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Explicit Higher Order Symplectic Integrator for s-Dependent Magnetic Field

Y. Wu,∗ E. Forest,† and D. S. Robin‡

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

(Dated: June 16, 2001)
We derive second and higher order explicit symplectic integrators for the charged particle

motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian
of such a system takes the form of H =

P
k(pk − ak(~q, s))2 + V (~q, s). This work solves a

long-standing problem for modeling s-dependent magnetic elements. Important applications
of this work include the studies of the charged particle dynamics in a storage ring with strong
field wigglers, arbitrarily polarized insertion devices, and super-conducting magnets with strong
fringe fields. Consequently, this work will have a significant impact on the optimal use of the
above magnetic devices in the light source rings as well as in next generation linear collider
damping rings.

PACS numbers: 29.20.Dh, 29.27.Bd, 42.15.Eq

I. INTRODUCTION

Symplectic integrators are a set of special numerical
integration methods developed for the Hamiltonian sys-
tems. Unlike the more widely used Runge-Kutta algo-
rithms which are non-symplectic in general, the symplec-
tic integration methods allow numerical computations of
the phase space vector at any time τ , {~q(τ), ~p(τ)}, so that
the transformation from the initial state, {~q(0), ~p(0)}, to
the final state, {~q(τ), ~p(τ)}, is canonical. The early de-
velopment of higher order (order ≥ 2) explicit symplectic
integrators was initiated by Ruth’s work for the following
type of Hamiltonians [1]:

H = T (~p) + V (~q). (1)

Applying the Lie map techniques, Forest [2] and
Neri [3] re-derived Ruth’s integrator, and found that such
integrators were universally applicable to any Lie group.
Later, Yoshida developed a systematic method [4] to con-
struct higher even order integrators from a lower order
one. This elegant piece of work eliminates the need to
search for specific higher order integrators, for they can
be iteratively constructed from a known second-order
symplectic integrator. The further development by For-
est extended the Yoshida’s technique to the implicit inte-
gration and multi-map explicit integration [5] as well as
for the time dependent Hamiltonians using the extended
phase space concept [6].

In the storage ring, symplectic integration provides
an essential tool to study the long-term behavior of the

∗Electronic address: ywu@lbl.gov
†Also at High Energy Accelerator Research Organization, 1-1

Oho, Tsukuba, Ibaraki 305-0810, Japan
‡Work supported by the Director, Office of Energy Research,

Office of Basic Energy Sciences, Material Sciences Division, U.S.
Department of Energy, under Contract No. DE-AC03-76SF00098

single particle dynamics. Magnetic multipole elements,
such as quadrupoles and sextupoles, are modeled using a
so-called impulse boundary approximation, in which the
magnetic field is assumed to be constant (s-independent)
within the effective boundary of the magnet and zero
outside. Such a magnetic field model allows one to use
a special vector potential, ~A = Az(x, y)ẑ for each mag-
net. As a result, the charged particle Hamiltonian can
be separated into the usual drift-kick combinations of the
Ruth type: H = T (~p)+V (~q), where T (~p) is a drift, V (~q)
is a kick. Applying the explicit symplectic integration
method for magnetic multipoles developed in the early
1990’s, it became possible to compute the charged parti-
cle trajectories after a large number of turns without in-
troducing artificial damping or anti-damping. A number
of tracking codes have since been developed with higher
order symplectic integrators. These tracking codes have
become a critical tool for designing the third generation
light storage rings with small emittance as well as high
energy physics collider rings with high luminosity.

However, in particle accelerators there are other types
of magnetic elements, such as wigglers and undula-
tors, their s-dependent magnetic field cannot be modeled
properly by the above multipole model with the impulse
boundary approximation. Consequently, the charged
particle Hamiltonian can no longer be split into drift
and kick combinations. Instead, the Hamiltonian for s-
dependent magnetic fields takes the following form:

H = T (~p− ~a(~q, s)) + V (~q, s). (2)

This paper focuses on our recent development of higher
order explicit symplectic integrators for such a Hamilto-
nian.

In section II, we state the mathematical problem to be
solved. In section III, we revisit the Yoshida’s procedures
to iteratively construct higher order symplectic integra-
tors. Explicit integrators are then developed in section IV
for the s-dependent magnetic field Hamiltonian with the



2

paraxial approximation. In section V we implement this
type of integrator using a magnetic quadrupole as an ex-
ample. Finally, we outline a few important applications
of this work in section VI.

II. THE PROBLEM

The goal of this paper is to find explicit symplectic
integrators for the charged particle Hamiltonian with
an s-dependent magnetic field. A general static mag-
netic field depends on all three coordinates and can be
described by a vector potential of the form, ~A(~r) =
Ax(~r)x̂+ Ay(~r)ŷ + Az(~r)ẑ, and ~r = (x, y, z). The Hamil-
tonian for such a field is,

H(x, px, y, py, δ, l; z)

= −
√

(1 + δ)2 − (px − ax)2 − (py − ay)2 − az, (3)

where px,y = Px,y/P0 is the normalized transverse mo-
menta, δ = P/P0−1 is the relative momentum deviation,
l is the path length, ax,y,z(x, y, z) = qAx,y,z(x, y, z)/(P0c)
is the normalized vector potential.

Clearly, we observe that such a Hamiltonian always
contains terms which mix the coordinate and momen-
tum of the same canonical pairs, such as in (px,y −
ax,y(x, y, z))2. Therefore, explicit symplectic integration
techniques developed for Hamiltonians of the Ruth type
are no longer applicable. This problem is particularly dif-
ficult, for the transverse momentum terms are grouped
together under the roof of the square root.

In large rings, the paraxial approximation can be made
for the charged particle motion. With this approxima-
tion, the Hamiltonian can then be simplified to the fol-
lowing form:

H(x, px, y, py, δ, l; z)

≈ −δ +
(px − ax)2

2(1 + δ)
+

(py − ay)2

2(1 + δ)
− az. (4)

Apparently, the mixing of the coordinate and momentum
remains in this Hamiltonian. Many light source rings,
damping rings, and collider rings fall into this category.
Consequently, developing symplectic integrators for this
reduced form of the Hamiltonian remains of great signifi-
cance. In fact, by applying the generating function tech-
niques, we find that this type of Hamiltonian can be bro-
ken into exactly solvable parts, therefore integrable by an
explicit symplectic integration scheme (see section IV).

III. YOSHIDA’S PROCEDURE REVISITED

Consider a time independent Hamiltonian H(~q, ~p), its
Lie map from a time 0 to a time t can be symbolically
written as,

M(t) = exp(t : −H :). (5)

This Lie map cannot be evaluated exactly if the Hamil-
tonian is not solvable. Suppose that the Hamiltonian can
be split into N solvable parts, H = H1 + H2 + · · ·+ HN ,
then, a second order integrator can be easily constructed
using a symmetrized Lie map product [5]:

Ni(t) = exp(t : −Hi :), i = 1, · · · , N

M2 = N1(t/2)N2(t/2) · · · NN (t) · · · N2(t/2)N1(t/2)
= M(t) + O(t3). (6)

Yoshida’s method [4] allows one to systematically con-
struct a higher-order integrator from a lower order one.
Suppose that we have found a 2n-th order symplectic ap-
proximation M2n for M. If M2n(t) has the property of
time reversibility, i.e. M−1

2n (t) = M2n(−t), then M2n(t)
would only contain odd power terms of time, t, in its Lie
exponent [6]. We can readily write M2n(t) as

M2n(t) = exp(: −tH + t2n+1F2n+1 + O(t2n+3) :). (7)

Following Yoshida’s procedure, one can construct an
(2n + 2)-th order integrator in the following way:

M2n+2(t) = M2n(x1t)M2n(x0t)M2n(x1t)
= exp(: −t(2x1 + x0)H +

t2n+1(2x2n+1
1 + x2n+1

0 )F2n+1 + O(t2n+3) :)
= exp(: −tH + O(t2n+3) :). (8)

The last step is realized if we set

2x1 + x0 = 1
2x2n+1

1 + x2n+1
0 = 0. (9)

One trivial real solution for the above equation is

x1 =
1

2− 21/(2n+1)
, x0 = − 21/(2n+1)

2− 21/(2n+1)
. (10)

Because of Yoshida’s recursive technique to construct
higher order symplectic integrators, what left for us is
to develop a second-order symplectic integrator for s-
dependent magnetic field.

It is worth to note that since 1990’s, mathematicians
have actively involved in studying symplectic integra-
tion methods as part of geometric integration [7]. A
wide range of research in this area has be published [8].
McLachlan’s work on designing effective high-order in-
tegration methods [9] provides valuable insights to con-
struct an optimal integrator for our problem.

IV. EXPLICIT SYMPLECTIC INTEGRATORS

The Hamiltonian for an s-dependent magnetic field ex-
plicitly depends on the independent variable s (or z in the
Cartesian coordinate system, as in our case) (see Eq. 4).
To facilitate the development of approximate Lie maps,
we extend the phase space to include (z, pz) as the fourth
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canonical pair and σ as an independent variable with
dσ = dz [6]. The equivalent paraxial Hamiltonian in the
extended phase space is given by

K(x, px, y, py, δ, l, z, pz; σ)

≈ −δ +
(px − ax)2

2(1 + δ)
+

(py − ay)2

2(1 + δ)
− az + pz. (11)

Since this equivalent Hamiltonian is σ-independent, an
exact Lie map for an integration step ∆σ can be written
symbolically as:

M(∆σ) = exp(−∆σ : K :) (12)

Before constructing a second-order approximation for
this map, we will make a gauge transformation so that
the vector potential will have a zero component in the
x-direction: ~A = Ay(x, y, z)ŷ + Az(x, y, z)ẑ. Now by
splitting the Hamiltonian to several parts,

K = K1 + K2 + K3 + K4, (13)
K1 = pz, K2 = −az(x, y, z),

K3 = −δ +
p2

x

2(1 + δ)
, K4 =

(py − ay(x, y, z))2

2(1 + δ)
,

we can construct a second-order approximation for M as
follows:

M2(∆σ) = exp(: −∆σ

2
K1 :) exp(: −∆σ

2
K2 :)

exp(: −∆σ

2
K3 :) exp(: −∆σK4 :) exp(: −∆σ

2
K3 :)

exp(: −∆σ

2
K2 :) exp(: −∆σ

2
K1 :)

= M(∆σ) + O((∆σ)3). (14)

Apparently, K1, K2, K3 are exactly solvable due to the
separation of the coordinate and momentum belonging to
the same canonical pairs while K4 containing the (y, py)
pair remains to be solved. However, using a generating
function, we find that K4 is also exactly solvable.

By noticing that K4 contains only py but not px, a
generating function is in order to transform (py−ay)2 to
(pnew

y )2 using a set of new canonical variables. We write
down the explicit Lie map for this generating function:

Ay = exp(: −
∫

ay(x, y, z)dy :), (15)

exp(: −∆σ(py − ay)2

2(1 + δ)
:) = Ay exp(: − ∆σp2

y

2(1 + δ)
:)A−1

y .

Transformations on the phase space variables by this gen-
erating function Lie map are explicit:

Ay{x, y, z, δ, l} = {x, y, z, δ, l}, (16)

Aypx = px −
∫

∂ay

∂x
dy, A−1

y px = px +
∫

∂ay

∂x
dy,

Aypy = py − ay, A−1
y py = py + ay,

Aypz = pz −
∫

∂ay

∂z
dy, A−1

y pz = pz +
∫

∂ay

∂z
dy.

Finally, we have completed the development of an ex-
plicit second-order symplectic integrator for M:

M2(∆σ) = exp(: −∆σ

2
pz :) exp(:

∆σ

2
az :) exp(: −∆σ

2
(−δ +

p2
x

2(1 + δ)
) :)

Ay exp(: −∆σ
p2

y

2(1 + δ)
:)A−1

y exp(: −∆σ

2
(−δ +

p2
x

2(1 + δ)
) :) exp(:

∆σ

2
az :) exp(: −∆σ

2
pz :). (17)

It is worth pointing out that this particular second-order
approximation for M is not unique. By choosing differ-
ent magnetic field gauges for the vector potential, one can
construct an infinite set of second order Lie map approx-
imations which can be integrated explicitly. The con-
struction of higher order symplectic integrators is trivial
by following Yoshida’s procedure outlined in section III.

V. QUADRUPOLE EXAMPLE

To illustrate the usage of this type of symplectic in-
tegrators, we use a magnetic quadrupole as an exam-
ple. Traditionally, for magnetic multipoles, the vector
potential is chosen with a Az component only under the
impulsed boundary approximation described in section I.
For a quadrupole, qAz(x, y)/(P0c) = −b1/2(x2−y2), and
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the Hamiltonian is,

H1 = (−δ +
p2

x + p2
y

2(1 + δ)
) +

b1

2
(x2 − y2) = H1(~p) + H2(~q)

K1(x, px, y, py, δ, l; z) = H1 + pz, (18)

where K1 is the quadrupole Hamiltonian in the extended
phase space. While this quadratic Hamiltonian is exactly
solvable, a simple drift-kick separation of the Hamilto-
nian can be used for computing the particle trajectory
numerically.

Now we choose a different field gauge so that the vector
potential has a zero component in Az:

q ~A

P0c
= (b1xz,−b1yz, 0), (19)

and an equivalent Hamiltonian in the extended phase
space is,

K2 = {−δ +
(px − b1xz)2

2(1 + δ)
}+ { (py + b1yz)2

2(1 + δ)
}+ pz

K2 = AgK1, (20)

where Ag = exp(: − 1
2b1(x2 − y2)z :) is the Lie map for

the relative gauge transformation between the two sets of
vector potentials. Using generating functions, we transfer
K2 to a form with clearly recognizable solvable parts:

K2 = Ax(−δ +
p2

x

2(1 + δ)
) +Ay(

p2
y

2(1 + δ)
) + pz, (21)

where Ax = exp(: − b1
2 x2z :) and Ay = exp(: b1

2 y2z :).
Taking the above Hamiltonian (Eq. 21), we wrote a

very simple second order symplectic integrator code. Us-
ing a differential algebra based package (FPP) of Forest
we verified that the second-order quadrupole map was
in fact symplectic. Then we tested this integrator on a
very simple FODO lattice cell. We plot the phase space
trajectories at the center of a defocusing quadrupole for
3000 turns in Fig. 1. Apparently, we observe that uncou-
pled horizontal and vertical phase space areas are con-
served respectively, which once again demonstrates the
symplectic nature of this integrator.

VI. CONCLUDING REMARKS

Although Ruth first speculated in 1980’s [1] that an
explicit high order map might be possible for a Hamilto-
nian of the form: H = (~p−~a(~q, t))/2, the exact procedure
to construct such a high order symplectic integrator be-
came evident only after Yoshida’s work [4] and Forest’s
extension [6] to multi-maps in the extended phase space.
The development of this explicit symplectic integrator
for s-dependent magnetic field is very critical for under-
standing the single particle beam dynamics in the next
generation storage rings, from light source rings to linear
collider damping rings.

Two types of applications are particularly important.
The first type is the modeling of fringe field domi-
nated super-conducting magnets in storage rings. Super-
conducting dipoles and wavelength shifters are increas-
ingly becoming a preferred radiation source for hard x-
rays in some third generation light source rings. The Ad-
vanced Light Source (ALS) will commission three super-
conducting bending magnets in the fall of 2001. The s-
dependent magnetic field in such devices can be properly
modeled using an explicit symplectic integrator described
in this paper.

The second type of applications is the modeling of mag-
netic undulators and wigglers, both linearly or elliptically
polarized. Until recently, the most comprehensive wig-
gler modeling was performed by the BESSY group us-
ing the generating function based implicit method [10],
[11], [12]. In this method, a symplectic higher order map
was produced numerically for the insertion device. How-
ever, besides the convergence issues and limited order of
the map which can be produced, the implicit method has
difficulties in dealing with parameter-dependency of the
field, and is limited to producing maps for a given design
orbit. The explicit method developed here allows the
generation of canonical maps with any parameter depen-
dency by tracking through a magnet once with a differen-
tial algebra package. More importantly, since the method
is explicit in nature, direct trajectory tracking in the real
magnetic field can be performed for dynamic aperture
studies. Consequently, this provides a benchmark for the
dynamics studies in which the large amplitude motion
may or may not be properly described by the on-axis
map at a pre-determined order. This is particularly im-
portant for the wiggler dominated storage rings such as
the next generation linear collider damping rings.

Finally, one of the authors (YW) would like to thank V.
Litvinenko at Duke University and B. Kincaid at LBNL
for encouragement and support.

VII. FIGURES
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FIG. 1: A simple phase space trajectory plot for a FODO
lattice at the center of a defocusing quadrupole (3000 turns).
Quadrupole parameters are, lq= 0.1, (b1)f = 2.2, (b1)d =
−2.0. The drift length is ld = 0.2.
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APPENDIX A: GAUGE TRANSFORMATION
AND ITS LIE MAP

Any given static magnetic field, ~B, can be computed
via a vector potential, ~B = ∇ × ~A1 for static magnetic
field [13]. Because of the freedom of gauge transforma-
tions, there are a set of infinite equivalent vector poten-
tials for the same magnetic field. Let us construct an
equivalent vector potential for ~A1 using a gauge trans-
formation:

~A2 = ~A1 +∇Φ
∇× ~A2 = ∇× ~A1 = ~B, (A1)

where Φ is an arbitrary analytic function.
Now, we can write two equivalent Hamiltonians,

H1,2(x, px, y, py, δ, l; z), for the same charged particle mo-
tion using ~A1 and ~A2,

H1 = −
√

(1 + δ)2 − (px − ax1)2 − (py − ay1)2 − az1,

H2 = −
√

(1 + δ)2 − (px − ax2)2 − (py − ay2)2 − az2,

(A2)

see variable definitions in section II. These two equivalent
Hamiltonians, are related by a canonical transformation.
In fact, an explicit Lie map for the transformation can
be written in terms of the gauge function, Φ,

Ag = exp(: −φ(x, y, z) :)
H2 = AgH1, (A3)

where φ = qΦ(x, y, z)/(P0c).
One important observation is that for any static mag-

netic field, one of the vector potential components can
be set to zero by choosing a proper gauge. For example,
by choosing a Φ such that ∂Φ

∂z = −Az1, we can zero Az2,
resulting in an equivalent ~A2 = (Ax2, Ay2). This observa-
tion is very useful in constructing an efficient symplectic
integrator.

Another observation is that the gauge transformation
provides the continuity of the mechanical momenta. At
the boundary of the transformation, applying the gauge

transformation map, Ag, to the phase space variables
yields:

Ag(pσ − aσ1) = pσ − aσ1 − ∂φ

∂σ
= pσ − aσ2, (A4)

where σ = (x, y, z).
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