
UC Irvine
ICS Technical Reports

Title
Data compression

Permalink
https://escholarship.org/uc/item/73n9m4nn

Authors
Lelewer, Debra A.
Hirschberg, Daniel S.

Publication Date
1987

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/73n9m4nn
https://escholarship.org
http://www.cdlib.org/

Abstract

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

0

Data Compression

Debra A. Lelewer and Daniel S. Hirschberg
<

Technical Report No. 87-10

no.

This paper surveys a variety of data compression methods spanning almost forty years
of research, from the work of Shannon, Fano and Huffman in the late 40's to a technique
developed in 1986. The aim of data compression is to reduce redundancy in stored or
communicated data, thus increasing effective data density. Data compression has important
application in the areas of file storage and distributed systems.

Concepts from information theory, as they relate to the goals and evaluation of data
compression methods, are discussed briefly. A framework for evaluation and comparison of
methods is constructed and applied to the algorithms presented. Comparisons of both theo
retical and empirical natures are reported and possibilities for future research are suggested.

INTRODUCTION

1. FUNDAMENTAL CONCEPTS

1.1 Definitions

1.2 Classification of Methods

1.3 A Data Compression Model

1.4 Motivation

2. SEMANTIC DEPENDENT METHODS

3. STATIC DEFINED-WORD SCHEMES

3.1 Shannon-Fano Code

3.2 Huffman Coding

3.3 Representations of the Integers

4. ADAPTIVE HUFFMAN CODING

4.1 Algorithm FGK

4.2 Algorithm V

5. OTHER ADAPTIVE METHODS

5.1 Lempel-Ziv Codes

5.2 Algorithm BSTW

6. EMPIRICAL RESULTS

7. SUSCEPTIBILITY TO ERROR

7.1 Static Codes

7.2 Adaptive Codes

8. NEW DIRECTIONS

9. SUMMARY

INTRODUCTION

Data compression is often referred to as coding. Information theory is defined to be

the study of efficient coding and its consequences, in the form of speed of transmission and

probability of error [Ingels 1971). Data compression may be viewed as a branch of information

theory in which the primary objective is to minimize the amount of data to be transmitted.

The purpose of this paper is to present and analyze a variety of data compression algorithms.

While coding for purposes of data security (cryptography) and codes which guarantee

a certain level of data integrity (error detection/correction) are topics worthy of attention,

these do not fall under the umbrella of data compression. With the exception of a brief

discussion of the susceptibility to error of the methods surveyed (Section 7), a discrete

noiseless channel is assumed. Of course, the coding schemes described here may be combined

with data security or error correcting codes.

Much of the available literature on data compression approaches the topic from the

point of view of data transmission. It is important to note that data compression is of

value in data storage as well. Although this discussion will be framed in the terminology of

data transmission, compression and decompression of data files is essentially the same task

as sending and receiving data over a communication channel. The focus of this paper is on

algorithms for data compression; it does not deal with hardware aspects of data transmission.

The reader is referred to Cappellini for a discussion of techniques with natural hardware

implementation [Cappellini 1985].

Background concepts in the form of terminology and a model for the study of data

compression are provided in Section 1. Applications of data compression are also discussed

in Section 1, to provide motivation for the material which follows.

While the primary focus of this survey is data compression methods of general utility,

Section 2 includes examples from the literature in which ingenuity applied to domain-specific

problems has yielded interesting coding techniques. These techniques are referred to as

semantic dependent since they are designed to exploit· the context and semantics of the

data to achieve redundancy reduction. Semantic dependent techniques include the use of

1

quad trees, run length encoding, or difference mapping for storage and transmission of image

data (G-..mzalez and Wintz 1977; Samet 1984].

General-purpose techniques, which assume no knowledge of the information content of

the data, are described in Sections 3-5. In most cases, only worst-case analyses of these

methods are feasible. To provide a more realistic picture of their effectiveness, empirical

data is presented in Section 6. The susceptibility to error of the algorithms surveyed is

discussed in Section 7 and possible directions for future research are considered in Section 8.

1. FUNDAMENTAL CONCEPTS

A brief introduction to information theory is provided in this section. The definitions

and assumptions necessary to a comprehensive discussion and evaluation of data compression

methods are discussed.

1.1 Definitions

A code is a mapping of source messages (words from the source alphabet a) into code

words (words of the code alphabet /3). Codes can be categorized as block-block, block

variable, variable-block or variable-variable, where block-block indicates that the source

messages and codewords are of fixed length and variable-variable codes map variable-length

source messages into variable-length codewords. The oldest and most widely used codes,

ASCII and EBCDIC, are examples of block-block codes. These are not discussed, as they

do not provide compression. The codes featured in this survey are of the block-variable,

variable-variable, and variable-block types.

When source messages of variable length are allowed, the question of how a message

ensemble (sequence of messages) is parsed into individual messages arises. Many of the al

gorithms described here are defined-word schemes. That is, the set of source messages is

determined prior to the invocation of the coding scheme. For example, in text file processing

each character may constitute a message, or messages may be defined to consist of alphanu

meric and non-alphanumeric strings. In Pascal source code, each token may represent a mes

sage. All codes involving fixed-length source messages are, by default, defined-word codes.

In free-parse methods, the coding algorithm itself parses the ensemble into variable-length

sequences of symbols.

A code is distinct if each word of the code is distinguishable from other codewords (i.e.,

the mapping from source messages to codewords is one-to-one). A distinct code is uniquely

2

decodable if every codeword is identifiable when immersed in a sequence of codewords. A

uniquel; decodable code is a prefix code (or prefix-free code) if it has the prefix property,

which requires that no codeword is a proper prefix of any other codeword. Prefix codes are

instantaneously decodable; that is, the coded message can be parsed into codewords without

the need for lookahead. A minimal prefix code is a prefix code such that if x is a proper

prefix of some codeword, then xu is either a codeword or a proper prefix of a codeword, for

each letter u in f3. Intuitively, the minimality constraint prevents the use of codewords which

are longer than necessary. The codes discussed in this paper are all minimal prefix codes.

1.2 Classification of Methods

In addition to the categorization of data compression schemes with respect to message

and codeword lengths, these methods are classified as either static or dynamic. A static

method is one in which the mapping from the set of messages to the set of codewords

is fixed before transmission begins, so that a given message is represented by the same

codeword every time it appears in the message ensemble. The classic static defined-word

scheme is Huffman coding [Huffman 1952]. In Huffman coding, the assignment of codewords

to source messages is based on the probabilities with which the source messages appear

in the message ensemble. Messages which appear more frequently are represented by short

codewords; messages with smaller probabilities map to longer codewords. These probabilities

are determined before transmission begins.

A code is dynamic if the mapping from the set of messages to the set of codewords

changes over time. Dynamic Huffman coding involves computing an approximation to the

probabilities of occurrence "on the :fly", as the ensemble is being transmitted. The assignment

of codewords to messages is based on the values of the relative frequencies of occurrence at

each point in time. A message x may be represented by a short codeword early in the

transmission because it occurs frequently at the beginning of the ensemble, even though its

probability of occurrence over the total ensemble is low. Later, when the more probable

messages begin to occur with higher frequency, the short codeword will be mapped to one

of the higher probability messages and x will be mapped to a longer codeword.

Dynamic codes are also referred to in the literature as adaptive, in that they adapt

to changes in ensemble characteristics over time. The term adaptive will be used for the

remainder of this paper; the fact that these codes adapt to changing characteristics is the

source of their appeal. Some adaptive methods adapt to changing patterns in the source

[Welch 1984] while others exploit locality of reference [Bentley et al. 1986]. Locality of

3

reference is the tendency, common in a wide variety of text types, for a particular word to

occur £.equently for short periods of time then fall into disuse for long periods. All of the

adaptive methods are one-pass methods; only one scan of the ensemble is required. Static

Huffman coding requires two passes: one pass to compute probabilities and determine the

mapping, and a second pass for transmission. The one-pass methods define and redefine the

mapping dynamically, during transmission.

An algorithm may also be a hybrid, neither completely static nor completely dynamic.

In a simple hybrid scheme, sender and receiver maintain identical codebooks containing k

static codes. For each transmission, the sender must choose one of the k codes and inform

the receiver of his choice. Hybrid methods are discussed further in Section 2 and Section 3.2.

1.3 A Data Compression Model

In order to discuss the relative merits of data compression techniques, a framework for

comparison must be established. There are two dimensions along which each of the schemes

discussed here may be measured, algorithm complexity and amount of compression. For

the static schemes, there are three algorithms to analyze: the map construction algorithm,

the encoding algorithm, and the decoding algorithm. The degree of compression is usually

the primary concern in data compression, but it is necessary to ascertain that the time

requirements of the algorithm are not prohibitive.

Several common measures of compression have been suggested: redundancy [Shannon

and Weaver 1949), average message length [Huffman 1952), and compression ratio [Rubin

· 1976; Ruth and Kreutzer 1972). These measures are defined below. Related to each of these

measures are assumptions about the characteristics of the source. It is generally assumed in

information theory that all statistical parameters of a message source are known with perfect

accuracy [Gilbert 1971). The most common model is that of a discrete memoryless source; a

source whose output is a sequence of letters (or messages), each letter being a selection from

some fixed alphabet ai, ... , an. The letters are taken to be random statistically independent

selections from the alphabet, the selection being made according to some fixed probability

assignment p(a1), ... ,p(an) [Gallager 1968). Without loss of generality, the code alphabet

is assumed to be {O, 1} throughout this paper. The modifications necessary for larger code

alphabets are straightforward.

It is assumed that any cost associated with the code letters is uniform. This assumption

is reasonable, and important. The problem of constructing optimal codes over unequal letter

costs is a significantly more difficult problem. Varn and Perl have developed algorithms for

4

minimum-redundancy prefix coding in the case of arbitrary symbol cost and equal codeword

probabi •. ity [Varn 1971; Perl et al. 1975]. The assumption of equal probabilities mitigates

the difficulty presented by the variable symbol cost. For the more general unequal letter

costs and unequal probabilities model, Karp has proposed an integer linear programming

approach [Karp 1961]. There have been several approximation algorithms proposed for this

more difficult problem [Krause 1962; Cot 1977; Mehlhorn 1980].

When data is compressed, the goal is to reduce redundancy, leaving only the informa

tional content. The measure of information of a. source message ai (in bits) is -lgp(ai) t.
This definition has intuitive appeal; in the case that p(ai) = 1, it is clear that ai is not

at all informative since it ha.d to occur. Similarly, the smaller the value of p(ai), the more

unlikely ai is to appear, hence the larger its information content. The reader is referred to

Abramson for a longer, more elegant discussion of the legitimacy of this technical definition

of the concept of information [Abramson 1963, pp. 6-13]. The average information content

over the source alphabet is a particularly important quantity known as the entropy of a

source letter, a.nd is given by H = l::?=l -p(ai)lgp(ai)· Entropy defines a. lower bound on

the number of bits required for the coded message; the length of a codeword for message ai

must be sufficient to carry the information content of ai. Since the value of H is generally

not an integer, variable length codewords must be used if the lower bound is to be achieved.

Both of these definitions of information content are due to Shannon. A derivation of the

concept of entropy as it relates to information theory is presented by Shannon [Shannon a.nd

Weaver 1949].

The most common notion of a "good" code is one which is optimal in the sense of

having minimum redundancy. Redundancy ca.n be defined as: l:p(ai)li - 2:[-p(ai)lgp(ai)]

where li is the length of the codeword representing message ai. That is, redundancy is

a measure of the difference between expected codeword length and average information

content. If a code has minimum average length for a given discrete probability distribution,

it is said to be a minimum redundancy code. Since all of the methods to be discussed here

are uniquely decodable, the definition of optimality includes implicitly the requirement of

unique decodability.

We define the term local redundancy to capture the notion of redundancy caused by local

properties of a message ensemble, rather than its global characteristics. While the model

used for analyzing general-purpose coding techniques assumes a random distribution of the

source messages, this may not actually be the case. In particular applications the tendency

t lg denotes the base 2 logarithm

5

for messages to cluster in predictable patterns may be known. The existence of predictable

pattern;_ may be exploited to minimize local redundancy. Examples of applications in which

local redundancy is common, and methods for dealing with local redundancy, are discussed

in Section 2 and Section 6.2.

Huffman uses average message length, L:p(ai)li, as a measure of the efficiency of a code.

Clearly the meaning of this term is the average length of a coded message. We will use the

term average codeword length to represent this quantity. Since entropy is constant for a given

probability distribution, minimizing average codeword length minimizes redundancy.

A code is asymptotically optimal if it has the property that for a given probability dis

tribution the ratio of average codeword length to entropy approaches 1 as entropy tends to

infinity.

The amount of compression yielded by a coding scheme can be measured by a compres

sion ratio. The term compression ratio has been defined in several ways. The definition

C = (average message length)/ (average codeword length) captures the common meaning

[Cappellini 1985]. A somewhat different definition by Rubin, C = (S - 0- OR)/ S, includes

the representation of the code itself in the transmission cost [Rubin 1976]. In this definition

S represents the length of the source ensemble, 0 the length of the output (coded mes

sage), and OR the size of the output (code) representation. The quantity OR constitutes a

"charge" to an algorithm for transmission of information about the coding scheme.

1.4 Motivation

Data compression has wide application in terms of information storage, including rep

resentation of the abstract data type string [Standish 1980) and file compression. Huffman

coding is used for compression in the ARC file archival system [ARC 1986], as is Lempel-Ziv

coding, one of the adaptive schemes to be discussed in Section 5. An adaptive Huffman cod

ing technique is the basis for the compact command of the UNIX operating system [UNIX

1984).

In the area of data transmission, Huffman coding has been passed over for years in favor

of block-block codes, notably ASCII. The advantage of Huffman coding is in the average

number of bits per character transmitted, which may be much smaller than the lg n bits

per character (where n is the source alphabet size) of a block-block system. The primary

difficulty associated with variable-length codewords is that the rate at which bits are pre

sented to the transmission channel will fluctuate, depending on the relative frequencies of

6

the source messages. This requires buffering between the source and the channel. Advances

in techLology have both overcome this difficulty and contributed to the appeal of variable

length codes. Current data networks allocate communication resources to sources -on the

basis of need and provide buffering as part of the system. These systems require significant

amounts of protocol, and fixed-length codes are quite inefficient for applications such as

packet headers. In addition, communication costs are beginning to dominate storage and

processing cost, so that variable-length coding schemes which reduce communication costs

are attractive even if they are more complex. For these reasons, one could expect to see even

greater use of variable-length coding in the future.

It is interesting to note that the Huffman coding algorithm has a wide variety of applica

tions outside the sphere of data compression. These include construction of optimal search

trees [Zimmerman 1959; Hu and Tucker 1971; Itai 1976], list merging [Brent and Kung 1978],

and generating optimal evaluation trees in the compilation of expressions [Parker 1980]. Ad

ditional applications involve search for jumps in a monotone function of a single variable,

sources of pollution along a river, and leaks in a pipeline [Glassey and Karp 1976].

2. SEMANTIC DEPENDENT METHODS

Semantic dependent data compression techniques are designed to respond to specific

types of local redundancy occurring in certain applications. One area in which data com

pression is of great importance is image representation and processing. There are two major

reasons for this. The first is that digitized images contain a large amount of local redundancy.

An image is usually captured in the form of an array of pixels whereas methods which exploit

the tendency for pixels of like color or intensity to cluster together may be more efficient.

The second reason for the abundance of research in this area is volume. Digital images

usually require a very large number of bits, and many uses of digital images involve large

collections of images.

One technique used for compression of image data is run length encoding. In a common

version of run length encoding, the sequence of image elements along a scan line (row)

:z:1, :z:2, ... , Zn is mapped into a sequence of pairs (ci, 11), (c2, 12), ... (ck, lk) where Ci represents

an intensity or color and li the length of the ith run (sequence of pixels of equal intensity).

For pictures such· as weather maps, run length encoding can save a significant number of

bits over the image element sequence [Gonzalez and Wintz 1977]. Another data compression

technique specific to the area of image data is difference mapping, in which the image is

represented as an array of differences in brightness (or color) between adjacent pixels rather

7

than the brightness values themselves. Difference mapping was used to encode the pictures

of Urar:us transmitted by Voyager 2. The 8 bits per pixel needed to represent 256 brightness

levels was reduced to an average of 3 bits per pixel when difference values were transmitted

(Laeser et al. 1986]. In spacecraft applications, image :fidelity is a major concern due to

the effect of the distance from the spacecraft to earth on transmission reliability. Difference

mapping was combined with error-correcting codes to provide both compression and data

integrity in the Voyager project. Another method which takes advantage of the tendency for

images to contain large areas of constant intensity is the use of the quadtree data structure

(Samet 1984]. Additional examples of coding techniques used in image processing can be

found in Wilkins and Cappellini (Wilkins and Wintz 1971; Cappellini 1985].

Data compression is of interest in business data processing, both because of the cost

savings it offers and because of the large volume of data manipulated in many business

applications. The types of local redundancy present in business data files include runs of zeros

in numeric fields, sequences of blanks in alphanumeric fields, and fields which are present in

some records and null in others. Run length encoding can be used to compress sequences of

zeros or blanks. Null suppression may be accomplished through the use of presence bits [Ruth

and Kreutzer 1972]. Another class of methods exploits cases in which only a limited set of

attribute values exist. Dictionary substitution entails replacing alphanumeric representations

of information such as bank account type, insurance policy type, sex, month, etc. by the few

bits necessary to represent the limited number of possible attribute values [Reghbati 1981].

Cormack describes a data compression system which is designed for use with database

files [Cormack 1985]. The method, which is part of IBM's "Information Management Sys

tem" (IMS), compresses individual records and is invoked each time a record is stored in the

database file; expansion is performed each time a record is retrieved. Since records may be

retrieved in any order, context information used by the compression routine is limited to a.

single record. In order for the routine to be applicable to any database, it must be able to

adapt to the format of the record. The fact that database records a.re usually heterogeneous

collections of small fields indicates that the local properties of the data. a.re more important

than its global characteristics. The compression routine in IMS is a. hybrid method which

attacks this local redundancy by using different coding schemes for different types of fields.

The identified :field types in IMS a.re letters of the alphabet, numeric digits, packed decimal

digit pairs, blank, 'and other. When compression begins, a. default code is used to encode the

first character of the record. For ea.ch subsequent character, the type of the previous char

acter determines the code to be used. For example, if the record "01870bABC DbbLM N"

were encoded with the letter code as default, the lea.ding zero would be coded using the letter

8

code; the 1, 8, 7, 0 and the first blank (1') would be coded by the numeric code. The A would

be coded by the blank code; B, C, D, and the next blank by the letter code; the next blank

and the L by the blank code; and the M and N by the letter code. Clearly, each code must

define a codeword for every character; the letter code would assign the shortest codewords to

letters, the numeric code would favor the digits, etc. In the system Cormack describes, the

types of the characters are stored in the encode/decode data structures. When a character

c is received, the decoder checks type(c) to detect which code table will be used in transmit

ting the next character. The compression algorithm might be more efficient if a special bit

string were used to alert the receiver to a change in code table. Particularly if fields were

reasonably long, decoding would be more rapid and the extra bits in the transmission would

not be excessive. Cormack reports that the performance of the IMS compression routines is

very good; at least fifty sites are currently using the system.

A variety of approaches to data compression designed with text files in mind include use of

a dictionary either representing all of the words in the file so that the file itself is coded as a list

of pointers to the dictionary [Hahn 1974], or representing common words and word endings

so that the file consists of pointers to the dictionary and encodings of the less common words

[Tropper 1982]. Hand-selection of common phrases [Wagner 1973], programmed selection of

prefixes and suffixes [Fraenkel et al. 1983] and programmed selection of common character

pairs (Snyderman and Hunt 1970; Cortesi 1982] have also been investigated.

This discussion of semantic dependent data compression techniques represents a limited

sample of a very large body of research. These methods and others of a like nature are

interesting and of great value in their intended domains. Their obvious drawback lies in

their limited utility. It should be noted, however, that much of the efficiency gained through

the use of semantic dependent techniques can be achieved through more general methods,

albeit to a lesser degree. For example, the dictionary approaches can be implemented through

either Huffman coding (Section 3.2, Section 4) or Lempel-Ziv codes (Section 5.1). Cormack's

database scheme is a special case of the codebook approach (Section 3.2), and run length

encoding is one of the effects of Lempel-Ziv codes.

3. STATIC DEFINED-WORD SCHEMES

The classic defined-word scheme was developed over 30 years ago in Huffman's well

known paper on minimum-redundancy coding [Huffman 1952]. Huffman's algorithm pro

vided the first solution to the problem of constructing minimum-redundancy codes. An

earlier algorithm, due independently to Shannon and Fano (Shannon and Weaver 1949; Fano

9

1949], is not guaranteed to provide optimal codes, but approaches optimal behavior as the

numbe:i-. of messages approaches infinity. The Huffman algorithm is also of importance be

cause it has provided a foundation upon which other data compression techniques, and

applications in other areas, have built. We classify the codes generated by the Huffman

and Shannon-Fane algorithms as variable-variable and note that they include block-variable

codes as a special case, depending upon how the source messages are defined.

3.1 Shannon-Fano Coding

The Shannon-Fane technique has as an advantage its simplicity. The code is constructed

as follows: the source messages ai and their probabilities p(ai) are listed in order of non

increasing probability. This list is then divided in such a way as to form two groups of as

nearly equal total probabilities a.s possible. Ea.ch message in the first group receives 0 as the

first digit of its codeword; the messages in the second half have codewords beginning with

1. Ea.ch of these groups is then divided according to the same criterion and additional code

digits are appended. The process is continued until each subset contains only one message.

Clearly the Shannon-Fano algorithm yields a minimal prefix code.

a1 1L2 0 atepl

a3 1L4 10 atep2

a3 1/8 110 atep3 I

a, l/lf! 1110 1tep4 I

as 1/32
I

11110 atep5

a& 1/32 11111

Figure 3.1 A Shannon-Pano Code.

Figure 3.1 shows the application of the method to a particularly simple probability

distribution. The length of each codeword is equal to -lgp(ai)· This is true as long as

it is possible to divide the list into subgroups of exactly equal probability. When this is

not possible, some codewords may be of length - lg p(ai) + 1. The Shannon-Fano algorithm

yields an average codeword length S which satisfies H ~ S ~ H + 1. That the Shannon-Fano

algorithm is not guaranteed to produce an optimal code is demonstrated by the following

set of probabilities: {.35, .17, .17, .16, .15, }. The Shannon-Fano code for this distribution is

compared with the Huffman code in Section 3.2.

10

3.2. Static Huffman Coding

Huffman's algorithm, expressed graphically, takes as input a list of nonnegative weights

{ w1, . .. , wn} and constructs a full binary tree + whose leaves are labeled with the weights.

When the Huffman algorithm is used to construct a code, the weights represent the probabil

ities associated with the source letters. Initially there is a set of singleton trees, one for each

weight in the list. At each step in the algorithm the trees corresponding to the two smallest

weights, Wi and w;, are merged into a new tree whose weight is Wi + w; and whose root has

two children which are the subtrees represented by Wi and w;. The weights Wi and w; are

removed from the list and Wi + w; is inserted into the list. This process continues until the

weight list contains a single value. If, at any time, there is more than one way to choose

a smallest pair of weights, any such pair may be chosen. In Huffman's paper, the process

begins with a nonincreasing list of weights. This detail is not important to the correctness

of the algorithm, but it does provide a more efficient implementation [Huffman 1952]. The

Huffman algorithm is demonstrated in Figure 3.2.

The Huffman algorithm determines the lengths of the codewords to be mapped to each

of the source letters ai. There are many alternatives for specifying the actual digits; it is

necessary only that the code have the prefix property. The usual assignment entails labeling

the edge from each parent to its left child with the digit 0 and the edge to the right child

with 1. The codeword for each source letter is the sequence of labels along the path from the

root to the leaf node representing that letter. The codewords for the source of Figure 3.2, in

order of decreasing probability, are {01, 11, 001, 100, 101, 0000, 0001}. Clearly, this process

yields a minimal prefix code. Further, the algorithm is guaranteed to produce an optimal

(minimum redundancy) code [Huffman 1952]. Gallager has proved an upper bound on the

redundancy of a Huffman code of Pn + lg[(2lg e)/e] ~ Pn + 0.086, where Pn is the probability

of the least likely source message (Gallager 1978]. Figure 3.3 shows a distribution for which

the Huffman code is optimal while the Shannon-Fane code is not.

In addition to the fact that there are many ways of forming codewords of appropriate

lengths, there are cases in which the Huffman algorithm does not uniquely determine these

lengths due to the arbitrary choice among equal minimum weights. As an example, codes

with codeword lengths of {1, 2, 3, 4, 4} and of {2, 2, 2, 3, 3} both yield the same average code

word length for a. source with probabilities {.4, .2, .2, .1, .1}. Schwartz defined a variation

of the Huffman algorithm which performs "bottom merging"; that is, orders a new parent

node above existing nodes of the same weight and always merges the last two weights in the

+ a binary tree is full if every node has either zero or two children

11

ai .25 .25 .25 .33 J.42 ~.ss yi.o
a2 .20 .20 .22 .25 .33 .42

a3 .15 .18 .20 .22 .25

a4 .12 .15 .18 .20

as .10 .12 .15

as .10 .10

a1 .08 (a)

(b)

Figure 3.2 The Huffman process. a) the list. b) the tree

list. The code constructed is the Huffman code with minimum values of maximum codeword

length (max{Zi}) and total codeword length (2: Ii) (Schwartz 1964). Schwartz and Kallick

describe an implementation of Huffman's algorithm with bottom merging (Schwartz and

Kallick 1964]. The Schwartz-Kallick algorithm and a later algorithm by Connell (Connell

1973] use Huffman's procedure to determine the lengths of the codewords, and actual dig

its are assigned so that the code has the numerical sequence property. That is, codewords

of equal length form a consecutive sequence of binary numbers. Shannon-Fane codes also

have the numerical sequence property. This property can be exploited to achieve a compact

representation of the code and rapid encoding and decoding.

Both the Huffman and the Shannon-Fane mappings can be generated in O(n) time,

where n is the number of messages in the source ensemble (assuming that the weights have

been presorted). Each of these algorithms maps a source message ai with probability p to a

codeword of length l (- lg p ~ l ~ - lg p + 1). Encoding and decoding times depend upon

12

S-F Huffman

ai 0.35 00 1

a2 0.17 01 011

a3 0.17 10 010

a4 0.16 110 001

a5 0.15 111 000

avg. code length 2.31 2.30

Figure 3.3 Comparison of Shannon-Fano and Huffman Codes.

the representation of the mapping. If the mapping is stored as a binary tree, then decoding

the codeword for ai involves following a path of length l in the tree. A table indexed by the

source messages could be used for encoding; the code for ai would be stored in position i of

the table and encoding time would be O(l). Connell's algorithm makes use of the index of

the Huffman code, a representation of the distribution of codeword lengths, to encode and

decode in 0(c) time where c is the number of different codeword lengths.

As noted earlier, the redundancy bound for Shannon-Fane codes is 1 a.nd the bound for

the Huffman method is Pn +0.086 where Pn is the probability of the lea.st likely source message

(so Pn is less than or equal to .5, and generally much less). It is important to note that in

defining redundancy to be average codeword length minus entropy, the cost of transmitting

the code mapping computed by these algorithms is ignored. The overhead cost for any

method where the source alpha.bet has not been established prior to transmission includes

n lg n bits for sending the n source letters. For a Shannon-Fane code, a list of codewords

ordered so as to correspond to the source letters could be transmitted. The additional time

required is then 2: li, where the li a.re the lengths of the codewords. For Huffman coding, an

encoding of the shape of the code tree might be transmitted. Since any full binary tree may

be a legal Huffman code tree, encoding tree shape may require as many a.s lg 4n = 2n bits.

In most cases the message ensemble is very large, so that the number of bits of overhead

is minute by comparison to the total length of the encoded transmission. However, it is

imprudent to ignore this cost.

If a less-than-optimal code is acceptable, the overhead costs can be avoided through

a prior agreement by sender and receiver as to the code mapping. Rather than "using a

Huffman code based upon the characteristics of the current message ensemble, the code

13

used could be based on statistics for a class of transmissions to which the current ensemble

is assu:._1ed to belong. That is, both sender and receiver could have access to a codebook

with k mappings in it; one for Pascal source, one for English text, etc. The sender would

then simply alert the receiver as to which of the common codes he is using. This requires

only lg k bits of overhead. Assuming that classes of transmission with relatively stable

characteristics could be identified, this hybrid approach would greatly reduce the redundancy

due to overhead without significantly increasing expected codeword length. In addition, the

cost of computing the mapping would be amortized over all files of a given class. That is,

the mapping would be computed once on a statistically significant sample and then used on

a great number of files for which the sample is representative. There is clearly a substantial

risk associated with assumptions about file characteristics and great care would be necessary

in choosing both the sample from which the mapping is to be derived and the categories

into which to partition transmissions. An extreme example of the risk associated with the

codebook approach is provided by author Ernest V. Wright who wrote a novel Gadsby (1939)

containing no occurrences of the letter E. Since E is the most commonly used letter in the

English language, an encoding based upon a sample from Gadsby would be disastrous if used

with "normal" examples of English text. Similarly, the "normal" encoding would provide

poor compression of Gadsby.

Mcintyre and Pechura describe an experiment in which the codebook approach is com

pared to static Huffman coding [Mcintyre and Pechura 1985]. The sample used for com

parison is a collection of 530 source programs in four languages. The codebook contains a

Pascal code tree, a FORTRAN code tree, a COBOL code tree, a PL/1 code tree, and an

ALL code tree. The Pascal code tree is the result of applying the static Huffman algorithm·

to the combined character frequencies of all of the Pascal programs in the sample. The ALL

code tree is based upon the combined character frequencies for all of the programs. The

experiment involves encoding each of the programs using the five codes in the codebook and

the static Huffman algorithm. The data reported for each of the 530 programs consists of

the size of the coded program for each of the five predetermined codes, and the size of the

coded program plus the size of the mapping (in table form) for the static Huffman method.

In every case, the code tree for the language class to which the program belongs gener

ates the most compact encoding. Although using the Huffman algorithm on the program

itself yields an optimal mapping, the overhead cost is greater than the adtkd redundancy

incurred by the less-than-optimal code. In many cases, the ALL code tree als<J generates a

more compact encoding than the static Huffman algorithm. In the worst case, an encoding

constructed from the codebook is only 6.6% larger than that constructed by the Huffman

14

algorithm. These results suggest that, for files of source code, the codebook approach may

be app.··opriate.

Gilbert discusses the construction of Huffman codes based on inaccurate source prob

abilities [Gilbert 1971]. A simple solution to the problem of incomplete knowledge of the

source is to avoid long codewords, thereby minimizing the error of underestimating badly

the probability of a message. The problem becomes one of constructing the optimal binary

tree subject to a height restriction (see [Knuth 1971; Hu and Tan 1972; Garey 1974]). An

other approach involves collecting statistics for several sources and then constructing a code

based upon some combined criterion. This approach could be applied to the problem of

designing a single code for use with English, French, German, etc., sources. To accomplish

this, Huffman's algorithm could be used to minimize either the average codeword length for

the combined source probabilities; or the average codeword length for English, subject to

constraints on average codeword lengths for the other sources.

3.3 Representations of the Integers

Elias defines a sequence of coding schemes which map the positive integers onto the set

of binary codewords [Elias 1975]. These schemes are universal in the following sense: given

any countable set of messages and any probability distribution, mapping messages in order of

decreasing probability to codewords in order of increasing length gives an average codeword

length that is bounded by c1H + c2. Due to the restriction of the set of source messages to

the integers, this method is not a general-purpose coding technique. However, an application

of the Elias codes to the general data compression problem is demonstrated in Section 5.

The first Elias code is one which is simple but not optimal. This code,"(, maps an integer

z onto the binary value of z prefaced by Llg z J zeros. The binary value of z begins with a 1,

which serves to delimit the prefix. The result is a prefix code since the total length of the

codeword is exactly one greater than twice the number of zeros in the prefix. The code is not

a minimum redundancy code since the ratio of expected codeword length to entropy goes

to 2 as entropy approaches infinity. The second code, 8, maps an integer z to a codeword

consisting of 'Y(Llg z J + 1) followed by the binary value of z with the leading 1 deleted. The

resulting codeword has length Llg z J + 2 Llg(l + Llg z J)J + 1. This concept can be applied

recursively to shorten the codeword lengths, but the benefits decrease rapidly. The code 8 is

asymptotically optimal since the limit of the ratio of expected codeword length to entropy

is 1. Figure 3.4 lists the values of 'Y and 8 for a sampling of the integers.

15

I 8

1 1 1

2 010 0100

3 011 0101

4 00100 01100

5 00101 01101

6 00110 01110

7 00111 01111

8 0001000 00100000

16 000010000 001010000

17 000010001 001010001

32 00000100000 0011000000

Figure 3.4 Elias Codes.

4. ADAPTIVE HUFFMAN CODING

Adaptive Huffman coding was first conceived independently by Faller and Gallager [Faller

1973; Gallager 1978]. Knuth contributed improvements to the original algorithm [Knuth

1985] and the resulting algorithm is referred to as algorithm FGK. A more recent version

of adaptive Huffman coding is described by Vitter [Vitter 1985]. All of these methods a.re

defined-word schemes which determine the mapping from source messages to codewords

based upon a running estimate of the source message probabilities. The code is adaptive,

changing so as to remain optimal for the current estimates. The algorithms require only

one pass over the data. The performance of these methods, in terms of number of bits

transmitted, can be better than that of static Huffman coding. This does not contradict the

optimality of the static method as the static method is optimal only over all methods which

assume a time-invariant mapping. The performance of the adaptive methods can also be

worse than that of the static method. Upper bounds on the redundancy of these methods

are discussed in this section.

4.1 Algorithm FGK

The basis for algorithm FGK is the Sibling Property, defined by Gallager [Gallager 1978]:

A binary code tree has the sibling property if each node (except the root) has a sibling and

if the nodes can be listed in order of nonincreasing weight with each node adjacent to its

16

sibling. Gallager proves that a binary prefix code is a Huffman code if and only if the

code t.i:ee has the sibling property. In algorithm FGK, both sender and receiver maintain

dynamically changing Huffman code trees. The leaves of the code tree represent the-source

messages and the weights of the leaves represent frequency counts for the messages. At any

point in time, k of then possible source messages have occurred in the message ensemble.

7

1

c

(a) (b)

7

c

(c)

Figure 4.1 Algorithm FGK processing the ensemble "abed". a) Tree immediately before processing
d; 100 will be transmittetl. b) After encoding of d. c) If the 4th letter had been b, 11 would have been
transmitted; tree after update is shown.

17

Initially, the code tree consists of a single leaf node, called the 0-node. The 0-node is a

special aode used to represent the n-k unused messages. For each message transmitted, both

parties must increment the corresponding weight and recompute the code tree to maintain

the sibling property. At the point in time when t messages have been transmitted, k of them

distinct, and k < n, the tree is a legal Huffman code tree with k + 1 leaves, one for each

of the k messages and one for the 0-node. If the (t + l)"t message is one of the k already

seen, the algorithm transmits at+1 's current code, increments the appropriate counter and

recomputes the tree. If an unused message occurs, the 0-node is split to create a pair of

leaves, one for at+1, and a sibling which is the new 0-node. Again the tree is recomputed.

In this case, the code for the 0-node is sent; in addition, the receiver must be told which of

then - k unused messages has appeared. In Figure 4.1, a simple example is given. At each

node a count of occurrences of the corresponding message is stored. Nodes are numbered

indicating their position in the sibling property ordering. The updating of the tree can be

done in a single traversal from the at+l node to the root. This traversal must increment the

count for the at+l node and for each of its ancestors. Nodes may be exchanged to maintain

the sibling property, but all of these exchanges involve a node on the path from at+1 to

the root. Figure 4.2 illustrates the tree formed by this process on the message ensemble

"eteaetneteareteaetnoi".

Figure 4.2 Tree formed by algorithm FGK for ensemble "eteaetneteareteaetnoi".

18

Disregarding overhead, the number of bits transmitted by algorithm FGK for the message

ensemlle of Figure 4.2 is 47. The static Huffman algorithm would transmit 53 bits in

processing the same data. The overhead associated with the adaptive method is actually

less than that of the static algorithm. In the adaptive case the only overhead is the nlg n

bits needed to represent each of the n different source messages when they appear for the

first time. (This is in fact conservative; rather than transmitting a unique code for each

of the n source messages, the sender could transmit the message's position in the list of

remaining messages and save a few bits in the average case.) In the static case, the source

messages need to be sent as does the shape of the code tree. Vitter has proved that the total

number of bits transmitted by algorithm FGK for a message ensemble of length t containing

n distinct messages is bounded below by S - n + 1, where Sis the performance of the static

method, and bounded above by 28 +t-4n+2 [Vitter 1985]. So the performance of algorithm

FGK is never much worse than twice optimal. Knuth provides a complete implementation of

algorithm FGK and a proof that the time required for each encoding or decoding operation

is O(l), where l is the current length of the codeword [Knuth 1985]. It should be noted that

since the mapping is defined dynamically, during transmission, the encoding and decoding

algorithms stand alone; there is no additional algorithm to determine the mapping as in

static methods.

4.2 Algorithm V

The adaptive Huffman algorithm of Vitter (algorithm V) incorporates two improvements

over algorithm FGK. First, the number of interchanges in which a node is moved upward in

the tree during a recomputation is limited to one. This number is bounded in algorithm FGK

only by l/2 where l is the length of the codeword for at+l when the recomputation begins.

Second, Vitter's method minimizes the values of~ li and max{Zi} subject to the requirement

of minimizing~ Wih· These improvements are accomplished through the use of a new system

for numbering nodes. The numbering, called an implicit numbering, corresponds to a level

ordering of the nodes (from bottom to top and left to right). Figure 4.3 illustrates that

the numbering of algorithm FGK is not always a level ordering. The following invariant

is maintained in Vitter's algorithm: For each weight w, all leaves of weight w precede (in

the implicit numbering) all internal nodes of weight w. Vitter proves that this invariant

enforces the desired bound on node promotions (Vitter 1985]. The invariant also implements

bottom merging, as discussed in Section 3.2, to minimize~ li and max{li}. The difference

between Vitter's method and algorithm FGK is in the way the tree is updated between

transmissions. In order to understand the revised update operation, the following definition

19

5

p

Figure 4.3 FGK tree with non-level order numbering.

of a block of nodes is necessary: Blocks are equivalence classes of nodes defined by u = v iff

weight(u) = weight(v) and u and v are either both leaves or both internal nodes. The leader

of a block is the highest-numbered (in the implicit numbering) node in the block. Blocks

are ordered by increasing weight with the convention that a leaf block always precedes an

internal block of the same weight. When an exchange of nodes is required to maintain

the sibling property, algorithm V requires that the node being promoted be moved to the

position currently occupied by the highest-numbered node in the target block.

Figure 4.4 illustrates the tree built by Vitter's method for the ensemble of Figure 4.2.

Both :E Ii and max{li} are smaller in the tree of Figure 4.4. The number of bits transmitted

during the processing of the sequence is 47, the same used by algorithm FGK. However, if the

transmission continues with n, r, o, i or an unused letter, the cost of algorithm V will be less

than that of algorithm FGK. The reason is that while both algorithms have the property

that immediately after the tth letter is transmitted the adaptive Huffman tree is a valid

Huffman tree with respect to the first t letters, Vitter'.s method has the additional property

that the external path length (:Eli) and the height (max{li}) are minimized as well. This

is helpful for efficiently coding the (t + l)"t letter. Vitter proves that the performance of his

algorithm is bounded by S - n + 1 from below and S + t..:.. 2n + 1 from above [Vitter 1985].

At worst then, Vitter's adaptive method may transmit one more bit per codeword than the

20

1

Figure 4.4 Tree formed by algorithm V for the ensemble of Fig. 4.2.

static Huffman method.

The improvements made by Vitter do not change the complexity of the algorithm; algo

rithm V encodes and decodes in 0(1) time as does algorithm FGK.

5. OTHER ADAPTIVE METHODS

Two more adaptive data compression methods, algorithm BSTW and Lempel-Ziv coding,

are discussed in this section. These schemes diverge from the fundamental Huffman coding

approach to a greater degree than the methods discussed in Section 4. Algorithm BSTW is

a defined-word scheme which attempts to exploit locality. Lempel-Ziv coding is a free-parse

method; that is, the words of the source alphabet are defined dynamically, as the encoding

is performed. Algorithm BSTW is a variable-variable scheme, while Lempel-Ziv coding is

variable-block.

5.1 Lempel-Ziv Codes

The Lempel-Ziv algorithm consists of a rule for parsing strings of symbols from a finite

alphabet into substrings, or words, whose lengths do not exceed a prescribed integer L1;

and a coding scheme which maps these substrings sequentially into uniquely decipherable

codewords of fixed length L2 [Ziv and Lempe! 1977]. The strings are selected so that they

have very nearly equal probability of occurrence. As a result, frequently-occurring symbols

21

are grouped into longer strings while infrequent symbols appear in short strings. This strat

egy is erfective at exploiting redundancy due to symbol frequency, character repetition, _and

high-usage patterns. Figure 5.1 shows a small Lempel-Ziv code table. Low-frequency letters

such as Z are assigned individually to fixed-length codewords (in this case, 12 bit binary

numbers represented in base ten for readability). Frequently-occurring symbols, such as

blank (represented by b) and zero, appear in long strings. Effective compression is achieved

when a long string is replaced by a single 12-bit code.

Symbol

String Code

A 1

T 2

AN 3

TH 4

THE 5

AND 6

AD 7

b 8

bb 9

bbb 10

0 11

00 12

000 13

0000 14

z 15

4095

Figure 5.1 A Lempel-Ziv code table.

The Lempel-Ziv method is an incremental parsing strategy in which the coding process

is interlaced with a learning process for varying source characteristics [Ziv and Lempel 1977].

In Figure 5.1, run-length encoding of zeros and blanks is being learned .

.
The Lempel-Ziv algorithm parses the source ensemble into a collection of segments of

gradually increasing length. At each encoding step, the longest prefix of the remaining

22

source ensemble which matches an existing table entry (a) is parsed off, along with the

characto. r (c) following this prefix in the ensemble. The new source message, ac, is added

to the code table. The new table entry is coded as (i, c) where i is the codeword for the

existing table entry and c is the appended character. For example, the ensemble 010100010

is parsed into {O, 1, 01, 00, 010} and is coded as {(O, 0), (0, 1), (1, 1), (1, 0), (3, O)}. The table

built for the message ensemble "ababcbababaaaaaaaaa" is shown in Figure 5.2. The coded

ensemble has the form: {(O, a), (0, b), (1, b), (0, c), (2, a), (5, b), (1, a), (7, a), (8, a)}. The string

table is represented in a more efficient manner than in Figure 5.1; the string is represented

by its prefix codeword followed by the extension character, so that the table entries have

fixed length. The Lempel-Ziv strategy is simple, but greedy. It simply parses off the longest

recognized string each time rather than searching for the best way to parse the ensemble.

Message Codeword

a 1

b 2

lb 3

c 4

2a 5

Sb 6

la 7

7a 8

8a 9

Figure 5.2 Lempel-Ziv table for the message ensemble "ababcbababaaaaaaaaa".

The Lempel-Ziv method specifies fixed-length codewords. The size of the table and

the maximum source length message are determined by the length of the codewords. It

should be clear from the definition of the algorithm that Lempel-Ziv codes tend to be quite

inefficient during the initial portion of the message ensemble. If the codeword length is not

sufficiently large, Lempel-Ziv codes may also rise slowly to reasonable efficiency, maintain

good performance briefly, and fail to make any gains once the table is full and messages can

no longer be added. If the ensemble's characteristics vary over time, the method may be

"stuck with" the behavior it has learned and may be unable to continue to adapt.

Lempel-Ziv coding is asymptotically optimal, meaning that the redundancy approaches

zero as the length of the source ensemble tends to infinity. However, for particular finite

23

sequences, the compression achieved may be far from optimal [Storer and Szymanski 1982].

When the method begins, each source symbol is coded individually. In the case of 6- or

8-bit source symbols and 12-bit codewords, the method yields as much as 503 expansion

during initial encoding. This initial inefficiency can be mitigated somewhat by initializing

the string table to contain all of the source characters. Implementation issues are particularly

important in Lempel-Ziv methods. A straightforward implementation takes O(n2) time to

process a string of n symbols; for each encoding operation, the existing table must be scanned

for the longest message occurring as a prefix of the remaining ensemble. Rodeh addresses the

issue of computational complexity by defining a linear implementation of Lempel-Ziv coding

based on suffix trees [Rodeh et al. 1981]. The Rodeh scheme is asymptotically optimal,

but an input must be very long in order to allow efficient compression., and the memory

requirements of the scheme are large, 0(n) where n is the length of the source ensemble. It

should also be mentioned that the Rodeh method constructs a variable-variable code; the

pair (i, c) is coded using a representation of the integers, such as the Elias codes, for i and

for c (a letter c can always be coded as the kth member of the source alphabet for some k).

The other major implementation consideration involves the way in which the string table

is stored and accessed. Welch suggests that the table be indexed by the codewords (integers

1 ... 2L where Lis the maximum codeword length) and that the table entries be fixed-length

codeword-extension character pairs [Welch 1984]. Hashing is proposed to assist in encoding.

Decoding becomes a recursive operation, in which the codeword yields the final character of

the substring and another codeword. The decoder must continue to consult the table until

the retrieved codeword is 0. Unfortunately, this strategy peels off extension characters in

reverse order and some type of stack operation must be used to reorder the source.

Storer and Szymanski present a general model for data compression which encompasses

Lempel-Ziv coding [Storer and Szymanski 1982]. Their broad theoretical work compares

classes of macro schemes, where macro schemes include all methods which factor out du

plicate occurrences of data and replace them by references either to the source ensemble or

to a code table. They also contribute a linear-time Lempel-Ziv-like algorithm with better

performance than the standard Lempel-Ziv method.

Rissanen extends the Lempel-Ziv incremental parsing approach [Rissanen 1983]. Aban

doning the requirement that the substrings partition the ensemble, the Rissanen method

gathers "contexts" in which each symbol of the string occurs. The contexts are substrings

of the previously encoded string (as in Lempel-Ziv), have varying size, and are in general

overlapping. The Rissanen method ·hinges upon the identification of a design parameter

24

capturing the concept of "relevant" contexts. The problem of finding the best parameter is

undecicb.ble, and Rissanen suggests estimating the parameter experimentally.

5.2 Algorithm BSTW

The most recent of the algorithms surveyed here is due to Bentley, Sleator, Tarjan

and Wei [Bentley et al. 1986]. This method, algorithm BSTW, possesses the advantage

that it requires only one pass over the data to be transmitted yet has performance which

compares well to that of the static two-pass method along the dimension of number of bits

per word transmitted. It incorporates the additional benefit of taking advantage of locality

of reference, the tendency for words to occur frequently for short periods of time then fall

into long periods of disuse. The algorithm uses a self-organizing list as an auxiliary data

structure and employs shorter encodings for words near the front of this list. There are many

strategies for maintaining self-organizing lists (see [Hester and Hirschberg 1985]); algorithm

BSTW uses move-to-front.

A simple example serves to outline the method of algorithm BSTW. As in other adaptive

schemes, sender and receiver maintain identical representations of the code; in this case

message lists which are updated at each transmission, using the move-to-front heuristic.

These lists are initially empty. When message at is transmitted, if at is on the sender's list,

he transmits its current position. He then updates his list by moving at to position 1 and

shifting each of the other messages down one position. The receiver similarly alters his word

list. If at is being transmitted for the first time, then k + 1 is the "position" transmitted,

where k is the number of distinct messages transmitted so far. Some representation of the

message itself must be transmitted as well, but just this first time. Again, at is moved to

position one by both sender and receiver subsequent to its transmission. For the ensemble

"abcadeabf<l", the transmission would be (for ease of presentation, the position is represented

in base ten): 1 a 2 b 3 c 3 4 d 5 e 3 5 6 f 5

As the example shows, algorithm BSTW transmits ea.ch source message once; the rest

of its transmission consists of encodings of list positions. Therefore, an essential feature of

algorithm BSTW is a reasonable scheme for representation of the integers. The methods

discussed by Bentley are the Elias codes presented in Section 3.3. The simple scheme, code

/, involves prefixing the binary representation of the integer i with Llg i J zeros. This yields

a prefix code with the length of the codeword for i equal to 2 Llg i J + 1. Greater compression

can be gained through use of the more sophisticated scheme, S, which encodes an integer i

in 1 + Llg iJ + 2 L(lg(l + Llg iJ)J bits.

25

A message ensemble on which algorithm BSTW is particularly efficient, described by

Bentley, is formed by repeating each of n messages n times, for example 1n2n3n .. . nn.

Disregarding overhead, a static Huffman code uses n 2 lgn bits (or lgn bits per message),

while algorithm BSTW uses n 2 + L:i=1 llg iJ (which is essentially n 2 + 2nlg n, or 0(1) bits

per message). The overhead for algorithm BSTW consists of just the nlgn bits needed to

transmit each source letter once. As discussed in Section 3.2, the overhead for static Huffman

coding includes an additional 2n bits.

Bentley proves that with the simple scheme for encoding integers, the performance of

algorithm BSTW is bounded above by 2S + 1, where S is the cost of the static Huffman

coding scheme [Bentley et al. 1986]. Using the more sophisticated integer encoding scheme,

the bound is 1+S+2lg(l + S). A key idea. in the proofs given by Bentley is the fact that,

using the move-to-front heuristic, the integer transmitted for a message at will be one more

than the number of different words transmitted since the last occurrence of at. Bentley also

proves that algorithm BSTW is asymptotically optimal.

An implementation of algorithm BSTW is described in great detail by Bentley [Bentley

et al. 1986]. In this implementation, encoding an integer consists of a table lookup; the

codewords for the integers from 1 to n + 1 are stored in an array indexed from 1 to n + 1.

A binary trie is used to store the inverse mapping, from codewords to integers. Decoding

an Elias codeword to find the corresponding integer involves following a path in the trie.

Two interlinked data structures, a binary trie and a binary tree, are used to maintain the

word list. The trie is based on the binary encodings of the source words. Mapping a source

message ai to its list position p involves following a path in the trie, following a link to the

tree, and then computing the symmetric order position of the tree node. Finding the source

message ai in position pis accomplished by finding the symmetric order position pin the tree

and returning the word stored there. Using this implementation, the work done by sender

and receiver is O(length(ai) + length(w)) where ai is the message being transmitted and w

the codeword representing ai'S position in the list. If the source alphabet consists of single

characters, then the complexity of algorithm BSTW is just O(length(w)).

6. EMPffilCAL RESULTS

Empirical tests of the efficiencies of the algorithms presented here are reported in [Bentley

et al. 1986; Knuth 1985; Schwartz and Kallick 1964; Vitter 1985; Welch 1984]. These exper

iments compare the number of bits per word required and processing time is not reported.

While theoretical considerations bound the performance of the various algorithms, experi-

26

mental data is invaluable in providing additional insight. It is clear that the performance of

each of these methods is dependent upon the characteristics of the source ensemble.

Schwartz and Kallick test an implementation of static Huffman coding in which bot

tom merging is used to determine codeword lengths and all codewords of a given length are

sequential binary numbers [Schwartz and Kallick 1964). The source alphabet in the experi

ment consists of 5,114 frequently-used English words, 27 geographical names, 10 numerals,

14 symbols, and 43 suffixes. The entropy of the document is 8.884 binary digits per message

and the average codeword constructed has length 8.920. The same document is also coded

one character at a time. In this case, the entropy of the source is 4.03 and the coded ensemble

contains an average of 4.09 bits per letter. The redundancy is low in both cases. However,

the relative redundancy (i.e., redundancy/ entropy) is lower when the document is encoded

by words.

Knuth describes algorithm FGK's performance on three types of data: a file containing

the text of Grimm's first ten Fairy Tales, text of a technical book, and a file of graphical

data [Knuth 1985). For the first two files, the source messages are individual characters

and the alphabet size is 128. The same data is coded using pairs of characters, so that

the alphabet size is 1968. For the graphical data, the number of source messages is 343.

In the case of the Fairy Tales the performance of FGK is very close to optimum, although

performance degrades with increasing file size. Performance on the technical book is not

as good, but is still respectable. The graphical data proves harder yet to compress, but

again FGK performs reasonably well. In the latter two cases, the trend of performance

degradation with file size continues. Defining source messages to consist of character pairs

results in slightly better compression, but the difference would not appear to justify the

increased memory requirement imposed by the larger alphabet.

n

100

500

961

k

96

96

97

Static

664

3320

6417

Alg. V

569

3233

6330

Alg. FGK

659

3339

6432

Figure 6.1 Simulation results for a small text file [Vitter 1985]; n =file size in bytes, k =number of
distinct messages. ,

.
Vitter tests the performance of algorithms V and FGK against that of static Huffman

coding. Each method is run on data which includes Pascal source code, the 'JEX source

27

of the author's thesis, and electronic mail files [Vitter 1985]. Figure 6.1 summarizes the

results . if the experiment for a small file of text. The performance of each algorithm is

measured by the number of bits in the coded ensemble and overhead costs are not included.

Figure 6.2 presents data for Pascal source code. For the 'JEX source, the alphabet consists of

128 individual characters; for the other two file types, only 97 characters appear. For each

experiment, when the overhead costs are taken into account, algorithm V outperforms static

Huffman coding as long as the size of the message ensemble (number of characters) is no

more than 104 . Algorithm FGK displays slightly higher costs, but never more than 104% of

the static algorithm.

n k Static Alg. V Alg. FGK

100 32 459 450 471

500 49 2460 2486 2522

1000 57 4902 4945 4993

10000 73 47807 47942 48020

12067 78 57592 57737 57822

Figure 6.2 Simulation results for Pascal source code [Vitter 1985]; n = file size in bytes, k = number
of distinct messages.

Bentley uses C and Pascal source files, TROFF source files, and a terminal session

transcript of several hours for experiments which compare the performance of algorithm

BSTW to static Huffman coding. Here the defined words consist of two disjoint classes,

sequences of alphanumeric characters and sequences of nonalphanumeric characters. The

performance of algorithm BSTW is very close to that of static Huffman coding in all cases.

The experiments reported by Bentley are of particular interest in that they incorporate

another dimension, the possibility that in the move-to-front scheme one might want to limit

the size of the data structure containing the codes to include only the m most recent words,

for some m [Bentley et al. 1986]. The tests consider cache sizes of 8, 16, 32, 64, 128 and

256. Although performance tends to increase with cache size, the increase is erratic, with

some documents exhibiting nonmonotonicity (performance which increases with cache size

to a point and then decreases when cache size is further increased).

Welch reports. simulation results for Lempel-Ziv codes in terms of compression ratios

[Welch 1984]. His definition of compression ratio is the one given in Section 1.3, G =(average

message length)/(average codeword length). The ratios reported are: 1.8 for English text, 2

28

to 6 for Cobol data files, 1.0 for floating point arrays, 2.1 for formatted scientific data, 2.6 for

system log data, 2.3 for source code, and 1.5 for object code. The tests involving English text

files showed that long individual documents did not compress better than groups of short

documents. This observation is somewhat surprising, in that it seems to refute the intuition

that redundancy is due at least in part to correlation in content. For purposes of comparison,

Welch cites results of Pechura and Rubin. Pechura achieved a 1.5 compression ratio using

static Huffman coding on files of English text [Pechura 1982]. Rubin reports a 2.4 ratio for

English text when employing a complex technique for choosing the source messages to which

Huffman coding is applied [Rubin 1976]. These results provide only a very weak basis for

comparison, since the characteristics of the files used by the three authors are unknown. It

is very likely that a single algorithm may produce compression ratios ranging from 1.5 to

2.4, depending upon the source to which it is applied.

7. SUSCEPTIBILITY TO ERROR

The discrete noiseless channel is, unfortunately, not a very realistic model of a commu

nication system. Actual data transmission systems are prone to two types of error: phase

error, in which a code symbol is lost or gained; and amplitude error, in which a code symbol

is corrupted [Neumann 1962]. The degree to which channel errors degrade transmission is

an important parameter in the choice of a data compression method. The susceptibility to

error of a coding algorithm depends heavily on whether the method is static or adaptive.

7.1 Static Codes

It is generally known that Huffman codes tend to be self-correcting [Standish 1980). That

is, a transmission error tends not to propagate too far. The codeword in which the error

occurs is incorrectly received and it is likely that several subsequent codewords are misin

terpreted but, before too long, the receiver is back in synchronization with the sender. In a

static code, synchronization means simply that both sender and receiver identify the begin

nings of the codewords in the same way. In Figure 7.1, an example is used to illustrate the

ability of a Huffman code to recover from phase errors. The message ensemble "BCDAEB"

is encoded using the Huffman code of Figure 3.3 where the source letters ai ... as represent

A ... E respectively, yielding the coded ensemble "0110100011000011". Figure 7.1 demon

strates the impact of loss of the first bit, the second bit, or the fourth bit. The dots show

the way in which each line is parsed into codewords. The loss of the first bit results in

re-synchronization after the third bit so that only the first source message (B) is lost (re

placed by AA). When the second bit is lost, the first. eight bits of the coded ensemble are

29

misinterpreted and synchronization is regained by bit 9. Dropping the fourth bit causes the

same degree of disturbance as dropping the second.

0 11.010.001.1.000.011 coded ensemble (BCDAEB)

1 .1.010.001.1.000.011 bit 1 is lost, interpreted as AACDAEB

0 10.1.000.1.1.000.011 bit 2 is lost, interpreted as CAEAAEB

0 11.1.000.1.1.000.011 bit 4 is lost, interpreted as BAEAAEB

Figure 7 .1 Recovery from phase errors

The effect of amplitude errors is demonstrated in Figure 7.2. The format of the illustra

tion is the same as that in Figure 7.1. This time bits 1, 2, and 4 are inverted rather than

lost. Again synchronization is regained almost immediately. When bit 1 or bit 2 is changed,

only the first three bits (the first character of the ensemble) are disturbed. Inversion of bit

four causes loss of synchronization through the ninth bit. A very simple explanation of the

self-synchronization present in these example can be given. Since many of the codewords

end in the same sequence of digits, the decoder is likely to reach a leaf of the Huffman code

tree at one of the codeword boundaries of the original coded ensemble. When this happens,

the decoder is back in synchronization with the encoder.

0 1 1.0 1 0.00 1.1.000.011

1 .1.1.0 1 0.00 1.1.000.011

0 0 1.0 1 0.00 1.1.000.011

0 1 1.1.1.0 00.1.1.000.011

Figure 7 .2 Recovery from amplitude errors

30

coded ensemble (BCDAEB)

bit 1 is inverted,
interpreted as AAAC DAEB

bit 2 is inverted,
interpreted as DC DAEB

bit 4 is inverted,
interpreted as BAAEAAEB

So that self-synchronization may be discussed more carefully, the following definitions

are prei.~nted. (It should be noted that these definitions hold for arbitrary prefix codes, so

that the discussion includes all of the codes described in Section 3.) If s is a. suffix of some

codeword and there exist sequences of codewords rand D. such that sr = D., then r is said to

be a synchronizing sequence for s. For example, in the Huffman code used above, 1 is a syn

chronizing sequence for the suffix 01 while both 000001 and 011 are synchronizing sequences

for the suffix 10. If every suffix (of every codeword) has a synchronizing sequence, then the

code is completely self-synchronizing. If some or none of the proper suffixes have synchroniz

ing sequences, then the code is, respectively, partially- or never-self-synchronizing. Finally, if

there exists a sequencer which is a synchronizing sequence for every suffix, r is defined to be

a universal synchronizing sequence. The code used in the examples above is completely self

synchronizing, and has universal synchronizing sequence 00000011000. Gilbert and Moore

prove that the existence of a universal synchronizing sequence is a necessary as well as a

sufficient condition for a code to be completely self-synchronizing [Gilbert and Moore 1959].

They also state that any prefix code which is completely self-synchronizing will synchronize

itself with probability 1 if the source ensemble consists of successive messages independently

chosen with any given set of probabilities. This is true since the probability of occurrence of

the universal synchronizing sequence at any given time is positive.

It is important to realize that the fact that a completely self-synchronizing code will re

synchronize with probability 1 does not guarantee recovery from error with bounded delay. In

fact, for every completely self-synchronizing prefix code with more than two codewords, there

are errors within one codeword which cause unbounded error propagation [Neumann 1962].

In addition, prefix codes are not always completely self-synchronizing. Bobrow and Hakimi

state a necessary condition for a prefix code with codeword lengths l1 ... lr to be completely

self-synchronizing: the greatest common divisor of the li must be equal to one [Bobrow

and Hakimi 1969). The Huffman code {00, 01, 10, 1100, 1101, 1110, 1111} is not completely

self-synchronizing, but is partially self-synchronizing since suffixes 00, 01 and 10 are synchro

nized by any codeword. The Huffman code {000, 0010, 0011, 01, 100, 1010, 1011, 100, 111} is

never-self-synchronizing. Examples of never-self-synchronizing Huffman codes are difficult

to construct, and the example above is the only one with fewer than 16 source messages.

Stiffi.er proves that a code is never-self-synchronizing if and only if none of the proper suffixes

of the codewords a.re themselves codewords [Stiffi.er 1971).

The conclusions which may be drawn from the above discussion are: while it is common

for Huffman codes to self-synchronize, this is not guaranteed; and when self-synchronization

is assured, there is no bound on the propagation of the error. An additional difficulty is that

31

self-synchronization provides no indication that an error has occurred.

The problem of error detection and correction in connection with Huffman codes bas

not received a great deal of attention. Several ideas on the subject a.re reported here.

Rudner states that synchronizing sequences should be as short as possible to minimize re

synchronization delay. In addition, if a synchronizing sequence is used as the codeword for a

high probability message, then re-synchronization will be more frequent. A method for con

structing a minimum-redundancy code having the shortest possible synchronizing sequence

is described by Rudner [Rudner 1971]. Neumann suggests purposely adding some redun

dancy to Huffman codes in order to permit detection of certain types of errors [Neumann

1962]. Clearly this has to be done carefully, so as not to negate the redundancy reduction

provided by Huffman coding. Mcintyre and Pechura cite data integrity as an advantage of

the codebook approach discussed in Section 3.2 [Mcintyre and Pechura 1985]. When the

code is stored separately from the coded data, the code may be backed up to protect it from

perturbation. However, when the code is stored or transmitted with the data, it is suscep

tible to errors. An error in the code representation constitutes a drastic loss and therefore

extreme measures for protecting this part of the transmission are justified.

7.2 Adaptive Codes

Adaptive codes are far more adversely affected by transmission errors than are static

codes. For example, in the case of a adaptive Huffman code, even though the receiver may

re-synchronize with the sender in terms of correctly locating the beginning of a codeword, the

information lost represents more than a few bits or a few characters of the source ensemble.

The fact that sender and receiver are dynamically redefining the code indicates that by the

time synchronization is regained, they may have radically different representations of the

code. Synchronization as defined in Section 7.1 refers to synchronization of the bit stream,

which is not sufficient for adaptive methods. What is needed here is code synchronization,

that is, synchronization of both the bit stream and the dynamic data structure representing

the current code mapping.

There is no evidence that adaptive methods a.re self-synchronizing. Bentley notes that,

in algorithm BSTW, loss of synchronization can be catastrophic, whereas this is not true

with static Huffman coding [Bentley et al. 1986]. Ziv and Lempel recognize that the major

drawback of their algorithm is its susceptibility to error propagation [Ziv and Lempel 1977].

Welch also considers the' problem of error tolerance of Leinpel-Ziv codes and suggests that

the entire ensemble be embedded in an error-detecting code [Welch 1984].

32

8. NEW DIRECTIONS

Data compression is still very much an active research area. This section suggests pos

sibilities for further study.

The discussion of Section 7 illustrates the susceptibility to error of the codes presented

in this survey. Strategies for increasing the reliability of these codes while incurring only a

moderate loss of efficiency would be of great value. This area appears to be largely unex

plored. Possible approaches include embedding the entire ensemble in an error-correcting

code or reserving one or more codewords to act as error flags. For adaptive methods it may

be necessary for receiver and sender to verify the current code mapping periodically.

For adaptive Huffman coding, Gallager suggests an "aging" scheme, whereby recent

occurrences of a character contribute more to its frequency count than do earlier occurrences

[Gallager 1978]. This strategy introduces the notion of locality into the adaptive Huffman

scheme. Cormack and Horspool describe an algorithm for approximating exponential aging

[Cormack and Horspool 1984). However, the effectiveness of this algorithm has not been

established.

Both Knuth and Bentley suggest the possibility of using the "cache" concept to exploit

locality and minimize the effect of anomalous source messages. Preliminary empirical results

indicate that this may be helpful [Knuth 1985; Bentley et al. 1986]. A problem related to

the use of a cache is overhead time required for deletion. Strategies for reducing the cost

of a deletion could be considered. Another possible extension to algorithm BSTW is to

investigate other locality heuristics. Bentley proves that intermittent-move-to-front (move

to-front after every k occurrences) is as effective as move-to-front [Bentley et al. 1986). It

should be noted that there are many other self-organizing methods yet to be considered.

Several aspects of free-parse methods merit further attention. Lempel-Ziv codes appear

to be promising, although the absence of a worst-case bound on the redundancy of an

individual finite source ensemble is a drawback. The variable-block type Lempel-Ziv codes

have been implemented with some success [ARC 1986] and the construction of a variable

variable Lempel-Ziv code has been sketched [Ziv and Lempel 1978]. The efficiency of the

variable-variable model should be investigated. In addition, an implementation of Lempel

Ziv coding which c.ombines the tii:ne efficiency of Rodeh's method with more efficient use of

space is worthy of consideration.

33

9. SUMMARY

Data compression is a topic of much importance and many applications. Methods of

data compression have been studied for almost four decades. This paper has provided an

overview of data compression methods of general utility. The algorithms have been evaluated

in terms of the amount of compression they provide, algorithm efficiency, and susceptibility

to error. While algorithm efficiency and susceptibility to error are relatively independent

of the characteristics of the source ensemble, the amount of compression achieved depends

upon the characteristics of the source to a great extent.

Semantic dependent data compression techniques, as discussed in Section 2, are special

purpose methods designed to exploit local redundancy or context information. A semantic

dependent scheme can usually be viewed as a special case of one or more general-purpose

algorithms. It should also be noted that algorithm BSTW is a general-purpose technique

which exploits locality of reference, a type of local redundancy.

Susceptibility to error is the main drawback of each of the algorithms presented here.

Although channel errors are more devastating to adaptive algorithms than to static ones,

it is possible for an error to propagate without limit even in the static case. Methods of

limiting the effect of an error on the effectiveness of a data compression algorithm should be

investigated.

34

REFERENCES

Abrahamson, N. 1963. Information Theory and Coding. McGraw-Hill, New
York.

ARC File Archive Utility. 1986. Version 5.1. System Enhancement Asso
ciates. Wayne, N. J.

Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K. 1986. A Locally
Adaptive Data Compression Scheme. Commun. ACM 29, 4 (Apr.), 320-330.

Bobrow, L. S., and Hakimi, S. L. 1969. Graph Theoretic Prefix Codes and
Their Synchronizing Properties. Inform. Contr. 15, 1 (July), 70-94.

Brent, R., and Kung, H. T. 1978. Fast Algorithms for Manipulating Formal
Power Series. J. ACM 25, 4 (Oct.), 581-595.

Cappellini, V., Ed. 1985. Data Compre.uion and Error Control Technique&
with Application1. Academic Press, London.

Connell, J. B. 1973. A Huffman-Shannon-Fano Code. Proc. IEEE 61, 7
(July), 1046-1047.

Cormack,G. V. 5. Data Compression on a Database System. Commun. A CM
28, 12 (Dec.), 1336-1342.

Cormack, G. V., and Horspool, R. N. 1984. Algorithms for Adaptive Huffman
Codes. Inform. Proce11. Lett. 18, 3 (Mar.), 159-165.

Cortesi, D. 1982. An Effective Text-Compression Algorithm. BYTE 7, 1
(Jan.), 397-403.

Cot, N. 1977. Characterization and Design of Optimal Prefix Codes. Ph.D.
dissertation, Computer Science Dept., Stanford Univ., Stanford, Calif.

Elias, P. 1975. Universal Codeword Sets and Representations of the Integers.
IEEE Trans. Inform. Theory 21, 2 (Mar.), 194-203.

Faller, N. 1973. An Adaptive System for Data Compression. Record of the
7th Asilomar Conj. on Circuits, Sy.stems and Computer& (Pacific Grove, Ca.,
Nov.), 593-597.

Fano, R. M. 1949. Transmission of Information. M. I. T. Press, Cambridge,
Mass.

Fraenkel, A. S., Mor, M., and Perl, Y. 1983. Is Text Compression by Prefixes
and Suffixes Practical? Acta Inf. 20, 4 (Dec.), 371-375.

Gallager, R. G. 1968. Information Theory and Reliable Communication, Wi
ley, New York.

Gallager, R. G. 1978. Variations on a Theme by Huffman. IEEE Trans.
Inform. Theory 24, 6 (Nov.), 668-674.

Garey, M. R. 1974. Optimal Binary Search Trees with Restricted Maximal
Depth. SIAM J. Comput. 3, 2 (June), 101-110.

Gilbert, E. N. 1971. Codes Based on Inaccurate Source Probabilities. IEEE
Trans. Inform. Theory 17, 3, (May), 304-314.

Gilbert, E. N., and Moore, E. F. 1959. Variable-Length Binary Encodings.
Bell Sy.stem Tech. J. 38, 4 (July), 933-967.

Glassey, C. R., and Karp, R. M. 1976. On the Optimality of Huffman Trees.
SIAM J. Appl. Math 31, 2 (Sept.), 368-378.

Gonzalez, R. C., and Wintz, P. 1977. Digital Image Processing. Addison
Wesley, Reading, Mass.

Hahn, B. 1974. A New Technique for Compression and Storage of Data.
Commun. ACM 11, 8 (Aug.), 434-436.

Hester, J. H., and Hirschberg, D. S. 1985. Self-Organizing Linear Search.
ACM Comput. Surv. 17, 3 (Sept.), 295-311.

Hu, T. C., and Tan, K. C. 1972. Path Length of Binary Search Trees. SIAM
J. Appl. Math tt, 2 (Mar.), 225-234.

Hu, T. C., and Tucker, A. C. 1971. Optimal Computer Search Trees and
Variable-Length Alphabetic Codes. SIAM J. Appl. Math 21, 4 (Dec.), 514-
532.

Huffman, D. A. 1952. A Method for the Construction of Minimum-Redundancy
Codes. Proc. IRE 40, 9 (Sept.), 1098-1101.

Ingels, F. M. 1971. Information and Coding Theory. Intext, Scranton, Penn.

Itai, A. 1976. Optimal Alphabetic Trees. SIAM J. Compu.t. 5, 1 (Mar.), 9-18.

Karp, R. M. 1961. Minimum Redundancy Coding for the Discrete Noiseless
Channel. IRE TranJ. Inform. Theory 1, 1 (Jan.), 27-38.

Knuth, D. E. 1971. Optimum Binary Search Trees. Acta Inf. 1, 1 (Jan.),
14-25.

Knuth, D. E. 1985. Dynamic Huffman Coding. J. AlgorithmJ 6, 2 (June),
163-180.

Krause, R. M. 1962. Channels Which Transmit Letters of Unequal Duration.
Inform. Contr. 5, 1 (Mar.), 13-24.

Laeser, R. P., McLaughlin, W. I., and Wolff, D. M. 1986. Engineering Voyager
2's Encounter with Uranus Scientific American 255, 5 (Nov.), 5, 36-45.

Mcintyre, D. R., and Pechura, M. A. 1985. Data Compression Using Static
Huffman Code-Decode Tables. Commun. ACM 28, 6 (June), 612-616.

Mehlhorn, K. 1980. An Efficient Algorithm for Constructing Nearly Optimal
Prefix Codes. IEEE TranJ. Inform. Theory 26, 5 (Sept.), 513-517.

Neumann, P. G. 1962. Efficient Error-Limiting Variable-Length Codes. IRE
TranJ. Inform. Theory 8, 4 (July), 292-304.

Parker, D.S. 1980. Conditions for the Optimality of the Huffman Algorithm.
SIAM J. Comput. 9, 3 (Aug.), 470-489.

Pechura, M. 1982. File Archival Techniques Using Data Compression. Com
mun. ACM 25, 9 (Sept.), 605-609.

Perl, Y., Garey, M. R., and Even, S. 1975. Efficient Generation of Optimal
Prefix Code: Equiprobable Words Using Unequal Cost Letters. J. ACM 22,
2 (Apr.), 202-214.

Reghbati, H. K". 1981. An Overview of Data Compression Techniques. Com
puter 14, 4 (Apr.), 71-75.

Rissanen, J. 1983. A Universal Data Compression System. IEEE Tran.!. In
form. Theory 29, 5 (Sept.), 656-664.

Rodeh, M., Pratt, V. R., and Even, S. 1981. A Linear Algorithm for Data
Compression via String Matching. J. ACM 28, 1 (Jan.), 16-24.

Rubin, F. 1976. Experiments in Text File Compression. Commun. ACM 19,
11 (Nov.), 617-623.

Rudner, B. 1971. Construction of Minimum-Redundancy Codes with Op
timal Synchronizing Property. IEEE Tran.!. Inform. Theory 17, 4 (July),
478-487.

Ruth, S.S., and Kreutzer, P. J. 1972. Data Compression for Large Business
Files. Datamation 18, 9 (Sept.), 62-66.

Samet, H. 1984. The Quadtree and Related Hierarchical Data Structures.
ACM Comput. Surv. 16, 2 (June), 187-260.

Schwartz, E. S. 1964. An Optimum Encoding with Minimum Longest Code
and Total Number of Digits. Inform. Contr. 7, 1 (Mar.), 37-44.

Schwartz, E. S., and Kallick, B. 1964. Generating a Canonical Prefix Encod
ing. Commun. ACM 7, 3 (Mar.), 166-169.

Shannon, C. E., and Weaver, W. 1949. The Mathematical Theory of Com
munication. University of Illinois Press, Urbana, ill.

Snyderman, M., and Hunt, B. 1970. The Myriad Virtues of Text Compaction.
Datamation 16, 12 (Dec.), 36-40.

Standish, T. A. 1980. Data Structure Techniques. Addison-Wesley, Reading,
Mass.

StifHer, J. J. 1971. Theory of Synchronoua Communications. Prentice-Hall,
Englewood Cliffs, N. J.

Storer, J. A., and Szymanski, T. G. 1982. Data Compression via Textual
Substitution. J. ACM 29, 4 (Oct.), 928-951.

Tropper, R. 1982. Binary-Coded Text, A Text-Compression Method. BYTE
7, 4 (Apr.), 398-413.

UNIX User's Manual. 1984. 4.2. Berkeley Software Distribution, Virtual
VAX-11 Version, University of California, Berkeley.

Varn, B. 1971. Optimal Variable Length Codes (Arbitrary Symbol Cost and
Equal Code Word Probability). Inform. Contr. 19, 4 (Nov.), 289-301.

Vitter, J. S. 1985. Design and Analysis of Dynamic Huffman Coding. Pro
ceedings of the 26th IEEE Symposium on Foundations of Computer Science
(Portland, Oreg., Oct.), IEEE, New York, 293-302.

Wagner, R. A. 1973. Common Phrases and Minimum-Space Text Storage.
Commun. ACM 16, 3 (Mar.), 148-152.

Welch, T. A. 1984. A Technique for High-Performance Data Compression.
Computer 17, 6 (June), 8-19.

Wilkins, L. C., and Wintz, P.A. 1971. Bibliography on Data Compression,
Picture Properties and Picture Coding. IEEE Trans. Inform. Theory 17, 2,
180-197.

Zimmerman, S. 1959. An Optimal Search Procedure. Amer. Math. Monthly
66, (Oct.), 690-693.

Ziv, J., and Lempel, A. 1977. A Universal Algorithm for Sequential Data
Compression. IEEE Trans. Inform. Theory 23, 3 (May), 337-343.

Ziv, J., and Lempel, A. 1978. Compressionofindividual Sequences via Variable
Rate Coding. IEEE Trans. Inform. Theory 24, 5 (Sept.), 530-536.

