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The spacing effect refers to increased retention following learning
instances that are spaced out in time compared with massed
together in time. By one account, the advantages of spaced learning
should be independent of task particulars and previous learning
experiences given that spacing effects have been demonstrated in
a variety of tasks across the lifespan. However, by another account,
spaced learning should be affected by previous learning because
past learning affects the memory and attention processes that form
the crux of the spacing effect. The current study investigated
whether individuals’ learning histories affect the role of spacing
in category learning. We examined the effect of spacing on 24
2- to 3.5-year-old children’s learning of categories organized by
properties to which children’s previous learning experiences have
biased them to attend (i.e., shape) and properties to which children
are less biased to attend (i.e., texture and color). Spaced presenta-
tions led to significantly better learning of shape categories, but not
of texture or color categories, compared with massed presenta-
tions. In addition, generalized estimating equations analyses
revealed positive relations between the size of children’s ‘‘shape-
side” productive vocabularies and their shape category learning
and between the size of children’s ‘‘against-the-system” productive
vocabularies and their texture category learning. These results sug-
gest that children’s attention to and memory for novel object cat-
egories are strongly related to their individual word-learning
histories. Moreover, children’s learned attentional biases affected
the types of categories for which spacing facilitated learning.
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These findings highlight the importance of considering how learn-
ers’ previous experiences may influence future learning.

� 2017 Elsevier Inc. All rights reserved.
Introduction

Spacing repetitions of learning instances over time promotes better memory and generalization
than massing learning instances together in time (e.g., Cepeda, Pashler, Vul, Wixted, & Rohrer,
2006; Childers & Tomasello, 2002; Donovan & Radosevich, 1999; Ebbinghaus, 1885/1913; Kornell &
Bjork, 2008). This robust finding has been demonstrated in a variety of category-learning tasks across
the lifespan (e.g., Kornell & Bjork, 2008; see also Vlach, 2014), suggesting that the advantages of
spaced learning schedules are not tied to particular tasks and may be independent of individuals’ pre-
vious learning experiences. However, the effects of spacing depend heavily on learners’ online mem-
ory and attention (e.g., Appleton-Knapp, Bjork, & Wickens, 2005; Bjork & Bjork, 1992). Memory and
attention, in turn, are heavily influenced by biases individuals acquire through past learning experi-
ences (e.g., Castel, McCabe, Roediger, & Heitman, 2007; Hershler & Hochstein, 2009). It is unclear,
therefore, whether spacing benefits learning of all types of information equally or whether spacing
might preferentially facilitate acquisition of information to which learners’ prior experiences bias
them to attend.

The current study investigated how the memory and attention dynamics associated with the spac-
ing effect are affected by the biases individuals acquire through their previous learning experiences.
We did so by comparing the contents of children’s early vocabularies (i.e., the first several hundred
words children produce); such contents are indicators of the object properties to which children’s
experiences have biased them to attend. We examined the effect of spacing on children’s learning
of two types of novel object categories: categories organized by properties to which children’s expe-
riences have biased them to attend (i.e., shape) and properties to which they are less biased to attend
(i.e., texture and color).
The spacing effect

The term spacing effect refers to the robust phenomenon whereby learning is increased via study
that is spaced out compared with study that is massed together in time (Cepeda et al., 2006). One com-
mon explanation of the spacing effect is that, counterintuitively, spacing promotes learning by allow-
ing time for forgetting during the interval between successive presentations. That is, forgetting an
initial instance has been shown repeatedly to increase the potency of encoding subsequent instances
(e.g., Bjork & Allen, 1970; Cuddy & Jacoby, 1982; see also Bjork, 2014). This is theorized to occur
because the less accessible an item is in memory due to forgetting, the more the memory of that item
is strengthened (learned) when it is successfully retrieved (Bjork & Bjork, 1992).
The spacing effect depends on memory and attention processes
Although spacing can enhance learning, the effect of spacing appears to be highly dependent on

learners’ online memory and attention. For instance, some forgetting during a spacing interval is
optimal, but too much forgetting can be detrimental (e.g., Appleton-Knapp et al., 2005); if a learner
completely forgets previous category instances during a spacing interval, it may be difficult to
abstract relevant category features (Gagné, 1950). Importantly, the rate at which forgetting occurs
is thought to depend on the strength of encoding (Bjork, 2014). Features that are less attended
to, and therefore not as strongly encoded, may be forgotten more quickly than features that are bet-
ter attended to.
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Previous learning experiences affect memory and attention processes
The memory and attention processes that are important for spacing are heavily influenced by indi-

viduals’ learning histories. Numerous studies find that prior experiences and domain-specific exper-
tise affect both memory and attention across a variety of domains (e.g., Ericsson & Kintsch, 1995;
Geoffrey, Brooks, & Allen, 1989; Hatano & Osawa, 1983; Lehmann & Ericsson, 1996). For example,
when reading a passage about a baseball game, junior high school students’ short- and long-term
retention of the passage were dependent on students’ prior knowledge of baseball (Recht & Leslie,
1988). In another study, individuals studied a word list containing animal names that represented
American professional football teams (e.g., broncos; Castel et al., 2007). Individuals with high levels
of knowledge about football correctly recalled more animal names, but also suffered from more intru-
sions of nonpresented animal names that represented football teams, compared with individuals with
low levels of football knowledge. Such findings suggest that an individual’s learning history can both
facilitate and interfere with future memory and learning.

Research also suggests that the influence of prior experiences on memory and attention extends to
categorization tasks. For instance, adults trained to be experts at identifying ‘‘Greebles”—novel objects
that share a common spatial configuration—showed enhanced memory for specific Greebles, as well as
better categorization of novel Greebles several months after training, compared with novices
(Gauthier, Williams, Tarr, & Tanaka, 1998). In categorization tasks with young children, training with
actions that draw attention to different properties of a category exemplar systematically changes the
range of test items to which children extend category labels (Smith, 2005). Similarly, word labels that
draw attention to different category boundaries affect the category prototypes infants form (Althaus &
Westermann, 2016). Together with the aforementioned memory studies, this research demonstrates
that past learning experiences can significantly affect memory and attention during future learning
and categorization. The current study examined whether such effects of learning history on memory
and attention influence whether and how learning benefits from spacing.
Children’s early vocabularies and spaced learning

The current study examined one type of learning history, attentional biases reflected in children’s
early vocabularies, and its impact on the spacing effect in children’s category learning. Because the
term category often means different things to different people, we first describe how the term is used
in this article; the term category refers to a set of distinct objects to which a common word label is
applied. Similar definitions have been widely used in the psychology literature (e.g., Bruner,
Goodnow, & Austin, 1956; Mervis & Rosch, 1981; Neisser, 1987). Several recent studies have examined
the effect of spacing on children’s category learning (e.g., Vlach, Ankowski, & Sandhofer, 2012; Vlach,
Sandhofer, & Bjork, 2014; Vlach, Sandhofer, & Kornell, 2008). For instance, Vlach and colleagues (2008)
examined the effect of spacing on 3-year-olds’ acquisition of labels for novel object categories orga-
nized by similarity in shape. Children were presented with three category exemplars either in imme-
diate succession (massed condition) or with 30-s play intervals between exemplars (spaced
condition). The authors found that children correctly extended category labels to novel objects match-
ing in shape more often following spaced presentations compared with massed presentations. Simi-
larly, Vlach and colleagues (2012) also found a benefit of spacing on 2-year-olds’ categorization of
novel objects organized by similarity in shape.

Vlach and colleagues (2008, 2012, 2014) concluded from such studies that the forgetting induced
by spacing promotes category induction. Specifically, they argued that forgetting facilitates catego-
rization by promoting the memory of relevant category features and deterring the memory of irrele-
vant features. However, the evidence for this argument is based on English-learning children’s
generalization of labels for categories organized by similarity in shape, a feature that English-
learning children are typically strongly biased to attend to by around 18 to 24 months of age (e.g.,
Gershkoff-Stowe & Smith, 2004; Smith, 2000, 2001; see ‘‘The shape bias and spaced learning” section
below). It is possible that the effect of spacing might be influenced by learned attentional biases, such
that spacing might not affect children’s categorization of all types of information equally.
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The shape bias and spaced learning

Children’s learning histories may affect the impact of spacing on category learning by differentially
promoting learning of shape-based object categories but not learning of categories organized by other
dimensions. At around 18 to 24 months of age, English-learning children begin to show a bias to
attend to object shape and map new words to object shape rather than to texture or color (e.g.,
Gershkoff-Stowe & Smith, 2004; Smith, 2000, 2001). This ‘‘shape bias” is thought to arise because chil-
dren’s early English vocabularies are dominated by object names that refer to solid things belonging to
categories organized by shape (e.g., ball, cup). The shape bias is also observed in some other languages,
although not as robustly (e.g., Gathercole & Min, 1997; Hahn & Cantrell, 2012; Waxman, Senghas, &
Benveniste, 1997).

For instance, Samuelson and Smith (1999) asked adults to judge whether the 312 nouns on the
MacArthur–Bates Communicative Developmental Inventory referred to a category of items (a) charac-
terized by solidity or nonsolidity and (b) organized by similarity in shape or in material as well as (c)
whether each noun was a mass or count noun. Samuelson and Smith found that young children’s pro-
ductive vocabularies consisted primarily of nouns judged by adults to be count nouns that name solid
objects organized by similarity in shape (e.g., ball, cup). These so-called ‘‘shape-side” nouns (Perry &
Samuelson, 2011) are thought to train children to attend primarily to objects’ shapes, such that with
increased shape-side vocabulary, children’s shape bias becomes even more robust (see Smith &
Samuelson, 2006).

When young children with a shape bias are learning shape-based categories, memory and attention
dynamics may facilitate categorization. Specifically, children may attend less to features like texture
and color, compared with shape, and therefore forget these features more quickly than shape during
a spacing interval. Although this forgetting likely facilitates retrieval and abstraction of shape (Vlach
et al., 2008), it may impair learners’ ability to acquire categories with central properties other than
shape.

Recent research suggests that the extent to which learning benefits from spacing depends on the
degree to which the information to be learned is vulnerable to forgetting. For instance, spaced study
of brand advertisements (Appleton-Knapp et al., 2005) resulted in adults’ recall of significantly less
information when the to-be-learned information was more vulnerable to forgetting (i.e., due to con-
text variation). Thus, in contrast to previous assertions (Vlach et al., 2008, 2012, 2014), we contend
that during the developmental period when children are likely to exhibit a shape bias—such that fea-
tures other than shape are vulnerable to forgetting—spacing might not promote, and may even be
detrimental to, children’s ability to categorize by nonshape features.
Individual differences in children’s word-learning histories

Nevertheless, there are individual differences in children’s word-learning histories that might
make some children more likely than others to attend to shape versus nonshape features. Perry,
Axelsson, and Horst (2015) found that 2-year-olds who produced more shape-side nouns were more
accurate at remembering objects’ shapes than 2-year-olds who produced fewer shape-side nouns. In
addition, Perry and Saffran (2016) found that toddlers who said more, compared with fewer, shape-
side nouns were less affected in recognizing a target object whose color had been changed, suggesting
that color information was less central to the object representations of children with larger shape-side
vocabularies.

Moreover, although children’s early vocabularies are dominated by shape-side nouns, children also
learn ‘‘material-side” nouns—nouns judged by adults to be mass nouns that name nonsolids organized
by similarity in material (e.g., water, pudding)—and ‘‘against-the-system” nouns—nouns that do not
support the link between solidity and attention to shape (e.g., chalk and ice, both of which are solid
but belong to categories organized by material; Perry & Samuelson, 2011). Knowing more material-
side and against-the-system nouns, which label categories organized by properties other than shape,
might make children more likely to attend to properties in addition to shape. For instance, Perry and
Samuelson (2011) found that the more against-the-system nouns 1.5-year-olds had in their
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productive vocabularies, the more likely they were to extend novel object labels based on similarity in
material.

Thus, children’s individual learning histories, reflected in the contents of their productive vocabu-
laries, may predispose some children to attend to shape and/or nonshape features more so than other
children. Such differences in attention to specific object features may result in individual differences in
the effect of spacing on children’s learning of shape and nonshape categories.

The current study

The current study investigated whether individuals’ learning histories affect the role of spacing in
children’s category learning. In contrast to the contention of Vlach and colleagues (2008, 2012, 2014)—
that the forgetting induced by spacing facilitates categorization by promoting the memory of relevant
category features—we argue that the forgetting induced by spacing may facilitate categorization only
by particular object features dependent on the past experiences of learners. We examined the effect of
spacing on children’s learning of novel shape, texture, and color categories. Spacing may promote cat-
egorization based on features to which children have learned to attend (i.e., shape) because such infor-
mation is likely to be represented strongly enough in memory to be retrieved after a spacing delay. In
contrast, spacing may impair children’s ability to categorize by features to which they have learned to
pay less attention (i.e., texture and color) because such features may be less easily recalled after a
spacing delay. Because young children’s attention to different object features has been shown to differ
as a function of productive vocabulary, we also analyzed the contents of children’s vocabularies—
shape-side, material-side, and against-the-system nouns—and how these contents related to catego-
rization performance.
Method

Participants

The participants were 24 2- to 3.5-year-old monolingual English-speaking children (Mage = 30.5 -
months, SD = 4.7, range = 22–42). This relatively large age range was recruited to obtain a sample with
a broad range of experiences in learning various types of nouns and a broad range of performances on
the categorization task. Half of the children were randomly assigned to participate in the massed con-
dition, and the other half were assigned to participate in the spaced condition. Power analyses based
on the effect size (gp2 = .69) for the spacing effect in children’s shape categorization reported in Vlach
et al. (2008) indicated that a sample size of 12 infants per condition would yield power = 0.99. There
was an equal number of boys and girls in each condition. Age did not differ significantly between con-
ditions, t(22) = 0.01, p = .990, d = 0.01. Children learned three category types (shape, texture, and
color), each type on a separate day (within a span of 3–23 days, M = 10.7 days, SD = 5.8). Category
order was counterbalanced across participants. Data from additional participants were excluded from
the final sample due to inability to complete all three sessions (n = 9), not passing the pretest (n = 9),
parents not returning the vocabulary questionnaire (n = 5), failure to understand the task (n = 5), or
experimenter error (n = 1). Children were recruited from preschools in the Los Angeles area on the
U.S. west coast and were given a small gift (a book) for their participation.

Stimuli

Children were presented with 12 novel object categories organized by similarity in shape (4 cate-
gories), texture (4 categories), and color (4 categories). Each category consisted of three exemplars
that shared a central property (shape, texture, or color) and differed on the other dimensions. For
instance, exemplars of a texture category had the same surface texture but varied in color and shape
(see Fig. 1A). Exemplars of each category were given the same novel label (i.e., wug, fep, zav, blicket,
binto, gorp, koba, dax, toma, coodle, tez, or biv). Category–label pairings and the order in which exem-
plars were presented were randomized for each participant.



Fig. 1. (A) Example stimuli sets used during the learning phase of the categorization task. (B) Learning phase procedure shown
with texture category stimuli for both presentation timing conditions. (C) Example test phase stimuli for texture category.
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At test, four objects were presented (see Fig. 1C). One object was a novel instance of the target cat-
egory (e.g., wug). The second and third objects were novel objects that did not match the target prop-
erty but did match a category exemplar on one nontarget perceptual feature (i.e., for texture
categories, the second test object matched the color of one learning exemplar and the third test object
matched the shape of a different learning exemplar); we refer to these objects as the shape/texture/-
color distracters hereafter. The fourth object was a figurine of a familiar object (e.g., a toy cat, a shoe),
the familiar distracter, which was equivalent in size to all of the other objects. Familiar objects for
which children were likely to already have word labels (i.e., >75% of boys and girls at 24 months of
age produce the label; Dale & Fenson, 1996) were included in the multiple-choice test to help us iden-
tify children who might not have understood the task; children who selected the familiar distracter on
the majority of trials were excluded from our analyses due to failure to understand the task.

Design

The experiment had a 2 (Presentation Timing) � 3 (Category Type) design. Presentation timing
(massed or spaced) was a between-participants factor, and category type (shape, texture, color) was
a within-participants factor.

Procedure

Vocabulary assessment
Prior to the first session, parents completed a checklist of 312 early learned nouns that have been

rated for solidity/nonsolidity, mass/count syntax, and organization by similarity in shape versus mate-
rial (Samuelson & Smith, 1999). We used this noun checklist to analyze the contents of children’s pro-
ductive vocabularies—shape-side, material-side, and against-the-system nouns—and how these
contents related to children’s learning of the shape, texture, and color categories. Note that we did
not include a color vocabulary measure because only three words on the checklist referred to cate-
gories organized by similarity in color but not shape or material (i.e., carrots, pickle, and pumpkin;
Samuelson & Smith, 1999).

Comprehension pretest
Children completed a pretest prior to the first session to screen for task comprehension. The com-

prehension pretest and all subsequent categorization sessions were administered individually. A small
book and set of keys were labeled one at a time and placed in front of each child. The child was asked
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to offer the experimenter one object (e.g., ‘‘Can you hand me the book?”). After the child made a selec-
tion, the objects were presented again and the child was asked to select the other object (e.g., ‘‘Can you
hand me the keys?”). The experimenter provided neutral feedback (e.g., ‘‘Thank you”) after each selec-
tion. Only children who selected the correct object on both trials were asked to participate in the cat-
egorization sessions.

Categorization sessions
At the beginning of each categorization session, the child was told that he or she was going to play a

game to learn about new toys. Two experimenters conducted each session: One experimenter kept
track of the timing and order of presentations, keeping the objects out of the child’s sight until presen-
tation. During presentations, the second experimenter kept the object in the child’s visual focus at all
times, moving the object with the child’s gaze if necessary to ensure equivalent looking times across
all presentations. During each session, the child was presented with four novel object categories, each
consisting of a learning phase and a test phase.

Learning phase. During the learning phase, three category exemplars were presented either in imme-
diate succession (<1 s between exemplars; massed condition) or with 30-s play intervals between
exemplars (spaced condition; see Fig. 1B). Play intervals consisted of reading books, completing puz-
zles, or playing with Play-Doh or stickers. In both timing conditions, each exemplar was presented for
10 s and was labeled three times (e.g., ‘‘Look at this wug toy! What a cool wug toy! You hold the wug
toy.”). An adjectival frame was used to inform the child that an attribute of the object was being
labeled but did not cue attention to any specific property (shape, texture, or color).

Following the learning phase, there was a 2-min retention interval during which the child read a
book, completed a puzzle, and/or played with Play-Doh or stickers. A 2-min interval was chosen
because it (a) required children to access information from long-term memory during the test phase
and (b) was short enough to allow children to stay on-task for the entire experiment.

Test phase. Test trials began immediately following the retention interval. The experimenter pre-
sented the four test items to the child simultaneously, saying, ‘‘Look at all of these.” The child was
given up to 30 s to explore the test objects. During this time, if the child did not attend to all of the
objects, the experimenter touched each object one at a time, saying, ‘‘Look at this.” After the child
had attended to each test object, all four objects were gathered by the experimenter, mixed randomly,
and pushed toward the child in a horizontal line. The experimenter then asked, ‘‘Can you hand me the
wug toy?” and held out a hand onto which the child could place an object. Children were given neutral
feedback (‘‘Thank you”) on their selections.

Results

The current study examined whether children’s learning histories affect the role of spaced presen-
tation timing in category learning. Specifically, we investigated the possibility that spaced presenta-
tion timing may be beneficial for children’s learning of only particular types of categories (cf. Vlach
et al., 2008, 2012) given the attentional biases engendered by children’s previous word-learning expe-
riences. Although participants’ age was not of primary interest, we included age in all of our analyses
due to the relatively large age range of our participants.

Does spacing promote learning of novel shape, texture, and color categories?

For each child, we calculated the number of correct responses for each category type (shape, tex-
ture, color). We first examined whether the order in which children were taught the different cate-
gories affected the number of correct responses for each category type. A 3 (Category Order: shape,
texture, or color learned during the first session) � 3 (Category Type) repeated-measures analysis of
variance (ANOVA) did not reveal any significant main effects or interactions (Fs < 1.67, ps > .177,
gp2s < .137). Therefore, category order was omitted from further analyses.
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Fig. 2 shows the average number of correct responses (out of 4) for each category type by children
in both presentation timing conditions. As can be seen in the figure, massed presentation timing
resulted in near-chance performance (1 of 4 correct) for all category types, whereas spaced presenta-
tion timing resulted in different performances for the three category types, suggesting an interaction
between presentation timing and category type. A 2 (Presentation Timing) � 3 (Category Type)
repeated-measures ANOVA with age as a covariate confirmed a significant interaction between pre-
sentation timing and category type, F(1, 21) = 7.86, p = .011, gp2 = .272. There were no significant main
effects or other significant interactions (Fs < 2.36, ps > .139, gp2s < .102).

To investigate the interaction between presentation timing and category type, three planned
independent-samples t tests were conducted (this and all future analyses were two tailed). Spaced
presentations led to a significantly greater number of correct responses than massed presentations
for shape categories, t(22) = 2.30, p = .031, d = 0.94, but not for texture categories, t(22) = 1.04,
p = .308, d = 0.43, or color categories, t(22) = 1.30, p = .207, d = 0.52. Moreover, one-sample t tests
revealed that only performance on shape categories by children in the spaced presentation timing
condition was significantly above chance, t(11) = 3.03, p = .006, d = 0.87 (all other ts < 1.78, ps > .103,
ds < 0.51). Thus, we replicated the spacing effect of Vlach and colleagues (2008, 2012) with the shape
category but not with the texture or color category. The effect of spacing on children’s categorization
performance appears to depend on the category being learned.

We also examined whether there were systematic patterns to children’s errors (shape, color, tex-
ture, or familiar distracter choices). Different distracters were available for different categories (e.g.,
the shape distracter was available as an option only for texture and color categories), such that the
differences in the number of target choices across categories could bias the number of times particular
distracter items were chosen. Thus, rather than analyzing numbers of each type of distracter response,
we instead calculated proportions to ask the following: Given that a distracter item was chosen, which
was it? For each child, we calculated the proportions of each type of distracter response out of that
child’s total number of incorrect responses (see Fig. 3). Unlike shape, color, and texture distracters,
which were options on 67% of trials, the familiar distracter was an option on 100% of trials; therefore,
we analyzed familiar distracter responses in a separate analysis from the other distracter responses.

A univariate ANOVA on children’s familiar distracter responses yielded no significant effects of age
or presentation timing (Fs < 1.64, ps > .214, gp2s < .073). As can be seen in Fig. 3, children chose the
familiar distracter less often than predicted by chance, t(23) = 3.57, p = .002, d = 0.73. A 2 (Presentation
Timing) � 3 (Novel Distracter Type: shape, color, or texture) repeated-measures ANOVA with age as a
covariate yielded no significant main effects or interactions (Fs < 2.00, ps > .148, gp2s < .087), suggesting
that novel distracter responses did not differ significantly by presentation timing, distracter type, or
age. As can be seen in Fig. 3, children did not chose shape, color, or texture distracters significantly
more often than predicted by chance (ts < 1.52, ps > .142, ds < 0.31). Thus, although children were
more likely to select a novel distracter compared with a familiar distracter on trials when they did
not choose the target, there were no discernible patterns as to which novel distracter children chose.

Previous word-learning experiences and categorization performance

To investigate why the effect of spacing varied by category type, we analyzed the contents of par-
ticipants’ vocabularies, which are markers of the object features to which children’s early word-
learning experiences have biased them to attend. First, we calculated the number of early learned
nouns that parents indicated were in each child’s productive vocabulary. Previous studies suggest that
children with more than 50 nouns in their productive vocabularies are likely to exhibit a shape bias
(Gershkoff-Stowe & Smith, 2004; Samuelson & Smith, 1999). The children in the current study pro-
duced between 128 and 311 (Mmassed = 239, SD = 50, Mspaced = 239, SD = 52) of the 312 nouns on the
checklist, suggesting that this population would be highly likely to exhibit a shape bias.

Next, we analyzed the particular types of nouns that comprised children’s productive vocabularies.
Children produced between 73 and 186 shape-side nouns (Mmassed = 146, SD = 28, Mspaced = 146,
SD = 31), between 8 and 24 material-side nouns (Mmassed = 17, SD = 6, Mspaced = 17, SD = 4), and
between 13 and 28 against-the-system nouns (Mmassed = 22, SD = 5, Mspaced = 22, SD = 4). To investigate
whether word-learning histories played a significant role in children’s category learning, we examined



Fig. 2. Mean number of correct responses by category type for each of the two presentation timing conditions. Error bars
indicate standard errors of the mean. The dashed line represents chance performance (1 of 4 correct). Asterisks indicate
statistical significance between conditions (specified by the bracket), or compared with chance, at the .05 level (single asterisk)
or .01 level (two asterisks).

Fig. 3. Mean proportion of shape, color, texture, and familiar distracter responses out of all incorrect responses for each of the
two presentation timing conditions. Error bars indicate standard errors of the mean. The dashed lines represent chance
performance (.22 for shape, color, and texture distracter responses; .33 for familiar distracter responses). Asterisks indicate
performance (regardless of presentation timing condition, as described in the text) that is statistically below chance at the .01
level.
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the relation between children’s productive vocabulary contents—the number of shape-side, material-
side, and against-the-system nouns they produced—and their shape, texture, and color categorization
performances. We were also interested in the relative contributions of vocabulary contents and pre-
sentation timing to categorization performances as well as any interactions between vocabulary struc-
ture and presentation timing.
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Statistical approach
To estimate these contributions and assess possible interactions, we first needed to identify the

correct statistical model. The current count data violate several key assumptions of traditional statis-
tical approaches like ordinary least squares (OLS) regression. For instance, OLS regression assumes
that the outcome is a normally distributed continuous variable and that all observations are indepen-
dent of one another (Berry, 1993). In contrast, the outcome variable in the current data—the number of
correct responses for each category type—took on a limited range of values and tended to be right
skewed. Thus, we treated the response on individual trials as binary (i.e., correctly chose the target
or did not choose the target), such that each participant contributed four trials of data for each cate-
gory type. Because these data fail the assumption of independence of observations, we used a
regression-based model able to handle both correlated data and a variety of outcome variable distribu
tions—generalized estimating equation (GEE) models (Liang & Zeger, 1986; Zeger & Liang, 1986).
Model specification. GEE models require several factors to be specified (Ballinger, 2004). For our binary
outcome, we specified a binomial distribution and a logit link function. We chose an exchangeable cor-
relation structure, which assumes that all four trials of each category are equally correlated with each
other, for each participant (although GEE models are robust to misspecification of the correlation
structure; Zeger & Liang, 1986).
Model selection. Predictors of shape, texture, and color performances were investigated in separate
GEE models. Vocabulary measures were entered into separate models due to multicollinearity among
these predictors (see Table 1). Model selection was carried out using the quasi-likelihood under the
independence model information criterion (QIC; Pan, 2001). In this model selection process, the model
with the lowest QIC score is judged to be the best fit, although absolute QIC score might not be
meaningful.

We began by examining all possible main-effects models. Each model involved prediction of binary
shape, texture, or color performances from a dummy-coded variable comparing the two levels of the
presentation timing variable (massed and spaced), from continuous vocabulary variables (total nouns,
shape-side nouns, material-side nouns, and against-the-system nouns), and/or from age. Once we
found the best-fitting main-effects model, for models with more than one predictor we added an
interaction term to the model and assessed its significance as well as its effect on the overall model
fit. In all cases, models with an interaction term had larger QIC values (worse fit) and nonsignificant
interaction coefficients. Table 2 presents five models of children’s shape, texture, and color perfor-
mances. Although only one of the models provides the best fit for a particular category—Model 1
for shape, Model 2 for texture, and Model 5 for color—the results of five models are shown for all three
category types for purposes of comparison. For each model, coefficient estimates (Bs), standard errors
(SEs), odds ratios (ORs), and 95% confidence intervals (CIs) are provided for each predictor. We used
Wald’s chi-square test to assess the statistical significance of individual predictors.

Model interpretation. GEE models produce estimates of the population-averaged effect of each pre-
dictor on the outcome after adjusting for covariates and taking into account within-participants cor-
relation. For interpretation, odds ratios are used rather than raw coefficients because the
interpretation can be a more intuitive measure of likelihood. Odds ratios greater than 1 are interpreted
as increasing the likelihood of an outcome, whereas odds ratios less than 1 are interpreted as
Table 1
Correlations between vocabulary measures and presentation timing.

Measure 1 2 3 4

1. Shape-side nouns –
2. Against-the-system nouns .88** –
3. Material-side nouns .77** .89** –
4. Presentation timing .02 �.07 .04 –

** p < .01.



Table 2
Model goodness of fit, coefficient estimates, and odds ratios from five logistic GEE models relating presentation timing and vocabulary measures to children’s shape, color, and texture category
performances.

Model Independent variable Shape Texture Color

QIC B (SE) OR (95% CI) QIC B (SE) OR (95% CI) QIC B (SE) OR (95% CI)

1 Presentation timing 118.74 1.36* (0.61) 3.89 (1.18, 12.83) 128.11 0.55 (0.49) 1.73 (0.66, 4.52) 116.84 �0.52 (0.40) 0.59 (0.27, 1.31)
Shape-side nouns 0.02* (0.01) 1.02 (1.01, 1.04) 0.01 (0.01) 1.01 (0.99, 1.03) 0.00 (0.01) 1.00 (0.99, 1.02)

2 Against-the-system nouns 130.33 0.10 (0.07) 1.10 (0.97, 1.30) 124.64 0.12 (0.07) 1.13 (0.99, 1.29) 117.15 � 0.01 (0.05) 0.99 (0.91, 1.09)
3 Material-side nouns 130.50 0.08 (0.06) 1.09 (0.97, 1.21) 128.43 0.06 (0.06) 1.07 (0.96, 1.19) 116.69 0.00 (0.04) 1.00 (0.93, 1.07)
4 Shape-side nouns 126.08 0.02* (0.01) 1.02 (1.00, 1.04) 127.69 0.01 (0.01) 1.01 (0.99, 1.03) 117.05 0.00 (0.01) 1.00 (0.99, 1.02)
5 Presentation timing 124.95 1.30* (0.59) 3.66 (1.14, 11.72) 128.64 0.55 (0.50) 1.73 (0.65, 4.62) 115.76 �0.52 (0.41) 0.59 (0.27, 1.32)

Note. GEE, generalized estimating equation; QIC, quasi-likelihood under the independence model information criterion; B, coefficient estimate; OR, odds ratio; CI, confidence interval.
* p < .05.
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decreasing the likelihood of an outcome. Odds ratios equal to 1 are not significantly associated with
either increased or decreased likelihood.
Shape category performance
A model with presentation timing and shape-side noun vocabulary as predictors provided the best

fit (lowest QIC) to the shape categorization data (see Model 1 in Table 2). Both presentation timing and
shape-side noun vocabulary were significant predictors of children’s categorization by shape (Wald
v2s > 4.98, ps < .026). The odds ratio for presentation timing in Model 1 is 3.89 with a 95% confidence
interval of 1.18 to 12.83. Thus, we can be 95% confident that the odds of choosing the target on shape
category trials were increased by between 18% and 1183% for the average participant in the spaced
condition compared with the average participant in the massed condition, holding shape-side vocab-
ulary constant. The odds ratio for shape-side vocabulary in Model 1 is 1.02 with a 95% confidence
interval of 1.01 to 1.04. Thus, we can be 95% confident that the odds of choosing the target on shape
category trials increased by between 1% and 4% (on average) for every 1-unit increase in shape-side
vocabulary, adjusting for presentation timing condition. This is equivalent to saying that for every
10-unit increase in shape-side vocabulary, we can be 95% confident that the odds of choosing the tar-
get on shape category trials increased by between 10% and 48%, adjusting for presentation timing
condition.

These findings are consistent with our previous finding that spaced presentation timing facilitated
categorization by shape. Moreover, presentation timing is a significant predictor of shape categoriza-
tion even when controlling for children’s shape-side noun vocabulary. These findings also support the
importance of the size of children’s shape-side noun vocabularies for children’s shape category learn-
ing. Specifically, although as children produce more words their vocabularies naturally tend to take on
the structure of the noun checklist (i.e., mostly shape-side nouns), shape-side noun vocabulary size
was a better predictor of shape category learning than was total noun vocabulary. This finding sug-
gests that what may matter most for learning shape categories is not the total number of nouns chil-
dren know but rather the number of nouns that fall into the shape-side classification.
Texture category performance
A model with against-the-system nouns as the only predictor provided the best fit to the texture

categorization data (see Model 2 in Table 2). Nevertheless, against-the-system vocabulary accounted
for only a marginal amount of the variance in texture categorization performances (Wald v2 = 3.50,
p = .061). The odds ratio for against-the-system nouns in Model 2 is 1.13 with a 95% confidence inter-
val of 0.99 to 1.29. Thus, we can be 95% confident that the odds of choosing the target on texture cat-
egory trials increased by between �1% and 29% (on average) for every 1-unit increase in against-the-
system vocabulary. These findings suggest that knowing more words that go against the typical clas-
sification system of solid objects belonging to categories organized by shape may help children attend
to and categorize solid objects based on their textures.

Models 3 and 4 of texture performance, with only a material-side vocabulary predictor and only a
shape-side vocabulary predictor, respectively, are included in Table 2 for comparison purposes. As can
be seen from comparing the results of Models 2 to 4, although shape-side, material-side, and against-
the-system vocabulary sizes were highly correlated (see Table 1), these vocabulary measures appear
to account for different amounts of variance in children’s categorization performances.
Color category performance
A model with only presentation timing provided the best fit to the color categorization data (see

Model 5 in Table 2). Nevertheless, presentation timing did not account for a significant amount of
the variance in color categorization performances (Wald v2 = 1.64, p = .201). This finding is consistent
with our previous finding that spaced presentation timing does not have a significant effect on color
categorization. Moreover, in contrast to our findings with shape and texture categories, the types of
nouns children produced did not affect children’s color category learning.
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Discussion

Spaced presentations of category exemplars facilitated children’s acquisition of shape categories
but showed no benefit compared with massed presentations for texture and color categories. These
results are consistent with previous research demonstrating that spacing may promote children’s cat-
egorization by shape (Vlach et al., 2008, 2012); however, the current results also demonstrate that
spacing does not benefit all types of category learning equally.
Why did spacing benefit only shape category learning?

One explanation comes from research demonstrating that forgetting and retrieval difficulty may
promote children’s categorization based on shape (e.g., Vlach et al., 2008, 2012, 2014). According to
such an account, spacing allows for forgetting of object features. Therefore, learners must engage in
more difficult retrieval to access those features during subsequent exemplar presentations when pre-
sentations are spaced compared with when presentations are massed (Vlach et al., 2012). When fea-
tures from prior presentations are successfully retrieved, memory for those features is strengthened
and those features are subsequently forgotten more slowly. However, features that are not success-
fully retrieved continue to be forgotten and at a faster rate than features that were retrieved (Bjork
& Bjork, 1992; see also Bjork, 2014). In sum, spacing promotes forgetting, and therefore more difficult
retrieval, than does massing, resulting in stronger memory for information that is successfully
retrieved.

Following from such an account, spacing may preferentially benefit children’s shape category
learning because children’s attentional biases influence memory for object features. Children in the
current study had productive vocabularies dominated by object names that refer to solid objects
belonging to categories organized by shape, biasing children’s attention to objects’ shapes. A shape
bias may facilitate the retrieval of shape information following a spacing interval, facilitating abstrac-
tion and categorization by shape. Less attention to features like texture and color, in contrast, may
make this information less likely to be retrieved after a spacing interval, hindering abstraction and cat-
egorization by such features.

This forgetting account of the data is also consistent with consolidation explanations of the spacing
effect (e.g., Landauer, 1969). Consolidation accounts explain the spacing effect as a product of memory
consolidation during the intervals between learning events. In the current study, spaced presentation
timing resulted in longer intervals between category exemplars, and therefore a longer learning phase,
compared with massed presentation timing, allowing for more memory consolidation prior to test. If a
shape bias led children to encode objects’ shapes more so than objects’ textures or colors, consolida-
tion during learning might preferentially strengthen memory for shape, resulting in a spacing effect
primarily for shape categories. Nevertheless, a recent study by Vlach and colleagues (2014) found dif-
ferences in 3-year-olds’ shape category learning following two different spacing schedules that were
equated in time for consolidation during the learning phase. This finding suggests that consolidation
might not be a necessary factor underlying the spacing effect in children’s shape category learning.

It is also possible that factors other than memory contributed to children’s lack of texture and color
category learning in the current study. For instance, research suggests that color categories may be
particularly difficult dimensional categories for children to learn (Mervis, Bertrand, & Pani, 1995;
Shatz, Behrend, Gelman, & Ebeling, 1996). Although children acquire color categories by 3 or 4 years
of age, they nevertheless struggle to learn them (e.g., Backscheider & Shatz, 1993; Sandhofer & Smith,
1999). It is possible, if not likely, that factors in addition to memory make color learning difficult, such
that even with optimal presentation timing, young children may struggle to acquire color categories.
Vocabulary structure and category learning

We also analyzed the contents of children’s productive vocabularies—shape-side, material-side,
and against-the-system nouns—and how these contents related to categorization performance. The
size of children’s shape-side vocabulary was a significant predictor of shape category performance.
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This finding suggests that although all of the children in this study possessed sizable shape-side
vocabularies (between 73 and 186 shape-side nouns), each additional shape-side noun that a child
learned to produce within this range nevertheless resulted in a small but significantly increased like-
lihood of learning categories organized by shape. Future research could examine whether, in a popu-
lation with less extensive shape-side vocabularies, knowing more shape-side nouns would result in
even larger increases in shape category performance than those observed here.

In contrast to shape categorization, texture categorization was marginally related to the size of
children’s against-the-system vocabulary. That is, each additional against-the-system noun that a
child had learned to produce resulted in a marginally greater likelihood of learning categories orga-
nized by texture. The majority of against-the-system nouns in children’s productive vocabularies refer
to solid objects categorized by material. Knowing more of these nouns, therefore, may have helped
children attend to and categorize the solid objects in the current study based on their textures.

We did not, however, find a significant relation between texture category performance and
material-side vocabulary. Material-side nouns refer to nonsolid objects categorized by material.
Possessing a sizable material-side vocabulary might not have influenced children’s performance
because the current task involved categorization of solid objects. Future research could examine
whether, in a task involving categorization of nonsolids, having a larger material-side vocabulary
would relate to categorization performance.

In contrast to texture category performance, knowing more against-the-system nouns did not help
children attend to and categorize objects based on their colors. Of the 28 against-the-system nouns
that children may have known, 25 of them refer to categories of objects organized by similarity in
material, whereas only 1 of them (i.e., green beans) refers to a category organized by similarity in both
color and material (Samuelson & Smith, 1999). Thus, knowing more against-the-system nouns may
train children to better attend to the materials, but not the colors, of solid objects. Thus, a vocabulary
structure that directs attention away from shape will not necessarily facilitate categorization by non-
shape features. Rather, vocabulary structure must also direct attention toward a particular feature to
facilitate categorization by that feature.

Interestingly, despite the relatively large age range of the participants in this study, we found no
evidence to suggest that increased age resulted in better novel category learning. Rather, GEE analyses
suggested that vocabulary composition and presentation timing were the strongest predictors of novel
category learning. It is possible that with a different age range, perhaps one that included even
younger children who might not have yet developed a shape bias, we may have found an effect of
age on categorization performance. Nevertheless, the current results suggest that, during the develop-
mental period when children are likely to exhibit a shape bias, children’s ability to categorize novel
objects by shape and nonshape features is more closely linked with children’s individual learning his-
tories, as reflected in the contents of their productive vocabularies, than with chronological age.

Conclusion

The current results suggest that children’s attention to and memory for novel object categories is
strongly related to their individual word-learning histories. Because the effects of presentation timing
are influenced by learners’ online memory and attention, children’s learning histories affected the
types of categories for which spacing facilitated learning. These findings highlight the importance of
considering how learners’ previous experiences may influence future learning.

The current study focused on the shape bias, a particularly prominent attentional bias learned by
young children. However, older populations also exhibit attentional biases that affect perception and
memory for objects and events (e.g., Drew, Võ, & Wolfe, 2013; Eitam, Yeshurun, & Hassan, 2013; Mack
& Rock, 1998). Future research should examine the extent to which these other types of biases and
previous learning experiences may affect the memory and attention foundations of the spacing effect.
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