejected

2015 650a Passage
Attack on Carbon Pollution Standards for Exist-
ing Power Plants

Passed

2015 651a Passage
Attack on Carbon Pollution Standards for New
Power Plants

Passed

Notes: a Recent votes identified by the LCV. b Manually added votes identified using THOMAS.

http://thomas.loc.gov/home/thomas.php
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Table 2.10: Climate change roll calls in the Senate

Year Rollcall Type Description Result

2003 420 Amendment Global Warming Rejected

2005 148b Amendment Rejected

2005 149 Procedural Global Warming Rejected

2005 151b Amendment Rejected

2007 166 Amendment Water Resources – Global Warming Rejected

2008 117 Amendment Wind Insurance Rejected

2008 141b Cloture Rejected

2008 145 Cloture Global Warming Rejected

2009 117b Amendment Agreed to

2009 126b Amendment Agreed to

2009 141b Amendment Agreed to

2009 142b Amendment Agreed to

2009 295 Procedural Defunding Environmental and Energy Staff Rejected

2009 307 Amendment National Security and Climate Change Rejected

2010 184 Procedural Dirty Air Act Rejected

2011 51b Amendment Rejected

2011 52b Amendment Rejected

2011 53b Amendment Rejected

2011 54 Amendment Global Warming Pollution Rejected

2012 34 Amendment Keystone XL Tar Sands Pipeline Rejected

2012 38 Amendment
Arctic Refuge, Offshore Drilling, and Keystone
XL

Rejected

2013 59 Procedural Pricing Carbon Pollution Rejected

2013 61 Amendment Keystone XL Tar Sands Pipeline Agreed to

2013 76 Amendment Climate Change Safeguards Rejected

2014 280 Passage Keystone XL Tar Sands Pipeline Failed

2014 78 Passage Undermining Flood Insurance Reform Passed

2015 103a Amendment Blocking Climate Action Agreed to

2015 115a Amendment Responding to the Threat of Climate Change Agreed to

2015 116a Amendment Attack on the Clean Power Plan Agreed to

2015 12a Amendment Climate Change Science Rejected

2015 123a Procedural Lifting the Climate Change Gag Order Rejected

2015 20a Amendment International Climate Action Rejected

2015 238a Amendment Climate Change Science Education Rejected

2015 306a Passage
Attack on Carbon Pollution Standards for Exist-
ing Power Plants

Passed

2015 307a Passage
Attack on Carbon Pollution Standards for New
Power Plants

Passed

2015 38a Amendment Climate Resiliency Rejected

2015 46a Amendment Keystone XL Environmental Impact Analysis Rejected

2015 89a Amendment Acknowledging Climate Change Rejected

Notes: a Recent votes identified by the LCV. b Manually added votes identified using THOMAS.

http://thomas.loc.gov/home/thomas.php
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2.C Electricity generation and emissions embod-

ied in trade

Table 2.11: Estimates of state-level per capita electricity use

(1) (2) (3)

Pct. employed in industry 0.151∗∗∗ −0.060 4.842∗∗∗

(0.032) (0.056) (0.966)
Pct. employed in trade 0.075∗∗ −0.121 −17.050∗∗∗

(0.031) (0.190) (3.282)
Pct. 65 or older 0.145 2.602∗∗∗ 17.090

(0.101) (0.749) (16.800)
Pct. homes w/ electric heat 0.116∗∗∗ 0.295∗∗∗ 0.912∗∗∗

(0.012) (0.030) (0.135)
Log median income (household) 8.363∗∗∗ 5.679 −4,671.000∗∗∗

(1.525) (12.680) (1,764.000)
Cooling degree days 0.001∗ 0.000 0.003

(0.000) (0.001) (0.002)
Heating degree days −0.000∗∗∗ 0.001 −0.000

(0.000) (0.000) (0.001)
Coal price 0.316 0.597 9.662∗∗∗

(0.223) (0.622) (2.122)
Electricity price −0.325∗∗∗ −1.139∗∗∗ 4.398∗∗∗

(0.034) (0.116) (1.515)
Natural gas price −0.109 −1.398∗∗∗ 5.159

(0.106) (0.292) (3.280)
Oil price −0.047 0.432 −7.964∗∗

(0.128) (0.371) (3.095)

Observations 1,008 1,008 1,008
R2 0.995 0.996 0.997
Adjusted R2 0.995 0.996 0.996
Residual Std. Error 1.127 (df = 929) 1.033 (df = 918) 0.970 (df = 907)

Notes: Model 1 corresponds to equation (2.9). Model 2 includes the squares of each of the
regressors. Model 3 includes the squares and the square roots of each of the regressors.

Recall that equation (2.9) defines the model for determining state-level per

capita electricity use:

qst = αs + γt + c′stβ + +w′
stδ + p′stη+
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(d) Consumption-based emissions

Figure 2.5: Aggregated congressional district data compared with state
data

Notes: The x-axis shows the percentage difference between estimated congressional district data
aggregated by state and the actual state data provided by the Energy Information Administration.

which is used to derive district-level consumption-based emissions. Table 2.11 reports

the estimated values for the coefficients of this model. Perhaps the only surprising

result is the negative coefficient on heating degree days; a priori one would expect

both cooling and heating degree days to lead to increased electricity use. The adjusted

R2 indicates that the models fit the data well and are likely to yield reasonable out-

of-sample predictions which is their main purpose.
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In order to assess the plausibility of the district-level data I calculated:

ĝst =

∑
d∈Ds

gdt

gst
− 1 (2.52)

êpst =

∑
d∈Ds

epdt
epst

− 1 (2.53)

q̂st =

∑
d∈Ds

qdt

qst
− 1 (2.54)

êcst =

∑
d∈Ds

ecdt
ecst

− 1 (2.55)

where Ds is the set of districts in state s. Recall that the values of gst, e
p
st, qst, and

ecst are based on data taken directly from the EIA. Aggregating the district-level

data and comparing it to the state-level data provides one way of determining if the

district-level estimates are reasonable.

The values of ĝst, ê
p
st, q̂st, and êcst are presented in Figure 2.5. Figure 2.5a shows

that aggregated electricity generation – derived by spatially combining plant-level

generation with congressional district boundaries – closely matches the state-level

data. Figure 2.5b shows the same is true for aggregated production-based emissions

derived by using plant-level fuel combustion data and the allocation procedure de-

scribed by equations (2.4), (2.5), (2.6), and (2.7). Figure 2.5c shows that aggregated

electricity use – derived using out-of-sample predicted values of the model above –

is less accurate. However, the errors appear to be normally distributed around zero

and are generally within 10% of the state value. Figure 2.5d shows a similar pattern

for aggregated consumption-based emissions; this is to be expected since the error in

electricity use propagates directly into these values. Importantly, for those states with

only one congressional district – Delaware, Montana, North Dakota, South Dakota,

Vermont, and Wyoming – the same four patterns are observed.
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2.D MCMC convergence

MCMC simulation was done using Stan – an increasingly popular program-

ming language which implements Bayesian inference using the No-U-Turn Sampler

introduced by Hoffman and Gelman (2014). Gelman and Shirley (2011) note that

two of the main difficulties with using MCMC methods – regardless of sampler – are

ensuring that the chains run long enough to converge and that the samples accu-

rately reflect the target distribution. Stan conveniently outputs two statistics which

can help diagnosis whether these difficulties have been overcome.

The first statistic is the “potential scale reduction factor” originally proposed

by Gelman and Rubin (1992). Generally denoted R̂, this value measures the ratio

of the average variance of the samples within each MCMC chain to the variance of

the pooled samples between all the MCMC chains. If the chains were sampling from

the same distribution – suggesting convergence – then this value would equal one.

Gelman and Rubin (1992) recommend that each of the chains be initialized with

diffuse starting values and to continue sampling until R̂ is less than 1.1 for all of the

model parameters.

The second statistic is the effective sample size neff which estimates the number

of independent samples within each chain after correcting for autocorrelation. Stan

uses a variogram-based approach – see Stan Development Team (2015c) for a more

detailed discussion – to provide these estimates. The value of neff is important since

having more samples yields more precise estimates of the parameters and it also

indicates the sampler is providing accurate information about the target distribution.

Table 2.12 provides a summary of the two statistics using the specification in

column four of Tables 2.3, 2.4, and 2.6. The R̂’s across all parameters are equal to
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Table 2.12: MCMC convergence diagnostics

Parameter
House Senate Common

R̂ neff R̂ neff R̂ neff

Mean SD Mean Mean SD Mean Mean SD Mean
αj 1.0 0.0 180.7 1.0 0.0 757.3 1.0 0.0 556.6

βj 1.0 0.0 1572.3 1.0 0.0 1508.3 1.0 0.0 1632.6

γ, δ 1.0 0.0 433.4 1.0 0.0 786.9 1.0 0.0 516.7

θi 1.0 0.0 1822.6 1.0 0.0 1642.9 1.0 0.0 1853.7

one suggesting the chains converged. Furthermore, the table shows that of the 2,000

samples stored from the simulation provide – on average – a minimum of 200 effective

samples for each of the parameters.
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2.E Heteroskedastic extension

As a robustness check I also estimated a heteroskedastic model of climate

change voting using an approach similar to one implemented in Lauderdale (2010).

In this case, the error terms in the spatial model are assumed to be distributed:

εijy ∼ GEV(µ, σiσj, 0) (2.56)

εijn ∼ GEV(µ, σiσj, 0) (2.57)

so that they now depend on both roll call j and legislator i. The σi’s characterize

to what extent the legislator’s voting behavior is not related to the underlying policy

dimension. In other words, it captures the variation in the degree to which individual

legislators vote on the basis their ideal point θi. Lauderdale (2010) argues that “par-

ticularistic constituency concerns, idiosyncratic views held by only a small number of

legislators, or other factors that are not broadly influential” might serve as situations

in which this estimator is useful. It is not unreasonable to think that climate change

action might fall into this category. For example, Lauderdale (2010) shows that high

σi’s are observed for senators considered to be “mavericks” such as John McCain

(R-AZ) who’s maverick status is partially related to his position on climate change.22

22 See supra note 13.
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The formal model now becomes:

P(“yea” on roll call j) = logit−1((βjθi − αj)/σi) (2.58)

θi ∼ N (µi, 1) (2.59)

µi = γ0 + γ1 IRi + x̄′
iδ (2.60)

αj ∼ N (0, 25) (2.61)

βj ∼ N (0, 25) (2.62)

γ0 ∼ N (-1, 1) (2.63)

γ1 ∼ N (2, 1) (2.64)

δ ∼ N (0k, 25× Ik) (2.65)

σi ∼ Γ(ν, ν) (2.66)

ν ∼ U(0, 1000) (2.67)

where the additional priors for σi and ν are taken directly from code provided by

Lauderdale and the random draws:

σ0
i ∼ Γ(ν0, ν0) (2.68)

ν0 ∼ U(0, 1000) (2.69)

serve as additional initial values. To accommodate for the increased complexity of

the model, each MCMC chain was simulated for 1,000 iterations after an initial 1,000

iterations were used as “warm-up” and only every other iteration was stored for

analysis.

Tables 2.13 and 2.14 provide the posterior means and standard deviations of
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Table 2.13: Estimates of the robust model in the House

(1) (2) (3) (4) (5)

(Intercept) −0.96∗∗∗ −0.97∗∗∗ −0.96∗∗∗ −0.93∗∗∗ −0.93∗∗∗

(0.02) (0.02) (0.03) (0.02) (0.02)
Republican 1.74∗∗∗ 1.76∗∗∗ 1.74∗∗∗ 1.69∗∗∗ 1.69∗∗∗

(0.03) (0.03) (0.05) (0.03) (0.03)
Log production-based emissions 0.28∗∗∗ 0.13∗∗∗

(0.04) (0.05)
D x Log production-based emissions 0.23∗∗∗ 0.09

(0.06) (0.07)
R x Log production-based emissions 0.30∗∗∗ 0.16∗∗∗

(0.06) (0.06)
Log median income (household) −0.27∗∗∗ −0.28∗∗∗

(0.08) (0.08)
Avg. unemployment rate 0.08∗ 0.09∗

(0.05) (0.05)
Pct. 65 or older −0.17∗∗∗ −0.17∗∗∗

(0.05) (0.05)
Pct. black −0.16∗∗∗ −0.15∗∗∗

(0.05) (0.05)
Pct. Hispanic −0.19∗∗∗ −0.18∗∗∗

(0.05) (0.05)
Pct. college degree −0.22∗∗∗ −0.22∗∗∗

(0.08) (0.08)
Pct. employed in industry 0.15∗∗∗ 0.14∗∗∗

(0.05) (0.05)

Notes: Continuous input variables are standardized by subtracting their means and dividing by
two times their standard deviations. ∗0 /∈ 90% HPD; ∗∗0 /∈ 95% HPD; ∗∗∗0 /∈ 99% HPD.

the parameters in (2.60). One can see that the estimates are nearly identical to

those found in Tables 2.3 and 2.4. Futhermore, the classification rates, the number

of distinguishable βj’s, and the average excess error rates – as seen in 2.6 – are also

comparable to the homoskedastic model.

Of course, the σi’s are of direct interest since they point to those legislators

that are seemingly less predictable when voting on climate change. In the House,

the posterior means range from 0.995 to 1.012 showing no discernible difference from

the homoskedastic model. In the Senate, the posterior means for some senators are

noticeably greater than one. The ten senators with the highest observed σi’s are
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Table 2.14: Estimates of the robust model in the Senate

(1) (2) (3) (4) (5)

(Intercept) −0.88∗∗∗ −0.78∗∗∗ −0.77∗∗∗ −0.70∗∗∗ −0.70∗∗∗

(0.05) (0.04) (0.04) (0.04) (0.04)
Republican 1.72∗∗∗ 1.54∗∗∗ 1.54∗∗∗ 1.39∗∗∗ 1.39∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.07)
Log production-based emissions 0.67∗∗∗ 0.46∗∗∗

(0.08) (0.10)
D x Log production-based emissions 0.73∗∗∗ 0.48∗∗∗

(0.11) (0.14)
R x Log production-based emissions 0.58∗∗∗ 0.43∗∗∗

(0.14) (0.14)
Log median income (household) −0.46∗∗∗ −0.44∗∗∗

(0.14) (0.14)
Avg. unemployment rate −0.07 −0.08

(0.09) (0.08)
Pct. 65 or older −0.25∗∗∗ −0.24∗∗∗

(0.09) (0.09)
Pct. black 0.18∗∗ 0.19∗∗

(0.09) (0.09)
Pct. Hispanic −0.08 −0.08

(0.09) (0.09)
Pct. college degree 0.06 0.05

(0.13) (0.14)
Pct. employed in industry 0.05 0.05

(0.09) (0.09)

Notes: Continuous input variables are standardized by subtracting their means and dividing by
two times their standard deviations. ∗0 /∈ 90% HPD; ∗∗0 /∈ 95% HPD; ∗∗∗0 /∈ 99% HPD.

Timothy Johnson (D-SD), Kent Conrad (D-ND), Bob Corker (R-TN), John McCain

(R-AZ), Robert Byrd (D-WV), Mary Landrieu (D-LA), Jay Rockefeller (D-WV),

Ben Nelson (D-NE), Judd Gregg (R-NH), and Mark Pryor (D-AR). The σi’s in this

group range from 1.647 to 2.223. However, only Johnson and Conrad have values

distinguishable from one using the 95% HPD intervals. Notably, several of these

senators have high observed average excess error rates; this is consistent with the

notion that the σi’s capture the degree to which the one dimensional model fails to

predict the observed votes.

Finally, using the new estimated ideal points and counterfactual ideal points, I
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Figure 2.6: Average excess error rates

Notes: A total of 35 votes were analyzed in the House and 38 in the Senate.

performed the same vote simulation as described by (2.48), (2.49), (2.48), and (2.49).

Once again, switching from the production-based to the consumption-based inventory

lowers the average probability of pro-climate outcomes occurring. In the House, the

value falls from 16.5% to 15.8% while in the Senate it again falls by a much smaller

amount. A more detailed summary of the simulated outcomes of several major votes

from each chamber are provided in Table 2.15 and one can see that they are very

similar to those found in 2.5.

The results in this section provide some supporting evidence that the simpler

model is able to fit the data well. However, some caution is warranted. For instance,

Lauderdale (2010) finds via simulation that the heteroskedastic model has some dif-

fculty in resolving the σi’s when the number of roll call votes is small or when the

range of true legislator-specific variances is also small.
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Table 2.15: Simulated results of roll call votes on climate change legislation

Legislation Type
Production-based Consumption-based

P(“pro”) Margin P(“pro”) Margin
Waxman-Markey billa Passage 0.69 3.04 0.99 18.27

Keystone XL pipelinea Passage 0.00 -44.84 0.00 -30.94

CPP standards for new plantsa Passage 0.00 -30.00 0.00 -28.25

CPP standards for existing plantsa Passage 0.00 -23.06 0.00 -27.63

Lieberman-McCain billb Amendment 0.04 -6.29 0.01 -7.80

Lieberman-Warner billb Cloture 0.26 -2.59 0.15 -3.80

Keystone XL pipelineb Passage 0.60 0.98 0.80 3.29

CPP standards for new plantsb Passage 0.05 -2.09 0.03 -1.92

CPP standards for existing plantsb Passage 0.06 -2.07 0.03 -1.89

Notes: a House vote. b Senate vote. Based on 200,000 simulations. The P(“pro”) columns show
the percentage of simulations where the pro-climate outcome occurs. The Margin columns show
the average difference between the total “pro” votes and the number of votes required for the
pro-climate outcome.



Chapter 3

Self-enforced international

environmental agreements: A role

for bargaining power

3.1 Introduction

A large literature exists on game theoretic analysis of international environ-

mental agreements (IEAs) and not surprisingly a considerable amount of attention

has been devoted specifically to agreements seeking to curb carbon emissions. The

usefulness of game theory in this setting can be justified based on three observations.

First, because benefits from a carbon IEA are non-rival and non-excludable each

country has an incentive to free-ride; they stand to gain by forgoing the cost of action

while benefiting from the actions taken by others. Second, IEAs must be negotiated

and so problems of coordination exist; indeed, the debate on who should abate, by

how much, and what should happen if they do not comply all remain contentious

90
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issues in current climate negotiations. Third, countries are sovereign and there is cur-

rently no supranational authority which can enforce an IEA; thus, an agreement must

be self-enforced in that it must be in the best interest of each country to participate.

These three aspects roughly characterize the strategic tensions that exists in current

models of international cooperation.

Caparrós (2016) and Finus (2008) note that within the literature on game

theory and IEAs, models can be broadly separated into three groups based on which

of the three strategic aspects is more important. First are static models where each

country’s decision to participate in an IEA is the main focus (examples include Barrett

(1994), Chander and Tulkens (1997, 1995), Eyckmans and Tulkens (2003), Finus

et al. (2006), Helm (2001), Germain et al. (2010, 2003), Nagashima et al. (2009),

and Weikard et al. (2006)).1 Second are static models where the negotiation process

and bargaining are of central interest (examples include Beccherle and Tirole (2011),

Konrad and Buchholz (1994), Segendorff (1998)). Third are repeated models where

the ability of countries to credibly enforce an agreement’s obligations over time is the

main focus (examples include Asheim and Holtsmark (2008), Asheim et al. (2006),

Barrett (2005, 2002, 1994), Dutta and Radner (2009), Froyn and Hovi (2008), Heitzig

et al. (2011), and Kratzsch et al. (2012)).

Interestingly, four equilibrium concepts have dominated the three groups of

models. The first group typically relies on either the non-cooperative notion of in-

ternal and external stability defined by D’Aspremont et al. (1983) or the cooperative

1 The major distinction between internal and external stability and the γ-core is that the former
leaves open the possibility of no or partial cooperation while the latter singularly looks at efficient
cooperation. One way to understand the difference is to consider how a free-rider is treated. In the
non-cooperative case, free-riding is ignored; any group that is cooperating simply maximizes their
joint utility even with free-riders present. In the cooperative case, free-riding is not tolerated; any
cooperating group dissolves if free-riders are present (even if the group’s members are worse off by
doing so).
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notion of the γ-core defined by Chander and Tulkens (1997, 1995). The second group

relies on the bargaining solution defined by Nash (1950). The third group generally

uses the notion of renegotiation-proofness defined by Farrell and Maskin (1989).

This paper presents a new approach by applying the concept of contractual

equilibrium defined by Miller and Watson (2013) to an infinitely repeated abatement

game. In a sense, this type of equilibrium represents a hybrid of those just mentioned.

A contractual equilibrium considers cooperative outcomes during negotiation phases

similar to concepts like the γ-core and Nash (1950) bargaining2 while also considering

strategic incentives during action phases similar to concepts like internal and external

stability and renegotiation-proofness.

The application makes several contributions to the existing literature. First,

the cooperative models lack any notion of how the agreement is to be enforced over

time. Standard cooperative approaches – like the γ-core – also make strong as-

sumptions on how agreements enforce compliance and focus exclusively on the most

efficient outcome. In contrast, contractual equilibrium relies on self-enforcement more

common in the non-cooperative literature. Cooperative actions are sustained in equi-

librium under threat of specific punishments. Contractual equilibrium also allows for

potentially inefficient agreements to emerge even when all countries participate.

Second, the repeated models lack a mechanism for how countries form an agree-

ment. The focus is typically on outcomes such as participation and efficiency with no

consideration given to the “process” that generates the IEA.3 Indeed, renegotiation-

proofness by definition rules out the possibility of negotiation. This implicitly ignores

2 In fact, it utilizes the Nash (1950) bargaining solution explicitly.
3 Barrett (1998) notes: “International cooperation can be looked at in two different ways: as a

process and as an outcome. Ultimately, it is the outcome that we will be most interested in. But
the outcome may depend on the process that gave rise to it. So we may want to model the process,
too.”
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the third strategic tension arising from problems of coordination. Contractual equi-

librium considers negotiation explicitly thus extending notions of bargaining from

existing static models to a repeated setting.

Finally, many of the existing models rely on symmetry; furthermore, when

asymmetry is present it is usually only in two country settings. This paper provides

an equilibrium characterization for an n country model with heterogeneous benefits

and costs. This extends the two player characterization presented in Miller and

Watson (2013) to more general settings and also makes the model well suited for

“real-world” numerical applications.

The reminder of the paper is organized as follows. Section 3.2 develops the

model which contractual equilibrium is applied to. Section 3.3 provides a numerical

application. Section 3.4 concludes.

3.2 The model

Consider a repeated game involving i = 1, . . . , n countries. Each period of the game

includes three phases. First, is the bargaining phase where the countries can make

transfers and coordinate their abatement levels. Second, is the action phase where

abatement actually occurs. Third, is a voluntary transfer phase. The payoffs to each

country in the action phase of period t is given by:

uit(a
t) =

∑n

j=1
bijajt −

ci
2
a2
it + di (3.1)

where at = (a1t, . . . , ant), ait is the abatement level chosen by country i, bij denotes

the benefit country i receives from country j’s abatement, ci is a country-specific



94

abatement cost parameter, and di is a country-specifc constant. The unique stage

game Nash equilibrium is given by:

âit =
bii
ci

while the social optimum is given by:

a∗it =

∑n
j=1 bji

ci

For simplicity, it is assumed that countries use pure strategies when choosing abate-

ment.

Let V denote the compact set of payoff vectors available to the countries when

they agree and let L denote the highest attainable joint payoff:

V ⊂
{

(v1, . . . , vn) :
∑n

j=1
vj = L

}
(3.2)

Let Zi denote the subset of V with vectors that yield the lowest payoff to country i.

Thus, for each vector zi ∈ Zi the payoff to country i is defined as:

zii = min
v∈V

vi (3.3)

Finally, let Y denote the set of payoff vectors available to the countries after the

voluntary transfer phase:

Y =
{

(y1, . . . , yn) : yi ≥ zii ∀ i ,
∑n

j=1
yj = L

}
(3.4)
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Thus, in each period of the game – and when the countries agree – the countries

receive some payoff vector in Y .

The countries begin each period with the intention of abating at some par-

ticular level and then have the opportunity to negotiate. An agreement in a given

period constitutes immediate transfers among the countries, new coordinated levels

of abatement, voluntary transfers, and continuation values for the next period as a

function of abatement in the current period. Consider each country’s payoff from the

beginning of a period as the sum of its payoff within the period and its discounted

continuation value from the start of the next period. Each country’s value under

agreement takes the form:

yit = (1− δ)(mit + uit(a
t)) + δyit+1(at) (3.5)

where mit denotes the transfer to country i and yit+1(at) ∈ Y . If the countries fail

to agree they make no transfers and abate as they originally intended. However, the

model assumes the countries want to reach an agreement and even if they fail to

do so today they anticipate doing so tomorrow. Thus, each country’s value under

disagreement takes the form:

y
it

= (1− δ)uit(at) + δyit+1(at) (3.6)

where again yit+1(at) ∈ Y . Importantly, in equilibrium – whether under agreement or

disagreement – the current period’s abatement levels at must be incentive compatible

given the continuation values yit+1(at). That is to say, no country should be better

off by myopically deviating from at in the current period and then getting punished
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in the next period.

Fully characterizing Y requires finding each country’s lowest payoff zii and the

highest attainable joint payoff L. Let S denote the difference between the highest

joint payoff of agreement and each of these lowest payoffs:

S = L−
∑n

j=1
zjj (3.7)

This slack provides a measure of how much a country might be rewarded (or punished)

in equilibrium. Intuitively, as this value increases the joint payoff of the agreement

also increases since there exists larger rewards (or larger punishments) to incentivize

cooperation.

Negotiation in the model follows the Nash (1950) bargaining solution whereby

countries divide surplus from agreement according to fixed weights denoted here by

πi. The payoffs at an agreement point y can be expressed relative to a disagreement

point y as follows:

yi = y
i
+ πi

(
L−

∑n

j=1
y
j

)
= (1− πi)yi − πi

∑
k 6=i

y
j

+ πiL (3.8)

Note that (3.3) can be rewritten as:

zii = min
{aj ,y′j}nj=1

(1− πi)yi − πi
∑
k 6=i

y
j

+ πiL (3.9)
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s.t.



y
k

= (1− δ)
(∑n

j=1 bkjaj −
ck
2
a2
k + dk

)
+ δy′k ∀ k

(1− δ)
(
b2kk
2ck
− bkkak + ck

2
a2
k

)
≤ δ(y′k − zkk) ∀ k

y′ ∈ Y

Hence, the characterization zii amounts to selecting an appropriate disagreement point

which is defined by stage game abatement levels {aj}nj=1 and continuation values

{y′j}nj=1. Note that the inequality constraints above ensure incentive compatibility of

the disagreement point in the continuation game. Should some country j deviate in

the current period then a vector of continuation values in the subset Zj is chosen in

the next period.

Define ηk = y′k − zkk and note that πi
∑n

j=i δy
′
j = πiδL. Substitution and some

rearranging implies:

zii = γi(S) + πiL+ (1− πi)di − πi
∑
k 6=i

dk (3.10)

where γi(S) is determined by the optimization problem:

γi(S) = min
{aj ,ηj}nj=1

(1− πi)
(∑n

j=1
bijaj −

ci
2
a2
i

)
− πi

∑
k 6=i

(∑n

j=1
bkjaj −

ck
2
a2
k

)
+

δ

1− δ
ηi (3.11)

s.t.



(1− δ)
(
b2kk
2ck
− bkkak + ck

2
a2
k

)
≤ δηk ∀ k∑n

j=1 ηj = S

0 ≤ ηj

Note that when S is sufficiently large there are multiple solutions to the above prob-
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lem; the abatement levels {aij}nj=1 will be unique but there are potentially multiple

sets of {ηij}nj=1 that will still preserve incentive compatibility.

Substituting (3.10) into (3.7) yields:

S = −
∑n

j=1
γj(S) (3.12)

It is the fixed point of (3.12) that characterizes equilibrium. Letting S∗ denote this

fixed point, the highest joint payoff of agreement can be found by solving:

L∗ = max
{aj ,ηj}nj=1

∑n

j=1

(∑n

l=1
bjlal −

cj
2
a2
j + dj

)
(3.13)

s.t.



(1− δ)
(
b2kk
2ck
− bkkak + ck

2
a2
k

)
≤ δηk ∀ k∑n

j=1 ηj = S∗

0 ≤ ηj

Hence, the set of payoffs giving the lowest value to country i is given by:

Zi =
{

(zi1, . . . , z
i
n) : I ∧ II ∧ III

}
(3.14)

where I, II, and III correpsond to the conditions:

I : zii = γi(S
∗) + πiL

∗ + (1− πi)di − πi
∑
k 6=i

dk (3.15)

II : zik ≥
1− δ
δ

[
bkk
2ck
− bkkaik +

ck
2

(aik)
2

]
+ zkk ∀ k 6= i (3.16)

III :
∑n

j=1
zij = L∗ (3.17)
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and the set of payoffs available to the countries after the voluntary transfer phase is

given by:

Y ∗ =
{

(y1, . . . , yn) : yi ≥ zii ∀ i ,
∑n

j=1
yj = L∗

}
(3.18)

Figure 3.1a provides an illustration of the equilibrium for the case of two

countries.4 The set of payoffs giving the lowest value to country i is just a single

point zi and Y ∗ is a line segment with slope negative one. Figure 3.1b provides an

illustration of the equilibrium for the case of three countries. The set of payoffs giving

the lowest value to country i is now a line segment and Y ∗ is a triangle in a plane

with normal vector (1, 1, 1).

A key result in Miller and Watson (2013) is Thereom 7 which states that in

the two country model L∗ is maximized when one of the players has all the bargaining

power. This result is extended to the n country case with the following proposition:

Proposition 1. Given the stage game described by (3.1), assume that bij = bkl for

all i, j, k, and l. Let m denote the country with the lowest cost parameter cm. The

equilibrium slack – S∗ – is maximized when πm = 1

Figures 3.2 and 3.3 illustrate this result for six different sets of ci’s. Note that Propo-

sition 1 states that the equilibrium slack S∗ is maximized when country m has all the

bargaining power and not the level L∗. This is because in some cases S∗ is sufficiently

large that L∗ can be achieved even if country m does not have all the bargaining

power. In fact, what Figures 3.2 and 3.3 reveal that S∗ is typically increasing as

bargaining power becomes more asymmetric.

4 Figure 3.1a is essentially a copy of Figure 1 in Miller and Watson (2013).
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u(a1)

y1 y1

z1

u(a∗)

η1

S∗

(a) The red line segment corresponds to Y ∗. The blue arrows correspond to the bargaining
weights. The point z1 is attained by choosing a∗ and then using a transfer to split the
surplus relative to the disagreement point y1. The point v1 is attained by choosing a1 in
the current period and then continuing with promised utilities y1 in the next period.

y1

y2

y3

u(a∗)

S∗

Z1

(b) The shaded area corresponds to Y ∗. The red line segments correspond to the three
subsets Zi which yield the lowest payoffs to each of the countries.

Figure 3.1: Contractual equilibrium with two and three countries
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Figure 3.2: Simulations - two countries
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Figure 3.3: Simulations - three countries
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3.3 Numerical application

To illustrate the role bargaining power plays in an agreement to reduce carbon

emissions, I analyze a fifteen region game based on the Coalition Dynamic Integrated

model of Climate and the Economy (C-DICE) introduced by Nordhaus (2015) as

well as a twelve region game based on the STAbility of COalitions model (STACO)

introduced by Finus et al. (2006).5 In both models, the per unit benefit from abating

is constant with each region receiving a fixed share. Along with costs, these two

components comprise the major policy assumptions of the two models. Following

Nordhaus (2015), I consider the case where the global benefit of abating is $25 USD

2011. I assume this value correspond to discount rate of 4%. Regional shares and

costs are discussed in the next two subsections.

3.3.1 C-DICE

Nordhaus (2015) considers three sharing schemes: shares which are propor-

tional to output; shares based on the Regional Dynamic Integrated model of Climate

and the Economy (RICE) model in Nordhaus (2010); and the averaged shares of

the RICE, The Climate Framework for Uncertainty, Negotiation and Distribution

(FUND), and the Policy Analysis of the Greenhouse Effect (PAGE) models. Costs

in C-DICE are based on a study by the McKinsey Company (2009). C-DICE regions

include: Brazil; Canada, China; EU - the European Union; Eurasia; India; Japan;

MidEast - the middle east; ROW - the rest of the world; Russia; SEAsia - Southeast

Asia; SSA - Sub-Saharan Africa; Safrica - South Africa; and US - the United States.

5 In fact, STACO is similiar to C-DICE since its benefits component is based on the original
DICE model from Nordhaus (1993).



104

Table 3.1: Coalition Dynamic Integrated model of Climate and the Econ-
omy (C-DICE)

Region
Regional data Control rate

yi pi ēi
∑
ēi gi θi µ̂it µ∗it

Brazil 2,816 197 470 10,854 50.2 3.1 1.08 34.81

Canada 1,419 34 533 27,228 76.1 1.6 0.21 13.37

China 13,496 1,344 9,480 131,795 53.5 14.8 2.60 17.55

EU 16,906 506 4,048 314,979 69.3 18.5 2.88 15.56

Eurasia 1,434 143 997 75,565 53.7 1.6 0.28 17.65

India 5,963 1,221 2,174 33,951 40.9 6.5 0.98 15.14

Japan 4,386 128 1,250 48,547 70.4 4.8 0.68 14.12

LatAm 5,065 394 1,378 38,057 48.7 5.6 1.12 20.00

MidEast 5,954 337 2,182 32,902 49.7 6.5 0.70 10.79

ROW 5,660 893 1,389 24,341 40.0 6.2 1.82 29.28

Russia 3,227 143 1,900 99,275 62.3 3.5 0.54 15.45

SEAsia 6,676 390 2,433 50,379 54.3 7.3 2.00 27.36

SSA 2,096 776 302 4,386 34.3 2.3 0.71 30.70

Safrica 614 52 483 14,116 51.6 0.7 0.17 23.74

US 15,534 312 5,671 355,964 76.9 17.0 2.85 16.77

Notes: Data from Nordhaus (2015), the World Resources Institute’s Climate Analysis Indicators
Tool, and the Notre Dame Global Adaptation Index. The price of carbon equals $25 USD 2011. yi
denotes 2011 output in billions USD 2011. pi denotes 2011 populations in millions. ēi denotes 2011
emissions in millions of tons of CO2.

∑
ēi denotes cumulative emissions. gi denotes the region’s

average global adaption index. θi denotes the share of benefits from abatement that accrue to
country i using proportional yi.

The payoff to region i is given by:

uit(µ1t, . . . , µ15t) = γθi
∑15

j=1
ējµjt − αiyiµ2

it + yi − γθi
∑15

j=1
ēj (3.19)

where yi is Gross Domestic Product, ēi is uncontrolled emissions, and µit is region i’s

emissions control rate:

µit =
ēi − eit
ēi

Letting σi = ēi/yi, the unique stage game Nash equilibrium is given by:

µ̂it = θi
γσi
2αi

http://cait.wri.org/
http://cait.wri.org/
http://gain.org/
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while the social optimum is given by:

µ∗it =
γσi
2αi

∑15

j=1
θj

Table 3.1 provides the benchmark emissions control rates for the C-DICE

model using the shares that are proportional to output and when the global benefit of

abating is $25 USD 2011. For example, the United States receives 17% of the benefits

from abating, abates 2.9% of it’s emissions in the stage game Nash equilibrium, and

abates 17% at the social optimum. Globally, 2% of emissions are abated in the stage

game Nash equilibrium while 18% is abated in the stage game social optimum.

3.3.2 STACO

Finus et al. (2006) consider two sharing schemes or calibrations: shares based

on Frankhauser (2013) and shares based on Tol (1997). Costs are based on the

Emissions Prediction and Pollicy Analysis (EPPA) estimates found in Ellerman and

Decaux (1998). STACO regions include: Brazil (BRA); China (CHN), dynamic

Asian economies (DAE); the European Community (EEC); eastern European coun-

tries (EET); energy exporting countries (EEX); the former Soviet Union (FSU); India

(IND); Japan (JPN); other OECD countries (OOE); the rest of the world (ROW);

and the United States (USA).

The payoff to region i is given by:

uit(a1t, . . . , a12t) = γψi
∑12

j=1
ajt −

ci1
3
a3
it −

ci2
2
a2
it (3.20)

However, to keep things compatible with the earlier analysis I use second-order Taylor
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Table 3.2: STAbility of COalitions model (STACO)

Region
Regional data Abatement

yi pi ēi
∑
ēi gi ψi âit a∗it

BRA 774 190 130 10,854 50.2 1.5 2 10

CHN 1,021 1,340 2,360 131,795 53.5 6.2 283 903

DAE 972 207 410 20,083 60.8 2.5 28 112

EEC 9,579 375 1,400 270,120 70.7 23.6 72 144

EET 405 120 510 54,789 58.6 1.3 22 91

EEX 1,650 1,602 1,220 91,798 45.4 3.0 35 135

FSU 501 287 1,000 158,003 52.8 6.8 53 160

IND 458 1,145 630 33,951 40.9 5.0 59 198

JPN 5,584 124 560 48,547 70.4 17.3 21 53

OOE 1,902 142 620 51,429 73.1 3.5 25 86

ROW 1,119 584 700 35,006 42.0 6.7 54 165

USA 8,845 305 2,420 355,964 76.9 22.6 158 320

Notes: Data from Finus et al. (2006), Weikard et al. (2006), the World Resources Institute’s
Climate Analysis Indicators Tool, and the Notre Dame Global Adaptation Index. The price of
carbon equals $45.85 USD 1985. yi denotes 2010 output in billions USD 1985. pi denotes 2010
populations in millions. ēi denotes 2010 emissions in millions of tons of CO2.

∑
ēi denotes

cumulative emissions. gi denotes the region’s average global adaption index. ψi denotes the share
of benefits from abatement that accrue to country i using STACO’s Calibration I.

approximations of each region’s cost function:

ci1
3
a3
it +

ci2
2
a2
it ≈ σ1i + σ2iait +

σ3i

2
a2
it

centered around the midpoint between the stage game Nash equilibrium and the social

optimum. The modified payoff to region i is given by:

uit(a1t, . . . , a12t) ≈ γψi
∑n

j=1
ajt − σ2iait −

σ3i

2
a2
it − σ1i (3.21)

The unique stage game Nash equilibrium is given by:

âit =
γψi − σ2i

σ3i

http://cait.wri.org/
http://cait.wri.org/
http://gain.org/
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while the social optimum is given by:

a∗it =
γ
∑n

j=1 ψj − σ2i

σ3i

Table 3.2 provides the benchmark abatement levels using the first calibration

found in Finus et al. (2006). Importantly, the new estimates from the approximations

are comparable to those found using the actual cost functions in (3.20). For example,

in the original STACO model – when the global benefit of abating is $37.40 USD 1985

– the stage game Nash equilibrium for the United States is 162 million tons of CO2

while the social optimum is 380 million tons of CO2. In this approximated version,

these values are 158 and 320 respectively when the price of carbon is $45.85 USD

1985.6 Globally, 7% of emissions is abated in the stage game Nash equilibrium while

20% is abated at the social optimum.

3.3.3 Bargaining protocols

How the surplus of an agreement to reduce CO2 is divided is naturally a con-

tentious issue. Article 3(1) and 3(2) of the United Nations Framework Convention

on Climate Change emphasize “common but differentiated responsibilities and re-

spective capabilities” and the “needs and special circumstances of developing country

Parties, especially those that are particularly vulnerable to the adverse effects of cli-

mate change.” This provides some notion of what climate equity should be. The

debate over what “differentiated responsibilities” means typically involves current

emissions, historical emissions, stage of development, vulnerability, and the ability to

act.

6 This price is used since it is equivalent to $100 USD 2011 after accounting for inflation.
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Table 3.3: Bargaining ranks in C-DICE

Region
Pragmatic Climate equity

yi ēi
∑
ēi pi 1/gi (yi/pi)

−0.25 θi 1/ēi 1/
∑
ēi

Brazil 11 14 14 10 6 14 12 6 2

Canada 14 12 11 15 14 5 13 1 5

China 3 1 3 1 8 2 1 15 13

EU 1 3 2 5 12 13 3 11 14

Eurasia 13 11 5 12 9 3 11 4 11

India 5 6 9 2 3 8 6 14 7

Japan 9 10 7 13 13 10 10 3 9

LatAm 8 9 8 6 4 11 8 10 8

MidEast 6 5 10 8 5 6 5 8 6

ROW 7 8 12 3 2 12 7 13 4

Russia 10 7 4 12 11 4 9 4 12

Safrica 15 13 13 14 7 1 15 2 3

SEAsia 4 4 6 7 10 9 4 9 10

SSA 12 15 15 4 1 15 14 12 1

US 2 2 1 9 15 7 2 7 15

Min 0.01 0.01 0.00 0.00 0.05 0.05 0.00 0.01 0.00

Max 0.19 0.27 0.28 0.20 0.10 0.08 0.36 0.32 0.36

Mean 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

SD 0.06 0.07 0.09 0.06 0.02 0.01 0.11 0.09 0.09

Notes: Based on data from Nordhaus (2015), Weikard et al. (2006), the World Resources
Institute’s Climate Analysis Indicators Tool, and the Notre Dame Global Adaptation Index.

Table 3.4: Bargaining ranks in STACO

Region
Pragmatic Climate equity

yi ēi
∑
ēi pi 1/gi (yi/pi)

−0.25 ψi 1/ēi 1/
∑
ēi

BRA 9 12 12 9 4 7 11 1 1

CHN 7 2 4 2 6 2 6 11 9

DAE 8 11 11 8 8 8 10 2 2

EEC 1 3 2 5 10 10 1 10 11

EET 12 10 6 12 7 6 12 3 7

EEX 5 4 5 1 3 3 9 9 8

FSU 10 5 3 7 5 4 4 8 10

IND 11 7 10 3 1 1 7 6 3

JPN 3 9 8 11 9 12 3 4 5

OOE 4 8 7 10 11 9 8 5 6

ROW 6 6 9 4 2 5 5 7 4

USA 2 1 1 6 12 11 2 12 12

Min 0.01 0.01 0.01 0.02 0.06 0.04 0.01 0.02 0.01

Max 0.29 0.20 0.28 0.25 0.11 0.14 0.24 0.35 0.32

Mean 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

SD 0.10 0.06 0.09 0.08 0.02 0.03 0.08 0.09 0.09

Notes: Based on data from Finus et al. (2006), Weikard et al. (2006), the World Resources
Institute’s Climate Analysis Indicators Tool, and the Notre Dame Global Adaptation Index.

http://cait.wri.org/
http://cait.wri.org/
http://gain.org/
http://cait.wri.org/
http://cait.wri.org/
http://gain.org/
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To explore how these measures impact contractual equilibrium I consider nor-

malized bargaining weights based on: output, current emissions, cumulative emis-

sions, population, vulnerability as measured by the inverse Notre Dame Global Adap-

tation Index, ability to pay, damages, inverse current emissions, and inverse cumu-

lative emissions. I also consider equal bargaining. The data necessary to calculate

these weights are provided in Tables 3.1 and 3.2. Note that the ability to pay protocol

is taken directly from Weikard et al. (2006) and is given by:

πi =

(
yi
pi

)−0.25

(3.22)

For the case of bargaining based on damages, the weights are simply the regional

benefit shares used in each of the models.

Finus (2008) labels the first three protocols “pragmatic” or “grand fathering”

in that they preserve the status quo by favoring rich countries and high emitters. The

remaining six are more consistent with some notion of climate equity. Tables 3.3 and

3.4 show each region’s rank using these weights. For example, using an output-based

scheme the U.S. receives the second highest share (rank 2). On the other hand, using

a scheme based on cumulative emissions the U.S. receives the lowest share (ranks of

15 and 12 in C-DICE and STACO respectively). Summary statistics for each scheme

are also shown. For the case of C-DICE, the cumulative emissions, inverse emissions,

and inverse cumulative emissions protocols have the most variation while the ability

to pay protocol has the least. For STACO, the output protocol has the most variation

while the adaptability protocol has the least.
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3.3.4 Results

Figures 3.4a and 3.4b illustrates the results of the simulation. Apparent in

both figures is that bargaining based on climate equity typically results in higher

values of equilibrium slack S∗ than those based on “grandfathering.” In particular,

the protocols based on inverse current emissions and inverse cumulative emissions

generate the largest levels of slack.

3.4 Conclusion

This paper has sought to broaden the existing literature which uses game the-

ory to model IEAs. In particular, it introduces the concept of contractual equilibrium

to a standard abatement game. This notion of equilibrium provides a means for bet-

ter understanding the process of agreement formation which in this case is based on

Nash (1950) bargaining. The main result of the paper demonstrates that asymmetric

bargaining power leads to more effective agreements and that – for one specification

of utility – it is best to have the low cost country receive all the surplus from an

agreement. Turning to numerical simulation using predefined bargaining power, it is

shown that bargaining based on some notion of climate equity – for instance, inverse

emissions – leads to more effective agreements than bargaining based on pragmatism

such as output.
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Figure 3.4: Equilibrium slack relative to slack required for the social opti-
mum
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