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Data Compression 
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< 
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This paper surveys a variety of data compression methods spanning almost forty years 
of research, from the work of Shannon, Fano and Huffman in the late 40's to a technique 
developed in 1986. The aim of data compression is to reduce redundancy in stored or 
communicated data, thus increasing effective data density. Data compression has important 
application in the areas of file storage and distributed systems. 

Concepts from information theory, as they relate to the goals and evaluation of data 
compression methods, are discussed briefly. A framework for evaluation and comparison of 
methods is constructed and applied to the algorithms presented. Comparisons of both theo
retical and empirical natures are reported and possibilities for future research are suggested. 
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INTRODUCTION 

Data compression is often referred to as coding. Information theory is defined to be 

the study of efficient coding and its consequences, in the form of speed of transmission and 

probability of error [Ingels 1971). Data compression may be viewed as a branch of information 

theory in which the primary objective is to minimize the amount of data to be transmitted. 

The purpose of this paper is to present and analyze a variety of data compression algorithms. 

While coding for purposes of data security (cryptography) and codes which guarantee 

a certain level of data integrity (error detection/correction) are topics worthy of attention, 

these do not fall under the umbrella of data compression. With the exception of a brief 

discussion of the susceptibility to error of the methods surveyed (Section 7), a discrete 

noiseless channel is assumed. Of course, the coding schemes described here may be combined 

with data security or error correcting codes. 

Much of the available literature on data compression approaches the topic from the 

point of view of data transmission. It is important to note that data compression is of 

value in data storage as well. Although this discussion will be framed in the terminology of 

data transmission, compression and decompression of data files is essentially the same task 

as sending and receiving data over a communication channel. The focus of this paper is on 

algorithms for data compression; it does not deal with hardware aspects of data transmission. 

The reader is referred to Cappellini for a discussion of techniques with natural hardware 

implementation [Cappellini 1985]. 

Background concepts in the form of terminology and a model for the study of data 

compression are provided in Section 1. Applications of data compression are also discussed 

in Section 1, to provide motivation for the material which follows. 

While the primary focus of this survey is data compression methods of general utility, 

Section 2 includes examples from the literature in which ingenuity applied to domain-specific 

problems has yielded interesting coding techniques. These techniques are referred to as 

semantic dependent since they are designed to exploit· the context and semantics of the 

data to achieve redundancy reduction. Semantic dependent techniques include the use of 
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quad trees, run length encoding, or difference mapping for storage and transmission of image 

data (G-..mzalez and Wintz 1977; Samet 1984]. 

General-purpose techniques, which assume no knowledge of the information content of 

the data, are described in Sections 3-5. In most cases, only worst-case analyses of these 

methods are feasible. To provide a more realistic picture of their effectiveness, empirical 

data is presented in Section 6. The susceptibility to error of the algorithms surveyed is 

discussed in Section 7 and possible directions for future research are considered in Section 8. 

1. FUNDAMENTAL CONCEPTS 

A brief introduction to information theory is provided in this section. The definitions 

and assumptions necessary to a comprehensive discussion and evaluation of data compression 

methods are discussed. 

1.1 Definitions 

A code is a mapping of source messages (words from the source alphabet a) into code

words (words of the code alphabet /3). Codes can be categorized as block-block, block

variable, variable-block or variable-variable, where block-block indicates that the source 

messages and codewords are of fixed length and variable-variable codes map variable-length 

source messages into variable-length codewords. The oldest and most widely used codes, 

ASCII and EBCDIC, are examples of block-block codes. These are not discussed, as they 

do not provide compression. The codes featured in this survey are of the block-variable, 

variable-variable, and variable-block types. 

When source messages of variable length are allowed, the question of how a message 

ensemble (sequence of messages) is parsed into individual messages arises. Many of the al

gorithms described here are defined-word schemes. That is, the set of source messages is 

determined prior to the invocation of the coding scheme. For example, in text file processing 

each character may constitute a message, or messages may be defined to consist of alphanu

meric and non-alphanumeric strings. In Pascal source code, each token may represent a mes

sage. All codes involving fixed-length source messages are, by default, defined-word codes. 

In free-parse methods, the coding algorithm itself parses the ensemble into variable-length 

sequences of symbols. 

A code is distinct if each word of the code is distinguishable from other codewords (i.e., 

the mapping from source messages to codewords is one-to-one). A distinct code is uniquely 
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decodable if every codeword is identifiable when immersed in a sequence of codewords. A 

uniquel; decodable code is a prefix code (or prefix-free code) if it has the prefix property, 

which requires that no codeword is a proper prefix of any other codeword. Prefix codes are 

instantaneously decodable; that is, the coded message can be parsed into codewords without 

the need for lookahead. A minimal prefix code is a prefix code such that if x is a proper 

prefix of some codeword, then xu is either a codeword or a proper prefix of a codeword, for 

each letter u in f3. Intuitively, the minimality constraint prevents the use of codewords which 

are longer than necessary. The codes discussed in this paper are all minimal prefix codes. 

1.2 Classification of Methods 

In addition to the categorization of data compression schemes with respect to message 

and codeword lengths, these methods are classified as either static or dynamic. A static 

method is one in which the mapping from the set of messages to the set of codewords 

is fixed before transmission begins, so that a given message is represented by the same 

codeword every time it appears in the message ensemble. The classic static defined-word 

scheme is Huffman coding [Huffman 1952]. In Huffman coding, the assignment of codewords 

to source messages is based on the probabilities with which the source messages appear 

in the message ensemble. Messages which appear more frequently are represented by short 

codewords; messages with smaller probabilities map to longer codewords. These probabilities 

are determined before transmission begins. 

A code is dynamic if the mapping from the set of messages to the set of codewords 

changes over time. Dynamic Huffman coding involves computing an approximation to the 

probabilities of occurrence "on the :fly", as the ensemble is being transmitted. The assignment 

of codewords to messages is based on the values of the relative frequencies of occurrence at 

each point in time. A message x may be represented by a short codeword early in the 

transmission because it occurs frequently at the beginning of the ensemble, even though its 

probability of occurrence over the total ensemble is low. Later, when the more probable 

messages begin to occur with higher frequency, the short codeword will be mapped to one 

of the higher probability messages and x will be mapped to a longer codeword. 

Dynamic codes are also referred to in the literature as adaptive, in that they adapt 

to changes in ensemble characteristics over time. The term adaptive will be used for the 

remainder of this paper; the fact that these codes adapt to changing characteristics is the 

source of their appeal. Some adaptive methods adapt to changing patterns in the source 

[Welch 1984] while others exploit locality of reference [Bentley et al. 1986]. Locality of 
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reference is the tendency, common in a wide variety of text types, for a particular word to 

occur £.equently for short periods of time then fall into disuse for long periods. All of the 

adaptive methods are one-pass methods; only one scan of the ensemble is required. Static 

Huffman coding requires two passes: one pass to compute probabilities and determine the 

mapping, and a second pass for transmission. The one-pass methods define and redefine the 

mapping dynamically, during transmission. 

An algorithm may also be a hybrid, neither completely static nor completely dynamic. 

In a simple hybrid scheme, sender and receiver maintain identical codebooks containing k 

static codes. For each transmission, the sender must choose one of the k codes and inform 

the receiver of his choice. Hybrid methods are discussed further in Section 2 and Section 3.2. 

1.3 A Data Compression Model 

In order to discuss the relative merits of data compression techniques, a framework for 

comparison must be established. There are two dimensions along which each of the schemes 

discussed here may be measured, algorithm complexity and amount of compression. For 

the static schemes, there are three algorithms to analyze: the map construction algorithm, 

the encoding algorithm, and the decoding algorithm. The degree of compression is usually 

the primary concern in data compression, but it is necessary to ascertain that the time 

requirements of the algorithm are not prohibitive. 

Several common measures of compression have been suggested: redundancy [Shannon 

and Weaver 1949), average message length [Huffman 1952), and compression ratio [Rubin 

· 1976; Ruth and Kreutzer 1972). These measures are defined below. Related to each of these 

measures are assumptions about the characteristics of the source. It is generally assumed in 

information theory that all statistical parameters of a message source are known with perfect 

accuracy [Gilbert 1971). The most common model is that of a discrete memoryless source; a 

source whose output is a sequence of letters (or messages), each letter being a selection from 

some fixed alphabet ai, ... , an. The letters are taken to be random statistically independent 

selections from the alphabet, the selection being made according to some fixed probability 

assignment p(a1), ... ,p(an) [Gallager 1968). Without loss of generality, the code alphabet 

is assumed to be {O, 1} throughout this paper. The modifications necessary for larger code 

alphabets are straightforward. 

It is assumed that any cost associated with the code letters is uniform. This assumption 

is reasonable, and important. The problem of constructing optimal codes over unequal letter 

costs is a significantly more difficult problem. Varn and Perl have developed algorithms for 
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minimum-redundancy prefix coding in the case of arbitrary symbol cost and equal codeword 

probabi •. ity [Varn 1971; Perl et al. 1975]. The assumption of equal probabilities mitigates 

the difficulty presented by the variable symbol cost. For the more general unequal letter 

costs and unequal probabilities model, Karp has proposed an integer linear programming 

approach [Karp 1961]. There have been several approximation algorithms proposed for this 

more difficult problem [Krause 1962; Cot 1977; Mehlhorn 1980]. 

When data is compressed, the goal is to reduce redundancy, leaving only the informa

tional content. The measure of information of a. source message ai (in bits) is -lgp(ai) t. 
This definition has intuitive appeal; in the case that p( ai) = 1, it is clear that ai is not 

at all informative since it ha.d to occur. Similarly, the smaller the value of p( ai), the more 

unlikely ai is to appear, hence the larger its information content. The reader is referred to 

Abramson for a longer, more elegant discussion of the legitimacy of this technical definition 

of the concept of information [Abramson 1963, pp. 6-13]. The average information content 

over the source alphabet is a particularly important quantity known as the entropy of a 

source letter, a.nd is given by H = l::?=l -p(ai)lgp(ai)· Entropy defines a. lower bound on 

the number of bits required for the coded message; the length of a codeword for message ai 

must be sufficient to carry the information content of ai. Since the value of H is generally 

not an integer, variable length codewords must be used if the lower bound is to be achieved. 

Both of these definitions of information content are due to Shannon. A derivation of the 

concept of entropy as it relates to information theory is presented by Shannon [Shannon a.nd 

Weaver 1949]. 

The most common notion of a "good" code is one which is optimal in the sense of 

having minimum redundancy. Redundancy ca.n be defined as: l:p(ai)li - 2:[-p(ai)lgp(ai)] 

where li is the length of the codeword representing message ai. That is, redundancy is 

a measure of the difference between expected codeword length and average information 

content. If a code has minimum average length for a given discrete probability distribution, 

it is said to be a minimum redundancy code. Since all of the methods to be discussed here 

are uniquely decodable, the definition of optimality includes implicitly the requirement of 

unique decodability. 

We define the term local redundancy to capture the notion of redundancy caused by local 

properties of a message ensemble, rather than its global characteristics. While the model 

used for analyzing general-purpose coding techniques assumes a random distribution of the 

source messages, this may not actually be the case. In particular applications the tendency 

t lg denotes the base 2 logarithm 
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for messages to cluster in predictable patterns may be known. The existence of predictable 

pattern;_ may be exploited to minimize local redundancy. Examples of applications in which 

local redundancy is common, and methods for dealing with local redundancy, are discussed 

in Section 2 and Section 6.2. 

Huffman uses average message length, L:p(ai)li, as a measure of the efficiency of a code. 

Clearly the meaning of this term is the average length of a coded message. We will use the 

term average codeword length to represent this quantity. Since entropy is constant for a given 

probability distribution, minimizing average codeword length minimizes redundancy. 

A code is asymptotically optimal if it has the property that for a given probability dis

tribution the ratio of average codeword length to entropy approaches 1 as entropy tends to 

infinity. 

The amount of compression yielded by a coding scheme can be measured by a compres

sion ratio. The term compression ratio has been defined in several ways. The definition 

C = (average message length)/ (average codeword length) captures the common meaning 

[Cappellini 1985]. A somewhat different definition by Rubin, C = (S - 0- OR)/ S, includes 

the representation of the code itself in the transmission cost [Rubin 1976]. In this definition 

S represents the length of the source ensemble, 0 the length of the output (coded mes

sage), and OR the size of the output (code) representation. The quantity OR constitutes a 

"charge" to an algorithm for transmission of information about the coding scheme. 

1.4 Motivation 

Data compression has wide application in terms of information storage, including rep

resentation of the abstract data type string [Standish 1980) and file compression. Huffman 

coding is used for compression in the ARC file archival system [ARC 1986], as is Lempel-Ziv 

coding, one of the adaptive schemes to be discussed in Section 5. An adaptive Huffman cod

ing technique is the basis for the compact command of the UNIX operating system [UNIX 

1984). 

In the area of data transmission, Huffman coding has been passed over for years in favor 

of block-block codes, notably ASCII. The advantage of Huffman coding is in the average 

number of bits per character transmitted, which may be much smaller than the lg n bits 

per character (where n is the source alphabet size) of a block-block system. The primary 

difficulty associated with variable-length codewords is that the rate at which bits are pre

sented to the transmission channel will fluctuate, depending on the relative frequencies of 
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the source messages. This requires buffering between the source and the channel. Advances 

in techLology have both overcome this difficulty and contributed to the appeal of variable

length codes. Current data networks allocate communication resources to sources -on the 

basis of need and provide buffering as part of the system. These systems require significant 

amounts of protocol, and fixed-length codes are quite inefficient for applications such as 

packet headers. In addition, communication costs are beginning to dominate storage and 

processing cost, so that variable-length coding schemes which reduce communication costs 

are attractive even if they are more complex. For these reasons, one could expect to see even 

greater use of variable-length coding in the future. 

It is interesting to note that the Huffman coding algorithm has a wide variety of applica

tions outside the sphere of data compression. These include construction of optimal search 

trees [Zimmerman 1959; Hu and Tucker 1971; Itai 1976], list merging [Brent and Kung 1978], 

and generating optimal evaluation trees in the compilation of expressions [Parker 1980]. Ad

ditional applications involve search for jumps in a monotone function of a single variable, 

sources of pollution along a river, and leaks in a pipeline [Glassey and Karp 1976]. 

2. SEMANTIC DEPENDENT METHODS 

Semantic dependent data compression techniques are designed to respond to specific 

types of local redundancy occurring in certain applications. One area in which data com

pression is of great importance is image representation and processing. There are two major 

reasons for this. The first is that digitized images contain a large amount of local redundancy. 

An image is usually captured in the form of an array of pixels whereas methods which exploit 

the tendency for pixels of like color or intensity to cluster together may be more efficient. 

The second reason for the abundance of research in this area is volume. Digital images 

usually require a very large number of bits, and many uses of digital images involve large 

collections of images. 

One technique used for compression of image data is run length encoding. In a common 

version of run length encoding, the sequence of image elements along a scan line (row) 

:z:1, :z:2, ... , Zn is mapped into a sequence of pairs (ci, 11), (c2, 12), ... (ck, lk) where Ci represents 

an intensity or color and li the length of the ith run (sequence of pixels of equal intensity). 

For pictures such· as weather maps, run length encoding can save a significant number of 

bits over the image element sequence [Gonzalez and Wintz 1977]. Another data compression 

technique specific to the area of image data is difference mapping, in which the image is 

represented as an array of differences in brightness (or color) between adjacent pixels rather 
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than the brightness values themselves. Difference mapping was used to encode the pictures 

of Urar:us transmitted by Voyager 2. The 8 bits per pixel needed to represent 256 brightness 

levels was reduced to an average of 3 bits per pixel when difference values were transmitted 

(Laeser et al. 1986]. In spacecraft applications, image :fidelity is a major concern due to 

the effect of the distance from the spacecraft to earth on transmission reliability. Difference 

mapping was combined with error-correcting codes to provide both compression and data 

integrity in the Voyager project. Another method which takes advantage of the tendency for 

images to contain large areas of constant intensity is the use of the quadtree data structure 

(Samet 1984]. Additional examples of coding techniques used in image processing can be 

found in Wilkins and Cappellini (Wilkins and Wintz 1971; Cappellini 1985]. 

Data compression is of interest in business data processing, both because of the cost 

savings it offers and because of the large volume of data manipulated in many business 

applications. The types of local redundancy present in business data files include runs of zeros 

in numeric fields, sequences of blanks in alphanumeric fields, and fields which are present in 

some records and null in others. Run length encoding can be used to compress sequences of 

zeros or blanks. Null suppression may be accomplished through the use of presence bits [Ruth 

and Kreutzer 1972]. Another class of methods exploits cases in which only a limited set of 

attribute values exist. Dictionary substitution entails replacing alphanumeric representations 

of information such as bank account type, insurance policy type, sex, month, etc. by the few 

bits necessary to represent the limited number of possible attribute values [Reghbati 1981]. 

Cormack describes a data compression system which is designed for use with database 

files [Cormack 1985]. The method, which is part of IBM's "Information Management Sys

tem" (IMS), compresses individual records and is invoked each time a record is stored in the 

database file; expansion is performed each time a record is retrieved. Since records may be 

retrieved in any order, context information used by the compression routine is limited to a. 

single record. In order for the routine to be applicable to any database, it must be able to 

adapt to the format of the record. The fact that database records a.re usually heterogeneous 

collections of small fields indicates that the local properties of the data. a.re more important 

than its global characteristics. The compression routine in IMS is a. hybrid method which 

attacks this local redundancy by using different coding schemes for different types of fields. 

The identified :field types in IMS a.re letters of the alphabet, numeric digits, packed decimal 

digit pairs, blank, 'and other. When compression begins, a. default code is used to encode the 

first character of the record. For ea.ch subsequent character, the type of the previous char

acter determines the code to be used. For example, if the record "01870bABC DbbLM N" 

were encoded with the letter code as default, the lea.ding zero would be coded using the letter 
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code; the 1, 8, 7, 0 and the first blank (1') would be coded by the numeric code. The A would 

be coded by the blank code; B, C, D, and the next blank by the letter code; the next blank 

and the L by the blank code; and the M and N by the letter code. Clearly, each code must 

define a codeword for every character; the letter code would assign the shortest codewords to 

letters, the numeric code would favor the digits, etc. In the system Cormack describes, the 

types of the characters are stored in the encode/decode data structures. When a character 

c is received, the decoder checks type(c) to detect which code table will be used in transmit

ting the next character. The compression algorithm might be more efficient if a special bit 

string were used to alert the receiver to a change in code table. Particularly if fields were 

reasonably long, decoding would be more rapid and the extra bits in the transmission would 

not be excessive. Cormack reports that the performance of the IMS compression routines is 

very good; at least fifty sites are currently using the system. 

A variety of approaches to data compression designed with text files in mind include use of 

a dictionary either representing all of the words in the file so that the file itself is coded as a list 

of pointers to the dictionary [Hahn 1974], or representing common words and word endings 

so that the file consists of pointers to the dictionary and encodings of the less common words 

[Tropper 1982]. Hand-selection of common phrases [Wagner 1973], programmed selection of 

prefixes and suffixes [Fraenkel et al. 1983] and programmed selection of common character 

pairs (Snyderman and Hunt 1970; Cortesi 1982] have also been investigated. 

This discussion of semantic dependent data compression techniques represents a limited 

sample of a very large body of research. These methods and others of a like nature are 

interesting and of great value in their intended domains. Their obvious drawback lies in 

their limited utility. It should be noted, however, that much of the efficiency gained through 

the use of semantic dependent techniques can be achieved through more general methods, 

albeit to a lesser degree. For example, the dictionary approaches can be implemented through 

either Huffman coding (Section 3.2, Section 4) or Lempel-Ziv codes (Section 5.1). Cormack's 

database scheme is a special case of the codebook approach (Section 3.2), and run length 

encoding is one of the effects of Lempel-Ziv codes. 

3. STATIC DEFINED-WORD SCHEMES 

The classic defined-word scheme was developed over 30 years ago in Huffman's well

known paper on minimum-redundancy coding [Huffman 1952]. Huffman's algorithm pro

vided the first solution to the problem of constructing minimum-redundancy codes. An 

earlier algorithm, due independently to Shannon and Fano (Shannon and Weaver 1949; Fano 
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1949], is not guaranteed to provide optimal codes, but approaches optimal behavior as the 

numbe:i-. of messages approaches infinity. The Huffman algorithm is also of importance be

cause it has provided a foundation upon which other data compression techniques, and 

applications in other areas, have built. We classify the codes generated by the Huffman 

and Shannon-Fane algorithms as variable-variable and note that they include block-variable 

codes as a special case, depending upon how the source messages are defined. 

3.1 Shannon-Fano Coding 

The Shannon-Fane technique has as an advantage its simplicity. The code is constructed 

as follows: the source messages ai and their probabilities p( ai) are listed in order of non

increasing probability. This list is then divided in such a way as to form two groups of as 

nearly equal total probabilities a.s possible. Ea.ch message in the first group receives 0 as the 

first digit of its codeword; the messages in the second half have codewords beginning with 

1. Ea.ch of these groups is then divided according to the same criterion and additional code 

digits are appended. The process is continued until each subset contains only one message. 

Clearly the Shannon-Fano algorithm yields a minimal prefix code. 

a1 1L2 0 atepl 

a3 1L4 10 atep2 

a3 1/8 110 atep3 I 

a, l/lf! 1110 1tep4 I 

as 1/32 
I 

11110 atep5 

a& 1/32 11111 

Figure 3.1 A Shannon-Pano Code. 

Figure 3.1 shows the application of the method to a particularly simple probability 

distribution. The length of each codeword is equal to -lgp(ai)· This is true as long as 

it is possible to divide the list into subgroups of exactly equal probability. When this is 

not possible, some codewords may be of length - lg p( ai) + 1. The Shannon-Fano algorithm 

yields an average codeword length S which satisfies H ~ S ~ H + 1. That the Shannon-Fano 

algorithm is not guaranteed to produce an optimal code is demonstrated by the following 

set of probabilities: {.35, .17, .17, .16, .15, }. The Shannon-Fano code for this distribution is 

compared with the Huffman code in Section 3.2. 
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3.2. Static Huffman Coding 

Huffman's algorithm, expressed graphically, takes as input a list of nonnegative weights 

{ w1, . .. , wn} and constructs a full binary tree + whose leaves are labeled with the weights. 

When the Huffman algorithm is used to construct a code, the weights represent the probabil

ities associated with the source letters. Initially there is a set of singleton trees, one for each 

weight in the list. At each step in the algorithm the trees corresponding to the two smallest 

weights, Wi and w;, are merged into a new tree whose weight is Wi + w; and whose root has 

two children which are the subtrees represented by Wi and w;. The weights Wi and w; are 

removed from the list and Wi + w; is inserted into the list. This process continues until the 

weight list contains a single value. If, at any time, there is more than one way to choose 

a smallest pair of weights, any such pair may be chosen. In Huffman's paper, the process 

begins with a nonincreasing list of weights. This detail is not important to the correctness 

of the algorithm, but it does provide a more efficient implementation [Huffman 1952]. The 

Huffman algorithm is demonstrated in Figure 3.2. 

The Huffman algorithm determines the lengths of the codewords to be mapped to each 

of the source letters ai. There are many alternatives for specifying the actual digits; it is 

necessary only that the code have the prefix property. The usual assignment entails labeling 

the edge from each parent to its left child with the digit 0 and the edge to the right child 

with 1. The codeword for each source letter is the sequence of labels along the path from the 

root to the leaf node representing that letter. The codewords for the source of Figure 3.2, in 

order of decreasing probability, are {01, 11, 001, 100, 101, 0000, 0001}. Clearly, this process 

yields a minimal prefix code. Further, the algorithm is guaranteed to produce an optimal 

(minimum redundancy) code [Huffman 1952]. Gallager has proved an upper bound on the 

redundancy of a Huffman code of Pn + lg[(2lg e)/e] ~ Pn + 0.086, where Pn is the probability 

of the least likely source message (Gallager 1978]. Figure 3.3 shows a distribution for which 

the Huffman code is optimal while the Shannon-Fane code is not. 

In addition to the fact that there are many ways of forming codewords of appropriate 

lengths, there are cases in which the Huffman algorithm does not uniquely determine these 

lengths due to the arbitrary choice among equal minimum weights. As an example, codes 

with codeword lengths of {1, 2, 3, 4, 4} and of {2, 2, 2, 3, 3} both yield the same average code

word length for a. source with probabilities {.4, .2, .2, .1, .1}. Schwartz defined a variation 

of the Huffman algorithm which performs "bottom merging"; that is, orders a new parent 

node above existing nodes of the same weight and always merges the last two weights in the 

+ a binary tree is full if every node has either zero or two children 
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ai .25 .25 .25 .33 J.42 ~.ss yi.o 
a2 .20 .20 .22 .25 .33 .42 

a3 .15 .18 .20 .22 .25 

a4 .12 .15 .18 .20 

as .10 .12 .15 

as .10 .10 

a1 .08 (a) 

(b) 

Figure 3.2 The Huffman process. a) the list. b) the tree 

list. The code constructed is the Huffman code with minimum values of maximum codeword 

length (max{Zi}) and total codeword length (2: Ii) (Schwartz 1964). Schwartz and Kallick 

describe an implementation of Huffman's algorithm with bottom merging (Schwartz and 

Kallick 1964]. The Schwartz-Kallick algorithm and a later algorithm by Connell (Connell 

1973] use Huffman's procedure to determine the lengths of the codewords, and actual dig

its are assigned so that the code has the numerical sequence property. That is, codewords 

of equal length form a consecutive sequence of binary numbers. Shannon-Fane codes also 

have the numerical sequence property. This property can be exploited to achieve a compact 

representation of the code and rapid encoding and decoding. 

Both the Huffman and the Shannon-Fane mappings can be generated in O(n) time, 

where n is the number of messages in the source ensemble (assuming that the weights have 

been presorted). Each of these algorithms maps a source message ai with probability p to a 

codeword of length l ( - lg p ~ l ~ - lg p + 1). Encoding and decoding times depend upon 
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S-F Huffman 

ai 0.35 00 1 

a2 0.17 01 011 

a3 0.17 10 010 

a4 0.16 110 001 

a5 0.15 111 000 

avg. code length 2.31 2.30 

Figure 3.3 Comparison of Shannon-Fano and Huffman Codes. 

the representation of the mapping. If the mapping is stored as a binary tree, then decoding 

the codeword for ai involves following a path of length l in the tree. A table indexed by the 

source messages could be used for encoding; the code for ai would be stored in position i of 

the table and encoding time would be O(l). Connell's algorithm makes use of the index of 

the Huffman code, a representation of the distribution of codeword lengths, to encode and 

decode in 0( c) time where c is the number of different codeword lengths. 

As noted earlier, the redundancy bound for Shannon-Fane codes is 1 a.nd the bound for 

the Huffman method is Pn +0.086 where Pn is the probability of the lea.st likely source message 

(so Pn is less than or equal to .5, and generally much less). It is important to note that in 

defining redundancy to be average codeword length minus entropy, the cost of transmitting 

the code mapping computed by these algorithms is ignored. The overhead cost for any 

method where the source alpha.bet has not been established prior to transmission includes 

n lg n bits for sending the n source letters. For a Shannon-Fane code, a list of codewords 

ordered so as to correspond to the source letters could be transmitted. The additional time 

required is then 2: li, where the li a.re the lengths of the codewords. For Huffman coding, an 

encoding of the shape of the code tree might be transmitted. Since any full binary tree may 

be a legal Huffman code tree, encoding tree shape may require as many a.s lg 4n = 2n bits. 

In most cases the message ensemble is very large, so that the number of bits of overhead 

is minute by comparison to the total length of the encoded transmission. However, it is 

imprudent to ignore this cost. 

If a less-than-optimal code is acceptable, the overhead costs can be avoided through 

a prior agreement by sender and receiver as to the code mapping. Rather than "using a 

Huffman code based upon the characteristics of the current message ensemble, the code 
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used could be based on statistics for a class of transmissions to which the current ensemble 

is assu:._1ed to belong. That is, both sender and receiver could have access to a codebook 

with k mappings in it; one for Pascal source, one for English text, etc. The sender would 

then simply alert the receiver as to which of the common codes he is using. This requires 

only lg k bits of overhead. Assuming that classes of transmission with relatively stable 

characteristics could be identified, this hybrid approach would greatly reduce the redundancy 

due to overhead without significantly increasing expected codeword length. In addition, the 

cost of computing the mapping would be amortized over all files of a given class. That is, 

the mapping would be computed once on a statistically significant sample and then used on 

a great number of files for which the sample is representative. There is clearly a substantial 

risk associated with assumptions about file characteristics and great care would be necessary 

in choosing both the sample from which the mapping is to be derived and the categories 

into which to partition transmissions. An extreme example of the risk associated with the 

codebook approach is provided by author Ernest V. Wright who wrote a novel Gadsby (1939) 

containing no occurrences of the letter E. Since E is the most commonly used letter in the 

English language, an encoding based upon a sample from Gadsby would be disastrous if used 

with "normal" examples of English text. Similarly, the "normal" encoding would provide 

poor compression of Gadsby. 

Mcintyre and Pechura describe an experiment in which the codebook approach is com

pared to static Huffman coding [Mcintyre and Pechura 1985]. The sample used for com

parison is a collection of 530 source programs in four languages. The codebook contains a 

Pascal code tree, a FORTRAN code tree, a COBOL code tree, a PL/1 code tree, and an 

ALL code tree. The Pascal code tree is the result of applying the static Huffman algorithm· 

to the combined character frequencies of all of the Pascal programs in the sample. The ALL 

code tree is based upon the combined character frequencies for all of the programs. The 

experiment involves encoding each of the programs using the five codes in the codebook and 

the static Huffman algorithm. The data reported for each of the 530 programs consists of 

the size of the coded program for each of the five predetermined codes, and the size of the 

coded program plus the size of the mapping (in table form) for the static Huffman method. 

In every case, the code tree for the language class to which the program belongs gener

ates the most compact encoding. Although using the Huffman algorithm on the program 

itself yields an optimal mapping, the overhead cost is greater than the adtkd redundancy 

incurred by the less-than-optimal code. In many cases, the ALL code tree als<J generates a 

more compact encoding than the static Huffman algorithm. In the worst case, an encoding 

constructed from the codebook is only 6.6% larger than that constructed by the Huffman 
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algorithm. These results suggest that, for files of source code, the codebook approach may 

be app.··opriate. 

Gilbert discusses the construction of Huffman codes based on inaccurate source prob

abilities [Gilbert 1971]. A simple solution to the problem of incomplete knowledge of the 

source is to avoid long codewords, thereby minimizing the error of underestimating badly 

the probability of a message. The problem becomes one of constructing the optimal binary 

tree subject to a height restriction (see [Knuth 1971; Hu and Tan 1972; Garey 1974]). An

other approach involves collecting statistics for several sources and then constructing a code 

based upon some combined criterion. This approach could be applied to the problem of 

designing a single code for use with English, French, German, etc., sources. To accomplish 

this, Huffman's algorithm could be used to minimize either the average codeword length for 

the combined source probabilities; or the average codeword length for English, subject to 

constraints on average codeword lengths for the other sources. 

3.3 Representations of the Integers 

Elias defines a sequence of coding schemes which map the positive integers onto the set 

of binary codewords [Elias 1975]. These schemes are universal in the following sense: given 

any countable set of messages and any probability distribution, mapping messages in order of 

decreasing probability to codewords in order of increasing length gives an average codeword 

length that is bounded by c1H + c2. Due to the restriction of the set of source messages to 

the integers, this method is not a general-purpose coding technique. However, an application 

of the Elias codes to the general data compression problem is demonstrated in Section 5. 

The first Elias code is one which is simple but not optimal. This code,"(, maps an integer 

z onto the binary value of z prefaced by Llg z J zeros. The binary value of z begins with a 1, 

which serves to delimit the prefix. The result is a prefix code since the total length of the 

codeword is exactly one greater than twice the number of zeros in the prefix. The code is not 

a minimum redundancy code since the ratio of expected codeword length to entropy goes 

to 2 as entropy approaches infinity. The second code, 8, maps an integer z to a codeword 

consisting of 'Y( Llg z J + 1) followed by the binary value of z with the leading 1 deleted. The 

resulting codeword has length Llg z J + 2 Llg(l + Llg z J )J + 1. This concept can be applied 

recursively to shorten the codeword lengths, but the benefits decrease rapidly. The code 8 is 

asymptotically optimal since the limit of the ratio of expected codeword length to entropy 

is 1. Figure 3.4 lists the values of 'Y and 8 for a sampling of the integers. 
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I 8 

1 1 1 

2 010 0100 

3 011 0101 

4 00100 01100 

5 00101 01101 

6 00110 01110 

7 00111 01111 

8 0001000 00100000 

16 000010000 001010000 

17 000010001 001010001 

32 00000100000 0011000000 

Figure 3.4 Elias Codes. 

4. ADAPTIVE HUFFMAN CODING 

Adaptive Huffman coding was first conceived independently by Faller and Gallager [Faller 

1973; Gallager 1978]. Knuth contributed improvements to the original algorithm [Knuth 

1985] and the resulting algorithm is referred to as algorithm FGK. A more recent version 

of adaptive Huffman coding is described by Vitter [Vitter 1985]. All of these methods a.re 

defined-word schemes which determine the mapping from source messages to codewords 

based upon a running estimate of the source message probabilities. The code is adaptive, 

changing so as to remain optimal for the current estimates. The algorithms require only 

one pass over the data. The performance of these methods, in terms of number of bits 

transmitted, can be better than that of static Huffman coding. This does not contradict the 

optimality of the static method as the static method is optimal only over all methods which 

assume a time-invariant mapping. The performance of the adaptive methods can also be 

worse than that of the static method. Upper bounds on the redundancy of these methods 

are discussed in this section. 

4.1 Algorithm FGK 

The basis for algorithm FGK is the Sibling Property, defined by Gallager [Gallager 1978]: 

A binary code tree has the sibling property if each node (except the root) has a sibling and 

if the nodes can be listed in order of nonincreasing weight with each node adjacent to its 
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sibling. Gallager proves that a binary prefix code is a Huffman code if and only if the 

code t.i:ee has the sibling property. In algorithm FGK, both sender and receiver maintain 

dynamically changing Huffman code trees. The leaves of the code tree represent the-source 

messages and the weights of the leaves represent frequency counts for the messages. At any 

point in time, k of then possible source messages have occurred in the message ensemble. 

7 

1 

c 

(a) (b) 

7 

c 

(c) 

Figure 4.1 Algorithm FGK processing the ensemble "abed". a) Tree immediately before processing 
d; 100 will be transmittetl. b) After encoding of d. c) If the 4th letter had been b, 11 would have been 
transmitted; tree after update is shown. 
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Initially, the code tree consists of a single leaf node, called the 0-node. The 0-node is a 

special aode used to represent the n-k unused messages. For each message transmitted, both 

parties must increment the corresponding weight and recompute the code tree to maintain 

the sibling property. At the point in time when t messages have been transmitted, k of them 

distinct, and k < n, the tree is a legal Huffman code tree with k + 1 leaves, one for each 

of the k messages and one for the 0-node. If the (t + l)"t message is one of the k already 

seen, the algorithm transmits at+1 's current code, increments the appropriate counter and 

recomputes the tree. If an unused message occurs, the 0-node is split to create a pair of 

leaves, one for at+1, and a sibling which is the new 0-node. Again the tree is recomputed. 

In this case, the code for the 0-node is sent; in addition, the receiver must be told which of 

then - k unused messages has appeared. In Figure 4.1, a simple example is given. At each 

node a count of occurrences of the corresponding message is stored. Nodes are numbered 

indicating their position in the sibling property ordering. The updating of the tree can be 

done in a single traversal from the at+l node to the root. This traversal must increment the 

count for the at+l node and for each of its ancestors. Nodes may be exchanged to maintain 

the sibling property, but all of these exchanges involve a node on the path from at+1 to 

the root. Figure 4.2 illustrates the tree formed by this process on the message ensemble 

"eteaetneteareteaetnoi". 

Figure 4.2 Tree formed by algorithm FGK for ensemble "eteaetneteareteaetnoi". 
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Disregarding overhead, the number of bits transmitted by algorithm FGK for the message 

ensemlle of Figure 4.2 is 47. The static Huffman algorithm would transmit 53 bits in 

processing the same data. The overhead associated with the adaptive method is actually 

less than that of the static algorithm. In the adaptive case the only overhead is the nlg n 

bits needed to represent each of the n different source messages when they appear for the 

first time. (This is in fact conservative; rather than transmitting a unique code for each 

of the n source messages, the sender could transmit the message's position in the list of 

remaining messages and save a few bits in the average case.) In the static case, the source 

messages need to be sent as does the shape of the code tree. Vitter has proved that the total 

number of bits transmitted by algorithm FGK for a message ensemble of length t containing 

n distinct messages is bounded below by S - n + 1, where Sis the performance of the static 

method, and bounded above by 28 +t-4n+2 [Vitter 1985]. So the performance of algorithm 

FGK is never much worse than twice optimal. Knuth provides a complete implementation of 

algorithm FGK and a proof that the time required for each encoding or decoding operation 

is O(l), where l is the current length of the codeword [Knuth 1985]. It should be noted that 

since the mapping is defined dynamically, during transmission, the encoding and decoding 

algorithms stand alone; there is no additional algorithm to determine the mapping as in 

static methods. 

4.2 Algorithm V 

The adaptive Huffman algorithm of Vitter (algorithm V) incorporates two improvements 

over algorithm FGK. First, the number of interchanges in which a node is moved upward in 

the tree during a recomputation is limited to one. This number is bounded in algorithm FGK 

only by l/2 where l is the length of the codeword for at+l when the recomputation begins. 

Second, Vitter's method minimizes the values of~ li and max{Zi} subject to the requirement 

of minimizing~ Wih· These improvements are accomplished through the use of a new system 

for numbering nodes. The numbering, called an implicit numbering, corresponds to a level 

ordering of the nodes (from bottom to top and left to right). Figure 4.3 illustrates that 

the numbering of algorithm FGK is not always a level ordering. The following invariant 

is maintained in Vitter's algorithm: For each weight w, all leaves of weight w precede (in 

the implicit numbering) all internal nodes of weight w. Vitter proves that this invariant 

enforces the desired bound on node promotions (Vitter 1985]. The invariant also implements 

bottom merging, as discussed in Section 3.2, to minimize~ li and max{li}. The difference 

between Vitter's method and algorithm FGK is in the way the tree is updated between 

transmissions. In order to understand the revised update operation, the following definition 
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5 

p 

Figure 4.3 FGK tree with non-level order numbering. 

of a block of nodes is necessary: Blocks are equivalence classes of nodes defined by u = v iff 

weight( u) = weight( v) and u and v are either both leaves or both internal nodes. The leader 

of a block is the highest-numbered (in the implicit numbering) node in the block. Blocks 

are ordered by increasing weight with the convention that a leaf block always precedes an 

internal block of the same weight. When an exchange of nodes is required to maintain 

the sibling property, algorithm V requires that the node being promoted be moved to the 

position currently occupied by the highest-numbered node in the target block. 

Figure 4.4 illustrates the tree built by Vitter's method for the ensemble of Figure 4.2. 

Both :E Ii and max{li} are smaller in the tree of Figure 4.4. The number of bits transmitted 

during the processing of the sequence is 47, the same used by algorithm FGK. However, if the 

transmission continues with n, r, o, i or an unused letter, the cost of algorithm V will be less 

than that of algorithm FGK. The reason is that while both algorithms have the property 

that immediately after the tth letter is transmitted the adaptive Huffman tree is a valid 

Huffman tree with respect to the first t letters, Vitter'.s method has the additional property 

that the external path length (:Eli) and the height (max{li}) are minimized as well. This 

is helpful for efficiently coding the (t + l)"t letter. Vitter proves that the performance of his 

algorithm is bounded by S - n + 1 from below and S + t..:.. 2n + 1 from above [Vitter 1985]. 

At worst then, Vitter's adaptive method may transmit one more bit per codeword than the 
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1 

Figure 4.4 Tree formed by algorithm V for the ensemble of Fig. 4.2. 

static Huffman method. 

The improvements made by Vitter do not change the complexity of the algorithm; algo

rithm V encodes and decodes in 0(1) time as does algorithm FGK. 

5. OTHER ADAPTIVE METHODS 

Two more adaptive data compression methods, algorithm BSTW and Lempel-Ziv coding, 

are discussed in this section. These schemes diverge from the fundamental Huffman coding 

approach to a greater degree than the methods discussed in Section 4. Algorithm BSTW is 

a defined-word scheme which attempts to exploit locality. Lempel-Ziv coding is a free-parse 

method; that is, the words of the source alphabet are defined dynamically, as the encoding 

is performed. Algorithm BSTW is a variable-variable scheme, while Lempel-Ziv coding is 

variable-block. 

5.1 Lempel-Ziv Codes 

The Lempel-Ziv algorithm consists of a rule for parsing strings of symbols from a finite 

alphabet into substrings, or words, whose lengths do not exceed a prescribed integer L1; 

and a coding scheme which maps these substrings sequentially into uniquely decipherable 

codewords of fixed length L2 [Ziv and Lempe! 1977]. The strings are selected so that they 

have very nearly equal probability of occurrence. As a result, frequently-occurring symbols 
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are grouped into longer strings while infrequent symbols appear in short strings. This strat

egy is erfective at exploiting redundancy due to symbol frequency, character repetition, _and 

high-usage patterns. Figure 5.1 shows a small Lempel-Ziv code table. Low-frequency letters 

such as Z are assigned individually to fixed-length codewords (in this case, 12 bit binary 

numbers represented in base ten for readability). Frequently-occurring symbols, such as 

blank (represented by b) and zero, appear in long strings. Effective compression is achieved 

when a long string is replaced by a single 12-bit code. 

Symbol 

String Code 

A 1 

T 2 

AN 3 

TH 4 

THE 5 

AND 6 

AD 7 

b 8 

bb 9 

bbb 10 

0 11 

00 12 

000 13 

0000 14 

z 15 

### 4095 

Figure 5.1 A Lempel-Ziv code table. 

The Lempel-Ziv method is an incremental parsing strategy in which the coding process 

is interlaced with a learning process for varying source characteristics [Ziv and Lempel 1977]. 

In Figure 5.1, run-length encoding of zeros and blanks is being learned . 

. 
The Lempel-Ziv algorithm parses the source ensemble into a collection of segments of 

gradually increasing length. At each encoding step, the longest prefix of the remaining 
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source ensemble which matches an existing table entry (a) is parsed off, along with the 

characto. r ( c) following this prefix in the ensemble. The new source message, ac, is added 

to the code table. The new table entry is coded as (i, c) where i is the codeword for the 

existing table entry and c is the appended character. For example, the ensemble 010100010 

is parsed into {O, 1, 01, 00, 010} and is coded as {(O, 0), (0, 1), (1, 1), (1, 0), (3, O)}. The table 

built for the message ensemble "ababcbababaaaaaaaaa" is shown in Figure 5.2. The coded 

ensemble has the form: {(O, a), (0, b), (1, b), (0, c), (2, a), (5, b), (1, a), (7, a), (8, a)}. The string 

table is represented in a more efficient manner than in Figure 5.1; the string is represented 

by its prefix codeword followed by the extension character, so that the table entries have 

fixed length. The Lempel-Ziv strategy is simple, but greedy. It simply parses off the longest 

recognized string each time rather than searching for the best way to parse the ensemble. 

Message Codeword 

a 1 

b 2 

lb 3 

c 4 

2a 5 

Sb 6 

la 7 

7a 8 

8a 9 

Figure 5.2 Lempel-Ziv table for the message ensemble "ababcbababaaaaaaaaa". 

The Lempel-Ziv method specifies fixed-length codewords. The size of the table and 

the maximum source length message are determined by the length of the codewords. It 

should be clear from the definition of the algorithm that Lempel-Ziv codes tend to be quite 

inefficient during the initial portion of the message ensemble. If the codeword length is not 

sufficiently large, Lempel-Ziv codes may also rise slowly to reasonable efficiency, maintain 

good performance briefly, and fail to make any gains once the table is full and messages can 

no longer be added. If the ensemble's characteristics vary over time, the method may be 

"stuck with" the behavior it has learned and may be unable to continue to adapt. 

Lempel-Ziv coding is asymptotically optimal, meaning that the redundancy approaches 

zero as the length of the source ensemble tends to infinity. However, for particular finite 
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sequences, the compression achieved may be far from optimal [Storer and Szymanski 1982]. 

When the method begins, each source symbol is coded individually. In the case of 6- or 

8-bit source symbols and 12-bit codewords, the method yields as much as 503 expansion 

during initial encoding. This initial inefficiency can be mitigated somewhat by initializing 

the string table to contain all of the source characters. Implementation issues are particularly 

important in Lempel-Ziv methods. A straightforward implementation takes O(n2) time to 

process a string of n symbols; for each encoding operation, the existing table must be scanned 

for the longest message occurring as a prefix of the remaining ensemble. Rodeh addresses the 

issue of computational complexity by defining a linear implementation of Lempel-Ziv coding 

based on suffix trees [Rodeh et al. 1981]. The Rodeh scheme is asymptotically optimal, 

but an input must be very long in order to allow efficient compression., and the memory 

requirements of the scheme are large, 0( n) where n is the length of the source ensemble. It 

should also be mentioned that the Rodeh method constructs a variable-variable code; the 

pair (i, c) is coded using a representation of the integers, such as the Elias codes, for i and 

for c (a letter c can always be coded as the kth member of the source alphabet for some k). 

The other major implementation consideration involves the way in which the string table 

is stored and accessed. Welch suggests that the table be indexed by the codewords (integers 

1 ... 2L where Lis the maximum codeword length) and that the table entries be fixed-length 

codeword-extension character pairs [Welch 1984]. Hashing is proposed to assist in encoding. 

Decoding becomes a recursive operation, in which the codeword yields the final character of 

the substring and another codeword. The decoder must continue to consult the table until 

the retrieved codeword is 0. Unfortunately, this strategy peels off extension characters in 

reverse order and some type of stack operation must be used to reorder the source. 

Storer and Szymanski present a general model for data compression which encompasses 

Lempel-Ziv coding [Storer and Szymanski 1982]. Their broad theoretical work compares 

classes of macro schemes, where macro schemes include all methods which factor out du

plicate occurrences of data and replace them by references either to the source ensemble or 

to a code table. They also contribute a linear-time Lempel-Ziv-like algorithm with better 

performance than the standard Lempel-Ziv method. 

Rissanen extends the Lempel-Ziv incremental parsing approach [Rissanen 1983]. Aban

doning the requirement that the substrings partition the ensemble, the Rissanen method 

gathers "contexts" in which each symbol of the string occurs. The contexts are substrings 

of the previously encoded string (as in Lempel-Ziv), have varying size, and are in general 

overlapping. The Rissanen method ·hinges upon the identification of a design parameter 
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capturing the concept of "relevant" contexts. The problem of finding the best parameter is 

undecicb.ble, and Rissanen suggests estimating the parameter experimentally. 

5.2 Algorithm BSTW 

The most recent of the algorithms surveyed here is due to Bentley, Sleator, Tarjan 

and Wei [Bentley et al. 1986]. This method, algorithm BSTW, possesses the advantage 

that it requires only one pass over the data to be transmitted yet has performance which 

compares well to that of the static two-pass method along the dimension of number of bits 

per word transmitted. It incorporates the additional benefit of taking advantage of locality 

of reference, the tendency for words to occur frequently for short periods of time then fall 

into long periods of disuse. The algorithm uses a self-organizing list as an auxiliary data 

structure and employs shorter encodings for words near the front of this list. There are many 

strategies for maintaining self-organizing lists (see [Hester and Hirschberg 1985]); algorithm 

BSTW uses move-to-front. 

A simple example serves to outline the method of algorithm BSTW. As in other adaptive 

schemes, sender and receiver maintain identical representations of the code; in this case 

message lists which are updated at each transmission, using the move-to-front heuristic. 

These lists are initially empty. When message at is transmitted, if at is on the sender's list, 

he transmits its current position. He then updates his list by moving at to position 1 and 

shifting each of the other messages down one position. The receiver similarly alters his word 

list. If at is being transmitted for the first time, then k + 1 is the "position" transmitted, 

where k is the number of distinct messages transmitted so far. Some representation of the 

message itself must be transmitted as well, but just this first time. Again, at is moved to 

position one by both sender and receiver subsequent to its transmission. For the ensemble 

"abcadeabf<l", the transmission would be (for ease of presentation, the position is represented 

in base ten): 1 a 2 b 3 c 3 4 d 5 e 3 5 6 f 5 

As the example shows, algorithm BSTW transmits ea.ch source message once; the rest 

of its transmission consists of encodings of list positions. Therefore, an essential feature of 

algorithm BSTW is a reasonable scheme for representation of the integers. The methods 

discussed by Bentley are the Elias codes presented in Section 3.3. The simple scheme, code 

/, involves prefixing the binary representation of the integer i with Llg i J zeros. This yields 

a prefix code with the length of the codeword for i equal to 2 Llg i J + 1. Greater compression 

can be gained through use of the more sophisticated scheme, S, which encodes an integer i 

in 1 + Llg iJ + 2 L(lg(l + Llg iJ )J bits. 
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A message ensemble on which algorithm BSTW is particularly efficient, described by 

Bentley, is formed by repeating each of n messages n times, for example 1n2n3n .. . nn. 

Disregarding overhead, a static Huffman code uses n 2 lgn bits (or lgn bits per message), 

while algorithm BSTW uses n 2 + L:i=1 llg iJ (which is essentially n 2 + 2nlg n, or 0(1) bits 

per message). The overhead for algorithm BSTW consists of just the nlgn bits needed to 

transmit each source letter once. As discussed in Section 3.2, the overhead for static Huffman 

coding includes an additional 2n bits. 

Bentley proves that with the simple scheme for encoding integers, the performance of 

algorithm BSTW is bounded above by 2S + 1, where S is the cost of the static Huffman 

coding scheme [Bentley et al. 1986]. Using the more sophisticated integer encoding scheme, 

the bound is 1+S+2lg(l + S). A key idea. in the proofs given by Bentley is the fact that, 

using the move-to-front heuristic, the integer transmitted for a message at will be one more 

than the number of different words transmitted since the last occurrence of at. Bentley also 

proves that algorithm BSTW is asymptotically optimal. 

An implementation of algorithm BSTW is described in great detail by Bentley [Bentley 

et al. 1986]. In this implementation, encoding an integer consists of a table lookup; the 

codewords for the integers from 1 to n + 1 are stored in an array indexed from 1 to n + 1. 

A binary trie is used to store the inverse mapping, from codewords to integers. Decoding 

an Elias codeword to find the corresponding integer involves following a path in the trie. 

Two interlinked data structures, a binary trie and a binary tree, are used to maintain the 

word list. The trie is based on the binary encodings of the source words. Mapping a source 

message ai to its list position p involves following a path in the trie, following a link to the 

tree, and then computing the symmetric order position of the tree node. Finding the source 

message ai in position pis accomplished by finding the symmetric order position pin the tree 

and returning the word stored there. Using this implementation, the work done by sender 

and receiver is O(length(ai) + length(w)) where ai is the message being transmitted and w 

the codeword representing ai'S position in the list. If the source alphabet consists of single 

characters, then the complexity of algorithm BSTW is just O(length(w)). 

6. EMPffilCAL RESULTS 

Empirical tests of the efficiencies of the algorithms presented here are reported in [Bentley 

et al. 1986; Knuth 1985; Schwartz and Kallick 1964; Vitter 1985; Welch 1984]. These exper

iments compare the number of bits per word required and processing time is not reported. 

While theoretical considerations bound the performance of the various algorithms, experi-
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mental data is invaluable in providing additional insight. It is clear that the performance of 

each of these methods is dependent upon the characteristics of the source ensemble. 

Schwartz and Kallick test an implementation of static Huffman coding in which bot

tom merging is used to determine codeword lengths and all codewords of a given length are 

sequential binary numbers [Schwartz and Kallick 1964). The source alphabet in the experi

ment consists of 5,114 frequently-used English words, 27 geographical names, 10 numerals, 

14 symbols, and 43 suffixes. The entropy of the document is 8.884 binary digits per message 

and the average codeword constructed has length 8.920. The same document is also coded 

one character at a time. In this case, the entropy of the source is 4.03 and the coded ensemble 

contains an average of 4.09 bits per letter. The redundancy is low in both cases. However, 

the relative redundancy (i.e., redundancy/ entropy) is lower when the document is encoded 

by words. 

Knuth describes algorithm FGK's performance on three types of data: a file containing 

the text of Grimm's first ten Fairy Tales, text of a technical book, and a file of graphical 

data [Knuth 1985). For the first two files, the source messages are individual characters 

and the alphabet size is 128. The same data is coded using pairs of characters, so that 

the alphabet size is 1968. For the graphical data, the number of source messages is 343. 

In the case of the Fairy Tales the performance of FGK is very close to optimum, although 

performance degrades with increasing file size. Performance on the technical book is not 

as good, but is still respectable. The graphical data proves harder yet to compress, but 

again FGK performs reasonably well. In the latter two cases, the trend of performance 

degradation with file size continues. Defining source messages to consist of character pairs 

results in slightly better compression, but the difference would not appear to justify the 

increased memory requirement imposed by the larger alphabet. 

n 

100 

500 

961 

k 

96 

96 

97 

Static 

664 

3320 

6417 

Alg. V 

569 

3233 

6330 

Alg. FGK 

659 

3339 

6432 

Figure 6.1 Simulation results for a small text file [Vitter 1985]; n =file size in bytes, k =number of 
distinct messages. , 

. 
Vitter tests the performance of algorithms V and FGK against that of static Huffman 

coding. Each method is run on data which includes Pascal source code, the 'JEX source 
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of the author's thesis, and electronic mail files [Vitter 1985]. Figure 6.1 summarizes the 

results . if the experiment for a small file of text. The performance of each algorithm is 

measured by the number of bits in the coded ensemble and overhead costs are not included. 

Figure 6.2 presents data for Pascal source code. For the 'JEX source, the alphabet consists of 

128 individual characters; for the other two file types, only 97 characters appear. For each 

experiment, when the overhead costs are taken into account, algorithm V outperforms static 

Huffman coding as long as the size of the message ensemble (number of characters) is no 

more than 104 . Algorithm FGK displays slightly higher costs, but never more than 104% of 

the static algorithm. 

n k Static Alg. V Alg. FGK 

100 32 459 450 471 

500 49 2460 2486 2522 

1000 57 4902 4945 4993 

10000 73 47807 47942 48020 

12067 78 57592 57737 57822 

Figure 6.2 Simulation results for Pascal source code [Vitter 1985]; n = file size in bytes, k = number 
of distinct messages. 

Bentley uses C and Pascal source files, TROFF source files, and a terminal session 

transcript of several hours for experiments which compare the performance of algorithm 

BSTW to static Huffman coding. Here the defined words consist of two disjoint classes, 

sequences of alphanumeric characters and sequences of nonalphanumeric characters. The 

performance of algorithm BSTW is very close to that of static Huffman coding in all cases. 

The experiments reported by Bentley are of particular interest in that they incorporate 

another dimension, the possibility that in the move-to-front scheme one might want to limit 

the size of the data structure containing the codes to include only the m most recent words, 

for some m [Bentley et al. 1986]. The tests consider cache sizes of 8, 16, 32, 64, 128 and 

256. Although performance tends to increase with cache size, the increase is erratic, with 

some documents exhibiting nonmonotonicity (performance which increases with cache size 

to a point and then decreases when cache size is further increased). 

Welch reports. simulation results for Lempel-Ziv codes in terms of compression ratios 

[Welch 1984]. His definition of compression ratio is the one given in Section 1.3, G =(average 

message length)/( average codeword length). The ratios reported are: 1.8 for English text, 2 
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to 6 for Cobol data files, 1.0 for floating point arrays, 2.1 for formatted scientific data, 2.6 for 

system log data, 2.3 for source code, and 1.5 for object code. The tests involving English text 

files showed that long individual documents did not compress better than groups of short 

documents. This observation is somewhat surprising, in that it seems to refute the intuition 

that redundancy is due at least in part to correlation in content. For purposes of comparison, 

Welch cites results of Pechura and Rubin. Pechura achieved a 1.5 compression ratio using 

static Huffman coding on files of English text [Pechura 1982]. Rubin reports a 2.4 ratio for 

English text when employing a complex technique for choosing the source messages to which 

Huffman coding is applied [Rubin 1976]. These results provide only a very weak basis for 

comparison, since the characteristics of the files used by the three authors are unknown. It 

is very likely that a single algorithm may produce compression ratios ranging from 1.5 to 

2.4, depending upon the source to which it is applied. 

7. SUSCEPTIBILITY TO ERROR 

The discrete noiseless channel is, unfortunately, not a very realistic model of a commu

nication system. Actual data transmission systems are prone to two types of error: phase 

error, in which a code symbol is lost or gained; and amplitude error, in which a code symbol 

is corrupted [Neumann 1962]. The degree to which channel errors degrade transmission is 

an important parameter in the choice of a data compression method. The susceptibility to 

error of a coding algorithm depends heavily on whether the method is static or adaptive. 

7.1 Static Codes 

It is generally known that Huffman codes tend to be self-correcting [Standish 1980). That 

is, a transmission error tends not to propagate too far. The codeword in which the error 

occurs is incorrectly received and it is likely that several subsequent codewords are misin

terpreted but, before too long, the receiver is back in synchronization with the sender. In a 

static code, synchronization means simply that both sender and receiver identify the begin

nings of the codewords in the same way. In Figure 7.1, an example is used to illustrate the 

ability of a Huffman code to recover from phase errors. The message ensemble "BCDAEB" 

is encoded using the Huffman code of Figure 3.3 where the source letters ai ... as represent 

A ... E respectively, yielding the coded ensemble "0110100011000011". Figure 7.1 demon

strates the impact of loss of the first bit, the second bit, or the fourth bit. The dots show 

the way in which each line is parsed into codewords. The loss of the first bit results in 

re-synchronization after the third bit so that only the first source message (B) is lost (re

placed by AA). When the second bit is lost, the first. eight bits of the coded ensemble are 
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misinterpreted and synchronization is regained by bit 9. Dropping the fourth bit causes the 

same degree of disturbance as dropping the second. 

0 11.010.001.1.000.011 coded ensemble (BCDAEB) 

1 .1.010.001.1.000.011 bit 1 is lost, interpreted as AACDAEB 

0 10.1.000.1.1.000.011 bit 2 is lost, interpreted as CAEAAEB 

0 11.1.000.1.1.000.011 bit 4 is lost, interpreted as BAEAAEB 

Figure 7 .1 Recovery from phase errors 

The effect of amplitude errors is demonstrated in Figure 7.2. The format of the illustra

tion is the same as that in Figure 7.1. This time bits 1, 2, and 4 are inverted rather than 

lost. Again synchronization is regained almost immediately. When bit 1 or bit 2 is changed, 

only the first three bits (the first character of the ensemble) are disturbed. Inversion of bit 

four causes loss of synchronization through the ninth bit. A very simple explanation of the 

self-synchronization present in these example can be given. Since many of the codewords 

end in the same sequence of digits, the decoder is likely to reach a leaf of the Huffman code 

tree at one of the codeword boundaries of the original coded ensemble. When this happens, 

the decoder is back in synchronization with the encoder. 

0 1 1.0 1 0.00 1.1.000.011 

1 .1.1.0 1 0.00 1.1.000.011 

0 0 1.0 1 0.00 1.1.000.011 

0 1 1.1.1.0 00.1.1.000.011 

Figure 7 .2 Recovery from amplitude errors 
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coded ensemble (BCDAEB) 

bit 1 is inverted, 
interpreted as AAAC DAEB 

bit 2 is inverted, 
interpreted as DC DAEB 

bit 4 is inverted, 
interpreted as BAAEAAEB 



So that self-synchronization may be discussed more carefully, the following definitions 

are prei.~nted. (It should be noted that these definitions hold for arbitrary prefix codes, so 

that the discussion includes all of the codes described in Section 3.) If s is a. suffix of some 

codeword and there exist sequences of codewords rand D. such that sr = D., then r is said to 

be a synchronizing sequence for s. For example, in the Huffman code used above, 1 is a syn

chronizing sequence for the suffix 01 while both 000001 and 011 are synchronizing sequences 

for the suffix 10. If every suffix (of every codeword) has a synchronizing sequence, then the 

code is completely self-synchronizing. If some or none of the proper suffixes have synchroniz

ing sequences, then the code is, respectively, partially- or never-self-synchronizing. Finally, if 

there exists a sequencer which is a synchronizing sequence for every suffix, r is defined to be 

a universal synchronizing sequence. The code used in the examples above is completely self

synchronizing, and has universal synchronizing sequence 00000011000. Gilbert and Moore 

prove that the existence of a universal synchronizing sequence is a necessary as well as a 

sufficient condition for a code to be completely self-synchronizing [Gilbert and Moore 1959]. 

They also state that any prefix code which is completely self-synchronizing will synchronize 

itself with probability 1 if the source ensemble consists of successive messages independently 

chosen with any given set of probabilities. This is true since the probability of occurrence of 

the universal synchronizing sequence at any given time is positive. 

It is important to realize that the fact that a completely self-synchronizing code will re

synchronize with probability 1 does not guarantee recovery from error with bounded delay. In 

fact, for every completely self-synchronizing prefix code with more than two codewords, there 

are errors within one codeword which cause unbounded error propagation [Neumann 1962]. 

In addition, prefix codes are not always completely self-synchronizing. Bobrow and Hakimi 

state a necessary condition for a prefix code with codeword lengths l1 ... lr to be completely 

self-synchronizing: the greatest common divisor of the li must be equal to one [Bobrow 

and Hakimi 1969). The Huffman code {00, 01, 10, 1100, 1101, 1110, 1111} is not completely 

self-synchronizing, but is partially self-synchronizing since suffixes 00, 01 and 10 are synchro

nized by any codeword. The Huffman code {000, 0010, 0011, 01, 100, 1010, 1011, 100, 111} is 

never-self-synchronizing. Examples of never-self-synchronizing Huffman codes are difficult 

to construct, and the example above is the only one with fewer than 16 source messages. 

Stiffi.er proves that a code is never-self-synchronizing if and only if none of the proper suffixes 

of the codewords a.re themselves codewords [Stiffi.er 1971). 

The conclusions which may be drawn from the above discussion are: while it is common 

for Huffman codes to self-synchronize, this is not guaranteed; and when self-synchronization 

is assured, there is no bound on the propagation of the error. An additional difficulty is that 
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self-synchronization provides no indication that an error has occurred. 

The problem of error detection and correction in connection with Huffman codes bas 

not received a great deal of attention. Several ideas on the subject a.re reported here. 

Rudner states that synchronizing sequences should be as short as possible to minimize re

synchronization delay. In addition, if a synchronizing sequence is used as the codeword for a 

high probability message, then re-synchronization will be more frequent. A method for con

structing a minimum-redundancy code having the shortest possible synchronizing sequence 

is described by Rudner [Rudner 1971]. Neumann suggests purposely adding some redun

dancy to Huffman codes in order to permit detection of certain types of errors [Neumann 

1962]. Clearly this has to be done carefully, so as not to negate the redundancy reduction 

provided by Huffman coding. Mcintyre and Pechura cite data integrity as an advantage of 

the codebook approach discussed in Section 3.2 [Mcintyre and Pechura 1985]. When the 

code is stored separately from the coded data, the code may be backed up to protect it from 

perturbation. However, when the code is stored or transmitted with the data, it is suscep

tible to errors. An error in the code representation constitutes a drastic loss and therefore 

extreme measures for protecting this part of the transmission are justified. 

7.2 Adaptive Codes 

Adaptive codes are far more adversely affected by transmission errors than are static 

codes. For example, in the case of a adaptive Huffman code, even though the receiver may 

re-synchronize with the sender in terms of correctly locating the beginning of a codeword, the 

information lost represents more than a few bits or a few characters of the source ensemble. 

The fact that sender and receiver are dynamically redefining the code indicates that by the 

time synchronization is regained, they may have radically different representations of the 

code. Synchronization as defined in Section 7.1 refers to synchronization of the bit stream, 

which is not sufficient for adaptive methods. What is needed here is code synchronization, 

that is, synchronization of both the bit stream and the dynamic data structure representing 

the current code mapping. 

There is no evidence that adaptive methods a.re self-synchronizing. Bentley notes that, 

in algorithm BSTW, loss of synchronization can be catastrophic, whereas this is not true 

with static Huffman coding [Bentley et al. 1986]. Ziv and Lempel recognize that the major 

drawback of their algorithm is its susceptibility to error propagation [Ziv and Lempel 1977]. 

Welch also considers the' problem of error tolerance of Leinpel-Ziv codes and suggests that 

the entire ensemble be embedded in an error-detecting code [Welch 1984]. 
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8. NEW DIRECTIONS 

Data compression is still very much an active research area. This section suggests pos

sibilities for further study. 

The discussion of Section 7 illustrates the susceptibility to error of the codes presented 

in this survey. Strategies for increasing the reliability of these codes while incurring only a 

moderate loss of efficiency would be of great value. This area appears to be largely unex

plored. Possible approaches include embedding the entire ensemble in an error-correcting 

code or reserving one or more codewords to act as error flags. For adaptive methods it may 

be necessary for receiver and sender to verify the current code mapping periodically. 

For adaptive Huffman coding, Gallager suggests an "aging" scheme, whereby recent 

occurrences of a character contribute more to its frequency count than do earlier occurrences 

[Gallager 1978]. This strategy introduces the notion of locality into the adaptive Huffman 

scheme. Cormack and Horspool describe an algorithm for approximating exponential aging 

[Cormack and Horspool 1984). However, the effectiveness of this algorithm has not been 

established. 

Both Knuth and Bentley suggest the possibility of using the "cache" concept to exploit 

locality and minimize the effect of anomalous source messages. Preliminary empirical results 

indicate that this may be helpful [Knuth 1985; Bentley et al. 1986]. A problem related to 

the use of a cache is overhead time required for deletion. Strategies for reducing the cost 

of a deletion could be considered. Another possible extension to algorithm BSTW is to 

investigate other locality heuristics. Bentley proves that intermittent-move-to-front (move

to-front after every k occurrences) is as effective as move-to-front [Bentley et al. 1986). It 

should be noted that there are many other self-organizing methods yet to be considered. 

Several aspects of free-parse methods merit further attention. Lempel-Ziv codes appear 

to be promising, although the absence of a worst-case bound on the redundancy of an 

individual finite source ensemble is a drawback. The variable-block type Lempel-Ziv codes 

have been implemented with some success [ARC 1986] and the construction of a variable

variable Lempel-Ziv code has been sketched [Ziv and Lempel 1978]. The efficiency of the 

variable-variable model should be investigated. In addition, an implementation of Lempel

Ziv coding which c.ombines the tii:ne efficiency of Rodeh's method with more efficient use of 

space is worthy of consideration. 
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9. SUMMARY 

Data compression is a topic of much importance and many applications. Methods of 

data compression have been studied for almost four decades. This paper has provided an 

overview of data compression methods of general utility. The algorithms have been evaluated 

in terms of the amount of compression they provide, algorithm efficiency, and susceptibility 

to error. While algorithm efficiency and susceptibility to error are relatively independent 

of the characteristics of the source ensemble, the amount of compression achieved depends 

upon the characteristics of the source to a great extent. 

Semantic dependent data compression techniques, as discussed in Section 2, are special

purpose methods designed to exploit local redundancy or context information. A semantic 

dependent scheme can usually be viewed as a special case of one or more general-purpose 

algorithms. It should also be noted that algorithm BSTW is a general-purpose technique 

which exploits locality of reference, a type of local redundancy. 

Susceptibility to error is the main drawback of each of the algorithms presented here. 

Although channel errors are more devastating to adaptive algorithms than to static ones, 

it is possible for an error to propagate without limit even in the static case. Methods of 

limiting the effect of an error on the effectiveness of a data compression algorithm should be 

investigated. 
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