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NEW OUTLOOKS IN STRONG IWPERACTION PHEYSICS*

(Three introductory lectures in S-matrix theory delivered at the National
Reactor Testing Station, Idaho Falls, Idaho, November 3-5, 1965.)

Richard C. Slansky
Lawrence Radiation Laboratory
University of California

Berkeley, California

October 18, 1965

Many optimists believe wé‘étand on thé verge of the third great
revolution.in ﬁhysics of this centﬁry. To clarify the cause of all this
exci?emen%, let us take a quick bﬁt sweeping ‘tour -of the previous two
revélutions, making special note of the results most.apélicable to a theory
of strong interactions. This will more than set the scene of action
since the presentlrevolution is attempting ﬁo unite the insighté of . the
previous two into a single theory. The first revolution, inspired by
Albert Einstein, did more than teach_ﬁs that fhe form of a law of nature
must be invariant undér Lorentz transformations. waevef, the key word
ié given heréa—invarianéé. The great céntribution wés the insight that
symmetries ekist, and physical laws will not change when thé systém (or
observer) is transformed by one of thevsymmetfy operations. Lorentz
transformations are a typical example. vathe system'is rotated, translated
in space or time, or its uniform velociﬁy with respect fo the observer is : -

boosted, the form of the laws governing the system is unchanged. A

' memorable result is: TFor every group of symmetry operations, there exist
,conserved-quantities. The operations of translations in space-time of the '

. _ o o
Lorentz group yield the conservation of linear momentum and energy. Hence,.

*This work performed under the auspices of the U.S. Atomic Energy Commigsion.



bYﬂfinding conserved quantities, we learn something about the symmetries of
‘the physical system. However, there are many symmetries of strong iﬁteractionsl
whose origins are not well understood. Ultimately a complete theory shouvld
show that these symmetries are implied by its ﬁostulates. The first revolu-
tion is summed up in our éwareness of symmetries in nature.

The second reVolutioﬁ occurred in the twenties and was headed by such
physicists as‘Scheringer, Heisenberg, and Dirac. Quantum mechanics has had
a pfofound influence on ouf understanding of natural phenomena in the small.
For -example, ﬁnderstanding the phenmmfon‘of electron diffraction could bé

very complicated, since this is an example of a particle behaving like a wave.

The formal result,of quantum mechaﬁics is to cohsider'the probabiiity amﬁlitude
as the basic quantity. By postulating that it belonged to some sort of‘iinear’
vector space, it’bécame a simple mat%er to account for the particle-waveé
dvality exhibited in atomic phenomena. Then if we take a measuremeﬁt, ﬁgé §
probability of a certain result is given»fy the absolute square of the ;i
amplitude. PErhaps.thé most memorable result of quantum mechanics is tﬁ%s
conceptvof a prﬁbability amplituae, and its relation to the prdcess of m;king
an observation. As a postulate, we accepﬁ the existence of thg amplitudé in
“the new theory.

| Quantun mechanics is a nonrelativistic theory, and the attempts to
generalize it to the relativistic domain cause trouble. A very.naturai
extention oé guantum mechanics to ﬁhe relativistic domain is calied "relativ-
istic qpantﬁm field theory." Although this theory has met with much success *
in understanding electromagnetic phenomena, in its useable forms it hes been
rather unreliaﬁle for strong interactions. However; field theory is avstrogg

-candidate for being the correct theory. We shall say more'aboutJthis later.
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. Before exposing the essence of the third revolution, let us note a

“basic characteristic of all three of these theories. The theory of relativity

as a generalizafion of Newtonian mechanics requires that we specify the
particles.(or mass distribution) of the system before we can write down the -
complete field equations. Quantum mechaniés alsovrequires knoﬁledge offtheb
particles in the_system, Aiso we must know the potential before we:can write
down the Schrodinger equation for thé probability amplitude., Even in the

standard formulations of field theory,‘the particle-fields and their inter-

action must be given before calculation can be started. It is in just this

'way that the new theory may differ drastically. The conﬁentvof the third

great revolution may be stated as this: In the domain of strong interactions,

it may be possible to construct a theory in which we need not give the

vparticlés or their interaction. Within the postulates of the theory thege‘"

mey be only one self-consistent set of particles. The masses, coupling; -

b

-constants and quantum numbers of the particles will be determined by th%;

~ theory and will not have to be inserted into the theory from_experimentig

This set of particies will e Jjust that set we know from experiment. The

only “fundamental constants we need will relate our--convention of measurement

‘to nmature's. (Two of the three necessary constants are already known--A and

c.) “Thus, the revolutionary claims there are no "elementary" particles. The
existehéé 6f‘aﬁy strongly interacting par£icle is dve to the existence of all
other stronély intgracting particles and the forces by which they interact.
The amazing’ prospect is that we may be able to build a theory withoét any
arbitrary degrees of freedom. Consequently, we bééih with "nothing”, and
pull ourselves up by our bootstraps. So the-theories‘are dﬁbbed "bootstrapf

!

theories, " and the formulation the bootstrap theories have been the object of

'

studying the analytically continued S-matrix.
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Obv1oasly one can be more conservative To be more in line with
traditional quantum Tield theory, some physicists believe that some particies
are elementary (i.e;, no matter how strong the mathematical methods, the
ma.sses, and coupling constants of these particles will have to be inserted
~into the theory). Then other particles may be "bound etatee" of tﬁe more
elementary particles. For the very conservative; all the particles are
-aristocrats, and there existe a. guantum field operator cofreeﬁonding to the
rarticle which can Be inserted into the'theory at the physicisf's will,

~In these 1ectures, we shall favor the first idea, that of nuclear
‘democracy. Although such a :evolutionary~idea might fail, the preliminary
-caiculations have been quite successful and the ideas behind the bootstrap
theofy are sufficiently‘exciting to warrant closer:examihation.'.Since‘no
background in particle physics is»aseumed in these lectures, we,ehall oeéin
from the beginning--e survey,of‘experiment. Then a quasi-histoficalvreﬁéew
~of the ideas that have lead to the bootstrap idea will precede egsimplé;example
given in the third lecture. 1To avold confusion‘as to the directioﬁvof éhese
lectures, we now gi&e a rather-complete ovtline of\the lectore topics.

Part I discusses phenomenology, After deqcrlblng a typical experlmeqt,
we shall consider some of the phy51cal guant 1t1es the experlmentallst mlﬁht
measure (cross sections, branching ratios, etc ). In accovd with quactum
mechenics, we then define +he S-ma ixav Since S-met”ix oheO”y ;nus+ be
relativistic,.some relativistic kinematics will be‘cecessary. From the
"kinematicé and the description of scattering processes,:wejlearn.how short N
lived particles (10'2h sec.) can be detected. |

In Part II, the dynamics of strongly interacting particlevpfocesses:
will be glven more serious consideration. Memorable fesults of gquantum

mechanics and field theory will be used to motivate S-matrix theory. The
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principle of maximal analyticity will be explained, and with the concept of
crossing, thelbasis of ‘the bootstrap theory should become quite plausible.

In Part III, we use just analyticity and unitarity to derive equations

- for the amplitude. In deriving the N/b~equations, the ideas of Part II will

be emphasized.

Before leaping into the problem,vlet me make a couple of pedagogical

notes.

. . Particle names: I don't want to spend a lot of time naming particles. R

I will rarely refer to specific particles, except for the pion (x) and the

nucleon (N) . If you don't know the other particle names; then just consider

the words I use as labels to describe objects with a fairiy well~-defined mass

and other quantum numbers. The x has been called the "glue" thst holds the

nucleons in a nucleus together. Its mass is about 140 MeV and it exists in

three charge states (', =, n) . The spin of the = is 0 and its,parity

is negative. Everyone knows 'about the proton and neutron (V). The nuCQEOn

o5

2

exists in 2 charge states (n and p), has spin L ,» parity even, and ma%s of

“about 940 MeV.

© Units: Instead of using human measuring units, we shall use the
natural system in which = ¢ = 1, both-in magnitude and dimensionally.

Henég E = me” = m . In ordinary units

4 = 1.05k x 107 lerg sec = 6.58 x 1_0"2_2 MeV-sec. . -

i

- If A =c =1 then

ﬁbf= 1= (6.58 x 10_22 MeV-sec ) (3 x lO23 fermi/seé) = 197 Mev-fermi .

- This tells us how tO'recover'the-proper dimensionsvof any gxperimental

quantity. For example

L ek g 5 R T L




-6

2 . . E »
; L |
12 = L 5 = (ﬁ% ) £ % 20 millibarns . -
m (140 MeV)

Hence, we can "ignore'” A‘'s and c's in our equations.

EART'I - A.VISTA'OF STRONG-INTERACTION PHENOMENOCLOGY
Before discussing'theoxetical ideas on how strong interactions take
pléce, we should develop some intuition about what is happening. Such
discussions'lead to basié~ideas as to the requifemenfs~to be placed»on~£he

theory. The fact is that only one kind of experiment can be used to probe

the nuclear force: scattering experiments. Hence, the theory need be concerned

only with -calculation of the scattering amplitude. Before introducing this

guantum mechanical quantity, consider the following "typical' experiment. The
scene is the Bevatron at the Lawrence Radiation Leboratory in Berkeley.

An .arc in Hé gas produces positive ions (protons)‘which are ﬁgans—

i

i

.ported to a static accelerating field of 500,000 volts d.c. Beforé in%ectibn
:into the Bevatroﬁ iﬁself, these % MeV protons ére accelerated to 10 Me& (1ap
.kinetic-energy) in a linear accelerator. In the Bevatron, small acceleréting
boosté'are supplied by electrié fields, and the protons are kept‘on the
circular‘traqk by an increasing magnetic field. As the bunch of protons
.becomes more energetic, the magnetic field necessary to keeb them on the track ’
. increases; ;&he final energy is limited by the strength of the magnets. The -
. wave packet;of about 2 xvloll_protons is only several inches long when thé ~
i ' ‘protons reach 6.2 BeV. (The profons have now gone around the Bevatron about
400, 000 times--or to the moon and half way back. )
. 'A v Tﬁe experiment now begins. A target is dropped,into the beam pathg.

and & great spray of nuclear matter emerges: Protons, antiprotrons, neutrons,




. is repeated.

-7
7t mesons, K mesons, and strange baryons, such as A and = . 'One of the
major tasks that the experimentalist has is to "design a beam" from this
conglomeration. By uéing separators, focusing magnetS'énd other electro-
magnetic devices, he can pick out psrticles of some type and energy which
are then trans@orted to a second target. |

The second target may be (for -example) a bubble chamber where the

tracks of the incoming and outgoing charged particles are recorded on &

photograph. The bubble chamber is a big tank in which liquid hydrogen (a

-proton target) is placed under high pressure. The pressure is suddenly

released just before the partic;es enter the chamber. In the superheated

liguid, the charged particles leave tracks which a camera photographs. The

. pressure is then reapplied and the bubbles are squeezed out of existence. A

few seconds later, after the next packet of protons is accelerated, the cycle

The particle tracks are curved due to high magnetic fields. T éjamount
of curvature depends on the charge and momentum of the particle. anceg from

the picture of the particle event, the experimenter can identify ﬁhe reéultant

particles and thelr momenta.

Another interesting detector is a spark chamber. After hitting a
target, the séattered particles pass through a set of parallei plates.

Because of the highvvoltage across the plates, the particles ionize the air

-enough that a spark leaps betwéen'plates. Sonic déteéfors‘then locate the

. K :
spark and the information is put on a magnetic tape or sent directly into ah

on-line computer.
By counting the different types of events, the experimentalist can .
measure various experimental guantities. It is the job of some theoreticidns

to calculate the quantities from theilr theories. So we indicate several of
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the most important experimental parameters. ‘ «

The cross section for event X is the probability that X will
happen per unit time per unit volume divided by the incident flux or total
incoming'probability current per unit volume. For example, the total cross

section is

Gtotal _ Probability that anything happens/sec/unit volume
ST incident flux
We .estimate the "size" of the cross section by the following dimensional
argument. The range of the nuclear force is approximately equal to the
inverse mass of the pion. Hence
2 A1 197 2 2 '
. < — s - ; > 1 ~ 1 * - .
o £ " = = 5 7 ( T ) (fermi) 60 millibarns

m
7T

So a typical cross section is on the order of millibarns.

The elastic differential cross section is

el  Probability of an elastic scattering going into dg/sec/volumé§
B incident flux v

do

‘Note that we must sum over all those states which are not specifically
~oObserved. For example, we must sum over the spins énd momenta of the final
state to find the differential cross section.

Another experimental quantity is a branching ratio R .

( ' Y 4 e oo
olA + B~ a +0, ) . ' _ )

olA + B~ By + By + con)

There are polarization cross sections, etc., but these would only serve as
further examples of the same idea. a
A general description of scatiering processes is given by quantum

mechanics. In following.guantum mechanics this far, we assume the éxistence




of a probability amplitude whose absolute value squared gives the probability
for a system to go from some initial state i +to some final state £ . The
final state need not have the same particles as the initial state. If we
| assumé that the set of all possible initial states spansvthe same space as
the final states, then there exists a unitary operator that takes us from

1 - O b ; (in)
one basis to the other. The operator is the S-matrix S . If ¢

t
represents the set of all p0551ble initial states and ¢(ou ) the set of

" all possible final states “then:
- + .
¢(out) . 5 ¢(in)

We define matrix elements of S as follows;

(in) (in) (out ) ; (in) C(owt)  (out)

8py = (0., 80, ) = (B,

]

i T ? i

In these definitions, we have used the uhitarity of S

tF
58 = 85 81

where I is the identity,operator. If the states: ¢(1n) and ¢(out)'
really form a basis for the same space, then the scalar product must be
preserved under “the traroformatlon from ‘the (1n) to the (out) states.

Thus S is unitary:
(¢f(in)’ éi(ié)) - (S ¢ (OUt)’ S ¢ (OUt)) ..  (defn of 8)

‘(¢ (out)’ ST o ¢ (Out))‘ (defn of unitarf)

- (g, lou0), g (owt))

‘(requirement of preservétion
of scalar product) . ¢ .

Hence

O G T U i T Rt




The unitarity of S is one of “the most basic ideas exploited in S-matrix

-theory.

For -convenience and other reasens that will become apparent, we split
S into two pieces. First, nothing might happen (no scattering); second, if
something does happen energy and momentum must be conserved. We write:

Spy = sfi + 18 (Pf-Pi)Afi

where 8., =1 if f=1 and O otherwise, and 6M(Pf - Pi)»‘is nonzero

~only if -energy and linear momentum are both conserved. We have factored out

these two unanalytic pieces so that A will be a smooﬁh’function_of‘its

‘arguments.

We will characterize the process
i - £

by the amplitude A . TFor the scattering 1 +2 - 3.+ 4, we draw a picture

of A .

3 4

Ay o34l

" By well-=defined quantum mechanical procedures, A can be related to the

various experimental qﬁantities. If particles 1 through 4 are all

spinless, then the differential cross section is given by:

0w _ £ Il A
ag e I.pﬁl

where E is the total center-of-mass energy and ]pi[ and‘ lpjl are the
magnitudes of the three momenta of particles 1 and 3 in theAcénter—of—mass

frame. The matrix elements of A are functions of scaiar-variables.

.
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By. the relativistic invariance of the theory, A transfprms'like a
scalar‘under Lorentz.ﬁransformations. thce A dis a functiopAo% the scalar
invariants that can be formed out of the momenta in the“process; If p is
a four vector whose compbnénts are (p, E) (c =1), then theiscal&r:product

between ?l and Py is defined by

P1'By = BB - Dp

and

where m? is a,constanﬁ according to specigl felativity. If p=0, then

m 1s just the rest mass of the particle. Hence p.p gives a trivial invariant.

Now consider the nontrivial invariant:

-
s

s = (p + 1,

‘s 1s necessarily a Lorentz invariant--it has the same value in any frame

of reference. 1In the center-of-mass frame, where p. = -2 ps then E

s = (E + B, ) <&A;—i::;—— \/r—_i::%;é>

"

(total @M_energy)z-

For reactions like 1 +2 = 3 + L, there exist two scalar invariants which
we call s and t . Hence A = A(s,t)(see Part III). The main result of

‘this kinematical analysis is that we perform our calculations in:any convenient

frame of reference. Then we can redefine the scalar invariants in terms of

'fheflab system,_and hence compare with experiment.

Armed with the knowledge of the existence and Lorentz invariance of;r

A, we now re~examine a typical scatterlng experlment whlle keeplng two.

‘questions in mind: (1) How are short lived particles detected” (2) Do the

experimental results yield any hints about the structure of A ?
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There has beén a great proliferation of the strongly interacting
particles, but most are unstable under strong interactions. We can estimate

their life time by an argument which we give later. The result 1s that for

a typical width of I' = 100 MeV
1 1 5 6.58 X 1072% MeV-sec 2l
T=5 - = : =~ 6%10° " sec

100 MeV ~ 100 MeVv 100 MeV

" Hence, if a particle is produced at near the speed of light, it travels about

a fermi before it decays. We could never see such a particle as a track in a

bubble chamber. How, then, are these '"resonances" detected? The detection of

-resonances follows from the analysis of the momenta of ‘the final particles.

Consider the reaction

We might guess that

‘  A(2n) =

//F
However the «° " might form a short lived particle before bféaking-into

two pions: .

Aoy =
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or the p and the =° or Py might resonate:

or

There are other resonances that can be studied by this reaction, but let's

forget them. We note that in all three of these cases, the final particles

~are the same. As the instructive éxample, we shall look for the p meson.

It is a well known particle with quantum numbers I =1, J =1, P= (-), and
G =.(+); or in shorthand l(l-+). Its'mass " and width are m = 769 MeV and
r, = 112 MeV. |
o . . 2 '
If we define the scalgr 1nvar1ap§ 8, = (pﬂ+ + Pﬁo) then
A = A(sl'-') where the dots stand for the other independent scalar variables

of the problem. Now suppose'that' A(sl;;.) = constant. We can calculate the

ste

cross section assuming A(sl~o;) constant for a given incident energy}of?the

- incoming pion. We find the plot of —g to look like the solid line:’

o
ds,

»
Cd

(?bé Mev)z S

" The cross section assuming A . is constant is called the phase space cross-

section.
An experiment is now performed at the same incident energy for which

the phase space plot was calculated. But experimentaliy we find that

do
dsl _
results look like  the dotted line.

does not follow the phase-space cross-section. Experimentally the




s =

~1lle

At s, = (769 MeV)2 , there is a bump in the cross section with respect to
phase épace. There are two major points to be made about this_plot.

First, the lab-bound experimenter can make such a plot. The reason

is that we can evaluate 8y . in both .the lab framé'andjin the center of‘mass

syétem of the two pions:

where ECM is the total energy of the 7° n+ system;in_its center of méss.

Tn the lab,

S QA lab|2 c2 . '\/1 1ab|2- . ) <1ab 1ab>
1 P. b _Eﬂo

~

where | 1s the pion mass. Hence the lab bound experimenbter can measure

do

ds;

Secondly, the existence of the bump is very suggestive. The,c%jss

section can be fairly well duplicated if we assume that A is dominated by

a pole for values of s, near (769 MeV)?-:

2 2
R g - -
Alsy-er) =" A(s)) = - T2 z ‘
' o : Py s, -M +iM T
Sl (Mp 1 2) 1 o)
Consequently:
5

<L af - : :
ds - 2 2 2 )
CTL (sl - 1p) +T M

With this experimental motivation, we shall postulate that single partiélés

correspond to poles in the scattering amplitude. The pole-particle

i
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‘associaﬁion is basic in S-matrix theory.
We now derive the formula that T = L/P ~ lifetime of particle.
Thiélderivation shows that the particle pole association and the concept of

‘complex mass 4o have a gquantum mechanical correspondence. A p meson at

rest can be approximated by a plane wave:

-1 Et
e

v o= s
o -1 . ; 2t Tnm E
B
But
2 2 Iy
s, = (Mp - i 5) = E or ImE = -3 .
Thus

i . . . . ’ 2 - . T
B \ | !Wl ~ e Tt - e t/
Hence,lin nonrelativistic quantum mechanics, the pole does correspond ﬁé a

decaying particle with a life time of -7 = % B
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PART II.. THE RISE OF DYNAMICAL THEORIES

Before physicists began to worry about atbmic and sub;atomic
phenomena,'all (knpwn) nature was described by the'claséical theories of
mechanics and electromagnetism. However, the idealized mass points, charged
or uncharged, have little resemblance o the particles éf high'energy interest
In fact these theoriesrhave nbthiné to say about the interactions of "real'

particles. Consequently, the strong interaction theory need not have a

'corresp0ndence principle to classical theory.

The first theory that waé primarily concerned with physics in the
small was gquantum mechanics. As is well known, quantum mechanics has had

much success in-explaining low energy data. For example,'the scattering of

"1 ev neutrons on complicated gas molecules can be‘explaihed strictly within

the framework of guantum mechanics. The deutercn, considered as a bound

state of two elementary nucleons, is partially'underétood.in terms of
particular potential in a quantﬁm mechanical theory. Hoﬁevef, when we g% to
high»energies,Athere-are'two conditions of quantum mechanics that ére ngt
well.satisfied, |

(1) 1In high energy physics, the velocities of the particles are not

small compared to the speed of light. A 6'B¢V proton is traveling at

velocity
1
' 2 2 7% —
t _ k2 _ |E -m _ 35 ~ a
VT g T [_—"—Ee J =56 ¥ 096

“the speed of light. At these velocitiés, the potentials of quantum mechaniés

become ambiguous, since they imply ‘action at a disbance.! To avoid violating

our notions of causality (the message can't be received until after it is
sent), we must throw out ﬁhe approximation of action at a distance....

unfortunately potentials go also.




But this isn't the only problem with guantum mechanics:

(2) Standérd formulations of guantum mechanics, such asgthe |
SchrSdinger equation, cannot handle the creation and des%ruction‘of pafticlés
in a physical process. At low energies, the Schrdodinger equation does a

good job describing the process

bP+pP > P+DP .

However, 1f the center of mass kinetic energy is greater than 140 MeV, then

.the reaction

‘p+p - papEAS

is possible and we are outside the framework of SchrSdinger'theory.  In most
interesting elementary particle processes, we need dynamical equations that
can easily describe creation or destruction phenomens during the process.

Probably relativity and creation and destruction are closely réiated.

In any event, fhe attempts to generalize the Schrédinger equation by

relativistic eqguations such as the Klein-Gordon or DiraC‘equation (as gi
quanfum mechanical theory) failbbecause they lead to-pegatiVe energy ”
densities which we are unable to interpret. Hence we must find a more
radical departure froquuantum mechanics.

| By a time worn path of reasoning, one introduces fields to avoid
violating causality (the reason is exactly the same in classical
electrodynamics. ) And just as in the classical theory, the fieldjéarries
the energy, mqmentum, and. other‘observables}b In a quantum mechanical
theory, thé observables correspond to Hermitian operators.. Since certain
functions of the fields are these observables, the fields must be operator%i

Next we wiite the field operators as superpositions of plane waves. Using

" the Fourier transform, one then notes that the Fourier components of the
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relativistic field eguations look like the harmonic oscillator in momentum
space. Since we knqw how to quantize the harmonic oscillator in guantum
mechanics, we can quantize the fields, and hence derive the commutation:
relations for the field operators.

This is the most pedestrian approach to field theory and the
conétruction'of canonical field theory is of no interest here. TIn fact the
resultant quantized fields described free partiéles, and their interactions
must be introduced in a semiphenomenological fashion. Howevef, there are
several important and thought provcking results that-are playing an
important role in the development of more modern theories. - Much of the
language is still couched in field~fheqretic‘language. Also there is the
poséibility that field theory and the newer theqries may be equivalent in
many ways. We-first make a few comments on more sophisticated formulations
of field theory than the one we Just gave. Then we discuss one golution of

field theory--perturbation theory.and Peynman graphs. Feynman graphs will

give us a dramatic way to talk about particle processes.

Just as in classical electrodynamics, we havg to specify £he
interaction in our canonical construction. In local field theory the
flelds propagate-continuouély from one point to the.next and interact with v
one another only at a point of interaction, the inferactioh is described by
a product of fileld operators called an interaction Lagrangian. Since the
quantized field operateors are composed of creation and annihilation
bperators (rémember the quantization of the harmonic oséillatof)} we can
picture such a point as a vertex where various particles are created or
de;troyed. For example if the three fields ¢i(x),¢é(x) and ¢5(x) o

interact, the interaction Lagrangian is given by g ﬁi(x) ﬁé(x) ﬁé(x)

‘where g is the strength or coupling constant of the interaction. We



represent some of the possibilities pictorially:
. VAS -
e R -
describes the destruction of 1 and the creation of 2 and 3 ; or the

same graph describes the destruction of 1 -and the antiparticle of 3 and

‘the creation of 2 j and . A~3

2
/1N~
1 and 2 are annihilated and 3 created. However, 5urpriSingly enough,
only several interactionS'lead to a self consistent theory, and this is

true only after we have renormalized masses and coupling -constants by

subtracting co from o . Only the

!
/S?E
vertex among two spin % particles and a spin zero or a massless spin one ;
N T , } :
one field, and ~ /
v v N/
AN
/ ~
/ ~N

vertex among four spin zero fields lead'to finite results fdr‘physical

"quantities after the renormalization procedure. The interaction

(four fermidns) does not lead to a finite theory in higher order perturba-
tion theory, although the first order theory has been very important in

undérstanding p ~decay. Moreover, the attempts to quantize massive fields

of spin one and all fields of higher spin have encountered great difficﬁlt&.

Such particles do exist,
The fact that only two interactions lead to a good theory shows thé

restrictiveness of the quantum field idea. Although when we constructed
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guantum field theory in analogy to classical. field theories wé specified
- the interaction, the interaction Lagrangian may be superfluous to gquantunm
field theory. It may be that the axioms of quantum field theory (the field
idea ana commutation relations; etc. ) are so restrictive that we can
construct a field theory without. Lagrangians. This has lead to the study
of non-Lagrangian or Axiomatic Field Theory.

Axiomatic gquantum field theory is a very careful mathematical
inquiry into the field iaea, It 1s very far from calculating -cross-sections
and for our purposes, it is still a_long ways from physics. Wé shall
sacrifice the firmness of mathematical basis for a theory which te}ls us
'something about physics. The decision to do this is personal, and it may

’be that axiomatic field theory will lead to a very reasonable'explaﬁation
of strong interaction bhenomena. But let's leave it at that and return to
Feynman graphs.' |

Field theories have not been solved exactly, but only through .

approximation technigues. The most famous of :these is the Feynman-Dyson

perturbation -expansion of the S-matrix (Of course the Snmétrix exists in
field theory, Jjust as it does in.quantuﬁvmechéhics.) Perhaps the nicesﬁ
- feature of the theory. is the ease ﬁith which we -can interpret the pictures
é C | _ :that represent the terms of the expansion. Such intuifions'obtéined from

the graphs permeate all of strong interaction physics, and in fact, mosti

of modern physics.
The result is derivaeble in several fashions. The answer is that
the amplitude for a process is the sum of all possible (connected) graphs..

For example, the amplitude for N - N scattering is given by: "

{




-,

=T+ + T O

where the ——-—~—1lines represent pions, the solid lines are nucleons, and .
overall momentum consefvatién is implied. The theory‘gives a weil defined
set of ruleslfor caléulating the contribution of each graph td the series.
These rules tell how to associate each veftex, internal line and externai'
line to some mathematical éperation. “The mere existence of the rules is
sufficient here and we emphasize the ihterpretation of the graphs.

The first graph, f__m___;_% ; can 5e interpreted to say that the
N-N scattering proceeds by one nucleon crgating a pion which the other
nucleon annihilates. This is called.the one pion exchange diagram. The
basic idea is That the scatteriné is due.to the exchange of a particle; The
strong interaction force is due to exchahges‘of particles in which all

guantum numbers are conserved at each vertex. =xamples of other graphs are:

t: —_———— Two pion exchange.

t:T;ﬁ(X:::ii - Crossed two pion exchange.
, ,
\ ———— ‘ . One = exchange with "radiative"
~ ‘ correction. '

: ‘*<:::f"‘J One n exchange with "vacuum
' l polarization."” ,



(The names come from quantum electrodynamics and not from strong interaction
physics,) You should note that the particles that are exchanged (the forces)
can be the same type of particles as those that are being scattered. The

first few terms of the # + N -+ n + N series are given by

/
/

— -~ : )4 + + *» e '

- l

\ |
\ 1

Here the exchange of two pions or one nucleon give the leest order terms.

| B

{ !
i
The: four line vertex is necessary because the pi is a pseudoscaler particle,
and parity would not be conéerved at a three pion vertex.

Three absolutely essential results of Feynman graphs will lead us
to a theory of the S-Matrix, where we shall generalize these statements
accordingly{

(1) Suppose there exists a stable or unstable particle that

communicates with (ie, has the same quantum numbers as) the initial or

Y.

‘final state. Then for x - =« ‘scattering, there exists a graph like :%

vl 77e
N /

. 7
¥ +
X

e N .
6‘,—1“ \ZZ'O

From the Féynman~rules, the amplitude has a pole af the complex mess of ‘the
P . (There.ekisﬁ Féynman rules for any spin.) Hence we see that the Feymman
‘graphs confirm_our éus@icion about the correspondence‘of particleé to poles
in the scattering amplitude. |

' (2) Except for certain definite singularities (poles and branch
points), the individual graphs are analytic functions of’the.external
momenta. We mean analytic in the sense of complex variables and the Cauéhé.
Riemannconditions.

- (3) The graphs are sufficiently analytic that they can be read both

-



upward and sideways. The same function describes the different processes,

For example, the one pion exchange graph,

can be read from left to right. Then we have N + N - n->N + W, ‘The
pion pole exists in this channel. (A channel is a set of gquantum numbers
belonging to a state of any number -of particles,) ‘We call this reaction a

crossed reaction.

This is nearly all we can say from a field theory:in which Feynman
graphs are basic. though many of the conjectures we will now make might
be provable from field theory, the pertufbation series itself does not

converge in strong interactions. So as things stand now, mathematically

we are on very shaky ground. Instead of waiting for field theory to complete

some very difficult proofs, we can formulate a new theory just to be on the

safe side.

Although tﬁe .S-Matrix Theory of Strong Interactions is_nét truly
é complete theory, successful calculations haﬁe been done within the context
of certain models. We beginvby discussing thé basicg of this theory.

Perhaps the mosﬁ basic postulate is tﬁe unitarity . of the S-Matrix.

Recall that

ﬁ(in) - 5 ﬁ(out)

and that the matrix elements of S can be written.

= + 1 ( -
Sps §fi 18(p, Pi) Afi

where



2l

n nf. ni fi

Moreover, we demand that the S-Matrix be Lorentz . invariant so
A is a function of the invariants.
The very fundamental postulate that is suggested by Feynmen graphs

is that ‘A is an analybtic funcition. How.énalytic should it Dbe? - We make

the conjecture of meximal analyticity. The amplitude has dhly those

singularities required by unitarity. 'Once we establish the analyticity

properties of A, we will be able to see that crossing has physical content

“and A does describe the main reaction and the two crossed reactions.

We have good reason to discuss the singularities required by
unitarity. If A is an ahalytic function, its wvalue is determined by its
singularities. By using the Cauchy residue theorem, we can find integral

equations for A . We do this for a simple case in part III. In other

words, the'énalytic structure of the S-Matrix containé the dyhamics of
strong interac%ions. |

Before discussing details, we‘genefalize thelresults from Feynman
graphs to B-Matrix Theory. These postulates will be the basis of‘the rést
ofiour discussion. _

(1) A communicating particle corresponded to a pole in the Feynman

graph. Postulate: If a particle communicates with the channels of A, then

A contains a pole corresponding to the particle. Hence finding the poles

of A 1s equivalent to identifying all the particles with the same quantumb
numbers as the initial or final states that A comnects. Of course the -
particle pole cannot be in the physical region, for if 1t were, A would

have an infinite value which could not be interpreted experimentally.

.
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(2) Thé analyticity of the Feynman graphs ié extended fo the
amplifude A . Postulate: A -is a Lorentz invariant function of the
momentum invariants with only those singularities required by unitarity.

(3) The crossiﬂg property of diagrams is extended to the full
amplitude. A is sufficientiy analytic that (for example) the amplitude

for 1 + 2 ~» 3 + M:_.

X A

2

and

b
&

The same function is the amplitude for all three reactions. Again this is

called crossing. (The other possible reactions are reached by symmetries

such as TCP.)

To avoid too abstract a discussion, we restrict ourselves to

¥

where lithrough 4 are all spinless particles of equai mass m . As

mentioned before, there exists two independent invariants. But we define
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three invariants--each will correspond to the center of mass energy of each

reaction.
2
S - (pl + .pg)
2
+ -
u = (p - py)
wWhere
s+t +u = bmo
. since
+. —- + and 2 m?
pl p2 - PB P)-I- Pi T &,

s,t, and u are called the Mandelstam variables and they can be visudlized

on a triangular plot called a Mandelstam diagram:

N\

At every point on the diagram, s +t +u = _hm?

Using the Mandelstam diagram, we now find the physical regions for
the three reactions. In the s channel (1 +2 = 3 + 4) ‘and in the centér

of mass system:



cos ) > ¢ <0

-2 pl® @

o
Il

-2 i'pl2 (L +cos®) = u<o

The physical region for the g-channel is s >"hm?, t.< 0, and u<O0 .

(For}unequal masses. the physical region is slightly modified and the algebra
is more complicated.)

 For the t-channel, 18 - - Ps and  p, > - p, - Hence 't is the

square of the center of mass energy (t > hme) and s and u are less

than zero.

In the u reaction ‘u > km> and s,t <0 .

7

AN

channel

d e
t cAahnéTi;//

e

s
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The shaded portions of the diagram are the physical regions of the three
reactions. The physicai regions never overlap (this is general). Conseguen-
tly, if crossing is to have physical content, there can be no barriers to-
prevent analytic continﬁation between physical regions. But this analyticity
is guaranteed by the principle of maximal analyticity, as we shall show., So
we finally ask about the singularities that are required by unitarity.

The wnitarity relation ST S = I can be written as

Snf Sni - fi

whére the sum on n goes over all possible-intermediété states. Factoring

-out the non-analytic pieces:

o, + 16" 6) ;
Sp = Byt 18R - By A, (b))

and ‘Sf S = I Dbecomes
i *,/. +3 . o | = * ! | '.
il Agp (s,%) Afi(s,t)] LA o (s,t) Ani(s,t) a(rh Pi) .

(This derivation is carried out in .detail in Part III.)‘ The £ and 1. label
the final and initial states., For elastic scattering, i = f, and
*

% :
A_.” = A,." . Hence,
fi 1ii

N _ _1_ 2 )-l- ) \
In Aii(s,t) = 3% [Ainl 5 (Pn P) .

These results are very important. To meke them more graphic, we can
-construct a pictorial scheme for Im A . Assume there is only one kind of

particlé, and the single particle communicates with two particles. Then,
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In = B O +f"‘"°\

The sum over intermediate states is broken up into 2,3,L4, etc. particle

- intermediate states and each two bubble diagram impliés:a,sum over all

intermediate momenta (an@ spins). The first term is the pole term. For
pseudo scalar ?articles (such és pions) the pole term doesn't exist because
the plon doesn't communicate with the two pion system without violating:
parity. To siﬁplify the algebra, we shall assume the four external particles

are pions.

_]m

I

T 4 + - _,' .

The singularities of A can be found from this equation. At the
threshold of the first intermediate state (s = hmg); the amplitude suddenly
'develéps an 1lmaginary parf. ‘Below this threshold A is real for real is
'becaﬁse unitarity doesn’t'force‘ A to have an_imaginary part. But at |

threshold-there must be a singularity for the analytié function to suddenly

. develop an imaginary part for real s. The singularity is a branch point,

and the cut is drawn as: ‘ L§

, | A

As s 1s increased to 9m2 , suddenly a new channel opens up, the
three body channel. Hence there is another branch point at 9m2 , and so oﬁ.

'So far, A has the following analytic structure in the complex € plane.




Az T - em*
But this isn't all-there are the crossed channel reactions and théy also
contribute to the analytic structure of A because of the unitarity‘
relations for these reactions. In both the t and the wuw reactions,
s d1is physical for s < 0 . Hence there are branch points along the

negative s axis. The full analytic structure of A in the . s plane

is then

4?#‘

A
)
V)

Due to the simplicity of this farticular rroblem, the t and’ q
plénes will look the saﬁe, Moreover the right hand cuts in the s plane
contribuﬁe to the left hand cuts in the © or u :pléne;

We can find the region ofvthése'singularities in the Mandelstam
diagram. This is beéause éll the singularities lie along‘the real axis.

»Ffom the unitarity ?elation, Im A{s,t,u) = 0 in the region 0< s < e ,
0 <t < hm? , and 0 <u< hmg . There can be singularitieé only‘if:

s > hmg and t > Lpt ; s > e and u > hn® ; or t > bm® spd u > |



o

The actual boundary of the region of singularities are the regions of

pSL)psu and ptu , and they are called the double spectral regions. This
] .

representation of the analytic structure of A is called the Mandelstam

Representation. Among -other things, this proves that crossing is always

possible.

What physics have we done? We appeal to the correspondence i

‘principle with nonrelativistic quantum mechanics. -In quantum mechanics,:

the left hand singularities correspond'to the potentiél. In the nonrelativis-
tic theory, the crossed channels don't exist so we have to put in a potential,

but in the relativistic theory, unitarity relations replace the potentials.

The physics 1s: The existence of the crossed channels gives rise to the

forces by which strongly interacting particles scatter. To emphasize this

result, a simple calculation is given in Part III.
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PART ITI. AN EXPLORATORY CALCULATION

Before we. submerge ourselves in the minutiae of a lengthy calculaﬁion,
a quick review is in order. 1In Part IT, maximal analyticity was used to
" show two startiing facts about the séattering amplitude: (1) The amplitude
was sufficientiy analytic that it not only described the main reaction, but
also the two crossed reactions. We derived the possibility 6f'crossing
(no barriers between the physical region--remember the Mandelstam
representation). from fhe éxistence of the "gap" Im A(s,t,u) =0  for
0 < s,t,u < bm® . We shall make good use of this "gap”:b(e) The diséontin-
uity across the cubts could be palCulated from unitafitj}.thus'determining
?the scattering amplitﬁde, | |
There are fwb famous paths we could follow. -The fifst<is to use the
mathematical statement of the Mandelstam representation.v By working between
the double spectral functions and the uﬁitarity'formulae, one can genefate
the scattering amplitude by the Mandelstam interation procedure. Althéégh
simplé'in principle; this procedure is difficult in-practice, and we wog’t
attempt to clarify the details here.
As for the second path, the gap from O to ﬁm?‘ makeé-it possible )
to write down the partial wave amﬁlitude as a ratio .
N, (s)

_A%e(_é)_ : Dﬁsj_

i

where Nz(s) has only the.lefﬁ hand cuts and Dz(s) the right hand cuts
6f the s-@lane. (We shall derive partial wave unitarity_with éome _'
simplifiéétions.) Then using the Cauchy integral repreéentétion of an F
analyfic'function, we can find a pair ofycoupled integral equations for

) \
NE(S} and Dg(s) .



We follow the N/D method because it will reveal some interesting

physicé. In particular, the postulates of S-Matrix theory that we

. discussed in Part I1 were simply generalizations of Feynman graphs. It

is very possible they are equivalent to field theory. Thus it ii ?ossible

to.introduce "elementary" particles and arbitrary parameters into the

theory. But then how do we distinguish elementary particles from "composite"

particles? And how do we reject elementary'partiéles from the theory? This
This question is briefly considered after the N/b derivation.v‘

It is the intention .of the following calculation to (1) Show how

‘analyticity can be usedvto set up equations,for'thefscattering amplitude

in & very simple model; (E)V To discuss the rejection of "éleméntary"
pafticlesj (5). To serve as an introduction to the typical style of
calcuiation found in S-Matrix theory. The-calculatipn isvépelled out in
ggggildetaii. | |

ll We shall begin with unitarity,_make the eléstic unitarity apprégi-‘
mation and then calculate the partial wave unitérity relation; By,writégg

A = A(s,t), we restrict ourselves to the scattering of two spinless particles

into two spinless particles. Unitarity is given by

Sur - Spi T Ops

where

S#z = 5 ,+1 6”(13.k - Pz) Akz(s,t) . : (2)

Substituting (2) into (1)
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_ * . *
8fi B Zn Sne _Sni - zhv[gnf 10 (Pn - Pf)'Anf(s’t)]'

. Lj
v[ani + 18 (Pn - Pi) Ani(s,t)]

ok ' R N A ®
B, +10 (Pf - ra) Afi(s,t) - i 8‘(Pi - Pf) Aif4(s,t)

b, _ L *
+ B (13»i - Pf) ;n ) (Pi- Pn) Anf‘(s,t) Ani(s,t)

or

. ¥ ' : 4 .__ | * ¥ l‘- -
1Uﬁf(@t)-Aﬁﬂ@uﬂ = %lﬁﬂ(%t)Amf%tIS(%_ %Qf

We make two simplifications: (1) The final state contains the same
two particles as the initial state (elastic scattering.) (2) - only the

elastic unitarity diagram need be considered in the sum-on n . In pictures

/

Im

I

Simplifying the notation
Afi(s,t) = A(s,t)'

and using

A¥(s,t) = A(s,t) = - 2.1 Im A(s,t) -
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In the unitarity integral -

/

we must still sume over the momenta of the intermediate state:

Im A(s,t) = 3 = A%(s,t") A(s,t") au(Pn- Pi)
intermediate :
momenta

where t!' dis the momentum transfer from the initial to the intermediate

state and t" the momentum transfer from the intermediate to the'final

~ state,

We sum over intermediate momentum states by integrating, As A is

a scalar, we define the invariant integration measure

where

&pt = [pPalp] awr

3 3 .
N . a’p, ' d'pyt .
In Als,6) = 3| —2 22 2*(5t') A(s,t") 87(p, " 4 bt - ) .
: . ' ) : L 2 i

S 2 B.' 2 E L o

1 2
The momentarofvthe two intermediaté’particles are ' and 32' . This

gl

ointegral is most easily performed,in'the center of mass system where

!

=0 . !The spatial part of the O&-function then says pl’ = -

. i .
S0 El' = E2' = E where E 1is the center of mass energy of -one of the




6.

incoming pions. The dBEQ? - integration is done on the épatial part of
the d&-function:

Im A(s,t) =

J’ o' "alp e

IE

-

5 A*¥(s,t') A(s,t") B(2E
+ U

‘s E. ).
i‘_p s 1 1)
ot

The dlpl'] integration is done with the O8-function by noting{”

: ' ' -1 . t H
. , [ aB) 4By ol
dlpl,l = dE \ : : and ——— =
~ 1 t 1 .
alzy alp B
The ©®&-function requires El’ = E . Thus :
, p [ | v .
Im A(s,t) = er= jfa Q' Af(s,t') Als,t™) (3)

This is the statement of total elastic unitarity. To simplify its fof@;
we use the partial wave decomposition of A

Als,t) = z,(es +1)

Az(s):Pz(cosQ>

where recalling our kinematics

_ ot o= -2 0% (L = cos 8)
or . ’
' éos e = 1+ v
g ' 2
] g ' , ; 2p

Thus .




Im [z:z(zz{ul) Ag('s) Pz(cose)] =

igi fdg' ﬂzz* (2041) (2£7+1) Az‘*‘(s), A.g"(s))

1 . 13
Pz(cos.e ) Pk,(cos e ).

'The integral can be done by applying the addition theorem:for

' Legéndre polynomials:

1" - )‘“T[ i * 4 1
_PEJ(CQS e") = _§E;T éé;z,iz:m (6;0 ).Yz’m(9;¢>

"By the orthogoﬁality of the Yg m only 'the m = O term will énrvive
. . 3 .

the integration

E: an' Pz(cos @’).Iz,(cos e")

-,ﬂ'
= 5 b EY - (8 ¢) dQ; f (cos ©) ¥ | {9‘ ¢;)
g L1 ter,0\” AN AL
.. P (cos - ®)

2441 y/
where the nérmalization conventionsvhéve been used. Thus

mlz, (26+1) 4,(e) By(cos-0)] = =z, (ez;l)gﬁ;‘m’ ]Az(sn?

i

or:



-30-

Ima,(e) = = [ae)f° W

Defining

() = ® - 1 \Jezla )
eLs = I - & 5

Eq. (4) can be written more conveniently:

N
L.

1\' _ v Im Az = 53 LAzm Az_] = P Az A
or

Imm = = p(s) }- : | (6)

If_&é‘aésume that no poles .communicate with the crossédrchaﬁnels, then the
parfial waves have the same singularity strdcture as the total amplitude. -
Tﬁe exactly similiar singularity structure is an accident'of'theAproblem. 
With elastic unitarity, there is a cut from »éﬂ; ﬁ@?:Tfo‘oé, énd a cut frbm

0 to ~o0

The next step.is to appeal to a result of the Wiener-Hopf “theory of
integral equations: If Ag(s) ‘has the singularity structure shown above,

then Az(d) can be written
P o i
Nﬂ(s)v

Aﬂ(S) '=. 5;(57 . 1:




i
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where Nﬂ(s) ‘containsvonly‘the left hand cut and DE(S) contalns only the

right hand cut:

/s

| s

‘Singularity structure of Nz(s)‘ .

.LFmNz(s). = 0 s>0
Tm Né(s) = Im [Az(s) Dz(s)] ,= bz(s) Im Az(_vs) -
_ bz(s) £,(s), s<0
where ‘lf'e(s) | ;s defined ,.by:
Im AZ@) = :z(é)‘ 5 <0
and must be determined fJ‘rom zthe kflowlgdge of the crossed ci‘(lanl;le'ls. Also:

Isz(s) = 0 s <l

| My(s) 1 ey o2
Isz(S) .= 'I.m Bﬂ-—(-s-j = Nz(S) Im W = - p(S) N,@(S) s > m".
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The N/D equations are formulated by using the Cauchy integral

_representation
o1 [ alz))
g(z) = 2ni _J dz’ o
C

where g(z') is analytic in and on ¢ and C encloses the point z . We
assume:

N,(s) —> 0

. s > ® .

Dg(s)r constant .
5 =

->

Note that we can pick a value for D at some point and still not introduce
arbitrary parameters into the theory.'

Consider the'contdur

LA

for representing 'Ng(s) . Then



S LTS TIL T

-1

_ 1 ds'
NB(S) T o2ni f st - s
C
0 . ;
1 ds' + 1
= ——— N ! +  —
2l f oo )t mE

0

.o

l'f

ds!

s' -

S

Ny (s'7) +

R + %, =
The integral on the circle at oo is zero and N(s' ) = N (s'’)

0 : .
o ds' 1y oo ¥t
M) = 5 f T Tlst) - m(st)
.. . =00 :
_ 1 ds® 1
=T ﬁ.‘Jf 5T -5 Nﬂ(s ).
.0 ' :
-or
. -0 _ .
- Lo ' ds' at 1
Nz(s) = - o ‘.Sf - S _Dz(s,) fﬂ(s )
0 | - -

For Dz(s)., we consider the contour:

(1)

[

/

c

Making a subtraction the non-rigorous way:
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i
{ s'= s 2 oni
4

. ( . . 1 .
D,(s) - D,(0) = —= E— (") - 5 f =25 Dy(s")
4 2ri- st- 04
’ c - c .

' ds’? o\
/ ) Im Dz(s )

hm?

H
N
Ao
H
0

&
[
1 -5
(4]
v]
ws)
I
~~
0
S

i

Ajm

or

s -

F)

DE(S).= 1 -

oy e | @)

d*n

Equations (7) and (8) are coupled integral equations for N and D .
They can be decoupled by substituting 7 into 8 or 8 into 7. Substituting

(7) into (8) yields an equation for Dﬂl(s)f

e o] ,
( 1
5l = . S ds P.S - =
Uﬂ\s) = t-z .Jﬂg si(si- s) s 7 C[
. ™
. @ ' , d : ( ) _
o ) s ) ’ s }- . as" 1t
= 1 T f ds Dz(s )fﬁ(s ) - \[2 Sr‘r (S -S)(S”-S’j .
0 , | b - |
Define
o Lo esh)

R(s) = = f as" _
It Sy e
: )—l-m2 S (S S)

- g!

R(s') = = f —

T %2 n(sn Sf')"
then - . ' = :
' o " s = s8' :
R(s) - R(s!) = jﬁ as" E(S ) . .
. - Lmlg ' ' (S”- S)(S”‘ S’) .

Thus
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n(s) = 1+% | dsf{R(:?_'sR(S’) fz(s')] D,(s7)| . (9)

(o]

Since R(s) is known and fz(s) is presumed know, let

-

.K(s,s') = 2 l?<5) - R(s') } fz(s’) _ . (lO).

ks sf= s

be the kernel of the integral eguation

o . |
DZ(S) = 1+ J[ ds' XK(s,s") Dz(s’) C - (11)
The condition that (9) be a Fredholm equation is that the kernel be square

integrable.

0 o .
. o
ds as' |k(s,s")|° <o .
) J . i .
-m =00
By means of a rathe:'lengthy integration, it is possible to show that %
fg(s) must be bounded by'_éx where o is less than zero. (To do this,

transform the integral equation so that K(s,s') is symmetricé then

- integrate.)

Only then can we be sure that (9) has a solution.

We.shall indicate one form of Bootstrap hypothesis. (A bootstrap

" hypothesis is the postulate to eliminate elementary particles from the

theory,) :The final result of the vN/D calculation was the integral

{

equation for the denominator function, Eg.(1l) .  The left-hand cut appears !
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in the kernel, X(s,s') in Eq. (10). We also showed that Eq. (11) is 2
Fredholm equation (and hencé a solution 1s guaranteed) only if

' > sa'

—S-—>®

3

fz(sj

However a pole in the + -channel of spin £' contributes a term

of the form

Pz(cos Qt)

s ‘

Moreover, from the kinematics

2
s = -2Dp (1 + cosv@t)
or
' s
cos Gt = = 1 +. 5 .

.Fixing t and allowing S to become large, cds'@t becomes unphysical,
and we can use the asymptotic form of Pk,(cos Qt)

. 'Ief '
fz(S> —~ S .

Hence the inteéfai equation is singular and arbitrary parameters are
neceSéary.'

‘A solution fo‘this difficulty‘can bé found by anaiyfiéally continuihg.
-the.partial wave amplitude into the complex angular momentum plane. Ih the
£-plane, one finds poies that move a; a function of s ; However we already

know how to interpret poles--they‘correspond‘to particles when they cross a
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4 : " physical value of angular momentum at physical  s. If a particle lies on

such a "Regge" pole, then
. v ,e' = Z’(S) e

. If E’(s), decfeases to a value less ﬁhan Zerc as s :ihcreaseé, then the
equation becomes Fredholm. - The.Chew»antschi-Mandelstam'hypothesis is that
éll particles lie on Regge ﬁolés. This conjecture not only makes.it possible
té solve Eg. 11, bﬁt itvalso eliminates elementary particles from S Matrix

theory, since for an elementary particle,

A = &' , a constant .
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