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and Oligodendroglial Brain Tumors with standardized 
Quantification of Marker Gene Expression and Clinical Variables
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Abstract
Background: Prognosis models established using multiple molecular markers in cancer along with clinical variables should enable 
 prediction of natural disease progression and residual risk faced by patients. In this study, multivariate Cox proportional hazards 
 analyses were done based on overall survival (OS) of 100 glioblastoma multiformes (GBMs, 92 events), 49 anaplastic astrocytomas 
(AAs, 33 events), 45 gliomas with oligodendroglial features, including anaplastic oligodendroglioma (AO, 13 events) and oligoden-
draglioma (O, 9 events). The modeling included two clinical variables (patient age and recurrence at the time of sample collection) and 
the expression variables of 13 genes selected based on their proven biological and/or prognosis functions in gliomas (ABCG2, BMI1, 
MELK, MSI1, PROM1, CDK4, EGFR, MMP2, VEGFA, PAX6, PTEN, RPS9, and IGFBP2). Gene expression data was a log-transformed 
ratio of marker and reference (ACTB) mRNA levels quantified using absolute real-time qRT-PCR.
Results: Age is positively associated with overall grade (4 for GBM, 3 for AA, 2_1 for AO_O), but lacks significant prognostic value 
in each grade. Recurrence is an unfavorable prognostic factor for AA, but lacks significant prognostic values for GBM and AO_O. Uni-
variate models revealed opposing prognostic effects of ABCG2, MELK, BMI1, PROM1, IGFBP2, PAX6, RPS9, and MSI1 expressions 
for astrocytic (GBM and AA) and oligodendroglial tumors (AO_O). Multivariate models revealed independent prognostic values for the 
expressions of MSI1 (unfavorable) in GBM, CDK4 (unfavorable) and MMP2 (favorable) in AA, while IGFBP2 and MELK (unfavor-
able) in AO_O. With all 13 genes and 2 clinical variables, the model R2 was 14.2% (P = 0.358) for GBM, 45.2% (P = 0.029) for AA, 
and 62.2% (P = 0.008) for AO_O.
Conclusion: The study signifies the challenge in establishing a significant prognosis model for GBM. Our success in establishing prog-
nosis models for AA and AO_O was largely based on identification of a set of genes with independent prognostic values and application 
of standardized gene expression quantification to allow formation of a large cohort in analysis.
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Background
Glioma is the major part of primary malignant 
brain and central nervous system tumors character-
ized by tumor cell components of astrocytic glial, 
 oligodendroglial or mixtures of both features. The most 
malignant and common form of brain tumor is glio-
blastoma multiforme (GBM, WHO grade IV), com-
prising about 50% of glioma. The one-year survival 
rate for GBM patients is 34% and two-year survival 
is only 12%.1 Histopathological cellular morphology 
and tumor cytoarchitecture-based grading systems 
are used to classify gliomas, though providing use-
ful prognostic diagnostic insights, these classification 
systems do not account for a significant proportion of 
variation in overall survival among individual glioma 
patients with the same histology, especially for non-
GBM gliomas. Thus far, treatment options are lim-
ited for gliomas, for non-GBM gliomas in particular, 
to radiation and/or cytotoxic chemotherapy without 
stratification or triage. Prognosis models established 
using multiple molecular markers in cancer along 
with clinical variables should enable prediction of 
natural disease progression and residual risk faced 
by patients. For patients with glioma currently lim-
ited options exist in treatment with poor treatment 
efficacy. If we successfully achieve development and 
validation of prognostic models, we will have tools 
to enable patients to a starting point on the road to 
personalized treatment.

The power of a prognosis study relies on the num-
ber of events, and a meaningful analysis requires an 
average of 10 patient outcomes per variable used,2 
and clinic utility of a prognosis model requires stan-
dardization of data. Recent microarray-based gene 
expression profiling has provided molecular sub-
classifications of GBM and identification of genes 
with prognosis values.3,4 However, direct application 
of a large panel of gene signature data generated by 
microarray based studies to modeling prognosis is 
challenged by the two main issues cited above. In an 
endeavor of applying gene expression information 
from tumors to explain patient survival variation, we 
have taken an alternate approach in modeling glioma 
prognosis. Our strategy is to establish a prognosis 
model based on a small to medium size of gene expres-
sion variables and a large size of samples and events.5,6 
The genes selected to be included in initial model 
establishment are based on their defined  functions in 

cancer initiation and progression core pathways, and 
each prognosis value separately reported for glioma. 
In this study, we applied a standardized platform for 
real-time quantitative reverse transcription (qRT)-
PCR to ensure data comparability.7

This study is a continuing exploration of model-
ing prognosis for gliomas with a select set of stan-
dardized gene expression data in a larger number 
of cDNA/tumor samples and patient’s follow-up 
information together with two clinical variables (age 
and recurrence at the time to tumor sample collec-
tion) from the University of Texas, M.D. Anderson 
Cancer Center (MDACC), the University of Arkan-
sas for Medical Science (UAMS), and the Univer-
sity of California Irvine (UCI). In addition to the 
prior studied cancer pathway related genes (CDK4, 
EGFR, MMP2, VEGFA, PAX6, PTEN, RPS9, and 
IGFBP2),6 we included five cancer stem cell associ-
ated genes (ABCG2, BMI1, MELK, MSI1, PROM1) 
to explore their independent prognosis values in mul-
tivariate models for GBM (100 samples, 92 events), 
WHO grade III anaplastic astrocytoma (AA, 49 sam-
ples, 33 events), and oligodendroglial brain tumor, 
including a mix of WHO grade II oligodendroglioma 
(O, 18 samples, 9 events) and WHO grade III anaplas-
tic oligodendroglioma (AO, 27 samples, 13 events).

The rationale for including the five stem cell asso-
ciated genes in glioma prognosis modeling is on the 
emerging evidences on the existence of stem-like cells 
in brain tumors responsible for tumor resistance and 
recurrence.8–11 The most well studied glioma stem-cell 
associated antigen is CD13312 through expression of 
PROM1 gene. The expression of other neural stem cell 
associated genes in glioma have also been reported to 
have adverse prognostic effects for patients, includ-
ing BMI1 in oligodendroglial tumors13 and MELK in 
GBM of younger age patients.14 Functionally involved 
in self-renewal of neural stem cells,15 BMI1 expres-
sion in glioma has been reported to determine tumor 
phenotype16,17 and control chemo-response via acti-
vation of NF-kappaB signaling.18 MELK expression 
has been shown to regulate the transition from GFAP-
expressing progenitors to rapid amplifying progeni-
tors in the postnatal brain19 and promote glioma cell 
proliferation.14

The expression pattern and prognostic effects 
of two early identified stem cell associated genes, 
ABCG2 and MSI1, have not been extensively studied 
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in gliomas. ABCG2 is a marker of adult stem cells,20 
and MSI1 marker of CNS stem cells and/or neural pro-
genitor cells.21,22 The quantities of (neural) stem cell 
associated gene expressions may represent the per-
centage of NSLC within the brain neoplasm and hence 
have prognostic values. In this study, we included all 
of the above five gene expression variables (ABCG2, 
BMI1, MELK, MSI1, and PROM1) in a multivariate 
model with two clinical (age and recurrence) and/or 
eight previously studied neoplastic pathway related 
genes (CDK4, EGFR, MMP2, VEGFA, PAX6, PTEN, 
RPS9, and IGFBP2)6 to determine the overall contri-
bution of each variable to glioma prognosis.

Methods
Patients and clinical data
Following informed consent, brain tumor  specimens 
were collected from patients operated in M.D. 
 Anderson Cancer Center (MDACC) at the Univer-
sity of Texas, the University of Arkansas for Medical 
Sciences (UAMS), and the University of California, 
Irvine (UCI) and included in this study. MDACC 
patients with AA, AO, and O were operated during 
1987–1997. Majority of GBM patients (n = 59) of 
MDACC were operated during 1990–1997, while 7 in 
2003. UAMS and UCI patients with GBM or AA, or 
AO were operated during 2003–2006.  Following IRB 
approval, the clinical data for patient’s age, recur-
rence (at time of sample collection), last contact date, 
and survival status were provided by each institutes 
tumor registry and verified by each site investigator 
in this study. The OS data was calculated based on 
the time of sample collection and time of death or last 
contact date.

Study design
This study was designed to establish three main prog-
nosis models with standardized gene expression vari-
ables for three distinct gliomas based on  histology: 
GBM model with 100 cases, AA model with 49 cases, 
and a model for glioma with oligodendroglial com-
ponents: 27 anaplastic oligodendrogliomas (AO) and 
12 oligodendrogliomas (O), as shown in Table 1. We 
combined AO and O into the same model (AO_O 
model) to make a total of 45 cases in order to have 
a meaningful analysis for this type of glioma. The 
patient survival data was mature for GBM (92% 
dead event, not including those lost contact for over Ta
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5 years), almost mature for AA with death event of 
67%, and a 49% death event for AO_O group. Genes 
selected for inclusion in this study were based on 
published pilot prognosis data with rationale for their 
involvement in glioma malignance and resistance as 
detailed in the Introduction section. We included two 
main clinical variables that correlated with survival: 
age and recurrence at the time of surgical removal of 
the tumor that were also included in our earlier prog-
nostic study for GBM and AA.6 The 1p/19q deletion 
data for oligodendralgial tumors is not included in 
modeling due to lack of such information for large 
number of the studied subjects.

Tumor specimens and tumor  
cDnA samples
The cDNA samples from MDACC have been used by 
us and others in published studies, with indication of 
sample quality control, RNA, and details on cDNA 
sample processing.5,6,23 The RNA samples of gliomas 
from UAMS and UCI were processed from 2–4 mm3 
snap-frozen tumor pieces using Ultraspec (Biotecx 
Laboratories, Houston) with an initial homogeniza-
tion by passing the tissue through a 20-Gauge needle 
attached to a 1 ml syringe, then RNA extraction fol-
lowing manufacturer’s protocol. The integrity of RNA 
samples were examined by a RNA gel for the presence 
of 18S and 28S RNA bands. The cDNA was reverse 
transcribed from an aliquot of RNA (0.5–2 µg) in a 
10 µl reaction using 100 Units of Supercript II reverse 
transcriptase (Invitrogen, Carlsbad), 10 pmol of 
poly(dT) 20VN primer, and other components pro-
vided in the kit following the manufacturer’s protocol. 
The cDNA synthesis reaction was diluted 30 times 
with 10 mM Tris.HCl (pH 7.5), and an aliquot of 4 µl 
diluted cDNA was quantified for ACTB. Based on 
ACTB quantity, we further diluted the cDNA, eg, 1000 
copy number per 4 µl per quantification reaction, for 
efficient use of the tumor cDNA samples.

gene expression data  
for prognosis study
We used Ziren® Human Real-Time AqRT-PCR 
 Standard-1001 (Ziren Research LLC, Irvine) to 
quantify ABCG2, BMI1, MELK, MSI1, PROM1, and 
ACTB, and AqRT-PCR Standard-1020 to quantify 
PAX6, PTEN, VEGFA, and ACTB for the entire set 
of cDNA included in this study. IGFBP2 and ACTB 

were  quantified with AqRT-PCR Standard-1009 for 
 non-GBM samples. Quantification of CDK4, EGFR, 
and MMP2 was carried out in UAMS and UCI on two 
sets of cDNA samples based on the same single stan-
dard containing these three genes, but not the refer-
ence gene ACTB. For these three genes, the data was 
a relative ratio to ACTB. In order to combine the two 
sets of relative quantitative data in to a single progno-
sis model, the data in the 2nd set of samples (mainly 
composed of GBM) was adjusted by the mean of fold 
difference between the 2nd and the 1st quantification 
in a set of the same cDNA samples from the 1st set.

We used FAST-START DNA Master SYBR Green 
I mix (Roche, Indianapolis) in real-time PCR using a 
LightCycler 2.0 real-time instrument (Roche) or step 
one real-time PCR instrument (Applied Biosystems, 
Foster City). The primers are designed to amplify all 
transcription variants for genes, including EGFR, 
MMP2, PAX6, and VEGFA. Primer sequence informa-
tion and PCR parameters are available upon request 
to Ziren Research (www.zirenresearch.com). The 
quantification for each gene was repeated 2–4 times 
for each cDNA sample, and the mean value was used 
for calculating the ratio of marker gene to ACTB. In 
our prior glioma prognosis study,5 we have shown 
that ACTB (called β-Actin there) is a fair reference 
gene to normalize the marker gene expression among 
different glioma samples, and we included some of 
these prior quantified data into this study dataset.

Statistical analyses
From our earlier two studies, we found that modeling 
glioma prognosis by dichotomizing patients based on 
recursive partitioning of raw gene ratios produced a 
model with a higher and biased R2 value than treating 
the gene expression data as continuous variables after 
log transformation.5,6 Thus, in this study, we applied 
multivariate Cox Proportional Hazard (PH) models 
to estimate the prognoses of GBM, AA, and AO_O 
using log-scaled ratios (logRatios) of marker vs. 
ACTB expression quantities. The application of log 
transformation also avoids outliers on the right and 
ensures a reliable result. To avoid taking log of zero 
we used an offset selected to be large enough (such as 
0.01) to avoid outliers on the left.

We computed the univariate model coefficients for 
three glioma groups graded based on tumor malig-
nancy (GBM as grade 4, AA as grade 3, AO_O as 
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grade 1/2) from computer output for the models with 
grade-gene interactions. The model is represented 
as follows: log HR = b1*gene + b2*g1 + b3*g2 + 
b4*g1*gene + b5*g2*gene. b1, b2, b3, b4, and b5 are 
model coefficients; gene is the log(gene + 0.01) value; 
g1 is a dummy variable coded 1 for grade 3, 0 other-
wise; and g2 is a dummy variable coded 1 for grade 4, 
0 otherwise. We also assessed whether the log hazard 
ratios change with grade by a test for significance of 
interaction of genes with grade. Kaplan-Meier sur-
vival analysis was performed for a highly significant 
prognosis factor MSI1 dichotomized at the overall 
median expression in a total of 194 glioma samples 
including GBM, AA, and AO_O. We used Spearman 
Rank Correlation Test to analyze gene expression 
correlations, and Wilcoxon Rank Sum Test to analyze 
the difference on gene expressions among the three 
tumor grades (GBM, AA, and AO_O). All statistical 
analyses were performed using S-PLUS 2000 com-
puter software (MathSoft Inc, Seattle, WA).

Results
The prognostic effect of age  
and recurrence in gliomas
As shown in Table 1, survival time for patients with 
GBM is much shorter and less varied than those with 
other types of gliomas. We performed Cox PH anal-
yses for GBM, AA, AO_O to assess the prognostic 
value of age and recurrence. As shown in Model 1 in 
Tables 2 and 3, recurrence, not age, is a significant 
predictor of poor survival for AA, and none of the 
clinical variables are significant in GBM and AO_O.

To substantiate above finding, we combined all 
glioma grades in a Cox PH analysis with treatment 
of histology as a four-level numeric variable, as 
shown in Table 1. The result revealed that GBM his-
tology has a significant power in prediction of poor 
survival versus non-GBM with Log (HR) = 1.23 
(P , 0.0001), adjusted for other clinical variables 
(age and recurrence). There is a significant correla-
tion between grade and age (R = 0.42, P , 0.00001), 
which is consistent with a bias in age with older popu-
lation in GBM compared to non-GBM (see Table 1). 
The hazard ratio (HR) for a 20-year increase in age 
was 1.25 with P = 0.092 in all gliomas (1.41, 2.09, 
and 1.13 for AO_O, AA, and GBM, respectively), 
while HR for age did not vary significantly with 
grade (P = 0.27).

As shown in Tables 2 and 3, tumor recurrent  status 
(recurrence) at time of sample collection, which is 
a binary variable versus non-recurrence, is an unfa-
vorable prognostic factor in multivariable models 
for AA, but not for other glioma grades. Consistent 
with the finding, the HR for recurrence varied signifi-
cantly with grade (P = 0.025): 1.83, 3.26, and 0.92 for 
AO_O, AA, and GBM, respectively.

Further analysis was carried out to exam the prog-
nostic effect of grade-age and grade-recurrence inter-
actions on patient’s OS. The data showed that there 
is a significant GBM–recurrence interaction with 
Log (HR) = −1.2606, P = 0.0024, indicating that recur-
rence has a different function in predicting survival 
for GBM and non-GBM, which can be explained by 
the fact that GBM is the highest malignancy and re-
operation is beneficial to OS, but recurrence in non-
GBM is related to tumor progression into a higher 
malignancy thus a poor prognostic factor.

Prognostic effect of gene expression 
variable in univariate models of gliomas
We performed univariate Cox PH assay for each gene 
separately for GBM, AA, and AO_O. With consider-
ation of sample size and based on their common his-
tological features, we combined AO and O cases in 
this study, We plotted the hazard ratio (HR) vs. gene 
expression logRatio curves based on the univariate 
Cox PH model. As shown in Figure 1 and Table 4, 
from the 13 genes, only PTEN showed the same 
decreasing curve and consistently an unfavorable 
value for Log (HR) in all three glioma types. The other 
12 genes showed different effects on prognosis in dif-
ferent glioma subsets classified based on histology.

In GBM, the HR curves for five pathway associ-
ated genes (CDK4, VEGFA, EGFR, and MMP2) are 
in general not altered by gene expression levels, with 
the univariant coefficient Log (HR) being around 
zero. In contrast, all these genes have either favor-
able (MMP2, EGFR) or unfavorable (CDK4, VEGFA) 
prognostic values in univariate models of AO_O and 
AA (except EGFR). Although over-expressed in 
GBM, IGFBP2 expression showed a favorable effect 
on prognosis for GBM. In contrast, IGFBP2 expres-
sion in non-GBM gliomas has an unfavorable prog-
nostic value. In accordance with these findings, there 
is significant interaction of IGFBP2 with glioma 
grades (Table 4).

http://www.la-press.com
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The HR-gene expression curve and Log (HR) 
 values revealed consistently that BMI1 expression 
had an unfavorable prognostic effect for GBM, but 
favorable for AA and AO_O, and MELK expression 
a favorable for GBM, but unfavorable for AA and 
AO_O. PROM1 expression was shown to be unfavor-
able prognostic factor for AA, but favorable for AO_O 
and GBM. In contrast, the expressions of ABCG2, 
PAX6 and RPS9 are favorable prognostic factors for 
both AA and GBM, but unfavorable for AO_O.

Based on Kruskal-Wallis Rank Sum test, MSI1 is 
one of the two genes (the other being CDK4) that is 
not differentially expressed among the three types of 
gliomas with P . 0.05. However, MSI1 expression 
shows a strong opposing effect on prognosis for GBM 
and AO_O that is out of displaying range of HR-gene 
expression plot, with a significant interaction to grades 
shown in Table 4. Further analysis of MSI1 prognosis 
function was carried out in univariate models as con-
tinuous and dichotomized variables shown below.

establishment of multivariate models  
for gBM, AA, and AO_O
The overall analyses revealed different prognosis 
effects of the same set of genes in different glioma 
histopathology classifications, stressing the need of 
establishing multivariate prognosis models based on 
histology-classified glioma groups. Using a single 
data set with logRatios of 13 gene expressions to 
ACTB, two clinical variables (numeric data for patient 
age, and binary data for recurrence), and the patients 
OS time, we performed Cox PH regression analy-
ses for GBM, AA and AO_O. We analyzed different 
combinations of variables by generating sub-models 
with two clinical variables (Model 1), with addition 
of the 8 pathway related genes from our previous 
study (Model 2), or the 5 stem cell associated genes 
(Model 3), and addition of all 13 genes (Model 4). We 
also examined a model only with the 13 gene expression 
variables (Model 5) to assess the prognostic signifi-
cance of the genes independent of patient’s age and 
recurrence of the tumor. Table 2 summarizes the R2 
and P value from a likelihood ratio test for the  models. 
Table 3 shows each variable’s log hazard ratio and the 
statistical significance of each model. The individual 
models were generated to compare the effect of add-
ing the 5 stem cell associated markers to the original 
model with 8 cancer pathway associated genes, in Ta
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Table 3. estimated parameter values, their estimated standard errors and the P-values in a multivariate cox models shown 
in Table 2.

Histology GBM AA AO_O
Variable coefa se (coef) P valued coef se (coef) P value coef se (coef) P value
Model 1 Ageb 0.004 0.007 0.57 0.031 0.018 0.08 0.017 0.020 0.39

recurc −0.057 0.238 0.81 1.043 0.395 0.008 0.629 0.482 0.19
Model 2 Age 0.004 0.008 0.65 0.018 0.023 0.43 0.033 0.032 0.30

recur −0.025 0.249 0.92 0.986 0.520 0.058 −0.716 0.943 0.45
PAX6 −0.058 0.190 0.76 −0.396 0.419 0.34 0.276 0.651 0.67
PTEN −0.072 0.185 0.70 −0.129 0.674 0.85 0.273 0.509 0.59
VEGFA −0.003 0.120 0.98 0.319 0.504 0.53 0.518 0.501 0.30
CDK4 −0.032 0.109 0.77 0.835 0.391 0.033 0.879 0.587 0.13
EGFR 0.038 0.077 0.62 0.216 0.178 0.23 −1.670 1.227 0.17
MMP2 0.049 0.221 0.82 −2.339 0.817 0.004 −0.643 0.466 0.17
RPS9 −0.007 0.182 0.97 −0.245 0.321 0.45 0.623 0.405 0.12
IGFBP2 n/a n/a n/a 0.461 0.298 0.12 2.054 0.896 0.022

Model 3 Age 0.007 0.008 0.40 0.033 0.020 0.10 −0.003 0.024 0.90
Recur −0.262 0.259 0.31 1.158 0.446 0.009 0.890 0.582 0.13
ABCG2 −0.198 0.1529 0.19 −0.381 0.230 0.10 0.188 0.290 0.52
BMI1 0.161 0.274 0.56 0.376 1.395 0.79 −0.705 1.562 0.65
MELK −0.331 0.237 0.16 0.371 0.352 0.29 1.095 0.528 0.038
MSI1 1.546 0.608 0.011 0.329 0.477 0.49 −3.123 1.342 0.020
PROM1 −0.036 0.214 0.87 0.857 0.885 0.33 −0.263 0.723 0.72

Model 4 Age 0.009 0.008 0.31 0.054 0.026 0.039 0.037 0.042 0.38
recur −0.358 0.276 0.19 1.937 0.694 0.005 −1.458 1.312 0.27
ABCG2 −0.185 0.111 0.10 −0.695 0.379 0.066 −0.472 0.562 0.40
BMI1 0.208 0.304 0.49 0.649 1.801 0.72 2.004 2.671 0.45
MELK −0.562 0.280 0.045 −0.716 0.453 0.11 0.753 1.079 0.48
MSI1 1.826 0.637 0.004 1.115 0.659 0.09 −1.540 1.672 0.36
PROM1 0.074 0.315 0.82 1.112 1.001 0.27 0.365 2.244 0.87
PAX6 −0.041 0.206 0.84 −0.087 0.502 0.86 0.927 0.865 0.28
PTEN −0.059 0.200 0.77 0.325 0.738 0.66 0.197 0.763 0.80
VEGFA −0.072 0.131 0.58 0.523 0.570 0.36 0.271 0.874 0.76
CDK4 −0.024 0.104 0.82 1.435 0.472 0.002 0.945 0.780 0.23
EGFR 0.015 0.075 0.84 0.006 0.220 0.98 −1.704 1.235 0.17
MMP2 −0.001 0.239 1.00 −2.944 0.964 0.002 −0.331 0.581 0.57
RPS9 0.346 0.223 0.12 −0.410 0.352 0.24 0.518 0.444 0.24
IGFBP2 n/a n/a n/a 0.276 0.298 0.35 1.883 1.144 0.10

Model 5 ABCG2 −0.163 0.105 0.12 −0.141 0.304 0.640 −0.340 0.476 0.48
BMI1 0.185 0.299 0.54 −0.620 1.811 0.730 0.749 1.757 0.67
MELK −0.394 0.260 0.13 −0.414 0.433 0.340 0.341 0.941 0.72
MSI1 1.292 0.575 0.025 0.662 0.637 0.300 −1.854 1.565 0.24
PROM1 0.078 0.322 0.81 1.219 1.016 0.230 0.158 2.049 0.94
PAX6 −0.044 0.201 0.83 −0.312 0.468 0.510 0.13 0.569 0.82
PTEN −0.102 0.199 0.61 0.152 0.765 0.840 0.139 0.508 0.78
VEGFA −0.054 0.128 0.67 0.727 0.530 0.170 0.542 0.663 0.41
CDK4 0.007 0.101 0.95 1.263 0.516 0.014 1.085 0.809 0.18
EGFR 0.015 0.076 0.84 −0.012 0.212 0.960 −1.106 1.113 0.32
MMP2 0.032 0.244 0.90 −2.242 0.924 0.015 −0.295 0.473 0.53
RPS9 0.259 0.217 0.23 −0.217 0.345 0.530 0.639 0.428 0.14
IGFBP2 n/a n/a n/a 0.399 0.293 0.170 2.153 1.133 0.06

notes: aLog hazard ratio (hr) for one unit marker value increase; bnumeric data between the time of tumor been removed to the time of patient birth; 
cBinary data regarding de novo or recurrence of the tumor; dThe P-value threshold of 0.010 to control the false discovery rate at 5%, and 0.024 at 10%, 
according to Pounds and Morris 2003.42
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Figure 1. hazard ratio vs. gene expression logratios curves for gBM, AA, and AO_O based on the univariate cox Ph model. The hazard ratio for a 
particular marker corresponding to each of the three grades was computed using a cox Ph model with 3 terms (grade, marker, and grade-marker interac-
tion), for detail statistical analyses see Method. The hazard ratios are shown using zero as the comparator value. A decreasing curve indicates a favor-
able prognostic effect from the gene expression. In contrast, an increasing curve indicates an unfavorable prognostic effect, while a flat curve signifies no 
prognostic effect from the gene expression.
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order to gain more biological insights on the func-
tion of cancer stem cell associated gene expression 
to residual risk of glioma. We report below a sum-
mary of the results from each model for each glioma 
type.

gBM model
In a multivariate model including 100 GBM patients 
with 92 events on OS, the two clinical variables (age 
and recurrence) did not show significant prognostic 
value and failed to produce a significant prognosis 
model (R2 = 0.5%, P = 0.77) (GBM model 1). We 
have shown in our prior glioma prognosis study6 that 
IGFBP2 expression is significantly correlated with 
GBM histology and four of the 8 pathway associ-
ated genes (MMP2, VEGFA, RPS9, and PAX6) and 
lacks a significant prognostic value in a multivariate 
model with these variables, thus it is not included in 
GBM prognosis modeling in this study in an attempt 
to increase the ratio for events to variables number. 
We analyzed prognostic model for GBM by includ-
ing expression variables of CDK4, EGFR, MMP2, 
VEGFA, PAX6, PTEN, and RPS9, which made no 
significant improvement with a model R2 = 2.4% 
(P = 0.983) (Table 2) and none of the variables 
showed a significant prognostic value (Table 3). The 
three genes PTEN, RPS9, CDK4 that showed signifi-
cant prognostic value in a GBM_AA mixed model 
with 41 GBM and 43 AA cases in our earlier study6 

failed to show prognostic significance in the model 
with 100 GBM cases.

In the GBM model 3 with 5 stem cell associated  
gene expressions, a marginally significant improve-
ment was seen in the prognosis model (R2 = 11.2%, 
P = 0.106). The expression of the genes PROM1 (= 0.41) 
and ABCG2 (R = −0.31) showed a  significant cor-
relation (P , 0.00001) with grade, R = 0.41, −0.31, 
respectively. Both genes showed significant prognos-
tic value in univariate models based on all 194 
gliomas —PROM1, Log (HR) = 0.188 (P = 0.015), and 
ABCG2, Log (HR) = −0.274 (P , 0.0001). However, 
when adjusted with dichotomous GBM/non-GBM vari-
ables, both genes lost their prognostic value for GBM, 
suggesting that ABCG2 and PROM1 prognosis values 
are confounded by glioma grade. In contrast, with a lack 
of correlation to glioma  histology, MSI1 expression was 
found to be a statistically significant negative prognostic 
factor for GBM. The unfavorable prognostic value of 
MSI1 to GBM was seen with or without the inclusion of 
clinical variables and/or the 7 pathway related genes.

AA model
Recurrence was found to be an unfavorable prognos-
tic factor for the AA group with 2/3 mature patient’s 
survival information, and together with age variable 
showed prognostic significance in the AA model 1 
(R2 = 13.6%, P = 0.0277). The addition of the 8 cancer 
pathway related genes (CDK4, EGFR, MMP2, VEGFA, 
PAX6, PTEN, RPS9, and IGFBP2) or the 5 stem cell 
associated genes, improved the R2 of the AA model (AA 
Model 2, R2 = 32.7% and AA model 3, R2 = 22.0%) 
with marginal significance on the likelihood ratio test. 
The AA Model 4 with two clinical and 13 gene expres-
sion variables together achieved likelihood significance 
with an explanation of 45.2% of the variation in OS of 
the patients. In the AA Model 5 excluding the two clini-
cal variables and with the remaining 13 gene expres-
sion variables the R2 dropped to 33.6% with a lack of 
significance in the likelihood ratio test (P = 0.142), con-
sistent with the fact that recurrence is a strong unfavor-
able prognostic factor for AA.

In AA, the expression of CDK4 and MMP2 showed 
independent significant prognostic values; CDK4, 
as an unfavorable prognostic factor and MMP2 as a 
favorable prognostic factor, based on the Log (HR) 
and P values shown in Table 3. None of the stem cell 
associated genes showed prognostic significance in the 

Table 4. Log-hazard ratios computed from the univariate 
model coefficients for each glioma group (AO_O as grade 
1/2, AA as grade 3 and gBM as grade 4). 

GENE Log-hazard ratios P-value
AO_O AA GBM

PROM1 −0.35 1.14 −0.13 0.44
ABCG2 0.27 −0.20 −0.20 0.053
MELK 0.60 0.40 −0.17 0.097
BMI1 −0.49 −0.18 0.66 0.74
MSI1 −2.67 0.21 1.15 0.0011
PAX6 0.19 −0.15 −0.11 0.44
PTEN −0.11 −0.30 −0.10 0.91
VEGFA 0.06 0.59 −0.06 0.19
CDK4 0.75 0.37 0.00 0.12
EGFR −1.14 0.05 0.01 0.091
MMP2 −0.53 −0.59 0.03 0.24
IGFBP2 1.58 0.23 −0.19 0.0046
RPS9 0.35 −0.19 −0.10 0.14

note: P values are from a test for significance of interaction of genes 
with grade.
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multivariate models of AA. Although the R2 increased 
from 13.6% in the model with two clinical variables 
to 22.0% by adding the 5 stem cell associated gene 
variables, the model was not significant in the likeli-
hood ratio test. There are multiple pairwise correla-
tions among these genes, which explain the lack of 
individual significance but an overall improvement of 
the model in explaining the variation in survival.

AO_O Model
In the multivariate model of AO_O with 48%–50% 
events in each grade, neither of the two clinical vari-
ables showed prognostic significance and failed to 
produce a significant prognosis model (R2 = 5.3%, 
P = 0.299). However the addition of 8 pathway related 
genes (AO_O Model 2) improved the model R2 value 
from 5.3% to 57.6%, and the model was significant 
based on a likelihood ratio test (P = 0.0016). Including 
the 5 stem cell associated gene expression variables 
also greatly improved the model R2 values from 5.3% 
to 35.6%, with a significant P value 0.007 in likelihood 
ratio test of the model. There was a further increase of 
model R2 to 62.6% (AO_O Model 4) with the addition 
of all 13 gene expressions. The exclusion of clinical 
variables only decreased the R2 by 4.5%, consistent 
with a R2 of 5.3% in a model with only the clinical 
variables (AO_O Model 1). Thus the 13 gene expres-
sion variables we included in this study have signifi-
cant prognostic value for oligodendroglial tumors.

In the AO_O prognosis model, IGFBP2 expres-
sion showed an independent significant unfavorable 
prognosis effect for oligodendraglial tumors, with 
Log (HR) = 2.1 (P = 0.022) in AO_O model 2, in which 
the number of cases dropped from 45 to 34 due to lack 
of cDNA samples for 9 cases. In a total of 45 AO_O 
patients, MSI1 expression showed a favorable prog-
nostic value with Log (HR) = −3.1 (P = 0.020), while 
the expression of MELK an unfavorable prognostic 
value, with Log (HR) = 1.1 (P = 0.036), independent 
of clinical variables and the other 4 stem cell associ-
ated gene expression variables.

comparison of models  
with different sets of variables
We compared Model 4 to Model 1 to assess the con-
tribution of the whole set of genes to the model (with 
just the two clinical variables. The log-ratio P-values 
for comparing these models are: ,0.0001 for AO, 

0.0006 for AA, and 0.25 for GBM, indicating that in 
aggregate the whole 13 genes contribute significantly 
for AA and AO_O models, but not for GBM. We com-
pared Model 4 to Model 2 to assess the contribution 
of the 5 stem cell markers over the cancer pathway 
associated genes. The  log-ratio P-values for com-
paring these models are: 0.64 for AO, 0.093 for AA, 
and 0.025 for GBM. Thus, in aggregate the 5 stem 
cell markers contribute significantly only for GBM. 
The contribution of the 5 stem cell markers improved 
predictive accuracy for AA and AO_O, but not to a 
level of statistical significance. So for AA and AO_O, 
the models with the new (5 stem cell markers) + pre-
viously included (the 8 cancer pathway associated 
markers) genes were significantly better than models 
with no genes but not significantly better than models 
with just the previously included genes.

Differential prognostic impact of MSI1 
expression in gBM, AA, and AO_O
The results from this study revealed an interesting 
finding about the prognostic impact of MSI1 expres-
sion in glioma; an unfavorable prognostic value 
for GBM, no effect for AA, and a favorable prog-
nostic value for AO_O patients. Consistent with the 
results from the multivariate Cox PH analysis, MSI1 
expression as a continuous variable has a significant 
unfavorable prognostic value in the univariate model 
for GBM [Log (HR) = 1.23, R2 = 5.2%, P = 0.02], 
 significant favorable prognostic value for AO_O 
[Log (HR) = −2.83, R2 = 19.2%, P = 0.002], and a 
lack of prognosis value for AA [Log (HR) = 0.21, 
R2 = 0.4%, P = 0.65]. We further explored if patient’s 
survival can be distinguished by dichotomizing based 
on a biologically relevant threshold of MSI1 expres-
sion in gliomas. We set the threshold at an overall 
median of 0.0012 in the raw (absolute ratio of MSI1 
to ACTB) data from all 194 gliomas, and analyzed 
the hazard ratio (HR) and the survival variation by 
Kaplan-Meier survival curves. As shown in Figure 2, 
in contrast to the results from treating MSI1 expres-
sion as a log-scaled continuous variable, dichoto-
mizing raw MSI1 expression ratios failed to separate 
GBM patients with a significant difference in sur-
vival. In agreement with the data in log-scale as a 
continuous variable, higher MSI1 expression showed 
an unfavorable prognostic value with HR = 1.3, 95% 
CI = (0.9, 2.0).
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Figure 2. Opposing effect of MSI1 in prognosis for gBM and oligodendroglia tumors. Upper panel shows Kaplan-Meier survival curves for gBM, AA, and 
AO_O based on absolute ratio of MSI1 to ACTB dichotomized at the overall median of 0.0012 for all 194 gliomas. Bottom panel shows log scaled MSI1 
univariate models for gBM, AA and AO_O.

Dichotomizing raw MSI1 expression ratios was able 
to separate AO_O patients with a significant  difference 
in survival time (P = 0.0045) and showed a favorable 
prognostic value with HR = 0.3, 95% CI = (0.1, 0.7). 
The effect appears to be independent of AO and O his-
tology, as the distribution of these two groups is not 
skewed with MSI1 expression. In agreement with non-
significant positive prognosis value of MSI1 expres-
sion as a continuous variable, dichotomized MSI1 
variable in AA also showed a non- significant positive 
effect on prognosis (P = 0.11) with HR = 0.6, 95% 
CI = (0.3, 1.2).

Different molecular signatures  
in gBM, AA, and AO_O based on  
gene expression correlation analyses
Using a Spearman rank correlation test, we analyzed 
the pair-wise correlation on gene expressions in differ-
ent glioma types graded based on histology and sur-
vival rate: 4 for GBM, 3 for AA, 2 for AO, and 1 for O. 
As shown in Table 5, among the 5 stem cell associated 
genes, there is a lack of significant correlation in GBM. 
A significant positive correlation between BMI1–
ABCG2 (R = 0.35, P = 0.013) and an unfavorable cor-
relation between MSI1–MELK (R = −0.36, P = 0.011) 
was seen in AA. The  BMI1–ABCG2 positive correla-
tion is greater in AO_O (R = 0.50, P = 0.0005), but the 
other genes lack a significant correlation in AO_O.

We further analyzed the correlation between the 
stem cell associated genes and the 8 previously 

studied cancer pathway associated genes. As 
shown in Table 5, three stem cell associated genes 
(ABCG2, BMI1, and MELK) are positively correlated 
with PAX6 or PTEN in GBM, AA and AO_O, which 
have been shown to have a decreased expression in 
GBM compared to AA or surrounding normal tis-
sues5 and play tumor suppression functions in GBM-
derived cell lines.24–27 There is a significant positive 
correlation between the pro-angiogenic gene VEGFA 
and the expression of different stem cell associated 
genes in different tumor grades; PROM1–VEGFA 
in GBM (R = 0.46, P , 0.0001), MSI1–VEGFA 
in AA (R = 0.36, P = 0.0117); MELK–VEGFA in 
AO_O (R = 0.39, P = 0.0074). There is also a sig-
nificant positive correlation between ABCG2–PAX6 
and ABCG2–PTEN across all glioma histologies. 
VEGFA expression is also significantly positively 
correlated with PAX6 (R = 0.48, P = 0.0008) and 
PTEN (R = 0.42, P = 0.004) in AO_O, but not seen 
in AA and at a reduced level in GBM.

In GBM, there is a general lack of significant cor-
relation between stem cell associated genes and those 
directly in control of signaling pathways related to 
tumor aggressiveness, such as CDK4, EGFR, MMP2, 
and IGFBP2, all were shown to have an increased 
expression in GBM compared to AA or surrounding 
normal tissues.5,6 In contrast, there is a strong signifi-
cant positive correlation between pro-proliferation 
gene CDK4 and several stem cell associated genes 
(ABCG2, BMI1, and MELK) in AA and AO_O. MSI1 
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expression has a significant positive correlation with 
EGFR (R = 0.59, P , 0.0001) and VEGFA (R = 0.36, 
P = 0.012) in AA. In AO_O, MSI1 is also positively 
correlated with EGFR (R = 0.36, P = 0.0141), and 
MMP2 (R = 0.43, P = 0.0034), but not with VEGFA.

In agreement with results of an independent study 
on gene expressions in AA and GBM,6 there are sig-
nificant positive correlations for PAX6–PTEN in either 
combined (R = 0.53, P < 0.0001) or separate glioma 
grades with R = 0.52 (P , 0.0001) in GBM and 
R = 0.51 (P , 0.0001) in AA. The negative correla-
tions between PAX6–IGFBP2 (R = −0.35, P = 0.0004) 
and PTEN–IGFBP2 (R = −0.43, P , 0.0001) occur 
only in GBM, while a positive correlation between 
MMP2–IGFBP2 occurs in both GBM and AA, con-
sistent with IGFBP2 up-regulation of MMP2 expres-
sion28 and PAX6 and PTEN suppression of malignant 
behaviors of glioma cells.24,29 Apart from the above 
indicated gene expression correlations in AA and 
GBM, positive correlations between PAX6–VEGFA 
(R = 0.48, P = 0.0008) and PAX6–RPS9 (R = 0.60, 
P = 0.0002) are seen in AO_O, and specific correla-
tions between PTEN–VEGFA (R = 0.42, P = 0.004) 
and PTEN–EGFR (R = 0.50, P = 0.0004) occur only 
in AO_O.

Overall data from gene correlation analyses 
revealed different molecular signatures in GBM, AA, 
and AO_O, which support above analysis of the prog-
nostic effects of these gene expressions separately in 
each of these tumor types.

Discussion
This is a study of prognosis based on multiple gene 
expression information in the tumor specimens for 
histology classified glioma patients without dis-
criminating their difference on treatments received, 
because the outlook for patients with malignant 
gliomas has improved very little since the first ran-
domized prospective clinical trials for malignant 
astrocytomas published in 1978.30,31 Only a mod-
est 2.5 month median survival increase has been 
achieved by adding concomitant temozolamide 
to radiotherapy after surgery according to a report 
published in 2005.32 Our endeavor in modeling 
glioma prognosis follows the principle of generat-
ing reliable models by satisfying the statistical crite-
rion for the ratio between the number of events and 
variables. Standardized gene quantification ensures 

data comparability,7 thereby allowing combination 
of different cohort data to from a large training set 
for prognosis study. We selected candidate genes for 
improvement of R2 of the prognosis model, based on 
their individual prognostic value in univariate mod-
els on pilot sets of gliomas from published studies, 
as well as their functional roles in tumor suppres-
sion and progression. Our evidence-based selection 
of genes for modeling prognosis has produced sta-
tistically significant prognosis models for AA and 
oligodendroglial tumors.

gene expression information in relation  
to OS of glioblastoma multiforme
In this prognosis study, in order to achieve a 
large sample size, we combined GBM samples 
from patients operated between 1990–1997 from 
one institute (MDACC) and between 2003–2007 
from three institutes (MDACC, UAMS, and UCI), 
regardless of whether patients were subjected 
to intensive or less intensive treatments. GBM 
patients, especially the recurrent ones, have been 
subjected to different concurrent chemo/radiation 
clinical trials over the last 40 years without much 
improvement.30–32 Based on result of this and our 
prior studies on glioma prognosis, the overall mul-
tivariate prognosis model for GBM with 13 gene 
expressions and 2 clinical variables lacks the power 
to explain a significant portion of variation on OS. 
This is unlikely due to sample size issue, given the 
analysis was carried out based on 100 tumors and 
92 events.

Although most of the molecular or clinical vari-
ables have shown prognostic values in univariate Cox 
PH models for a mixed glioma set in our prior studies, 
their prognostic values were lost when adjusted for 
GBM in this study. It indicates that GBM diagnosis 
is in itself a strong prognosis factor, thus genes func-
tionally associated with GBM diagnosis hallmarks 
(high proliferation index, anaplastic, micro-vascular 
amplification and/or necrosis) lack independent prog-
nosis values for GBM. Although in general we failed 
to identify molecular markers for prognosis of GBM, 
we have identified the MSI1 gene expression as an 
unfavorable prognostic factor for GBM. Its effect 
in prognosis was shown by treating it as continuous 
variable, as we failed to find a cut point for MSI1 

http://www.la-press.com


Zhou et al

166 Biomarker Insights 2010:5

expression to dichotomize GBM with a significant 
difference on OS.

gene expression information in relation  
to OS of anaplastic astrocytomas
The study of prognosis for AA has been challenged by 
a lower incidence (7.5% tumors of neuroepithelial tis-
sue) and a longer survival (2 yrs at 44.0%) compared 
to GBM. AA is often combined with GBM to increase 
sample size similar to two of our previous prognosis 
studies.5,6 This study provides for the first time a mul-
tivariate prognosis model for AA, with main effects 
from 13 gene expressions (in log scale) and 2 clinical 
variables, to explain 45.2% of the survival variation 
with statistical significance. In contrast to GBM and 
AO_O, recurrence at operation was found to be a sig-
nificant unfavorable prognostic factor for AA, inde-
pendent of the 13 gene expression variables included 
in the multivariable model.

By modeling prognosis in the multivariable model, 
we identified CDK4 expression to have an indepen-
dent significant unfavorable prognosis value for AA, 
which is consistent with its function in promoting 
cancer cell proliferation. The other gene with signifi-
cant prognostic value for AA is MMP2, the matrix 
metallopeptidase gene overexpressed in glioma and 
functions in promoting glioma cell invasion.33–35 
The data from this study show for the first time that 
MMP2 expression is an independent significant 
favorable prognostic factor for AA. Consistent with 
the idea that angiogenesis drives tumor progression, 
VEGFA expression has an unfavorable prognostic 
effect in an univariable model for AA, but not in 
multivariate models, suggesting VEGFA prognostic 
function is confounded by other prognostic factors 
in the model.

gene expression information in relation 
to OS of oligodendraglial tumors
The same issues that challenge AA prognosis apply 
to modeling the prognosis of oligodendroglial tumors, 
which comprise about 8.8% of the overall tumors 
of neuroepithelial tissue with patient outcomes bet-
ter than astrocytic gliomas of the same WHO grade. 
We included mainly those patients operated during 
1987–1997 to ensure 50% cases with mature survival 
information. Based on current follow-up information 

with the 13 genes and 2 clinical variables, we gener-
ated a prognosis model that explains 62.6% of sur-
vival variation with statistical significance based on a 
likelihood ratio test (P = 0.0076). The main contribu-
tions come from the 8 cancer pathway related genes 
that markedly improve the model based on 2 clini-
cal variables (R2 = 5.3%, P = 0.299) to a model with 
R2 = 57.6% (P = 0.0016). IGFBP2 expression has an 
independent unfavorable prognostic value for AO_O. 
There are multiple pairwise correlations among the 
remaining 7 genes in AO_O, which probably explains 
the lack of individual significance but an overall 
improvement of the model. Based on results from 
univariate analysis, MMP2 expression has a favor-
able effect for prognosis of AO_O, as seen in AA. 
Different from that in AA or GBM and in contrast to 
its usual oncogenic role, EGFR has a favorable prog-
nostic effect in AO_O. Although the P values show a 
lack of significance, the negative log (HR) values for 
MMP2 and EGFR are consistent with their favorable 
prognostic effect in AO_O.

Adding the 5 stem cell associated gene expres-
sion variables also greatly improved the model 
R2 of 5.3% with the 2 clinical variable to a R2 of 
35.6% (P = 0.0071). This improvement appar-
ently comes from independent prognostic values 
of MSI1 (favorable) and MELK (unfavorable). The 
other three stem cell associated genes have prog-
nostic values in univariate models of AO_O, but 
are not significant in the multivariate model, which 
may be explained by their expression correlations, 
such as the one between ABCG2–BMI1 (R = 50%, 
P , 0.001).

Both MELK and IGFBP2 have been shown to pro-
mote cell proliferation14 and invasion28 in glioma and 
thus their unfavorable prognostic values are related to 
differential activation of these two pathways in AO_O. 
Our finding of a favorable prognosis effect of MSI1 
expression in oligodendroglial tumors is in contrast to 
its unfavorable prognosis effect in GBM. In contrast 
to GBM in which we were unable to dichotomize 
patients based on MSI1 expression, we were able to 
set up a threshold, a median level of MSI1 expression 
in three glioma sets in combination, to dichotomize 
patients with AO_O to show a significant difference 
on OS, regardless of tumor grades (AO or O). This 
data supports our combining of AO and O into a sin-
gle set in a prognosis study.
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Association of prognostic effects  
of stem cell associated genes  
with glioma histology
Results from univariate Cox PH analysis in this study 
revealed interesting opposing effects from expression 
of the stem cell associated genes to the prognosis of 
glioma with different histopathology characteristics. 
The expressions of ABCG2, MELK, and the neural 
stem/progenitor cell-associated PAX6 showed unfa-
vorable prognostic effects for AO_O, but favorable 
prognostic effect for AA and GBM. The expressions 
of other three stem cell associated genes (MSI1, BMI1, 
and PROM1) showed a favorable prognostic effect 
for AO_O, but MSI1 and BMI1 are unfavorable fac-
tors for GBM. In contrast to results on CD133 immu-
nostaining and microarray expression data showing 
that PROM1 is an unfavorable prognostic factor for 
patients with GBM and oligodendroglial tumors36–41 
our data from real-time qRT-PCR quantification in this 
study set revealed PROM1 as a favorable prognostic 
factor for AO_O, lack of prognostic value for GBM, 
and unfavorable for AA. This discrepancy needs to 
be further investigated for difference in relation to the 
detection methods as well as source samples.

concerns of sample size for AA  
and AO_O prognostic models
This study generated statistically significant progno-
sis models that are able to explain the variations on 
OS for 45% and 63% of patients with AA and AO_O. 
However, based on the statistical criterion for prog-
nosis modeling, approximately 10 patient outcomes 
per variable,2 the model 4 for AA and AO_O with 49 
and 34 patients, respectively, needs to be reassessed 
in a model with proportionate sample size. Although 
the P values from the likelihood ratio test showed 
significance for both models, there is a need for vali-
dating the AA and AO_O prognosis models using an 
independent test set with increase of sample size.
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