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Radiative transport in the delta-P1 approximation for semi-
infinite turbid media

InSeok Seo, Carole K. Hayakawa, and Vasan Venugopalana

Department of Chemical Engineering and Materials Science, University of California, Irvine,
Irvine, California 92697-2575 and Laser Microbeam and Medical Program, Beckman Laser
Institute and Medical Clinic, 1002 Health Sciences Rd., University of California, Irvine, Irvine,
California 92612-3010

Abstract
We have developed an analytic solution for spatially resolved diffuse reflectance within the δ-P1
approximation to the radiative transport equation for a semi-infinite homogeneous turbid medium.
We evaluate the performance of this solution by comparing its predictions with those provided by
Monte Carlo simulations and the standard diffusion approximation. We demonstrate that the δ-P1
approximation provides accurate estimates for spatially resolved diffuse reflectance in both low
and high scattering media. We also develop a multi-stage nonlinear optimization algorithm in
which the radiative transport estimates provided by the δ-P1 approximation are used to recover the

optical absorption (μa), reduced scattering ( ), and single-scattering asymmetry coefficients (g1)
of liquid and solid phantoms from experimental measurements of spatially resolved diffuse

reflectance. Specifically, the δ-P1 approximation can be used to recover μa, , and g1 with errors
within ±22%, ±18%, and ±17%, respectively, for both intralipid-based and siloxane-based tissue

phantoms. These phantoms span the optical property range . Using these same
measurements, application of the standard diffusion approximation resulted in the recovery of μa

and  with errors of ±29% and ±25%, respectively. Collectively, these results demonstrate that
the δ-P1 approximation provides accurate radiative transport estimates that can be used to
determine accurately the optical properties of biological tissues, particularly in spectral regions

where tissue may display moderate/low ratios of reduced scattering to absorption ( ).

I. INTRODUCTION
The radiative transport equation (RTE) provides the basis for particle-based radiative
transport models. The RTE is an integro-differential equation that is amenable to complete
analytic solution in only a small number of cases. Moreover, even though a Green’s function
for the RTE has been recently developed, the computational costs required for its evaluation,
especially for large single-scattering asymmetry coefficients, are substantial.1 These
considerations have given rise to the prevalent use of the standard diffusion approximation
(SDA) to provide an approximate solution to the RTE. The SDA has been a useful tool to
investigate light transport within turbid media due to its simple analytic form and validity in
highly scattering media. The SDA results from the substitution of first-order spherical
harmonic (Legendre polynomial) expansions to approximate the radiance and phase function
within the RTE. The use of these low-order expansions prevents the SDA from providing
accurate radiative transport estimates at locations proximal to collimated sources and
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interfaces of significant refractive index mismatch, as well as in media where the reduced

scattering coefficient ( ) is only moderately dominant over the absorption coefficient (μa)

i.e., for .2–4 This means that for spatially resolved reflectance measurements
made even in highly scattering media, predictions provided by the SDA are unreliable at

source-detector (s-d) separations ρ comparable to a transport mean free path .
Practically, these limits restrict the use of the SDA to measurements made on biological
tissues in the spectral range of λ = 650–1100 nm in which soft tissues typically possess

.5

The development of improved radiative transport models that are amenable to rapid
computation would enable the quantitative analysis of optical signals acquired outside the λ
= 650–1100 nm spectral region as well as from superficial tissue volumes (e.g., epithelial
tissues) using small s-d separations. Moreover, because light signals acquired at small s-d

separations and/or low to moderate transport albedo  have not undergone
sufficient scattering to reach the diffusive regime,6 there is the opportunity to use these
signals to recover characteristics of the single-scattering phase function of the turbid
medium.7–10 Efforts have been undertaken by several groups to develop models for tissue
reflectance that implement higher-order PN and δ-PN approximations in both infinite and
semi-infinite geometries.11–22 The effort most relevant to the prediction of spatially resolved
diffuse reflectance from a semi-infinite turbid medium is that of Hull and Foster who
developed the P3 approximation for this case.17 Their implementation provides for the

accurate recovery μa and  from spatially resolved reflectance measurements made at small

s-d separations for .17,19 However, assumptions taken with respect to both
first- and second-order similarity relations prevent their implementation to recover
characteristics of the single-scattering phase function.

Also of interest is the development of so-called δ-PN (δ-Eddington)
approximations.11,12,15,16,18,20,23 These approximations add a Dirac-δ function to the Nth
order Legendre polynomial expansion used to approximate the radiance and single-
scattering phase functions. This improves the ability to model collimated sources and highly
forward scattering media such as biological tissues. In biomedical optics, δ-PN
approximations were first investigated independently by Prahl11 and by Star12 with a
primary interest in providing for improved predictions of optical dosimetry. More recently
several groups have investigated the use of δ-P1 and δ-P3 approximations to predict the
diffuse reflectance of homogeneous and layered systems when irradiated with a planar (one-
dimensional) optical source.16,18,20 Collectively, these studies have demonstrated that δ-PN
approximations provide substantial improvements in accuracy when compared to their PN
approximation counterpart. This fact, however, has not yet been exploited for prediction of
spatially resolved diffuse reflectance from semi-infinite turbid media.

Our interest here is the development and analysis of the δ-P1 approximation to provide
improved estimates for spatially resolved reflectance from semi-infinite turbid media,
especially at small s-d separations and for media with moderate or low albedo. While other
analytical methods17,24 (e.g., P3 approximation, telegrapher’s equations) have been
examined specifically for this purpose, their use for the recovery of optical properties either
remain untested (telegrapher’s equation) or has been implemented in a fashion that removes
the capacity to predict characteristics of the single scattering phase function. Computational
approaches25,26 [e.g., scaled or “white” Monte Carlo (MC) methods] have also been
developed to recover successfully optical properties from spatially resolved reflectance
measurements. However, a set of Monte Carlo simulations covering the relevant range of
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optical properties must be run and stored in advance. Moreover, different simulation sets
must be run for different single-scattering phase functions of interest.

The objectives of this paper are twofold. First, we formulate a solution within the δ-P1
approximation to predict the spatially resolved diffuse reflectance (SRDR) with “pencil”
beam irradiation and compare the solution to predictions given by MC simulations and the
SDA. Second, we evaluate the performance of the δ-P1 solution to extract the optical

absorption (μa), reduced scattering ( ), and single-scattering asymmetry (g1) coefficients
from experimental measurements of SRDR in tissue phantoms. The analytical formulation
permits a framework in which the radiative transport estimates can be computed rapidly, and
configured easily to accommodate any single-scattering phase function of interest.

II. THEORY AND MODELING
II.A. Governing equations

We begin with the RTE that governs the spatial/angular distribution of the photon radiance
L(r, ω̂) within turbid media

(1)

where

ω̂′, ω̂ = unit vectors representing the direction of light propagation before and after
scattering, respectively,

L(r, ω̂) = rate of photon arrival at position r in direction ω̂ [W m−2 sr−1],

S(r, ω̂) = volumetric source [W m−3 sr−1],

p(ω̂′ → ω̂) = single-scattering phase function,

μt = total attenuation coefficient (=μa + μs) [m−1],

μa = absorption coefficient [m−1], and

μs = scattering coefficient [m−1].

The derivation of the δ-P1 approximation is identical to that of the SDA except that a Dirac-
δ function is added to both the radiance and phase function approximations in order to
decompose the light field into ballistic (unscattered) and diffuse components. The
approximate form of the single-scattering phase function used in the δ-P1 approximation is

(2)

where ω̂0 is the propagation direction of the collimated light, f is the fraction of the
collimated light that is scattered directly forward, and pSDA represents the phase function
employed in the SDA

(3)

where g* is a single-scattering asymmetry coefficient used within the δ-P1 formulation.
Without the collimated term (f = 0), Eq. (2) returns to the phase function used in the SDA.
The δ-P1 phase function has two parameters f and g* that are chosen to match the first and
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second moments of the actual single-scattering phase function of the medium to be modeled.
In this study, we choose these parameters to best match the Henyey–Greenstein (H–G)
phase function, because it has been shown experimentally to be a reasonable approximation
to biological tissues.27 Alternatively, other phase functions such as Rayleigh–Gans and Mie
scattering that have been investigated to model successfully light transport in biological
tissues can be employed easily within the δ-P1 approximation.28–30 Equating the first and
second moments of the δ-P1 phase function to the H–G phase function provides the
following expressions for f and g*:23

(4)

Substitution of Eqs. (2) and (3) into Eq. (1) results in a RTE with transformed parameters10

(5)

where  and . Note that this modified RTE is parameterized by (μa,
,g*) and not by (μa, μs, g1). However, the addition of Dirac-δ functions to both phase

function and radiance approximations introduces an additional degree of freedom that allows
use of a second-order similarity relation. Following the approach of Bevilacqua and
Depeursinge,26 we define an additional optical parameter γ as

(6)

where the second equality shown is valid only when considering the H–G phase function.
The combination of Eq. (6) with the relationships shown in Eq. (4) leads to the second-order
similarity relation

(7)

Thus (μa, , γ) is chosen as the parameter set for resolution of the inverse problem
described later in Sec. III.

In a manner similar to the phase function, the radiance approximation is also decomposed
into diffuse [Ld(r, ω̂)] and ballistic [Lb(r, ω̂)] components:

(8)

The diffuse radiance is approximated as

(9)

where ϕd(r) is the diffuse fluence rate and j(r) is the radiant flux. The ballistic (unscattered)
radiance is given as
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(10)

where E(r) is the irradiance distribution of the light source. This decomposition of the
radiance into ballistic and diffuse components enables the δ-P1 approximation to provide

estimates that are in agreement with the SDA when  and the Beer–Lambert Law

when .15,20

Substitution of Eqs. (8)–(10) into the modified RTE [Eq. (5)] provides the governing
equations in the δ-P1 approximation for semi-infinite turbid media:31

(11)

and

(12)

where μeff = (3μaμtr)1/2 = (μa/D)1/2, D = 1/3μtr, , and ẑ is the unit normal vector
directed inward from the boundary. The collimated source is assumed to be directed
perpendicularly to the surface as shown in Fig. 1 and expressed by the source function

(13)

where P0 is the power of the source, and Rs is specular reflectance due to refractive index
mismatch. This functional form represents a pencil beam located at ρ= 0 that is attenuated
exponentially at the rate  along the z axis as required of collimated sources within the δ-P1
approximation.

II.B. Boundary conditions
To solve the governing equations, two boundary conditions are required. We adopt the
approach of Haskell and co-workers and implement an extrapolated boundary condition that
satisfies a zero fluence rate condition at an extrapolated boundary located at distance zb
outside the medium i.e., ϕd(ρ, z = −zb) = 0.32 The value of zb is calculated as

(14)

where A = (1 + R1)/(1 − R1) and R1 is the first moment of the Fresnel reflection coefficient
for unpolarized light. Figure 2 depicts the configuration of the source and image for a point
source embedded at an arbitrary location z′ within the semi-infinite body. The image source
is placed in the air at a distance z′ from the surface of the image medium which islocated at
z = −2zb. The second boundary condition requires the diffuse light field to vanish for regions
far away from the source, i.e.,

(15)
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II.C. Solution for pencil beam irradiation
The Green’s function of the Helmholtz equation Eq. (11), at a point (ρ, z) due to a point
source located at (0, z′) in an unbounded medium in cylindrical coordinates is

(16)

where ρ1 = [ρ2 + (z − z′)2]1/2. To formulate the solution for a cylindrically axisymmetric
semi-infinite medium using this Green’s function that also satisfies the extrapolated
boundary condition, we place a point source at (0, z′) and an image point source at (0, −2zb
− z′). This results in the following Green’s function for a point source in a semi-infinite
medium:

(17)

where ρ2 = [ρ2 + (z + z′+ 2zb)2]1/2.

To get the desired solution in the δ-P1 approximation we must perform a linear
superposition of the distributed source term [Eq. (13)] and the semi-infinite Green’s function
[Eq. (17)]. This provides the following solution for the diffuse fluence rate within the δ-P1
approximation for a semi-infinite turbid medium:

(18)

where . Numerical estimation of the semi-infinite integration in Eq. (18) is
executed via Gaussian quadrature employing a Laguerre polynomial weighting function
(MAT-LAB, Mathworks Inc., Natick, MA).

II.D. Spatially resolved diffuse reflectance (SRDR)
The fluence rate expression [Eq. (18)] is obtained by the application of an extrapolated
boundary condition. This extrapolated boundary condition is an approximation to the
Marshak (or partial-current) boundary condition that conserves the diffuse radiance at the
tissue-air interface. This is expressed by33

(19)

where rF(−ω̂ · ẑ) is the Fresnel reflection coefficient for un-polarized light. This equation
equates the amount of diffuse light that travels upward (ω̂ · ẑ < 0) and gets internally
reflected at the interface with the amount of diffuse light traveling downward (ω̂ · ẑ ≥ 0)
from the interface. Substitution of the diffuse radiance approximation and removal of the
radiant flux [j(r)] term using Eq. (12) gives

(20)

This leads to the following expression for the diffuse reflectance within δ-P1
approximation:20
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(21)

II.E. Monte Carlo simulations
To assess the quality of the predictions provided by the δ-P1 approximation, we compare
these results to predictions provided by Monte Carlo (MC) simulations. The MC simulation
was written “in-house” and provides an exact solution to the RTE within statistical
uncertainty. The code uses discrete absorption weighting and a terminal estimator within a
cylindrical axisymmetric semi-infinite geometry. We performed MC simulations for pencil
beam illumination to provide the SRDR over the range ρ ∈ [0, 15] mm at 0.1 mm intervals.
The number of photons launched for each run is dependent on the optical properties of the
media and chosen in the range of 107–1010 to achieve a relative standard deviation in the
predicted reflectance of <0.1% at all s-d separations. The H–G phase function was used as
the single-scattering phase function and photons that arrive at the tissue surface obey the
Fresnel relations. All exiting photons contribute to the tally for the reflectance at the
appropriate s-d separation ρ.

II.F. Standard diffusion approximation
We also assess the quality of the δ-P1 approximation predictions relative to the standard
diffusion approximation (SDA). There are various options for the calculation of spatially
resolved reflectance within the SDA. We adopt the approach developed by Kienle and
Patterson4,34 as it represents the culmination of the examination of this problem by several
groups,3,32,35–37 and has been shown to provide the most accurate expressions for the
spatially resolved reflectance within the SDA.4,34 Moreover, both the solutions developed
by Kienle and Patterson as well as the proposed δ-P1 model utilize extrapolated boundary
conditions and examine the case of detection over the outward-directed hemisphere. Kienle
and Patterson give the following expression for the SRDR derived using an extrapolated
boundary condition for a turbid medium with refractive index n = 1.4:

(22)

where ϕd is fluence rate and j is radiant flux across the boundary. The fluence and radiant
flux terms within the SDA are calculated from

(23)

(24)

where  and .

III. ALGORITHM DEVELOPMENT FOR RECOVERY OF OPTICAL
PROPERTIES

Following an approach similar to that proposed by Hayakawa and co-workers,10 we
designed and tested a three-stage optimization algorithm to extract optical properties over a
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broad range of ( ) from SRDR measurements. In this algorithm we first estimate l* of
the turbid medium from the SRDR measurement and use this to identify s-d positions that
are sensitive to the specific optical properties we wish to recover. For instance, the photons
collected at (ρ/l*) ≫ 1 have experienced multiple scattering events and, for a highly
scattering medium, the slope of the SRDR on a semilog plot is characterized by the effective
attenuation coefficient, μeff = [3μaμtr]1/2. Thus SRDR data in this range of s-d separation

contain information related to μa and . By contrast, the SRDR data at (&rho;/l*) ≲ 2 are
sensitive to g1 and g2. These factors influenced the design and testing of a three-stage
algorithm depicted in Fig. 3.

Each stage of the algorithm is performed by executing a constrained Levenberg–Marquardt
(LM) algorithm (MAT-LAB, Mathworks Inc., Natick, MA) that seeks to minimize a sum of
squares, χ2, between the measurements and the predictions of the SRDR given by the δ-P1
approximation. Expressed mathematically this algorithm attempts to minimize

(25)

where Im(ri) is the diffuse reflectance measured at location ρ= ri, σi is the standard deviation
of the measurement at ρ = ri, Ip is the reflectance as predicted by Eq. (21) with optimizing

parameters μa, , and γ, and M is the number of source-detector locations in the
measurement set. Estimates for g1 are then obtained from Eq. (6). To ensure full sampling of
the parameter space and avoid convergence to a local minimum, ten trials of the LM
algorithm are executed at each stage using initial guesses of the optical properties selected
randomly from ranges relevant to biological tissues: μa ∈ [10−4, 10−1] mm−1,

, and g1 ∈ [0.6, 0.99]. The range of g1 is chosen because most biological
tissues are highly forward scattering. In stage 3, we expand the range of random sampling to
g1 ∈ [0.0, 0.99]. Of the converged parameters for ten trials, the recovered parameter set that
provides the lowest χ2 value is selected as a best fit.

In stage 1 of the algorithm, the entire range of measured data is used to provide an initial
estimate of the transport mean free path l*. Although estimates for all three parameters are
obtained from minimizing χ2, only the l* calculation is utilized to identify the range of s-d
separations to be processed in the second stage of the algorithm.

In stage 2, we consider only SRDR measurements acquired at s-d separations ρ>0.5l* to

determine μa and . The removal of SRDR data at ρ<0.5l* is due to the fact that the SRDR
estimates provided by the δ-P1 approximation do not display the proper sensitivity to g1 in
this region. This will be demonstrated in the Results section (V, Fig. 6). Of the recovered

values, μa, , and γ, only μa, , and the newly calculated l* are saved as final optical
parameters. The new estimate of l* is then used in the final stage of the algorithm to identify
the range of data most useful for the recovery of g1.

Stage 3 is a single parameter optimization step. We fix the two parameters μa and  at the
values obtained in stage 2, and run the LM algorithm to find γ. The range of SRDR
measurements supplied to the optimization algorithm is ρ > 1.5l*. This range is selected
since the simulation results in Fig. 6 demonstrated that the δ-P1 approximation provides
accurate radiative transport estimates in this region and display the proper sensitivity to g1.
Since γ is a combination g1 and g2, we obtain g1 from Eq. (6) with the implicit assumption
that the medium is well characterized by the H–G phase function.
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IV. EXPERIMENT MATERIALS AND METHODS
IV.A. Tissue phantom preparation

To test the proposed model and the inversion algorithm above, we developed two optical
phantoms systems based on deionized water and polydimethylsiloxane (PDMS). The water-
based optical phantoms utilize Intralipid (B. Brown, Irvine, CA) for optical scattering and
Nigrosin (Sigma-Aldrich, St. Louis, MO) for optical absorption. The reduced scattering

coefficient ( ) and asymmetry coefficient (g1) were estimated using results from van
Staveren and co-workers.38 The absorption properties of the Nigrosin were determined using
standard spectrophotometer measurements of multiple samples of Nigrosin dissolved in
deionized water at various concentrations. Thus the preparation of a liquid phantom
involved combining measured amounts of Intralipid and Nigrosin stock solutions with an
appropriate volume of deionized water to attain the desired absorption and scattering
properties. The phantoms were prepared to fill a cylindrical container (80 mm diameter ×
100 mm height) in which they were measured.

PDMS was chosen as the base material for the solid phantoms as it possesses optical
transparency, a refractive index similar to biological tissue (n = 1.4), and no endogenous
fluorescence in the spectral range of interest. To introduce optical scattering and absorption
in the PDMS, we used aluminum oxide (Al2O3, Sigma-Aldrich) and alcohol soluble
Nigrosin, respectively. Aluminum oxide is used widely as a source of optical scattering due
to its stability in PDMS and well-defined particle size distribution.39 Additionally, we chose
aluminum oxide because it provides the opportunity to fabricate a tissue-like phantom with
an asymmetry coefficient (g1) similar to biological tissues (~0.9) and markedly higher than
that of Intralipid (~0.7). The Al2O3 particles were sent to Beckman Coulter Inc. for particle
size analysis. From the particle size distribution, we determined the scattering coefficient
and asymmetry parameter using Mie theory and the known refractive indices of the PDMS
and Al2O3 particles. Precalculated amounts of PDMS, methanol-dissolved Nigrosin, and
Al2O3 were thoroughly combined using a planetary mixer (AR-250, Thinky Corp., Japan)
and poured into a mold for a curing process with the addition of a curing agent. The
phantom after the curing process was cylindrical in shape with a 75 mm diameter and 40
mm height.

Tables I and II provide the optical properties of the four liquid and four solid phantoms at
the wavelength used for the measurements, λ= 632.8 nm. These tables also specify the
range of s-d separations provided to the inversion algorithm for recovery of optical
properties.

IV.B. Spatially resolved diffuse reflectance measurements
A general schematic of the measurement setup is shown in Fig. 4. The SRDR measurements
were obtained by a charge coupled device (CCD) camera mounted with its optical axis
normal to the phantom surface. A He–Ne laser emitting at λ= 632.8 nm was coupled to a
200-μm-diam multimode optical fiber through a collimating lens. A neutral density filter is
placed between the laser and the fiber to attenuate the intensity of the light source delivered
to the sample. To ensure that specular reflection was not captured, a rectangular-shaped fiber
optic illuminator (30 mm long ×4 mm wide×5 mm high) was designed and fabricated
(Fiberguide, Stirling, NJ) to deliver light to the sample and block specular reflection from
reaching the camera. The illuminator was composed of a right-angle microprism 0.5 mm in
size coupled to an optical fiber with 0.12 numerical aperture. The prism was used for
deflecting light from the fiber for perpendicular illumination of the medium. The use of this
illuminator enabled the acquisition of quality images at locations proximal to laser source
without saturation of the CCD and enabled the utilization of the full dynamic range of the

Seo et al. Page 9

Med Phys. Author manuscript; available in PMC 2012 November 29.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



camera. This is especially important to verify the accuracy of δ-P1 approximation, because
measurements at s-d separations comparable to a l* display significant sensitivity to the
moments of single-scattering phase function. A more detailed description of the illuminator
performance can be found in our previous work using this system.40

The reflectance images were obtained by placing the phantom surface 18 cm below a 35 mm
photographic lens at f/2.8 (Nikon, Japan) coupled to a thermoelectrically cooled 16 bit CCD
camera (Photometrics, Tucson, AZ). A square area of the phantom surface 3.7 cm×3.7 cm in
dimension was imaged onto the CCD chip with spatial resolution of ≈70 μm. Fifteen images
were acquired for each sample and the average and standard deviation of the pixel intensity
as a function of radial position away from the source was acquired to obtain the SRDR
measurements.

The raw measurements represent a convolution of the true image and the instrument
response of the optical signal. Thus to extract the true SRDR data we must remove the effect
of the instrument response from the raw images. To convert the measured intensity to an
absolute SRDR measurement, we performed a calibration procedure described by Pham and
co-workers41 which was also utilized in our previous study.40 This procedure consists of
two steps. First, images of the diffuse reflectance are acquired from a reference phantom
with known optical properties. These “calibration images” were taken using the same
settings as those used for measurements of the tissue phantoms. The instrument response of
the system is then calculated using the data obtained from the reference phantom and a
prediction of the diffuse reflectance generated by a MC simulation using the optical
properties of the reference phantom. Specifically, the raw image measured by the CCD (IR)
is a convolution of the true image (IT) and the instrument response (IIR), which can be
described as

(26)

When Eq. (26) is Fourier transformed into the spatial frequency domain, the convolution
operation is reduced to a simple multiplication, so that the instrument response can be
determined by the division of the Fourier transform of the raw image intensity by the Fourier
transform of the “true” image intensity as provided by the MC simulation. Using this
instrument response, any measured intensity data can be converted into absolute reflectance
(Rabs) using the following relationship:

(27)

where  and  represent the Fourier and inverse Fourier transform, respectively. The
converted intensity data are then supplied to the δ-P1 inversion algorithm for extraction of
optical properties.

V. RESULTS AND DISCUSSION
V.A. Forward problem results: SRDR predictions

Figure 5 displays the SRDR predictions provided by the δ-P1 approximation, the SDA, and
the MC simulations. A subplot is also shown that provides the percentage error between
both the δ-P1 and standard diffusion approximations relative to the MC simulation results.

The optical properties considered are μa = 0.01/mm, g1 = 0.9, and n = 1.4, with 
and 10 for plots 3(a) and 3(b), respectively. The spatial scale for the source-detector
separation ρ is normalized relative to the transport mean free path l*.
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There are several notable features in these results. First, all methods provide largely
comparable SRDR predictions for (ρ/l*)>3. However, the predictions provided by the SDA
provide a slight (≳ 5%) but distinct offset from the MC results in the region where the SDA
is expected to be accurate (ρ≫ l*). In this same region, the δ-P1 approximation provides

accurate predictions with vanishing relative error for both  and 10.

Second, for , the relative error in the predictions provided by both δ-P1 and SDA

models is a bit larger than those provided for . For  the relative error
provided by both δ-P1 and standard diffusion approximations is <10% for (ρ/l*)>1.

However, for  the relative error provided by the δ-P1 approximation is
consistently <10% only for (ρ/l*)>2. For the SDA, this level of accuracy is consistently
present only for (ρ/l*)>3.

Third, the standard diffusion and δ-P1 approximations underestimate the reflectance
considerably for (ρ/l*) ≲ 0.5 and (ρ/l*)≲0.2, respectively. The reflectance estimates
provided by the δ-P1 approximation are slightly better over all for detector locations as small
as (ρ/l*)= 0.1 and, importantly, provide an SRDR profile with the proper curvature. Finally,
both the δ-P1 and standard diffusion approximations overestimate significantly the
reflectance in a small region of (ρ/l*) ≈ 0.5–1.5. Within this region there is usually a small
interval of s-d separations where the SDA outperforms the δ-P1 model.

Figure 6 displays predictions for the SRDR provided by the standard diffusion and δ-P1

approximations as compared to a MC simulation for a fixed  for two different
values of g1 = 0.9 and 0.5. To highlight the differences, the SRDR is plotted on a linear scale
and the relative error of the SDA and δ-P1 models as compared to the MC results is shown
in the bottom panel. The results show clearly that the SRDR is affected by the value of g1
for (ρ/l*)≲2. Interestingly for (ρ/l*)>0.8, both the δ-P1 and MC results show that a reduction
in g1 from 0.9 to 0.5 results in a decrease in the reflectance. For both g1 = 0.9 and 0.5, the δ-
P1 model provides more accurate reflectance estimates than the SDA for all s-d separations
except (ρ/l*) ≈ 0.4–0.8. Moreover, as expected, the SRDR estimates provided by the SDA
display no sensitivity to g1.

Another important feature in this figure is that MC results for g1 = 0.5 and g1 = 0.9 cross at
(ρ/l*)≃0.8. This is because as the asymmetry coefficient g1 increases, the light distribution
becomes more forward directed near the source, and the intensity of backscattered light
decreases. However, the predictions provided by the δ-P1 model show no such crossing of
the SRDR for these g1 values. This is the principal reason for why data collected at ρ<0.5l*
are excluded from the inversion algorithm for optical property determination.

These results are consistent with the findings of Bevilacqua and Depeursinge who
demonstrated that the influence of g1 and g2 on the SRDR for highly scattering media is
significant for (ρ/l*) ≈ 1 and 0.5< (ρ/l*)<2, respectively, while the effect of higher-order
moment gn influences are important at shorter s-d separations [(ρ/l*)≲0.3].26 The impact of
the characteristics of the single-scattering phase function on the SRDR proximal to the laser
source as well as their impact on the determination of optical properties using the SDA have
been considered by other investigators.26,29,42

V.B. Inverse problem results: Optical property recovery
V.B.1. Liquid optical phantoms—For measurements taken from the liquid phantoms,

the estimated values for μa, , and l* and their associated relative error after the first stage
of the δ-P1 approximation based inversion algorithm are presented in Table III. The optical
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property range of the tested phantoms span  to 6. These results are what would
have been attained using a single-stage inversion procedure using the entire measured data

set. The estimation errors are ±25%, ±23%, and ±21% for μa, , and l*, respectively. The

results from the phantom with the largest scattering  display the greatest μa
error of 25%. This is likely due to the fact that the largest s-d separation used in the
measurement set, ρ = 7 mm, collects photons that have not traveled sufficiently long path
lengths within the sample necessary for the accurate determination of such a low value of

μa. Apart from the  case, the results exhibit increasing estimation error with

decreasing ( ). The relatively large error in the first stage indicates that simultaneous
recovery of the optical parameters in a single stage inversion procedure using the entire
measurements may not be the best strategy. The value of l* is utilized to supply the
appropriate subset of SRDR data to the subsequent stages of the algorithm.

The final recovered values and relative errors of μa, , l*, and g1 recovered by the multi-
stage δ-P1 algorithm are summarized in Table IV. Also included, for easy comparison, are

the results given by stage 1 of the algorithm. The final values for μa,  and l* are obtained
from stage 2 of the algorithm while g1 is obtained from stage 3. These results show that the

multistage inversion procedure based on the δ-P1 approximation recover μa,  and l* with
relative errors of no worse than ±22%, ±17%, and ±15%, respectively. These results exhibit
errors that are typically 3%–5% lower than the results shown in stage 1 and illustrate the
benefit of our multi-staged algorithm. The enhanced precision of l* from stage 2 enabled
recovery of g1 within ±17% error. This modest accuracy in the recovery of g1 is potentially
significant as indicated by a recent study by Charvet and co-workers.43 This study reported
the changes in optical properties of in vivo mouse skin produced by the administration of
topical agents that promote either inflammatory or carcinogenic response without any
obvious change to visual appearance of the skin surface. These measurements revealed
changes in the γ parameter over the wavelength range λ = 480–550 nm that are equivalent
to a 30%–50% reduction in g1.43

To assess the performance of this δ-P1 approximation based inversion procedure, we also
recovered optical properties using SRDR estimates provided by the SDA. For the SDA-

based inversion, the entire range of data is supplied to the algorithm to recover μa,  and l*
in a single stage. The inclusion of reflectance data proximal to the source should not
penalize or otherwise hamper the SDA inversion procedure. In fact an earlier study by
Kienle-and co-workers demonstrated that the exclusion of data points close to the source

results in a poorer recovery of μa and .44 The SDA-based inversion recovered μa, , and
l* with relative errors of ±29%, ±20%, and ±16%, respectively. The optical properties
recovered using the SDA approach are typically worse in accuracy than the values recovered
even after stage 1 of the δ-P1 multi-stage algorithm. On a case by case basis, the final optical
property values recovered by δ-P1-based inversion procedure possess comparable or
substantially improved accuracy as compared to the values recovered using the SDA
approach. Moreover the δ-P1-based approach does a reasonable job in recovering the single-
scattering asymmetry coefficient g1; a capability that an SDA-based inversion lacks.

Figure 7 displays the measured SRDR data for the four tested phantoms along with the δ-P1
and standard diffusion approximation predictions at the recovered set of optical properties.
The δ-P1 predictions better model the curvature of the SRDR measurements proximal to the
source and also provide a better fit to the SRDR data at large s-d separations.
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V.B.2. Solid optical phantoms—We have applied the multi-staged algorithm described

in Sec. III to determine μa,  and g1 from SRDR measurements of the Al2O3 siloxane
phantoms that possess a significantly larger single-scattering asymmetry coefficient (g1 =
0.88) than the Intralipid phantoms (g1 = 0.74). Table V provides the recovered values after
stage 1 while Table VI provides both the stage 1 and final results from the δ-P1 inversion
algorithm as well as the recovered values using the SDA approach. These predictions result
from experimental SRDR measurements on a series of PDMS based phantoms whose

optical property values span  to 4 and are shown in Table II. As in the Intralipid
phantoms, we see that the final results exhibit relative errors 3%–5% lower than the results
obtained in stage 1 and emphasize the benefit of our multi-staged algorithm. Overall, the δ-
P1 approximation based inversion algorithm provided optical property estimates with

relative error no worse than ±17%, ±18%, and ±21% for μa, , and l*, respectively. By
comparison, optical property recovery using the SDA-based inversion resulted in relative

errors of ±28%, ±25%, and ±28% for μa, , and l*, respectively, and are typically worse
than the results obtained even by stage 1 of the δ-P1 inversion approach. Unlike the results
for the Intralipid phantoms, the recovered optical properties in the sample with the highest

scattering  exhibit very small errors even for μa. This is due to the smaller
transport mean free path of the solid phantoms that allowed the photons collected at the
large s-d separations to travel sufficiently large path lengths in the sample and provide
sensitivity to the low value of μa. Similar to the Intralipid-based phantoms, the capacity to
extract optical properties using both the δ-P1 and standard diffusion approximation based

procedures generally degrades as ( ) decreases. Nevertheless, the δ-P1 almost
invariably outperforms the SDA and, in addition, recovers g1 with an error no worse than
±17%.

Figure 8 displays the measured data for the four tested phantoms along with the δ-P1 and
SDA model predictions at the recovered set of optical properties. Again, we see that the δ-P1
approximation generally provides better reflectance predictions, both with the curvature of
the SRDR proximal to the source as well as better congruence with the SRDR data at large
s-d separations.

VI. SUMMARY AND CONCLUSIONS
We have presented governing equations and solution for the spatially resolved diffuse
reflectance from a semi-infinite turbid media within the δ-P1 approximation to the radiative
transport equation. We have shown that the radiative transport predictions provided by the
δ-P1 model are generally more accurate than those provided by the standard diffusion
approximation through comparison with the results of Monte Carlo simulations. This
superior performance is achieved by the addition of a Dirac-δ function to both the radiance
and single-scattering phase function approximations. This consideration results in better
estimation of the spatially resolved reflectance close to light source and for media of low
albedo.

The addition of the Dirac-δ function to both the radiance and single-scattering phase
function approximations provides an extra degree of freedom that allows the radiative
transport predictions to be sensitive to the single-scattering asymmetry coefficient g1. We
have demonstrated that the δ-P1 approximation provides radiative transport estimates that
model accurately the effect of g1 on the spatially resolved diffuse reflectance for (ρ/l*) ≳
0.8.
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The excellent performance of the δ-P1 approximation prompted us to develop a multi-stage

inversion algorithm to recover μa, , and g1 from spatially resolved diffuse reflectance
measurements. These measurements were made on liquid and polymer tissue phantoms that
utilized Intralipid and Al2O3 particles, respectively, for scattering, and Nigrosin for optical

absorption with a wide range of ( ) and varying g1.

For the extraction of optical properties, the δ-P1 model within a multi-staged inversion
algorithm is validated both for liquid and solid phantoms. This algorithm has demonstrated

the recovery of μa,  and l* within ±22%, ±18% and ±21% in liquid and solid phantoms

with . Moreover, the ability of the δ-P1 approximation to provide radiative
transport estimates with sensitivity to g1 enable the recovery of g1 to within ±17%. By

comparison, the SDA-based inversion procedure demonstrated the recovery of μa,  and l*
with errors of ±29%, ±25%, and ±28%, respectively. Our SDA results are comparable to
those obtained by studies that employ the SDA for optical property recovery.4

In conclusion, we have developed and validated an analytic solution within the δ-P1
approximation along with a multi-stage inversion algorithm for optical property
determination for homogeneous turbid media using SRDR measurements acquired from a
CCD camera platform. Our δ-P1 approximation based approach determines optical
properties from spatially resolved reflectance measurements over a wide range of tissue
optical properties with accuracy that surpasses the capabilities of standard diffusion
approximation based approaches. In particular, the recovery of g1 from measurements made
at s-d separations comparable to l* is an indication of the usefulness of the δ-P1 approach.
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Fig. 1.
Schematic of model geometry.
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Fig 2.
Source and image configuration for extrapolated boundary condition employed in the δ-P1
approximation.
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Fig. 3.
Schematic of multi-staged optimization algorithm for determination of optical properties
using the δ-P1 approximation.
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Fig. 4.
Experimental setup for acquisition of spatially resolved diffuse reflectance data.
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Fig. 5.
Prediction of spatially resolved diffuse reflectance using Monte Carlo (●), δ-P1
approximation (solid curve), and standard diffusion approximation (dashed curve). The

optical coefficients are n = 1.4, μa = 0.01/mm, (a) , g1 = 0.9 and (b) ,
g1 = 0.9. The lower panel of each plot shows the relative error of the δ-P1 and standard
diffusion approximations from the Monte Carlo simulation.
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Fig. 6.
Spatially resolved diffuse reflectance as predicted by the δ-P1 approximation (curves) and
Monte Carlo simulations (symbols) for pencil beam illumination. Optical properties are μa =

0.0344/mm, , g1 = 0.9 (solid curve, ●), and 0.5 (dashed curve,

◇). The SRDR prediction from standard diffusion approximation with the same μa and  is
displayed in dotted curve. Lower plot shows the percentage error of the δ-P1 and SDA
predictions relative to the Monte Carlo simulations.
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Fig. 7.
Spatially resolved diffuse reflectance measurements (●) from liquid optical phantoms with

(a) , (b) , (c) , and (d) . Predictions given by
the δ-P1 and its recovered optical properties are shown by the solid curves while those given
by the SDA and its recovered optical properties are shown by the long dash curves.
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Fig. 8.
Spatially resolved diffuse reflectance measurements (●) from solid optical phantoms with

(a) , (b) , (c) , and (d) . Predictions given
by the δ-P1 and its recovered optical properties are shown by the solid curves while those
given by the SDA and its recovered optical properties are shown by the dashed curves.
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