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ABSTRACT OF THE THESIS

Resolvent Analysis Techniques for Turbulent Flows: Application to an SUV Wake

by

Dylan Christopher House

Master of Science in Aerospace Engineering

University of California, Los Angeles, 2021

Professor Kunihiko Taira, Chair

Resolvent analysis allows for the extraction of the dominant input-output behavior

of a fluid flow near a mean state, which can be used to advise potential applications

to flow control. A significant hurdle in the adoption of resolvent analysis is the

singular value decomposition (SVD) of the large linear operators involved. A matrix

sketching algorithm is used to extract the primary forcing and response modes, with

their associated gain. The formulation of an iterative algorithm is shown to be able

to calculate the SVD of the resolvent operator with greater accuracy. The sources

of error due to the selection of a test vector are discussed and it is shown that an

accurate calculation of the forcing and response modes can be obtained by utilizing a

test vector corresponding to a single point. The strength of this algorithm is shown

by calculating the resolvent modes for a flow over a NACA 0012 airfoil at a Reynolds

number of 23,000. This method is shown to converge for an arbitrary selection of test

vector, obtaining results in agreement with past studies of this flow.

This method is used to perform windowed resolvent analysis on a two-dimensional

turbulent flow of over a Honda sports utility vehicle (SUV) at Re ≈ 2.5 × 104 to

propose a flow control strategy for drag reduction. The force characteristics of the

ii



SUV are highly dependent on the wake structures and large structures in the wake

region near the rear end of the vehicle are responsible for increase in drag of an SUV.

We characterize the flow physics and modal analysis of the shear layer on the roof and

the role of shear layer physics leading to the large structures in the wake dynamics. A

moving window approach to investigate the windowed response modes of the resolvent

operator over the roof of SUV is performed. The location of maximum gain shifts to

the rear of the car as the spanwise wavenumer is reduced indicating the transition

from small structures in the shear layer to large structures in the wake region. We use

a body constrained window for forcing modes to investigate the optimum location of

forcing to achieve desired response along the roof of the vehicle. An optimal forcing

strategy about the placement of actuators and the frequency and direction of forcing

is suggested after investigating the forcing modes at different frequencies and wave

numbers.
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CHAPTER 1

Background

Modal analysis has become a widespread tool in fluid mechanics (BHL93; HLB12;

Sch10; Kut13; The11; TBD17; THB19). Among these modal decomposition tech-

niques, resolvent analysis reveals the input-output relationship with respect to a mean

flow of interest (FI93; TTR93; MS10). Resolvent analysis is based on the concept

of a particular solution under forcing, as opposed to global stability analysis which

focuses on the homogeneous solution (Sch07). For this reason, resolvent analysis pro-

vides insights on how the flow responds to harmonic input to the system as well as the

transient dynamics (JB05; TE05). As flows are exposed to perturbations and forc-

ing at all times, resolvent analysis becomes a very attractive tool for characterizing,

modeling, and controlling high-dimensional flows. Noteworthy here is that resolvent

analysis can be performed about time-averaged turbulent base flows if the fluctuations

about the base states are statistically stationary (FI94; MS10). For these reasons,

resolvent analysis stands out as essentially the only operator-based modal analysis

technique that can handle practical engineering flows at high Reynolds numbers.

As a resolvent operator is spatially discretized, it can be represented by a matrix

whose dimension is proportional to the number of spatial discretization points (grid

size) and the number of state variables. The size of this matrix becomes very large

for high-Reynolds number turbulent flows and especially for those without homoge-
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neous directions (e.g., spatial periodicity). In such a case, computational challenges

are encountered as the singular value decomposition of large-scale matrices demands

significant computational resources and memory allocations.

Although the task of performing the resolvent analysis may seem daunting for

large-scale flow problems, it should be noted that most fluid flow studies require only

the dominant features of the flow to be revealed. That means that the amount of

insights to be revealed is relatively small compared to the amount of data held by

the large resolvent matrix. This allows for the use of low-rank approximation of the

large matrices to be considered to reduce the computational efforts necessitated by

the singular value decomposition.

In particular, we consider a technique referred to as sketching to extract the dom-

inant characteristics of the original large-scale matrix (EVB19). Sketching involves

passing a test matrix comprised of a few linearly independent column vectors through

the operator to be analyzed. The product of the original matrix and the test matrix

holds important information about the action of the original matrix on the test ma-

trix. In other words, the product should capture the dominant vectors in the range

of the original matrix. The use of a random test matrix for determining appropriate

rank reduction has resulted in the establishment of the randomized numerical linear

algebra, which has become an active area of research in recent years.

In the present work, we place our focus on the choice of test matrix or test vector

for the resolvent analysis and how it can be chosen based on the base flow. Further-

more, we demonstrate that in certain cases the singular value decomposition may be

eliminated from the resolvent analysis, which significantly reduces the computational

burden.
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We first examine the randomized resolvent algorithm and its effect on single test

vectors. Through this analysis we are able to derive error expressions for the forcing

and response modes and the gain. We then perform resolvent analysis using this

algorithm for flow over a NACA 0012 airfoil using test random vectors, and vectors

corresponding to a single point in the flow. We discuss how the error is affected by

the choice of test vector as well as how the behavior described by the error expression

derived earlier manifests in modes obtained through this method.

This method of performing resolvent analsysis is then used to develop a potential

flow control strategy for a Honda SUV. The primary goal of such a strategy is to

reduce the drag force on the vehicle, improving fuel efficiency and limiting the negative

environmental impacts of gas or electric vehicles. While there have been efforts made

to perform active and passive flow control over cars in the past, active flow control

studies have been primarily limited to low Reynolds number flows. Resolvent analysis

is used to extract the dominant forcing and response structures for the flow over a

2D slice of a Honda SUV. Past work has shown that large low pressure structures in

the wake are the dominant contributor to drag, with such structures responsible for

at least 91% of the total pressure drag for flow over an Ahmed body (AR84) (This

section has been adapted from a section originally written by Vedasri Godavarthi for

a co-authored paper ”Open loop flow control strategy for drag reduction over an SUV

using windowed resolvent analysis”, which is currently in preparation).

In order to gain insights into the wake dynamics, we utilize windowed resolvent

analysis to study a focused region of the shear layer over the vehicle. By moving

this window from the front of the roof to the rear, we can gain valuable insights into

how the response of the flow transitions from small scale three-dimensional struc-

tures in the shear layer, to large two-dimensional structures in the wake. Generating
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three-dimensional structures corresponding to these response modes is proposed as

a potential flow control method by delaying the formation of large wake structures,

limiting their effect on the body of the car.

A forcing side response window is applied restricting the potential region of actu-

ation to the body of the car to identify optimal actuator locations. We show that the

flow is most sensitive to disturbance near the front of the roof, however small scale

structures are not very persistent and cannot be always actuated from this point.

Instead the introduction of small-scale structures with actuation must be performed

near to the desired response, while the actuation of larger structures can be performed

from the front of the roof.

1.1 General Resolvent Analysis

For an unsteady fluid flow, we can decompose the state variable q into a time-invariant

base flow q̄ and the time-variant fluctuations q′ as

q = q̄ + q′. (1.1)

The time-variant and invariant state vectors are related by the following equation

∂q′

∂t
= Lq̄q

′ + f , (1.2)

where Lq̄ is the linearized Navier–Stokes operator about the base state q̄, and f

represents the collection of nonlinear terms, which can be interpreted as an internal

forcing (MS10). We can analyze the frequency response of the flow through analyzing

the Fourier transform of equation (1.2)

iωq̂ω = Lq̄q̂ω + f̂ω. (1.3)
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where

q(x, t) = q̂ωe
iωt (1.4)

f(x, t) = f̂ωe
iωt (1.5)

The frequency ω can be chosen to be real for stable Lq̄ or complex as ω = ωr + iβ

for unstable Lq̄, where ωr and β are both real and β discounts the modal growth rate

of Lq̄ (Jov04; YBT20). By rearranging (1.3) we can obtain an operator that maps a

forcing input to a response of the state vector q in the form of

q̂ω = Af̂ω, (1.6)

where

A = [iωI −Lq̄]
−1, (1.7)

is the resolvent operator. We can perform a singular value decomposition (SVD) of

A to yield

A = UΣV ∗. (1.8)

Written in this form, V represents the primary directions in which forcings are most

effective, referred to as forcing modes, U represents the responses these forcings will

induce, referred to as response modes, and Σ represents the associated gains mapping

between the forcing modes and the associated responses.
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1.2 Randomized Resolvent Analysis

The size of the resolvent operator is proportional to the number of grid points used to

discretize the flow field. For higher-Reynolds number flows, the grid needs to be well-

refined making the resolvent operator large in its size, and hence makes it difficult to

perform a SVD.

The randomized resolvent analysis can be used to reduce the computational cost

and memory requirement associated with performing the SVD while producing ac-

curate resolvent modes and gains (RYT20). The reduction in computational costs is

accomplished by performing the SVD on a low-rank approximation B of the resolvent

operator A instead of the full A itself. The first step towards obtaining the low-rank

approximation is called sketching. In this most crucial part of the randomized resol-

vent analysis, a sketch matrix Y is generated by passing a tall and skinny test matrix

Ω ∈ Rm×k (m≫ k) through the resolvent operator as

Y = AΩ. (1.9)

Oftentimes, this test matrix Ω is chosen to be a random matrix, Ω = rand(m, k).

In the present study, we take a detailed look at this sketching process with respect

to the accuracies of the recovered resolvent modes and gains, and complement the

randomized algorithm with physical insights.

The sketched matrix Y should contain the dominant effect of the operator A.

We perform the QR decomposition of Y to obtain a low-rank basis aligned with the

primary actions (directions) of the resolvent operator A

Y = QR. (1.10)

We then project the resolvent operator A onto this low-rank basis, to obtain a low-
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rank approximation of the resolvent

B = Q∗A ∈ Ck×m (1.11)

We can then perform the SVD of this projected matrix B

B = ŨΣV ∗. (1.12)

While Ũ is the left singular vectors, we can obtain more accurate response modes of

A by right multiplying the resolvent operator by the forcing modes V yielding

Av = σu, (1.13)

Since the left singular vectors are unitary (||u|| = 1), we obtain

σ = ∥Av∥, (1.14)

u = σ−1Av. (1.15)

This process is outlined in algorithm 1 and discussed in detail by (RYT20).

First the test matrix Ω is passed through the resolvent in line 2 to form the sketch

matrix Y , whose columns represent responses to the k forcing vectors Ω. In this step,

the forcings excite response modes associated with the largest gains. However, these

excited response modes appear in every column of the sketch matrix, or equivalently

the response vectors Y . To extract the response modes, the response vectors Y are

orthonormalized via a QR decomposition in line 3 to provide a set of orthogonal

bases Q for the response modes. The resolvent operator A is then projected onto

those bases Q in line 4 to produce a low-rank projected operator B, which holds

the principal characteristics of A. The forcing modes V are then extracted in line 5

through the SVD of forcing bases B. These forcing modes are left multiplied by A

to yield σu in line 6 (viz. equation 1.13) and subsequently separated into σ and u by
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Algorithm 1: Randomized Resolvent Analysis (RYT20)

Require: Discrete resolvent operator A ∈ Cm×m

Function randomized resolvent(k):

1 Ω← randn(m,k) // generate random forcing vectors Ω

2 Y ← AΩ // sketching: obtain response vectors Y by passing Ω to A

3 (Q,∼)← qr(Y ,0) // obtain orthonormal response bases Q from Y

4 B ← Q∗A // obtain forcing bases B by passing Q to A∗

5 (∼,∼,V )← svd(B) // obtain forcing modes via reduced SVD of B

6 UΣ ← AV // obtain gain-scaled response modes UΣ by passing V to A

for j ← 1 to k do

7 Σj,j ← norm(UΣ
1:m,j, 2) // recover gain

8 U 1:m,j ← UΣ
1:m,j/Σj,j // obtain unit-norm response modes U

end

return (U ,Σ,V )

using the unitary nature of the singular vectors in lines 7 and 8 (viz. equation 1.15).

This randomized resolvent analysis algorithm has been demonstrated to perform well

even with k ≪ m to determine the forcing modes, response modes, and gain while

retaining its numerical accuracy.

8



CHAPTER 2

Methodology

2.1 Iterative Sketching Algorithm

Let us take a detailed look at sketching within the randomized resolvent analysis,

algorithm 1. In line 1, we form a random test matrix Ω ∈ Rm×k, which can be

considered as being comprised of k random forcing vectors in the length of the state

variable m. We take this perspective to derive an iterative formulation, in which

we utilize the forcing modes obtained by the algorithm as test matrix for the next

iteration. In what follows, we seek an algorithm that finds the primary forcing and

response modes along with the largest singular value through an iterative formulation.

Sketching plays the most important role in the algorithm of the randomized re-

solvent analysis. The test matrix Ω initiates the sketching process with the attempt

of exciting modes with the largest gains. If this attempt is successful, the rest of the

algorithm shall produce the optimal gains and the associated forcing and response

modes, yielding an accurate SVD. The test matrix Ω is the only tunable input we

have control over in the randomized resolvent analysis. The choice of Ω is crucial in

producing accurate resolvent modes and gains, and we can rely on physical insights

of the problem to improve the design of Ω.
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A random matrix is intuitively the first choice for the test matrix Ω, if one has

little knowledge about the physics of the operator (HMT11). Since a random Ω

can be interpreted as white forcing, it excites all response modes and allows those

with highest gains to be amplified when being passed through the resolvent opera-

tor. However, better choices for Ω can be made with the physical knowledge of the

problem. (RYT20) considered a physics-informed test matrix based on the velocity

gradient of the base flow and showed that the use of such test matrices can further

enhance the accuracy of the randomized analysis with fewer number of vectors. Their

demonstration showed great potential of leveraging flow physics in the design of test

matrices.

We develop algorithm 2 by replacing the test matrix of algorithm 1 with a test

vector, that is, a test matrix where k = 1. In this case, the sketch vector y contains

the response bases for the forcing vector Ω. Since we only have a single vector to

represent the response, there is no need for orthogonalization and we normalize the

response y to obtain an approximation to the primary response mode. Similar to

algorithm 1, we can determine the primary forcing basis by projecting the resolvent

operator onto the response mode based on

A∗ui = σivi. (2.1)

Due to the usage of a test vector, performing the SVD is not necessary and reduces to

a simple normalization in algorithm 2. From here, we can once again utilize equation

1.13 to extract the response mode with greater accuracy. Since the response and

forcing modes may not be accurate with a single evaluation, we then resort to an

iterative procedure for lines 1 to 4. For the iterative process, the forcing mode from

the previous iteration is used as the test vector for the following iteration, establishing

algorithm 2.
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Algorithm 2: Resolvent Analysis with a test vector Ω (iterative)

Require: Discrete linear operator Lq̄ ∈ Cm×m, test vector Ω ∈ Cm×1

Function test vector resolvent(ω):

for i = 1 to N do

1 y ← [−iωI −Lq̄] \Ω // solve linear system for y

2 q ← y/∥y∥2 // normalize y

3 b← q∗/ [−iωI −Lq̄] // solve linear system for b

4 Ω← b∗/∥q∥2 // normalize b and transpose

end

5 v ← Ω // set V to Ω

6 uΣ ← [−iωI −Lq̄] \v // solve linear system to recover uΣ

7 σ ← ∥uΣ∥2 // recover gain

8 u← uΣ/σ // recover response mode

return (u,σ,v)

Algorithm 2 considers a user-selected test vector as the test matrix Ω. If we define

the inner product αi ≡ ⟨vi,Ω⟩, we can show that

y =
m∑
i=1

σiαiu
exact
i (2.2)

where uexact
i is the exact ith response mode. From this, we can determine an expres-

sion for b∗

b∗ =
1

||y||
m∑
i=1

σ2
i αiv

exact
i . (2.3)

The forcing mode can be found by simply normalizing vi

v1 = b∗/∥b∗∥. (2.4)

We recover the response mode and its gain by multiplying v by the resolvent operator
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to obtain

σ1u1 =
1

||b||
m∑
i=1

σ3
i αiu

exact
i . (2.5)

The main feature of this test vector based algorithm is that we make only a single

attempt to initially excite the optimal responses. This prompts the question of how

this test vector should be chosen. As previously discussed, (RYT20) suggested that

the mean-flow physics should inform the choice. In this study, we will take this idea

to its extreme by considering the case where the test vector Ω is comprised of forcing

at a single spatial point. We will later examine the effectiveness of this test vector

with respect to the location of forcing. With the single-point test vector, we will use

the iterative approach in algorithm 2 where the right singular vector obtained by the

algorithm is then reused as the test vector for N iterations of this procedure.

We can apply equations 2.2-2.5 to the iterative form of the algorithm and substi-

tute the values of ||y|| and ||b|| to obtain

v =

∑m
i=1 σ

2N
i α∗

ivi√∑m
i=1 σ

4N
i |αi|2

, (2.6)

σu =

∑m
i=1 σ

2N+1
i α∗

iui√∑m
i=1 σ

4N
i |αi|2

, (2.7)

σ2 =

∑m
i=1 σ

4N+2
i |αi|2∑m

i=1 σ
4N
i |αi|2

. (2.8)

These expressions show the dependence of the output of the algorithm on all the

singular values, and also on the initial test vector via αi. Picking the test vector to

perfectly align with the leading forcing mode would give αi = δi1 and these expressions

would then give the singular triplet (σ1,u1,v1) with no error. To examine the effect

of a non-perfect choice we will make the assumption that the resolvent operator is
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low-rank. This will mean that σ1 ≫ σ2 ≫ ... ≫ σN . This assumption allows us to

Taylor expand the above expressions to give an estimate of the error in the obtained

modes.

∥v − v1∥2 ≈
m∑
i=2

σ4N
i |αi|2

σ4N
1 |α1|2

, (2.9)

∥u− u1∥2 ≈
m∑
i=2

σ4N+2
i |αi|2

σ4N+2
1 |α1|2

, (2.10)

σ ≈ σ1 −
∑m

i=2 σ
4N
i |αi|2

2σ4N−1
1 |α1|2

. (2.11)

While it is impractical to obtain an approximation of the error prior to performing the

SVD, these expressions still provide valuable insight on the sources of error. From this

we can see that at leading order the relative error for the singular values |σ − σ1|/σ1

is O(σ4N
2 /σ4N

1 ), for the forcing ∥v−v1∥ is O(σ2N
2 /σ2N

1 ) and for the response ∥u−u1∥
is O(σ2N+1

2 /σ2N+1
1 ).

This algorithm will produce much more accurate results for systems where σ1 ≫
σ2, σ3, σ4, . . . . This agrees with the observations in (RYT20). For cases where σ1/σ2

is sufficiently large, this algorithm will produce accurate results regardless of the test

vector used, including random test vectors. While the magnitude of the singular

values are purely system dependent, the test vector can be selected to minimize

error. An ideal test vector is aligned perfectly with with the first order forcing mode.

Realistically this is very difficult since the structure of the forcing modes cannot

generally be known in advance. Instead we rephrase the problem as attempting to

find a vector which is nearly orthogonal to all other modes except for the first, and due

to the assumption that the resolvent operator is low rank, we are primarily interested

in ensuring orthogonality to specifically the second order mode. By localizing the

forcing in a region where the second order mode is weak we can minimize this source

of error. As a result, we can obtain a more accurate approximation for flows where

13



the first two modes are spatially separated.

Forcing a single point of the flow means that α1 will be smaller than what could

be obtained by using a global forcing; however, if the point is chosen using some

physical insight as to where the first order forcing mode should appear then α1 should

be significantly larger than α2. Through careful selection of the test vector, accurate

results can be obtained using a single point test vector.

2.2 Validation

2.2.1 Problem setup

We consider the application of the present formulation to uncover the response char-

acteristics of turbulent separated flow over a NACA0012 airfoil (YT19). For the

resolvent analysis, we consider the flow response with respect to the time-averaged

turbulent base flow, which is obtained by a high-fidelity large-eddy simulation. The

computation is performed for the flow over an airfoil at an angle of attack of α = 9◦,

a chord-based Reynolds number of Re = U∞c/ν = 23, 000, and a free-stream Mach

number of M∞ = 0.3. The flow is taken to be spanwise-periodic with an extent of

0.2c.

A finite-volume compressible flow solver CharLES (KNH11; BHN17) is used to

perform the large-eddy simulation of the turbulent flow over the wing. This solver is

second and third-order accurate in space and time, respectively, with the Vreman’s

model (Vre04) implemented for the subgrid-scale model. The spatial domain is chosen

to be x/c ∈ [−19, 26], y/c ∈ [−20, 20] and z/c ∈ [−0.1, 0.1] in the streamwise,

transverse, and spanwise directions, respectively, with the leading edge positioned

14



Figure 2.1: Flow over a NACA 0012 airfoil at a Reynolds number of 23,000 and and

a Mach number of 0.3 visualized by the Q-criterion isosurfaces (a). Time-averaged

flows for the u (b) and v (c) components of velocity.

at the origin. This computational domain is discretized with a C grid. We specify the

freestream velocity and temperature at the far field and prescribe a no-slip adiabatic

boundary condition on the wing surface. A sponge layer is applied over the outlet to

enable outgoing disturbances to exit the domain without reflecting back towards the

near wake of the wing.

The base flow visualized in figure 2.1 is obtained by taking the time and spanwise

average of the turbulent flow. As the whole computational domain is not required

for the resolvent analysis, we extract the base flow over x/c ∈ [−15, 16] and y/c ∈
[−12, 12]. The discretization of the resolvent operator over this sub-domain results

in a resolvent operator of size 0.75 million by 0.75 million, which will be used in the

subsequent analysis. The computational setup and the simulated base flow have been

verified and validated extensively, as reported in our past studies (YT19; NYK19;

RYT20).
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2.2.2 Resolvent analysis

We first examine results from the resolvent sketching algorithm for two choices of

sparse test vectors, and compare the results obtained to results obtained using two

different random test vectors. The first sparse test vector contains non-zero values

only for the entries corresponding to the point of with the highest ratio α1/α2, and

zeros otherwise. All non-zero elements in the vector are equal such that ||α|| =
1. The second sparse test vector is similar in construction, with non-zero elements

corresponding to point in the freestream. The points effectively represent the best

and worst case scenarios for the selection of test vector. The random test vectors used

are both generated using a random normal distribution, however one is additionally

weighted according to the velocity gradient as described in (RYT20).

Results from resolvent analysis at St = 1, β = 0 and St = 6, β = 20π are sum-

marized in figures 2.2 and 2.3. Both of these are cases in which the algorithm can

potentially struggle as σ1/σ2 is not very large, ≈ 6 and 20 respectively. For the

former case, all response modes converge by ten iterations, with results showing ex-

cellent agreement. A poorly chosen test point results in the forcing mode converging

more slowly, not converging by the tenth iteration. However selecting a test point

at the location of the maximum velocity gradient results in the solution converging,

and once again obtains excellent agreement with the exact solution. Of all the ap-

proaches, a single test point near the leading edge of the airfoil performs best after

a single iteration, while a single test point in the wake performs the worst, as it is

unable to excite the first order forcing mode at all.

For the St = 6, β = 20π case, the results follow a similar pattern. After the

first iteration, the random test vector, gradient weighted random test vector, and
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Figure 2.2: Forcing and Response modes at St = 1, β = 0 for different types of test

vectors after 1 and 10 iterations
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Figure 2.3: Forcing and Response modes at St = 6, β = 20π for different types of test

vectors after 1 and 10 iterations
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the single point near the leading edge are already very difficult to distinguish, in

agreement with the results of (RYT20) The single point forcing near the wake is

unable to excite the forcing mode, however by the tenth iteration also results in an

accurate solution. While the random test vector has been shown to work consistently,

a single point test vector can obtain even better performance when chosen correctly

as it can more precisely target purely the first order mode.

Convergence behavior of the iterative algorithm is shown in figures 2.4 and 2.5.

The convergence rate for all methods follows the theoretical predictions, depending

only on the ratio σ1/σ2. The convergence rate for some high error test vectors demon-

strates odd behavior for the initial iterations, since the error is so large in these cases

that the simplifying assumption used in the Taylor expansion of the error formula is

no longer valid. For the St = 6, β = 20π case, the wake test vector actually converges

slower than the St = 1, β = 0 case despite a higher σ1/σ2. Early on the error for this

case is dominated by the spatial discrepancy between the test vector and the forcing

mode resulting in a value of α1/α2 ≈ 10−6. In order for the solution to converge the

test vector in future iterations must overlap with the structure of the forcing mode,

which is more difficult in the β = 20π case as the size of the forcing mode is much

smaller.

While the convergence rate is indeed similar for all methods, the choice of sketch

vector can have a dramatic impact on the initial error, with a single sketch point

placed at the leading edge of the airfoil has an error of order < 10−5 while a random-

ized vector has an error of 102 for St = 1, σ1/σ2 ≈ 6. For cases with ratios σ1/σ2 ≈ 1,

poorly chosen test vectors can struggle to converge, however proper selection of the

test vector can result in convergence after only 1 or 2 iterations.

We additionally examine the error and convergence behavior of the algorithm for
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Figure 2.4: Singular value error; Cosine similarity error of response modes; Cosine

similarity error of forcing modes for St = 1, β = 0.
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Figure 2.5: Singular value error; Cosine similarity error of response modes; Cosine

similarity error of forcing modes for St = 6, β = 20π.
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Figure 2.6: Plot of log(α1/α2) for single point forcing.

a selection of points on the surface of the NACA 0012 airfoil located at the leading

and trailing edge, as well as the half chord on the pressure and suction side. The first

iteration error depends on the ratio α1/α2. The spatial distribution of this ratio, as

well as the test points examined on the surface are presented in figure 2.6. The first

order forcing mode is primarily located near the leading edge of the airfoil, extending

over the suction side, resulting in the test points in those regions outperforming the

pressure side and trailing edge cases by several orders of magnitude, as presented in

figure 2.7. While the initial error strongly depends on the selection of test point, all

cases converge at the same rate due to the independence of the convergence rate from

α1/α2. The convergence rate is instead problem specific, determined by the ratio in

singular values σ1/σ2.

We also examine the structure of the forcing modes obtained after the first itera-

tion in figure 2.8. The forcing mode calculated using the point placed at the leading

edge is practically indistinguishable from the one obtained through the full SVD. The

forcing mode calculated using the point at the trailing edge captures the primary fea-

tures of the forcing mode, but also erroneous structures near the trailing edge. The

additional structures are formed due the this point also exciting the second order
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similarity error of forcing modes for a collection of test vectors on the airfoil surface.
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Figure 2.8: Forcing Modes calculated using a point at the leading edge, a point at

the trailing edge, and the full SVD respectively
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Figure 2.9: The leading singular values against Strouhal number for two values of the

spanwise wavenumber.

mode, which is located primarily in the wake. The forcing modes calculated using

this point are therefore a superposition of the first two modes. The vector containing

the leading edge point is nearly orthogonal to the second order forcing mode while also

aligning much more closely with the first mode, dramatically improving the accuracy

of the result.
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CHAPTER 3

Application

3.1 Computational Setup

We consider compressible turbulent flow over an extruded two-dimensional cross sec-

tion of a Honda SUV which is periodic along the z-axis. Simulation results are

provided by Honda R&D Co., Ltd. in the form of 2D slices of the 3D flowfield.

The streamwise velocity (U∞), density (ρ∞), dynamic viscosity (µ∞) at the free

stream are set as 27.77 m/s, 1.205 kg/m3, 1.822×10−5 m2/s, respectively. The free

stream Mach number and cross-section based Reynolds number are computed as

M∞ ≡ U∞/a∞ = 0.1 and Re∞ ≡ ρU∞
√
S/µ = 2.5× 104, respectively, where S is the

streamwise cross-sectional area of the vehicle. The flow is numerically simulated using

Large Eddy Simulation (LES) using the Vreman subgrid scale model in the CharLES

CFD software. The linearized Navier–Stokes operator Lq̄ is constructed with respect

to the 2D mean flow state q̄. The flowfield at the mid slice is shown in figure 3.1.

The mean flow is calculated by averaging over a collection of 47 z-slices containing

the time averaged flow variables q̄(x, y, z). The resulting mean flow is used for the

construction of the linear operator (This section has been adapted from a section

originally written by Vedasri Godavarthi for a co-authored paper ”Open loop flow

control strategy for drag reduction over an SUV using windowed resolvent analysis”,
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which is currently in preparation).

The resolvent analysis is performed on a seperate grid from that used by the flow

solver. The resolvent grid is generally coarser than that need for the LES, however care

is taken to resolve the region upstream of the vehicle in order to ensure that forcing

modes can be accurately captured. The mesh fills the domain x/L ∈ [−27.34, 56.89]
and y/L ∈ [0, 7.19] where L is the height of the vehicle. The resulting mesh contains

127959 cells resulting in a linear operator of dimensions 639795 × 639795. In the

process of constructing the linear operator, the surface of the vehicle and the ground

are treated as adiabatic walls with the no-slip boundary condition, however the ground

has a velocity equal to the free stream. All other boundaries utilize a sponge region

to prevent numerical reflections.

3.2 Resolvent Analysis over Honda SUV

We perform resolvent analysis of the base flow over a Honda SUV to understand the

dominant input-output mechanisms of the flow. The resolvent operator is formulated

for a two dimensional mean flow, under the assumption that the flow over the middle

portion of the SUV will be predominantly two dimensional. While there are undoubt-

edly significant three dimensional contributions to the wake and drag characteristics

of the vehicle, this two dimensional approximation should allow for the extraction of

key flow behaviors, akin to studying the flow over an airfoil instead of a finite wing.

Construction of the resolvent operator for a two dimensional mean flow results in an

operator size of n = 105, which already incurs significant computational expense. The

assumption of a two dimensional flow is made for resolvent analysis with hopes that

the insights will carry over to a significant part of the overall flow.
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Figure 3.1: Instantaneous u velocity component normalized by the maximum value

for flow over a simplified body used for resolvent analysis (top) and the full 3D vehicle

geometry (bottom).
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Figure 3.2: The region of focus of this study is highlighted by the red region (middle

portion of the vehicle).

To develop guidelines for active flow control, we compute the SVD of the resolvent

operator to obtain the forcing and response modes with a corresponding gain. The

forcing and response modes are shown in figures 3.3 and 3.4. By examining the

forcing modes, we can understand how the flow can be most efficiently actuated. The

response mode is also significant, as simply forcing in the optimal manner described

in the forcing mode does not guarantee a response which will be aerodynamically

beneficial, only one with a large amplification. In order to effectively reduce drag

we must induce a response which will nonlinearly alter the mean state of the flow

(YT19). Figures 3.3 and 3.4 show a wide range of potential responses, and the effects

of these responses on the mean flow can be difficult to predict. Further examination

is required to determine which ones may contribute to drag reduction.

Also of great importance is the gain associated with each forcing and response

mode pair. The gain distributions for the modes presented in figures 3.3 and 3.4 are

presented in figure 3.5. We are generally not concerned with modes with low gains as
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actuating according to such a forcing mode will not produce a significant response.

The gain, as well as the forcing and response modes, are frequency and wavenumber

dependent. The gain plotted against frequency and wavenumber also provides some

valuable insight into the flow. Figure 3.6 shows that the flow is most sensitive to two

dimensional disturbances at approximately St = 0.25, corresponding to the dominant

frequency and scale in the wake. Figure 3.7 shows the forcing and response modes

corresponding to this gain, highlighting the generation of large wake structures due

to a forcing focused near the rear of the vehicle.

Figure 3.5: The primary gain distributions for St at the wavenumbers presented in

figures 3.3 and 3.4
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Figure 3.6: Peak in the gain distribution at a peak of St = 0.25 corresponding to

the dominant vortex shedding frequency. This peak occurs for a wavenumber of 0,

indicating the two dimensionality of the wake structures.

The drag characteristics of the vehicle strongly depend on the wake dynamics.

Large low pressure structures in the wake of the vehicle are a major contributor to

its overall drag. We seek to understand how these structures develop as a result of

shear layer interactions over the surface of the vehicle. To accomplish this, we uti-

lize windowed resolvent analysis to examine the sensitivity of the flow to developing

structures in the shear layer region. We construct a windowing matrix C correspond-

ing to a 1× 0.75 meter region in the flowfield. This window is positioned at various
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Figure 3.7: Global response modes highlight the large amplification occurring in the

wake. Global forcing modes reveal that large wake structures can be actuated from the

rear of the vehicle. While this is likely undesirable for flow control, this information

is useful for understanding where wake structures originate.

regions on top of the car as shown in figure 3.8. Moving this response side window

reveals the frequency and structures that can be most effectively generated in the

windowed region. Figure 3.9 shows the resulting resolvent gain for several wavenum-

bers at two frequencies. At the wake frequency of approximately St = 0.25, there is a

clear trend in the how the gain is affected by the position of the window for different

wavenumbers. Higher wavenumbers correspond to smaller structures, which peak in

their amplification earlier on in the shear layer. Lower wavenumbers, corresponding

to larger structures, peak in their amplification near the back of the vehicle. The wake

region is dominated by 2D structures which see the largest overall amplification. At

significantly higher and lower frequencies the resulting gain is much smaller. Previous

analysis suggested that the modal structures generated by high frequency actuation

in the shear layer may be beneficial for drag reduction. While this is true, the gain

associated with these frequencies is so much smaller than the gain at frequencies near

St = 0.25 that we do not consider these higher frequency modes to be suitable for

control.
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Figure 3.8: Positions of resolvent window over the surface of the vehicle. These

windows limit the space in which response modes can be generated, allowing us to

isolate the behavior of the flow in a specific region.

This result inspires a potential approach to active flow control. Delaying the

formation of large scale structures in the wake could result in drag reduction (GTN22).

By utilizing the natural tendency of the flow to amplify smaller three dimensional

structures in the shear layer, we may be able to delay the formation of large two

dimensional structures which create large drag forces. Generating additional smaller

structures earlier in the shear layer and larger structures later, where they will be

most greatly amplified, could slow the process by which these structures naturally

merge into larger structures in the wake. Delaying these structures until later in the

wake can increase the pressure on the rear surface of the body, reducing drag. In order

to determine how to generate these structures, we can utilize forcing side windowing

to determine where and how to actuate the flow.

We apply a forcing side windowing matrix B corresponding to points on the surface

of the vehicle to reflect possible positions for actuator placement. We can see from
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Figure 3.9: Resolvent gain for response side windows at several positions over the

top of the vehicle at frequency of St = 0.25 (left) and St = 2.5 (right). The gain for

frequencies other that the wake frequency are relatively small.
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figure 3.10 that in order to produce structures early in the shear layer, near the

front of the roof, we would need to actuate the flow near the top of the windshield.

As we move the response window along the surface of the roof, the optimal forcing

positions for higher wavenumbers shifts to follow the response window. For lower

wavenumbers, the optimal forcing position moves very little if at all, remaining near

the top of the windshield. This behavior can be intuitively understood as larger

scale structures being more persistent in the flow, making it possible to generate

them further upstream and allowing them more time to be amplified by the natural

mechanisms of the flow. Smaller structures are less persistent, and must be generated

near where we want these structures to appear.

We also examine the direction of the forcing modes, which can be used to inform

the optimal direction for a synthetic jet actuator. The forcing directions illustrated

in figure 3.10 show the direction and relative strength for actuators placed at the

point where the forcing mode is largest. The actuation direction for almost all modes

is at an approximately 45 degree angle from the surface of the car. Modes actuated

near the front of the roof are actuated with blowing in the same direction as the free

stream flow while higher wavenumber modes near the rear of the vehicle are actuated

by blowing in the opposite direction. We note that all of the modes of resolvent

analysis are sinusoidal with respect to time. While it is possible for the x and y

components of the velocity to be out of phase with one another, for all cases studied

here the phase difference is very small, on the order of 10−5. This is fortunate for

potential real world applications, as any potential method of actuation only need be

able to apply forcing along one dimension instead of two.

The combined information from the windowed forcing and response modes results

in a comprehensive recommendation for potential flow control. Actuation should be
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performed near the dominant wake frequency to obtain the largest possible amplifi-

cation for any input. We hope that by introducing three-dimensionality into the flow,

the formation of two-dimensinoal structures in the wake can be delayed, potentially

leading to drag reductino. We wish to generate small structures early in the shear

layer, and larger structures later, corresponding to the regions of the flow where they

will be most greatly amplified according to the windowed resolvent analysis. Larger

structures should be actuated near the top of the windshield since they can persist in

the flow over the entire length of the vehicle, allowing them more time to be ampli-

fied. Smaller structures which do not last long in the flow must instead be actuated

much later in the shear layer, near the corresponding response mode. These results

are summarized in figure 3.12.

3.3 Conclusion

Resolvent analysis is a powerful tool, capable of providing valuable insights into the

input-output behaviour of turbulent flows. While the computational burden of this

technique can be significant, sketching the resolvent operator can significantly redcuce

the compuation time and memory requirements of the SVD. While a randomized

test matrix is suitable for many cases, performance can be improved through careful

selection of the a test vector when higher order modes are not necessary. Using a test

vector makes it relatively simple to examine how exactly the sketching process affects

the accuracy of the algorithm. The error analysis of the algorithm suggest that the

test matrix can be sparse without a loss in performance. We show that when properly

selected, a single point test vector can outperform a full test vector.

An important term in the error analysis is the inner product α1 = ⟨V1,Ω⟩. The
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improvement of the accuracy for test vectors more closely aligned with the forcing

mode leads us to formulate this algorithm as an iterative process, where the test

vector in the next step is the forcing mode calculated in the current step. Utilizing

this iterative algorithm we can obtain results in excellent agreement with traditional

SVD methods using arbitrary test vectors, with the number of iterations necessary

for convergence significantly reduced by careful selection of the initial test vector.

This method is then used to analyze the flow over a Honda SUV. The global

forcing and response modes grant insight into the behavior of the flow. Specifically,

in order to reduce drag we wish to alter the wake dynamics, as large structures in

the wake are responsible for a large amound of the total drag on the vehicle. To

understand how to alter the wake dynamics we perform windowed resolvent analysis,

utilizing a moving window to study how the response changes as the window moves

from the shear layer into the wake.

Windowed resolvent analysis reveals the dependence of the gain on the scale of the

structures. Higher wavenumber structures corresponding to small three dimensional

structures peak in their gain over the vehicles surface. As we proceed to larger

scale structures with lower wavenumbers, we find that the maximum gain for these

structures occurs at the very rear of the vehicle. Large two dimensional structures

dominate the wake itself. These results inspire a potential flow control method, by

generating a smaller scale structures earlier in the shear layer, and larger structures

later, we can introduce a large amount of three dimensionality to the flow.

In order to understand how to actuate these structures we study the body win-

dowed forcing modes. We find that the flow is generally sensitive near the top of the

windshield, however smaller scale structures will not persist long in the flow and must

be actuated nearer to where we desire the response to be amplified. Larger structures
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can also be actuated at the front of the roof, allowing them more time to be amplified

by the flow.
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Figure 3.12: Recommendations for flow control over a Honda SUV. Dashed structures

corresponding to regions of actuation, while solid structures correspond to the regions

in which they will be amplified. Colors are labeled by wave number β, as well as the

corresponding spacing S. All x positions are measured with respect to the top of the

windshield.
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