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GEOSTROPHIC TURBULENCE IN THE PRESENCE OF A

WEAK MAGNETIC FIELD

JULIAN MAK†

Abstract. This document provides an overview of the project I carried out

under the mentorship of Pat Diamond (UCSD), David Hughes (Leeds) and Nic

Brummell (UCSC), for the first International Summer Institute for Modeling

in Astrophysics (ISIMA) program, Jul-Aug 2010. The project is an extension

of the work on β-plane magnetohydrodynamic (MHD) turbulence and its

consequences on momentum transport. A somewhat detailed overview is given,

with the physical mechanisms explained. The quasi-geostrophic equations, so

well known in the Geophysical Fluid Dynamics (GFD) community, is derived

with the Lorentz force present. The two-layer model is proposed as a simplified

model for our studies. Progress with magnetically influenced barotropic and

baroclinic instabilities are given, and some proposed future work concludes the

document.

1. Confinement problem of the Solar tachocline

One fundamental and open problem in Solar physics concerns the confinement

problem of the tachocline. The tachocline is the region straddling the convection

zone and radiative zone, located at around 70% Solar radius, believed to be of no

more than 4% Solar radius thick. Through helioseisomology, it has been observed

that the convection zone rotates differentially, faster at the equator and slower at

the poles, whilst the radiative zone rotates uniformly, thus the tachocline is the

transition region between differential and uniform rotation. It is believed that the

upper layer (overshoot) is turbulent, with strong toroidal magnetic fields, whilst the

lower layer is stably and strongly stratified, but less known about the field structure

in this region. For a more comprehensive review of the tachocline, please see the

book by Hughes et al. (2007).

In the first ever study on the tachocline, Spiegel & Zahn (1992) observed that,

in a purely hydrodynamic model of the Sun, deviation from thermal wind balance

together with angular momentum conservation would drive meridional flows that

transports angular momentum from the equator to the pole, burrow down, and

necessarily spread the tachocline region into the radiative zone. This is however not

observed, so clearly there needs to be some mechanism that prevents this spreading

of the tachocline. Meridional flows are probably not strong enough to transport the
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momentum back, from pole to equator, whilst radiative mixing will be inefficient

due to the strong stratification. So what Spiegel & Zahn (1992) invoke is that,

since the region is so strongly stratified and probably turbulent, we must have a

strongly anisotropic turbulent viscosity. This will effectively diffuse momentum

horizontally, thus maintaining the uniform rotation as observed. The spreading of

the tachocline in the hydro case has been studied numerically (e.g. Garaud 2003,

see also references in Miesch 2007).

However, Gough & McIntyre (1998) argue that this would imply a situation

like that of the stratosphere on Earth, and thus should be in the geostrophic

turbulence regime. The mixing of potential vorticity will necessarily drive zonal

flows (see later). The presence of zonal flows will not give the kind of momentum

diffusion as required by Spiegel & Zahn (1992). From this, they conclude that the

mechanism proposed by Spiegel & Zahn (1992) does not work, and proposed that

there must be an interior poloidal field (possibly primordial) locking everything in

uniform rotation, via Ferraro’s law of isorotation. There is debate as to whether

the tachocline is in fact turbulent, and if so, what causes the turbulence, which

has an effect on the precise outcome; see the article by Miesch (2007). Either way,

it seems plausible that there is an interior field which locks the radiative zone in

uniform rotation. Some of the intricate details of the Gough & McIntyre model

has been investigated by Pascale Garaud, and also in Toby Wood’s thesis (Wood,

2010).

From a turbulence theory point of view, the argument Michael McIntyre uses is

that, in such circumstances, wave turbulence is dominant, but because waves allow

the possibility of long range transport, one cannot just invoke the usual mixing

length theory argument and say that the turbulent viscosity here is frictional, in

the sense that it takes energy away from the mean flow. It is instead potential

vorticity which is mixed, but because potential vorticity is not a passive scalar,

this mixing has a tendency to drive flows. Geostrophic turbulence thus tend to be

anti -frictional, where waves transfer energy to the mean flow, and end up driving

the large-scale flows.

So all is well, except that the tachocline is believe to be magnetised, via plumes

raining down from the convection zone, dragging magnetic flux from the convection

zone which is observed to be magnetised (Tobias et al., 1998), or magnetic field

leaking into the tachocline from the interior (should there be an interior magnetic

field). So what happens if we consider MHD turbulence in the geostrophic

turbulence regime, even if the field is small? Diamond et al. (2007) predicted, and

Tobias et al. (2007) showed that, when a weak magnetic field is present, potential

vorticity mixing is inhibited, and zonal flows no longer form once a critical threshold

of magnetic field strength / resistivity is reached (and this threshold is achievable

in the tachocline). What in fact happens is that Maxwell stresses has a tendency

to cancel with Reynolds stresses. When they exactly cancel with each other, there

are no stresses driving the flow. Further more, no total stress means no turbulent

viscosity. This result supports neither Spiegel & Zahn (1992) or Gough & McIntyre

(1998), although this result is worse for the former than the latter: The interior
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field will still do the job, and allow tachocline confinement, but the lack of turbulent

viscosity is bad news for the Spiegel & Zahn model.

Diamond et al. (2007) and Tobias et al. (2007) did their work in the 2D β-plane

regime, and it is my intention to try and generalise this to more ‘realistic’ regimes.

The first generalisation is to introduce the missing spatial co-ordinate back in, but

in such a way that most of the theory done before will still hold. For this, I will

consider the so called quasi-geostrophic (QG) equations, well known in GFD, which

was used before the days of high power computing for numerical weather prediction

(Charney, 1948, 1949).

2. Overview of geostrophic turbulence: HD vs. MHD

To provide some continuity, I give here an interpretation of the articles by

Diamond et al. (2007) and Tobias et al. (2007), as well interpretations of the

chapters in the books by Vallis (2006) and Salmon (1998). Those aware of the

article or the area of conventional geostrophic turbulence can probably skip to the

next subsection for a brief overview to MHD geostrophic turbulence.

2.1. Geostrophic turbulence with no field. Geostrophic turbulence is

turbulence in a system where strong stratification and rotation keeps the flow

essentially 2D - strong stratification inhibits vertical motion, whereas strong

rotation suggests Taylor-Proudman effect should occur, both contributing to the

‘2D-ness’ of the problem. Although the Taylor-Proudman constraint implies that

eddies should be like vertical cylinders, strong stratification implies that, in fact,

eddies are more like pancakes in geostrophic turbulence. Turbulence in this regime

has been well studied by the GFD community.

It is well known in two-dimensions that the energy and enstrophy (square of the

vorticity) is conserved in the absence of viscosity and forcing:

E =

∫
|∇ψ|2

2
dA, Z =

∫
|∇2ψ|2

2
dA, (1)

where we have used the streamfunction. Considering the Fourier transform and

defining the energy spectrum to be

Ê = (2π)2
∫
k2|ψ|2

2
dk ≡

∫
E(k) dk, (2)

enstrophy is then

Ẑ =

∫
k2E(k) dk. (3)

Thus energy and enstrophy are the zeroth and second moments respectively. I will

drop the hats in subsequent discussions as we will be staying in Fourier space.

Two other terms that one may encounter is palinstrophy (“curl or the curl”, the

fourth moment), and something which is relatively new known as zonostrophy, but

we don’t need them here. They come into play when one considers more specialised

problems.

Now, the conservation of enstrophy as well as its tendency to forward ‘cascade’

to small scales necessarily imply an inverse cascade to large scales. In general, we
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could show that

d

dt

[∫
kE(k) dk∫
E(k) dk

]
< 0,

d

dt

[∫
k2Z(k) dk∫
Z(k) dk

]
> 0, (4)

which confirms the above proposition. By the assumptions of inertial range theory,

the addition of dissipation and forcing only acts to remove and inject energy at the

relevant scales, so does not affect the conclusion.

So, assuming we have an inertial range, denoting the rate of enstrophy transfer

to small scales by η, rate of energy transfer of energy at large scales (via some

means) by ε, and suppose we inject some energy into the system via forcing at

some kf (assume sufficient scale separation), we can show, via a Kolmogorov type

argument, that, at least asymptotically,

E(k) =

η2/3k−3, k � kf ,

ε2/3k−5/3, k � kf .
(5)

The −5/3 spectrum is well observed in simulations, but the downscale spectrum

may be steeper than −3.

By using the quasi-geostrophic approximation (more later), an extra parameter

comes in and is known as the Rossby deformation radius Ld (or kd ∼ L−1d ).

When we are dealing with length scales comparable or smaller than the Rossby

deformation radius, our variations in stratification is small compared to the mean

stratification. Starting with the infinite Rossby deformation radius case (kd = 0),

the (inviscid) β-plane equation we are dealing with is

Dq

Dt
= 0, q = f +∇2ψ, (6)

where q is known as the potential vorticity (PV). It is also known as vortensity in

some astrophysics literature, but we will insist on using the term PV as this is a

more established idea.

The equation may be written in the form

∂

∂t
∇2ψ + v · ∇∇2ψ + β

∂ψ

∂x
= 0. (7)

How time scales depends on what terms dominate, and this is determined by the

spatial scale. The boundary between rotation dominated region (wave turbulence)

and nonlinearity dominated region (quasi-2D turbulence) is then described by

LR ∼

√
U ′

β
, kR ∼ L−1R , (8)

commonly known in the literature as the Rhines scale (see Rhines 1975, 1979;

Rhines & Holland 1979). The Rhines scale may also be defined via a comparison

between Rossby wave frequency and typical decorrelation rate of the eddies, in the

sense that

ωR =
−kβ
k2 + l2

, ωE = kU
′
, (9)

⇒ K2
R ∼

U
′

β
. (10)
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Figure 1. Simulation of the 2D β-plane in geostrophic turbulence

regime with no field. β is 5 on the left and 50 on the right. It is

clear that the jet widths are thinner when β is higher, as suggested

by the Rhines scale occurring at smaller length scales due to the

larger β. (Image courtesy of Steve Tobias).

The U
′

term should be seen as a RMS eddy velocity. Vallis & Maltrud (1993)

argued that this should be redefined using of eddy strain rates, but it has been shown

that this does not make a huge difference, so we shall adopt Rhines’ argument.

One argument is that, because we have an inverse cascade, energy at some forcing

will always end up reaching the Rhines scale. Once we reach the Rhines scale, we

are in the wave turbulence regime, where we need to satisfy both the wave vector

resonance condition as well as the frequency matching condition:

k1 + k2 + k3 = 0, ω1 + ω2 + ω3 = 0. (11)

We consider triads because they are easier to satisfy than, for example, quartets

(note gravity waves require quartets due to their strongly dispersive nature). Due

to the anisotropic nature of Rossby waves, the resonance conditions are extremely

difficult to satisfy. Note, however, if one of the k is zero, i.e. wave + wave + zonal

flow, then the frequency matching condition is easily satisfied. Thus, statistically,

we expect a substantial portion of the energy to be transfered to the k = 0 mode,

making zonal flows the most prominent feature under the geostrophic turbulence

regime. An alternative argument by Vallis & Maltrud (1993) is that energy seeks

the gravest mode, and due to the anisotropy and mismatch in frequencies, the

energy piles up onto the k = 0 mode, so giving rise to zonal flows. The argument

for this is that k = 0 is not, in some sense, a wave. Both arguments yield the same

conclusion.

Another thing we might expect is that we expect the zonal flows formed to have

a characteristic width proportional to the Rhines scale. Indeed, this is suggested

by simulations (see figure 1 for the 2D β-plane example), but the details are still

being debated.

It should be noted that the word cascade may not necessarily be appropriate, as

it is not known whether the process of energy transfer is really a multi-stage process

like that described by L. F. Richardson and A. N. Kolmogorov. Also, physically, the
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separation between the relevant length scales are not necessarily large enough to be

described by an inertial range theory, so care should be taken when applying this

to physical examples. Numerically of course we can artificially cook up situations

where this applies.

Another way of thinking of this is to consider the equation for the Reynolds

stresses: Doing the usual mean-field expansion, we see that, ignoring forcing and

diffusion
∂〈u〉
∂t

= − ∂

∂y
〈u

′
v

′
〉. (12)

The usual mixing length theory implies the commonly encountered turbulent

viscosity:
∂〈u〉
∂t

= −νt
∂

∂y
〈u

′
〉. (13)

Inspired by G. I. Taylor, we can see that, in the β-plane case (see, for example,

Rhines & Holland 1979),
∂〈u〉
∂t

= κyy
∂

∂y
〈Q〉, (14)

where κij is seen as a Lagrangian diffusivity. Thus we see that the formation of

mean-flow is directly linked to the mixing of PV. This is because PV is a dynamical

tracer. It has been argued it is in fact the mixing of PV which is fundamental in

driving zonal flows, rather than the presence of an inverse cascade (e.g. Wood &

McIntyre 2010).

2.2. Geostrophic turbulence in MHD regime. So what happens when we put

a field in? The equations for ideal 2D β-plane MHD are then, denoting A as the

usual magnetic potential function,

Dq

Dt
= ∂(A,∇2A), (15)

DA

Dt
= 0. (16)

Here, ∂(·, ·) is the Jacobian operator in 2D. Then it is clear the PV is no longer

conserved, and indeed we could imagine the magnetic field inducing ‘memory’ (i.e.

increased correlation time) into the turbulence and inhibiting the mixing of PV. As

we have seen above, no PV mixing, no zonal flow formation. Another reason we

do not expect zonal flows to form is because in 2D MHD turbulence, enstrophy is

no longer conserved, so there is no energy inverse cascade (see Pouquet 1978 and

references within).

So why should there be no zonal flows? It is well known that in 2D we have

Zel’dovich’s theorem:
〈B′〉
〈B〉

=
ηt
η
≡ Num, (17)

which effectively says that a weak large scale magnetic field has a tendency to be

chopped up into strong small scale field by the turbulence. Here, η is the magnetic

diffusivity, and the subscript t denote the turbulent quantity via the usual mixing

length theory. We note that the magnetic Nusselt number Num usually scales with

the magnetic Reynolds number Rm, so when Rm is large, small scale fluctuations

can be extremely strong.
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Figure 2. Simulation of the 2D β-plane in geostrophic turbulence

regime with field. The bottom-left panel is the case with no field.

Field strength increases anti-clockwise, starting from bottom-

left corner. As field strength is increased, large scale coherent

structures refuses to form. (Image courtesy of Steve Tobias).

The presence of a magnetic field has a tendency to Alfvénise the system: When

η � 1 (or Rm� 1), field lines are frozen into the fluid, and breaking of field lines is

not allowed except at extremely small scales. The turbulent shuffling of the eddies

has a tendency to stretch the field lines at small scales, thus strengthening the

small scale fluctuating magnetic field. The tendency is for equipartition of energy

to occur (Pouquet, 1978):

|u
′

k|2 ≈ |b
′

k|2. (18)

Going back to the equation for stresses, we see that

∂〈u〉
∂t

= − ∂

∂y

[
〈u

′
v

′
〉 − 〈b

′

xb
′

y〉
]
. (19)

When equipartition is reached, the Maxwell stress will in general cancel out with

the Reynolds stress, hence there are no turbulent stresses driving the flows. This

lack of zonal flow formation may be seen in Figure 2.

3. The quasi-geostrophic equations in MHD

Here I give a derivation of the QG equation with the relevant forcing and

dissipation which. For those interested, there is a derivation using an asymptotic
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expansion given in Gilman (1967a,b), similar to the procedure given in Pedlosky

(1987) or Vallis (2006).

First of all, it should be noted that, although we have argued that QG dynamics

is similar to 2D dynamics, this analogy should be taken with great care. For

example, there is no reason to expect that the inertial range spectrum (should an

inertial range actually exist) to be −5/3 and −3 as suggested by 2D turbulence

(Charney 1971, but see rebuttal in Tung & Welch 2001), although it appears to be

observed numerically (Salmon 1978, 1980; Tung & Welch-Orlando 2003; Tulloch &

Smith 2009b).

We start with the 3D Boussinesq equation with the β-plane (and invoking the

traditional approximation),

∂u

∂t
+ u · ∇u + f ∧ u +∇P + αgT = F , (20)

∂T

∂t
+ u · ∇T = Q, (21)

∇ · u = 0, (22)

where f is the rotation vector (we take axis of ration to be in the z- direction),

α the coefficient of thermal expansion, and g = gez is gravitational acceleration,

which, along with the density, we will take to be constant. F is some sort of forcing

term, and Q would be some sort of heating term. We will bear in mind that we

want

F = j ∧B + ν∇2u, Q = κ∇2T, (23)

so the induction equation will make an appearance later on. Another note is that

T should really be thought of as buoyancy, although I have labelled it as T for

temperature.

Taking the curl of the momentum equation and gradient of the thermodynamic

equation, contracting the equations with the appropriate terms, and noting that

the baroclinic term ∇T · (∇∧ gT ) does not appear in this regime, we have

D

Dt
[(ω + f) · ∇T ] = ∇T · (∇∧ F ) + (ω + f) · ∇Q. (24)

In the absence of forcing, dissipation and heating, this is just the statement of

potential vorticity (PV) conservation.

We now make our QG approximation: we assume that

(1) Ro � 1, so we have a Taylor-Proudman state at zeroth order in Rossby

number. Should we do an asymptotic expansion, this will act as our small

parameter.

(2) |β| � |f0|, where we have used f = f0 + βy. So we assume the deviation

from the mean rotation rate is small (or, alternatively, there is only mild

differential rotation).

(3) We also assume that our typical length scale is comparable to (but certainly

not much larger than) the Rossby deformation radius. As a consequence,

we have small variations in stratification relative to the mean stratification.

(4) We assume the magnitude of Q and F are small. More precisely, we would

like them to be of O(Ro).
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The last assumption is in contrast to what is termed magnetostrophic approximation

(by Keith Moffatt), as a model for the geodynamo. The assumption there is that,

to lowest order, the balance is between Coriolis force, pressure, and Lorentz force.

We are going to insist, to lowest order, the balance is between Coriolis force and

pressure, so that we have geostrophy, simplifying our problem substantially.

We now proceed with the reduction of the equation. To zeroth order we have

geostrophy, and, by assumption 2), we have

f0ez ∧ u = −∇P, (25)

so we define our streamfunction to be

ψ =
P

f0
. (26)

(If we include the Lorentz force explicitly, we will of course take P = u2/2−B2/2,

where B is measured in units of Alfvén velocity). At zeroth order, we have ∇·ug =

∇ · (u(0), v(0)) = 0, where ug is the geostrophic velocity. So, at zeroth order,

∇ · u = ∇ · ug +
∂w

∂z
= 0, (27)

which, upon choosing appropriate boundary conditions, will give a constant term

in the equations. We will choose rigid boundary conditions and take w = 0 here.

From (magneto)hydrostatic balance, we have

∂P

∂z
+ αgT = 0, (28)

so all our relevant dynamic quantities may be expressed in terms of the

streamfunction as

u = −∂ψ
∂y

, v =
∂ψ

∂x
, T = − ∂

∂z

f0ψ

αg
. (29)

We expect the vertical velocity not to come in because of the strong stratification

(large Richardson number or low Froude number).

Following on from this, we take T = T0(z) + θ(x, y, z), the mean temperature

(buoyancy) and the fluctuating part. Then strong stratification implies that

|Γ| ≡
∣∣∣∣∂T0∂z

∣∣∣∣� ∣∣∣∣∂θ∂z
∣∣∣∣ . (30)

We start reducing the various quantities:

Lagrangian derivative -

D

Dt
=

∂

∂t
+ ug · ∇. (31)

Potential vorticity -

(ω + f) · ∇T = f0Γ + f0ez · ∇θ + Γez · (ω + βyez) +O(Ro2), (32)

but of course the first term is just a given constant by definition (although it is

O(1)) and plays no dynamical role, thus

PV = ez · [f0∇θ + Γ(ω + βyez)]. (33)

Forcing -

[∇T · (∇∧ F ) + (ω + f) · ∇Q] = Γez · (∇∧ F ) + f0ez · ∇Q+O(Ro2). (34)
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(This is where our assumption that the forcing and dissipation terms are of O(Ro)

comes in).

Anticipating we have the Lorentz force, we consider the induction equation. To

first order, the z-component is

∂bz
∂t

+ ug · ∇bz = 0, (35)

and so the vertical field is simply advected around by the geostrophic velocity.

If it was initially zero (to first order), it would be zero for all subsequent time.

Taking this as an assumption (which we expect to be a plausible approximation

for a substantial portion of the tachocline), our horizontal magnetic is, to first

order in Ro (forcing is O(Ro) by assumption), divergence free, so we can define the

magnetic potential function A in the usual way. Vertical field may be produced by

the equations, but there is no feedback at this order. They will come in once we

consider equations at O(Ro2).

Putting the approximated quantities (31), (33) and (34) together, using the

definitions of the streamfunction given in (29), and back substitute into the original

equations, we obtain the following set of equations:

D

Dt
q = ∂(A,∇2A) + ν∇2

[
∇2
hψ +

κ

ν

f20
N2

∂2

∂2
ψ

]
, (36)

q = ∇2
hψ + βy +

f20
N2

∂2

∂z2
ψ, (37)

D(·)
Dt

=
∂(·)
∂t

+ ∂(ψ, ·), (38)

∂A

∂t
+ ∂(ψ,A) = η∇2

hA. (39)

∂(·, ·) is the Jacobian operator, and we have absorbed the relevant terms and called

it the buoyancy frequency N2 (constant in the Boussinesq regime).

Note that q is sometimes called the pseudopotential vorticity, conserved in the

QG regime, in contrast to the Ertel potential vorticity, which is conserved in the

3D regime. The extra z-derivative term in q is a vortex stretching term.

To do the derivation more rigourously, we can derive the same equations using

an asymptotic expansion with Ro as the small parameter (see Gilman 1967a). One

should be careful that we will require a solvability condition (to avoid projection

into the kernel), and this comes from taking the curl of the momentum equation.

We note that since the vertical field does not come into play here, we cannot get

a dynamo. Indeed (assuming homogeneity for simplicity), multiplying (39) by A

and integrating, we have

∂

∂t

〈A2〉
2

= −η
〈
(∇A)2

〉
= −η

〈
B2
〉
, (40)

⇒ 0 ≤
∫ ∞
0

〈
B2
〉
dt =

2

η
[A2(0)−A2(t)] <∞, (41)

so the mean field squared must necessarily decay to zero as time progresses. To

obtain the boundary conditions, we will need to go back to the definition.
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The above equations, in the ideal case, conserves energy (∇ψ)2, magnetic

potential squared A2, and cross helicity ∇A · ∇ψ (assuming appropriate boundary

conditions, noting ∂A/∂z = 0). Enstrophy q2 is not conserved.

3.1. Two-level approximation. To derive the two-level approximation, one takes

the central finite difference approximation of the z-derivative, which gives (for i = 1

the top level; see Pedlosky 1987, Vallis 2006 or Tulloch & Smith 2009a)

∂qi
∂t

+ ∂(ψi, qi) = ∂(Ai,∇2Ai) + · · · , (42)

qi = ∇2
hψi + βy +

k2d
2

(ψj − ψi), j = 3− i (43)

∂Ai
∂t

+ ∂(ψi, Ai) = · · · , (44)

and k2d/2 = 4f20 /N
2H2, where H is the height of the domain (we took the levels to

be of equal height). I have left out the dissipation terms for the time being. Note

that the interface matching is given by the requirement that pressure is continuous

either side of the interface. By having the Lorentz force, we note that we want the

total pressure to be continuous either side of the interface. Within each level, the

density is constant.

Alternatively, we could consider a mode projection of the continuous QG

equations as

ψ = 1 · ψ0(x, y) + cos(kz)ψ1(x, y) + · · · , (45)

which is a projection onto the barotropic and first baroclinic mode, using the

appropriate inner product and normalisation.

The thing to note is that the two levels are coupled via gravity (by the coupled

set of PDEs), but not explicitly coupled magnetically. There is no obvious way

to do magnetic coupling, or what the consequences would be if we did not have

such a coupling. We could always just throw away the need for explicit coupling by

considering the continuous QG equations, should we choose to just do a numerical

simulation. The initial idea was to derive the two-level equations, force the upper

layer and see how the lower layer responds. Physically, we expect plumes to be

raining down onto the upper portion of the tachocline, and see what happens

with the lower layer. We may well have interior field leaking into the lower

tachocline, which we could model as some sort of magnetic flux coming in through

the boundaries as a boundary condition. I aim to investigate this further in due

course.

3.2. Conserved quantities of the two-level model. For κ = ν = η = 0, the

two-level model conserves

E =
(∇ψ1)2 + (∇A1)2

2
+

(∇ψ2)2 + (∇A2)2

2
+ k2d(ψ2 − ψ1)2, (46)

A = A2
1 +A2

2, (47)

which is the energy (kinetic and potential), and total squared magnetic-potential.

Enstrophy is clearly not conserved layer-wise or within the whole system, so there is
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no reason to expect energy to inverse cascade. The following quantity is conserved

layer-wise:

Hx,i = ∇Ai · ∇ψi +
k2d
2

(ψi − ψj)Ai. (48)

This is a quantity similar to cross-helicity (above without the second term),

obtained by multiplying the momentum equation by Ai and the induction equation

by qi. Perhaps by demanding the traditional cross-helicity to be conserved, we may

have a natural way of coupling the magnetic field in the two layers.

3.3. Barotropic-Baroclinic formulation. Following Salmon (1978, 1980), we

write the two-level equations in terms of the barotropic and (first) baroclinic mode

ψ =
ψ1 + ψ2

2
, τ =

ψ1 − ψ2

2
. (49)

Then it can be shown that the resulting equations are

∂

∂t
∇2ψ + ∂(ψ,∇2ψ) + ∂(τ,∇2τ) + β

∂ψ

∂x

= ∂(Aψ,∇2Aψ) + ∂(Aτ ,∇2Aτ ) + · · · ,
(50)

∂

∂t
[∇2 − k2d]τ + ∂(τ,∇2ψ) + ∂(ψ, [∇2 − k2d]τ) + β

∂τ

∂x

= ∂(Aτ ,∇2Aψ) + ∂(Aψ,∇2Aτ ) + · · · ,
(51)

∂Aψ
∂t

+ ∂(ψ,∇2Aψ) + ∂(τ,∇2Aτ ) = · · · , (52)

∂Aτ
∂t

+ ∂(τ,∇2Aψ) + ∂(φ,∇2Aτ ) = · · · . (53)

We see there are only three types of triad interactions:

(ψ,ψ)→ ψ, (τ, τ)→ ψ, (ψ, τ)→ τ. (54)

In this case, we have no purely baroclinic interactions, because we insisted the two-

levels have equal heights. The question we might ask ourselves is if we somehow

have a magnetic coupling, would our operators change for the baroclinic magnetic

fields? There is no obvious length scale that we expect to appear, since magnetic

fields are not directly influenced by rotation, reflected by the presence of the Rossby

deformation radius.

The above equations conserve the following quantities:

E =
(∇ψ)2 + (∇Aψ)2

2
+

(∇ψ)2 + k2dτ
2 + (∇Aτ )2

2
, (55)

A = A2
ψ +A2

τ . (56)

Again, enstrophy is not conserved.
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3.4. Scales of motion. Since we have a natural length scale kd that arises in the

problem, we could consider several limiting cases:

Small length scale compared to Rossby deformation radius, k � kd.

Going back to (43), we see that

qi = ∇2ψi +
k2d
2

(ψj − ψi) ≈ ∇2ψi, (57)

and so the two layers decouple, and we go back to the two-dimensional equations.

Of course, existence of magnetic coupling may change this. At small enough scales,

the Rossby number is no longer small and we expect the QG approximation to

break down, and we go into the 3D turbulence regime.

Large length scale compared to Rossby deformation radius, k � kd. We

only neglect ∇2 when compared to a k2d term. We see that the barotropic equation

(50) is unaffected, but the baroclinic equation becomes

∂τ

∂t
+ ∂(ψ, τ) = ∂(Aψ,∇2Aτ ) + ∂(Aτ ,∇2Aψ). (58)

Where there is no field, τ becomes a passive tracer. The variance (i.e. the energy)

then tends to forward cascade. This is no longer true when the field is present.

Length scale comparable to Rossby deformation radius, k ∼ kd. When

no field is present, energy has a tendency to seek the gravest mode, since we are in

a quasi-2D regime, and energy mostly ends up on the barotropic mode. There is no

inverse cascade when the field is present, we expect this not to happen, although I

am not exactly sure what the consequences would be.

4. Barotropic and baroclinic instabilities

Much of the work has already been considered by Gilman (1967b, 1969). (I

attempted the work before realising it was done already).

4.1. Waves. Doing the usual linearisation about Ψ1 = Ψ2 = 0, A1 = A2 = −B0y,

and assuming Fourier modes of the form

ψ(x, y) = ψ̂ exp[i(kx+ ly − ωt)], (59)

we get a system of equations of the form
ω(K2 + k2d/2) + kβ −ωk2d/2 kK2B 0

−ωk2d/2 ω(K2 + k2d/2) + kβ 0 kK2B

kB 0 ω 0

0 kB 0 ω



ψ1

ψ2

A1

A2

 = 0, (60)

with K2 = k2 + l2. When there is no field, only the upper-left 2×2 block

survives, and from solving this, we get the dispersion relation for the barotropic

and baroclinic Rossby waves:

ωψ =
−kβ
K2

, ωτ =
−kβ

K2 + k2d
. (61)

We see again the baroclinic branch is affected by the Rossby deformation radius,

and when we go back into the purely barotropic regime (kd = 0 or Ld = ∞, the

baroclinic mode becomes indistinguishable from the barotropic mode.
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When we set kd = ψ2 = A2, we go back into the 2D β-plane regime, with the

dispersion relation

ω2 ± ωRω − ω2
A = 0, (62)

so the Rossby branch is coupled with the Alfvén branch.

To find the waves in the two-level regime, we need to find the determinant of

the matrix. The quartic is not easy to manipulate into a revealing form, and not

having a computer program such as MAPLE at hand for checking made this a

rather tedious task to do, and thus has been omitted at the time of writing. The

obvious expectation is that we have the barotropic and baroclinic Rossby branch

coupled to the Alfvén branch. The point of trying to do this analytically is that

I am interested in how the baroclinic Rossby wave is affect by the magnetic field.

We anticipate the barotropic case to be modified as before, but what happens to

the baroclinic mode does not seem to have been extensively investigated. This is

easy to do numerically and will be a future focus.

4.2. Phillips problem. There are certain problems that one could potentially

solve at least semi-analytically. Three particularly simple examples for studying

purely baroclinic instabilities in the QG (no field) regime are the Eady problem,

Charney problem (for the continuous case), and the Phillips problem (for the two-

level case). I had a quick look at the Phillips problem, and some notes are given

below.

Linearising about Ψ1 = −Uy, Ψ2 = Uy, A1 = A2 = −By, where U and B are

both just constants, the equation we are dealing with is of the form (now letting

ω = kc)
(U − c)(K2 + Uk2d/2)− (β + k2d) −(U − c)k2d/2 −K2B 0

−(U + c)k2d/2 (U + c)(K2 + k2d/2) + (β − Uk2d) 0 K2B

−B 0 (U − c) 0

0 B 0 (U + c)



ψ1

ψ2

A1

A2

 = 0.

(63)

B = 0 gives us the Phillips problem and the dispersion relation is

c =
−β(K2 + k2d/2)±

√
K8U2 −K4U2k4d + β2k4d/4

K2(K2 + k2d)
. (64)

There are explicit criteria for certain cases. For example, if we had no differential

rotation (β = 0, but note Rhines scale does not exist then), we see that we have

stability when

K ≤ kd, (65)

which is usually known as a high wavenumber cutoff criterion, so only the long

enough waves can become unstable. When β is not zero, we see that we need a

minimum shear of

U >
2

k2d
β (66)

for instability. So the presence of differential rotation or a large Rossby deformation

radius (small kd) causes the flow to be more stable baroclinically. In general,

there is a high wavenumber cutoff which may be found numerically, so only the
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sufficiently long waves can be unstable and grow. We expect in general the system

to be unstable, because the gradient of PV take opposite signs in the two layers,

in accordance with the Charney-Stern-Pedlosky criterion (see Pedlosky 1987; cf.

Rayleigh’s criterion in classical hydrodynamics).

In the magnetic case, the Charney-Stern-Pedlosky criterion does not hold, so the

system is not necessarily unstable even if the gradient of PV changes sign over the

domain. Although we expect a magnetic field aligned with the flow to stabilise a

barotropic flow, this may not necessarily be true for the baroclinic case, as potential

energy also plays a role. Again, with something like MAPLE, we should be able

to do the problem at least semi-analytically. The key thing to investigate is to see

how the energy budget works, since we now have potential energy in addition to

kinetic and magnetic energy.

5. Future work

This project actually links up very well to my current PhD project, where the

general idea is to extend and study well known GFD models with MHD effects.

Thus (having convinced the advisor) I can potentially dedicate the rest of the PhD

period to actually finish this work off. Having Steve Tobias (Leeds) and David

Hughes (Leeds, my PhD advisor) there will certainly allow me to attempt to finish

the work and extend it accordingly.

Having this in mind, the list below is much longer and extensive than it otherwise

would be. I shall include the more definite tasks first, then move on to more open

questions that I have thought about.

5.1. Closure calculation. Much as we would like to predict the dynamics and

spectral transfer of the relevant quantities in a turbulent regime, we cannot do it,

since that would involve solving the problem of turbulence! One problem is that

of closure, as we cannot close the hierarchy in a self-consistent way. So there are

two approaches one could try: approximate the equation but keep the hierarchy

(e.g. Direct Interaction Approximation), or approximate the hierarchy but keep the

equation (e.g. Quasi-Normal approximation). None of the methods in the current

literature work, and when they do work, it is usually regime dependent. Some

give better results than others (or some are less wrong than others, depending on

how one looks at it). One consistently ‘successful’ method that has been regularly

used in both GFD and MHD regimes is the so called Eddy Damped Quasi-Normal

Markovian approximation (EDQNM), and it is my intention to learn something

about closure theory in order to perform such calculations. (See Orszag 1970 for a

brief review).

Doing such approximations allows one to reach parameter regimes which are

probably impossible to reach using a direct numerical simulation (e.g. Pouquet

1978), but of course the calculations resulting from the approximation may just

be completely and utterly wrong. Wrong we may be, but we have do at least try

something! It may suggest things we should look out for in a direct numerical

simulation.
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5.2. Numerical simulation. The obvious thing to do alongside the analytical

work is of course the simulation. Having absolutely no experience with

programming or with programming languages (probably going to be Fortran or

C), I expect it will take me around three or so months to get familiar with the

language, then actually programming it and running the simulations should take

a few more months. I expect there may well be some sort of numerical result by

no later than this time next year. The nice thing about working in QG regimes

and β-plane is that the domain is simple enough that spectral methods is easily

implemented, but also the QG regime filters out fast unbalanced gravity waves,

allowing a more sensible time-stepping to be used.

5.3. Relaxing the assumptions. By being in the QG regime, we essentially get

a quasi- two dimensional problem. In particular, the tachocline is not necessarily

well described by the QG approximation; Rossby number is probably around O(1−
10−1), so dynamics are rotationally influenced but not rotationally dominant. In

particular, we have seen that the QG equations do not allow a dynamo to function,

which is probably not the case for the tachocline, where we expect it to play a role

in the interface dynamo as part of the Ω-effect. Would the same conclusions hold

if we relax the QG approximation?

Taking a bold guess, I expect that zonal flows will not form, and almost

everything in the QG regime should carry over to the more general case. The

point is that once we allow the third dimension back in, we do not have enstrophy

conservation even in the hydrodynamic case, and no inverse cascade occurs. Also,

the presence of the field should still Alfvénise the system, turbulence chopping the

large-scale weak field into a strong field at the relevant scale, which will cause stress

cancellation, thus reduce the effectiveness of the turbulent viscosity (which should

still be anisotropic due to the stratification), and quench momentum diffusion;

although Zel’dovich’s theorem no longer holds in 3D, it is well observed numerically

that small-scale fluctuations tend to be strong. Of course, the controlling parameter

for zonal flow formation may then be different, but this is expected as there are

less restrictions imposed. Presence of field inhibits PV mixing, also suggesting

the lack of zonal flow formation. By going into the 3D regime we may end up

getting a dynamo, but that should not affect the zonal flow formation question.

An interesting question to ask is whether we get zonal magnetic bands from small

scale turbulence (cf. dynamo problem).

I propose first to do similar calculations for the continuous QG case, then try

and investigate the layered shallow-water cases, where rotation is not necessarily

dominant. We anticipate an affirmative answer with the shallow-water equations,

as there is already a simulation for the spherical case for the magnetic shallow-

water equations (Staehling & Cho, unpublished; see James Cho’s talk given at the

Issac Newton Institute, for the High Reynolds number turbulence workshop). In

due course I shall move onto the 3D Boussinesq case, doing similar calculations and

simulations, as well as developing the theory on the way.
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5.4. Collection of further questions. What is the parameter that controls

whether zonal flows actually form? Tobias et al. (2007) observed that it should

be B2
0/η, where B0 is the magnitude of the imposed weak field. Could we possibly

do better and determine this from analytical work? Should the same parameter

crop up if we go into different regimes?

One of the more obvious problems is that we have inverse cascade of magnetic

potential squared, so do we expect zonal magnetic bands to form? If so, what are

their effects on the whole system in general?

If we relax the QG approximation and go into 3D Boussinesq regime, do we still

get the same results? Zel’dovich’s theorem does not hold anymore, although it is

well observed that small scale fields can get strong. There is also the added bonus

of the dynamo which can come into play, regenerating fields which feed back onto

the flow, complicating matters further.

For the Solar problem, if above mentioned processes occur, what are their roles

in the larger picture, for example, in affecting the differential rotation profile,

confinement of the tachocline, or in the dynamo problem?

There are many problems, but no simple answers. It is my hope that I will be

able to at least answer a (small) portion of it within my PhD period.

- - - - Julian Mak, August 24, 2010.
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