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UNIDIMENSIONAL SCALING

JAN DE LEEUW

Abstract. This is an entry for The Encyclopedia of Statistics in Behavioral

Science, to be published by Wiley in 2005.

Unidimensional scaling is the special one-dimensional case ofmultidimen-

sional scaling[5]. It is often discussed separately, because the unidimen-

sional case is quite different from the general multidimensional case. It is ap-

plied in situations where we have a strong reason to believe there is only one

interesting underlying dimension, such as time, ability, or preference. And

unidimensional scaling techniques are very different from multidimensional

scaling techniques, because they use very different algorithms to minimize

their loss functions.

The classical form of unidimensional scaling starts with a symmetric and

non-negative matrix1 = {δi j } of dissimilaritiesand another symmetric and

non-negative matrixW = {wi j } of weights. Both W and1 have a zero

diagonal. Unidimensional scaling findscoordinatesxi for n points on the
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line such that

σ(x) =
1

2

n∑
i =1

n∑
j =1

wi j (δi j − |xi − x j |)
2

is minimized. Thosen coordinates inx define the scale we were looking

for.

To analyze this unidimensional scaling problem in more detail, let us start

with the situation in which we know the order of thexi , and we are just

looking for their scale values. Now|xi − x j | = si j (x)(xi − x j ), where

si j (x) = sign(xi − x j ). If the order of thexi is known, then thesi j (x)

are known numbers, equal to either−1 or +1 or 0, and thus our problem

becomes minimization of

σ(x) =
1

2

n∑
i =1

n∑
j =1

wi j (δi j − si j (xi − x j ))
2

over all x such thatsi j (xi − x j ) ≥ 0. Assume, without loss of generality,

that the weighted sum of squares of the dissimilarities is one. By expanding

the sum of squares we see that

σ(x) = 1 − t ′t + (x − t)′V(x − t).

HereV is the matrix with off-diagonal elementsvi j = −wi j and diagonal

elementsvi i =
∑n

j =1 wi j . Also, t = V+r , wherer is the vector with

elementsr i =
∑n

j =1 wi j δi j si j , andV+ is the generalized inverse ofV . If

all the off-diagonal weights are equal we simply havet = r/n.
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Thus the unidimensional scaling problem, with a known scale order, requires

us to minimize(x − t)′V(x − t) over allx satisfying the order restrictions.

This is amonotone regressionproblem [2], which can be solved quickly

and uniquely by simple quadratic programming methods.

Now for some geometry. The vectorsx satisfying the same set of order

constraints form a polyhedral convex coneK in Rn. Think of K as an

ice cream cone with its apex at the origin, except for the fact that the ice

cream cone is not round, but instead bounded by a finite number hyperplanes.

Since there aren! different possible orderings ofx, there aren! cones, all

with their apex at the origin. The interior of the cone consists of the vectors

without ties, intersections of different cones are vectors with at least one tie.

Obviously the union of then! cones is all ofRn.

Thus the unidimensional scaling problem can be solved by solvingn! mono-

tone regression problems, one for each of then! cones [3]. The problem has

a solution which is at the same time very simple and prohibitively compli-

cated. The simplicity comes from then! subproblems, which are easy to

solve, and the complications come from the fact that there are simply too

many different subproblems. Enumeration of all possible orders is imprac-

tical for n > 10, although using combinatorial programming techniques

makes it possible to find solutions forn as large as 20 [7].
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Actually, the subproblems are even simpler than we suggested above. The

geometry tells us that we solve the subproblem for coneK by finding the

closest vector tot in the cone, or, in other words, by projectingt on the cone.

There are three possibilities. Eithert is in the interior of its cone, or on the

boundary of its cone, or outside its cone. In the first two casest is equal to its

projection, in the third case the projection is on the boundary. The general

result in [1] tells us that the loss functionσ cannot have a local minimum at

a point in which there are ties, and thus local minima can only occur in the

interior of the cones. This means that we can only have a local minimum if

t is in the interior of its cone, and it also means that we actually never have

to compute the monotone regression. We just have to verify ift is in the

interior, if it is not thenσ does not have a local minimum in this cone.

There have been many proposals to solve the combinatorial optimization

problem of moving through then! until the global optimum ofσ has been

found. A recent review is [8].

We illustrate the method with a simple example, using the vegetable paired

comparison data from [6, page 160]. Paired comparison data are usually

given in a matrixP of proportions, indicating how many times stimulusi is

preferred over stimulusj . P has 0.5 on the diagonal, while corresponding el-

ementspi j andp j i on both sides of the diagonal add up to 1.0. We transform
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the proportions to dissimilarities by using using the probit transformation

zi j = 8−1(pi j ) and then definingδi j = |zi j |. There are 9 vegetables in the

experiment, and we evaluate all 9! = 362880 permutations. Of these cones

14354 or 4% have a local minimum in their interior. This may be a small

percentage, but the fact thatσ has 14354 isolated local minima indicates how

complicated the unidimensional scaling problem is. The global minimum is

obtained for the order given in Guilford’s book, which is Turnips< Cabbage

< Beets< Asparagus< Carrots< Spinach< String Beans< Peas< Corn.

Since there are no weights in this example, the optimal unidimensional scal-

ing values are the row averages of the matrix with elementssi j (x)δi j . Except

for a single sign change of the smallest element (the Carrots and Spinach

comparison), this matrix is identical to the probit matrixZ. And because the

Thurstone Case V scale values are the row averages ofZ, they are virtually

identical to the unidimensional scaling solution in this case.

The second example is quite different. It has weights and incomplete infor-

mation. We take it from a paper by Fisher [4], in which he studies crossover

percentages of eight genes on the sex chromosome ofDrosophila willistoni.

He takes the crossover percentage as a measure of distance, and supposes the

numberni j of crossovers inNi j observations is binomial. Although there

are eight genes, and thus
(8
2

)
= 28 possible dissimilarities, there are only

15 pairs that are actually observed. Thus 13 of the off-diagonal weights
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are zero, and the other weights are set to the inverses of the standard errors

of the proportions. We investigate all 8! = 40320 permutations, and we

find 78 local minima. The solution given by Fisher, computed by solving

linearized likelihood equations, has Reduced< Scute< Peach< Beaded

< Rough< Triple < Deformed< Rimmed. This order corresponds with

a local minimum ofσ equal to 40.16. The global minimum is obtained for

the permutation that interchanges Reduced and Scute, with value 35.88. In

Figure 1 we see the scales for the two local minima, one corresponding with

Fisher’s order and the other one with the optimal order.
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Figure 1. Genes on Chromosome
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In this entry we have only discussed least squares metric unidimensional

scaling. The first obvious generalizations are to replace the least squares

loss function, for example by the least absolute value orl1 loss function.

The second generalization is to look at nonmetric unidimensional scaling.

These generalizations have not been studied in much detail, but in both we

can continue to use the basic geometry we have discussed. The combinatorial

nature of the problem remains intact.
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