
UC San Diego
UC San Diego Previously Published Works

Title
Global signal regression acts as a temporal downweighting process in resting-state fMRI.

Permalink
https://escholarship.org/uc/item/73q3t531

Authors
Nalci, Alican
Rao, Bhaskar D
Liu, Thomas T

Publication Date
2017-05-01

DOI
10.1016/j.neuroimage.2017.01.015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/73q3t531
https://escholarship.org
http://www.cdlib.org/


Global Signal Regression Acts as a
Temporal Downweighting Process in Resting-State fMRI
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bDepartment of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,

CA 92093
cDepartments of Radiology, Psychiatry, and Bioengineering, University of California San Diego, 9500 Gilman Drive, La
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Abstract

In resting-state functional MRI (rsfMRI), the correlation between blood oxygenation level dependent

(BOLD) signals across di↵erent brain regions is used to estimate the functional connectivity of the brain.

This approach has led to the identification of a number of resting-state networks, including the default

mode network (DMN) and the task positive network (TPN). Global signal regression (GSR) is a widely

used pre-processing step in rsfMRI that has been shown to improve the spatial specificity of the estimated

resting-state networks. In GSR, a whole brain average time series, known as the global signal (GS), is

regressed out of each voxel time series prior to the computation of the correlations. However, the use

of GSR is controversial because it can introduce artifactual negative correlations. For example, it has

been argued that anticorrelations observed between the DMN and TPN are primarily an artifact of GSR.

Despite the concerns about GSR, there is currently no consensus regarding its use. In this paper, we

introduce a new framework for understanding the e↵ects of GSR. In particular, we show that the main

e↵ects of GSR can be well approximated as a temporal downweighting process in which the data from

time points with relatively large GS magnitudes are greatly attenuated while data from time points with

relatively small GS magnitudes are largely una↵ected. Furthermore, we show that a limiting case of

this downweighting process in which data from time points with large GS magnitudes are censored can

also approximate the e↵ects of GSR. In other words, the correlation maps obtained after GSR show a

high degree of spatial similarity (including the presence of anticorrelations between the DMN and TPN)
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with maps obtained using only the uncensored (i.e. retained) time points. Since the data from these

retained time points are una↵ected by the censoring process, this finding suggests that the observed

anticorrelations inherently exist in the data from time points with small GS magnitudes and are not

simply an artifact of GSR.

Keywords: fMRI, global signal regression, temporal downweighting, censoring, anti-correlations

1. Introduction

In resting-state functional magnetic resonance imaging (rsfMRI), the correlation between the blood

oxygenation level dependent (BOLD) signals from di↵erent brain regions is used to estimate the functional

connectivity of the brain in the absence of an explicit task (Fox and Raichle, 2007). A set of regions that

shows a high degree of mutual correlation is referred to as a resting-state network (RSN). Since the initial5

observation by Biswal et al. (1995) of resting-state correlations in the motor RSN, many other RSNs have

been identified, including visual, auditory, and language networks (Cordes et al., 2000, 2001; Hampson

et al., 2002), the default mode network (DMN) (Raichle et al., 2001), and the task positive network

(TPN) (Fox et al., 2005). The DMN and the TPN consist of those brain regions that exhibit decreases

and increases, respectively, in metabolic activity during the execution of attention demanding tasks10

(Raichle et al., 2001). In the resting-state it has been observed that signals in the DMN are negatively

correlated with signals in the TPN, giving rise to the notion of the DMN and TPN as anti-correlated

networks (Fox et al., 2005).

Many rsfMRI studies employ a pre-processing step known as global signal regression (GSR) in which

a global mean time course is regressed out of each voxel time course prior to the computation of the15

correlations. However, the use of GSR is controversial as it has been shown that the process can cre-

ate artifactual negative correlations (Fox et al., 2009; Murphy et al., 2009; Weissenbacher et al., 2009;

Anderson et al., 2011; Saad et al., 2012). In particular, it has been been claimed that the observed

anticorrelations between the DMN and TPN are largely a mathematical artifact introduced by GSR

(Murphy et al., 2009). In response to these concerns, Fox et al. (2009) acknowledged the validity of the20

mathematical argument put forth by (Murphy et al., 2009), but argued that the characteristics of the

correlation maps obtained with GSR could not be solely determined by the mathematical constraint. For

example, they showed that negative correlations between the DMN and TPN were present even without

the application of GSR, an observation supported by subsequent studies (Chai et al., 2012; Chang and
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Glover, 2009; Wong et al., 2012; Liang et al., 2012). To address some of the concerns regarding GSR,25

alternative approaches for either reducing global signal e↵ects or determining when the application of

GSR is valid have been proposed (Chai et al., 2012; He and Liu, 2012; Carbonell et al., 2014). Related

studies have demonstrated that there are significant neural contributions to the global signal (Schölvinck

et al., 2010; Wong et al., 2013; Wen and Liu, 2016) and have also examined the potential diagnostic value

of the signal (Yang et al., 2014).30

However, despite the growing understanding of the global signal and the potential limitations of

GSR, a consensus regarding the use of GSR is lacking. Because the application of GSR greatly improves

the spatial specificity of functional connectivity maps (Fox et al., 2009; He and Liu, 2012), it is still widely

used (Power et al., 2015; Li et al., 2015) even in the face of the strong concerns that have been raised

(Hahamy et al., 2014; Gotts et al., 2013). From our perspective, this lack of consensus partly reflects35

the di�culty in thinking clearly about the process of GSR, even though it is a relatively straightforward

and compact mathematical operation. In the prior work, mathematical proofs that describe the general

characteristics of GSR (e.g. the sum of correlation values must be negative) or simplified models based

on a few brain regions have been used to examine the e↵ects of GSR (Fox et al., 2009; Murphy et al.,

2009; Saad et al., 2012). While these approaches have provided useful perspectives on GSR, it has been40

di�cult to leverage them to develop an intuitive understanding of the specific e↵ects of GSR when it is

applied to a typical rsfMRI dataset that has hundreds of time points and tens of thousands of voxels.

In this paper, we introduce a simple framework for understanding the e↵ects of GSR. In particular,

we show that the main e↵ects of GSR can be well approximated by a temporal downweighting process in

which the data from di↵erent time points are attenuated as a function of their global signal magnitude45

(i.e., absolute value), such that the time points with the highest global signal magnitude experience the

greatest amount of attenuation. We also show that a limiting case of the downweighting process in which

time points with a global signal magnitude greater than a specified threshold are censored (i.e. excluded)

can provide a good approximation to GSR. Furthermore, we demonstrate that the ability to model the

e↵ects of GSR as a temporal downweighting or censoring process can provide insight into the controversy50

regarding the existence of anti-correlated networks.
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Figure 1: Fractions of positive (red) and negative (blue) voxels versus GS value for each time point in the dataset described

under Methods. The GS magnitude is higher when a large fraction of the voxels have the same sign, and tends towards

zero when there are roughly equal proportions of positive and negative signal values.

2. Theory

2.1. The global signal as a time-varying measure of spatial homogeneity

As a starting point, it is useful to review the basic properties of the global signal (GS). In describing

these properties we focus on providing a reasonable description of the average behavior that is observed55

empirically in the experimental data, and acknowledge that this “average” description is not intended to

cover all possible cases.

The value of the GS at each time point is simply the average of the BOLD percent signal change

values across all voxels in the brain. In considering the empirically observed properties of the GS, we

find that the value of the GS will be positive when the majority of the voxels have a positive BOLD60

signal value and will be negative when the majority of voxels have a negative signal value. At time points

where there are roughly equal proportions of positive and negative signal values, these signal components

will tend to cancel out and the GS magnitude will tend towards zero. Thus, the GS magnitude will be

higher at time points when there is a relatively high level of spatial homogeneity (e.g. most voxels have

a positive BOLD signal) and lower for time points where the data exhibits spatial heterogeneity (e.g. a65

roughly equal mix of positive and negative values across the brain). These properties are demonstrated
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in Figure 1, where we plot the fraction of positive (red) and negative voxels (blue) versus the GS value

for each timepoint in the dataset described under Methods. Large GS magnitudes (i.e large positive or

negative values) correspond to zones where there is either a large fraction of either positive or negative

voxels, respectively, whereas low GS magnitudes (i.e. small positive or negative values) correspond to70

zones where there are roughly equal fractions of positive and negative voxels. The GS magnitude can

also be relatively low for time points when the BOLD values across voxels are uniformly small.

Another view of the basic properties of the GS is provided in Figure 2, where the BOLD images

from a representative subject and slice are shown over 45 time points in panel (a), along with colored

bars below them indicating the value of the GS at each time point and histograms (in panel (b)) of the75

BOLD signal values at 3 selected time points. At time point 72, the image is relatively heterogeneous

with a roughly equal mix of negative and positive values. The corresponding histogram is centered

about zero and the GS magnitude is close to zero at this time point. In contrast, at time point 82 the

image is relatively homogeneous with negative values, leading to a large negative value for the GS. The

corresponding histogram clearly shows that the overwhelming majority of voxels have a negative value80

at this time point. At time point 94 the image is mostly positive with a large positive GS value. Taken

together, the observations in Figures 1 and 2 suggest that the magnitude of the GS can be thought of as

a time-varying measure of spatial homogeneity.

2.2. Global Signal Regression primarily a↵ects time points where the GS magnitude is high

In this section we take a closer look at the process of global signal regression (GSR). We should85

note that the simple examples and arguments presented in this section are meant primarily to provide

background and motivation for the experimental measures (described in Methods and Results) that

empirically demonstrate the temporal downweighting e↵ects of GSR.

Our basic observation is that GSR largely a↵ects those time points where the magnitude of the GS

is high. To see why this is the case, we first consider the toy example shown in the left column of Figure90

3, where we have designed a set of three signals to highlight the properties of GSR. Each of the signals is

constructed as the sum of six Gaussian waveforms of varying magnitudes and time shifts. In Figure 3 (a),

the three signals are designed such that the Gaussian waveforms perfectly cancel out in the intervals

centered about time points 30, 70, 90, and 110 and sum in a constructive fashion around time points 10

and 50. As a result, the resulting GS (computed as the mean of the three signals) in panel (d) has a large95

positive peak for the interval around time point 10 and a large negative peak for the interval around time
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Figure 2: (a) Examples of brain images from a representative subject and slice with GS values represented by colored

underbars for each image. A total of 45 consecutive time points are used to demonstrate a range of GS values. Large

GS magnitudes correspond to brain images with greater spatial homogeneity, while small GS magnitudes correspond to

images where there are similar proportions of negative and positive voxel values. (b) Histogram of whole brain voxel values

corresponding to three selected time points with small (TR = 72) and large (TR = 82 and 94) GS magnitudes. The centers

of mass of these histograms correspond to the GS values at their respective time points.

point 50 (indicated by the thick black bars), but is otherwise equal to zero. Panel (g) shows the results of

applying GSR to each of the original signals from panel (a). Because the GS consists solely of Gaussian

waveforms centered about times points 10 and 50, the process of regression completely eliminates the

signal components in these intervals. In contrast, regression has no e↵ect on time points where the GS100

is equal to zero, so that the Gaussians centered about time points 30, 70, 90, and 110 are untouched by

GSR.

In panel (b), we have slightly modified the signals from panel (a) so that there is no longer perfect

cancellation of the Gaussian waveforms for the intervals centered about time points 30 and 70. As a

result, the GS in panel (e) has small but non-zero values in these intervals. For this case, GSR still105

largely attenuates the waveforms at time points 10 and 50 with minimal attenuation of the waveforms at

time points 30 and 70 (as shown in panel (h)). This reflects the fact that the computation of the regression

coe�cient in GSR is dominated by those time points with larger GS magnitudes, so that scaled versions

of the GS will have a better fit to the voxel time series at these time points. From a mathematical point

of view, those time points with larger GS magnitude have greater leverage on the regression (Hoaglin and110

Welsch, 1978; Draper and Smith, 2014). Denoting the global signal as the column vector g, the leverage

at each time point is given by the corresponding diagonal term of the projection matrix g(gTg)�1gT .
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Figure 3: (a) Three voxel time series are constructed such that the Gaussian waveforms at time points 30, 70, 90 and 110

sum to zero, whereas the waveforms at time points 10 and 50 (indicated with thick black bars) sum constructively. This

summation results in the large peaks at time points 10 and 50 in the GS shown in (d). Panel (g) shows that the original

waveforms at time points 30, 70, 90 and 110 are preserved after GSR, whereas the waveforms at times points 10 and 50 are

completely eliminated. Panels (b,e,h) demonstrate a more realistic case where the cancellation of signals at time points 30

and 70 is not complete and the GS has small values at these points. GSR greatly attenuates the waveforms at time points

10 and 50 and has a slight e↵ect on the waveforms at time points 30 and 70. Panels (c,f,i) show three example BOLD time

series where the GS in (f) is computed over the entire brain. The magenta and black lines indicates regions with low and

high GS magnitudes, respectively. GSR greatly attenuates signals in the high GS regions and has a smaller e↵ect on signals

in the low GS regions.

Since (gTg)�1 is simply a scalar, the leverage at the ith time point is proportional to the square g2
i

of the corresponding global signal value. The concept of leverage is useful for understanding that time

points with large magnitudes tend to be more influential in the regression, but the detailed e↵ects of GSR115

require consideration (and therefore computation) of the entire projection matrix (Draper and Smith,
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2014). As a result, while we use theoretical concepts such as leverage to help motivate our approach, we

need empirical measures to demonstrate the actual e↵ects.

In Figure 3 (c), we show three BOLD time series from a representative subject (see Methods for

details on the data). The GS for the dataset is shown in panel (f), where in contrast to the toy example,120

the GS is computed over all voxel time series (of which only 3 out of about 50,000 are shown in the

plot). The dashed magenta and solid black lines correspond to time intervals in which the GS magnitude

is either relatively small or large, respectively. After GSR (see panel (i)), the waveforms are greatly

attenuated for those intervals where the GS magnitude is large and minimally a↵ected for the intervals

where the GS magnitude is small.125

In summary, the examples shown above suggest that the main e↵ect of GSR is to reduce the mag-

nitude of waveforms in those time intervals in which the GS has a relatively large magnitude. In the

appendix we present mathematical arguments that provides greater insight into this e↵ect. Specifically,

we introduce the concept of splitting the global signal g into two orthogonal components g = gH + gL

where the subscripts H and L denote the sets of time points where the global signal is high and low,130

respectively. A voxel time series x can be similarly decomposed into the sum x = xH + xL of two

components. In addition, since GSR is a linear operation, the voxel time series after regression x̃ can be

written as the sum x̃ = x̃H + x̃L. In the appendix we show that x̃ ⇡ xL, such that to first order GSR

can be viewed as attenuating the signal component xH in temporal regions where the global signal is

high while having a relatively small e↵ect on the component xL for intervals where the global signal is135

low. If the global signal is identical to zero for all time points in the set L, the approximation becomes

an equality (i.e. x̃ = xL), consistent with the observations related to the toy example in the leftmost

column of Figure 3.

As noted above, both the toy example and the mathematical perspectives are meant to provide

background and insight that will be useful for understanding the extensive empirical findings that are140

presented in later sections. Our focus has been on presenting examples and arguments that help to

explain the average behavior that is empirically observed, and it is certainly possible to come up with

exceptions. For example, if the voxel time series is uncorrelated with the global signal, then GSR will

have no e↵ect on the time series and therefore there will also be no reductions in the GS magnitude.

However, given the widespread correlation observed between the GS and voxel time series (Power et al.,145

2016), uncorrelated voxels are the exception and do not drive the average behavior.
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2.3. E↵ect of GSR on Seed-Based Correlations

We now consider the e↵ects of GSR on the computation of the correlation coe�cients between voxel

time series. Without loss of generality, we will assume that the voxel time series have been normalized

to be unit norm and zero mean. Then the correlation coe�cient r between a seed voxel time series s150

and another voxel time series x is simply given by the inner product r = sTx, where the time series are

represented as column vectors. Using the orthogonal decomposition described above and in the Appendix,

this may be rewritten as r = sT
H
xH + sT

L
xL. Similarly, the correlation coe�cient after GSR (denoted as

r̃) can be written as r̃ = �s̃T x̃ = �
�
s̃T
H
x̃H + s̃T

L
x̃L

�
, where the tilde notation indicates the values after

GSR and the coe�cient � = (ks̃kkx̃k)�1 is needed to renormalize the signals. Using the approximations155

discussed in the prior section, the signals after GSR can be expressed as s̃ ⇡ sL and x̃ ⇡ xL, so that

the correlation coe�cient can be approximated as r̃ ⇡ �sT
L
xL. In other words, the correlation coe�cient

after GSR is largely determined by those time points where the global signal has low magnitude. This

argument can be extended to correlation maps, by defining a data matrix X consisting of individual

voxel time series as columns which are normalized to have unit norm. The correlation map in vectorized160

form is then given by R = sTX, which can be approximated as R̃ ⇡ diag (�) sT
L
XL after GSR, where

diag (�) denotes the matrix with the vector � of renormalizing coe�cients along the diagonal. This

result suggests the following testable hypothesis: functional correlation maps obtained with GSR should

resemble correlation maps obtained from a subset of the original dataset corresponding to time points

where the global signal magnitude is low.165

To further demonstrate the reasoning behind this hypothesis, we note that a correlation map can

also be written as the sum of weighted images R =
P

T

t=1 stXt where st and Xt represent the unit norm

seed signal value and the data image, respectively, acquired at time t. (Note Xt is the t’th row in X).

In Fig. 4 we show examples of raw and weighted brain images (both before and after GSR) along with

the corresponding correlation maps. The weighted images are obtained by multiplying the raw images170

by a seed voxel time series (represented by the colored bars) from the posterior cingulate cortex (PCC;

see Methods). Due to space constraints, we only show representative images where the GS magnitude is

very small (time points 66 to 68) or relatively large (time points 81 to 84 and 92 to 95). However, the

correlation map is obtained from the sum of all weighted images (most of which are not shown). Because

GSR reduces the magnitudes of both the PCC time series and the raw images at time points where the175

GS is large, the contribution of the weighted images at these time points to the overall correlation map

is greatly diminished. As a result, the correlation map will be dominated by those time points where the

9



Figure 4: Construction of correlation maps for uncorrected data (rows 1 to 2), data after GSR (rows 3 to 4) and data with

GS censoring (rows 5 to 6). Images are shown for representative time points where the GS magnitude is either very small

(TR= 66-68) or large (TR = 81-83 and 92-94). In each group, the upper and lower rows show the images both prior to and

after multiplication by the unit norm PCC seed signal (referred to as unweighted and weighted), respectively. Note that for

the weighted images the voxel time series have been normalized to unit norm prior to multiplication by the unit norm PCC

seed signal in order to be consistent with the mathematical description of the correlation sum provided in the text. The

PCC correlation maps for each condition are obtained by summing all of the weighted images across the duration of a scan

(note only 9 time points are shown here due to space limitations). For display purposes, the PCC weighted images in rows

marked with (*) have been scaled to match the intensity scales of the images in the upper rows. The symbol ()) indicates

that the summation of the images yields the correlation maps on the left, after taking into account the display scaling. The

values of the GS and the PCC signal both prior to and after GSR are indicated by the colored bars at each time point,

where the PCC-related signals in the bottom two rows have been divided by 2.25 for display purposes. Both the unweighted

and weighted images are largely una↵ected by GSR for time points where the GS magnitude is small, whereas the images

at time points with large GS magnitude are greatly attenuated. As a result, the correlation map after GSR largely reflects

the contribution of the weighted images from the time points with small GS magnitude. In the GS censoring approach, the

unweighted images with large GS magnitudes are censored (e.g. multiplied by zero) while all other images are una↵ected.

The resulting correlation map is similar to that obtained with GSR.

10



GS is small in magnitude, i.e. R̃ ⇡ diag (�) sT
L
XL as noted above. This initial result suggests that one

might obtain maps similar to those with GSR by simply censoring those time points where the GS is

large. An example correlation map obtained using this approach is shown in Figure 4.180

As with the temporal downweighting arguments stated in the prior section, the examples and ar-

guments provided in this section are meant to provide background and motivation for the experimental

measures (described in Methods and Results) that empirically demonstrate the e↵ect of GSR on cor-

relation maps. In addition, it is important to note the fundamental di↵erence between the temporal

downweighting process, which is a time-varying modification of the signal magnitudes, and a simple scal-185

ing of the overall amplitude of the entire time series, which represents a time-invariant scaling of the

signal magnitudes. To help make the distinction clear, we use term magnitude to refer to the absolute

value of the GS at each time point and reserve the term amplitude to refer to the standard deviation of

the GS over the course of the scan. Whereas the correlation coe�cient is invariant to a simple scaling of

the overall amplitude of the time series, it can be greatly altered by a temporal downweighting process.190

For example, censoring represents a limiting case of temporal downweighting and can have a significant

e↵ect on the correlation coe�cient through the zeroing of data at the censored time points.

3. Methods

3.1. Subjects and Data Acquisition

We used data originally analyzed by Fox et al. (2007) and downloaded from www.brainscape.org195

(dataset BS002). The data were acquired from 17 young adults (9 females) using a 3 T Siemens Allegra

MR scanner. Subjects underwent 4 BOLD-EPI fixation runs (32 slices, TR=2.16 s, TE=25 ms, 4⇥4⇥4

mm), each lasting 7 minutes (194 frames). Subjects were instructed to look at a cross-hair, and asked

to remain still and awake. High-resolution T1-weighted anatomical images were also acquired for the

purpose of anatomical registration (TR=2.1 s, TE=3.93 ms, flip angle=7 deg, 1⇥1⇥1.25 mm).200

3.2. Data Processing

Standard pre-processing steps were conducted with the AFNI software package (Cox, 1996). The

first 9 frames from each EPI run were discarded to minimize longitudinal relaxation e↵ects, leaving 185

frames for further analysis. Images were slice-timing corrected and co-registered and the six head-motion

parameter time series were retained. The resultant images were converted to coordinates of Talairach and205
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Tournoux (TT), resampled to 3 mm cubic voxels, and spatially smoothed using a 6 mm full-width-at-half-

maximum isotropic Gaussian kernel. Nuisance terms were removed from each voxel’s time course using

multiple linear regression. These were: (1) a constant term to model the temporal mean of each voxel,

(2) a linear trend, and (3) six motion parameters obtained from the head motion correction algorithm.

A temporal low pass filter was applied to the remaining time course using a cuto↵ frequency of 0.1 Hz210

(Cordes et al., 2000; Yan et al., 2009). Each detrended and filtered voxel time series was converted into

a percent change BOLD time series through division by its mean value. The GS was then calculated as

the average of the percent change time series across all voxels within the brain for each scan. GSR was

implemented by regressing the GS out of each voxel time series (Macey et al., 2004).

Correlation maps were formed by correlating a seed signal with the time-course from every voxel in215

the brain. The seed signal was computed as the average signal from a region selected with spheres of

radius 9 mm (3 voxels) centered about the regions of interest. We obtained the following sphere centers

by converting the MNI coordinates obtained from (Van Dijk et al., 2010) to TT coordinates using the

MNI to TT conversion algorithm (Lacadie et al., 2008). For primary analysis we focused on the posterior

cingulate cortex (PCC) with a seed region centered in TT coordinates [0,-51,26]. For the left and right220

auditory network (AUD) we used [-41,-26,14] and [41,-26,14]. For left and right motor networks (MOT)

we used [-36,-25,57] and [36,-25,57], and for the medial prefrontal cortex we used [0,46,-7]. For MOT

and AUD seeds we merged two spheres from the left and right hemispheres of the brain to obtain a final

region of interest for each seed. For right intraparietal sulcus we used the coordinates [27,-58,49] from

(Fox et al., 2006) and for the white matter seed we defined the seed center as [31,-28,32]. Correlation225

maps were computed for (a) the pre-processed time series (referred to as uncorrected maps) and (b) the

pre-processed time series after the application of GSR or one of the weighting schemes described below.

3.3. GSR Ratio: Characterizing the average e↵ect of GSR

In Section 2.2 we made the observation that GSR largely attenuates the signals in time intervals

where the GS is large and has a minimal e↵ect in those intervals where the GS is small. To further

characterize this e↵ect, we calculated a GSR ratio gr(t) that captures the average e↵ect of GSR at each

time point t. This is defined as

gr(t) =

⌧
vi,a(t)

vi,b(t)

�
=

1

N

NX

i=1

vi,a(t)

vi,b(t)
(1)
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where vi,b(t) and vi,a(t) are the values of the i’th voxel’s time course before and after GSR, respectively,

and N is the number of voxels. Because the ratio blows up for small values of vi,b(t), outliers were230

removed prior to the computation of the mean. The threshold for outlier detection was defined as the

median plus 2.5 times the median absolute deviation of the central 95% of the data, where initial censoring

of the data in the extreme tails of the distribution was performed to avoid excessive skewness prior to

the computation of the statistics (Leys et al., 2013; Reimann et al., 2005). This process resulted in a

threshold value of 2.25 that was applied to the magnitude of gr(t).235

By definition, the GSR ratio should be less than 1 when the average attenuation (across voxels) due

to GSR is large and be close to 1 when the average e↵ect of GSR is minimal. In Figure 5 (a,b) we show

the GSR ratio plotted along with the magnitude of the GS from two representative scans. The GSR ratio

exhibits local minima at time points where the GS magnitude has relatively large values. In contrast,

when the GS magnitude has small values the GSR ratio is close to 1, indicating minimal perturbation on240

average of the original voxel values.

To further evaluate the properties of the GSR ratio, we multiplied each of the pre-processed voxel

time series vi,b(t) by the GSR ratio to obtain a new time series for each voxel of the form

ṽi,GSRW (t) =

⌧
vi,a(t)

vi,b(t)

�
· vi,b(t) = gr(t) · vi,b(t) (2)

where the subscript GSRW indicates that the time course is GSR ratio weighted. For time points where

GSR has the same e↵ect for all voxels, then

⌧
vi,a(t)

vi,b(t)

�
=

vi,a(t)

vi,b(t)
and multiplication by the GSR ratio

acts in the same manner as GSR so that ṽi,GSRW (t) = vi,a(t). On the other hand, for time points where

the e↵ect of GSR varies over voxels, multiplication by the GSR ratio only captures the average spatial245

e↵ect of GSR so that the weighted values can only approximate the values obtained with GSR, such that

ṽi,GSRW (t) ⇡ vi,a(t).

The GSR ratio weighted time series ṽi,GSRW (t) were used to compute an additional set of PCC

correlation maps. In Figure 5 (c), (d), we compare these maps to PCC correlation maps obtained using

the pre-processed voxel time series both before GSR (i.e. vi,b(t)) and after GSR (i.e. vi,a(t)). There is250

a strong similarity between the GSR and GSR Ratio weighted maps, suggesting that the main e↵ects of

GSR are reflected by its average attenuation (at each time point) of the voxel values. Di↵erences in the

maps reflect the fact that GSR performs a unique regression for each voxel time series, whereas the GSR

ratio is constrained to use the same weighting function for each voxel time series. Additional examples

of GSR ratio weighted maps are shown in the Results section.255
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Figure 5: (a), (b) GSR Ratio time series (red dashed lines) and GS magnitudes (solid blue lines) from two representative

scans. (c,d) PCC seed correlation maps obtained after: (1) preprocessing only, (2) application of GSR after preprocessing,

and (3) GSR ratio weighting after pre-processing.

3.4. Global Signal Weighting: An approximation for the GSR Ratio

In the previous section we presented preliminary evidence for a relation between the GSR ratio and

the magnitude of the GS in two representative scans. We further evaluated the generality of this relation

by computing the GS and GSR ratio for all scans. As shown in Figure 6, we found a strong inverse

dependence of the GSR ratio on the GS magnitude. To quantify this dependence, we fit the data to a

piece-wise linear model of the form

f (GS(t)) =

8
><

>:

1� ↵ | GS(t) | for | GS(t) | g,

0 otherwise
(3)

To calculate the optimal fit we used a robust regression method based on an iteratively reweighted least-

squares (IRLS) algorithm with bisquare weights (Martinez et al., 2010; Wager et al., 2005) as implemented

in the MATLAB Curve Fitting Toolbox. This resulted in parameter values of ↵ = 2.7 and g = 0.37 and

14



a model fit (shown by the dashed black line) with R
2 = 0.94. We found that other models provided260

similar fits. For example, a rectified Gaussian model (shown by the dashed magenta line) provide a fit

with R
2 = 0.95. The similarity in the performance of the fits reflects the fact that the main deviation

between the models occurs in a region (|GS| > 0.30%) where the density of data points is very low. Due

to the simplicity of its form, we will use the piece-wise linear model for the remainder of this paper.

The explanatory power of the piece-wise linear model indicates that the average voxel-independent265

e↵ect of GSR can be well approximated by a simple function of the GS. In other words, the average

weighting e↵ect of the GSR operation can be achieved without actually needing to perform the regression

on each voxel time series. Instead, we can multiply each voxel time series by a ‘GS weighting’ function to

obtain a new time series ṽi,GSW (t) = f (GS(t)) ·vib
(t) where the subscript GSW indicates that the time
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Figure 6: Density weighted scatter plot of GSR Ratios versus GS magnitude (% change) for all subjects and runs, i.e. a

total of 12580 data points. Maximum data concentration is indicated by the red color and a density value of 1. Piecewise

linear (black dashed line) and rectified Gaussian fits (magenta dashed line) are shown. In addition a censoring function

with threshold gC = 0.5 is shown (red dashed line).
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series is GS weighted with the piecewise linear function. Correlation maps computed using ṽi,GSW (t)270

will be referred to as GS weighted maps.

3.5. Global Signal Censoring

When using the piece-wise linear function f (GS(t)) from Equation 3 as a weighting function, the

voxel time series values are scaled by a linearly decreasing function that gradually decreases to zero. This

can be characterized as a soft censoring operation. We also considered a hard censoring function of the

form

C (GS(t))=

8
><

>:

0 for (1� ↵|GS(t)|)  gC ,

1 otherwise.
(4)

This function censors those time points for which the predicted average weighting due to GSR is below a

threshold value gC . For example, a threshold value of gC = 0.5 would censor those data points for which

GSR would scale the data on average by a factor of 0.5 or less. This is equivalent to censoring those275

time points for which the GS magnitude is greater than 0.18% (i.e. |GS| > (1� gC) /↵ using the value

of ↵ = 2.7 estimated above). A plot of this censoring function is shown by the red dashed line in Figure

6.

The rationale behind the hard censoring approach relies in part on the preliminary observation (see

Section 2.3) that the correlation maps after GSR are expected to be largely determined by those time280

points that are largely una↵ected by GSR. The choice of gC quantifies the degree to which a time point is

considered to be “una↵ected” by GSR. For example, for the threshold value of gC = 0.5, those time points

for which the average scaling due to GSR is predicted to range between 0.5 and 1.0 are considered to be

una↵ected and will not be censored. As the threshold is increased, the number of time points censored

increases as fewer time points are considered to be una↵ected by GSR (see Figure 13 in Results).285

As with the previously discussed weighting functions, we can multiply each preprocessed voxel time

series by the hard censoring function to obtain a new time series ṽi,GSC(t) = C(GS(t)) · vib
(t) where

the subscript GSC indicates that the signal has been GS censored. Correlations maps computed using

ṽi,GSC(t) will be referred to as GS censored maps. Figure 7 summarizes the various weighting and

censoring approaches and the signal paths used to compute the correlation maps shown in the Results290

sections.
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Figure 7: Diagram of the proposed GSR approximations and the data processing pipeline. The average e↵ects of GSR can

be approximated by multiplying the pre-processed voxel time courses vi,b(t) with GSR ratio, GS weighting or GS censoring

functions (shown in red). The resulting time series are used to form PCC correlation maps shown on the righthand side.

The GSR ratio approach uses all the voxel time courses prior to GSR (vi,b(t)) and after GSR (vi,a(t)) to determine a

weighting function to approximate GSR. In contrast, the GS weighting and censoring operations use only the GS as an

input to determine the weighting function.

3.6. Motion Censoring

As motion censoring approaches are sometimes used in the analysis of rsfMRI data, we wanted

to compare the GS censoring approach with motion censoring. To do so, we implemented the motion

censoring method described in (Power et al., 2012), which is based on the frame-wise displacement (FD)295

and DVARS time series. An FD threshold value was computed for each scan as the mean plus one

standard deviation of the FD time series, and an overall threshold for the sample was then computed by

averaging over the individual scan thresholds. This resulted in a threshold value of TFD = 0.23 mm. The

DVARS threshold value was computed in the same fashion, yielding TDVARS = 0.38%. Individual FD

and DVARS masks were formed by thresholding the FD and DVARS time series with the pre-computed300

thresholds. The FD and DVARS masks were then dilated to include one frame prior to and one frame
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immediately after each of the time frames identified by thresholding. Finally, the intersection of the FD

and DVARS masks was computed to form a combined motion censoring mask for each run. Correlation

maps were then computed using those time points that survived the censoring process with the combined

mask.305

3.7. Similarity Measures

We used cosine similarity to quantify the similarity of the correlation maps obtained with GSR

and the various approaches (Karahanoğlu and Van De Ville, 2015; Walther et al., 2015). As cosine

similarity preserves the means of the correlation maps, it is suitable for comparing approaches where

visible di↵erences in the associated maps reflect a strong dependence on the mean level (e.g. compare the310

first and second rows of Figure 9). We should note that cosine similarity would be equivalent to Pearson

correlation if the mean were subtracted prior to the computation of the normalized inner product (Walther

Figure 8: Images from a representative slice and scan obtained before GSR and after the application of GSR, GSR Ratio

weighting, GS Weighting, and GS Censoring. The colored bars indicate the value of the GS at each time point.
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et al., 2015). However, the mean subtraction procedure can introduce potential confounds related to post

hoc centering of the correlation values, which biases correlation maps towards the GSR correlation map

(Fox et al., 2009).315

To assess the significance of the similarity between the maps obtained with GSR and each of the

approaches on a per-scan basis, we constructed an empirical null distribution of the corresponding simi-

larity measure for each scan. This was accomplished through random permutation (10,000 trials) of the

temporal ordering of the calculated weights (i.e. GSR ratio, GS weight, or 0 or 1 for GS censoring). The

cosine similarity was calculated between correlation maps obtained with GSR and the maps obtained320

after application of the permuted weights, and this process was repeated over all permutations in order

to form a null distribution of similarity values. Note that for GS censoring the randomized approach

is similar to the random censoring procedure used by Siegel et al. (2014). In addition, we performed a

paired t-test to assess whether there was a significant di↵erence between the similarity of the correlation

maps obtained with GSR and the GS weighting approach versus those obtained with GSR and the GS325

censoring approach.

4. Results

The application of the various weighting approaches to data from a representative scan is demon-

strated in Figure 8, where the raw images and global signal from Figure 2 are shown again for comparison.

In addition, the images after the application of GSR, GSR ratio weighting, GS weighting, and GS cen-330

soring (with threshold gC = 0.5) are shown. For time points where the GS magnitude is low (such as

time point 75), the images are largely una↵ected by GSR. In contrast, for time points where the GS

magnitude is high (such as time points 82 and 93), GSR results in an average decrease in the magnitude

of the images. These average e↵ects are reflected in the uniform downweighting of the images with either

GSR ratio weighting or GS weighting. Note that the attenuation introduced by GSR can vary across335

voxels whereas the attenuation due to GSR ratio weighting and GS weighting is by definition the same

across voxels, as these approaches are designed to capture the average e↵ect of GSR across all voxels.

In the bottom row, the GS censoring approach censors (i.e. multiplies by zero) images at those time

points where there is significant attenuation introduced by GSR. With the specific threshold used in this

example, the censored time points occur for images where the average attenuation is large (i.e. scaling340

factor less than gC = 0.5) in the GS weighted images.
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Correlation maps obtained with the PCC seed and using the proposed approximation approaches

are shown in Figure 9 for a representative slice from each of 20 di↵erent scans. Maps obtained with the

uncorrected data (i.e. after preprocessing but before GSR) are shown in the top row. From a qualitative

viewpoint, the correlation maps obtained after GSR are very similar to those obtained after GSR ratio,345

GS weighting and GS censoring. This suggests that the main e↵ects of GSR on the correlation maps are

well approximated by using voxel-independent weighting and censoring approaches. Maps using other

seed voxels are provided in Supplementary Figures 1 to 4.

To quantitatively assess the similarity of the PCC correlation maps obtained with GSR and the

various approaches, we tested the similarity values against the empirical null distributions obtained with350

randomized weighting or censoring, as described in the Methods section. This was done for each scan.

Figure 9: PCC seed correlation maps obtained before GSR, after GSR, and after application of GSR ratio weighting, GS

weighting, and GS censoring. Maps are shown for 20 di↵erent scans, with at least one scan from each subject. For GS

censoring a threshold of gC = 0.50 was used.
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For the similarities between the maps obtained with GSR and either the GSR ratio or GS weighting

approaches, the empirical p-values were in the range p < 1⇥10�4 (i.e. less than the smallest empirical p-

value that could be assessed with 10,000 random trials). For the similarities between maps obtained with

GSR and GS censoring, the empirical p-values were in the range p < 3⇥10�4. These results indicate that355

the observed similarities were significantly di↵erent from those that could be obtained with randomized

weighting or censoring of the data. To provide a complementary view, we show in Figure 10 the actual

similarity values between the various approaches versus the maximum similarity values obtained from the

respective null distributions. These maximum values from the null distributions represent highly unlikely

values (p = 1⇥ 10�4). The absolute di↵erences in the means of these maximum null distribution values360

and the actual similarity values ranged from 0.2191 to 0.2326, and the e↵ect sizes (Cohen’s d) ranged

from d = 1.46 to d = 1.50. These results indicate that the e↵ects of randomized weighting and censoring

greatly di↵er from the proposed approaches and the similarity of the correlation maps obtained with

these methods to GSR maps cannot be explained by randomized weighting and censoring of the data.

In Figure 11 we compare the similarity between the GSR and GS weighted maps with the similarity365

between the GSR and GS censored maps. The similarity values were not significantly di↵erent (p = 0.92),

with an absolute di↵erence in similarity means of 0.0003 and e↵ect size d = 0.0040. This result suggests

that the hard censoring approach (with weights of either 0 or 1) can capture the important spatial

features of the GSR maps about as well as the soft censoring approach that has linearly varying weights.
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Figure 10: The similarity of the maps obtained with the proposed approaches to the GSR versus the maximum similarity

in the respective null distribution for each scan (derived from randomized weighting or censoring). In (a) the absolute

di↵erence in the means was 0.2326 and e↵ect size was d = 1.46, in (b) the di↵erence in the means was 0.2318 and e↵ect size

was d = 1.50 and in (c) the di↵erence in the means was 0.2191 and the e↵ect size was d = 1.49.
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The advantage of the hard censoring approach is that the maps obtained can be simply interpreted as370

estimates of the functional connectivity for the subset of time points that survive the censoring operation.

As motion censoring (or scrubbing) is finding increasing use in the analysis of rsfMRI data, we

compared the e↵ects of motion censoring and GS censoring. First we looked at the percent overlap of
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Figure 11: Comparison of similarity values between GS censoring and GSR maps versus similarities between GS weighting

and GSR maps. There was not a significant di↵erence (p = 0.92) between the values.

Figure 12: (a) PCC correlation maps for three low head motion runs (S2 R1, S8 R4, S8 R2) and three high motion runs

(S16 R3, S12 R2, S6 R3). The maps shown were obtained before GSR and after the application of GSR, motion censoring,

and GS censoring. FD time series are shown for (b) low motion and (c) high motion subjects, with the censoring threshold

shown by the dashed black lines. The di↵erences between the motion censoring and GS censoring maps indicate that the

two approaches are fundamentally di↵erent.
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time points that were censored by both approaches. This was calculated by dividing the number of time

points that were censored by both approaches (i.e. the intersection) by the total number of time points375

that were censored by either approach (i.e. the union) and then multiplying the ratio by 100. We found

that there was relatively low overlap between time points censored by the two approaches, with a median

percent overlap of 5.67%. We then investigated temporal censoring based on individual FD and DVARS

masks instead of their intersection. Application of the FD only and DVARS only masks resulted in

median percent overlaps of 12.73% and 24.83%, respectively. The FD only censoring had a much smaller380

overlap as compared to DVARS, suggesting that the results obtained with the intersection mask were

largely determined by the FD mask. This most likely reflects a closer link between the GS and DVARS

time courses (i.e. root-mean square of the temporal derivative of the brain images), as compared to the

link between the GS and FD time courses.

Next we compared PCC correlation maps obtained using the two di↵erent censoring approaches.385

Figure 12 shows PCC correlation maps for scans from 6 representative subjects with three low head-

Figure 13: (a) PCC maps from a representative subject obtained before GSR and after the application of GSR and GS

censoring approaches using di↵erent thresholds. (b) GS of the same subject with time points retained after censoring

with gC = 0.50 (red dots) and gC = 0.90 (green circles). (c) Average percentage of censored time points versus censoring

threshold gC , with standard deviation across all scans indicated by the bars. (d) Average percentage of censored time points

versus percent change GS magnitude threshold, where the threshold is computed using |GS| = (1� gC) /↵ with ↵ = 2.7.
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motion scans (S2 R1, S8 R4, S8 R2) and three moderate to high head-motion runs (S16 R3, S12 R2, S6

R3) that were selected according to the RMS values of their respective FD time series. FD time series

for low-motion and high-motion runs are shown in panels (b) and (c), respectively, with the censoring

threshold for FD indicated with dashed black lines. Low motion runs incur little or no motion censoring390

and the resultant motion-censored scans are similar or identical to the uncorrected maps. On the other

hand, high motion runs incur a large degree of motion censoring, resulting in some clean-up of the

correlation maps. For both low motion and high motion runs, the maps obtained with GS censoring

are similar to those obtained with GSR but are markedly di↵erent from those obtained with motion

censoring.395

To provide additional insight into the GS censoring approach, we show in Figure 13(a) a represen-

tative subject’s PCC correlation maps obtained prior to GSR and after the application of either GSR

or GS Censoring using di↵erent thresholds ranging from gC = 0.10 to gC = 0.90. As we increase the

the threshold value, the number of time points censored increases, as indicated by the percentage values

listed next to each row. For a threshold value of gC = 0.10, only time points with a GSR ratio below400

0.10 and a relatively high GS magnitude (|GS| > 0.33%) are censored, corresponding to about 22% of

Figure 14: PCC correlation maps expressed as the sum of a map corresponding to retained points with low GS and a

map based on the censored points with high GS. For display purposes, the low GS map were scaled to better delineate the

features in the map. The symbol ()) indicates that the correlation maps is equal to the sum of the low GS and high GS

maps, after taking into account the display scaling of the low GS maps.
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Figure 15: (a) The average GSR ratio for each scan (computed as the mean of GS ratios across all time points within a

scan) versus the standard deviation of the GS across the scan. (b) The average of temporal weights obtained with the GS

weighting approach for each scan versus the corresponding GS standard deviation. (c) The average fraction of censored

time points versus the GS standard deviation for each scan.

the total number of points. At this level of censoring, the DMN and TPN are more clearly delineated as

compared to the uncorrected maps, but the value of the correlations in the TPN are more positive than

those observed in the after GSR map. As we increase the value of gC and censor an increasing number of

time points, the correlation values in the TPN become more negative and the maps become more similar405

to those obtained with GSR. In Figure 13(b) we indicate the location of the censored time points for

threshold levels of gC = 0.50 (red dots) and gC = 0.90 (green circles). At a threshold value of gC = 0.90

only about 14% of the time points are retained and yet the PCC correlation maps are similar to those

obtained with GSR. In Figure 13(c), we show that the average percentage (across all scans) of censored

time points increases with the threshold gC , consistent with the qualitative behavior discussed above.410

Because of the approximate relation between GSR ratio and GS magnitude (see Figure 6 and Equation

3), we can associate each threshold value gC with a GS magnitude threshold |GS| = (1� gC) /↵ where

the value ↵ = 2.7 is obtained from the fit to the data. Only those time points with GS magnitude higher

than the GS magnitude threshold are censored. As the GS threshold is increased, the average percentage

of censored points decreases, as shown in Figure 13(d).415

The GS censoring approach implements a temporal partitioning of the data into a subset of retained

points (with relatively low GS magnitude) and a subset of censored points (with relatively high GS

magnitude), where the exact delineation between low and high magnitudes is determined by the threshold.
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As noted previously in Section 2.3, a correlation map can be decomposed into a sum of weighted images.

Using this observation, we can decompose correlation maps into the sum of a map corresponding to the420

subset of retained points (these are the GS censored maps already shown) and a map corresponding to

the subset of censored points. Figure 14 shows examples of this decomposition applied to PCC correlation

maps with a censoring threshold of gC = 0.5. As expected, the high GS subset maps exhibit a high degree

of spatial homogeneity while the low GS subset maps reveal the spatial structure of the anti-correlated

networks.425

By averaging the GSR ratio across the duration of a scan we can obtain a value that represents the

average temporal downweighting due to GSR. In Figure 15(a) we show that the average GSR ratio exhibits

an inverse relation with the standard deviation of the GS. Thus, scans with greater GS fluctuations

undergo more downweighting (on average) by GSR. In Figure 15(b) we show that a similar inverse

dependence on GS standard deviation holds for the average GS weighting across the scan (blue dots).430

The average fraction of time points censored by GS censoring (green dots) increases with GS standard

deviation (shown in Figure 15(c)), consistent with the associated increase in downweighting shown in

panels (a) and (b) (i.e. more censoring for lower GS ratio and GS weighting values). The implications of

these relations are discussed further in the following sections.

5. Discussion435

5.1. A new framework for understanding GSR

We have shown that the average e↵ects of GSR can be well approximated by a temporal downweight-

ing of the voxel time series, where the weighting factor varies with time but is uniform across space. The

weighting factor decreases with the magnitude of the global signal, so that time points with large global

signal magnitudes are greatly attenuated whereas those time points with small global signal magnitudes440

are largely una↵ected. We also introduced GS censoring as a limiting case of the downweighting approach,

in which the weighting factor is equal to zero for time points where the GS magnitude exceeds a specified

threshold and is equal to one otherwise.

In the prior studies and debates concerning the use of GSR, a combination of mathematical argu-

ments, empirical findings, and simulations have been used to examine the strengths and limitations of445

the approach (Fox et al., 2009; Murphy et al., 2009; Saad et al., 2012; He and Liu, 2012). However, the

process of GSR has remained somewhat mysterious as it is not easy to visualize the process of regression
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with a global mean signal in a high-dimensional signal space. The use of di↵ering perspectives in prior

studies has complicated the development of a unified view of GSR and made it di�cult to resolve the

ongoing debate. By showing that GSR can be well approximated by a temporal downweighting operation,450

we have introduced a simple way of viewing GSR that facilitates a more intuitive understanding of its

e↵ects. Instead of having to visualize how regression a↵ects each individual voxel time series, we can

simply consider consider how the data from each time point is downweighted prior to the computation

of functional correlations. In the limit of GS censoring, the data from each time point is either included

in (weighting of 1.0) or excluded (weighting of 0.0) from the computation. The similarity in the maps455

obtained with GSR and GS censoring suggests that the first order e↵ects of GSR are well approximated

by censoring a large fraction (i.e. greater than 50% or more) of the data.

5.2. Anti-correlated Networks

With respect to the highly debated anti-correlated networks, our work suggests that the negative

correlations between the DMN and the TPN are not simply an artifact of GSR. Specifically, the application460

of the GS censoring approach shows that negative correlations can be observed when computing the

functional correlation for a temporal subset of the data. Within this subset, there is no mathematical

constraint that forces the existence of negative correlations, because the images retained in the subset

are not modified by the censoring operation. In other words, the negative correlations are inherent in the

data when considering time points with low GS magnitudes.465

Our results suggest that the presence of anti-correlated networks is often obscured by the contribu-

tions of images at those time points where the GS magnitude is high (see for example Figure 4). Because

these peaks in GS magnitude occur when there is a high degree of spatial homogeneity in the images (e.g.

either largely positive or negative), the inclusion of these images gives rise to spatial homogeneity in the

correlation maps. By downweighting the contribution of these images, GSR and the various associated470

approaches presented in this paper leads to a reduction in the spatial homogeneity of the correlation

maps.

Prior work has shown that the application of GSR (Fox et al., 2009; Murphy et al., 2009) forces the

sum of correlation values to be negative, thus potentially introducing artifactual negative correlations.

The present work does not contradict these prior findings, but rather presents a new way of looking at475

the e↵ects of GSR. In essence, the process of GSR can be viewed as approximately partitioning the data

into two sets – a set of images in which the GS magnitude is relatively high and a set in which the
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magnitude is relatively low. GSR greatly attenuates the images in the high magnitude set while having

a smaller e↵ect on the low images in the low magnitude set. When viewed from this perspective, GSR

helps to reveal the inherent negative correlations that exists in the low magnitude set by reducing the480

contributions of the images in the high magnitude set, which have a high degree of spatial homogeneity.

5.3. Di↵erences in Global Signal Magnitude

What di↵erentiates images with high GS magnitude from those with low GS magnitude? While the

origins of the GS are not completely understood, there is growing evidence that a significant component

of the GS is due to neural fluctuations (Schölvinck et al., 2010; Wong et al., 2013; Wen and Liu, 2016).485

In particular, Wong et al. (2013) found that the average amplitude of the global signal (computed as

its standard deviation over the course of a scan) exhibited an inverse relation to EEG measures of

vigilance, with higher amplitudes corresponding to lower states of vigilance. In a recent preliminary

study, Falahpour et al. (2016) demonstrated a negative correlation between the GS and EEG vigilance

time courses over the course of a scan. Thus, at time points where the GS signal exhibited positive490

peaks, the EEG vigilance was found to be low, whereas negative peaks in the GS corresponded to high

EEG vigilance values. Chang et al. (2016) found evidence for a similar negative correlation between

the GS time course and LFP measures of arousal in non-human primates. Furthermore, a recent study

identified characteristic events in global electro-cortical activity that were related to drops in arousal

(Liu et al., 2015). These temporally distinct events may contribute to the appearance of high magnitude495

events observed in the GS. The link between global activity and dynamic changes in arousal finds further

potential support in the observations of Pisauro et al. (2016), who used pupilometry to measure arousal

states in mice. They found that increases in arousal were associated with decreases in an optical measure

of global hemodynamic activity.

While the neurobiological mechanisms linking vigilance to global fluctuations are still not fully un-500

derstood, it is thought that the global nature of the fluctuations may reflect widespread projections of

various arousal systems onto the cortex (Jones, 2005; Picchioni et al., 2013). Although further work is

needed, the existing evidence suggests that images with high GS magnitudes (i.e. uniformly positive or

negative) are associated with temporal peaks and valleys in the state of vigilance or arousal. Because

GSR and its variants downweights these images, it is likely that these approaches are minimizing the505

contribution of vigilance fluctuations to the resulting correlation maps. In addition, the results in Figure

15 demonstrate that scans with higher GS standard deviation undergo a higher degree of downweighting
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or censoring, suggesting that GSR and its variants may have a greater e↵ect on scans with low mean

vigilance levels. Further studies are needed to better understand the origins of vigilance-related signal

components in fMRI and to assess the e↵ects of GSR (and its variants) on these components.510

As shown in Figures 2, 4, and 8, images from time points with low GS magnitudes can contain

spatial patterns resembling the DMN and TPN. For example at time point 68 in Figure 4, the GS is

relatively small and the image values in the DMN and TPN are largely negative and positive, respectively.

The opposite signs in these two networks (that are both fairly spread out across space) results in a

cancelation of voxel values when computing the global average, consistent with the low GS magnitude.515

When multiplied by the value of the PCC signal (which is negative because it is in the DMN), the

resulting weighted images have positive values in the DMN and negative values in the TPN. The inclusion

of these weighted images in the correlation sum will tend to enhance the presence of anti-correlations in

the resulting correlation map. Thus, the presence of anti-correlated DMN and TPN networks after GS

censoring largely reflects the fact that the retained images already exhibit this spatial relationship.520

5.4. Related Approaches

Our findings with the GS censoring approach complement prior studies, which demonstrated that

key features of resting-state functional connectivity maps could be obtained using a fraction (e.g. 5 to

15%) of the original time points (Tagliazucchi et al., 2012; Liu and Duyn, 2013). In particular, Liu

and Duyn (2013) found that an average image constructed from a set of timepoints showing the highest525

(top 15%) PCC signal values exhibited a pattern that almost perfectly matched the group average PCC

correlation map, which exhibited anti-correlation between the DMN and TPN. They further decomposed

the selected images into a sum of co-activation patterns (CAPs). It is likely that the CAP time points

identified by (Liu and Duyn, 2013) partially overlap with the time points that would be retained with a

GS censoring approach, since it is these time points that exhibit the DMN and TPN spatial patterns in530

the individual images. The partial overlap reflects the fact that the CAP time points occur for positive

peaks in the PCC signal, whereas the GS censoring approach will pick out time points that can have

either positive or negative peaks in the PCC signal. As support for this conjecture, we note that Liu and

Duyn (2013) found that GSR did not a↵ect the spatial patterns of the CAPs. This is consistent with

our finding that GSR has a minimal e↵ect on those time points for which the GS magnitude is low. In535

addition, in Supplementary Figure 6, we show that the average of images from those time points that

are retained by GS censoring and have a positive PCC signal shows a strong similarity with the PCC
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correlation maps obtained after GSR. Further work to elucidate the connection between the GS censoring

and CAP approaches would be of interest.

At first glance the downweighting approaches presented here may be considered to be similar to the540

frame-to-frame intensity stabilization that has been used in prior studies (also referred to as global signal

normalization) (Fox et al., 2009). In the stabilization approach, all computations, including calculation of

the global signal, are performed prior to the removal of the temporal means of the voxel time courses. At

each time point, the image data are divided by the global signal and then a constant term (typically equal

to 1.0) is subtracted from the normalized images prior to the computation of inter-voxel correlations. The545

apparent similarity between the stabilization and downweighting approaches lies in the fact that they

both apply a uniform scaling to all voxels at a given time point. A key di↵erence is that the global signal

used in the stabilization approach has a large positive mean while the global signal signal in GSR and its

variants has zero mean. Taking into account this di↵erence, it can be shown that the stabilization process

is equivalent to simply subtracting out the zero mean global signal from each demeaned voxel time series550

(see Appendix B). Thus, intensity stabilization is more accurately viewed as a global mean subtraction

approach (also known as global signal subtraction) as opposed to a downweighting or scaling approach.

In comparing intensity stabilization to GSR, the key di↵erence is that GSR finds the optimal fit (through

regression) between the voxel time series and the GS prior to removal of an appropriately scaled version of

the GS, whereas intensity normalization simply subtracts the GS from each voxel time series, without any555

voxel-specific scaling. Supplementary Figure 5 provides further examples of the fundamental di↵erence

between stabilization, GSR, and downweighting.

In this paper we have focused on the e↵ects of GSR on seed-based correlation analysis. Independent

components analysis (ICA) is another popular approach for the analysis of resting-state fMRI data, and

some ICA implementations use global signal subtraction as a pre-processing step (Remes et al., 2011).560

As discussed above and in Appendix B, when the voxel time series is approximately equal to the GS (i.e.

voxel-specific scaling is approximately 1.0), then GSR and global signal subtraction would be expected

to have similar downweighting e↵ects. However, the validity of this approximation is likely to vary across

voxels and scans. In addition, some ICA implementations do not use global signal subtraction. Remes

et al. (2011) have reported di↵erences in ICA results obtained with and without global signal subtraction,565

with slightly better performance observed with subtraction. Additional work would be useful for better

understanding the e↵ect of the global signal on ICA-based analyses, including an examination of the

e↵ects of GS downweighting and censoring.
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In the Results section, we showed that the GS censoring approach di↵ers from the motion censoring

methods that have been adopted by some rsfMRI studies, with a relatively small overlap between the cen-570

sored points. As it is the average of all brain signals, the GS captures the contributions of many potential

signal sources, such as motion-related artifacts and the neuronal contributions previously discussed. In

computing the GS, we used a “clean” version of the GS in which nuisance terms, such as motion covari-

ates, were regressed out as part of the preprocessing pipeline (He and Liu, 2012). This step minimizes

but does not entirely eliminate the contributions of motion to the GS. We also performed our analyses575

with a version of the GS in which motion covariates were not removed, and still found clear di↵erences

in the e↵ects of GS censoring and motion censoring (see Supplementary Figure 7). Nevertheless, further

work is needed to better understand the relation between GS and motion censoring.

In prior work, our group presented evidence suggesting that the GS could be viewed as an additive

confound (He and Liu, 2012; Wong et al., 2012). The current work provides further support for this view,580

as it presents a useful temporal partitioning of the GS into sections with low and high signal magnitudes.

From this perspective, the additive e↵ect of the GS is primarily confined to the time points with high

GS magnitudes, and it is these time points that are largely attenuated by GSR and the other approaches

proposed here. It is also important to note that the orthogonality between the temporal segments with

low and high signal magnitudes is fundamentally di↵erent from the approximate orthogonality between585

the GS and other principal components discussed previously in (He and Liu, 2012; Carbonell et al., 2011)

5.5. Future Steps

While our results provide insight into the e↵ects of GSR, the question of how best to use GSR or

one of the variants proposed in this paper will require further discussion and investigation. Much of the

prior concern regarding the use of GSR arose out of the potential introduction of negative correlations.590

The current work partly mitigates this concern because it provides a means (GS censoring) of defining

a temporal subset of the original data in which the negative correlations already exist. Researchers can

use this approach to examine group di↵erences in negative correlations within these temporal subsets.

For example, it would be instructive to use the censoring approach to compare anticorrelations in studies

where global signal di↵erences have been found (e.g. schizophrenic versus healthy controls (Yang et al.,595

2014)).

In addition, by comparing the correlation maps obtained before and after GSR with those obtained

after GS censoring, researchers can estimate the extent to which the functional connectivity maps are
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dominated by the GS signal in the censored time points. In comparing maps across groups or conditions,

the proportion of points that are censored could prove to be a useful metric. Given the prior work relating600

average GS amplitude to vigilance (Wong et al., 2013) and the results shown in Figure 15, it is likely

that scans in subjects with a lower level of vigilance and higher GS amplitudes will experience a greater

degree of censoring.

In this work, we introduced the concept of GS censoring using a threshold based upon a piecewise

linear function of the GS, as this approach was useful for making a link between GSR and GS censoring.605

In general, there is no need to use a function of the GS and instead one can censor time points using

a threshold on the GS magnitude (see for example Figure 5). However, the choice of threshold may

depend on the specifics of the fMRI acquisition (such as echo time and magnetic field strength), as these

parameters can a↵ect the range of GS magnitudes. Further work is needed to best determine how to

best generalize the censoring approach to a wide range of studies. In addition, there is a direct loss in610

the temporal degrees of freedom when using GS censoring, and the implications of this loss on between-

subject and between-group comparisons will need to be considered. Furthermore, our observation that

GSR can be approximated as a temporal downweighting process suggests that there is an e↵ective loss of

temporal degrees of freedom when using GSR. Additional work is needed to quantify this loss and assess

its impact on subsequent analyses.615

As shown in Figure 13, the choice of the threshold has a direct e↵ect on the extent and magnitude

of negative correlations, with the anti-correlations becoming more pronounced as a greater number of

time points are censored. However, this observation does not tell us how best to select a threshold

level. Is a threshold that reveals more anti-correlations preferred to one that yields less pronounced anti-

correlations? To answer this question we will need a deeper understanding of the mechanisms that give620

rise to large GS magnitudes, including whether or not these mechanisms can be viewed as introducing

an additive signal confound that obscures the presence of anti-correlations in the censored data points.

If this is the case, it may be possible to devise algorithms that use the data in the retained time points

to estimate the underlying data in the censored time points. Future studies are needed to address these

issues.625
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Appendix A. Approximating the E↵ects of GSR

In this appendix we provide a mathematical perspective of the basic observations presented in Section

2.2. Our goal is to provide background and motivation for the empirical findings (see Methods and

Results) demonstrating that GSR largely attenuates signals for time intervals where the global signal

magnitude is high. To begin, we express the global signal as the sum of two non-overlapping parts in630

time:

g = 1Hg + 1Lg = gH + gL, (A.1)

where 1H is the indicator function for the set H of points surrounding large values in the global signal

and 1L is the indicator function for the set L of remaining points corresponding to relatively small values

of the global signal.

In the example shown in Figure 3, the set H corresponds to the time points surrounding the peaks635

of the global signal and is indicated by the thick black horizontal bars. Similarly, we can also partition

an arbitrary voxel time series in the same way x = xH + xL. Note that by construction, H \ L = 0

and the time series from di↵erent sets are orthogonal, such that gT

H
gL = 0, xT

H
xL = 0, gT

H
xL = 0, and

gT

L
xH = 0. Note that without loss of generality, we assume that both g and x are zero-mean percent

normalized time series (i.e. both represent percent BOLD signal changes).640

Using the decomposition above, we rewrite the voxel time series after GSR as:
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where we have used the orthogonality relations described above. The first part x̃H in the expression

corresponds to the part of x̃ with points in the set H while the second term x̃L corresponds to points in

the complementary set L.
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As noted in Section 2.1, large peaks in the global signal occur when the majority of voxel waveforms645

sum in a constructive fashion. As an approximation, we represent the voxel waveforms surrounding these

peaks as a scaled version of the global signal xH ⇡ ↵gH . Although we expect that for most voxels ↵ > 0

because of the widespread positive correlation that exists empirically between the global signal and the

voxel time series (Power et al., 2016), it is important to note that the derivations below do not depend

on the sign of ↵. Using this approximation, we rewrite the first term x̃H in Eq. (A.5) as650
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where the last approximation reflects our expectation that gT

H
gH � gT

L
xL, due to the small magnitude

of the signal components in gL and the fact that the cancellation of signals across voxels will tend to

make gL orthogonal to the voxel time courses for time points within the set L.

In the event that gL is equal to zero, it follows directly from Eq. (A.7) that x̃H = 0. In addition, this

will lead to x̃L = xL in Eq. (A.5) , so that the remaining signal is simply x̃ = xL. In other words, GSR655

will eliminate the signal at time points where the global signal is large but will not a↵ect the original

voxel values xL for those time points where the global signal is zero. This is the case for the example

shown on the lefthand column of Figure 3, where the peaks in the original voxel time series that coincide

with the large peaks in the global signal are completely eliminated by GSR, whereas those signals that

correspond to segments where the global signal is zero (due to complete cancelation of the signals across660

voxels) are una↵ected by GSR.

In the more realistic case where the cancellation of signals is not complete, the magnitudes of the

signal components in gL are still expected to be smaller than the magnitudes in gH , but gL will di↵er

from zero for some points in L. An example of this case is shown in the middle column of Fig. 3, where

the cancellation of the signal components centered about time points 30 and 70 is not complete, leading to665

the appearance of small magnitude peaks in the global signal around these time points. The attenuation

term
⇣
1� gT

H
gH

gT

H
gH+gT

L
gL

⌘
in Eq. (A.8) can be rewritten as the ratio gT

L
gL

gT

H
gH+gT

L
gL

of the energy (i.e. squared

norm) of the smaller magnitudes signals in gL to the overall energy of g. Based on the partitioning of

the signal, this ratio is expected to be much smaller than 1. As a result, the signal components in xH
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will still be greatly reduced by GSR as shown in panels (h) and (i) of Figure 3.670

We can approximate x̃L in Eq. A.5 as

x̃L ⇡
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⇡ xL � ↵gL (A.11)

where we have used the approximations already noted above (xH ⇡ ↵gH , gT

H
gH � gT

L
gL, and gT

H
gH �

gT

L
xL). The perturbation ↵gL in the final expression is proportional to the global signal. Since this occurs

in time intervals where the global signal magnitude is assumed to be small (by definition), the magnitude

of the perturbation is also expected to be small. This is consistent with the minimal perturbation of the675

signals at time points 30 and 70 in panel (h) of Figure 3 and in the intervals indicated by the magenta

dashed lines in panel (i) of the same figure. As discussed above, when gL = 0, the waveforms are

completely una↵ected and x̃L = xL (i.e. time points 30, 70, 90, and 110 in panel (g) and time points 90

and 110 in panel (h).

Appendix B. Intensity Stabilization Approach680

In this approach, computations are performed prior to the removal of the voxel-wise temporal means

or percent normalization. Thus, we can define the unnormalized global signal gU as the sum gU = ḡ1M+g̃

of a mean term ḡ and a zero-mean fluctuation term g̃, where 1M indicates a M ⇥ 1 column vector of

ones. An unnormalized voxel time series is similarly defined as xU = x̄1M + x̃. The process of intensity

stabilization (or GS normalization) is formally defined as685

(diag (gU ))
�1 xU � 1M (B.1)

where diag (gU ) denotes the matrix with gU along the diagonal (Fox et al., 2009).

To proceed, let g̃[i] and x̃[i] denote the values of g̃ and x̃ at the ith time point. Then the normalized

35



values are
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where we have made use of the fact that the magnitude of the fluctuations in fMRI GS time series are

typically only a few percent at most of the overall mean, so that ḡ � g̃[i]. In addition we assumed that690

x̄ = ḡ, where this last relation holds because we can always scale the data such that the means of all

the voxels are the same. Thus, to first order the process of GS normalization is equivalent to simply

taking the di↵erence between the percent change voxel time series x̃[i]/x̄ and the percent change global

signal g̃[i]/ḡ. Using vector notation, the approximation to GS normalization is expressed as the di↵erence

x � g of the percent normalized voxel time series and global signals. Thus, GS normalization and GS695

subtraction are nearly identical methods.

The GS normalization (and subtraction) approach and GSR are expected to give similar results when

x� g ⇡ x� g
�
gTg

��1
gTx (B.8)

This will occur whenever the fit coe�cient ↵ =
�
gTg

��1
gTx between the voxel time series and the GS

is approximately equal to 1.0.
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Appendix C. Supplementary Figures700

Supplementary Figure 1: Auditory network seed correlation maps obtained before GSR, after GSR, and after application

of GSR ratio weighting, GS weighting, and GS censoring. For GS censoring a threshold of gC = 0.50 was used.
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Supplementary Figure 2: IPS seed correlation maps obtained before GSR, after GSR, and after application of GSR ratio

weighting, GS weighting, and GS censoring. For GS censoring a threshold of gC = 0.50 was used.
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Supplementary Figure 3: MPF seed correlation maps obtained before GSR, after GSR, and after application of GSR ratio

weighting, GS weighting, and GS censoring. For GS censoring a threshold of gC = 0.50 was used.
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Supplementary Figure 4: Motor network seed correlation maps obtained before GSR, after GSR, and after application of

GSR ratio weighting, GS weighting, and GS censoring. For GS censoring a threshold of gC = 0.50 was used.
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Supplementary Figure 5: Posterior-cingulate cortex (PCC) and white-matter (WM) seed correlation maps obtained prior

to GSR and after the application of GSR, GSR ratio weighting, GS weighting, GS censoring, GS normalization (intensity

stabilization), and GS subtraction. Consistent with the approximation shown in Appendix B, GS normalization and GS

subtraction yield nearly identical maps for all scans. For some scans, the GS normalization and subtraction maps show

significant di↵erences with the maps obtained after GSR and the other GS weighting approaches, indicating clear di↵erences

in the approaches. These di↵erences are greater when using a WM seed, where the fit between the WM seed voxel time

series and the GS is expected to be lower, such that subtraction of the GS is not a good approximation for subtraction of

an optimally scaled version of the GS. When the GS normalization and GSR approaches provide similar PCC correlation

maps, there is a reasonably good fit between the PCC and GS time series, such that subtraction of the GS is a good

approximation to subtraction of a scaled version of the GS (see also Appendix B)
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Supplementary Figure 6: The spatial patterns in the PCC correlation maps after GSR are similar to the patterns found in

the average of the images retained by the GS censoring approach (with gC = 0.5). To account for the occurrence of positive

and negative values of the PCC seed signal, the set of retained images was divided into subsets with positive and negative

PCC signal values and averages were computed for each subset. The average for the negative subset was multiplied by -1.0

to account for the sign change. The overall averages of the two subsets (after multiplying the negative subset by -1.0) are

also shown. The PCC correlation map is scaled for display purposes.
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Supplementary Figure 7: PCC correlation maps obtained without regression of head motion covariates in the preprocessing

stage. Maps are shown for the same scans used in Figure 12, with three low head motion runs (S2 R1, S8 R4, S8 R2)

and three high motion runs (S16 R3, S12 R2, S6 R3). These maps were obtained before GSR and after the application

of GSR, motion censoring, and GS censoring. The di↵erences between motion and GS censoring are evident even when

motion covariates are not regressed out.
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