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Optical frequency-domain reflectometry (OFDR) using an
integrated fiber tunable filter

Yonghua Zhao*, Zhongping Chen, Johannes F. de Boer, and J. StuartNelson

Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612

ABSTRACT

We present an all-fiber, compact device for optical frequency-domain reflectometry (OFDR). The device
combines a Michelson interferometer with a fiber Fabry-Perot tunable filter for rapid wavelength scanning.
The free spectral range of the filter is 32 nm and scans may be completed in less than 2.5ms. Images of the
surface geometry of the material under study can be reconstructed at scan rates up to 400 Hz with an axial
resolution of 20 .tm.
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1. INTRODUCTION

Optical ranging and tomographic techniques have applications in various fields ranging from engineering to
medicine. These techniques can be divided into three major categories: optical time-domain reflectometry
(OTDR),' optical coherence-domain reflectometry (OCDR) or optical coherence tomograph7 (OCT), and
optical frequency-domain reflectometry'8'9 (OFDR) or spectral radar. In OTDR, distance measurements are
obtained in the time domain of backreflected light. Resolution is limited by the pulsewidth of the light
source and suitable for measuring long distances. Both OCT and OFDR are based on coherence gating
which uses a broadband light source for tomographic imaging with very high spatial resolution. In OCT
systems, a broadband light source with a short coherence length (5 to 20 tim) is used. Interferometric
fringes occur only when the path lengths of the reference and sample arms match within the source
coherence length. Reflecting or scattering information along the axis inside the sample can be obtained by
scanning the reference arm. By contrast, OFDR uses a tunable or broadband light source combined with a
spectrometer. After measuring the spectrum of the mterferometer output with a fixed reference arm, axial
information is acquired by a Fourier transform. The advantage of OFDR is that no mechanical scanning in
the axial direction is required.

In this paper, we demonstrate the application of a fiber Fabry-Perot tunable filter for OFDR. The
advantages of a Fabry-Perot tunable filter are that the device can be fiber integrated and a spectrometer or
tunable laser is not required. Furthermore, the scanning speed of a fiber tunable filter is faster than
mechanical tuning of the spectrometer.

2. THEORY

The principle of OFDR is based on a Michelson interferometer. The current of a photodiode received in the
detection arm can be represented as:

1(1), AL) = 9C1r + js + 2Jiiicos(4inAL I c)) (1)

Where 1.) is optical frequency, L is the path length difference between the reference and sample anns and c
is the velocity of light. Jr and I are the intensities coming back from the reference and sample arms,
respectively. When scanning the optical frequency, the photocurrent oscillates at a frequency (f) that is

*
Correspondence: Email: yzhao(bli.uci.edu: Web: http://www.bli.uci.edu: Tel: 949-824-3284;

Fax: 949-824-8413

Part of the SPIE Conference on Coherence Domain Optical Methods in Biomedical

56 Science and Clinical Applications Ill • San Jose, California • January 1999
SPIE Vol. 3598 • 0277-786X/991$1O.OO



proportional to 2ML/c. This frequency can be determined by a Fourier transform of the photocurrent.
Subsequently the path length difference can be determined as:

1 1
L\L=—cf (2)2 At/st

where i/& is the scanning speed of the optical frequency. When OFDR is applied to tomographic
imaging of tissue where many scattering sites exist, the interference signal is:

1(u) =
S(u)1 + fa(l) exp(i4itnul/ c)dl (3)

where S(u) is the spectral intensity distribution of the light source, aQ) is the backscattered amplitude of the
tissue along axial 1, and n is the tissue refractive index. information on the scattering properties of the tissue
under study can be obtained by performing a Fourier transformation.

3. EXPERIMENTAL SYSTEM

In our OFDR system (Fig. 1), a superluminescent diode (SLD) with the center wavelength at 850 nm and a
bandwidth of 25 nm is used as the low-coherence source. Light from the SLD and an aiming beam (He-Ne
laser, 633 urn) are coupled into a fiber-optic Michelson interferometer by a 2 x 1 coupler. Approximately 1
mW of SLD light is coupled into the fiber and then split into reference and target arms of the interferometer
by a 2 x 2 (50:50) fiber coupler. Stress birefringence is used to match the polarization of reference and
sample beams and to optimize fringe contrast. Light in the target arm is focused onto the sample surface by
a gradient-index lens (N.A. = 0.2). Two-dimensional geometric images are formed by lateral scanning the
lens probe in X-Y directions. The reference arm is terminated by a stationary retroreflector. Light
backscattered from the sample recombines with the reference beam within the 2 x 2 fiber coupler and then
passed through the fiber Fabry-Perot tunable filter.

The filter is constructed with a Fabry-Perot cavity where the distance between two cavity mirrors is
controlled by a PZT. When the voltage applied to the PZT changes linearly, the wavelength of the light that
can pass through the Fabry-Perot cavity also changes linearly. The transmission curve at 830 urn vs PZT
voltage is shown in Fig. 2. The free spectral range of the filter is 14355 GHz (32 urn) and the fmesse is 416
meaning that the axial resolution can be as high as 20 jim and the scanning range is up to 0.4 mm. The
tuning voltage for the total free spectral range is only 12 V, and does not require a special amplifier. SLD's
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Fig.l Schematic diagram of the experimental system. AID, analog-digital converter.



spectrum measured by the fiber FP tunable filter driven with a 12 V saw-tooth signal is shown in Fig.3.
Although the free spectral range is slightly smaller than the full bandwidth of the SLD, the distortion of
spectrum is very small. As a result, the axial resolution does not decrease.
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Fig. 2. Transmission curve of the fiber Fabry-Perot
tunable filter when driven by a linear PZT voltage.
FSR (free spectral range) is 32 nm and BW
(bandwidth) is O.077nm.

Fig. 3. Spectrum of the SLD measured by the
fiber Fabry-Perot tunable filter. The spectral
scanning range is equal to the free spectral range
of the filter (32 nm).
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A silicon photovoltaic receiver located after the fiber Fabry-Parot filter measured the spectrum of the
mterferometer. The signal was digitized with a 16-bit analog-digital converter and then transferred to a
computer workstation for processing. All devices here, including the function generator to drive the PZT,
scanning stage driver, and A/D converter, were controlled and synchronized by a PC through a GPIB
interface. The maximum sampling frequency of the AID converter was 100 kHz which limits the scanning
speed of the filter to 100 Hz because 1 024 sample points are chosen for each spectral scanning. However,
the scanning speed can be as high as 400 Hz without sacrificing resolution. The finesse of the Fabry-Perot
filter will decrease if the driven frequency exceeds 500 Hz.

4. RESULTS

Figure 4 shows the digitized interferograms and the corresponding 16-bit Fourier transfonns. The two scans
were taken from a sample with different path lengths between the two arms of the Michelson
interferometer. It can be noted that different interferometer arm mismatches are encoded as modulation
frequencies of the detected interferograms, which is described above in the theory section. Since OFDR
relates the absolute path difference between the different arms in the interferometer to the modulation
frequency of the interferograms, it is not possible to distinguish which of the interferometer path lengths is
actually longer. To avoid any misinterpretation in the acquired images it is important that the zero path
length difference is set at the top surface of the sample at the beginning ofthe experiment.

To demonstrate the imaging capability of the system, we reconstructed an image of the surface geometry of
the lettering on a U.S. dime coin. The letters of "USU NUM" are shown in Fig. 5.Although the pixel size
here is approximately 50 pm, the image resolution could be as small as 10 pm and is only determined by
the focusing lens. To obtain the three-dimensional image we moved the probe containing the focusing lens
on the translation stages over an area of 5 mm x 5 mm.
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of the interferometer at different locations on the sample (left) and corresponding Fourier transform

Fig. 5. Left, reconstructed surface image of a IJ. S. dime coin, white represents the elevated letters. Right,
corresponding geometric image.
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5. CONCLUSIONS

hi conclusion, we have demonstrated the operation of an OFDR system using a rapid scanning, fiber-
integrated filter. The filter was constructed using a Fabry-Perot cavity and PZT which can be driven at
frequencies as high as 400 Hz. Using such a compact system, the geometric image of a sample surface can
easily be reconstructed with a depth resolution of 20 tm. The potential extension of this technique using a
high power light source and new fiber filter with a broader spectral scanning range is higher resolution and
higher dynamic range for OCT imaging.
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