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Abstract

Cryo-Electron Tomography (cryo-ET) is an emerging 3D imaging technique which shows great 

potentials in structural biology research. One of the main challenges is to perform classification 

of macromolecules captured by cryo-ET. Recent efforts exploit deep learning to address this 

challenge. However, training reliable deep models usually requires a huge amount of labeled 

data in supervised fashion. Annotating cryo-ET data is arguably very expensive. Deep Active 

Learning (DAL) can be used to reduce labeling cost while not sacrificing the task performance too 

much. Nevertheless, most existing methods resort to auxiliary models or complex fashions (e.g. 

adversarial learning) for uncertainty estimation, the core of DAL. These models need to be highly 

customized for cryo-ET tasks which require 3D networks, and extra efforts are also indispensable 

for tuning these models, rendering a difficulty of deployment on cryo-ET tasks. To address these 

challenges, we propose a novel metric for data selection in DAL, which can also be leveraged as a 

regularizer of the empirical loss, further boosting the task model. We demonstrate the superiority 

of our method via extensive experiments on both simulated and real cryo-ET datasets. Our source 

Code and Appendix can be found at this URL.
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1. INTRODUCTION

Recent efforts [1, 2, 3] exploit deep learning to perform various tasks on cryo-ET data, 

especially subtomogram classification for separating macromolecules with respect to their 

structures. Nevertheless, training successful deep networks relies on numerous labeled 

data in supervised fashion, which has been demonstrated more reliable than unsupervised 

and semi-supervised learning [4]. Unfortunately, annotating cryo-ET data is extremely 
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expensive. One solution is using deep active learning (DAL) to select and annotate a portion 

of all unlabeled data and use the selected data to train a task model in supervised fashion.

Most existing methods [5, 6, 7, 8, 4, 9] resort to specially designed auxiliary models 

(e.g. VAE [10]) or complex training fashions (e.g. adversarial [9, 8, 7]) to estimate data 

uncertainty. In addition, a recent study [5] designs a GCN (graph convolutional network) 

[11] to estimate uncertainty, and another work [4] facilitates such an estimation with a 

predicted loss, learned by an auxiliary network. However, these methods are not a good 

fit for cryo-ET tasks since customizing the auxiliary models to 3D structures is arguably 

challenging and a well tailored training scheme is also necessary, rendering a difficulty 

of deployment in real DAL scenarios. While the Bayesian methods [12, 13] are free of 

auxiliary models, they still suffer from inefficiency due to thousands of feed-forward steps 

for each unlabeled data sample. Several other methods [14, 15] need to solve classical 

optimization problems when estimating data uncertainty, such as K-center or 0–1 Knapsack 

problem, yielding very inefficient pipelines for uncertainty estimation. Therefore, these 

methods are not suitable for cryo-ET tasks either.

To address the aforementioned challenges, we propose a simple yet effective DAL method, 

which is highly compatible with cryo-ET tasks. The core idea is to adopt the distance 

between the task model and its mean version to estimate uncertainty for unlabeled data. 

The weights of the mean model can be easily obtained by averaging that of the task model 

at different training stages. Therefore, for an individual unlabeled sample, our computed 

distance reflects how the sample’s posterior deviates from its average posterior (obtained 
from the mean model). In data selection phase, the unlabeled data of a higher such distance 

will be selected for annotation. However, such selected data may result in over-fitting, a 

common issue in DAL, due to the deviation brought to the task model. To reduce this 

deviation introduced by newly annotated data, we conversely leverage the distance (again, 

between task model and its mean version) as a regularizer to the task loss. Experimental 

results on cryo-ET tasks demonstrate the competence of our method. More importantly, 

since our method is free of auxiliary models or learning fashions, it is quite applicable to 

cryo-ET tasks.

We summarize our main contributions as follows. Firstly, we propose a novel uncertainty 

estimator for cryo-ET data in DAL. Secondly, we leverage the proposed estimator as a 

regularizer to train the task model, aiming to enhance the generalization. We then unify 

uncertainty estimation and task model training in one framework. Lastly, we theoretically 

interpret why our method works and conduct extensive experiments to validate its efficacy 

on both simulated and real cryo-ET data.

2. METHOD

We firstly present the pipeline of our method and then discuss why it works. We summarize 

our method in Algorithm 1.
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2.1. Pipeline of the Proposed Method

Notation.—We denote an unlabeled pool with XU  and a labeled pool with XL, Y L , which 

is initially empty. Active learning is to select data from XU  for annotation and to add the 

newly annotated data to XL, Y L , which is used to train the task model. The number of 

selected samples is determined by a given annotation budget. We use T  to denote the task 

model and T ⋅  the feed-forwarding operation. M and M ⋅  denote the mean model and its 

feed-forwarding operation, respectively. For the other notations, we follow the definitions in 

Algorithm 1.

Data Selection.—For each unlabeled sample XU, we compute D T XU , M XU  as the 

uncertainty for XU, where D ⋅  denotes a certain distance metric, such as MSE or KL 

divergence. We select unlabeled data of higher D value for annotation. In fact, this selection 

scheme aims to pick out the data which leads to a higher deviation of output posteriors. We 

leave a discussion of its rationale in Section 2.2.
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The Mean Model and EMA.—Exponential moving average (EMA) imposes greater 

significance on recent data and less significance on earlier data. This can be easily achieved 

by using a smoothing coefficient. [16] pioneered to apply the EMA technique in deep 

learning research. We denote the weights of T  with θ, and compute the weights θ′ of M using

θt
′ = αθt − 1

′ + 1 − α θt, (1)

where t refers to a training step and α denotes the smoothing coefficient. We use α = 0.999
for all the experiments.

In our method, the architecture of the mean model M is exactly the same as that of the task 

model T . The weights of M can be obtained using Eq. (1). As a result, M does not need to 

be trained in the whole DAL procedure, leading to a high efficiency of the proposed method.

Regularizer to Task Loss.—Unfortunately, data of higher deviation may result in poor 

generalization of the task model due to over-fitting. To mitigate this issue, we propose to 

use D as a regularizer to the task loss, aiming to reduce the deviation introduced by newly 

annotated data. As a result, the entire loss function of the task model can be written as

L = Ltask + λ*D T XL , M XL , (2)

where Ltask is an empirical loss (e.g. cross-entropy loss in classification) and λ is a trade-off 

coefficient. We choose unlabeled data of higher D T XU , M XU  during data selection but 

minimize D T XL , M XL  for labeled data during the task model training. Therefore, such 

a fashion to some extent can be regarded as “adversarial”. Since the model M will not be 

trained, minimizing Eq. (2) only updates the model T  to make it approach M, leading to a 

reduced deviation for the labeled data XL. This helps to mitigate overfitting and enhance the 

generalization of T .

The Distance D.—There are multiple options for the distance metric D, such as MSE 

over feature space and KL divergence over output posteriors. In our method, D has two 
modalities. Specifically, during data selection, we choose the KL divergence as D over the 

posteriors of the two model outputs. Then the uncertainty of XU can be reformulated as

uncertainty XU = KL s T XU , s M XU , (3)

where s ⋅  denotes the softmax computation. During the task model training, we choose 

MSE as D over the output logits before softmax. Then Eq. (2) can be rewritten as

L = Ltask + λ * MSE T XL , M XL . (4)

We observe that such a setting of D yields the best performance, and provide an 

experimental analysis of D in the ablation study.

Wang et al. Page 4

Proc Int Conf Image Proc. Author manuscript; available in PMC 2023 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Why Our Method Works

The rationale of a DAL method can be interpreted from two aspects, namely data selection 

and task model training. Here, we discuss the rationale of our method from these two 

aspects. Deviation-based Data Selection. This type of schemes have been demonstrated 

very effective in traditional active learning [17, 18, 19]. However, little work has managed 

to extend it for DAL. In addition, the deviation in a dataset is widely acknowledged to be 

capable of reflecting data uncertainty, but it fails to take task model into consideration. As 

illustrated in Eq. (3), for unlabeled data, our method evaluates how its posterior deviates 

from its average posterior (obtained from the mean model). Therefore, our method takes into 

account both data and task model, leading to a more accurate uncertainty estimation in the 

DAL context.

3. EXPERIMENT

We evaluate our method using three simulated and one real cryo-ET datasets. We compare 

our method with the state-of-the-art DAL baselines on the classification task. Given an 

unlabeled pool, we follow a common practice to randomly select 10% of the data for 

annotation and use it as the initial labeled data, which is kept the same for all the methods. 

We run each experiment for 3 trials and report the mean results. We refer readers to 
Appendix 1.1 for the training details, and Appendix 1.2 for an analysis of time efficiency.

3.1. Cryo-ET Datasets

Simulated Data.—We follow [20] to prepare the simulated data. All the simulated datasets 

consist of 50 classes but with three different SNRs (i.e. infinity, 0.05, and 0.03), leading to 

three datasets. A SNR of infinity is equivalent to “noise-free”. Each dataset includes 24000 

training and 1000 testing samples, uniformly distributed across 50 classes. Each sample is 

a subtomogram, which is a 3D subimage of a tomogram that is likely to contain a single 

macromolecule.

Real Data.—The real cryo-ET data [21, 22] is collected from medical practices. The 

dataset consists of 4318 training samples and 1080 testing samples, distributed across 10 

classes. It is a highly imbalanced dataset. For the training data, the number of samples in 

each class varies from 320 to 876. For the testing data, such a number varies from 80 to 219.

3.2. Classification Performance

Model Selection.—For the task model, we customize the original ResNet-18 [23] with 

3D operations (e.g. 3D convolutions) to fit the cryo-ET input that is 3D grey scale image. 

We utilize the same architecture for the mean model, but its weights will not be updated via 

gradient descent. Both models are randomly and independently initialized. We use the same 

task model for all the compared methods for fair comparison.

Results and Analysis.—We compare our method with typical DAL baselines, including 

mc-dropout [13], core-set [15], vaal [8], and ll4al [4]. As illustrated in Fig. 1, our method 

outperforms the others on all the datasets. In addition, we have the following observations. 

Firstly, for almost each labeling budget, our method yields higher accuracy, demonstrating 
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its reliability. Secondly, the real cryo-ET dataset is highly imbalanced and the superior 

performance demonstrates our method’s robustness to imbalanced data. Lastly, as the 

noise level increases (i.e. SNR005 to SNR003), our method still yields better results, 

demonstrating its robustness to noise.

3.3. Ablation Study

Distance Metric.—As shown in Eq. (3), we use the KL divergence as D over the output 

posteriors to estimate uncertainty for unlabeled data. Here, we investigate what if MSE is 

used over output logits for uncertainty estimation. As illustrated in Fig. 2 Left, the KL 

divergence yields much better results, suggesting that the metric D should be used over 

output posteriors rather than over output logits for uncertainty estimation. However, for the 

regularizer in Eq. (4), we observe that employing MSE as D over output logits yields a better 

performance.

Effect of the Regularizer.—As shown in Eq. (4), we propose to use a regularizer to 

reduce the deviation introduced by newly annotated data. In Fig. 2 Right, we study the trade-

off coefficient λ. As can be seen, the performance is severely degraded when the regularizer 

is not used (i.e. λ = 0, namely noema in the figure). For the other λ values, the results are 

slightly different. At the last cycle (i.e. annotation budget of 40%), the results are very close, 

indicating that there is no need of an extra effort to fine-tune this hyper-parameter. We use 

λ = 0.03 in all the experiments of our method.

Semi-Supervised Fashion.—Till now, the regularizer in Eq. (4) only takes as input 

labeled data. Since the computation of MSE in Eq. (4) does not have to rely on label 

information, the regularizer can also work with unlabeled data, naturally leading to a semi-

supervised fashion, even though Ltask can only be computed with labeled data. As shown 

in Fig. 3 Left, the semi-supervised version of our method further improves the task model 

performance, demonstrating the scalability of our method. Note that we conduct all the other 

experiments of our method in supervised fashion only, aiming at fair comparisons with the 

DAL baselines.

Lower vs Higher Deviation.—As discussed in Section 2.1, we select unlabeled data 

of higher deviation for annotation. Here, we investigate what if data of lower deviation is 

selected for annotation. As shown in Fig. 3 Right, selecting data of higher deviation yields 

superior results. This observation also validates the rationale of our data selection scheme.

Number of Classes.—To explore how the number of classes in a dataset impacts our 

method performance, we run experiments on the simulated datasets of 10 and 50 classes, 

respectively. We compare the final accuracy at the last cycle (i.e. annotation budget of 40%), 

and show the performance improvement in Fig. 4. As illustrated, our method outperforms 

the others by a larger margin on the 50-class datasets than on the 10-class datasets, 

regardless of noise levels (i.e. SNR003 or SNR005), demonstrating the superiority of our 

method on datasets that consist of more classes.
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4. CONCLUSION

In this paper, we propose a deviation based scheme for unlabeled data selection in 

deep active learning, highly applicable to cryo-ET challenges. To reduce the deviation 

incorporated by newly annotated data, we propose a regularizer for the task model training, 

leading to enhanced generalization. We unify the data selection and the task model training 

in a deep active learning framework and interpret its rationale based on the dropout and 

the deviation theories. We also show that our method can be easily extended to a semi-

supervised fashion. Experimental results demonstrate the efficacy and efficiency of our 

method on both simulated and real cryo-ET data.
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Fig. 1. 
Performance comparison between our method and the state-of-the-art DAL baselines on the 

cryo-ET datasets.
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Fig. 2. 
Left: Comparison of the distance metrics D  on the 50-class simulated dataset with a SNR 

of 0.03; Right: Comparison of the trade-off coefficients (λ in Eq. (4)) on the 50-class 

simulated dataset with a SNR of 0.05.
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Fig. 3. 
Left: The performance of our method and its semi-supervised version on the 50-class 

simulated dataset with a SNR of 0.03; Right: Comparison between selecting data of lower 

deviation and selecting that of higher deviation. This experiment is conducted on the 50-

class simulated dataset with a SNR of 0.05.

Wang et al. Page 11

Proc Int Conf Image Proc. Author manuscript; available in PMC 2023 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The performance improvement of our method over the others on the 10-class and 50-class 

simulated datasets. Top: With a SNR of 0.03 for both datasets; Bottom: With a SNR of 0.05 

for both datasets.
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