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NEW OUTLOOKS D~ STRONG INTERACTION F.ti"YSICS * 
(Three introductory lectures in S-matrix theory delivered at the National 
Reactor Testing Station, Idaho Falls, Idaho, November 3-5, 1965.) . 

Richard C. Slansky 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

Many optimists believe we stand on the verge of the third great 

revolution in physics of this century. To clarify the cause of all this 

exci:ement, let us take a quick but sweeping tour of the previous two 

revolutions, making special note of the results most applicable to a theory 

of strong interactions. ~'his will more than set the scene of action 

since the present revolution is attempting to unite the insight's of. the 

previous two into a single theory. The first revolution, inspired by 

Albert Einstein, did more than teach us that the form of a law of nature 

must be invariant under Lorentz transformations. However, the key word 

is given here--invariance. The great contribution was the insight that 

symmetries exist, and physical laws will not change when the system (or 

observer) is transformed by one of the symmetry operations. Lorentz 

transformations are a typical example. If the system is rotated, translated 

in space or time, or its uniform velocity with respect to the observer is 

boosted, the form of the laws governing the system is w~changed. A 
~, 

memorable result is: For every group of syrr~etry operations, there exist 

conserved quantities. The operations· of translations in space-time of the 
..,. 

Lorentz group yield the conservation of linear momentum and energy. Hence, 

*This work performed under the auspices of the U.S. Atomic Energy Commission. 



-2-

by-finding conserved q:uantities, we learn something .about the symmetries of 

the physical system. However, there are many symmetries of strong interactions 

whose origins are not wel-l understood. Ultimately a complete theory should 

show that these syw~etries are implied by its postulates. The first revolu-

tion is surr~ed up in our awareness of symmetries in nature. 

The second revolution occurred in the twenties and was headed by such 

physicists as Schrodinger, Heisenberg, and Dirac. Quantum mechanics has had 

a profound influence on our understanding .of natural phenomena in the small. 

For example, understanding the ~1enome1on of electron diffraction could be 

very complicated, since this is an example of a particle behaving like a wave. 

The formal result of quantum mechanics is to consider the probability amplitude 

as the basic quantity. By postulating that it belonged to some sort of.linear 

vector space, it became a simple matter to account for the particle-wave . 

duality exhibited in atomic phenomena. Then if l·ie take a measurement, the 

probability of a certain result is given by the absolute square of the ;; 
J~.-·1 

; .. ( 

amplitude. Perhaps the most memorable result of quantum mechanics is this 

concept of a probability amplitude, and its relation to the process of making 

an observation. As a postulateJ we accept the existence of the amplitude in 

·the new theory. 

Quantum mechanics is a nonrelativistic theory, a)ld the attempts to 
; 

generalize it to the relativistic dowEin cause trouble. A very.natural 

' extention of quantum mechanics to the relativistic domain is called nrelativ-
' 

istic quantilln field theory. 11 Although this theory has met with much success 

in understanding electromagnetic phenomena, in its useable forms it has been 

rather unreliable for strong interactions. However, field theory is a strong 

candidate for being the correct theory. We shall say more about this later. 

' 
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Before exposing the essence of the third revolution, let us note a 

basic characteristic of all t~xee of these theories. The theory of relativity 

as a generalization of Newtonian mechanics re~uires that we specify the 

particles (or mass distribution) of the system before we can write down the' 

compl"ete field equations. Quantum mechanics also re~uires knowledge of the 

particles in the system. Also we must knm-r the potential before we can write 

down the Schrodinger e~uation for the probability amplitude. Even in the 

standard formulations of field theory, the particle-fields and their inter-

action must be given before calculation can be started. It is in just this 

1-ray that the new theory may differ drastically. The content of the third 

great revolution may be stated as this: In the domain of strong interac~ions, 

~t may be possible to construct a theory in which we need not give the 
-.'i -·· 

particles or their interaction. Within the postulates of the theory thefe 

may be only one self-consistent set of particles. The masses, coupling_; 
F~~· 

constants and ~uantum numbers of the particles will be determined by th~ 

theory and will not have to be inserted into the theory from experiment~; 
\~ 

This set of particles will be just that set we know from experiment. The 

only-Tundamental constants we need will relate our convention of measurement 

to nature's. (Two of the three necessary constants are already known-.t'fl and 

c.) -Thus, the revolv.tionary claims there are no "elementary" particles. The 

existence of any strongly interacting particle is due to the existence of all 

other strongly interacting particles and the forces by which they interact. 

The amazing· prospect is that we rr,ay be able to build a theory without any 

arbitrary degrees of freedom. Consequently, we ·begin with "nothingn, and 

pull ourselves up by our bootstraps. So the theories are dubbed nbootstrap J 

theories, 11 and the formulation the bootstrap theories have been the object·of 

studying the analytically continued S-matrix. 
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Obviously, one can be more conservative! To be more in line with 

traditional q_u.antum field theory, some physicists believe that some particles 

are elementary (i.e., no matter how strong the mathematical methods, the 

masses, and coupling constants of these particles will have to be inserted 

into the theory). 'l'hen other particl~s may be :rbound states 11 of the more 

elementary particles •. For the very conservative, all the particles are 

aristocrats, and there exists a gy.antum field ope:!'ator corresponding to the 

particle which can be inserted into the theory at the physicist's will. 

In these lectures, we shall favor the first idea, that of nuclear 

democracy. Although sucha revolutiona.ry·idea. might fail, the prelimina,ry 

-calculations have been q_uite successful and the ideas behind the'bootstrap 

theory are sufficiently exciting to warrant closer examination. Since no 

background in particle physics is assumed in these lectures, we. shall begin 
j 

from the beginning--a survey.of experiment. Then a. q_u.asi-historical r~yiew 
·r·. 

of the ideas ·that have lead to the bootstrap idea. ·w-ill precede a· simplEL.example 

given in the third lecture. ·.To avoid confusion as to the direction of ~hese 

lectures, we now give a rather complete outline of the lecture topics. 

Bart I discusses phenomenology. After describing a. typical experiment, 

we shall consider some of the physical q_uantities 'the. experime-ntalist might 

measure (cross sections, branching ratios, etc.). In accord with q_uantum 

mechanics, we then define the S-m.atrix. Since S-m.atrix theory must be 

relativistic, some relativistic kinematics will be necessary. From the 

kinematics and the description of scattering processes, we learn how short 

( -24 ) lived particles 10 sec. can be detected. 

In Bart II, the dynamics of strongly interacting particle processes 

will be given more serious consideration. Memorable results of q_u.antum 

mechanics and field theory will. be used to motivate S-1natrix theory. The 

• 

t._ ___________________ ___; ________ ~---.:..~~·--..,-,-,. -~---~ __ ,,., . .,.. 
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principle of maximal analyticity will be explained, and with the concept of 

crossing, the·basis of the bootstrap theory should become ~uite plausible. 

In Bart III, we use just analyticity and unitarity to derive e~uations 

for the amplitude •. In deriving the N/D equations, the ideas of Bart II will 

· be emphasized. 

Before leaping into the problem, let me make a couple of pedagogical 

notes. 

Farticle names: I don 1 t want to spend a lot_of time naming particles. 

I will rarely refer to specific particles, except for the pion (~) and the 

nucleon (N) • If you don't know the other particle names; then just consider 

the words I use as labels to describe objects with a fairly well-defined mass 

and other ~uantum numbers. The ~ has been called the ngluen that holds the 

nucleons in a nucleus together. Its mass is about 140 MeV and it exists in 

( + 0 -) three charge states ~ , ~ , ~ . The spin of the ~ . is 0 ahd its,parity 

is negative. Everyone knows ·about the proton and neutron (N). The nuc'Kon 

exists in 2 charge states (n and p ), has spiri ~ , parity even, and mass of 

about 940 MeV. 

Units: Instead of using human measuring units, we shall use the 

natural system in which 1f = c = 1, both in magnitude and dimensionally. 

2 Hence .E = me = m • In ordinary units 

If ;.rf = c = '1 then 

1'lc;= 1 == (6.58 x 10""
22 MeV-sec)(3 x 1023 fermi/sec) 197 Mev-fermi 

This tells us how to recover the proper dimensions of any 1xperimental 

~uanti ty. For example 

.. · 
---.. -------------
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2 
f' 20 millibarns • 

Hence, we can "ignore:r 11. 1 s and c's in our eq_uations. 

PART I - A VISTA OF STRONG I~~CTION PHENOMENOLOGY 

Before discussing theoretical ideas on how strong interactions take 

place, we should develop some intuition about what is happening. Such 

discussions lead to basic·ideas as to the req_uirements to be placed on the 

theory. The fact is that only one kind of experiment can be used to probe 

the nuclear force: scattering experiments• Hence, the theory need be concerned 

only with calculation of the s·cattering amplitude. Before introducing this 

q_uantum mechanical q_uantity, consider the following rrtypicalrr experiment. The 

scene is the Bevatron at the Lawrence Radiation Laboratory in Berkeley. 

An arc in H2 gas produces positive ions (protons)' which are ~~ans-
·~'e 

.ported to a static accelerating field of 500,000 volts d.c. Before in~ection 

into the Bevatron itself, these l 2 MeV protons are accelerated to 10 MeV (lab 

·kinetic energy) in a linear accelerator. In the Bevatron, small accelerating 

boosts are supplied by electric fields, and the protons are kept on the 

circular track by an increasing magnetic field. As the bunch of protons 

becomes more energetic, the magnetic field necessary to keep them on the track t 

increases. The final energy is limited by the strength of the magnets. The 

wave packet of about ll 
2 x 10 protons is only several inches long when th~ 

protons reach 6.2 BeV. (The protons have now gone around the Bevatron about 

400,000 times--or to the moon and half way back.) 

The experiment now begins. A target is dropped.into the beam path) 

and a great spray of nuclear matter emerges: Protons, antiprotrons, neutrons, 

.. 



i 
! 
i 

I 
I 
l 
I ~, 

I 
~-· f .. 
t. 
t: 

I 
~ (f" 

I 

j. 
' ... 

-7-

1! mesons} K mesons}. and strange baryons, such as A and - One of the 

major tasks that the experimentalist has is to "design a beam" from this 

conglomeration. By using separators, focusi11..g magnets and other electro-

magnetic devices, he .can pick out particles of some type and energy which 

are then transported to a second target. 

The second target may be (for ·example) a bubble chamber where the 

tracks of the incoming and outgoing charged particles are recorded on a 

photograph. ~he bubble chamber is a big tank in which liq_uid hydrogen (a 

proton target) is placed QDder high pressure~ .The pressure is suddenly 

released just before the particles enter the chamber. In the superheated 

lig_uid, the charged particles leave tracks which a camera photographs. The 

pressure is then reapplied and the bubbles are sg_ueezed out of existence. A 

few seconds later, after the next packet of protons is accelerated} the cycle 

is repeated. 

The particle tracks are curved due to high magnetic fields. 

·-" 
·i~/ 

TJ~ amount 
-~-"!-

of curvature depends on the charge and momentum of the particle. Hence;( from 

the picture of the particle event,· the experimenter can identify the resultant 

particles and their momenta. 

Another interesting detector is a spark chamber. After hitting a 

target, the scattered particles pass through a set of parallel plates. 

Because of·the high voltage across the plates, the particles ionize the air 

enough that" a spark leaps between plates. Sonic detectors then locate the · 
-~ 

spark and the information is put on a magnetic tape or sent directly into a:h 

on-line computer • 

By counting the different types of events, the experimentalist can 

measure various experimental q_uantities. It is the job of some theoreticians 

to calculate .the q_uantities from their theories. So we indicate several of 
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the most important experimental parameters. 

The cross section for event X is the probability that X will 

happen per unit time per unit volume divided by the incident flux or total 

incoming probability current per u.11it volume. For example1 the total cross 

section is 

total 
0 

= Probability that anything happens/sec/unit volume 
incident flux 

We estimate the "size" of the cross section by the following dimensional 

argument. The range of the nuclear force is approximately equal to the 

inverse mass of the pion. Hence 

2 
rcr = 

l 
2 m rc 

197 
2 

2 
= rc ( l40 ) (fermi) ~ 60 millibarns. 

So a typical cross section is on the order of millibarns. 

The elastic differential cross section is 

= Probability of an elastic scattering going into drl/ sec/volumJ~'. 
incident flux 

Note that we must sum over all those states which are not specifically 

observed. For example1 we must sum over the spins and momenta of the final 

state to find the differential cross section. 

Another experimental quantity is a branching ratio R • 

R = 
o(A + B ~ a1 + a2 + ···) 

o(A + B ~ ~l + ~2 + ···) 

There are polarization cross sections, etc., but these .would only serve as 

further examples of the same idea. 

A general description of scattering processes is given by quantum 

mechanics. In follm•ing .. quantum mechanics ·.this far, we_ assume the existence 

·--.----·----~-·-----------------------~-------~-~.,.,...,·~:-:=~-:::-:-
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of a probability amplitude whose absolute value squared gives the probability 

for a system to go from some initie.l state i to some final state f . T"ne 

final state need not have the same pg.rticles as the initial state. If ve 

assume that the set of all possible initial states spg.ns the same spg.ce as 

the final states, then there exists a unitary operator that takesus from 

one ""basis" to the other. The operator is the S-matrix S • 

represents the set of all possible initial states ·and ¢(out) 

If ¢(in) 

the set of 

all possible final states then: 

We define matrix elements of S as follows: 

(in) (in) 
= (¢f ' s ¢i ) = 

(out) 

(¢f ' 

(in) 
¢i ) = 

(out) (out) 
(¢f ' s ¢i 

In these definitions, we have used the unitarity of S 

t ··~ 

S S I 

where I is the identity operator •. If the states·· ¢(in) and ¢(out) 

really form a basis for the same space, then the scalar product must be 

preserved Lmder the transformation from the (in) to the (out) states. 

Thus S is unitary: 

(¢/in), ¢i (in)) = (s ¢/out), 8 ¢.(out)) 
~ 

(defn of s) 

(¢/out), t' ¢.(out)) = s s 
~ 

(defn of unitary) 

) . 

= (¢f (out), ¢.(out)) 
J. 

(requirement of preser~tion 
of scalar product) , 

Hence 

st s = 



i 
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l' 
; 

.,· 

;;:_:\ 

-10-

The Q~itarity of S is one of'the most "basic ideas exploited inS-matrix 

theory. 

For convenience and other reasons that ivill "become apparent, ive split 

S into two pieces. First, nothing might happen (no scatterin~; second, if 

something d.oes happen energy and momentum must oe conserved. We write: 

= + P. )Af. 
~ ~ 

where ·5fi = 1 if f = i and 0 otherwise, and 

only if energy and linear momentum are oath conserved. We have factored out 

these two unanalytic pieces so that A will be a smooth function of its 

arguments. 

We -vrill characterize the process 

i -> f 

oy the amplitude A . For the scattering 1 + 2 ~ 3 + 4 , we draw a picture 

of A • 

By well-defined q_uantum mechanical procedures, A can oe related to the 

various experimental q_uantities. If particles 1 through 4 are all 

spinless, then the differential cross section is given oy: 

dcr 
d~ = 

lr1! 
l:£31 

where E is the total center-of-mass energy and 1~1 1 and 1~3 1 ar~ the 

magnitudes of the three momenta of particles 1 and 3 in the center-of-mass 

frame. The matrix elements of A are functions of scalar ·variables. 

.. 
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By. the relativistic invariance of the theory1 A transforms like a 

scalar under Lorentz transformations. Hence A is a function.of the scalar 

invariants that can be formed out of the momenta in the process. If p is 

a four vector whose components are (E1 E) (c = 1), then the sca:Lar product 

bet"t:veen and 

= 

and 

= 

is defined by 

2 
m 

where 
2 

m is a .constant according to special relativity. If :g = 0 1 then 

m is just the rest mass of the particle. Hence p.p .·gives·a .trivial invariant. 

Now consider the nontrivial invariant: 

s is necessarily a Lorentz invariant--it has the same value in any frifhe 

of reference. 

s = 

In the center-of-mass frame1 where u = -p = n 1 then : *-1 ~2 .;<:. 

2 
( tSJtal CM energy) . 

For reactions like 1 + 2 _,. 3 + 4 , there exist two scalar invariants which 

we call s and t • Hence A = A(s,t)(see Bart III). The. main result of 

this kinematical analysis is that we perform our calculations in any convenient 

frame of reference. Then we can redefine the scalar invariants in terms of 

the lab system, and hence compare with experiment. 

Armed with the knowledge of the existence and Lorentz invariance of 

A , we now re-examine a typical scattering experiment while keeping two 

questions in mind: (1) How are short lived particles detected?. (2) Do the 

experimental results yield any hints about the structure of A ? 
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There has been a great proliferation of the strongly interacting 

particles,. but most are unstable under strong intel'actions. We can estimate 

their life time by an argRment which we give later. The result is that for 

a typical width of r = 100 MeV 

l l 
T = = r 100 MeV = ·= 100 MeV 

6. 58 x l0-
22 

MeV-sec == 6 x 10-24 
100 MeV 

sec . 

Hence, if a particle is produced at near the speed of light, it travels about 

a fermi before it decays. We could never see such a particle as a track in a 

bubble chamber. How, then, are these 11resonances" detected? The detection of 

resonances follows from the analysis of the momenta of the final particles. 

Consider the reaction 

We might guess that 

However the 

two pions : ,
1 

+ p + 1! 

= 

0 + 
p+1! +1! 

might form a short lived particle before breaking .into 

.. 
' ' 

•' 
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or the p and the 0 
:n: + or .:n: might resonate: 

or 

There are other resonances that can be studied by this reaction, but let's 

forget them. We note that in all three of these cases, the final particles 

are the same. As the instructive example, we ·shall look for the p meson. 

It is a well known particle with quantum numbers I = 1, J 1, P = (- ) , and 

G = (+)j or in shorthand 1(1-+). 

r = 112 MeV. p 

Its mass · and width are m = 769 MeV and 
p 

If we define the scalar invariant s - (p + ~ )2 then l ,-. 1{+ .!:'1(0 . 

A= A(s ···) where the dots stand for the other·independent scalar variables 
l . 

of the problem. Now suppose that A(s
1

· · ·) =·constant. We can calculate the 

cross section assuming A(s
1

· • •) constant for a given incident energy of the 

. incoming pion. We find the plot of da to look like the solid line: .• 
ds

1 

The cross section assuming A is constant is called the phase space cross-

section. 

An experiment is now performed at the same incident energy for which 

the phase space plot was calculated. But experimentally we find that 

da 
does not follow the phase-space cross-section. Experimentally the ds

1 
results look like the dotted line. 
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At there is a bump in the cross section with respect to 

phase space. There are two major points to be made about this plot. 

First, the lao-bound experimenter can make such a plot. The reason 

is that we can evaluate s
1 

.. in both the lab frame and in the center of mass 

system of the two pions: 

s· 
l 

= 

where ECM is the total energy of the 0 + 
1( 1( system in its center of mass. 

In the lab, 

' 2 
+ J.L ( 

lao lao)
2 

- p + p 
~ + ·~ 0 

1( 1( 

) 

where J.L is the pion mass. Hence the lab bound experimenter can measure 

dcr 

ds1 ~ 

Secondly, the existence of the bump is very suggestive. The cfbss 

section can be fairly well duplicated if we assume that A· is dominated by 

a pole for values of near (769 Mev) 2 : 

2 2 
g g 

A(s .. ~) .::::. A(s1 ) ""- . ~ 
1 r M 2 + i MP r 

(M - i _e.) s -
sl - 1 p p 

p 2 

Consequently: 

4 
dO 

IAI
2 g 

ds = 
M )2 . 1 (s - + r 2M2 

1 p p p 

With this experimental motivation, we shall postulate that single particles 

correspond to poles in the scattering amplitude. The pole-particle 

.. 
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association is basic in S-matrix theory. 

We novr derive the formula that -r = J/r ~ lifetime of particle. 

This derivation shows that the particle pole association and the concept of 

complex mass do have a quantum mechanical correspondence. A p meson at 

rest can be approximated by a plane l·rave: 

1.jr 
- i E t 

= e ' 

E*t - i E t 
- i t(E-E*) 2t Im E 

1\jr 1
2 

"' 
i = e 

e e e 

But 

(M -
r 2 

E2 r 
sl = i -) = or Im E = p 2 2 

Thus 

11.jrl
2 - r t t/-r: 

"" e = e 

Hence, in nonrelativistic q_u.antum mechanics, the pole does correspond ~,1:, a 

decaying particle with a life time of ·'t" = ¥ . 
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PART II. . TEE RISE OF DYNA.tVITCAL THEORIES 

Before physicists began to worry about atomic and suo-atomic 

phenomena, all (known) nature was described by the classical theories of 

mechanics and electromagnetism. However, the idealized mass points7 charged 

or uncharged, have little resemblance to the particles of high energy interest: •. 

In fact these theories have nothing to say _about the interactions of· 11real 11 

particles. Consequently, the strong interaction theory need not have a 

correspondence principle to classical theory. 

The first theory that was primarily concerned with physics in the 

small was quantum mechanics. As is well known, quantum mechanics has had 

much success in -explaining low energy data. For example, the scatterL'1g of 

1 ev neutrons on complicated gas molecules can be explained strictly within 

the framework of quRntum mechanics. The deuteron, considered as a bound 

state of two elementary nucleons, is partially ~Dderstood in terms of 
:.:•\•i 

particular potential in a quantum mechanical theory. Hoi-Tever, when we go to 

high energies, there are two conditions of quantum mechanics that are not 

well satisfied. 

(l) In high energy physics, the velocities of the particles are not 

small compared to the speed of light. A 6 BeV proton is traveling at 

velocity 

v = J2. 
E = 0.986 

·the speed of light. At these velocities, the potentials of quantum mechanics 

·' 
become ambiguous, since they imply 1~action at a distance.-~ To avoid violating 

our notions of causality (the message can't be received until after it is 

sent)7 we must throw out the approximation of action at a distance .••• 

unfortunately potentials go also. 



,~'. But this isn 1 t the only problem with ~uantum mechanics: 

(2) Standard formulations of ~uantum mechanicsJsuch as the 

Schrodinger e~uation,cannot handle the creation and destruction of particles 

in a physical process. At low energies, the Schrodinger e~uation does a 

good job describing the process 

p + p p + p 

However, if the center of mass kinetic energy is greater than 140 MeV, then 

the reaction 

p + p 
.0 p + p + 1L 

is possible and we are outside the framework of Schrodinger theory. In most 

interesting elementary particle processes, we need dynamical e~uations that 

can easily describe creation or destruction phenomena during the proces~. 

Probably relativity and creation and destruction are closely r~iated. 

In any event, the attempts to generalize the Schrodinger e~uation by 

relativistic e~uations such as the IG.ein-Gordon or Dirac e~uation (as a'' . ' 

~uantum mechanical theory) fail because they lead to negative energy 

densities which we are unable to interpret. Hence.we must find a more 

radical departure from ~uantum mechanics. 

By a time worn path of reasoning, one introduces fields to avoid 

violating causality (the reason is exactly the same in classical 

electrodyna~ics.) And just as in the classical theory, the field. carries 

the energy, momentum, and other observables. In a ~u.antum mechanical 

theory, the observables correspond to Hermitian operators. Since certain 

functions of the fields are these observables, the fields must be operators,:. 

Next we write the field operators as superpositions of plane waves. Using 

· the. Fourier transform, one then notes that the Fourier components of the 



relativistic field eq_u.ations look like the harmonic oscillator in momentum 

space. Since we k.n.ovl how to quantize the harmonic oscillator in quantum 

mechanics, we can quantize the fields, and hence derive the commutation 

relations for the field operators. 

This is the most pedestrian approach to field theory and the 

construction of canonical field theory is of no interest here. In fact the 

resultant quantized fields described free particles, and their interactions 

must be introduced in a semiphenomenological fashion. However, there are 

several important and thought provoking results that~are playing an 

important role in the development of more modern theories. Much of the 

language is still couched in field-theoretic lang·I.1B.ge. Also there is the 

possibility that field theory and the newer theories may be equivalent in 

many ways. We-first n~ke a few comments on more sophisticated formulations 

of field theory than the one we just gave. Tnen we discuss one solution of 

field theory--perturbation theory and Feynman graphs. Feynman graphs vTill 

give us a dramatic -vray to talk about particle processes. 

Just as in classical electrodynamics, we r~ve to specify the 

interaction in our canonical construction. In local field theory the 

fields propagate continuously from one point to the next and interact with 

one another only at a point of interaction, the interaction is described by 

a product of field operators called an interaction Lagrangian. Since the 

quantized field operators are composed of creation and annihilation 

operators {remember the quantization of the-harmonic oscillator), we can 

picture such a point as a vertex where various particles are created or 

destroyed. For example if the three fields ¢
1

(x1¢2 (x) and ¢
3

(x) 

interact, • the interaction Lagrail.gian is given by g ¢
1 

(x) ¢2 (x) ¢
3 

(x) 

where g is the strength or coupling constant of the interaction. We 
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'. i. 

l 

represent some of the possibilities pictorially: 

. t3 ·_ 
~· 

describes the destruction of l and the creation of 2 and 3 ; or the 

same graph describes the destruction of 1 and the antiparticle of 3 and 

the creation of 2 . 
' and ~3 

)\z 
1 and 2 are annihilated and 3 created. However, surprisingly eno-ugh, 

only several interactions·lead to a self consistent theory, and this is 

true only after we have renormalized masses and coupling constants by 

subtracting co from ro . Only the 

'S---5~~ 
~'<~ 

vertex among two spin ~ particles and a spin zero or a massless spin d~~ 

one field, and ' / ...... / 
...... / 

A. 

/ " / ....... 

vertex among Tour spin zero fields lead to finite results for physical 

~uantities after the renorwBlization procedure. The interaction 

X 
(four fermidns) does not ~eed to a finite theory in higher order perturba-

tion theory) although the first order theory has been very important in 

understanding ~ ·decay. Moreover, the attempts to ~uantize massive fields 

of spin one and all fields of higher spin have encountered great difficulty. 

Such particles do exist. 

~e fact that only two interactions lead to a good theory shows the 
. . 

restrictiveness of the ~uantum field idea. Although when we constructed 
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quantum field theory in analogy to classical field theories we specified 

the interaction, the interaction Lagrangian may be superfluous to quantu~ 

field theory. It may be that the axioms of quantum field theory (the field 

idea and commutation relations, etc.) are so restrictive that we can 

construct a field theory without Lagrangians. This has lead to the study 

of non-Lagrangian or Axiomatic Field Theory. 

Axiomatic quantum field theory is a ver:y careful mathematical 

inquiry into the field idea. It is very far from calculating cross-sections 

and for our purposes, it is still a long ways from physics. We s'b..all 

sacrifice the firmness of mathematical basis for a theory which tells us 

something about physics. Tne decision to do this is personal, and it may 

be that axiomatic field theory will lead to a very reasonable explanation 

of strong interac-tion phenomena. But let.1 s leave it at that and return to 

Feynman graphs. 

Field theories have not been solved exactly, but only through . 

approximation techniques. The most famous of these is the Feynman-Dyson 

perturbation expansion of the S-matrix (Of course t~e S-matrix exists in 

field theory, just as it does in quantum mechanics.) Perhaps the nicest 

feature of the theory. is the ease with which we can interpret the pictures 

that represent the terms of.the expansion. Such intuitions obtained from 

the graphs permeate all of strong interaction physics, and in fact, most 

of modern physics. 

The result is derivable in several fashions. The answer is that 

the amplitude for a process is the sum of all possible (connected) graphs.: 

For example, the amplitude for N - N scattering is given by: 
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+ 

where the ,....-~-lines represent pions7 the solid lines are nucleons7 apd 

overall momentum conservation is implied. The theory gives a well defined 

set of rules for calculating the contribution of each graph to the series. 

These rules tell how to associate each vertex) internal line and external 

line to some mathematical operation. The mere existence of the rules is 

sufficient here and we emphasize the interpretation of the graphs. 

The first graph) t- ___ . ~ J can be interpreted to say that the 

N-N scattering proceeds by one nucleon creating a pion which the other 

nucleon annihilates. This is called the one pion exchange diagram. The 

basic idea is that the scattering is due to the exchange of a particle. The 

strong interaction force is due to exchanges of particles·in which all 

quantum numbers are conserved at each vertex. Examples of other graphs are: 

~---- i 
t-----l 

~--~::-~ 

(,t- -~-1 

etc. 

Two pion exchange. 

Crossed two pion exchange. 

One rr exchange with !!radiative" 
correction. 

One rr exchange with rrvacuum 
polarization.rr 
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(The names come from quantum electrodynamics and not from strong interaction 

physics.) You should note that the :r:articles that are exchanged (the forces) 

can be the same type of particles as those that are being scattered. The 

first few terms of the 11: + N --' 11: + N series are given by 

t I H -:.~ ...L + " I 
..-- I 

I 

Here the exchange of ·t1-TO pions or one nucleon give the lowest order terms. 

The. four line vertex is necessary because the pi is a pseudoscaler particle, 

and parity would not be conserved at a three pion vertex. 

Three absolutely essential results of Feynman graphs will lead us 

to a theory of the S-lv"atrix, vlhere we shall generalize these statements 

accordingly. 

(1) Suppose there exists a stable or unstable particle that 

communicates with (ie, has the same quantum numbers as) the initial or 

final state. Then for 11: ~ 11: scattering, there exists a graph like 

From the Feynman rules, the amplitude·has a pole at the complex mass of·the 

p • (There exist F.eynman rules for any spin. ) Hence we see that the Feynrnan 

graphs confirm our suspicion about the correspondence of particles to poles 

in the sca~tering amplitude. 

(2) Except for certain definite singularities (poles and branch 

points), the individual graphs are analytic functions of the external 

momenta. We mean analytic in the sense of complex variables and the Cauchy 

1- Riemann conditions. 

(3) The graphs are sufficiently analytic that they can be read both 

t 
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upvrard and side-vrays. The same function describes the different processes. 

For example, the one pion exchange graph, 

\_ ___ ~ 
/7 ~ 

can be read from left to right. Then we have N + N ~ rr-N + N. ·The 

pion pole exists in this channel. (A channel is a set of quantum numbers 

belonging to a state df any number of parti.cles,) . We call this reaction a 

crossed reaction. 

This is nearly all we can say from a field theory in which Feynw~n 

graphs are basic. Although many of the conjectures we will now make might 

be provable from field theory: the perturbation series itself does not 

converge in strong interactions. So as things stand now, mathematically 

we are on very shaky groDnd. Instead of vrai ting for field theory to complete 

some very difficult proofs, we can formulate a new theory just to be on the 

safe side. 

AlthoD~h the S-lf~trix Theory of Strong Interactions is not truly 

a complete theory, successful calculations have been done within the context 

of certain models. We qegin by discussing the basics of this theory. 

Perhaps the most basic postulate is the u.YJ.itarity of the S-l'A~trix. 

Recall that 

= 

and that the matrix elements of s can be written. 

= P.,) A~. 
..1. Il 

where· 



-24-

I or * L: s s == n nf "ni 5f. J_ 

Moreover, we demand that the S-Vatrix be Lorentz invariant so 

A is a function of the inv~riants. 

The very fundamental postulate that is suggested by Feynman graphs 

is that A is an analytic function. How analytic should it be? ·We make 

the conjecture of maximal anal:yticity. The amplitude has only those 

singularities req_uired by U.."1itarity. Once -vre establish the anal:yticity 

properties of A, we will be able to see that crossing has physical content 

and A does describe the rrBin reaction and the two crossed reactions. 

We have good reason to discuss the singularities req_uired by 

unitarity. If A is an analytic function, its value is determined by its 

singularities. By using the Cauchy residue theorem, we can find integral 

eq_uations for A • vJe do this for a simple case in part III. In other 

vords, the analytic structure of the S-Matrix contains the dynamics of 

strong interactions. 

Before discussing details, ve generalize the res1.li ts from Feynman 

graphs to S-lvatrix Tneory. These postulates will be the basis of the rest 

of our discussion. 

(1) A communicating particle corresponded to a pole in the Feynman 

graph. Postulate: If a particle communicates with the channels of A, then 

A contains a pole corresponding to the particle. Hence finding the poles 

of A is eq_ui valent to identifying all the particles 1dth the same q_uantum 

numbers as the initial or final states that A connects. Of course the · 

particle.pole cannot be in the physical region, for if it were, A would 

have an infinite value which could not be interpreted experimentally. 
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(2) The analyticity of the Feynman graphs is extended to the 

amplitude A Postulate: A is a Lorentz invariant function of the 

momentum invariants with only those singularities re~uired by unitarity. 

(3) The crossing property of diagrams is extended to the full 

amplitude. A . is sufficiently analytic that (for example) the amplitude 

for 1 + 2 ~ 3 + 1+: 

A -

is also the amplitude for the tvro crossed reactions 

3 
I 

lg; 
1 + 4 ~ .3 + 2 

The same function is the amplitude for all three reacti'ons. Again this is 

called crossing. (The other possible reactions are reached by s~~etries 

such a·s TCP. ) 

To avoid too abstract a discussion, we restrict ourselves to 
,. 

! * 

A = 

where 1 1through 4 are all spinless particles of e~ual mass m • As 

mentioned before, there exists two independent invariants. But we define 



three invariants--each vTill correspond to the center of mass· energy of each 

reaction. 

where 

since 

= 

s = 

t = 

s + t + u = 4m
2 

and 2 
p. 
·~ 

2 = m 

s,t, and u are called the lVJandelstam variables and they can be visu.cilized 

on a triangular plot called a l~ndelstam diagram: 

At every point on the diagram, 

4-rr?­

~/ 
fl/ 

I 

4m.z 

II~ 

Usi~~ the lVJandelstam diagram, we now find the physical regions for 

the three reactions. In the s channel (l + 2 ...,.. 3 + '4) and in the center 

of mass system: 
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s 
2 2 - 2 . 2 

(p + p ) 4r, I pI + m ) ···;,.. s > 4m 1 2 = - 7" 

2 
(£1 - £3 i~ = 

2 2 
£3] t (1\ ~ p3) = - [p . + £3 - 2p . 

~ ~1 

= - 2 IPI 2 
(1 - cos e) ~ t < 0 

u - 2 jpj2 (1 + cos e·) ~ u < 0 

The physical region for the s-channel is 
2 . . 

s > 4m , t < 0, and u < 0 • 

(For uneq_ual masses the physical region is slightly modified and the algebra 

is more complicated.) 

For the t-channel, p
3 

- - p
3 

and p2 - - p2 • Hence t is the 

sq_uare of the center of mass energy (t > 4m2 ) and s and u are less 

than zero. 

In the u -reaction 'u > 4m2 and s, t < 0 • 

~~ 
c ~.<JI''"~ l 
~--



The shaded portions of the diagram are the physical regions of the tr~ee 

reactions. ~ne physical regions never overlap (this is general). Conse~uen-

tly, if crossing is to have physical content, there can be no barriers to · 

prevent analytic continuation between physical regions. But this analyticity 

is guaranteed by the principle of maximal 13-nalyticity, as we shall 'sho-vr. So 

we finally ask about the singu~arities that ~ re~uired by unitarity. 

The unitarity relation st S = I can be written as 

I:' s * s n nf ni 

where the sum on n goes over all possible intermediate states. Factoring 

out the non-analytic pieces: 

= 

and sf S = I becomes 

= I: A f*(s,t) A . (s,:t) o(P - P.) . n n n~ n ~ 

(This derivation is carried out in.detail in Bart III.) The f and i label 

the final and initial states. For elastic scattering, i = f, and 

= A -l<­

ii Hence, 

Im A . . ( s, t ) 
~~ 

= 

These results are very important. To make them more graphic, we can 

·construct a pictorial scheme for Im A • Assume there is only one kind of 

particle, and the single particle communicates with two particles. Then, 
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+ 
d 0 
~+A+ 

The sum over intermediate states is broken up into 2,3,4, 

+ .,, , 

etc. particle 

intermediate states and each two bubble diagram implies .a sum over all 

intermediate momenta (and spins). The first term is the pole term. For 

pseudo scalar particles (such as pions) the pole term doesn't exist because 

the pion doesn't com:nunicate with the tvro pion system without violating 

parity. To simplify the algebra, we shall assume the four external particles 

are pions. 

+ + + 

The singularities of A can be found from this e~uation. At the 

threshold of the first intermediate state 2 
(s = 4m ), the amplitude suddenly 

develops an imaginary part. Below this threshold A is real for real s 

because unitarity doesn't force A to have an imaginary part. But at 

threshold there must be a singularity for the analytic function to suddenly 

develop an imaginary part for real s. The singularity is a branch point, 

and the cut is drawn as: 

As s is increased to 9m2 , suddenly a new channel opens up, the 

three body channel. Hence there is another branch point at 9m2 , and so ori. 

So far_, A has the follovring analytic structure in the complex s plane. 



! 
l \ 

I 
I 

I 

I 
I 

i 
\ 
I 
! 
i 
! 
I 
! 
I 
I 
I 
L_ 

-30-

But this isn't all-there are the crossed c}:'t..annel reactions and they also 

contribute to the analytic_ structD.re of A because of the unitarity .. 
relations for these reactions. In both the t and the u reactions, 

s is physical for s < 0 . Hence there are branch points along the 

negative s axis. ~ne full analytic structure of A in the s plane 

is then 

~- ·~- ~ ~--·~-.. -
L ... 

-.-~::-::.·:-:-~;;-~·.:. .. :, _ .. ,-:·::-.'.~.'--~-­
·-·--"'-~-~ 

Due to the simplicity of this particular problem, the t and u 

planes will look the sam.e. Moreover the right hand cuts in the s plane 

contribute to the left hand cuts in the t or u planE!. 

We can find the region of these singularities in the Mandelstam 

diagram. This is because all the singD~arities lie along the real axis. 

From the unitarity relation, Im A(s,t,u) = 0 in the region 0 < s <4m2 , 

0 < t < 4m
2 

' 

s > 4m2 
and 

and I 2 
0<u<4m. 

4m2 I 2 
t>.; s>4m 

There can be singularities only if: 

ano. u > 4m2 ; or d U '~4m2 an r 
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s 

\ 

\I 
I 

A / rt~ '\ 

t 

The actual boundary of the region of singularities are the regions of 

p ') and 
st> 1 su 

and they are called the double spectral regions. This 

representation of the analytic structure of A is called the Mandelstam 

Representation. Among other things, this proves that crossing is a~ways 

possible. 

What physics have we done? We appeal to the correspondence 

principle-with nonrelativistic quantum mechanics. In quantum mechanics, 

the left hand singularities correspond to the potential. ;In the nonrelativis-

tic theory, the crossed channels don 1 t exist sq we have to put in a potential,. 

but in the relativistic theory, unitarity relations replace the potentials. 

The physics is: The existence of the crossed channels gives rise to the 

forces by which strongly intera~ting Earticles scatter. To emphasize this 

result, a simple calculation is given in Part III. 
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PART III. AN EXPLORATORY CALCULATION 

Before we submerge ourselves in the minutiae of a lengthy calculation, 

a q_uick review is in or(1er. In Th.rt II, maximal analyticity was used to 

show two startling facts about the scattering amplitude: (1) The amplitude 

was sufficiently analytic that it not only described the main reaction, but· 

also the two crossed reactions. We derived the possibility of crossing 

(no barriers between the physical region--remember the Mandelstam 

representation) from the existence of the ugap 11 Im A(s,t,u) = 0 for 

2 0 ~· sJ t, u < 4m • We shall make good use of this If gap". (2) The discontin-

uity across the cuts could be calculated from unitarity, thus determining 

the scatterin~ amplitude. 

There are tifO famous pg.ths we could follow. The first is to use the 

mathernatical statemenJc of the J:iJandelstam representation. By vorking betveen 

the do~ble spectral functions and the unitarity formulae, one can genetate 

the scattering amplitude by the J:iandelstam interation procedure. Althd~h 

simple in principle, this procedure is difficult in practice, and we vortrt 

attempt to clarify the details here. 

As for the second path, the gap from 0 to 4m2 
makes it possible 

to write down the partial vave amplitude as a ratio 

= 

has only the left hand cuts and D,e(s) the right hand cuts 

of the s-plane. (We shall derj.ve partial vave unitaritywith some 

simplifications.) Then using the Cauchy integral representation of an 

analytic function, we can find a pair of coupled integral eq_uations for 



··.! 

I 
I 

1 
i• 
! 
I 
1. t - <~ 

l 
l 
·j 
I 

l 
1 
I 
:'1•. 
i ' 

'I 
~ 
j 
:1 
i• 

_[!. 

-33-

We follov; the N/D method because it will reveal some interesting 

physics. In particular, the postulates of S-Matrix theory that we 

discussed in Part II were simply generalizations of Feynman gn:iphs. It 

is very possible they are equivalent to field theory. Thus it is possible 

to in trod uc e ''elementary" particles and arbitrary parameters into the 

theory. But then how do we distinguish elemei?-tary particles from "composite" 

particles? And how do we reject elementary particles from the theory? This 

This question is briefly considered after the N/D derivation. 

It is the intention of the following calculation to (1) Show how 

analyticity can be used to set up equations for the scattering amplitude 

in a very simple model; (2) To discuss the rejection of ttelementary" 

particles; (3) To serve as an introduction to the typical style of 

calculation found in S-Matrix theory. The calculation is spelled out in 

~reat detail. 

We shall begin with unitarity, make the elastic unitarity apprdxi-
_.,·, 

mation and then calculate the partial wave unitarity relation. By writing ,, 

A= A(s,t), we restrict ourselves to the scattering of two spinless particles 

into two spinless particles. Unitarity is given by 

where 

Substituting (2) into (1) 

L. s * n nf S ' = . 5fl.' ni 
(1) 

(2) 
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[5 .. + i n1. 
h 

5'(P - P .. ) A .(s,t)] n 1. n1. 

. h 
== . 5 fi + i 5 ' ( p f P .. ) Af .. (s,t) - i 5

4
(P .. - Pf) A.f*(s,t) 

). ). ). ). . 

+ o4
(P; - Pf) I: 5

4
(P.- P) A f*(s,t) A .(s,t) .... n 1. n n n1. · 

= I: A f*(s,t) A .(s,t) 5
4

(P. - P) . n n n1. 1. : n 

We make two simplifications: (1) .The final state contains the same 

two particles as the initial state (elastic scattering.) (2) Only the 

elastic unitarity diagram need be considered in the sum-on n. In pictures 

Im 

Simplifying the.notation 

Afi(s,t) == A(s,t) 

and using 

A*(s,t) - A(s,t) = - 2 i Irn A(s,t) 



i 
[. 

In the unitarity integral 

we must still sume over the momenta of. the intermediate state: 

Im A(s,t) = 1 
2 .E 

intermediate 
momenta 

A*(s,t 1
) A(s,t") o4(P- P.) 

. n ~ 

where t' is the momentum transfer from the initial to the intermediate 

state and t" the momentum transfer from the intermediate to the final 

state. 

We sum over intermediate momentum states by integrating. As A is 

a scalar, we define the invariant.integration measure 

where 

Im A(s,t) = 

~ 

2 E 

d3p, = 

2 E 1 

2 

The momenta of the two intermediate particles are p I 

~ 
and £2 1 

• This 

integral is most easily performed in the center of mass system where 

P. = 0 • 
~~-

i 

The spatial part of the a-function then says p I 

~l 
- p I 
~ 

so E I = E I 
l 2 = E where E is the center of mass energy of one of the 
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incoming pions. The integration is done on the spatial part of 

the a-.function: 

Im A(s, t) l 
d Q' 

= g 

The dj~l I I integration is done ldth the a-function by noting: . 

dE' and 

The a-function req_uires ElI = E • Thus 

dE ' 1 

This is the statement of total elastic unitarity. 

we use the partial wave decomposition of A • 

. where recalling our kinematics 

or 

Thus 

, 

t 

cos t e = 1 + -
2p2 

= 

(3) 

To simplify its fot~, 
.. :.:.. 
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k Jan' [ (2£+1) (2£'+1) A/(s) An 1 (s) loE JJ J:J £}£' 

·The integral can be done by applying the addition theore~:for 

Legendre polynomials: 

P_g,(cos 9") 

· By the orthogonality of the Y .e J m only the m = 0 term will ~urvi ve 

the integration 

= L,£' 

where the normalization conventions have been used. Thus 

P 2 4rc 
= 16E L,£ (2£+l) (2£+1) 

or: 



. I 

Defining 

p(s) reP 
= 4E 

reP 
= 4E 

Eq_. (4) can be written more conveniently: 

or 

.1 
2i 

LA - A "*:] 
£ £. 

(4) 

(5) 

Im A~,(s) = ~ p(s) (6) 

If we assume t~~t no poles communicate with the crossed channels, then the 

partial waves ~~ve the same singularity structure as the total amplitude. 

The exactly similiar singularity structure is an accident of the problem. 

With elastic unitarity, there is a cut from 
. ·. 2 .• 
s .. = 4m · to ro, and a cut from 

0 to -co • 

The next step -is to appeal to a result of- tlie Wiener-Hopf theory of 

integral e9.uations: If Ap, ( s) has the singularity structure shmm above, 

then A~,(s') can be written 
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where N£(s) ·contains only the left hand cut and D£(s) contains only the 

right hand cut: 

Singularity structure of D£(s) 

Singularity structure of N£(s) . 

Thus~ 

0 s > 0 

where f£(s) is defined by: 

and must be determined from the knowledge of the crossed channels. Also: 

= 
2 

s > 4m • 
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The N/D equations are formulated oy using the Cauchy integral 

representation 

g (z) 
1 

2:rri 

( g (z I ) 

J dz 1 

z 1
- z 

c 

where g(z 1 ) is analytic in and on C and C encloses the point z • Vle 

assume: 

0 

1 

constant 

Note that we can pick a value for D at some point and still not introduce 

arbitrary parameters into the theory. 

Consider the contour 

for representing N£(s) . Then 
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N.e(s) 
1 J ds' 

= 2:rri s' - s 
c 

0 r f 1 J ds' 
s N.e(s'+) 

1 ds 1 

N.e(s'-) + = 2:rri 
+ 2:rri S I s' - - s I 

-oo 0 c 

The integral on the circle at oo is zero and N(s'+) = N*(s 1
-) 

0 

N.e(s) 
1 J ds 1 

N.e(s 1
)- N.e*(s') 21Li S I - s 

-oo 

-oo 
1 J ds: 

Im N .e ( s 1 
) = S I T( - s 

0 

. or 

-oo 

N _e( s) 1 J ds' 
D.e(s 1

) f.e(s 1
) (7) = S I 1L - s 

0 

For D.e(s), we consider the contour: 

Makir~ a subtraction the non-rigorous way: 
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D_e(s) - D.e(o) 
l ( ds' 

D .e ( s I ) - 2;i J ds 1 

.D_e(s') = I 
I s'- s s'- 0 2rri· I 

--' c c 

s 1 ds 1 

D r ~' ) s r: ds 1 

Im D_e(s') -- s' (s'- s) - s 1 (s'- s) 2rri £\u rr 
c 4rn 

or 

1 
Q) 

D_e(s) 1 -
s 

!2 

ds' 
p(s') N_e(s') (8) = - s'(s'- s) rr 

4m --

Eq_uations (7) and (8) are coupled integral eq_uations for .N and D • 

They can be decoupled by substituting 7 into 8 or 8 into 7· Substituting 

(7) into (8) yields an eq_uation for D.e:(s) • 

~ ( ) 
lJ_e\S 

= 

Define 

then 

Thus 

1 -
s ( -:rr 

4rn 
(-! {' dsrr 

s '- s 1 D (srr) f (s,~l~ .. J' · . .e .e . i .. 
. 1.; .. 

. . 

1 -
s -
:rr ( 

0 

CX) 

R(s) !. J ds" 
:rr . 4m2 

1 
R (s' ) = rr 1

0) 

dsrr 
2 .4rn 

. CX) 

R(s) -R(s') 
1 J dsrr = 

[ 
4m2 

·ds'' 
7 

P (s 11) 

s" (sn- s) : 

s - s' 

11 ( li . I.): . s s - s 

e(s!l) s.- s' 

sir 
(s"- s)(s"- s 1 ) 

\. 
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----- ····--· ---------····· -------, 
-oo 

1 + .§_ j' , 1 [ R(s) - R(s 1 ) 
~ as . s' s 
" -

0 

Since R(s) is known and fp_,(s) is presumed know, let 

D (s') £, • (9) 

= 
s 
rc 

(10)' 

be the kernel of the integral e~uation 

-m 

Dp_,(s) == l + J ds' K(s,s 1
) Dp_,(s') 

0 

(ll) 

The condition that (9) be a ETedholm equation is that the kernel be square 

integrable. 

0 0 J ds' IK(s,s')l
2 < m 

-oo 

By means of a rather lengthy integration, it is possible to show that 'i 

a 
must be bounded by s where a is less than zero. (To do ~his, 

transform the integral e~uation so that K(s, s 1
) ·is symmetric; then 

integrate.) 

a<O 

Only then can l-ie be sure that (9) has a solution •. 

We.shall indicate one form of Bootstrap hypothesis. (A bootstrap 

hypothesis is the postulate to eliminate elementary particles from_the 

theory.) The final result of the N/D calculation was the integral 
. . 

e~uation for the denominator function, E~.(ll) • The left-hand·· cut appears 
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in the kernel, K(s, s 1 ) in Eq_. (10). We also shovred that Eq_. (ll) is a 

Fredholm eq_uation (ancl hence a solution is guaranteed) only if 

Hovrever a pole in the t channel of spin £ 1 contributes a term 

of the form 

Moreover, from the kinematics 

2 
s = - 2 £t (l + cos 9t) 

or 

cos ~\ = - l + 

Fixing and allowing s to become large, 

and we can use the asymptotic form of 

s 
--2 

2~t 

becomes unphysical, 

Hence the integral eq_uation is singular and arbitrary parameters are 

necessary. 

A solution to this difficulty can be found by analytically continuing 

the .partial wave amplitude into the complex angular momentum plane. In the 

£-plane, ~ne finds poles that move as a function of s • However we. already 

know how to interpret poles--they correspond to particles when they cross a 
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physical value of angular momentum at physical s. If a particle lies on 

such a 0 Reggel! pole, then 

... £' = £'(s) 

, If £ 1 (s) decreases to a value less than zero as s increases, then the 

equation beco_mes Fredholm.· The Chew-Frautschi-IVJandelstam hypothesis is that 

all particles lie on Regge poles. This conjecture not only makes it possible 

to solve Eq. 11, but it also eliminates elementary particles from "S Matrix 

theory, since for an elementary particle_, 

.£ £ 1 
, a constant 
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various theories about their interactions is contained in this article. 

M. Mandelstam, DisJ?er~E~elations i:r::._Strong Coupling Physics, Reports on 

Progress in Physics, 25, 99-162 (1962). 

This is a very readable review of dispersion relations, proofs ;~of 

analyticity from field theory; and applications. 

G. Kl:tllen, Elementary Particle Pl1ysics, Addision Wesl~y, Reading, Mass. (1964). 

This is probably the best introduction to particle physics that has 

been written. 
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theory. 
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relevant paperbacks in the field of S-Ma.trix theory at the cost of about 
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$5.00 apiece. They are ·listed be:J_o'iv in approximate order of increasing 

difficulty. 
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G. F. Chew·; S-MatrixTheory of Stron~ Interactions~.(1962).· 

S. Frautschi, Re(Sge Poles and S-Ivl,atrix Theory (1963 ); 

M. Jacob and G. Chew, Stron(S Interaction Physics, (1964)~ 
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~ 

) 

This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
m1ss1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 

this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment .or contract 
with the Commission, or his employment with such contractor. 



/ 




